WO2020116226A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2020116226A1
WO2020116226A1 PCT/JP2019/045993 JP2019045993W WO2020116226A1 WO 2020116226 A1 WO2020116226 A1 WO 2020116226A1 JP 2019045993 W JP2019045993 W JP 2019045993W WO 2020116226 A1 WO2020116226 A1 WO 2020116226A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
conversion control
inverter circuit
closed state
switching
Prior art date
Application number
PCT/JP2019/045993
Other languages
English (en)
French (fr)
Inventor
芳光 高橋
谷口 真
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980080097.2A priority Critical patent/CN113169679B/zh
Publication of WO2020116226A1 publication Critical patent/WO2020116226A1/ja
Priority to US17/339,279 priority patent/US11757373B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This disclosure relates to power conversion devices.
  • Patent Document 1 an open winding system that drives a three-phase induction motor or the like is known (for example, Patent Document 1).
  • the inverter circuit that performs switching is switched between the first inverter circuit and the second inverter circuit. This can prevent the loss (that is, heat generation) from concentrating on one of the inverter circuits. That is, it is possible to prevent the temperature of the other switching circuit from rising compared to that of the one switching circuit.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to provide a power conversion device that can appropriately disperse the loss while suppressing the loss.
  • Means for solving the above problem is a power converter that converts DC power from a DC power supply into AC power and supplies the same to one or more phase windings.
  • a first inverter circuit electrically connected to the end side and transmitting electric power to and from the DC power supply, and electrically connected to a second end side of both ends of the winding and connected to the DC power supply.
  • a second inverter circuit for transmitting electric power by means of: and a control section for controlling the first inverter circuit and the second inverter circuit, wherein the control section is an open/closed state of a switching element forming the second inverter circuit.
  • the second power conversion control for switching the open/closed state of the switching element forming the two-inverter circuit is configured to be executable.
  • the effective value of the drive current flowing through the winding is less than the threshold value
  • the first One of the power conversion control and the second power conversion control is performed, while when the power conversion control is equal to or more than the threshold value, the first power conversion control and the second power conversion control are switched and performed.
  • FIG. 1 is a conceptual diagram of a drive system
  • FIG. 2 is a circuit diagram showing the electrical configuration of the ISG
  • FIG. 3 is a circuit diagram showing a current in the first power conversion control
  • FIG. 4 is a circuit diagram showing a current in the second power conversion control
  • FIG. 5 is a figure which shows the period when switching loss overlaps
  • FIG. 6 is a diagram illustrating a loss in a conventional switching element
  • FIG. 7A is a diagram showing a comparison between switching loss and conduction loss
  • FIG. 7B is a diagram comparing losses in each switching element.
  • FIG. 8 is a diagram showing a switching cycle
  • FIG. 8 is a diagram showing a switching cycle
  • FIG. 9 is a diagram for explaining the loss in the switching element
  • FIG. 10 is a flowchart of the power conversion process
  • FIG. 11 is a circuit diagram showing an electrical configuration of ISG in another example
  • FIG. 12 is a circuit diagram showing an electrical configuration of ISG in another example.
  • the vehicle includes an engine 10, an ISG 20, and a battery 30 as a DC power source.
  • the ISG 20 is a generator with a motor function, which includes a motor 40 as a rotating electric machine and an inverter 50 as a power conversion device, and is a mechano-electric integrated ISG (Integrated Starter). Generator)).
  • the motor 40 is specifically a permanent magnet type synchronous machine having a three-phase winding.
  • a wound-field type synchronous machine may be used.
  • the rotating shaft 20a of the ISG 20 that is, the rotating shaft 20a of the motor 40
  • the rotating shaft 20a of the motor 40 is connected with a pulley or the like so that the driving force is transmitted to the crankshaft 10a of the engine 10 as an internal combustion engine. They are connected via the mechanism 101.
  • the crankshaft 10a of the engine 10 is connected to the axle 100 via a connecting mechanism 102 such as a transmission.
  • the ISG 20 has a power running function of applying a driving force (rotational force) to the crankshaft 10a.
  • the battery 30 uses a rechargeable secondary battery, specifically, a lithium ion storage battery.
  • a three-phase winding 41 is shown as a stator winding of the motor 40.
  • the 3-phase winding 41 includes a U-phase winding 42U, a V-phase winding 42V, and a W-phase winding 42W.
  • the U-phase winding 42U, the V-phase winding 42V, and the W-phase winding 42W are arranged such that their phases are shifted by 120 degrees in terms of electrical angle.
  • the inverter 50 includes a first inverter circuit 51 as a first inverter circuit, a second inverter circuit 52 as a second inverter circuit, a smoothing capacitor 53, and a control device 60 as a control unit.
  • the inverter 50 employs a so-called open winding system.
  • three-phase inverters are used as the first inverter circuit 51 and the second inverter circuit 52.
  • a battery 30 and a capacitor 53 are connected in parallel to the first inverter circuit 51 and the second inverter circuit 52, respectively.
  • the high potential side terminals of the first inverter circuit 51, the second inverter circuit 52, and the capacitor 53 are connected to the positive electrode bus bar Bp (positive side bus bar) connected to the positive terminal of the battery 30.
  • the low potential side terminals of the first inverter circuit 51, the second inverter circuit 52, and the capacitor 53 are connected to the negative electrode bus bar Bn (negative side bus bar) connected to the negative terminal of the battery 30.
  • the first inverter circuit 51 and the second inverter circuit 52 are each configured by a full bridge circuit having the same number of upper and lower arms as the number of phases of the three-phase winding 41.
  • the drive current (energized current) is adjusted in each phase winding (U-phase winding 42U, V-phase winding 42V, and W-phase winding 42W) by turning on/off the switching element provided in each arm.
  • first inverter circuit 51 in three phases including U phase, V phase and W phase, upper arm switches Spu1, Spv1, Spw1 as switching elements and lower arm switches Snu1, Snv1, Snw1 are connected in series. Each has its own body.
  • voltage-controlled semiconductor switching elements are used as the upper arm switches Spu1, Spv1, Spw1 and the lower arm switches Snu1, Snv1, Snw1 in each phase, and specifically IGBTs are used.
  • IGBTs IGBTs are used.
  • a MOSFET may be used.
  • Free-wheel diodes (reflux diodes) Dpu1, Dpv1, Dpw1, Dnu1, Dnv1, Dnw1 are connected in antiparallel to the upper arm switches Spu1, Spv1, Spw1 and the lower arm switches Snu1, Snv1, Snw1 in each phase, respectively. ..
  • the high-potential side terminals (collectors) of the upper arm switches Spu1, Spv1, Spw1 of each phase are connected to the positive terminal of the battery 30 via the positive bus Bp. Further, the low potential side terminals (emitters) of the lower arm switches Snu1, Snv1, Snw1 of each phase are connected to the negative terminal (ground) of the battery 30 via the negative bus Bn.
  • the U-phase winding 42U, the V-phase winding 42V and the W-phase winding 42W One end is connected.
  • the first end of the U-phase winding 42U is connected to an intermediate connection point between the upper arm switch Spu1 and the lower arm switch Snu1 in the U phase.
  • a first end of the V-phase winding 42V is connected to an intermediate connection point between the upper arm switch Spv1 and the lower arm switch Snv1 in the V phase.
  • the first end of the W-phase winding 42W is connected to an intermediate connection point between the upper arm switch Spw1 and the lower arm switch Snw1 in the W phase.
  • the second inverter circuit 52 has the same configuration as the first inverter circuit 51. That is, the second inverter circuit 52 includes a series connection body of the upper arm switches Spu2, Spv2, Spw2 and the lower arm switches Snu2, Snv2, Snw2 in each phase winding. Free wheel diodes Dpu2, Dpv2, Dpw2, Dnu2, Dnv2, Dnw2 are connected in antiparallel to the upper arm switches Spu2, Spv2, Spw2 and the lower arm switches Snu2, Snv2, Snw2 in each phase, respectively.
  • the high-potential side terminals (collectors) of the upper arm switches Spu2, Spv2, Spw2 of each phase are connected to the positive electrode terminal of the battery 30 via the positive electrode bus Bp. Further, the low potential side terminals (emitters) of the lower arm switches Snu2, Snv2, Snw2 of each phase are connected to the negative electrode terminal (ground) of the battery 30 via the negative electrode bus Bn.
  • the U-phase winding 42U, the V-phase winding 42V, and the W-phase winding 42W are respectively connected to the first connecting point. The two ends are connected.
  • the second end of the U-phase winding 42U is connected to the intermediate connection point between the upper arm switch Spu2 and the lower arm switch Snu2 in the U phase.
  • the second end of the V-phase winding 42V is connected to an intermediate connection point between the upper arm switch Spv2 and the lower arm switch Snv2 in the V phase.
  • the second end of the W-phase winding 42W is connected to an intermediate connection point between the upper arm switch Spw2 and the lower arm switch Snw2 in the W phase.
  • the control device 60 includes a microcomputer including a CPU and various memories, and turns on/off each switching element in the first inverter circuit 51 and the second inverter circuit 52 based on various detection information in the ISG 20 and a request for power running drive.
  • the power conversion control is carried out by.
  • the detection information of the ISG 20 includes, for example, the rotation angle (electrical angle information) of the rotor (rotary shaft 20a) of the motor 40, the power supply voltage detected by the voltage sensor (inverter input voltage), and each detected by the current sensor.
  • the phase drive current (conduction current) is included.
  • the control device 60 converts the direct-current power input from the battery 30 into alternating-current power by generating and outputting an operation signal for operating each switching element of the first inverter circuit 51 and the second inverter circuit 52, and then outputting each operation signal. Supply to the phase windings 42U, 42V, 42W.
  • control device 60 fixes the open/closed state (on/off state) of the switching element forming one of the inverter circuits 51 and 52, while the open/close state of the switching element forming the other inverter circuit 51, 52.
  • the power conversion control is performed by switching.
  • the control device 60 fixes the upper arm switch Spu2 in an open state (OFF state, energization cutoff state) and the lower arm switch Snu2 in a closed state (ON state, energization state), while By switching the open/closed states of the upper arm switch Spu1 and the lower arm switch Snu1, a drive current is supplied to the U-phase winding 42U.
  • the DC power is converted to AC power by appropriately changing the ratio (duty ratio) in which the upper arm switch Spu1 and the lower arm switch Snu1 are closed per unit time.
  • the drive current "IU" of the U-phase winding 42U is indicated by the alternate long and short dash line.
  • the upper arm switch Spu2 may be fixed in the closed state and the lower arm switch Snu2 may be fixed in the open state. The same applies to the control of the drive current flowing through the V-phase winding 42V and the W-phase winding 42W.
  • first power conversion control for switching the open/closed state of the switching element in the first inverter circuit 51 while fixing the open/closed state of the switching element in the second inverter circuit 52 is referred to as first power conversion control. May be shown.
  • the first inverter circuit 51 is configured.
  • the 1A electric power conversion control for switching the open/closed states of the arm switch Spu1 and the lower arm switch Snu1 is included.
  • the lower arm switch Snu2 forming the second inverter circuit 52 is closed and the upper arm switch Spu2 is fixed in the open state, while the first inverter circuit 51 is formed.
  • the 1B electric power conversion control for switching the open/closed states of the upper arm switch Spu1 and the lower arm switch Snu1 is included.
  • the open/closed state of the switching element in the second inverter circuit 52 is switched. That is, the 1A power conversion control and the 1B power conversion control are switched according to the current direction of the drive current.
  • the drive current always flows through the lower arm switch Snu2, while the drive current does not flow through the upper arm switch Spu2.
  • a driving current intermittently flows through the upper arm switch Spu1 and the lower arm switch Snu1. Therefore, if the power conversion control is continued, the loss in the lower arm switch Snu2 may be larger than that in the upper arm switch Spu2, the upper arm switch Spu1, and the lower arm switch Snu1 depending on the magnitude of the drive current. There is. Since the loss appears as heat generation, heat generation is concentrated on the lower arm switch Snu2, and there is a risk that the temperature becomes higher than that of other switching elements.
  • the control device 60 switches between the first power conversion control as shown in FIG. 3 and the power conversion control (second power conversion control) as shown in FIG.
  • the upper arm switch Spu1 is fixed in the closed state and the lower arm switch Snu1 is fixed in the open state, while the open/closed state of the upper arm switch Spu2 and the lower arm switch Snu2 is switched, whereby U A drive current is supplied to the phase winding 42U.
  • U A drive current is supplied to the phase winding 42U.
  • the upper arm switch Spu1 may be fixed in the open state and the lower arm switch Snu1 may be fixed in the closed state.
  • the power conversion control performed on the V-phase winding 42V and the W-phase winding 42W may be reversed.
  • the power conversion control for switching the open/closed state of the switching element in the second inverter circuit 52 while fixing the open/closed state of the switching element in the first inverter circuit 51 is referred to as second power conversion control. Show.
  • the lower arm switch Snu1 is fixed in the open state while the upper arm switch Spu1 forming the first inverter circuit 51 is closed, while the upper arm constituting the second inverter circuit 52 is fixed.
  • the 2A electric power conversion control for switching the open/closed states of the switch Spu2 and the lower arm switch Snu2 is included.
  • the second inverter circuit 52 is configured.
  • the second B power conversion control for switching the open/closed state of the upper arm switch Spu2 and the lower arm switch Snu2 is included.
  • the open/closed state of the switching element in the first inverter circuit 51 is switched when the current direction of the drive current is changed (from positive to negative or from negative to positive). That is, the 2A power conversion control and the 2B power conversion control are switched according to the current direction of the drive current.
  • both the first inverter circuit 51 and the second inverter circuit 52 are provided with the overlapping period T1 for switching the open/closed states of the upper arm switches Spu1 and Spu2 and the lower arm switches Snu1 and Snu2. ..
  • the current flows in the portion where the current originally does not need to flow, and extra loss occurs. More specifically, in each switching element of the first inverter circuit 51 and the second inverter circuit 52, switching loss is duplicated and the loss of the inverter 50 as a whole increases.
  • the control device 60 in the present embodiment performs either one of the first power conversion control and the second power conversion control, while In such a case, the first power conversion control and the second power conversion control are switched and implemented.
  • the loss that occurs in a switching element whose open/closed state is switched includes a switching loss that occurs when the open/closed state is switched (occurs in a transient state during switch operation) and a conduction loss that occurs when a current flows (conduction loss). ) Can be divided into On the other hand, the loss that occurs in the switching element that is fixed in the closed state is only the conduction loss that occurs when a current flows.
  • FIG. 6 illustrates the content (breakdown) of the loss of each switching element when only the 1B power conversion control is performed (conventional method).
  • switching loss is shown in white and conduction loss is shown in hatching.
  • switching loss and conduction loss occur in the upper arm switch Spu1 and the lower arm switch Snu1.
  • no drive current flows through the upper arm switch Spu2
  • no loss occurs, while a conduction loss occurs in the lower arm switch Snu2.
  • the switching loss and conduction loss both increase as the amount of current increases, but they differ in different ways. That is, as shown in FIG. 7A, the switching loss increases linearly with the amount of current, while the conduction loss increases with the square of the amount of current, which is as if exponentially increasing. In FIG. 7A, the switching loss is shown by a broken line and the conduction loss is shown by a solid line.
  • the loss (switching loss+conduction loss) that occurs in the switching element whose open/closed state is switched is small in the switching element which is fixed in the closed state when the amount of current is small. It is larger than the generated loss (only conduction loss).
  • a loss generated in the switching element whose open/closed state is switched is shown by a broken line, and a loss generated in the switching element fixed in the closed state is shown by a solid line.
  • the conduction loss exponentially increases, so the loss that occurs in a switching element that is fixed in the closed state is larger than the loss that occurs in a switching element that switches the open/closed state. It gets bigger. That is, as shown in FIG. 7B, when the effective value of the drive current is equal to or greater than a certain threshold value, the conduction loss generated in the switching element fixed in the closed state is the switching element whose open/closed state is switched. Is larger than the loss (total value of switching loss and conduction loss) that occurs in (1).
  • the loss generated in the lower arm switch Snu2 occurs in the upper arm switch Spu1 and the lower arm switch Snu1 as shown in FIG. 6B. It will be larger than. That is, the temperature of the lower arm switch Snu2 is significantly higher than that of other switching elements.
  • the loss heat generation
  • the circuit becomes large in size, such as the cooling structure becoming large, which causes inconvenience.
  • the control device 60 in the present embodiment switches between the first power conversion control and the second power conversion control, and performs the switching operation for some switching elements. I try not to concentrate the fever.
  • the threshold value is set on the basis of an effective value of a drive current at which the conduction loss in the switching element fixed in the closed state becomes larger than the total value of the switching loss and the conduction loss in the switching element switching the open/closed state. ing. Specifically, as shown in FIG. 7B, the total value of the switching loss and the conduction loss in the switching element that switches the closed state and the conduction loss in the switching element that is fixed in the closed state are substantially the same.
  • the effective value of the drive current to be set is set as the threshold value.
  • the threshold value is not limited to this value and may be changed arbitrarily.
  • the switching cycle T3 is set such that the implementation period of the first power conversion control and the implementation period of the second power conversion control are equal. ing.
  • a period corresponding to 1/4 of the current cycle T2 of the drive current is set as the switching cycle T3. That is, the first power conversion control and the second power conversion control are switched every time the electrical angle advances by 90°.
  • the control device 60 executes the 1A power conversion control (shown as “1A” in FIG. 8) in the period from the start of the current cycle T2 of the drive current to the advance of 90°. Then, the control device 60 performs the 2B-th power conversion control (shown as “2B” in FIG. 8) in the period from 90° to 180° of the current cycle T2 of the drive current. Then, control device 60 performs the 1B-th power conversion control (shown as “1B” in FIG. 8) during the period from 180° to 270° of current cycle T2 of the drive current. Then, the control device 60 performs the 2A power conversion control (shown as “2A” in FIG. 8) during the period from 270° to 360° of the current cycle T2 of the drive current.
  • the 1A power conversion control shown as “1A” in FIG. 8
  • the control device 60 executes only the first power conversion control.
  • the effective value of the drive current is less than the threshold value
  • the conduction loss in the switching element that is fixed in the closed state is compared with the total value of the switching loss and the conduction loss in the switching element that switches the closed state. It is small and does not project (see FIG. 6(a)). Therefore, there is not much meaning to switch between the first power conversion control and the second power conversion control to disperse them.
  • the switching loss is duplicated and the efficiency as a whole is lowered (that is, the total loss is increased).
  • control device 60 performs only the first power conversion control when the effective value of the drive current is less than the threshold value. Note that when the effective value of the drive current is less than the threshold value, only the first power conversion control is performed, but only the second power conversion control may be performed.
  • this power conversion process is executed by the control device 60 at predetermined intervals.
  • control device 60 determines whether or not the effective value of the drive current is equal to or more than the threshold value (step S101). When this determination result is negative, the control device 60 performs the first power conversion control (step S102). In step S102, when the current direction of the drive current is changed, the 1A power conversion control and the 1B power conversion control are switched.
  • step S101 if the determination result in step S101 is affirmative, the control device 60 switches between the first power conversion control and the second power conversion control for each predetermined switching cycle T3 (step S103).
  • step S102 if the current direction of the drive current is positive, the 1A power conversion control and the 2B power conversion control are switched, and if the drive current is negative, the 1B power conversion control and the 2A power conversion control are performed. Power conversion control.
  • the switching cycle T3 is a cycle corresponding to 1/4 of the current cycle T2. Therefore, the power conversion control is switched in the order of 1A power conversion control ⁇ 2B power conversion control ⁇ 1B power conversion control ⁇ 2A power conversion control according to the cycle of the drive current. ..
  • the present embodiment has the following excellent effects.
  • the control device 60 switches between the first power conversion control and the second power conversion control to implement the switching element fixed in the closed state. I changed them so that the fever was not concentrated.
  • the control device 60 executes one of the first power conversion control and the second power conversion control to perform the power conversion control. Reduced loss when switching.
  • the threshold value is set based on the current value of the drive current at which the conduction loss in the switching element that is fixed in the closed state becomes larger than the total value of the switching loss and the conduction loss in the switching element that switches the open/closed state. did. With this, it is possible to appropriately disperse the conduction loss generated in the switching element fixed in the closed state and prevent the switching element fixed in the closed state from reaching a high temperature as compared with other switching elements. it can.
  • the control device 60 sets the first power conversion control and the second power conversion control so that the implementation periods become equal in each drive cycle of the drive current.
  • the power conversion control of No. 2 and the second power conversion control are switched. This makes it possible to appropriately disperse the loss and prevent the temperature of some of the switching elements from rising significantly.
  • the control device 60 controls the first power conversion control and the second power conversion control at a cycle corresponding to 1 ⁇ 4 of each current cycle T2 of the drive current. Switching between power conversion control. This makes it possible to equalize the implementation periods of the first power conversion control and the second power conversion control while minimizing the number of times of switching in each current cycle. Therefore, it is possible to disperse the loss while suppressing the switching loss in the overlapping period T1.
  • the control device 60 switches in the order of 1A power conversion control ⁇ 2B power conversion control ⁇ 1B power conversion control ⁇ 2A power conversion control. Are being implemented. Therefore, the loss can be uniformly generated in each switching element in the inverter circuits 51 and 52.
  • the switching cycle T3 may be arbitrarily changed as long as the implementation period of the first power conversion control and the implementation period of the second power conversion control are equal.
  • the current cycle T2 of the drive current may be 1/(4X) (where "X" is an arbitrary natural number).
  • the 1A power conversion control and the 1B power conversion control can be switched according to the direction of the drive current (the same applies to the 2A power conversion control and the 2B power conversion control). Therefore, for example, when the current direction of the drive current is positive, the 1A power conversion control and the 2B power conversion control are alternately executed every switching cycle T3. When the current direction of the drive current is negative, the 1B power conversion control and the 2A power conversion control are alternately executed every switching cycle T3.
  • the circuit configuration of the inverter 50 may be arbitrarily changed.
  • one of the positive bus Bp and the negative bus Bn may be provided with a switch unit that switches between the energized state and the energized cutoff state between the second inverter circuit 52 and the battery 30.
  • the positive electrode bus bar Bp may be provided with a switch SW1 for switching between an energized state and a deenergized state between the second inverter circuit 52 and the battery 30.
  • the switch SW1 When the switch SW1 is opened (OFF state, energization cutoff state) and the energization is cut off between the second inverter circuit 52 and the battery 30, the H connection can be switched to the Y connection (star connection).
  • the control device 60 switches the switch SW1 to the energization cutoff state and performs the first power conversion control and the second power conversion control. Of these, it is desirable to execute the first power conversion control. Thereby, the loss can be reduced.
  • the positive electrode bus Bp and the negative electrode bus Bn are provided with switches SW1 and SW2 for switching between the energized state and the energized cutoff state between the second inverter circuit 52 and the battery 30, respectively.
  • the switches SW1 and SW2 are opened (OFF state, energization cutoff state) and the energization is cut off between the second inverter circuit 52 and the battery 30, the H connection can be switched to the Y connection. It is possible to set the high potential terminal side to the neutral point by opening the switch SW1 of the positive electrode bus Bp. Similarly, by setting the switch SW2 of the negative bus Bn to the open state, the low potential terminal side can be made the neutral point.
  • the control device 60 may determine whether the effective value of the drive current is equal to or more than the threshold value based on the temperatures of the inverter circuits 51 and 52 (more specifically, the temperature of the switching element). Good. That is, the effective value of the drive current is proportional to the temperature. Therefore, it may be determined based on the temperature whether the drive current is equal to or more than the threshold value. Moreover, the control device 60 may determine whether the effective value of the drive current is equal to or greater than a threshold value based on the command value of the drive current.
  • the current waveform of the drive current may be changed arbitrarily.
  • a rectangular wave or a sawtooth wave may be used.
  • control unit and the method thereof disclosed in the present disclosure configure a processor and a memory programmed to execute one or a plurality of functions embodied by a computer program. It may be realized by a dedicated computer provided by. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or a plurality of functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure encompasses the illustrated embodiments and variations on them based on them.
  • the disclosure is not limited to the combination of parts and/or elements shown in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that may be added to the embodiments.
  • the disclosure includes omissions of parts and/or elements of the embodiments.
  • the disclosure includes replacements or combinations of parts and/or elements between one embodiment and another.
  • the disclosed technical scope is not limited to the description of the embodiments. It is to be understood that some technical scopes disclosed are shown by the description of the claims and include meanings equivalent to the description of the claims and all modifications within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(50)は、巻線(42U,42V,42W)の両端のうち第1端側に接続される第1インバータ回路(51)と、第2端側に接続される第2インバータ回路(52)と、第1インバータ回路及び第2インバータ回路を制御する制御部(60)と、を備える。制御部は、第2インバータ回路のスイッチング素子の開閉状態を固定する一方で、第1インバータ回路のスイッチング素子の開閉状態を切り替える第1の電力変換制御と、第1インバータ回路のスイッチング素子の開閉状態を固定する一方で、第2インバータ回路のスイッチング素子の開閉状態を切り替える第2の電力変換制御と、を実施可能に構成されており、巻線に流れる駆動電流の実効値が閾値未満の場合には、第1の電力変換制御及び第2の電力変換制御のうちいずれか一方を実施する一方、閾値以上の場合には、第1の電力変換制御と第2の電力変換制御と、を切り替えて実施する。

Description

電力変換装置 関連出願の相互参照
 本出願は、2018年12月4日に出願された日本出願番号2018-227259号に基づくもので、ここにその記載内容を援用する。
 この開示は、電力変換装置に関するものである。
 従来、3相誘導電動機などを駆動するオープン巻線システムが知られている(例えば、特許文献1)。特許文献1のオープン巻線システムでは、第1のインバータ回路と、第2のインバータ回路との間で、スイッチングを行うインバータ回路を切り替えることとしている。これにより、片方のインバータ回路に損失(つまり、発熱)が集中することを抑制することができる。つまり、一方のスイッチング回路に比較して、他方のスイッチング回路の温度が上昇してしまうことを抑制することができる。
特開2017-93077号公報
 ところで、スイッチングを行うインバータ回路を切り替える場合、制御ずれに基づく損失が発生し、非効率であるという問題があった。
 本開示は、上記事情に鑑みてなされたものであり、その主たる目的は、損失を抑制しつつ、損失を適切に分散することができる電力変換装置を提供することにある。
 上記課題を解決するための手段は、1又は複数相の巻線に対して、直流電源からの直流電力を交流電力に変換して供給する電力変換装置において、前記巻線の両端のうち第1端側に電気的に接続され、前記直流電源との間で電力を伝達する第1インバータ回路と、前記巻線の両端のうち第2端側に電気的に接続され、前記直流電源との間で電力を伝達する第2インバータ回路と、前記第1インバータ回路及び前記第2インバータ回路を制御する制御部と、を備え、前記制御部は、前記第2インバータ回路を構成するスイッチング素子の開閉状態を固定する一方で、前記第1インバータ回路を構成するスイッチング素子の開閉状態を切り替える第1の電力変換制御と、前記第1インバータ回路を構成するスイッチング素子の開閉状態を固定する一方で、前記第2インバータ回路を構成するスイッチング素子の開閉状態を切り替える第2の電力変換制御と、を実施可能に構成されており、前記巻線に流れる駆動電流の実効値が閾値未満の場合には、第1の電力変換制御及び第2の電力変換制御のうちいずれか一方を実施する一方、閾値以上の場合には、第1の電力変換制御と第2の電力変換制御とを切り替えて実施する。
 第1の電力変換制御と第2の電力変換制御とを切り替える場合、切り替える場合にずれが生じるため、余分な損失が発生する。なお、損失は発熱として現れる。一方で、スイッチング素子を閉状態で固定している場合、駆動電流の実効値が閾値以上になると、閉状態に固定しているスイッチング素子の導通損が、開閉状態を切り替えるスイッチング素子における損失に比較して大きくなり、閉状態に固定しているスイッチング素子の温度が突出して高くなる虞がある。
 そこで、閾値以上の場合には、第1の電力変換制御と第2の電力変換制御とを切り替えて実施することにより、閉状態で固定するスイッチング素子を入れ替えて、発熱が集中しないようにした。一方で、閾値未満の場合には、第1の電力変換制御及び第2の電力変換制御のうちいずれか一方を実施することにして、第1の電力変換制御と第2の電力変換制御とを切り替える際に発生する損失を抑制した。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、駆動システムの概念図であり、 図2は、ISGの電気的構成を示す回路図であり、 図3は、第1の電力変換制御における電流を示す回路図であり、 図4は、第2の電力変換制御における電流を示す回路図であり、 図5は、スイッチング損が重複する期間を示す図であり、 図6は、従来におけるスイッチング素子における損失を説明する図であり、 図7は、(a)は、スイッチング損と導通損との比較を示す図、(b)は、各スイッチング素子における損失を比較した図であり、 図8は、切替周期を示す図であり、 図9は、スイッチング素子における損失を説明する図であり、 図10は、電力変換処理のフローチャートであり、 図11は、別例におけるISGの電気的構成を示す回路図であり、 図12は、別例におけるISGの電気的構成を示す回路図である。
 以下、本開示に係る電力変換装置を、走行動力源としてエンジン及び回転電機を備える車両の駆動システムに適用した実施形態について、図面を参照しつつ説明する。
 図1に示すように、車両は、エンジン10、ISG20、直流電源としてのバッテリ30を備えている。本実施形態において、ISG20は、図2に示すように、回転電機としてのモータ40と、電力変換装置としてのインバータ50と、を有するモータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。
 モータ40は、具体的には3相巻線を有する永久磁石型同期機である。なお、巻線界磁型同期機であってもよい。図1に示すように、ISG20の回転軸20a(つまり、モータ40の回転軸20a)は、内燃機関としてのエンジン10のクランク軸10aに対して駆動力が伝達されるように、プーリなどの連結機構101を介して連結されている。
 また、エンジン10のクランク軸10aは、変速機などの連結機構102を介して車軸100に連結されている。ISG20は、クランク軸10aに駆動力(回転力)を付与する力行機能を備えている。バッテリ30は、充放電可能な2次電池を用いており、具体的にはリチウムイオン蓄電池を用いている。
 続いて図2を用いて、駆動システムの電気的構成について説明する。
 図2では、モータ40の固定子巻線として3相巻線41が示されている。3相巻線41はU相巻線42U、V相巻線42V及びW相巻線42Wよりなる。本実施形態において、U相巻線42U、V相巻線42V及びW相巻線42Wは、電気角で位相が120度ずつずらされて配置されている。
 インバータ50は、第1のインバータ回路としての第1インバータ回路51、第2のインバータ回路としての第2インバータ回路52、平滑用のコンデンサ53、及び制御部としての制御装置60を備えている。インバータ50は、いわゆるオープン巻線システムを採用している。本実施形態では、第1インバータ回路51及び第2インバータ回路52として、3相インバータを用いている。
 第1インバータ回路51及び第2インバータ回路52には、それぞれバッテリ30とコンデンサ53とが並列に接続されている。具体的には、バッテリ30の正極端子に接続されている正極母線Bp(正極側バスバー)に対して、第1インバータ回路51、第2インバータ回路52及びコンデンサ53の高電位側端子が接続されている。一方、バッテリ30の負極端子に接続されている負極母線Bn(負極側バスバー)に対して、第1インバータ回路51、第2インバータ回路52及びコンデンサ53の低電位側端子が接続されている。
 第1インバータ回路51及び第2インバータ回路52は、それぞれ3相巻線41の相数と同数の上下アームを有するフルブリッジ回路により構成されている。各アームに設けられたスイッチング素子のオンオフにより、各相巻線(U相巻線42U、V相巻線42V及びW相巻線42W)において駆動電流(通電電流)が調整される。
 詳しく説明すると、第1インバータ回路51は、U相、V相及びW相からなる3相において、スイッチング素子としての上アームスイッチSpu1,Spv1,Spw1と下アームスイッチSnu1,Snv1,Snw1との直列接続体をそれぞれ備えている。本実施形態では、各相における上アームスイッチSpu1,Spv1,Spw1及び下アームスイッチSnu1,Snv1,Snw1として、電圧制御形の半導体スイッチング素子を用いており、具体的にはIGBTを用いている。なお、MOSFETを用いてもよい。各相における上アームスイッチSpu1,Spv1,Spw1及び下アームスイッチSnu1,Snv1,Snw1には、それぞれフリーホイールダイオード(還流ダイオード)Dpu1,Dpv1,Dpw1,Dnu1,Dnv1,Dnw1が逆並列に接続されている。
 各相の上アームスイッチSpu1,Spv1,Spw1の高電位側端子(コレクタ)は、正極母線Bpを介して、バッテリ30の正極端子に接続されている。また、各相の下アームスイッチSnu1,Snv1,Snw1の低電位側端子(エミッタ)は、負極母線Bnを介して、バッテリ30の負極端子(グランド)に接続されている。各相の上アームスイッチSpu1,Spv1,Spw1と下アームスイッチSnu1,Snv1,Snw1との間の中間接続点には、それぞれU相巻線42U、V相巻線42V及びW相巻線42Wの第1端が接続されている。
 すなわち、U相における上アームスイッチSpu1と下アームスイッチSnu1との間の中間接続点には、U相巻線42Uの第1端が接続されている。V相における上アームスイッチSpv1と下アームスイッチSnv1との間の中間接続点には、V相巻線42Vの第1端が接続されている。W相における上アームスイッチSpw1と下アームスイッチSnw1との間の中間接続点には、W相巻線42Wの第1端が接続されている。
 第2インバータ回路52は、第1インバータ回路51と同様の構成とされている。すなわち、第2インバータ回路52は、各相巻線において上アームスイッチSpu2,Spv2,Spw2と下アームスイッチSnu2,Snv2,Snw2との直列接続体をそれぞれ備えている。各相における上アームスイッチSpu2,Spv2,Spw2及び下アームスイッチSnu2,Snv2,Snw2には、それぞれフリーホイールダイオードDpu2,Dpv2,Dpw2,Dnu2,Dnv2,Dnw2が逆並列に接続されている。
 各相の上アームスイッチSpu2,Spv2,Spw2の高電位側端子(コレクタ)は、正極母線Bpを介して、バッテリ30の正極端子に接続されている。また、各相の下アームスイッチSnu2,Snv2,Snw2の低電位側端子(エミッタ)は、負極母線Bnを介して、バッテリ30の負極端子(グランド)に接続されている。各相の上アームスイッチSpu2,Spv2,Spw2と下アームスイッチSnu2,Snv2,Snw2との間の中間接続点には、それぞれU相巻線42U、V相巻線42V及びW相巻線42Wの第2端が接続されている。
 すなわち、U相における上アームスイッチSpu2と下アームスイッチSnu2との間の中間接続点には、U相巻線42Uの第2端が接続されている。V相における上アームスイッチSpv2と下アームスイッチSnv2との間の中間接続点には、V相巻線42Vの第2端が接続されている。W相における上アームスイッチSpw2と下アームスイッチSnw2との間の中間接続点には、W相巻線42Wの第2端が接続されている。
 制御装置60は、CPUや各種メモリからなるマイコンを備えており、ISG20における各種の検出情報や、力行駆動の要求に基づいて、第1インバータ回路51及び第2インバータ回路52における各スイッチング素子のオンオフにより電力変換制御を実施する。ISG20の検出情報には、例えば、モータ40における回転子(回転軸20a)の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の駆動電流(通電電流)が含まれる。
 制御装置60は、第1インバータ回路51及び第2インバータ回路52の各スイッチング素子を操作する操作信号を生成して出力することにより、バッテリ30から入力した直流電力を交流電力に変換して、各相巻線42U,42V,42Wに供給する。
 具体的には、制御装置60は、一方のインバータ回路51,52を構成するスイッチング素子の開閉状態(オンオフ状態)を固定する一方で、他方のインバータ回路51,52を構成するスイッチング素子の開閉状態を切り替えることで、電力変換制御を実施する。
 例えば、図3に示すように、制御装置60は、上アームスイッチSpu2を開状態(オフ状態、通電遮断状態)、下アームスイッチSnu2を閉状態(オン状態、通電状態)に固定する一方で、上アームスイッチSpu1及び下アームスイッチSnu1の開閉状態を切り替えることにより、U相巻線42Uに駆動電流を流すようになっている。その際、単位時間あたりにおける上アームスイッチSpu1と下アームスイッチSnu1とが閉状態となる割合(デューティ比)を適切に変更することにより、直流電力を交流電力に変換する。なお、図3では、一点鎖線により、U相巻線42Uの駆動電流「IU」を示す。
 なお、駆動電流の電流方向を反対にする場合には、上アームスイッチSpu2を閉状態に固定し、下アームスイッチSnu2を開状態に固定すればよい。V相巻線42V及びW相巻線42Wに流れる駆動電流の制御についても同様である。
 以下では、図3に示すように、第1インバータ回路51におけるスイッチング素子の開閉状態を切り替える一方、第2インバータ回路52におけるスイッチング素子の開閉状態を固定する電力変換制御を第1の電力変換制御と示す場合がある。
 この第1の電力変換制御には、第2インバータ回路52を構成する上アームスイッチSpu2を閉状態としつつ、下アームスイッチSnu2を開状態に固定する一方で、第1インバータ回路51を構成する上アームスイッチSpu1及び下アームスイッチSnu1の開閉状態を切り替える第1Aの電力変換制御が含まれる。また、第1の電力変換制御には、第2インバータ回路52を構成する下アームスイッチSnu2を閉状態としつつ、上アームスイッチSpu2を開状態に固定する一方で、第1インバータ回路51を構成する上アームスイッチSpu1及び下アームスイッチSnu1の開閉状態を切り替える第1Bの電力変換制御が含まれる。
 第1の電力変換制御において、駆動電流の電流方向が変更されるとき(正から負又は負から正となるとき)、第2インバータ回路52におけるスイッチング素子の開閉状態が切り替えられる。つまり、駆動電流の電流方向に応じて、第1Aの電力変換制御と第1Bの電力変換制御とが切り替えられる。
 ところで、図3に示す第1Bの電力変換制御を行う場合、下アームスイッチSnu2には常に駆動電流が流れる一方、上アームスイッチSpu2には駆動電流が流れないようになっている。また、上アームスイッチSpu1及び下アームスイッチSnu1には、間欠的に駆動電流が流れるようになっている。このため、上記電力変換制御を継続すると、駆動電流の大きさによっては、下アームスイッチSnu2における損失が、上アームスイッチSpu2、上アームスイッチSpu1、及び下アームスイッチSnu1に比較して大きくなる可能性がある。そして、損失は、発熱となって現れるため、下アームスイッチSnu2に発熱が集中し、他のスイッチング素子に比較して高温となる虞がある。
 そこで、スイッチング素子の開閉状態を固定するインバータ回路51,52を切り替えることが従来行われている。例えば、制御装置60は、図3に示すような第1の電力変換制御と、図4に示すような電力変換制御(第2の電力変換制御)とを切り替えて交互に実施している。図4に示すような電力変換制御では、上アームスイッチSpu1を閉状態、下アームスイッチSnu1を開状態に固定する一方で、上アームスイッチSpu2及び下アームスイッチSnu2の開閉状態を切り替えることにより、U相巻線42Uに駆動電流を流すようになっている。これにより、閉状態に固定されるスイッチング素子が定期的に切り替わり、特定のスイッチング素子に発熱が集中することを抑制することができる。
 なお、図4に示すような電力変換制御において、駆動電流の電流方向を反対にする場合には、上アームスイッチSpu1を開状態に固定し、下アームスイッチSnu1を閉状態に固定すればよい。V相巻線42V及びW相巻線42Wに対して実施される電力変換制御についても同様である。
 以下では、図4に示すように、第2インバータ回路52におけるスイッチング素子の開閉状態を切り替える一方、第1インバータ回路51におけるスイッチング素子の開閉状態を固定する電力変換制御を第2の電力変換制御と示す。
 第2の電力変換制御には、第1インバータ回路51を構成する上アームスイッチSpu1を閉状態としつつ、下アームスイッチSnu1を開状態に固定する一方で、第2インバータ回路52を構成する上アームスイッチSpu2及び下アームスイッチSnu2の開閉状態を切り替える第2Aの電力変換制御が含まれる。また、第2の電力変換制御には、第1インバータ回路51を構成する下アームスイッチSnu1を閉状態としつつ、上アームスイッチSpu1を開状態に固定する一方で、第2インバータ回路52を構成する上アームスイッチSpu2及び下アームスイッチSnu2の開閉状態を切り替える第2Bの電力変換制御が含まれる。
 なお、第2の電力変換制御では、駆動電流の電流方向が変更されるとき(正から負又は負から正となるとき)、第1インバータ回路51におけるスイッチング素子の開閉状態が切り替えられる。つまり、駆動電流の電流方向に応じて、第2Aの電力変換制御と第2Bの電力変換制御とが切り替えられる。
 上記の説明は、V相巻線42V及びW相巻線42Wに対して実施される電力変換制御についても同様である。
 ところで、第1の電力変換制御と、第2の電力変換制御と、を切り替える場合、各相巻線42U,42V,42Wに流れる駆動電流が途切れないようにする必要がある。このため、図5に示すように、第1インバータ回路51及び第2インバータ回路52が、共に上アームスイッチSpu1,Spu2及び下アームスイッチSnu1,Snu2の開閉状態を切り替える重複期間T1が設けられている。
 このような重複期間T1を設けることにより、本来電流が流れる必要のない部分に電流が流れ、余分な損失が発生することとなる。より詳しくは、第1インバータ回路51と第2インバータ回路52の各スイッチング素子において、スイッチング損が重複して生じ、インバータ50の全体としての損失が大きくなる。
 そこで、本実施形態における制御装置60は、駆動電流の実効値が閾値未満の場合には、第1の電力変換制御及び第2の電力変換制御のうちいずれか一方を実施する一方、閾値以上の場合には、第1の電力変換制御と第2の電力変換制御とを切り替えて実施することとした。
 より詳しく説明すると、開閉状態が切り替えられるスイッチング素子において発生する損失は、開閉状態を切り替えることにより生じる(スイッチ動作における過渡状態に発生する)スイッチング損と、電流を流すことにより生じる導通損(伝導損失)とに分けることができる。一方、閉状態に固定されるスイッチング素子において発生する損失は、電流を流すことにより生じる導通損のみである。
 図6において、第1Bの電力変換制御のみを行った場合(従来方法)における各スイッチング素子の損失の内容(内訳)を例示する。図6では、スイッチング損を白抜きで示し、導通損をハッチングで示す。図6に示すように、第1Bの電力変換制御が実施されている場合、上アームスイッチSpu1及び下アームスイッチSnu1には、スイッチング損と導通損が生じている。一方、上アームスイッチSpu2には、駆動電流が流れないため、損失が発生しない一方、下アームスイッチSnu2には導通損が発生する。
 この導通損は、電流量に応じて大きくなる。そして、第1Bの電力変換制御において、上アームスイッチSpu1及び下アームスイッチSnu1に流れる駆動電流は、分散され、下アームスイッチSnu2に流れる駆動電流に比較して少ない。分散される割合は、デューティ比による。このため、第1Bの電力変換制御において、上アームスイッチSpu1及び下アームスイッチSnu1に生じる導通損は、下アームスイッチSnu2に生じる導通損に比較して少ない。
 そして、スイッチング損と導通損は、共に電流量が大きくなるについて大きくなるが、大きくなり方が異なっている。すなわち、図7(a)に示すように、スイッチング損は、電流量に線形比例するように大きくなる一方、導通損は、電流量の2乗に比例し、あたかも指数関数的に大きくなる。図7(a)では、スイッチング損を破線で示し、導通損を実線で示す。
 このため、図7(b)に示すように、開閉状態が切り替えられるスイッチング素子において発生する損失(スイッチング損+導通損)は、電流量が小さい場合には、閉状態に固定されるスイッチング素子において発生する損失(導通損のみ)に比較して大きくなる。図7(b)において、開閉状態が切り替えられるスイッチング素子において発生する損失を破線で示し、閉状態に固定されるスイッチング素子において発生する損失を実線で示す。
 その一方、ある電流量を越えると、導通損が指数関数的に大きくなるため、閉状態に固定されるスイッチング素子において発生する損失は、開閉状態が切り替えられるスイッチング素子において発生する損失に比較して大きくなってしまう。つまり、図7(b)に示すように、駆動電流の実効値がある閾値以上となった場合には、閉状態に固定されるスイッチング素子において発生する導通損は、開閉状態が切り替えられるスイッチング素子において発生する損失(スイッチング損と導通損の合計値)に比較して大きくなってしまう。具体的には、第1Bの電力変換制御において、電流量が多い場合、図6(b)に示すように、下アームスイッチSnu2に生じる損失が、上アームスイッチSpu1及び下アームスイッチSnu1に生じる損失に比較して、大きくなる。つまり、下アームスイッチSnu2の温度が他のスイッチング素子に比較して突出して高くなる。このように損失(発熱)が集中する場合、冷却構造が大きくなる等、回路が大型化し、不都合が生じる。
 そこで、本実施形態における制御装置60は、駆動電流の実効値が閾値以上の場合には、第1の電力変換制御と第2の電力変換制御とを切り替えて実施し、一部のスイッチング素子に発熱が集中しないようにしている。
 前記閾値は、開閉状態を切り替えるスイッチング素子におけるスイッチング損と導通損との合計値に比較して、閉状態に固定されているスイッチング素子における導通損が大きくなる駆動電流の実効値に基づいて設定されている。具体的には、図7(b)に示すように、閉状態を切り替えるスイッチング素子におけるスイッチング損と導通損との合計値と、閉状態に固定されているスイッチング素子における導通損とが、ほぼ一致する駆動電流の実効値を閾値として設定している。なお、閾値は、この値に限らず、任意に変更してもよい。
 また、図8に示すように、駆動電流の電流周期T2において、第1の電力変換制御の実施期間と第2の電力変換制御の実施期間とが均等となるように、切替周期T3が設定されている。本実施形態では、駆動電流の電流周期T2の1/4に相当する期間を切替周期T3として設定している。つまり、電気角において90°進むごとに第1の電力変換制御と第2の電力変換制御とを切り替えるようにしている。
 例えば、制御装置60は、駆動電流の電流周期T2の開始時から90°進むまでの期間において、第1Aの電力変換制御(図8では、「1A」と示す)を実施する。そして、制御装置60は、駆動電流の電流周期T2の90°~180°までの期間において、第2Bの電力変換制御(図8では、「2B」と示す)を実施する。そして、制御装置60は、駆動電流の電流周期T2の180°~270°までの期間において、第1Bの電力変換制御(図8では、「1B」と示す)を実施する。そして、制御装置60は、駆動電流の電流周期T2の270°~360°までの期間において、第2Aの電力変換制御(図8では、「2A」と示す)を実施する。
 その一方で、制御装置60は、駆動電流の実効値が閾値未満の場合には、第1の電力変換制御のみを実施している。前述したように、駆動電流の実効値が閾値未満の場合、閉状態に固定されているスイッチング素子における導通損は、閉状態を切り替えるスイッチング素子におけるスイッチング損と導通損との合計値に比較して小さく、突出していない(図6(a)参照)。このため、第1の電力変換制御と第2の電力変換制御とを切り替えて、分散させる意味があまりない。その一方で、電力変換制御を切り替えると、スイッチング損が重複して、全体としての効率が低下する(つまり、全体の損失が増加する)こととなる。
 このため、本実施形態における制御装置60は、駆動電流の実効値が閾値未満の場合には、第1の電力変換制御のみを実施している。なお、駆動電流の実効値が閾値未満の場合、第1の電力変換制御のみを実施したが、第2の電力変換制御のみを実施してもよい。
 上記のように電力変換制御の切替を実施することにより、駆動電流の実効値が閾値以上である場合、図9(b)に示すように、インバータ回路51,52の各スイッチング素子に、スイッチング損が生じる一方で、導通損がいずれかのスイッチング素子に集中して発生することを防止することができる。つまり、駆動電流の実効値が閾値以上である場合に、駆動電流を分散させて、導通損を分散させることができる。なお、図9(a)に示すように、駆動電流の実効値が閾値未満である場合、第1の電力変換制御のみを実施する。
 次に、電力変換処理について図10に基づいて説明する。この電力変換処理は、モータ40を駆動させる際、制御装置60により所定周期ごとに実行される。
 まず、制御装置60は、駆動電流の実効値が閾値以上であるか否かを判定する(ステップS101)。この判定結果が否定の場合、制御装置60は、第1の電力変換制御を実施する(ステップS102)。なお、ステップS102において、駆動電流の電流方向を変える場合には、第1Aの電力変換制御と第1Bの電力変換制御を切り替えることとなる。
 一方、ステップS101の判定結果が肯定の場合、制御装置60は、第1の電力変換制御と第2の電力変換制御とを所定の切替周期T3ごとに切り替えて実施する(ステップS103)。なお、ステップS102において、駆動電流の電流方向が正の場合には、第1Aの電力変換制御と第2Bの電力変換制御とを切り替え、負の場合には、第1Bの電力変換制御と第2Aの電力変換制御とを切り替えることとなる。そして、切替周期T3は、電流周期T2の1/4に相当する周期である。このため、駆動電流の周期に応じて、第1Aの電力変換制御→第2Bの電力変換制御→第1Bの電力変換制御→第2Aの電力変換制御の順番で、電力変換制御を切り替えることとなる。
 本実施形態は、以下の優れた効果を有する。
 第1の電力変換制御と第2の電力変換制御とを切り替える際、ずれが生じるため、つまり、スイッチングが重複する重複期間T1が発生するため、余分な損失が発生する。一方で、スイッチング素子を閉状態で固定している場合、その導通損は、電流値の2乗に比例して大きくなり、駆動電流の実効値が閾値以上になると、開閉状態を切り替える他のスイッチング素子に比較して、温度が突出して高くなる虞がある。
 そこで、制御装置60は、駆動電流の実効値が閾値以上の場合には、第1の電力変換制御と第2の電力変換制御とを切り替えて実施することにより、閉状態で固定するスイッチング素子を入れ替えて、発熱が集中しないようにした。一方で、制御装置60は、駆動電流の実効値が閾値未満の場合には、第1の電力変換制御及び第2の電力変換制御のうちいずれか一方を実施することにして、電力変換制御を切り替える際における損失を抑制した。
 スイッチング損は、電流量に線形比例するように大きくなる。一方、導通損は、電流値の2乗に電流量に応じて大きくなり、ある電流値を境としてスイッチング損よりも急激に大きくなる。このため、開閉状態を切り替えるスイッチング素子におけるスイッチング損と導通損との合計値に比較して、閉状態に固定されているスイッチング素子における導通損が大きくなる駆動電流の電流値に基づいて閾値を設定した。これにより、閉状態に固定されているスイッチング素子に発生する導通損を適切に分散させ、閉状態に固定されているスイッチング素子が他のスイッチング素子に比較して高温となることを抑制することができる。
 制御装置60は、駆動電流の実効値が閾値以上の場合、駆動電流の各駆動周期において、第1の電力変換制御と第2の電力変換制御との実施期間が均等となるように、第1の電力変換制御と第2の電力変換制御とを切り替えた。これにより、損失を適切に分散させ、一部のスイッチング素子の温度が突出して高くなることを防止することができる。また、本実施形態において、制御装置60は、駆動電流の実効値が閾値以上の場合、駆動電流の各電流周期T2の1/4に相当する周期で、第1の電力変換制御と第2の電力変換制御とを切り替えている。これにより、各電流周期における切り替え回数を最小化しつつ、第1の電力変換制御と第2の電力変換制御との実施期間を均等化することができる。したがって、重複期間T1におけるスイッチング損を抑制しつつ、損失の分散化を図ることができる。
 また、制御装置60は、駆動電流の実効値が閾値以上の場合、第1Aの電力変換制御→第2Bの電力変換制御→第1Bの電力変換制御→第2Aの電力変換制御の順番で、切り替えて実施している。このため、インバータ回路51,52における各スイッチング素子に対して損失を均等に発生させることができる。
 (他の実施形態)
 なお、本開示は上記実施形態に限定されるものではなく、本開示の要旨の範囲内において種々の変形実施が可能である。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 ・上記実施形態において、切替周期T3は、第1の電力変換制御の実施期間と第2の電力変換制御の実施期間とが均等になるのであれば、任意に変更してもよい。例えば、駆動電流の電流周期T2の1/(4X)(ただし、「X」は任意の自然数)となるようにしてもよい。
 ただし、第1Aの電力変換制御と第1Bの電力変換制御とは駆動電流の方向により切り替えられる(第2Aの電力変換制御と第2Bの電力変換制御も同様)。このため、例えば、駆動電流の電流方向が正の場合、第1Aの電力変換制御と第2Bの電力変換制御とが、切替周期T3ごとに交互に実行されることとなる。また、駆動電流の電流方向が負の場合、第1Bの電力変換制御と第2Aの電力変換制御とが、切替周期T3ごとに交互に実行されることとなる。
 ・上記実施形態において、インバータ50の回路構成を任意に変更してもよい。例えば、正極母線Bp又は負極母線Bnのうちいずれか一方の母線に、第2インバータ回路52とバッテリ30との間における通電状態及び通電遮断状態を切り替えるスイッチ部を備えてもよい。
 例えば、図11に示すように、正極母線Bpに、第2インバータ回路52とバッテリ30との間における通電状態及び通電遮断状態を切り替えるスイッチSW1を備えてもよい。スイッチSW1を開状態(オフ状態、通電遮断状態)として、第2インバータ回路52とバッテリ30との間において通電を遮断すると、H結線からY結線(スター結線)に切り替えることが可能となる。
 ところで、このような回路構成にした場合、スイッチSW1に電流を流すと、スイッチSW1において導通損が発生する。このため、極力、スイッチSW1に電流が流れないようにすることが効率の面から好ましい。そこで、このような回路構成において、制御装置60は、駆動電流の実効値が閾値未満の場合に、スイッチSW1を通電遮断状態に切り替えるとともに、第1の電力変換制御及び第2の電力変換制御のうち、第1の電力変換制御を実施することが望ましい。これにより、損失を低減することができる。
 ・上記実施形態において、図12に示すように、正極母線Bp及び負極母線Bnに、第2インバータ回路52とバッテリ30との間における通電状態及び通電遮断状態を切り替えるスイッチSW1,SW2をそれぞれ設けてもよい。スイッチSW1,SW2を開状態(オフ状態、通電遮断状態)として、第2インバータ回路52とバッテリ30との間において通電を遮断すると、H結線からY結線に切り替えることが可能となる。なお、正極母線BpのスイッチSW1を開状態とすることにより、高電位端子側を中性点とすることが可能となる。同様に、負極母線BnのスイッチSW2を開状態とすることにより、低電位端子側を中性点とすることが可能となる。
 ・上記実施形態において、制御装置60は、インバータ回路51,52の温度(より具体的には、スイッチング素子の温度)に基づいて、駆動電流の実効値が閾値以上か否かを判定してもよい。つまり、駆動電流の実効値は、温度に比例する。このため、温度に基づいて、駆動電流が閾値以上か否かを判定してもよい。また、制御装置60は、駆動電流の指令値に基づいて駆動電流の実効値が閾値以上か否かを判定してもよい。
 ・上記実施形態において、駆動電流の電流波形は、任意に変更してもよい。例えば、矩形波やのこぎり波であってもよい。
 ・上記実施形態及び変形例において、本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  1又は複数相の巻線に対して、直流電源(30)からの直流電力を交流電力に変換して供給する電力変換装置(50)において、
     前記巻線(42U,42V,42W)の両端のうち第1端側に電気的に接続され、前記直流電源との間で電力を伝達する第1インバータ回路(51)と、
     前記巻線の両端のうち第2端側に電気的に接続され、前記直流電源との間で電力を伝達する第2インバータ回路(52)と、
     前記第1インバータ回路及び前記第2インバータ回路を制御する制御部(60)と、を備え、
     前記制御部は、前記第2インバータ回路を構成するスイッチング素子の開閉状態を固定する一方で、前記第1インバータ回路を構成するスイッチング素子の開閉状態を切り替える第1の電力変換制御と、前記第1インバータ回路を構成するスイッチング素子の開閉状態を固定する一方で、前記第2インバータ回路を構成するスイッチング素子の開閉状態を切り替える第2の電力変換制御と、を実施可能に構成されており、
     前記巻線に流れる駆動電流の実効値が閾値未満の場合には、第1の電力変換制御及び第2の電力変換制御のうちいずれか一方を実施する一方、閾値以上の場合には、第1の電力変換制御と第2の電力変換制御と、を切り替えて実施する電力変換装置。
  2.  開閉状態を切り替えるスイッチング素子におけるスイッチング損と導通損との合計値に比較して、閉状態に固定されているスイッチング素子における導通損が大きくなる駆動電流の実効値に基づいて前記閾値が設定されている請求項1に記載の電力変換装置。
  3.  前記制御部は、前記駆動電流の実効値が閾値以上の場合、前記駆動電流の各周期において、前記第1の電力変換制御と前記第2の電力変換制御との実施期間が均等となるように、前記第1の電力変換制御と前記第2の電力変換制御とを切り替える請求項1又は2に記載の電力変換装置。
  4.  前記制御部は、前記第1インバータ回路又は前記第2インバータ回路の温度に基づいて、前記駆動電流が閾値以上であるか否かを判定する請求項1~3のうちいずれか1項に記載の電力変換装置。
  5.  前記1インバータ回路及び第2インバータ回路は、前記直流電源の正極端子に接続されている正極母線(Bp)に対して、それぞれ接続されているとともに、前記1インバータ回路及び第2インバータ回路は、前記直流電源の負極端子に接続されている負極母線(Bn)に対して、それぞれ接続されており、
     前記正極母線又は前記負極母線のうちいずれか一方の母線には、前記第2インバータ回路と前記直流電源との間における通電状態及び通電遮断状態を切り替えるスイッチ部を備え、
     前記制御部は、前記駆動電流の実効値が閾値未満の場合には、前記スイッチ部を通電遮断状態に切り替えるとともに、第1の電力変換制御及び第2の電力変換制御のうち、前記第1の電力変換制御を実施する請求項1~4のうちいずれか1項に記載の電力変換装置。
  6.  前記第1インバータ回路及び前記第2インバータ回路は、各相巻線に応じた上アームスイッチ(Spu1,Spv1,Spw1,Spu2,Spv2,Spw2)及び下アームスイッチ(Snu1,Snv1,Snw1,Snu2,Snv2,Snw2)の直列接続体をそれぞれ有し、
     前記第1の電力変換制御には、前記第2インバータ回路を構成する上アームスイッチを閉状態に固定する一方で、前記第1インバータ回路を構成するスイッチング素子の開閉状態を切り替える第1Aの電力変換制御と、前記第2インバータ回路を構成する下アームスイッチを閉状態に固定する一方で、前記第1インバータ回路を構成するスイッチング素子の開閉状態を切り替える第1Bの電力変換制御と、があり、
     前記第2の電力変換制御には、前記第1インバータ回路を構成する上アームスイッチを閉状態に固定する一方で、前記第2インバータ回路を構成するスイッチング素子の開閉状態を切り替える第2Aの電力変換制御と、前記第1インバータ回路を構成する下アームスイッチを閉状態に固定する一方で、前記第2インバータ回路を構成するスイッチング素子の開閉状態を切り替える第2Bの電力変換制御と、があり、
     前記制御部は、前記駆動電流の実効値が閾値未満の場合には、第1Aの電力変換制御と第1Bの電力変換制御とを切り替えて実施する、又は第2Aの電力変換制御と第2Bの電力変換制御とを切り替えて実施する一方、閾値以上の場合には、第1Aの電力変換制御、第1Bの電力変換制御、第2Aの電力変換制御及び第2Bの電力変換制御を所定の順番で切り替えて実施する請求項1~4のうちいずれか1項に記載の電力変換装置。
PCT/JP2019/045993 2018-12-04 2019-11-25 電力変換装置 WO2020116226A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980080097.2A CN113169679B (zh) 2018-12-04 2019-11-25 电力转换装置
US17/339,279 US11757373B2 (en) 2018-12-04 2021-06-04 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227259A JP7037473B2 (ja) 2018-12-04 2018-12-04 電力変換装置
JP2018-227259 2018-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/339,279 Continuation US11757373B2 (en) 2018-12-04 2021-06-04 Power converter

Publications (1)

Publication Number Publication Date
WO2020116226A1 true WO2020116226A1 (ja) 2020-06-11

Family

ID=70975348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045993 WO2020116226A1 (ja) 2018-12-04 2019-11-25 電力変換装置

Country Status (4)

Country Link
US (1) US11757373B2 (ja)
JP (1) JP7037473B2 (ja)
CN (1) CN113169679B (ja)
WO (1) WO2020116226A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476777B2 (en) * 2018-02-15 2022-10-18 Nidec Corporation Power conversion device, driving device, and power steering device
KR20230078259A (ko) * 2021-11-26 2023-06-02 현대자동차주식회사 모터 구동 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433574A (ja) * 1990-05-28 1992-02-04 Mitsubishi Electric Corp インバータ装置
JP2003259654A (ja) * 2002-03-05 2003-09-12 Toshiba Corp 電力変換装置
US20040262057A1 (en) * 2003-06-24 2004-12-30 General Electric Company Multiple inverters for motors
JP2013176252A (ja) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd 電力変換装置
JP2017093077A (ja) * 2015-11-06 2017-05-25 株式会社明電舎 オープン巻線システムの制御装置および制御方法
WO2018056045A1 (ja) * 2016-09-26 2018-03-29 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729721B2 (ja) * 2000-10-13 2005-12-21 東芝三菱電機産業システム株式会社 電力変換装置
DE102006027716B3 (de) * 2006-06-15 2008-01-24 Lenze Drive Systems Gmbh Ansteuerung mit Wechselrichtern bei geringen Schaltverlusten
JP5471128B2 (ja) * 2009-07-31 2014-04-16 富士電機株式会社 電力変換装置
JP6423323B2 (ja) * 2015-07-14 2018-11-14 株式会社Soken 電力変換装置
CN109104896B (zh) * 2016-03-04 2022-04-05 日本电产株式会社 电力转换装置、马达驱动单元和电动助力转向装置
JP2018061402A (ja) * 2016-10-07 2018-04-12 株式会社豊田自動織機 電力変換装置
JP6743687B2 (ja) * 2016-12-26 2020-08-19 日本電産株式会社 電力変換装置、モータ駆動ユニット、および電動パワーステアリング装置
US11356036B2 (en) * 2017-07-31 2022-06-07 Nidec Corporation Power conversion apparatus, motor module, and electric power steering apparatus
WO2019044112A1 (ja) * 2017-08-31 2019-03-07 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433574A (ja) * 1990-05-28 1992-02-04 Mitsubishi Electric Corp インバータ装置
JP2003259654A (ja) * 2002-03-05 2003-09-12 Toshiba Corp 電力変換装置
US20040262057A1 (en) * 2003-06-24 2004-12-30 General Electric Company Multiple inverters for motors
JP2013176252A (ja) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd 電力変換装置
JP2017093077A (ja) * 2015-11-06 2017-05-25 株式会社明電舎 オープン巻線システムの制御装置および制御方法
WO2018056045A1 (ja) * 2016-09-26 2018-03-29 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Also Published As

Publication number Publication date
CN113169679A (zh) 2021-07-23
JP7037473B2 (ja) 2022-03-16
CN113169679B (zh) 2024-01-02
US11757373B2 (en) 2023-09-12
JP2020092502A (ja) 2020-06-11
US20210297006A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6394030B2 (ja) インバータ制御装置
US7294984B2 (en) Motor controller
JP2016181949A (ja) 電力変換装置
JP2014171362A (ja) 電力変換装置
JP6423264B2 (ja) 電力変換装置
TWI680630B (zh) 用於逆變器的控制裝置
JP6426465B2 (ja) 電力変換装置
JP6755388B2 (ja) 多群多相回転電機の駆動装置
JP2017175747A (ja) 電力変換装置
JP6367744B2 (ja) 電力変換装置
US11296617B2 (en) Inverter control device
JP2018098872A (ja) 回転電機の制御装置、及び、回転電機システム
JP2017200284A (ja) 動力出力装置
WO2020116226A1 (ja) 電力変換装置
WO2020095802A1 (ja) 駆動システム
WO2020045636A1 (ja) 回転電機制御装置
JP6389103B2 (ja) 電力変換装置
CN116470821A (zh) 电机驱动装置及其控制方法
JP2020124018A (ja) 回転電機の駆動装置
JP6908303B2 (ja) 電力変換装置
JP6541844B1 (ja) 回転電機の制御装置
JP7185480B2 (ja) 電力変換装置
WO2023112220A1 (ja) 電力変換装置
JP2022179964A (ja) 電力変換装置
JP6091571B1 (ja) 回転電機、及び回転電機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893389

Country of ref document: EP

Kind code of ref document: A1