WO2020116460A1 - フロントエンド回路および通信装置 - Google Patents

フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2020116460A1
WO2020116460A1 PCT/JP2019/047264 JP2019047264W WO2020116460A1 WO 2020116460 A1 WO2020116460 A1 WO 2020116460A1 JP 2019047264 W JP2019047264 W JP 2019047264W WO 2020116460 A1 WO2020116460 A1 WO 2020116460A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
high frequency
band
signal
filter
Prior art date
Application number
PCT/JP2019/047264
Other languages
English (en)
French (fr)
Inventor
潤平 安田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980079802.7A priority Critical patent/CN113169756B/zh
Priority to KR1020217014247A priority patent/KR102521167B1/ko
Priority to JP2020559234A priority patent/JP7160113B2/ja
Publication of WO2020116460A1 publication Critical patent/WO2020116460A1/ja
Priority to US17/322,986 priority patent/US11581912B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • H04B1/1615Switching on; Switching off, e.g. remotely
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a front end circuit and a communication device.
  • CA carrier aggregation
  • Patent Document 1 discloses a circuit configuration of a front-end module that can secure good isolation characteristics between a plurality of communication bands in the CA method. More specifically, the front-end module is an antenna switch module that switches connection between an antenna element and a plurality of signal paths, and a first (Long Term Evolution) Band8 signal path in which a duplexer is arranged. And a second circuit that is connected to the LTE Band 3 signal path in which the duplexer is disposed and that is electromagnetically coupled to the first circuit. According to the above configuration, the amplitude and phase of the signal propagating between the first signal path and the second signal path can be easily adjusted by adjusting the degree of electromagnetic field coupling between the first circuit and the second circuit. , CA method, it is possible to secure good isolation characteristics between a plurality of communication bands.
  • CA method it is possible to secure good isolation characteristics between a plurality of communication bands.
  • the present invention has been made to solve the above problems, and in a system capable of propagating a high frequency signal by switching a plurality of communication systems, a front end circuit capable of reducing the propagation loss of the high frequency signal. And a communication device.
  • a front-end circuit is a front-end circuit that transmits a high-frequency signal, wherein a high-frequency signal is input to or input from the front-end circuit.
  • a first input/output terminal for outputting, a second input/output terminal, a third input/output terminal, a first common terminal connected to the first input/output terminal, and a first selection terminal and a second selection terminal.
  • a first switch circuit that exclusively switches the connection between the first common terminal and the first selection terminal and the connection between the first common terminal and the second selection terminal, and a high frequency in the first communication band.
  • a first filter which is a path connecting a first filter for passing a signal and the first selection terminal and the second input/output terminal, wherein the first filter is arranged and which propagates a high frequency signal in the first communication band.
  • a signal path and a second signal path that connects the second selection terminal and the third input/output terminal, is a bypass path in which no filter is arranged, and propagates a high-frequency signal in the first communication band; Transmission of the high frequency signal of the first communication band from the first input/output terminal to the second input/output terminal via the first signal path, and the first input via the second signal path.
  • the transmission of the high frequency signal of the first communication band from the output terminal to the third input/output terminal is exclusively switched, or the first input from the second input/output terminal via the first signal path. Transmission of a high frequency signal in the first communication band to an output terminal, and transmission of a high frequency signal in the first communication band from the third input/output terminal to the first input/output terminal via the second signal path However, it switches exclusively.
  • a front-end circuit is a front-end circuit that transmits a high-frequency signal, and a first input/output that inputs a high-frequency signal to the front-end circuit or outputs a high-frequency signal from the front-end circuit A terminal, a second input/output terminal, a third input/output terminal, a first common terminal, a first selection terminal and a second selection terminal, and a connection between the first common terminal and the first selection terminal, and A first switch circuit that exclusively switches the connection between the first common terminal and the second selection terminal, a first filter that passes a high-frequency signal in a first communication band, the first selection terminal, and the second A path connecting the input/output terminals, wherein the first filter is arranged and a first signal path for propagating a high frequency signal in the first communication band, the second selection terminal and the third input/output terminal are connected.
  • the present invention it is possible to provide a front end circuit and a communication device capable of reducing the propagation loss of a high frequency signal in a system capable of propagating a high frequency signal by switching a plurality of communication systems.
  • FIG. 1A is a circuit configuration diagram of a front end circuit and a communication device according to the first embodiment.
  • FIG. 1B is a circuit configuration diagram of a front end circuit according to a first modification of the first embodiment.
  • FIG. 1C is a circuit configuration diagram of a front end circuit according to a second modification of the first embodiment.
  • FIG. 2A is a diagram showing a circuit state in the CA (TDD/FDD) mode of the front end circuit according to the first embodiment.
  • FIG. 2B is a diagram showing a circuit state in the TDD-only mode of the front end circuit according to the first embodiment.
  • FIG. 3A is a diagram showing a circuit state in a CA (TDD/FDD) mode of the front end circuit according to Comparative Example 1.
  • FIG. 1A is a circuit configuration diagram of a front end circuit and a communication device according to the first embodiment.
  • FIG. 1B is a circuit configuration diagram of a front end circuit according to a first modification of the first embodiment.
  • FIG. 3B is a diagram showing a circuit state in the TDD-only mode of the front end circuit according to Comparative Example 1.
  • FIG. 4 is a circuit configuration diagram of the front end circuit according to the second embodiment.
  • FIG. 5A is a diagram showing a circuit state in the CA (TDD/FDD) mode of the front end circuit according to the second embodiment.
  • FIG. 5B is a diagram showing a circuit state in the TDD only mode of the front end circuit according to the second embodiment.
  • FIG. 6 is a diagram showing a circuit state of the front-end circuit according to Comparative Example 2 in the TDD-only mode.
  • FIG. 1A is a circuit configuration diagram of the front end circuit 1 and the communication device 6 according to the first embodiment. The figure also shows the antenna 2 connected to the communication device 6.
  • the communication device 6 includes a front end circuit 1, a transmission amplifier 3T, a reception amplifier 3R, an RF signal processing circuit (RFIC) 4, and a baseband signal processing circuit (BBIC) 5.
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • the RFIC 4 processes the high frequency reception signal input from the antenna 2 via the front end circuit 1 and the reception amplifier 3R by down conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 5. Further, the RFIC 4 performs signal processing on the transmission signal input from the BBIC 5 by up-conversion or the like, and outputs a high frequency transmission signal generated by the signal processing to the transmission amplifier 3T and the front end circuit 1.
  • the signal processed by the BBIC 5 is used, for example, as an image signal for displaying an image or as a voice signal for a call.
  • the RFIC 4 and the BBIC 5 are configured as ICs, for example.
  • the transmission amplifier 3T is an amplification circuit that preferentially amplifies the BandA high-frequency transmission signal, and is, for example, a power amplifier (power amplifier).
  • the reception amplifier 3R is an amplification circuit that is connected to the common terminal 40a of the switch circuit 40 and preferentially amplifies the high frequency reception signals of BandA and BandB, and is, for example, a low noise amplifier (low noise amplifier).
  • the front-end circuit 1 is a multicarrier transmission/reception device provided with a plurality of signal paths for transmitting/receiving radio signals in a plurality of communication bands (frequency bands) in order to support multimode/multiband.
  • the front end circuit 1 includes switch circuits 20 and 40, signal paths 61, 62 and 63, a duplexer 31, a reception filter 32, a filter 10, and an antenna connection terminal 100.
  • the front-end circuit 1 is arranged, for example, in the front-end of a multi-mode/multi-band compatible mobile phone.
  • the switch circuit 20 has a common terminal 20a (first common terminal), a selection terminal 20b (fifth selection terminal), a selection terminal 20c (first selection terminal), and a selection terminal 20d (second selection terminal), and is common.
  • the first switch circuit exclusively switches the connection between the terminal 20a and the selection terminal 20c and the connection between the common terminal 20a and the selection terminal 20d.
  • the common terminal 20a is connected to the antenna connection terminal 100 (first input/output terminal) via the filter 10.
  • the selection terminal 20b is connected to the signal path 61
  • the selection terminal 20c is connected to the signal path 62
  • the selection terminal 20d is connected to the signal path 63.
  • the switch circuit 40 has a common terminal 40a (second common terminal), a selection terminal 40b, a selection terminal 40c (third selection terminal), and a selection terminal 40d (fourth selection terminal), and the common terminal 40a and the selection terminal 40c.
  • the selection terminal 40b corresponds to a fourth input/output terminal for outputting a BandA high frequency signal from the front end circuit 1
  • the selection terminal 40c is a second input/output terminal for outputting a BandB high frequency signal from the front end circuit 1.
  • the selection terminal 40d corresponds to a third input/output terminal that outputs a Band B high-frequency signal from the front end circuit 1.
  • the common terminal 40a is connected to the receiving amplifier 3R and outputs a high frequency signal from the front end circuit 1 to the receiving amplifier 3R.
  • the selection terminal 40b is connected to the signal path 61, the selection terminal 40c is connected to the signal path 62, and the selection terminal 40d is connected to the signal path 63.
  • the signal path 61 is a third signal path that propagates a high-frequency reception signal of BandA (second communication band) and connects the selection terminal 20b and the selection terminal 40b.
  • the signal path 62 is a first signal path that propagates a high frequency reception signal of BandB (first communication band) and connects the selection terminal 20c and the selection terminal 40c.
  • the signal path 63 is a second signal path that propagates a high frequency reception signal of BandB (first communication band) and connects the selection terminal 20d and the selection terminal 40d.
  • the duplexer 31 is a filter device that includes a transmission filter 31T and a reception filter 31R and that transmits and receives a BandA high-frequency signal using the FDD method.
  • the output end of the transmission filter 31T and the input end of the reception filter 31R are connected to the selection terminal 20b via the signal path 61.
  • the input end of the transmission filter 31T is connected to the transmission amplifier 3T, and the output end of the reception filter 31R is connected to the selection terminal 40b via the signal path 61.
  • the reception filter 31R is a third filter arranged in the signal path 61.
  • the reception filter 32 is a first filter that is arranged in the signal path 62 and passes a high frequency signal of Band B (first communication band).
  • the reception filter 32 is a filter that receives a high frequency signal of BandB (first communication band) by the TDD method.
  • the signal path 63 is a bypass path where no filter is arranged.
  • a Band B high frequency signal to which the TDD method is applied is transmitted to the signal paths 62 and 63.
  • the filter 10 is a second filter that is connected between the antenna connection terminal 100 and the common terminal 20a and that passes the first frequency band group including BandB and BandA.
  • the transmission filter 31T, the reception filters 31R and 32, and the filter 10 may be either a surface acoustic wave filter or a surface acoustic wave filter using BAW (Bulk Acoustic Wave). Furthermore, the transmission filter 31T, the reception filters 31R and 32, and the filter 10 need not be acoustic wave filters, but may be LC filters or dielectric filters, and the filter structure is arbitrary.
  • Band B (first communication band) is LTE band 39 (band: 1880-1920 MHz), band 41 (band: 2496-2690 MHz), band 40 (band: 2300-2400 MHz), and LTE to which the TDD method is applied. It is possible to apply to any of the bands 34 (band: 2010-2025 MHz).
  • BandB (first communication band) is LTE band 39 (band: 1880-1920 MHz)
  • the filter 10 is, for example, a bandpass filter having a middle low band (MLB: 1475.9-2025 MHz) as a pass band. Or a low pass filter).
  • the BandB (first communication band) is the LTE band 41 (band: 2496-2690 MHz)
  • the filter 10 uses, for example, a band pass filter (HB: 2496-2690 MHz) as a pass band. Or a high-pass filter).
  • BandB (first communication band) is LTE band 40 (band: 2300-2400 MHz)
  • filter 10 is, for example, a band-pass filter having a middle high band (MHB: 2300-2400 MHz) as a pass band. is there.
  • the Band B (first communication band) may be a communication band to which the SDL (Supplemental Downlink) method is applied, and may be, for example, the LTE band 32 (band: 1452-1496 MHz).
  • the SDL high frequency signal is transmitted to the signal paths 62 and 63.
  • the BandB (first communication band) may be either the GPS (registered trademark) band or the Wi-Fi (registered trademark) band.
  • a filter having a GPS (registered trademark) band or a Wi-Fi (registered trademark) band as a pass band is applied as the reception filter 32, and an LTE band as a transmission band as the transmission filter 31T and the reception filter 31R.
  • the filter is applied.
  • the front end circuit 1 is applied to a system that also uses a plurality of communication methods.
  • BandB (first communication band) may be a communication band belonging to the cellular band (1.5-2.7 GHz).
  • LTE bands 39, 41, 40, 34, and the like are applied as communication bands belonging to the cellular band.
  • BandA (second communication band) that can be received simultaneously with BandB (first communication band) may be Wi-Fi (2.4 GHz band).
  • FIG. 1B is a circuit configuration diagram of a front end circuit 1B according to a first modification of the first embodiment.
  • the front end circuit 1B shown in the figure is a modification of the front end circuit 1 according to the first embodiment.
  • the front end circuit 1B according to the present modification includes switch circuits 25 and 45, signal paths 64, 65 and 66, a band elimination filter 35, a filter 36, and an antenna connection terminal 100.
  • the switch circuit 25 has a common terminal 25a (first common terminal), a selection terminal 25b (first selection terminal), and a selection terminal 25c (second selection terminal), and connects the common terminal 25a and the selection terminal 25b.
  • the first switch circuit exclusively switches the connection between the common terminal 25a and the selection terminal 25c.
  • the common terminal 25a is connected to the antenna connection terminal 100 (first input/output terminal).
  • the selection terminal 25b is connected to the signal paths 65 and 66, and the selection terminal 25c is connected to the signal path 64.
  • the switch circuit 45 has a common terminal 45a (second common terminal), a selection terminal 45b (third selection terminal), and a selection terminal 45c (fourth selection terminal), and connects the common terminal 45a and the selection terminal 45b.
  • the second switch circuit exclusively switches the connection between the common terminal 45a and the selection terminal 45c.
  • the selection terminal 45b corresponds to a second input/output terminal for outputting a BandB high frequency signal from the front end circuit 1B
  • the selection terminal 45c is a third input/output terminal for outputting a BandB high frequency signal from the front end circuit 1B. Equivalent to.
  • the common terminal 45a is connected to the reception amplifier 3R and outputs a high frequency signal from the front end circuit 1B to the reception amplifier 3R.
  • the selection terminal 45b is connected to the signal path 65, and the selection terminal 45c is connected to the signal path 64.
  • the signal path 66 propagates a high frequency reception signal of BandA (second communication band).
  • the signal path 65 is a first signal path that propagates a high frequency reception signal of BandB (first communication band) and connects the selection terminal 25b and the selection terminal 45b.
  • the signal path 64 is a second signal path that propagates a high frequency reception signal of BandB (first communication band) and connects the selection terminal 25c and the selection terminal 45c.
  • the filter 36 is a filter device that is arranged in the signal path 66 and receives the high-frequency signal of BandA.
  • the input end of the filter 36 is connected to the selection terminal 25b, and the output end thereof is connected to a receiving amplifier that amplifies the BandA high frequency signal.
  • the band elimination filter 35 is a first filter that is disposed in the signal path 65, attenuates the high frequency signal of BandA (second communication band), and passes the high frequency signal of BandB (first communication band).
  • the input end of the band elimination filter 35 is connected to the selection terminal 25b, and the output end is connected to the selection terminal 45b.
  • the filter 36 and the band elimination filter 35 form an extractor for BandA (Wi-Fi (2.4 GHz band)).
  • the signal path 66 is a bypass path in which no filter is arranged.
  • a second filter that passes the first frequency band group including BandB and BandA may be arranged between the antenna connection terminal 100 and the common terminal 25a.
  • the BandB high-frequency reception signal is transmitted from the antenna connection terminal 100 to the selection terminal 45b via the signal path 65, and the antenna connection terminal 100 is sent from the antenna connection terminal 100 to the selection terminal 45c via the signal path 64. And the transmission of the high-frequency reception signal of Band B of X.
  • FIG. 1C is a circuit configuration diagram of a front end circuit 1C according to a second modification of the first embodiment.
  • the front end circuit 1C according to the present modification is different from the front end circuit 1B according to the modification 1 in that a signal path 66 and a filter 36 for transmitting a high frequency signal of Band A (Wi-Fi (2.4 GHz band)) are provided. The only difference is that they are not placed. Even with this configuration, the transmission of the high-frequency reception signal of BandB from the antenna connection terminal 100 to the selection terminal 45b via the signal path 65 and the transmission of the BandB from the antenna connection terminal 100 to the selection terminal 45c via the signal path 64 are performed. The transmission of the high frequency reception signal is exclusively switched.
  • a signal path 66 and a filter 36 for transmitting a high frequency signal of Band A Wi-Fi (2.4 GHz band)
  • FIG. 2A is a diagram showing a circuit state in the CA (TDD/FDD) mode of the front end circuit 1 according to the first embodiment.
  • a high frequency reception signal of the BandB (first communication band) TDD system is received simultaneously with a high frequency reception signal of the BandA FDD system, for example, a high frequency reception signal of the BandA FDD system is received.
  • the reception band of Band A is attenuated in the signal path 62. More specifically, in the switch circuit 20, the common terminal 20a and the selection terminal 20b are connected, and the common terminal 20a and the selection terminal 20c are connected.
  • the switch circuit 40 the common terminal 40a and the selection terminal 40b are connected, and the common terminal 40a and the selection terminal 40c are connected. Accordingly, when the high frequency reception signal of the Band B TDD method is received simultaneously with the high frequency reception signal of the Band A FDD method, the signal path 62 in which the reception filter 32 is arranged is selected by the switch circuit 20. It is possible to suppress mutual interference of the BandB high-frequency signal propagating through the signal path 62 with the BandA high-frequency reception signal.
  • FIG. 2B is a diagram showing a circuit state of the front-end circuit 1 according to the first embodiment in the TDD-only mode.
  • a high-frequency reception signal of the Band B TDD system when a high-frequency reception signal of the Band B TDD system is received alone, it is not necessary to consider the transmission of other high-frequency signals or interference with reception, so that high-frequency signals other than Band B are attenuated. You don't have to. More specifically, in the switch circuit 20, the common terminal 20a and the selection terminal 20d are connected. Further, in the switch circuit 40, the common terminal 40a and the selection terminal 40d are connected. As a result, when the high frequency reception signal of the Band B TDD system is received alone, the switch circuit 20 selects the signal path 63 in which the filter is not arranged, thereby transmitting the Band B high frequency reception signal with low loss. it can.
  • the common terminal 40a of the switch circuit 40 is connected to the selection terminal 40c, and the common terminal 20a of the switch circuit 20 is connected to the selection terminal 20c. Further, the common terminal 40a of the switch circuit 40 and the selection terminal 40d are connected, and the common terminal 20a of the switch 20 circuit and the selection terminal 20d are connected. Accordingly, the amplifier circuit connected to the selection terminals 40c and 40d can be shared by the signal path 62 and the signal path 63, so that the circuit can be simplified and downsized.
  • the front-end circuit 1B when a high-frequency reception signal in the BandD (cellular band) TDD system is received simultaneously with, for example, a high-frequency reception signal in BandA (Wi-Fi (2.4 GHz band)).
  • a high-frequency reception signal in BandA Wi-Fi (2.4 GHz band)
  • the switch circuit 25 the common terminal 25a is used.
  • the common terminal 45a and the selection terminal 45b are connected to each other in the switch circuit 45.
  • a high frequency reception signal of BandB (cellular band) TDD system is input to BandA (Wi-Fi).
  • the signal paths 65 and 66 in which the band elimination filter 35 and the filter 36 are arranged are selected, so that the high frequency band of Band B propagating through the signal path 65 is selected. It is possible to suppress mutual interference of the signal with the high frequency reception signal of BandA.
  • the front-end circuit 1C receives a high-frequency reception signal in the BandD (cellular band) TDD system simultaneously with, for example, a high-frequency reception signal in BandA (Wi-Fi (2.4 GHz band)).
  • BandD cellular band
  • BandA BandA
  • Wi-Fi 2.4 GHz band
  • the common terminal 25a is used in the switch circuit 25.
  • the common terminal 45a and the selection terminal 45b are connected to each other in the switch circuit 45.
  • a high frequency reception signal of BandB (cellular band) TDD system is input to BandA (Wi-Fi).
  • the signal path 65 in which the band elimination filter 35 is arranged is selected so that the high frequency signal of BandB propagating through the signal path 65 is high frequency of BandA. Mutual interference with the received signal can be suppressed.
  • FIG. 3A is a diagram showing a circuit state in a CA (TDD/FDD) mode of the front end circuit 500 according to Comparative Example 1.
  • the front end circuit 500 according to the first comparative example is different from the front end circuit 1 according to the first embodiment in that the front end circuit 500 does not include the signal path 63 in which the filter is not arranged.
  • the BandA In consideration of the interference with the high-frequency reception signal of the FDD method, the Band A reception band is attenuated in the signal path 62.
  • the switch circuit 520 the common terminal 520a and the selection terminal 520b are connected, and the common terminal 520a and the selection terminal 520c are connected.
  • the switch circuit 540 the common terminal 540a and the selection terminal 540b are connected, and the common terminal 540a and the selection terminal 540c are connected. Accordingly, when the high frequency reception signal of the Band B TDD method is received simultaneously with the high frequency reception signal of the Band A FDD method, the signal path 62 in which the reception filter 32 is arranged is selected by the switch circuit 520. It is possible to suppress mutual interference of the BandB high-frequency signal propagating through the signal path 62 with the BandA high-frequency reception signal.
  • FIG. 3B is a diagram showing a circuit state of the front-end circuit 500 according to Comparative Example 1 in the TDD-only mode.
  • the switching circuit is the same as when the High frequency reception signal of Band B and the high frequency reception signal of Band A are received at the same time.
  • the common terminal 520a is connected to the selection terminal 520b, and the common terminal 520a is connected to the selection terminal 520c.
  • the switch circuit 540 the common terminal 540a and the selection terminal 540b are connected, and the common terminal 540a and the selection terminal 540c are connected.
  • the switch circuit 520 selects the signal path 62 in which the reception filter 32 is arranged. For this reason, in the front-end circuit 500 according to the first comparative example, when the high-frequency reception signal of the Band B TDD system is received alone, the high-frequency reception signal passes through the reception filter 32, which causes insertion loss of the reception filter 32. Propagation loss cannot be reduced.
  • the high frequency of the TDD system is used in a system capable of switching a plurality of communication systems such as TDD and FDD to transmit a high frequency signal.
  • the signal is received alone, the propagation loss of the high frequency signal can be reduced.
  • the high frequency signals of the TDD system and the FDD system it is possible to propagate a high quality high frequency signal in which mutual interference is suppressed.
  • the signal path of the high frequency signal received by the antenna 2 is switched between the signal path 62 and the signal path 63.
  • the high-frequency signal output from the antenna 2 may be switched between the signal path 62 and the signal path 63.
  • the reception filter 32 functions as a transmission filter.
  • the interference with the high frequency signal of the BandA FDD method is taken into consideration.
  • the band A transmission band is attenuated on the path 62. More specifically, in the switch circuit 20, the common terminal 20a and the selection terminal 20b are connected, and the common terminal 20a and the selection terminal 20c are connected. In the switch circuit 40, the common terminal 40a and the selection terminal 40b are connected, and the common terminal 40a and the selection terminal 40c are connected.
  • the switch circuit 20 selects the signal path 62 in which the transmission filter is arranged. Mutual interference with the high frequency signal of can be suppressed.
  • the switch circuit 20 when a high frequency transmission signal of the Band B TDD system is transmitted alone, interference with transmission or reception of other high frequency signals does not have to be taken into consideration, and therefore high frequency signals other than Band B do not have to be attenuated. .. More specifically, in the switch circuit 20, the common terminal 20a and the selection terminal 20d are connected. Further, in the switch circuit 40, the common terminal 40a and the selection terminal 40d are connected. As a result, when the high frequency transmission signal of the Band B TDD system is received alone, the switch circuit 20 selects the signal path 63 in which the transmission filter is not arranged, thereby transmitting the Band B high frequency transmission signal with low loss. it can.
  • the filter 10 is not an essential component. However, by disposing the filter 10, it is possible to suppress the harmonics of the high frequency signals of Band A and Band B from being output to the paths other than the signal paths 61 to 63. Further, it is possible to realize high-quality simultaneous communication between the high-frequency signal of BandA or BandB and the high-frequency signal of the frequency band group other than the first frequency band group.
  • the switch circuit 20 and the switch circuit 40 may be formed on the same chip. As a result, the path lengths of the signal paths 61 to 63 whose both ends are connected to the switch circuits 20 and 40 can be shortened, so that the high-frequency signals of BandA and BandB can be further reduced in loss.
  • the chip may be composed of CMOS (Complementary Metal Oxide Semiconductor).
  • the chip may include a part of a control unit that controls the switching operation of the switch circuits 20 and 40, a transmission amplifier, a reception amplifier, and the like.
  • the switch circuits 20 and 40, the amplifier circuit, and the control unit are configured by one-chip CMOS, so that the front-end circuit 1 can be manufactured at low cost.
  • the chip may be made of GaAs. As a result, it becomes possible to output a high frequency signal having high quality amplification performance and noise performance.
  • the switch circuit 40 may be omitted in the front end circuit 1 according to the present embodiment. Even in this case, (1) when the high frequency reception signal of the BandB TDD system is received simultaneously with the high frequency reception signal of the BandA FDD system, and (2) when the high frequency reception signal of the BandB TDD system is received independently. In such a case, by switching the switch circuit 20 in accordance with the above, when the high frequency transmission signal of the Band B TDD system is independently received, the switch circuit 20 selects the signal path 63 in which the transmission filter is not arranged. Thus, the BandB high-frequency transmission signal can be transmitted with low loss.
  • the selection terminal 40b becomes the fourth input/output terminal that outputs the BandA high frequency signal from the front end circuit 1
  • the selection terminal 40c becomes the second input/output terminal that outputs the BandB high frequency signal from the front end circuit 1.
  • the selection terminal 40d serves as a third input/output terminal for outputting a Band B high frequency signal from the front end circuit 1.
  • the switch circuit 40 it is necessary to arrange a reception amplifier in each of the signal paths 62 and 63.
  • the front-end circuit 1 may further include a control unit that controls the switching operation of the switch circuits 20 and 40.
  • the control unit connects the common terminal 20a and the selection terminal 20d and also connects the common terminal 40a and the selection terminal 40d when the Band B high-frequency signal is independently transmitted by the TDD method.
  • the common terminal 20a and the selection terminal 20c are connected, and the common terminal 40a and the selection terminal are connected. 40c is connected.
  • the control unit of the front-end circuit 1 switches the switch circuits 20 and 40 by receiving the selection information of the TDD/FDD communication method from the outside, so that the function of the front-end circuit 1 is improved and the control signal is increased. High-speed switching becomes possible with the shortening of the transmission wiring.
  • control unit may not be included in the front end circuit 1 and may be included in the RFIC 4 or the BBIC 5.
  • the communication device 6 includes the control unit.
  • the front end circuit 1 may include at least one of the reception amplifier 3R and the transmission amplifier 3T.
  • the front end circuit 1 includes a first input/output terminal (antenna connection terminal 100) for inputting a high frequency signal to the front end circuit 1 or outputting a high frequency signal from the front end circuit 1, and a second input/output terminal ( A selection terminal 40c), a third input/output terminal (selection terminal 40d), a common terminal 20a connected to the antenna connection terminal 100, and selection terminals 20c and 20d.
  • the switch circuit 20 that exclusively switches the connection and the connection between the common terminal 20a and the selection terminal 20d, the reception filter 32 that passes the high-frequency signal of BandB (first communication band), the selection terminal 20c, and the selection terminal 40c.
  • it switches exclusively.
  • the front-end circuit 1 has a first input/output terminal (antenna connection terminal 100) that inputs a high-frequency signal to the front-end circuit 1 or outputs a high-frequency signal from the front-end circuit 1, and a second input/output terminal.
  • the terminal (selection terminal 40c) and the third input/output terminal (selection terminal 40d), the common terminal 20a, the selection terminals 20c and 20d, and the connection between the common terminal 20a and the selection terminal 20c and the common terminal 20a A switch circuit 20 that exclusively switches the connection with the selection terminal 20d, a reception filter 32 that allows a high-frequency signal of BandB to pass, and a path that connects the selection terminal 20c and the selection terminal 40c.
  • Signal path 62 for propagating the high frequency signal of No. 2 a path connecting the selection terminal 20d and the selection terminal 40d, a bypass path in which no filter is arranged, and a signal path 63 for propagating the Band B high frequency signal, and an antenna connection terminal.
  • the filter 10 is connected between 100 and the common terminal 20a, and passes the first frequency band group including BandB.
  • the filter 10 can suppress the output of BandB harmonics, and can realize simultaneous communication between the BandB high-frequency signal and the high-frequency signals in the frequency band groups other than the first frequency band group.
  • FIG. 4 is a circuit configuration diagram of the front end circuit 1A according to the second embodiment.
  • the front end circuit 1A includes switch circuits 21, 23, 24, 41, 43 and 44, and signal paths 71, 72, 73, 74, 75, 81, 82, 83, 91, 92,. 93 and 101, reception filters 51R, 52R, 53R, 54, 55, 56R, 57 and 58R, filters 11, 12, 13 and 14, and an antenna connection terminal 100.
  • the front-end circuit 1A is arranged, for example, at the front-end of a multi-mode/multi-band mobile phone.
  • the front-end circuit 1A has a configuration in which four circuit units corresponding to the front-end circuit 1 according to the first embodiment are connected to the antenna connection terminal 100.
  • the first circuit unit includes switch circuits 21 and 41, signal paths 71 to 75, reception filters 51R, 52R, 53R, 54 and 55, and a filter 11.
  • the second circuit unit is composed of the signal path 101 and the filter 12.
  • the third circuit unit includes switch circuits 23 and 43, signal paths 81 to 83, reception filters 55 and 56R, and filter 13.
  • the fourth circuit unit includes switch circuits 24 and 44, signal paths 91 to 93, reception filters 57 and 58R, and filter 14.
  • the switch circuit 21 includes a common terminal 21a (first common terminal), a selection terminal 21b (fifth selection terminal), a selection terminal 21c, a selection terminal 21d, a selection terminal 21e (first selection terminal), and a selection terminal 21f (second selection terminal). It is a first switch circuit that has a selection terminal) and exclusively switches the connection between the common terminal 21a and the selection terminal 21e and the connection between the common terminal 21a and the selection terminal 21f.
  • the common terminal 21a is connected to the antenna connection terminal 100 (first input/output terminal) via the filter 11.
  • the selection terminal 21b is connected to the signal path 71
  • the selection terminal 21c is connected to the signal path 72
  • the selection terminal 21d is connected to the signal path 73
  • the selection terminal 21e is connected to the signal path 74
  • the selection terminal 21f is connected to the signal path. It is connected to 75.
  • the switch circuit 41 has a common terminal 41a (second common terminal), a selection terminal 41b, a selection terminal 41c, a selection terminal 41d, a selection terminal 41e (third selection terminal), and a selection terminal 41f (fourth selection terminal).
  • a second switch circuit that exclusively switches the connection between the common terminal 41a and the selection terminal 41e and the connection between the common terminal 41a and the selection terminal 41f.
  • the selection terminal 41b corresponds to a fourth input/output terminal for outputting the high frequency signal of BandA1 from the front end circuit 1A
  • the selection terminal 41e is a second input/output terminal for outputting the high frequency signal of BandA4 from the front end circuit 1A.
  • the selection terminal 41f corresponds to the third input/output terminal that outputs the high-frequency signal of Band A4 from the front end circuit 1A.
  • the common terminal 41a is connected to the reception amplifier 3AR and outputs a high frequency signal from the front end circuit 1A to the reception amplifier 3AR.
  • the selection terminal 41b is connected to the signal path 71
  • the selection terminal 41c is connected to the signal path 72
  • the selection terminal 41d is connected to the signal path 73
  • the selection terminal 41e is connected to the signal path 74
  • the selection terminal 41f is the signal path. It is connected to 75.
  • the signal path 71 is a third signal path that propagates a high frequency signal of BandA1 (second communication band) and connects the selection terminal 21b and the selection terminal 41b.
  • the signal path 72 is a third signal path that propagates the high-frequency signal of BandA2 and connects the selection terminal 21c and the selection terminal 41c.
  • the signal path 73 is a third signal path that propagates the high-frequency signal of BandA3 and connects the selection terminal 21d and the selection terminal 41d.
  • the signal path 74 is a first signal path that propagates a high-frequency signal of BandA4 (first communication band) and connects the selection terminal 21e and the selection terminal 41e.
  • the signal path 75 is a second signal path that propagates a high frequency signal of BandA4 (first communication band) and connects the selection terminal 21f and the selection terminal 41f.
  • the reception filter 51R is a filter for receiving the high frequency signal of BandA1 by the FDD method.
  • the input end of the reception filter 51R is connected to the selection terminal 21b via the signal path 71, and the output end is connected to the selection terminal 41b via the signal path 71.
  • the reception filter 51R is a third filter arranged in the signal path 71.
  • the reception filter 52R is a filter for receiving the high frequency signal of Band A2 by the FDD method.
  • the input end of the reception filter 52R is connected to the selection terminal 21c via the signal path 72, and the output end is connected to the selection terminal 41c via the signal path 72.
  • the reception filter 52R is a third filter arranged in the signal path 72.
  • the reception filter 53R is a filter for receiving the high frequency signal of Band A3 by the FDD method.
  • the input end of the reception filter 53R is connected to the selection terminal 21d via the signal path 73, and the output end is connected to the selection terminal 41d via the signal path 73.
  • the reception filter 53R is a third filter arranged in the signal path 73.
  • the reception filter 54 is a first filter that passes a high frequency signal of BandA4 (first communication band) and is arranged in the signal path 74.
  • the reception filter 54 is a filter that receives a high frequency signal of Band A4 (first communication band) by the TDD method.
  • the signal path 75 is a bypass path where no filter is arranged.
  • a high frequency signal of TDD band A4 is transmitted to the signal paths 74 and 75.
  • the filter 11 is a second filter that is connected between the antenna connection terminal 100 and the common terminal 21a and passes the first frequency band group including Bands A1 to A4.
  • the front end circuit 1A only needs to have at least one of the signal paths 71 to 73. Further, the number of selection terminals of the switch circuits 21 and 41 may correspond to the number of signal paths.
  • the signal path 101 is a path that propagates the high-frequency signal of BandB1 and connects the filter 12 and the reception amplifier 3BR.
  • the filter 12 is a filter that is connected between the antenna connection terminal 100 and the signal path 101 and passes a second frequency band group including BandB1.
  • a high-frequency signal of BandB1 of FDD system is transmitted to the signal path 101.
  • the communication band belonging to the second frequency band group is BandB1 only, and there is no need to consider interference with other communication bands belonging to the second frequency band group, and therefore the signal path 101 No filters are placed in.
  • the filter 12 and the signal path 101 are not essential components for the front end circuit 1A according to this embodiment.
  • the switch circuit 23 has a common terminal 23a (third common terminal), a selection terminal 23b (sixth selection terminal), a selection terminal 23c (eighth selection terminal), and a selection terminal 23d (seventh selection terminal), and is common.
  • the third switch circuit exclusively switches the connection between the terminal 23a and the selection terminal 23b and the connection between the common terminal 23a and the selection terminal 23d.
  • the common terminal 23a is connected to the antenna connection terminal 100 (first input/output terminal) via the filter 13.
  • the selection terminal 23b is connected to the signal path 81
  • the selection terminal 23c is connected to the signal path 82
  • the selection terminal 23d is connected to the signal path 83.
  • the switch circuit 43 has a common terminal 43a, a selection terminal 43b, a selection terminal 43c, and a selection terminal 43d, and exclusively connects the common terminal 43a and the selection terminal 43b and the common terminal 43a and the selection terminal 43d.
  • This is a switch circuit for switching.
  • the selection terminal 43b corresponds to a fifth input/output terminal for outputting the high frequency signal of BandC1 from the front end circuit 1A
  • the selection terminal 43c is a seventh input/output terminal for outputting the high frequency signal of BandC2 from the front end circuit 1A.
  • the selection terminal 43d corresponds to the sixth input/output terminal that outputs the high frequency signal of BandC1 from the front end circuit 1A.
  • the common terminal 43a is connected to the reception amplifier 3CR and outputs a high frequency signal from the front end circuit 1A to the reception amplifier 3CR.
  • the selection terminal 43b is connected to the signal path 81, the selection terminal 43c is connected to the signal path 82, and the selection terminal 43d is connected to the signal path 83.
  • the signal path 81 is a fourth signal path that propagates a high frequency signal of BandC1 (third communication band) and connects the selection terminal 23b and the selection terminal 43b.
  • the signal path 82 is a sixth signal path that propagates a high-frequency signal of BandC2 (fourth communication band) and connects the selection terminal 23c and the selection terminal 43c.
  • the signal path 83 is a fifth signal path that propagates a high frequency signal of BandC1 (third communication band) and connects the selection terminal 23d and the selection terminal 43d.
  • the reception filter 55 is a fifth filter which passes the high frequency signal of BandC1 (third communication band) and is arranged in the signal path 81.
  • the reception filter 55 is a filter that receives a high frequency signal of BandC1 (third communication band) by the TDD method.
  • the reception filter 56R is a filter for receiving the high frequency signal of BandC2 by the FDD method.
  • the input end of the reception filter 56R is connected to the selection terminal 23c via the signal path 82, and the output end is connected to the selection terminal 43c via the signal path 82.
  • the reception filter 56R is a sixth filter arranged in the signal path 82.
  • the signal path 83 is a bypass path where no filter is arranged.
  • a high-frequency signal of TDD band C1 is transmitted to the signal paths 81 and 83.
  • the filter 13 is a fourth filter that is connected between the antenna connection terminal 100 and the common terminal 23a and passes the third frequency band group including Band C1 and C2.
  • the switch circuit 24 has a common terminal 24a (third common terminal), a selection terminal 24b (sixth selection terminal), a selection terminal 24c (eighth selection terminal), and a selection terminal 24d (seventh selection terminal), and is common.
  • the third switch circuit exclusively switches the connection between the terminal 24a and the selection terminal 24b and the connection between the common terminal 24a and the selection terminal 24d.
  • the common terminal 24a is connected to the antenna connection terminal 100 (first input/output terminal) via the filter 14.
  • the selection terminal 24b is connected to the signal path 91
  • the selection terminal 24c is connected to the signal path 92
  • the selection terminal 24d is connected to the signal path 93.
  • the switch circuit 44 has a common terminal 44a, a selection terminal 44b, a selection terminal 44c, and a selection terminal 44d, and exclusively connects the common terminal 44a and the selection terminal 44b and the common terminal 44a and the selection terminal 44d.
  • This is a switch circuit for switching.
  • the selection terminal 44b corresponds to a fifth input/output terminal that outputs a high frequency signal of BandD1 from the front end circuit 1A
  • the selection terminal 44c outputs a high frequency signal of BandD2 from the front end circuit 1A.
  • the selection terminal 44d corresponds to a sixth input/output terminal that outputs the high frequency signal of BandD1 from the front end circuit 1A.
  • the common terminal 44a is connected to the reception amplifier 3DR and outputs a high frequency signal from the front end circuit 1A to the reception amplifier 3DR.
  • the selection terminal 44b is connected to the signal path 91, the selection terminal 44c is connected to the signal path 92, and the selection terminal 44d is connected to the signal path 93.
  • the signal path 91 is a fourth signal path that propagates a high frequency signal of BandD1 (third communication band) and connects the selection terminals 24b and 44b.
  • the signal path 92 is a sixth signal path that propagates a high frequency signal of BandD2 (fourth communication band) and connects the selection terminal 24c and the selection terminal 44c.
  • the signal path 93 is a fifth signal path that propagates a high frequency signal of BandD1 (third communication band) and connects the selection terminal 24d and the selection terminal 44d.
  • the reception filter 57 is a fifth filter that passes the high frequency signal of BandD1 (third communication band) and is arranged in the signal path 91.
  • the reception filter 57 is a filter that receives a high frequency signal of BandD1 (third communication band) by the TDD method.
  • the reception filter 58R is a filter for receiving the high frequency signal of BandD2 by the FDD method.
  • the input end of the reception filter 58R is connected to the selection terminal 24c via the signal path 92, and the output end is connected to the selection terminal 44c via the signal path 92.
  • the reception filter 58R is a sixth filter arranged in the signal path 92.
  • the signal path 93 is a bypass path where no filter is arranged.
  • a high-frequency signal of BandD1 of TDD system is transmitted to the signal paths 91 and 93.
  • the filter 14 is a fourth filter that is connected between the antenna connection terminal 100 and the common terminal 24a and passes a fourth frequency band group including Band D1 and Band D2.
  • the high frequency reception signal of BandD1 from the antenna connection terminal 100 to the selection terminal 44b via the signal path 91 and the high frequency reception signal of BandD1 from the antenna connection terminal 100 to the selection terminal 44c via the signal path 93 are transmitted. And the transmission of are switched exclusively.
  • Each of the reception filters and the filters 11 to 14 may be either a surface acoustic wave filter, a boundary acoustic wave filter, or an elastic wave filter using BAW. Furthermore, each of the reception filters and the filters 11 to 14 described above may not be an elastic wave filter but may be an LC filter or a dielectric filter, and the filter structure is arbitrary.
  • one of the circuits for propagating the high frequency signals of Band C1 and C2 and the circuit for propagating the high frequency signals of Band D1 and D2 may be omitted. ..
  • BandA4 (first communication band) is applied to, for example, LTE band 39 (band: 1880-1920 MHz), and BandC1 (third communication band) is, for example, LTE band 40 (band: 2300-2400 MHz). BandD1 (third communication band) is applied to, for example, LTE band 41 (band: 2496-2690 MHz).
  • the filter 11 is, for example, a low-pass filter having a pass band in the middle low band (MLB: 1475.9-2025 MHz).
  • the filter 12 is, for example, a band pass filter having a pass band in the middle band (MB: 2110-2200 MHz).
  • the filter 13 is, for example, a bandpass filter having a passband in the middle high band (MHB: 2300-2400 MHz).
  • the filter 14 is, for example, a band pass filter having a high band (HB: 2496-2690 MHz) as a pass band.
  • BandA1 is applied to, for example, LTE band 3 (reception band: 1805 to 1880 MHz)
  • BandA2 is applied to, for example, LTE band 25 (reception band: 1930 to 1995 MHz)
  • BandA3 is applied to, for example, LTE.
  • Band 34 bandwidth: 2010-2025 MHz
  • BandB1 is applied to, for example, LTE band 1/66 (reception band: 2110-2200 MHz).
  • BandC2 is applied to, for example, LTE band 30 (reception band: 2350 to 2360 MHz).
  • BandD2 is applied to, for example, LTE band 7 (reception band: 2620-2690 MHz).
  • BandA4 (first communication band) and BandA1-A3 (second communication band) are in the same frequency band group among four different frequency band groups, namely, middle low band, middle band, middle high band, and high band. You may belong. Further, BandC1 (third communication band) and BandC2 (fourth communication band) may belong to the same frequency band group among the four different frequency band groups. In addition, BandD1 (third communication band) and BandD2 (fourth communication band) may belong to the same frequency band group among the four different frequency band groups.
  • FIG. 5A is a diagram showing a circuit state in the CA (TDD/FDD) mode of the front end circuit according to the second embodiment.
  • the high frequency reception signal of the BandD1 (third communication band) TDD system is, for example, the high frequency reception signal of the BandA1 FDD system, the high frequency reception signal of the BandB1 FDD system, and the high frequency of the BandD2 FDD system.
  • the reception bands of BandA1, B1 and D2 are attenuated in the signal path 81 in consideration of interference with the high-frequency received signals of BandA1, B1 and D2 by the FDD method.
  • the switch circuit 23 connects the common terminal 23a and the selection terminal 23b
  • the switch circuit 21 connects the common terminal 21a and the selection terminal 21b
  • the switch circuit 24 connects the common terminal 24a and the selection terminal 23c.
  • the switch circuit 43 connects the common terminal 43a and the selection terminal 43b
  • the switch circuit 41 connects the common terminal 41a and the selection terminal 41b
  • the switch circuit 44 connects the common terminal 44a and the selection terminal 43c.
  • the receiving amplifiers 3AR, 3BR, 3CR and 3DR are turned on.
  • the switch circuit 23 selects the signal path 81 in which the reception filter 55 is arranged. By doing so, mutual interference with the high-frequency reception signals of Band A1, B1, and D2 can be suppressed.
  • FIG. 5B is a diagram showing a circuit state of the front end circuit 1A according to the second embodiment in the TDD-only mode.
  • the switch circuit 21 the common terminal 21a and the selection terminal 21f are connected, and in the switch circuit 41, the common terminal 41a and the selection terminal 41f are connected.
  • the common terminal 24a is connected to the selection terminal 24d, and in the switch circuit 44, the common terminal 44a is connected to the selection terminal 44d.
  • the receiving amplifiers 3AR and 3DR are turned on, and the receiving amplifiers 3BR and 3CR are turned off.
  • the switch circuits 21 and 24 select the signal paths 75 and 93 in which the filters are not arranged, so that the high-frequency reception of Band A4 and D1 is performed. Signals can be transmitted with low loss.
  • the above-mentioned TDD single mode is not limited to the case of receiving a high frequency signal of a single communication band applied to the TDD system, and the high frequency signals of a plurality of communication bands applied to the TDD system are synchronously received. It is also included when doing. However, when high frequency signals of a plurality of communication bands applied to the TDD system are received asynchronously, they are not included in the TDD single mode.
  • FIG. 6 is a diagram showing a circuit state of the front-end circuit 500A according to Comparative Example 2 in the TDD-only mode.
  • the front-end circuit 500A according to the second comparative example is different from the front-end circuit 1A according to the second embodiment in that the front-end circuit 500A does not include the signal paths 75 and 93 in which no filter is arranged.
  • the switch circuit 521 connects the common terminal 521a and the selection terminal 521e, and the switch circuit 541 connects the common terminal 541a and the selection terminal 541e.
  • the common terminal 524a is connected to the selection terminal 524b, and in the switch circuit 544, the common terminal 544a is connected to the selection terminal 544b.
  • the receiving amplifiers 3AR and 3DR are turned on, and the receiving amplifiers 3BR and 3CR are turned off. That is, even in the TDD-only mode of Band A4 and D1, the switch circuits 521 and 524 select the signal path 74 in which the reception filter 54 is arranged and the signal path 91 in which the reception filter 57 is arranged. For this reason, in the front-end circuit 500A according to the second comparative example, when receiving in the TDD only mode, the high frequency reception signal passes through the reception filters 54 and 57, so that the propagation loss cannot be reduced.
  • the TDD single mode is used in a system that can switch a plurality of communication methods such as TDD and FDD to transmit a high frequency signal.
  • the propagation loss of the high frequency signal can be reduced.
  • CA operation including both the TDD system and the FDD system becomes possible between different frequency band groups, and even when the high frequency signals of the TDD system and the FDD system are simultaneously received, mutual interference is suppressed and high frequency is achieved. High quality high frequency signals can be propagated.
  • the front-end circuit 1A may be provided with a transmission system circuit.
  • a transmission filter is arranged for each of the reception filters 51R to 53R, 56R and 58R applied to the FDD system.
  • the front-end circuit 1A like the front-end circuit 1 according to the first embodiment, outputs a high-frequency transmission signal to be output from the antenna 2 via the front-end circuit 1A for each signal. It may be configured to switch the route. In this case, each reception filter functions as a transmission filter.
  • the front-end circuit 1A may further include a control unit that controls the switching operation of the switch circuits 21, 23, 24, 41, 43, and 44.
  • the control unit may independently use any one of the high-frequency signals of BandA4, C1 and D1 according to the TDD method or synchronize at least two or more high-frequency signals of the BandA4, C1 and D1 according to the TDD method.
  • the following switching operation is executed.
  • the transmission of the BandC1 high frequency signal by the TDD system the transmission of the BandA1 high frequency signal by the FDD system
  • the transmission of the BandB1 high frequency signal by the FDD system and the transmission of the BandD2 high frequency signal by the FDD system are performed simultaneously. Is (1) connection between the common terminal 21a and the selection terminal 21b and connection between the common terminal 41a and the selection terminal 41b, (2) connection between the common terminal 23a and the selection terminal 23b, and connection between the common terminal 43a and the selection terminal 43b. Connection, (3) connection between the common terminal 24a and the selection terminal 24c and connection between the common terminal 44a and the selection terminal 44c are executed.
  • the control unit of the front-end circuit 1A switches each switch circuit by receiving the selection information of the communication system of TDD/FDD from the outside, so that the front-end circuit 1A is highly functionalized and the control signal is transmitted. High-speed switching becomes possible with shortened wiring.
  • control unit may not be included in the front end circuit 1A, and may be included in the RFIC 4 or the BBIC 5 or the like.
  • the communication device 6 includes the control unit.
  • front end circuit and the communication device according to the first and second embodiments have been described above, the front end circuit and the communication device of the present invention are not limited to the above embodiments.
  • a person skilled in the art can think of another embodiment realized by combining arbitrary constituent elements in the above-described embodiment and its modification, and the above-described embodiment and its modification without departing from the gist of the present invention. Modifications obtained by applying various modifications, and various devices including the front end circuit and the communication device of the present invention are also included in the present invention.
  • the control unit according to the present invention may be realized as an integrated circuit IC or LSI (Large Scale Integration). Further, the method of circuit integration may be realized by a dedicated circuit or a general-purpose processor. A programmable programmable gate array (FPGA) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used. Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology.
  • FPGA programmable programmable gate array
  • another high frequency circuit element and wiring may be inserted between the paths connecting the circuit elements and the signal paths disclosed in the drawings.
  • the present invention can be widely used for communication devices such as mobile phones as a multi-band/multi-mode switch module adopting a carrier aggregation method.
  • RFIC Baseband signal processing circuit
  • BBIC Baseband signal processing circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transceivers (AREA)

Abstract

フロントエンド回路(1)は、アンテナ接続端子(100)、選択端子(40c)、および選択端子(40d)と、共通端子(20a)、選択端子(20cおよび20d)を有するスイッチ回路(20)と、BandBの高周波信号を通過させる受信フィルタ(32)と、選択端子(20c)と選択端子(40c)とを結ぶ経路であって受信フィルタ(32)が配置された信号経路(62)と、選択端子(20d)と選択端子(40d)とを結ぶ経路であって、フィルタが配置されないバイパス経路である信号経路(63)と、アンテナ接続端子(100)と共通端子(20a)との間に接続され、BandBを含む第1周波数帯域群を通過させるフィルタ(10)と、を備える。

Description

フロントエンド回路および通信装置
 本発明は、フロントエンド回路および通信装置に関する。
 近年の携帯電話には、1つの端末で複数の周波数帯域および無線方式に対応することが要求される(マルチバンド化およびマルチモード化)。マルチバンド化およびマルチモード化に対応するフロントエンド回路では、異なる通信バンドの複数の送信信号または複数の受信信号を同時に使用する、いわゆるキャリアアグリゲーション(CA)方式を適用する場合が多くなっていることに伴い、複数の送受信信号を品質劣化させずに高速処理することが求められている。
 特許文献1には、CA方式において、複数の通信バンド間で良好なアイソレーション特性を確保できるフロントエンドモジュールの回路構成が開示されている。より具体的には、フロントエンドモジュールは、アンテナ素子と複数の信号経路との接続を切り替えるアンテナスイッチモジュールと、デュプレクサが配置されたLTE(Long Term Evolution)のBand8の信号経路に接続された第1回路と、デュプレクサが配置されたLTEのBand3の信号経路に接続され第1回路と電磁界結合する第2回路と、を備える。上記構成によれば、第1回路と第2回路との電磁界結合度を調整することにより、第1信号経路と第2信号経路との間を伝搬する信号の振幅および位相を容易に調整でき、CA方式において、複数の通信バンド間での良好なアイソレーション特性を確保することが可能となる。
国際公開第2017/006866号
 特許文献1に開示されたフロントエンドモジュールでは、周波数分割復信方式(FDD)および時分割復信方式(TDD)などの通信方式に応じて信号経路を切り替えることも可能である。しかしながら、全ての信号経路に各通信バンドを通過帯域とするフィルタが配置されているため、上記フロントエンドモジュール内を伝搬する各通信バンドの高周波信号は、アンテナスイッチモジュールおよびフィルタを必ず通過する。このため、通信方式によらずフィルタの挿入損失に起因した高周波信号の伝搬損失が大きくなるという問題が発生する。
 そこで、本発明は、上記課題を解決するためになされたものであって、複数の通信方式を切り替えて高周波信号を伝搬することが可能なシステムにおいて、高周波信号の伝搬損失を低減できるフロントエンド回路および通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係るフロントエンド回路は、高周波信号を伝送するフロントエンド回路であって、前記フロントエンド回路に高周波信号を入力または前記フロントエンド回路から高周波信号を出力する第1入出力端子、第2入出力端子、および第3入出力端子と、前記第1入出力端子に接続された第1共通端子、ならびに、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を排他的に切り替える第1スイッチ回路と、第1通信バンドの高周波信号を通過させる第1フィルタと、前記第1選択端子と前記第2入出力端子とを結ぶ経路であって、前記第1フィルタが配置され、前記第1通信バンドの高周波信号を伝搬する第1信号経路と、前記第2選択端子と前記第3入出力端子とを結ぶ経路であって、フィルタが配置されないバイパス経路であり、前記第1通信バンドの高周波信号を伝搬する第2信号経路と、を備え、前記第1信号経路を経由した前記第1入出力端子から前記第2入出力端子への前記第1通信バンドの高周波信号の伝送と、前記第2信号経路を経由した前記第1入出力端子から前記第3入出力端子への前記第1通信バンドの高周波信号の伝送とが、排他的に切り替わる、または、前記第1信号経路を経由した前記第2入出力端子から前記第1入出力端子への前記第1通信バンドの高周波信号の伝送と、前記第2信号経路を経由した前記第3入出力端子から前記第1入出力端子への前記第1通信バンドの高周波信号の伝送とが、排他的に切り替わる。
 また、本発明の一態様に係るフロントエンド回路は、高周波信号を伝送するフロントエンド回路であって、前記フロントエンド回路に高周波信号を入力または前記フロントエンド回路から高周波信号を出力する第1入出力端子、第2入出力端子、および第3入出力端子と、第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を排他的に切り替える第1スイッチ回路と、第1通信バンドの高周波信号を通過させる第1フィルタと、前記第1選択端子と前記第2入出力端子とを結ぶ経路であって、前記第1フィルタが配置され、前記第1通信バンドの高周波信号を伝搬する第1信号経路と、前記第2選択端子と前記第3入出力端子とを結ぶ経路であって、フィルタが配置されないバイパス経路であり、前記第1通信バンドの高周波信号を伝搬する第2信号経路と、前記第1入出力端子と前記第1共通端子との間に接続され、前記第1通信バンドを含む第1周波数帯域群を通過させる第2フィルタと、を備える。
 本発明によれば、複数の通信方式を切り替えて高周波信号を伝搬することが可能なシステムにおいて、高周波信号の伝搬損失を低減できるフロントエンド回路および通信装置を提供することが可能となる。
図1Aは、実施の形態1に係るフロントエンド回路および通信装置の回路構成図である。 図1Bは、実施の形態1の変形例1に係るフロントエンド回路の回路構成図である。 図1Cは、実施の形態1の変形例2に係るフロントエンド回路の回路構成図である。 図2Aは、実施の形態1に係るフロントエンド回路のCA(TDD/FDD)モードにおける回路状態を示す図である。 図2Bは、実施の形態1に係るフロントエンド回路のTDD単独モードにおける回路状態を示す図である。 図3Aは、比較例1に係るフロントエンド回路のCA(TDD/FDD)モードにおける回路状態を示す図である。 図3Bは、比較例1に係るフロントエンド回路のTDD単独モードにおける回路状態を示す図である。 図4は、実施の形態2に係るフロントエンド回路の回路構成図である。 図5Aは、実施の形態2に係るフロントエンド回路のCA(TDD/FDD)モードにおける回路状態を示す図である。 図5Bは、実施の形態2に係るフロントエンド回路のTDD単独モードにおける回路状態を示す図である。 図6は、比較例2に係るフロントエンド回路のTDD単独モードにおける回路状態を示す図である。
 以下、本発明の実施の形態について、実施の形態およびその図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1.1 フロントエンド回路および通信装置の回路構成]
 図1Aは、実施の形態1に係るフロントエンド回路1および通信装置6の回路構成図である。なお、同図には、通信装置6と接続されるアンテナ2についても併せて図示されている。通信装置6は、フロントエンド回路1と、送信増幅器3Tと、受信増幅器3Rと、RF信号処理回路(RFIC)4と、ベースバンド信号処理回路(BBIC)5と、を備える。
 RFIC4は、アンテナ2からフロントエンド回路1および受信増幅器3Rを介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をBBIC5へ出力する。また、RFIC4は、BBIC5から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号を、送信増幅器3Tおよびフロントエンド回路1に出力する。
 BBIC5で処理された信号は、例えば、画像信号として画像表示のために、または、音声信号として通話のために使用される。RFIC4およびBBIC5は、例えば、ICとして構成されている。
 送信増幅器3Tは、BandAの高周波送信信号を優先的に増幅する増幅回路であり、例えば、パワーアンプ(電力増幅器)である。受信増幅器3Rは、スイッチ回路40の共通端子40aに接続され、BandAおよびBandBの高周波受信信号を優先的に増幅する増幅回路であり、例えば、ローノイズアンプ(低雑音増幅器)である。
 フロントエンド回路1は、マルチモード/マルチバンドに対応すべく、複数の通信バンド(周波数帯域)により無線信号を送受信するための信号経路が複数設けられた、マルチキャリア用送受信装置である。フロントエンド回路1は、スイッチ回路20および40と、信号経路61、62および63と、デュプレクサ31と、受信フィルタ32と、フィルタ10と、アンテナ接続端子100と、を備える。フロントエンド回路1は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンドに配置される。
 スイッチ回路20は、共通端子20a(第1共通端子)、選択端子20b(第5選択端子)、選択端子20c(第1選択端子)、および選択端子20d(第2選択端子)を有し、共通端子20aと選択端子20cとの接続および共通端子20aと選択端子20dとの接続を排他的に切り替える第1スイッチ回路である。
 共通端子20aは、フィルタ10を介してアンテナ接続端子100(第1入出力端子)に接続されている。選択端子20bは信号経路61に接続され、選択端子20cは信号経路62に接続され、選択端子20dは信号経路63に接続されている。
 スイッチ回路40は、共通端子40a(第2共通端子)、選択端子40b、選択端子40c(第3選択端子)、および選択端子40d(第4選択端子)を有し、共通端子40aと選択端子40cとの接続および共通端子40aと選択端子40dとの接続を排他的に切り替える第2スイッチ回路である。なお、選択端子40bは、フロントエンド回路1からBandAの高周波信号を出力する第4入出力端子に相当し、選択端子40cは、フロントエンド回路1からBandBの高周波信号を出力する第2入出力端子に相当し、選択端子40dは、フロントエンド回路1からBandBの高周波信号を出力する第3入出力端子に相当する。
 共通端子40aは、受信増幅器3Rに接続され、フロントエンド回路1から受信増幅器3Rへ高周波信号を出力する。
 選択端子40bは信号経路61に接続され、選択端子40cは信号経路62に接続され、選択端子40dは信号経路63に接続されている。
 信号経路61は、BandA(第2通信バンド)の高周波受信信号を伝搬し、選択端子20bと選択端子40bとを結ぶ第3信号経路である。信号経路62は、BandB(第1通信バンド)の高周波受信信号を伝搬し、選択端子20cと選択端子40cとを結ぶ第1信号経路である。信号経路63は、BandB(第1通信バンド)の高周波受信信号を伝搬し、選択端子20dと選択端子40dとを結ぶ第2信号経路である。
 デュプレクサ31は、送信フィルタ31Tおよび受信フィルタ31Rで構成され、BandAの高周波信号をFDD方式で送受信するフィルタデバイスである。送信フィルタ31Tの出力端および受信フィルタ31Rの入力端が信号経路61を介して選択端子20bに接続されている。また、送信フィルタ31Tの入力端が送信増幅器3Tに接続され、受信フィルタ31Rの出力端が信号経路61を介して選択端子40bに接続されている。受信フィルタ31Rは、信号経路61に配置された第3フィルタである。
 受信フィルタ32は、信号経路62に配置され、BandB(第1通信バンド)の高周波信号を通過させる第1フィルタである。受信フィルタ32は、BandB(第1通信バンド)の高周波信号をTDD方式で受信するフィルタである。
 信号経路63は、フィルタが配置されないバイパス経路である。
 信号経路62および63には、TDD方式が適用されるBandBの高周波信号が伝送される。
 フィルタ10は、アンテナ接続端子100と共通端子20aとの間に接続され、BandBおよびBandAを含む第1周波数帯域群を通過させる第2フィルタである。
 なお、送信フィルタ31T、受信フィルタ31Rおよび32、ならびにフィルタ10は、弾性表面波フィルタ、または、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタのいずれかであってもよい。さらには、送信フィルタ31T、受信フィルタ31Rおよび32、ならびにフィルタ10は、弾性波フィルタでなくてもよく、LCフィルタまたは誘電体フィルタなどであってもよく、フィルタ構造は任意である。
 上記構成を有するフロントエンド回路1において、信号経路62を経由したアンテナ接続端子100から選択端子40cへのBandBの高周波受信信号の伝送と、信号経路63を経由したアンテナ接続端子100から選択端子40dへのBandBの高周波受信信号の伝送とが、排他的に切り替わる。
 なお、BandB(第1通信バンド)は、TDD方式が適用されるLTEのバンド39(帯域:1880-1920MHz)、バンド41(帯域:2496-2690MHz)、バンド40(帯域:2300-2400MHz)、およびバンド34(帯域:2010-2025MHz)のいずれかに適用することが可能である。
 BandB(第1通信バンド)がLTEのバンド39(帯域:1880-1920MHz)である場合には、フィルタ10は、例えばミドルローバンド(MLB:1475.9-2025MHz)を通過帯域とするバンドパスフィルタ(または低域通過フィルタ)である。また、BandB(第1通信バンド)がLTEのバンド41(帯域:2496-2690MHz)である場合には、フィルタ10は、例えばハイバンド(HB:2496-2690MHz)を通過帯域とするバンドパスフィルタ(または高域通過フィルタ)である。また、BandB(第1通信バンド)がLTEのバンド40(帯域:2300-2400MHz)である場合には、フィルタ10は、例えばミドルハイバンド(MHB:2300-2400MHz)を通過帯域とするバンドパスフィルタである。
 なお、BandB(第1通信バンド)は、SDL(Supplemental Downlink)方式が適用される通信バンドであってもよく、例えば、LTEのバンド32(帯域:1452-1496MHz)であってもよい。この場合には、信号経路62および63には、SDL方式の高周波信号が伝送される。
 また、BandB(第1通信バンド)は、GPS(登録商標)バンドおよびWi-Fi(登録商標)バンドのいずれかであってもよい。この場合には、受信フィルタ32としてGPS(登録商標)バンドまたはWi-Fi(登録商標)バンドを通過帯域とするフィルタが適用され、送信フィルタ31Tおよび受信フィルタ31RとしてLTEのバンドを通過帯域とするフィルタが適用される。これにより、フロントエンド回路1は、複数の通信方式を兼用するシステムに適用される。
 また、BandB(第1通信バンド)は、セルラー帯域(1.5-2.7GHz)に属する通信バンドであってもよい。セルラー帯域に属する通信バンドとしては、LTEのバンド39、バンド41、バンド40、およびバンド34などが適用される。また、BandB(第1通信バンド)と同時に受信可能なBandA(第2通信バンド)は、Wi-Fi(2.4GHz帯)であってもよい。
 図1Bは、実施の形態1の変形例1に係るフロントエンド回路1Bの回路構成図である。同図に示されたフロントエンド回路1Bは、実施の形態1に係るフロントエンド回路1の変形例である。本変形例に係るフロントエンド回路1Bは、スイッチ回路25および45と、信号経路64、65および66と、帯域除去フィルタ35と、フィルタ36と、アンテナ接続端子100と、を備える。
 スイッチ回路25は、共通端子25a(第1共通端子)、選択端子25b(第1選択端子)、および選択端子25c(第2選択端子)を有し、共通端子25aと選択端子25bとの接続および共通端子25aと選択端子25cとの接続を排他的に切り替える第1スイッチ回路である。
 共通端子25aは、アンテナ接続端子100(第1入出力端子)に接続されている。選択端子25bは信号経路65および66に接続され、選択端子25cは信号経路64に接続されている。
 スイッチ回路45は、共通端子45a(第2共通端子)、選択端子45b(第3選択端子)、および選択端子45c(第4選択端子)を有し、共通端子45aと選択端子45bとの接続および共通端子45aと選択端子45cとの接続を排他的に切り替える第2スイッチ回路である。なお、選択端子45bは、フロントエンド回路1BからBandBの高周波信号を出力する第2入出力端子に相当し、選択端子45cは、フロントエンド回路1BからBandBの高周波信号を出力する第3入出力端子に相当する。
 共通端子45aは、受信増幅器3Rに接続され、フロントエンド回路1Bから受信増幅器3Rへ高周波信号を出力する。
 選択端子45bは信号経路65に接続され、選択端子45cは信号経路64に接続されている。
 信号経路66は、BandA(第2通信バンド)の高周波受信信号を伝搬する。信号経路65は、BandB(第1通信バンド)の高周波受信信号を伝搬し、選択端子25bと選択端子45bとを結ぶ第1信号経路である。信号経路64は、BandB(第1通信バンド)の高周波受信信号を伝搬し、選択端子25cと選択端子45cとを結ぶ第2信号経路である。
 フィルタ36は、信号経路66に配置され、BandAの高周波信号を受信するフィルタデバイスである。フィルタ36の入力端は選択端子25bに接続され、出力端はBandAの高周波信号を増幅する受信増幅器に接続されている。
 帯域除去フィルタ35は、信号経路65に配置され、BandA(第2通信バンド)の高周波信号を減衰させ、BandB(第1通信バンド)の高周波信号を通過させる第1フィルタである。帯域除去フィルタ35の入力端は選択端子25bに接続され、出力端は選択端子45bに接続されている。
 フィルタ36と帯域除去フィルタ35とは、BandA(Wi-Fi(2.4GHz帯))についてのエクストラクタを構成している。
 信号経路66は、フィルタが配置されないバイパス経路である。
 なお、アンテナ接続端子100と共通端子25aとの間に、BandBおよびBandAを含む第1周波数帯域群を通過させる第2フィルタが配置されていてもよい。
 上記構成を有するフロントエンド回路1Bにおいて、信号経路65を経由したアンテナ接続端子100から選択端子45bへのBandBの高周波受信信号の伝送と、信号経路64を経由したアンテナ接続端子100から選択端子45cへのBandBの高周波受信信号の伝送とが、排他的に切り替わる。
 図1Cは、実施の形態1の変形例2に係るフロントエンド回路1Cの回路構成図である。本変形例に係るフロントエンド回路1Cは、変形例1に係るフロントエンド回路1Bと比較して、BandA(Wi-Fi(2.4GHz帯))の高周波信号を伝送する信号経路66およびフィルタ36が配置されていない点のみが異なる。この構成であっても、信号経路65を経由したアンテナ接続端子100から選択端子45bへのBandBの高周波受信信号の伝送と、信号経路64を経由したアンテナ接続端子100から選択端子45cへのBandBの高周波受信信号の伝送とが、排他的に切り替わる。
 [1.2 フロントエンド回路の信号経路切り替え]
 図2Aは、実施の形態1に係るフロントエンド回路1のCA(TDD/FDD)モードにおける回路状態を示す図である。同図に示すように、BandB(第1通信バンド)のTDD方式による高周波受信信号を、例えば、BandAのFDD方式による高周波受信信号と同時に受信する場合には、BandAのFDD方式による高周波受信信号との干渉を考慮し、信号経路62においてBandAの受信帯域を減衰させる。より具体的には、スイッチ回路20において、共通端子20aと選択端子20bとを接続し、かつ、共通端子20aと選択端子20cとを接続する。また、スイッチ回路40において、共通端子40aと選択端子40bとを接続し、かつ、共通端子40aと選択端子40cとを接続する。これにより、BandBのTDD方式による高周波受信信号を、BandAのFDD方式による高周波受信信号と同時に受信する場合には、スイッチ回路20により受信フィルタ32が配置された信号経路62が選択されることで、信号経路62を伝搬するBandBの高周波信号がBandAの高周波受信信号と相互干渉することを抑制できる。
 図2Bは、実施の形態1に係るフロントエンド回路1のTDD単独モードにおける回路状態を示す図である。同図に示すように、BandBのTDD方式による高周波受信信号を単独で受信する場合には、他の高周波信号の送信または受信への干渉を考慮しなくてよいので、BandB以外の高周波信号を減衰させなくてもよい。より具体的には、スイッチ回路20において、共通端子20aと選択端子20dとを接続する。また、スイッチ回路40において、共通端子40aと選択端子40dとを接続する。これにより、BandBのTDD方式による高周波受信信号を単独で受信する場合には、スイッチ回路20により、フィルタが配置されていない信号経路63を選択することで、BandBの高周波受信信号を低損失で伝送できる。
 上記構成において、スイッチ回路40の共通端子40aと選択端子40cとが接続されるとともに、スイッチ回路20の共通端子20aと選択端子20cとが接続されている。また、スイッチ回路40の共通端子40aと選択端子40dとが接続されるとともに、スイッチ20回路の共通端子20aと選択端子20dとが接続されている。これにより、選択端子40cおよび40dに接続される増幅回路を、信号経路62と信号経路63とで共用できるので、回路の簡素化および小型化を実現できる。
 なお、変形例1に係るフロントエンド回路1Bにおいて、BandB(セルラー帯域)のTDD方式による高周波受信信号を、例えば、BandA(Wi-Fi(2.4GHz帯)による高周波受信信号と同時に受信する場合には、BandAの高周波受信信号との干渉を考慮し、信号経路65においてBandA(Wi-Fi(2.4GHz帯)の受信帯域を減衰させる。より具体的には、スイッチ回路25において、共通端子25aと選択端子25bとを接続する。また、スイッチ回路45において、共通端子45aと選択端子45bとを接続する。これにより、BandB(セルラー帯域)のTDD方式による高周波受信信号を、BandA(Wi-Fi(2.4GHz帯)の高周波受信信号と同時に受信する場合には、帯域除去フィルタ35およびフィルタ36が配置された信号経路65および66が選択されることで、信号経路65を伝搬するBandBの高周波信号がBandAの高周波受信信号と相互干渉することを抑制できる。
 また、BandB(セルラー帯域)のTDD方式による高周波受信信号を単独で受信する場合には、他の高周波信号の送信または受信への干渉を考慮しなくてよいので、BandB以外の高周波信号を減衰させなくてもよい。より具体的には、スイッチ回路25において、共通端子25aと選択端子25cとを接続する。また、スイッチ回路45において、共通端子45aと選択端子45cとを接続する。これにより、BandB(セルラー帯域)のTDD方式による高周波受信信号を単独で受信する場合には、フィルタが配置されていない信号経路64を選択することで、BandB(セルラー帯域)の高周波受信信号を低損失で伝送できる。
 また、変形例2に係るフロントエンド回路1Cにおいて、BandB(セルラー帯域)のTDD方式による高周波受信信号を、例えば、BandA(Wi-Fi(2.4GHz帯)による高周波受信信号と同時に受信する場合には、BandAの高周波受信信号との干渉を考慮し、信号経路65においてBandA(Wi-Fi(2.4GHz帯)の受信帯域を減衰させる。より具体的には、スイッチ回路25において、共通端子25aと選択端子25bとを接続する。また、スイッチ回路45において、共通端子45aと選択端子45bとを接続する。これにより、BandB(セルラー帯域)のTDD方式による高周波受信信号を、BandA(Wi-Fi(2.4GHz帯)の高周波受信信号と同時に受信する場合には、帯域除去フィルタ35が配置された信号経路65が選択されることで、信号経路65を伝搬するBandBの高周波信号がBandAの高周波受信信号と相互干渉することを抑制できる。
 また、BandB(セルラー帯域)のTDD方式による高周波受信信号を単独で受信する場合には、他の高周波信号の送信または受信への干渉を考慮しなくてよいので、BandB以外の高周波信号を減衰させなくてもよい。より具体的には、スイッチ回路25において、共通端子25aと選択端子25cとを接続する。また、スイッチ回路45において、共通端子45aと選択端子45cとを接続する。これにより、BandB(セルラー帯域)のTDD方式による高周波受信信号を単独で受信する場合には、フィルタが配置されていない信号経路64を選択することで、BandB(セルラー帯域)の高周波受信信号を低損失で伝送できる。
 図3Aは、比較例1に係るフロントエンド回路500のCA(TDD/FDD)モードにおける回路状態を示す図である。比較例1に係るフロントエンド回路500は、実施の形態1に係るフロントエンド回路1と比較して、フィルタが配置されていない信号経路63を備えていない点が異なる。同図に示すように、BandBのTDD方式による高周波受信信号を、例えば、BandAのFDD方式による高周波受信信号と同時に受信する場合には、実施の形態1に係るフロントエンド回路1と同様に、BandAのFDD方式による高周波受信信号との干渉を考慮し、信号経路62においてBandAの受信帯域を減衰させる。より具体的には、スイッチ回路520において、共通端子520aと選択端子520bとを接続し、かつ、共通端子520aと選択端子520cとを接続する。また、スイッチ回路540において、共通端子540aと選択端子540bとを接続し、かつ、共通端子540aと選択端子540cとを接続する。これにより、BandBのTDD方式による高周波受信信号を、BandAのFDD方式による高周波受信信号と同時に受信する場合には、スイッチ回路520により受信フィルタ32が配置された信号経路62が選択されることで、信号経路62を伝搬するBandBの高周波信号がBandAの高周波受信信号と相互干渉することを抑制できる。
 図3Bは、比較例1に係るフロントエンド回路500のTDD単独モードにおける回路状態を示す図である。同図に示すように、BandBのTDD方式による高周波受信信号を単独で受信する場合であっても、BandBの高周波受信信号と、BandAの高周波受信信号とを同時に受信する場合と同様に、スイッチ回路520において、共通端子520aと選択端子520bとを接続し、かつ、共通端子520aと選択端子520cとを接続する。また、スイッチ回路540において、共通端子540aと選択端子540bとを接続し、かつ、共通端子540aと選択端子540cとを接続する。つまり、BandBのTDD方式による高周波受信信号を単独で受信する場合であっても、スイッチ回路520により、受信フィルタ32が配置された信号経路62を選択する。このため、比較例1に係るフロントエンド回路500では、BandBのTDD方式による高周波受信信号を単独で受信する場合に、高周波受信信号が受信フィルタ32を通過するため、受信フィルタ32の挿入損失に起因した伝搬損失を低減できない。
 これに対して、本実施の形態に係るフロントエンド回路1の構成によれば、TDDおよびFDDのような複数の通信方式を切り替えて高周波信号を伝送することが可能なシステムにおいて、TDD方式の高周波信号を単独で受信する場合において、高周波信号の伝搬損失を低減できる。また、TDD方式およびFDD方式の高周波信号を同時受信する場合には、相互干渉が抑制された高品質な高周波信号を伝搬できる。
 なお、本実施の形態に係るフロントエンド回路1では、アンテナ2で受信した高周波信号の信号経路を、信号経路62と信号経路63とで切り替える構成を示したが、フロントエンド回路1を経由してアンテナ2から出力するための高周波信号を、信号経路62と信号経路63とで切り替える構成であってもよい。この場合には、受信フィルタ32は、送信フィルタとして機能する。
 この場合、BandB(第1通信バンド)のTDD方式による高周波送信信号を、BandAのFDD方式による高周波送信信号と同時に受信する場合には、BandAのFDD方式による高周波信号との干渉を考慮し、信号経路62においてBandAの送信帯域を減衰させる。より具体的には、スイッチ回路20において、共通端子20aと選択端子20bとを接続し、かつ、共通端子20aと選択端子20cとを接続する。また、スイッチ回路40において、共通端子40aと選択端子40bとを接続し、かつ、共通端子40aと選択端子40cとを接続する。これにより、BandBのTDD方式による高周波送信信号を、BandAのFDD方式による高周波送信信号と同時に送信する場合には、スイッチ回路20により、送信フィルタが配置された信号経路62を選択することで、BandAの高周波信号との相互干渉を抑制できる。
 また、BandBのTDD方式による高周波送信信号を単独で送信する場合には、他の高周波信号の送信または受信への干渉を考慮しなくてよいので、BandB以外の高周波信号を減衰させなくてもよい。より具体的には、スイッチ回路20において、共通端子20aと選択端子20dとを接続する。また、スイッチ回路40において、共通端子40aと選択端子40dとを接続する。これにより、BandBのTDD方式による高周波送信信号を単独で受信する場合には、スイッチ回路20により送信フィルタが配置されていない信号経路63を選択することで、BandBの高周波送信信号を低損失で伝送できる。
 また、本実施の形態に係るフロントエンド回路1において、フィルタ10は必須の構成要素ではない。ただし、フィルタ10の配置により、BandAおよびBandBの高周波信号の高調波が、信号経路61~63以外の経路に出力することを抑制できる。また、BandAまたはBandBの高周波信号と、第1周波数帯域群以外の周波数帯域群の高周波信号との同時通信を高品質で実現することが可能となる。
 また、スイッチ回路20とスイッチ回路40とは、同一チップで形成されていてもよい。これにより、両端がスイッチ回路20および40に接続された信号経路61~63の経路長を短縮できるので、BandAおよびBandBの高周波信号をさらに低損失にできる。
 なお、上記チップは、CMOS(Complementary Metal Oxide Semiconductor)で構成されていてもよい。また、上記チップには、スイッチ回路20および40の切り替え動作を制御する制御部の一部、ならびに、送信増幅器および受信増幅器などが含まれていてもよい。これにより、スイッチ回路20および40、増幅回路、ならびに制御部を1チップのCMOSで構成することで、フロントエンド回路1を安価に製造することが可能となる。また、上記チップは、GaAsで構成されていてもよい。これにより、高品質な増幅性能および雑音性能を有する高周波信号を出力することが可能となる。
 また、本実施の形態に係るフロントエンド回路1において、スイッチ回路40はなくてもよい。この場合であっても、(1)BandBのTDD方式による高周波受信信号を、BandAのFDD方式による高周波受信信号と同時に受信する場合、および(2)BandBのTDD方式による高周波受信信号を単独で受信する場合、に応じて、スイッチ回路20を切り替えることにより、BandBのTDD方式による高周波送信信号を単独で受信する場合には、スイッチ回路20により送信フィルタが配置されていない信号経路63を選択することで、BandBの高周波送信信号を低損失で伝送できる。なお、この場合、選択端子40bはフロントエンド回路1からBandAの高周波信号を出力する第4入出力端子となり、選択端子40cはフロントエンド回路1からBandBの高周波信号を出力する第2入出力端子となり、選択端子40dはフロントエンド回路1からBandBの高周波信号を出力する第3入出力端子となる。ただし、スイッチ回路40が配置されていない構成の場合、信号経路62および63のそれぞれに、受信増幅器を配置する必要がある。
 また、本実施の形態に係るフロントエンド回路1は、さらに、スイッチ回路20および40の切り替え動作を制御する制御部を備えてもよい。このとき、制御部は、TDD方式によりBandBの高周波信号を単独で伝送させる場合には、共通端子20aと選択端子20dとを接続させ、かつ、共通端子40aと選択端子40dとを接続させる。一方、TDD方式によるBandBの高周波信号の伝送と、FDD方式によるBandAの高周波信号の伝送とを同時に行う場合には、共通端子20aと選択端子20cとを接続させ、かつ、共通端子40aと選択端子40cとを接続させる。これにより、フロントエンド回路1が有する制御部が、TDD/FDDの通信方式の選択情報を外部から受けることでスイッチ回路20および40の切り替えを行うので、フロントエンド回路1の高機能化および制御信号の伝送配線の短縮化に伴う高速スイッチングが可能となる。
 なお、上記制御部は、フロントエンド回路1に含まれなくてもよく、RFIC4またはBBIC5などに含まれていてもよい。この場合には、通信装置6が上記制御部を備えることとなる。
 また、本実施の形態に係るフロントエンド回路1は、受信増幅器3Rおよび送信増幅器3Tの少なくとも1つを含んでもよい。
 [1.3 実施の形態1のまとめ]
 本実施の形態に係るフロントエンド回路1は、フロントエンド回路1に高周波信号を入力またはフロントエンド回路1から高周波信号を出力する第1入出力端子(アンテナ接続端子100)、第2入出力端子(選択端子40c)、および第3入出力端子(選択端子40d)と、アンテナ接続端子100に接続された共通端子20a、ならびに、選択端子20cおよび20dを有し、共通端子20aと選択端子20cとの接続、および、共通端子20aと選択端子20dとの接続を排他的に切り替えるスイッチ回路20と、BandB(第1通信バンド)の高周波信号を通過させる受信フィルタ32と、選択端子20cと選択端子40cとを結ぶ経路であって、受信フィルタ32が配置された信号経路62と、選択端子20dと選択端子40dとを結ぶ経路であって、フィルタが配置されないバイパス経路である信号経路63と、を備える。ここで、信号経路62を経由したアンテナ接続端子100から選択端子40cへのBandBの高周波信号の伝送と、信号経路63を経由したアンテナ接続端子100から選択端子40dへのBandBの高周波信号の伝送とが、排他的に切り替わる。
 上記構成によれば、BandBの高周波信号を単独で受信する場合には、他の高周波信号の送信または受信への干渉を考慮しなくてよいので、BandB以外の高周波信号を減衰させなくてもよい。よって、この場合には、スイッチ回路20によりフィルタが配置されていない信号経路63を選択することで、BandBの高周波信号を低損失で伝送できる。一方、BandBの高周波信号を、他バンドの高周波信号と同時に受信する場合には、他バンドの高周波信号との干渉を考慮し、当該バンドを減衰させる。よって、この場合には、スイッチ回路20により受信フィルタ32が配置された信号経路62を選択することで、他バンドの高周波信号との相互干渉を抑制できる。
 また、本実施の形態に係るフロントエンド回路1は、フロントエンド回路1に高周波信号を入力またはフロントエンド回路1から高周波信号を出力する第1入出力端子(アンテナ接続端子100)、第2入出力端子(選択端子40c)、および第3入出力端子(選択端子40d)と、共通端子20a、選択端子20cおよび20dを有し、共通端子20aと選択端子20cとの接続、および、共通端子20aと選択端子20dとの接続を排他的に切り替えるスイッチ回路20と、BandBの高周波信号を通過させる受信フィルタ32と、選択端子20cと選択端子40cとを結ぶ経路であって、受信フィルタ32が配置されBandBの高周波信号を伝搬する信号経路62と、選択端子20dと選択端子40dとを結ぶ経路であって、フィルタが配置されないバイパス経路であり、BandBの高周波信号を伝搬する信号経路63と、アンテナ接続端子100と共通端子20aとの間に接続され、BandBを含む第1周波数帯域群を通過させるフィルタ10と、を備える。
 上記構成によれば、BandBの高周波信号を単独で受信する場合には、他の高周波信号の送信または受信への干渉を考慮しなくてよいので、BandB以外の高周波信号を減衰させなくてもよい。よって、この場合には、スイッチ回路20によりフィルタが配置されていない信号経路63を選択することで、BandBの高周波信号を低損失で伝送できる。一方、BandBの高周波信号を、他バンドの高周波信号と同時に受信する場合には、他バンドの高周波信号の送信または受信との干渉を考慮し、当該バンドを減衰させる。よって、この場合には、スイッチ回路20により受信フィルタ32が配置された信号経路62を選択することで、他バンドの高周波信号との相互干渉を抑制できる。また、フィルタ10により、BandBの高調波の出力を抑制でき、また、BandBの高周波信号と第1周波数帯域群以外の周波数帯域群の高周波信号との同時通信を実現することが可能となる。
 (実施の形態2)
 本実施の形態では、実施の形態1に係るフロントエンド回路1を2系統以上有し、異なる系統のフロントエンド回路の間で、CAを実行することが可能なフロントエンド回路について説明する。
 [2.1 フロントエンド回路の回路構成]
 図4は、実施の形態2に係るフロントエンド回路1Aの回路構成図である。同図に示すように、フロントエンド回路1Aは、スイッチ回路21、23、24、41、43および44と、信号経路71、72、73、74、75、81、82、83、91、92、93および101と、受信フィルタ51R、52R、53R、54、55、56R、57および58Rと、フィルタ11、12、13および14と、アンテナ接続端子100と、を備える。フロントエンド回路1Aは、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンドに配置される。
 フロントエンド回路1Aは、実施の形態1に係るフロントエンド回路1に相当する回路ユニットが、アンテナ接続端子100に4系統接続された構成となっている。第1の回路ユニットは、スイッチ回路21および41と、信号経路71~75と、受信フィルタ51R、52R、53R、54および55と、フィルタ11とで構成されている。第2の回路ユニットは、信号経路101と、フィルタ12とで構成されている。第3の回路ユニットは、スイッチ回路23および43と、信号経路81~83と、受信フィルタ55および56Rと、フィルタ13とで構成されている。第4の回路ユニットは、スイッチ回路24および44と、信号経路91~93と、受信フィルタ57および58Rと、フィルタ14とで構成されている。
 スイッチ回路21は、共通端子21a(第1共通端子)、選択端子21b(第5選択端子)、選択端子21c、選択端子21d、選択端子21e(第1選択端子)、および選択端子21f(第2選択端子)を有し、共通端子21aと選択端子21eとの接続および共通端子21aと選択端子21fとの接続を排他的に切り替える第1スイッチ回路である。
 共通端子21aは、フィルタ11を介してアンテナ接続端子100(第1入出力端子)に接続されている。選択端子21bは信号経路71に接続され、選択端子21cは信号経路72に接続され、選択端子21dは信号経路73に接続され、選択端子21eは信号経路74に接続され、選択端子21fは信号経路75に接続されている。
 スイッチ回路41は、共通端子41a(第2共通端子)、選択端子41b、選択端子41c、選択端子41d、選択端子41e(第3選択端子)、および選択端子41f(第4選択端子)を有し、共通端子41aと選択端子41eとの接続および共通端子41aと選択端子41fとの接続を排他的に切り替える第2スイッチ回路である。なお、選択端子41bは、フロントエンド回路1AからBandA1の高周波信号を出力する第4入出力端子に相当し、選択端子41eは、フロントエンド回路1AからBandA4の高周波信号を出力する第2入出力端子に相当し、選択端子41fは、フロントエンド回路1AからBandA4の高周波信号を出力する第3入出力端子に相当する。
 共通端子41aは、受信増幅器3ARに接続され、フロントエンド回路1Aから受信増幅器3ARへ高周波信号を出力する。
 選択端子41bは信号経路71に接続され、選択端子41cは信号経路72に接続され、選択端子41dは信号経路73に接続され、選択端子41eは信号経路74に接続され、選択端子41fは信号経路75に接続されている。
 信号経路71は、BandA1(第2通信バンド)の高周波信号を伝搬し、選択端子21bと選択端子41bとを結ぶ第3信号経路である。信号経路72は、BandA2の高周波信号を伝搬し、選択端子21cと選択端子41cとを結ぶ第3信号経路である。信号経路73は、BandA3の高周波信号を伝搬し、選択端子21dと選択端子41dとを結ぶ第3信号経路である。信号経路74は、BandA4(第1通信バンド)の高周波信号を伝搬し、選択端子21eと選択端子41eとを結ぶ第1信号経路である。信号経路75は、BandA4(第1通信バンド)の高周波信号を伝搬し、選択端子21fと選択端子41fとを結ぶ第2信号経路である。
 受信フィルタ51Rは、BandA1の高周波信号をFDD方式で受信するためのフィルタである。受信フィルタ51Rの入力端が信号経路71を介して選択端子21bに接続され、出力端が信号経路71を介して選択端子41bに接続されている。受信フィルタ51Rは、信号経路71に配置された第3フィルタである。
 受信フィルタ52Rは、BandA2の高周波信号をFDD方式で受信するためのフィルタである。受信フィルタ52Rの入力端が信号経路72を介して選択端子21cに接続され、出力端が信号経路72を介して選択端子41cに接続されている。受信フィルタ52Rは、信号経路72に配置された第3フィルタである。
 受信フィルタ53Rは、BandA3の高周波信号をFDD方式で受信するためのフィルタである。受信フィルタ53Rの入力端が信号経路73を介して選択端子21dに接続され、出力端が信号経路73を介して選択端子41dに接続されている。受信フィルタ53Rは、信号経路73に配置された第3フィルタである。
 受信フィルタ54は、BandA4(第1通信バンド)の高周波信号を通過させ、信号経路74に配置された第1フィルタである。受信フィルタ54は、BandA4(第1通信バンド)の高周波信号をTDD方式で受信するフィルタである。
 信号経路75は、フィルタが配置されないバイパス経路である。
 信号経路74および75には、TDD方式のBandA4の高周波信号が伝送される。
 フィルタ11は、アンテナ接続端子100と共通端子21aとの間に接続され、BandA1~A4を含む第1周波数帯域群を通過させる第2フィルタである。
 上記構成において、信号経路74を経由したアンテナ接続端子100から選択端子41eへのBandA4の高周波受信信号の伝送と、信号経路75を経由したアンテナ接続端子100から選択端子41fへのBandA4の高周波受信信号の伝送とが、排他的に切り替わる。
 なお、本実施の形態に係るフロントエンド回路1Aは、信号経路71~73のうち、少なくとも1つ有していればよい。また、スイッチ回路21および41の選択端子の数は、信号経路の数に対応していればよい。
 信号経路101は、BandB1の高周波信号を伝搬し、フィルタ12と受信増幅器3BRとを結ぶ経路である。
 フィルタ12は、アンテナ接続端子100と信号経路101との間に接続され、BandB1を含む第2周波数帯域群を通過させるフィルタである。
 信号経路101には、FDD方式のBandB1の高周波信号が伝送される。
 なお、本実施の形態では、第2周波数帯域群に属する通信バンドは、BandB1のみであるため、第2周波数帯域群に属する他の通信バンドとの干渉を考慮する必要がないため、信号経路101にはフィルタが配置されていない。なお、フィルタ12および信号経路101は、本実施の形態に係るフロントエンド回路1Aに必須の構成要素ではない。
 スイッチ回路23は、共通端子23a(第3共通端子)、選択端子23b(第6選択端子)、選択端子23c(第8選択端子)、および選択端子23d(第7選択端子)を有し、共通端子23aと選択端子23bとの接続および共通端子23aと選択端子23dとの接続を排他的に切り替える第3スイッチ回路である。
 共通端子23aは、フィルタ13を介してアンテナ接続端子100(第1入出力端子)に接続されている。選択端子23bは信号経路81に接続され、選択端子23cは信号経路82に接続され、選択端子23dは信号経路83に接続されている。
 スイッチ回路43は、共通端子43a、選択端子43b、選択端子43c、および選択端子43dを有し、共通端子43aと選択端子43bとの接続および共通端子43aと選択端子43dとの接続を排他的に切り替えるスイッチ回路である。なお、選択端子43bは、フロントエンド回路1AからBandC1の高周波信号を出力する第5入出力端子に相当し、選択端子43cは、フロントエンド回路1AからBandC2の高周波信号を出力する第7入出力端子に相当し、選択端子43dは、フロントエンド回路1AからBandC1の高周波信号を出力する第6入出力端子に相当する。
 共通端子43aは、受信増幅器3CRに接続され、フロントエンド回路1Aから受信増幅器3CRへ高周波信号を出力する。
 選択端子43bは信号経路81に接続され、選択端子43cは信号経路82に接続され、選択端子43dは信号経路83に接続されている。
 信号経路81は、BandC1(第3通信バンド)の高周波信号を伝搬し、選択端子23bと選択端子43bとを結ぶ第4信号経路である。信号経路82は、BandC2(第4通信バンド)の高周波信号を伝搬し、選択端子23cと選択端子43cとを結ぶ第6信号経路である。信号経路83は、BandC1(第3通信バンド)の高周波信号を伝搬し、選択端子23dと選択端子43dとを結ぶ第5信号経路である。
 受信フィルタ55は、BandC1(第3通信バンド)の高周波信号を通過させ、信号経路81に配置された第5フィルタである。受信フィルタ55は、BandC1(第3通信バンド)の高周波信号をTDD方式で受信するフィルタである。
 受信フィルタ56Rは、BandC2の高周波信号をFDD方式で受信するためのフィルタである。受信フィルタ56Rの入力端が信号経路82を介して選択端子23cに接続され、出力端が信号経路82を介して選択端子43cに接続されている。受信フィルタ56Rは、信号経路82に配置された第6フィルタである。
 信号経路83は、フィルタが配置されないバイパス経路である。
 信号経路81および83には、TDD方式のBandC1の高周波信号が伝送される。
 フィルタ13は、アンテナ接続端子100と共通端子23aとの間に接続され、BandC1およびC2を含む第3周波数帯域群を通過させる第4フィルタである。
 上記構成において、信号経路81を経由したアンテナ接続端子100から選択端子43bへのBandC1の高周波受信信号の伝送と、信号経路83を経由したアンテナ接続端子100から選択端子43cへのBandC1の高周波受信信号の伝送とが、排他的に切り替わる。
 スイッチ回路24は、共通端子24a(第3共通端子)、選択端子24b(第6選択端子)、選択端子24c(第8選択端子)、および選択端子24d(第7選択端子)を有し、共通端子24aと選択端子24bとの接続および共通端子24aと選択端子24dとの接続を排他的に切り替える第3スイッチ回路である。
 共通端子24aは、フィルタ14を介してアンテナ接続端子100(第1入出力端子)に接続されている。選択端子24bは信号経路91に接続され、選択端子24cは信号経路92に接続され、選択端子24dは信号経路93に接続されている。
 スイッチ回路44は、共通端子44a、選択端子44b、選択端子44c、および選択端子44dを有し、共通端子44aと選択端子44bとの接続および共通端子44aと選択端子44dとの接続を排他的に切り替えるスイッチ回路である。なお、選択端子44bは、フロントエンド回路1AからBandD1の高周波信号を出力する第5入出力端子に相当し、選択端子44cは、フロントエンド回路1AからBandD2の高周波信号を出力する第7入出力端子に相当し、選択端子44dは、フロントエンド回路1AからBandD1の高周波信号を出力する第6入出力端子に相当する。
 共通端子44aは、受信増幅器3DRに接続され、フロントエンド回路1Aから受信増幅器3DRへ高周波信号を出力する。
 選択端子44bは信号経路91に接続され、選択端子44cは信号経路92に接続され、選択端子44dは信号経路93に接続されている。
 信号経路91は、BandD1(第3通信バンド)の高周波信号を伝搬し、選択端子24bと選択端子44bとを結ぶ第4信号経路である。信号経路92は、BandD2(第4通信バンド)の高周波信号を伝搬し、選択端子24cと選択端子44cとを結ぶ第6信号経路である。信号経路93は、BandD1(第3通信バンド)の高周波信号を伝搬し、選択端子24dと選択端子44dとを結ぶ第5信号経路である。
 受信フィルタ57は、BandD1(第3通信バンド)の高周波信号を通過させ、信号経路91に配置された第5フィルタである。受信フィルタ57は、BandD1(第3通信バンド)の高周波信号をTDD方式で受信するフィルタである。
 受信フィルタ58Rは、BandD2の高周波信号をFDD方式で受信するためのフィルタである。受信フィルタ58Rの入力端が信号経路92を介して選択端子24cに接続され、出力端が信号経路92を介して選択端子44cに接続されている。受信フィルタ58Rは、信号経路92に配置された第6フィルタである。
 信号経路93は、フィルタが配置されないバイパス経路である。
 信号経路91および93には、TDD方式のBandD1の高周波信号が伝送される。
 フィルタ14は、アンテナ接続端子100と共通端子24aとの間に接続され、BandD1およびD2を含む第4周波数帯域群を通過させる第4フィルタである。
 上記構成において、信号経路91を経由したアンテナ接続端子100から選択端子44bへのBandD1の高周波受信信号の伝送と、信号経路93を経由したアンテナ接続端子100から選択端子44cへのBandD1の高周波受信信号の伝送とが、排他的に切り替わる。
 フィルタ11~14の配置により、一の周波数帯域群の高周波信号の高調波が、他の周波数帯域群に対応する回路ユニットに漏洩することを抑制できる。また、異なる周波数帯域群の間での高周波信号の同時通信を高品質で実現することが可能となる。
 なお、上記の各受信フィルタおよびフィルタ11~14は、弾性表面波フィルタ、弾性境界波フィルタ、または、BAWを用いた弾性波フィルタのいずれかであってもよい。さらには、上記の各受信フィルタおよびフィルタ11~14は、弾性波フィルタでなくてもよく、LCフィルタまたは誘電体フィルタなどであってもよく、フィルタ構造は任意である。
 なお、本実施の形態に係るフロントエンド回路1において、BandC1およびC2の高周波信号を伝搬させる回路、ならびに、BandD1およびD2の高周波信号を伝搬させる回路のうち、いずれか一方の回路がなくてもよい。
 なお、BandA4(第1通信バンド)は、例えば、LTEのバンド39(帯域:1880-1920MHz)に適用され、BandC1(第3通信バンド)は、例えば、LTEのバンド40(帯域:2300-2400MHz)に適用され、BandD1(第3通信バンド)は、例えば、LTEのバンド41(帯域:2496-2690MHz)に適用される。
 この場合、フィルタ11は、例えば、ミドルローバンド(MLB:1475.9-2025MHz)を通過帯域とする低域通過フィルタである。また、フィルタ12は、例えば、ミドルバンド(MB:2110-2200MHz)を通過帯域とする帯域通過フィルタである。また、フィルタ13は、例えば、ミドルハイバンド(MHB:2300-2400MHz)を通過帯域とする帯域通過フィルタである。また、フィルタ14は、例えば、ハイバンド(HB:2496-2690MHz)を通過帯域とする帯域通過フィルタである。
 さらに、BandA1は、例えば、LTEのバンド3(受信帯域:1805-1880MHz)に適用され、BandA2は、例えば、LTEのバンド25(受信帯域:1930-1995MHz)に適用され、BandA3は、例えば、LTEのバンド34(帯域:2010-2025MHz)に適用される。また、BandB1は、例えば、LTEのバンド1/66(受信帯域:2110-2200MHz)に適用される。また、BandC2は、例えば、LTEのバンド30(受信帯域:2350-2360MHz)に適用される。また、BandD2は、例えば、LTEのバンド7(受信帯域:2620-2690MHz)に適用される。
 つまり、BandA4(第1通信バンド)とBandA1-A3(第2通信バンド)とは、4つの異なる周波数帯域群であるミドルローバンド、ミドルバンド、ミドルハイバンド、およびハイバンドのうちの同じ周波数帯域群に属してもよい。また、BandC1(第3通信バンド)とBandC2(第4通信バンド)とは、上記4つの異なる周波数帯域群のうちの同じ周波数帯域群に属してもよい。また、BandD1(第3通信バンド)とBandD2(第4通信バンド)とは、上記4つの異なる周波数帯域群のうちの同じ周波数帯域群に属してもよい。
 [2.2 フロントエンド回路の信号経路切り替え]
 図5Aは、実施の形態2に係るフロントエンド回路のCA(TDD/FDD)モードにおける回路状態を示す図である。同図に示すように、BandC1(第3通信バンド)のTDD方式による高周波受信信号を、例えば、BandA1のFDD方式による高周波受信信号、BandB1のFDD方式による高周波受信信号、およびBandD2のFDD方式による高周波受信信号と同時に受信する場合には、BandA1、B1およびD2のFDD方式による高周波受信信号との干渉を考慮し、信号経路81においてBandA1、B1およびD2の受信帯域を減衰させる。より具体的には、スイッチ回路23において共通端子23aと選択端子23bとを接続し、スイッチ回路21において共通端子21aと選択端子21bとを接続し、スイッチ回路24において共通端子24aと選択端子23cとを接続する。また、スイッチ回路43において共通端子43aと選択端子43bとを接続し、スイッチ回路41において共通端子41aと選択端子41bとを接続し、スイッチ回路44において共通端子44aと選択端子43cとを接続する。さらに、受信増幅器3AR、3BR、3CRおよび3DRをオン状態にする。これにより、BandC1のTDD方式による高周波受信信号を、BandA1、B1およびD2のFDD方式による高周波受信信号と同時に受信する場合には、スイッチ回路23により、受信フィルタ55が配置された信号経路81を選択することで、BandA1、B1およびD2の高周波受信信号との相互干渉を抑制できる。
 図5Bは、実施の形態2に係るフロントエンド回路1AのTDD単独モードにおける回路状態を示す図である。同図に示すように、BandA4のTDD方式による高周波受信信号とBandD1のTDD方式による高周波受信信号とを同期させて受信する場合(TDD単独モード)には、同期しているBandA4およびD1の高周波信号以外の送信または受信との干渉を考慮しなくてよいので、BandA4およびD1以外の高周波信号を減衰させなくてもよい。より具体的には、スイッチ回路21において、共通端子21aと選択端子21fとを接続し、スイッチ回路41において、共通端子41aと選択端子41fとを接続する。また、スイッチ回路24において、共通端子24aと選択端子24dとを接続し、スイッチ回路44において、共通端子44aと選択端子44dとを接続する。さらに、受信増幅器3ARおよび3DRをオン状態にし、受信増幅器3BRおよび3CRをオフ状態にする。これにより、TDD方式による高周波受信信号をTDD単独モードで受信する場合には、スイッチ回路21および24により、フィルタが配置されていない信号経路75および93を選択することで、BandA4およびD1の高周波受信信号を低損失で伝送できる。
 なお、上述したTDD単独モードには、TDD方式に適用される単一の通信バンドの高周波信号を受信する場合に限られず、TDD方式に適用される複数の通信バンドの高周波信号が同期して受信する場合も含まれる。ただし、TDD方式に適用される複数の通信バンドの高周波信号が非同期で受信している場合は、TDD単独モードには含まれない。
 図6は、比較例2に係るフロントエンド回路500AのTDD単独モードにおける回路状態を示す図である。比較例2に係るフロントエンド回路500Aは、実施の形態2に係るフロントエンド回路1Aと比較して、フィルタが配置されていない信号経路75および93を備えていない点が異なる。同図に示すように、BandA4のTDD方式による高周波受信信号とBandD1のTDD方式による高周波受信信号とを同期させて受信する場合(TDD単独モード)であっても、BandA4およびD1のTDD方式の高周波受信信号と、その他のFDD方式の高周波受信信号とを同時に受信する場合と同様に、スイッチ回路521において共通端子521aと選択端子521eとを接続し、スイッチ回路541において共通端子541aと選択端子541eとを接続する。また、スイッチ回路524において、共通端子524aと選択端子524bとを接続し、スイッチ回路544において、共通端子544aと選択端子544bとを接続する。さらに、受信増幅器3ARおよび3DRをオン状態にし、受信増幅器3BRおよび3CRをオフ状態にする。つまり、BandA4およびD1のTDD単独モードであっても、スイッチ回路521および524により、受信フィルタ54が配置された信号経路74および受信フィルタ57が配置された信号経路91を選択する。このため、比較例2に係るフロントエンド回路500Aでは、TDD単独モードで受信する場合に、高周波受信信号が受信フィルタ54および57を通過するため、伝搬損失を低減できない。
 これに対して、本実施の形態に係るフロントエンド回路1Aの構成によれば、TDDおよびFDDのような複数の通信方式を切り替えて高周波信号を伝送することが可能なシステムにおいて、TDD単独モードで受信する場合において、高周波信号の伝搬損失を低減できる。また、異なる周波数帯域群の間において、TDD方式およびFDD方式の双方を含むCA動作が可能となり、TDD方式およびFDD方式の高周波信号を同時受信する場合であっても、相互干渉が抑制された高品質な高周波信号を伝搬できる。
 なお、本実施の形態に係るフロントエンド回路1Aでは、送信系回路が配置されていてもよい。この場合、FDD方式に適用される受信フィルタ51R~53R、56Rおよび58Rのそれぞれに対して送信フィルタが配置される。
 また、本実施の形態に係るフロントエンド回路1Aは、実施の形態1に係るフロントエンド回路1と同様に、フロントエンド回路1Aを経由してアンテナ2から出力するための高周波送信信号を、各信号経路で切り替える構成であってもよい。この場合には、各受信フィルタは、送信フィルタとして機能する。
 また、本実施の形態に係るフロントエンド回路1Aは、さらに、スイッチ回路21、23、24、41、43および44の切り替え動作を制御する制御部を備えてもよい。このとき、制御部は、TDD方式によるBandA4、C1およびD1のうちのいずれかの高周波信号を単独で、または、TDD方式によるBandA4、C1およびD1のうちの少なくとも2以上の高周波信号を同期して伝送させる場合には、(1)共通端子21aと選択端子21fとの接続かつ共通端子41aと選択端子41fとの接続、(2)共通端子23aと選択端子23dとの接続かつ共通端子43aと選択端子43dとの接続、(3)共通端子24aと選択端子24dとの接続かつ共通端子44aと選択端子44dとの接続、を適宜実行する。
 また、TDD方式によるBandA4、C1およびD1のうちの少なくとも2以上の高周波信号を非同期で伝送させる場合には、(1)共通端子21aと選択端子21eとの接続かつ共通端子41aと選択端子41eとの接続、(2)共通端子23aと選択端子23bとの接続かつ共通端子43aと選択端子43bとの接続、(3)共通端子24aと選択端子24bとの接続かつ共通端子44aと選択端子44bとの接続、を適宜実行する。
 また、TDD方式によるBandA4、C1およびD1のうちの少なくとも1つの高周波信号の伝送と、FDD方式による通信バンドの高周波信号の伝送とを同時に行う場合には、以下のような切り替え動作を実行する。例えば、TDD方式によるBandC1の高周波信号の伝送と、FDD方式によるBandA1の高周波信号の伝送と、FDD方式によるBandB1の高周波信号の伝送と、FDD方式によるBandD2の高周波信号の伝送とを同時に行う場合には、(1)共通端子21aと選択端子21bとの接続かつ共通端子41aと選択端子41bとの接続、(2)共通端子23aと選択端子23bとの接続かつ共通端子43aと選択端子43bとの接続、(3)共通端子24aと選択端子24cとの接続かつ共通端子44aと選択端子44cとの接続を実行する。
 これにより、フロントエンド回路1Aが有する制御部が、TDD/FDDの通信方式の選択情報を外部から受けることで各スイッチ回路の切り替えを行うので、フロントエンド回路1Aの高機能化および制御信号の伝送配線の短縮化に伴う高速スイッチングが可能となる。
 なお、上記制御部は、フロントエンド回路1Aに含まれなくてもよく、RFIC4またはBBIC5などに含まれていてもよい。この場合には、通信装置6が上記制御部を備えることとなる。
 (その他の実施の形態など)
 以上、実施の形態1および2に係るフロントエンド回路および通信装置について説明したが、本発明のフロントエンド回路および通信装置は、上記実施の形態に限定されるものではない。上記実施の形態およびその変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態およびその変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明のフロントエンド回路および通信装置を内蔵した各種機器も本発明に含まれる。
 なお、本発明に係る制御部は、集積回路であるIC、LSI(Large Scale Integration)として実現されてもよい。また、集積回路化の手法は、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。
 また、上記実施の形態に係るフロントエンド回路および通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に別の高周波回路素子および配線などが挿入されていてもよい。
 本発明は、キャリアアグリゲーション方式を採用するマルチバンド/マルチモード対応のスイッチモジュールとして、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、1C、500、500A  フロントエンド回路
 2  アンテナ
 3AR、3BR、3CR、3DR、3R  受信増幅器
 3T  送信増幅器
 4  RF信号処理回路(RFIC)
 5  ベースバンド信号処理回路(BBIC)
 6  通信装置
 10、11、12、13、14、36  フィルタ
 20、21、23、24、25、40、41、43、44、45、520、521、523、524、540、541、543、544  スイッチ回路
 20a、21a、23a、24a、25a、40a、41a、43a、44a、45a、520a、521a、523a、524a、540a、541a、543a、544a  共通端子
 20b、20c、20d、21b、21c、21d、21e、21f、23b、23c、23d、24b、24c、24d、25b、25c、40b、40c、40d、41b、41c、41d、41e、41f、43b、43c、43d、44b、44c、44d、45b、45c、520b、520c、521b、521c、521d、521e、523b、523c、524b、524c、540b、540c、541b、541c、541d、541e、543b、543c、544b、544c  選択端子
 31  デュプレクサ
 31R、32、51R、52R、53R、54、55、56R、57、58R  受信フィルタ
 31T  送信フィルタ
 35  帯域除去フィルタ
 61、62、63、71、72、73、74、75、81、82、83、91、92、93、101  信号経路
 100  アンテナ接続端子

Claims (16)

  1.  高周波信号を伝送するフロントエンド回路であって、
     前記フロントエンド回路に高周波信号を入力または前記フロントエンド回路から高周波信号を出力する第1入出力端子、第2入出力端子、および第3入出力端子と、
     前記第1入出力端子に接続された第1共通端子、ならびに、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を排他的に切り替える第1スイッチ回路と、
     第1通信バンドの高周波信号を通過させる第1フィルタと、
     前記第1選択端子と前記第2入出力端子とを結ぶ経路であって、前記第1フィルタが配置され、前記第1通信バンドの高周波信号を伝搬する第1信号経路と、
     前記第2選択端子と前記第3入出力端子とを結ぶ経路であって、フィルタが配置されないバイパス経路であり、前記第1通信バンドの高周波信号を伝搬する第2信号経路と、を備え、
     前記第1信号経路を経由した前記第1入出力端子から前記第2入出力端子への前記第1通信バンドの高周波信号の伝送と、前記第2信号経路を経由した前記第1入出力端子から前記第3入出力端子への前記第1通信バンドの高周波信号の伝送とが、排他的に切り替わる、または、前記第1信号経路を経由した前記第2入出力端子から前記第1入出力端子への前記第1通信バンドの高周波信号の伝送と、前記第2信号経路を経由した前記第3入出力端子から前記第1入出力端子への前記第1通信バンドの高周波信号の伝送とが、排他的に切り替わる、
     フロントエンド回路。
  2.  高周波信号を伝送するフロントエンド回路であって、
     前記フロントエンド回路に高周波信号を入力または前記フロントエンド回路から高周波信号を出力する第1入出力端子、第2入出力端子、および第3入出力端子と、
     第1共通端子、第1選択端子および第2選択端子を有し、前記第1共通端子と前記第1選択端子との接続、および、前記第1共通端子と前記第2選択端子との接続を排他的に切り替える第1スイッチ回路と、
     第1通信バンドの高周波信号を通過させる第1フィルタと、
     前記第1選択端子と前記第2入出力端子とを結ぶ経路であって、前記第1フィルタが配置され、前記第1通信バンドの高周波信号を伝搬する第1信号経路と、
     前記第2選択端子と前記第3入出力端子とを結ぶ経路であって、フィルタが配置されないバイパス経路であり、前記第1通信バンドの高周波信号を伝搬する第2信号経路と、
     前記第1入出力端子と前記第1共通端子との間に接続され、前記第1通信バンドを含む第1周波数帯域群を通過させる第2フィルタと、を備える、
     フロントエンド回路。
  3.  さらに、
     第2共通端子、第3選択端子および第4選択端子を有し、前記第2共通端子と前記第3選択端子との接続、および、前記第2共通端子と前記第4選択端子との接続を排他的に切り替える第2スイッチ回路を備え、
     前記第2入出力端子は前記第3選択端子であり、
     前記第3入出力端子は前記第4選択端子であり、
     前記第2共通端子は、前記フロントエンド回路から高周波信号を出力または前記フロントエンド回路に高周波信号を入力し、
     前記第2共通端子と前記第3選択端子とが接続されるとともに、前記第1共通端子と前記第1選択端子とが接続されており、
     前記第2共通端子と前記第4選択端子とが接続されるとともに、前記第1共通端子と前記第2選択端子とが接続されている、
     請求項1または2に記載のフロントエンド回路。
  4.  前記第1スイッチ回路と前記第2スイッチ回路とは、同一チップで形成されている、
     請求項3に記載のフロントエンド回路。
  5.  前記第1フィルタは、時分割復信方式に適用されるフィルタであり、
     前記第1信号経路および前記第2信号経路には、時分割復信方式の高周波信号が伝送される、
     請求項1~4のいずれか1項に記載のフロントエンド回路。
  6.  前記第1フィルタは、SDL(Supplemental Downlink)方式に適用されるフィルタであり、
     前記第1信号経路および前記第2信号経路には、SDL方式の高周波信号が伝送される、
     請求項1~4のいずれか1項に記載のフロントエンド回路。
  7.  前記第1スイッチ回路は、さらに、第5選択端子を有し、
     前記フロントエンド回路は、さらに、前記フロントエンド回路に高周波信号を入力または前記フロントエンド回路から高周波信号を出力する第4入出力端子と、
     第2通信バンドの高周波信号を通過させ、周波数分割復信方式に適用される第3フィルタと、
     前記第5選択端子と前記第4入出力端子とを結ぶ第3信号経路と、を備え、
     前記第3信号経路には、前記第3フィルタが配置されている、
     請求項5または6に記載のフロントエンド回路。
  8.  前記フロントエンド回路は、さらに、
     前記第1スイッチ回路の切り替え動作を制御する制御部を備え、
     前記制御部は、
     時分割復信方式により前記第1通信バンドの高周波信号を単独で伝送させる場合には、前記第1共通端子と前記第2選択端子とを接続させ、
     時分割復信方式による前記第1通信バンドの高周波信号の伝送と、周波数分割復信方式による前記第1通信バンドと異なる他の通信バンドの高周波信号の伝送とを同時に行う場合には、前記第1共通端子と前記第1選択端子とを接続させる、
     請求項1~7のいずれか1項に記載のフロントエンド回路。
  9.  さらに、
     前記フロントエンド回路に高周波信号を入力または前記フロントエンド回路から高周波信号を出力する第5入出力端子、第6入出力端子および第7入出力端子と、
     第3共通端子、第6選択端子、第7選択端子および第8選択端子を有し、前記第3共通端子と前記第6選択端子との接続、前記第3共通端子と前記第7選択端子との接続、および前記第3共通端子と前記第8選択端子との接続が排他的に切り替わる第3スイッチ回路と、
     前記第1入出力端子と前記第3共通端子との間に接続された第4フィルタと、
     第3通信バンドの高周波信号を通過させる第5フィルタと、
     第4通信バンドの高周波信号を通過させ、周波数分割復信方式に適用される第6フィルタと、
     前記第6選択端子と前記第5入出力端子とを結ぶ第4信号経路と、
     前記第7選択端子と前記第6入出力端子とを結ぶ第5信号経路と、
     前記第8選択端子と前記第7入出力端子とを結ぶ第6信号経路と、を備え、
     前記第1フィルタは、時分割復信方式に適用されるフィルタであり、
     前記第1信号経路および前記第2信号経路には、時分割復信方式の高周波信号が伝送され、
     前記第4信号経路には、前記第5フィルタが配置され、
     前記第5信号経路は、フィルタが配置されないバイパス経路であり、
     前記第6信号経路には、前記第6フィルタが配置されている、
     請求項2に記載のフロントエンド回路。
  10.  前記フロントエンド回路は、さらに、
     前記第1スイッチ回路および前記第3スイッチ回路の切り替え動作を制御する制御部を備え、
     前記制御部は、
     時分割復信方式による前記第1通信バンドの高周波信号と時分割復信方式による前記第3通信バンドの高周波信号とを同期して伝送させる場合には、前記第1共通端子と前記第2選択端子とを接続させ、かつ、前記第3共通端子と前記第7選択端子とを接続させ、
     時分割復信方式による前記第1通信バンドの高周波信号と時分割復信方式による前記第3通信バンドの高周波信号とを非同期で伝送させる場合には、前記第1共通端子と前記第1選択端子とを接続させ、かつ、前記第3共通端子と前記第6選択端子とを接続させ、
     時分割復信方式による前記第1通信バンドの高周波信号の伝送と、周波数分割復信方式による前記第4通信バンドの高周波信号の伝送とを同時に行う場合には、前記第1共通端子と前記第1選択端子とを接続させ、かつ、前記第3共通端子と前記第8選択端子とを接続させる、
     請求項9に記載のフロントエンド回路。
  11.  前記第1通信バンドは、LTE(Long Term Evolution)のバンド32、バンド34、バンド39、バンド40およびバンド41のいずれかである、
     請求項1~10のいずれか1項に記載のフロントエンド回路。
  12.  前記第1通信バンドは、4つの異なる周波数帯域群であるミドルローバンド(MLB:1475.9-2025MHz)、ミドルバンド(MB:2110-2200MHz)、ミドルハイバンド(MHB:2300-2400MHz)、およびハイバンド(HB:2496-2690MHz)のうちのいずれかに属し、
     前記第3通信バンドと前記第4通信バンドとは、前記4つの異なる周波数帯域群のうちの同じ周波数帯域群に属する、
     請求項9または10に記載のフロントエンド回路。
  13.  前記第1通信バンドは、GPS(登録商標)バンドおよびWi-Fi(登録商標)バンドのいずれかである、
     請求項1~10のいずれか1項に記載のフロントエンド回路。
  14.  前記第1フィルタおよび前記第2フィルタは、弾性表面波フィルタ、弾性境界波フィルタ、または、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタである、
     請求項2に記載のフロントエンド回路。
  15.  さらに、
     前記第2入出力端子および前記第3入出力端子に直接的または間接的に接続された増幅回路と、を備える、
     請求項1~14のいずれか1項に記載のフロントエンド回路。
  16.  アンテナで受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナと前記RF信号処理回路との間で前記高周波信号を伝達する請求項1~15のいずれか1項に記載のフロントエンド回路と、を備える、
     通信装置。
PCT/JP2019/047264 2018-12-04 2019-12-03 フロントエンド回路および通信装置 WO2020116460A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980079802.7A CN113169756B (zh) 2018-12-04 2019-12-03 前端电路以及通信装置
KR1020217014247A KR102521167B1 (ko) 2018-12-04 2019-12-03 프론트 엔드 회로 및 통신 장치
JP2020559234A JP7160113B2 (ja) 2018-12-04 2019-12-03 フロントエンド回路および通信装置
US17/322,986 US11581912B2 (en) 2018-12-04 2021-05-18 Front-end circuit and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227207 2018-12-04
JP2018-227207 2018-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/322,986 Continuation US11581912B2 (en) 2018-12-04 2021-05-18 Front-end circuit and communication device

Publications (1)

Publication Number Publication Date
WO2020116460A1 true WO2020116460A1 (ja) 2020-06-11

Family

ID=70974719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047264 WO2020116460A1 (ja) 2018-12-04 2019-12-03 フロントエンド回路および通信装置

Country Status (5)

Country Link
US (1) US11581912B2 (ja)
JP (1) JP7160113B2 (ja)
KR (1) KR102521167B1 (ja)
CN (1) CN113169756B (ja)
WO (1) WO2020116460A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034817A1 (ja) * 2020-08-13 2022-02-17 株式会社村田製作所 高周波モジュールおよび通信装置
WO2023189276A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 高周波回路および通信装置
WO2023238482A1 (ja) * 2022-06-09 2023-12-14 株式会社村田製作所 高周波回路及び通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218434A1 (en) * 2020-01-09 2021-07-15 Skyworks Solutions, Inc. Converged radio frequency front-end architecture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031861A (ja) * 1998-05-27 2000-01-28 Nokia Mobile Phones Ltd 無線通信用トランシ―バ
JP2007019939A (ja) * 2005-07-08 2007-01-25 Renesas Technology Corp 無線通信装置及びそれを用いた携帯電話端末
US20100202325A1 (en) * 2009-02-06 2010-08-12 Sige Semiconductor Inc. Dual mode transceiver
US20180048345A1 (en) * 2016-08-10 2018-02-15 Skyworks Solutions, Inc. Apparatus and methods for filter bypass for radio frequency front-ends

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621327B2 (en) * 2013-09-17 2017-04-11 Skyworks Solutions, Inc. Systems and methods related to carrier aggregation front-end module applications
CN107710628B (zh) 2015-07-03 2020-08-04 株式会社村田制作所 前端模块
WO2017013910A1 (ja) * 2015-07-17 2017-01-26 株式会社村田製作所 フロントエンドモジュール
TWI763633B (zh) * 2015-08-25 2022-05-11 美商Idac控股公司 無線傳輸/接收單元及在其中執行的方法
TWI729112B (zh) * 2016-04-09 2021-06-01 美商天工方案公司 具有可切換雙工器的前端架構
JP2017208656A (ja) * 2016-05-17 2017-11-24 株式会社村田製作所 スイッチモジュール及び高周波モジュール
CN109155639A (zh) * 2016-05-20 2019-01-04 株式会社村田制作所 高频前端电路以及通信装置
JP6822299B2 (ja) * 2016-07-15 2021-01-27 株式会社村田製作所 高周波フロントエンド回路および通信装置
US10075199B2 (en) * 2016-07-17 2018-09-11 Skyworks Solutions, Inc. Uplink carrier aggregation front-end architecture that supports simultaneous MIMO
US10498521B2 (en) * 2016-08-31 2019-12-03 Skyworks Solutions, Inc. Switched-filter duplexing architecture for front-end systems
WO2019099257A1 (en) * 2017-11-17 2019-05-23 Skyworks Solutions, Inc. Dynamic control of single switched uplink versus multi uplink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031861A (ja) * 1998-05-27 2000-01-28 Nokia Mobile Phones Ltd 無線通信用トランシ―バ
JP2007019939A (ja) * 2005-07-08 2007-01-25 Renesas Technology Corp 無線通信装置及びそれを用いた携帯電話端末
US20100202325A1 (en) * 2009-02-06 2010-08-12 Sige Semiconductor Inc. Dual mode transceiver
US20180048345A1 (en) * 2016-08-10 2018-02-15 Skyworks Solutions, Inc. Apparatus and methods for filter bypass for radio frequency front-ends

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034817A1 (ja) * 2020-08-13 2022-02-17 株式会社村田製作所 高周波モジュールおよび通信装置
US11757476B2 (en) 2020-08-13 2023-09-12 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
WO2023189276A1 (ja) * 2022-03-28 2023-10-05 株式会社村田製作所 高周波回路および通信装置
WO2023238482A1 (ja) * 2022-06-09 2023-12-14 株式会社村田製作所 高周波回路及び通信装置

Also Published As

Publication number Publication date
US11581912B2 (en) 2023-02-14
JP7160113B2 (ja) 2022-10-25
CN113169756A (zh) 2021-07-23
KR20210075152A (ko) 2021-06-22
CN113169756B (zh) 2022-12-23
US20210273670A1 (en) 2021-09-02
JPWO2020116460A1 (ja) 2021-10-07
KR102521167B1 (ko) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2020116460A1 (ja) フロントエンド回路および通信装置
US10720899B2 (en) Radio-frequency module
US10187109B2 (en) Filter circuit, front end circuit, and module
CN112217526B (zh) 高频电路以及通信装置
WO2017013910A1 (ja) フロントエンドモジュール
CN110224726B (zh) 高频前端电路以及具备该高频前端电路的通信装置
JP6687161B2 (ja) スイッチモジュール
US11621732B2 (en) High-frequency front end module and communication device
JP2019154025A (ja) 高周波フロントエンド回路及びそれを備える通信装置
KR20130010104A (ko) 상이한 주파수 대역들에서의 무선 주파수 송신들을 동시에 수신하기 위한 무선 회로
US8188809B2 (en) Output selection of multi-output filter
KR20190014041A (ko) 스위칭 유닛을 구비한 디바이스 및 그 애플리케이션
US10057902B2 (en) Module with duplexers and filters
JP2020167445A (ja) フロントエンド回路および通信装置
JP2021064874A (ja) 高周波モジュールおよび通信装置
WO2020003996A1 (ja) 高周波モジュールおよび通信装置
US11881844B2 (en) Multiplexer
CN113196675B (zh) 高频模块和通信装置
WO2022249770A1 (ja) 高周波回路及び通信装置
WO2021131223A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217014247

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020559234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891827

Country of ref document: EP

Kind code of ref document: A1