WO2020113855A1 - 光学检测方法、***及光学器件制造*** - Google Patents

光学检测方法、***及光学器件制造*** Download PDF

Info

Publication number
WO2020113855A1
WO2020113855A1 PCT/CN2019/079069 CN2019079069W WO2020113855A1 WO 2020113855 A1 WO2020113855 A1 WO 2020113855A1 CN 2019079069 W CN2019079069 W CN 2019079069W WO 2020113855 A1 WO2020113855 A1 WO 2020113855A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical detection
image information
wavefront
test
Prior art date
Application number
PCT/CN2019/079069
Other languages
English (en)
French (fr)
Inventor
谈顺毅
Original Assignee
上海慧希电子科技有限公司
江苏慧光电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海慧希电子科技有限公司, 江苏慧光电子科技有限公司 filed Critical 上海慧希电子科技有限公司
Priority to EP19894123.9A priority Critical patent/EP3889568B1/en
Priority to US17/298,662 priority patent/US11841288B2/en
Publication of WO2020113855A1 publication Critical patent/WO2020113855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems

Definitions

  • the invention relates to the field of optical inspection, in particular, to an optical inspection method, system and optical device manufacturing system.
  • the patent document CN207976139U discloses a variable object distance optical detection device for detecting an optical device to be tested, wherein the displacement change module of the variable object distance lens image module is connected to the lenses of the telescope head module Or an image sensor to adjust an inter-lens distance between the lenses, an image distance between the image sensor and the telescope head module, or a combination of the inter-lens distance and the image distance.
  • the disadvantage of the prior art is that the lens imaging module can only change the position of the object distance lens, and cannot simulate the wavefront accordingly. There are fewer types of devices to be tested and the general application range is narrower.
  • the object of the present invention is to provide an optical detection method, system and optical device manufacturing system.
  • An optical detection system provided according to the present invention includes:
  • Image generation system generate test image information and output light containing the test image information to the device under test;
  • Image detection system obtaining detection image information according to the light passing through the device under test
  • Control system Calculate or select test image information and output it to the image generation system.
  • control system obtains aberration parameters according to the imaging quality of the detected image information.
  • control system includes:
  • Standard judgment system judge whether the detection parameter meets the judgment standard; if it meets the judgment standard, the detection result is output; otherwise, the compensation parameter is obtained according to the current aberration parameter, and the compensation parameter is superimposed on the current test image information to compensate,
  • the compensated test image information is generated by the image generation system.
  • the test image information includes a modulated wavefront hologram or a phase diagram.
  • the test image information occupies all or part of the target image height of the device under test; and/or, the test image information occupies all or part of the target field of view of the device under test.
  • the image generation system separately generates test image information including set wavefront modulation, corresponding to different parts of the target image height of the device under test, and/or different parts of the target field of view; and the test image information is different
  • the parameters and/or objects are output multiple times in sequence.
  • the image generation system includes at least one spatial light modulator.
  • the plurality of spatial light modulators have phase spatial light modulators and/or intensity spatial light modulators.
  • the spatial light modulator comprises any one or more devices in liquid crystal on silicon, LCD, micromirror array DMD, OLED, micro-mirror mirror, grating, grating array.
  • the silicon-based liquid crystal device uses a phase modulation method.
  • the liquid crystal on silicon device adopts ECB or VAN mode.
  • the image generation system includes any one or more optical components of any one of a light source, a lens, a diaphragm, a polarizing plate, a glass plate, a polarizing plate, and a prism.
  • the light source contains at least one or more wavelengths.
  • the image detection system includes any one or more imaging devices among CCD, CMOS, and film.
  • control system controls and synchronizes the image generation system and the image detection system.
  • control system calculates or reads the detected image information in real time based on the obtained input image and/or wavefront information, and outputs it to the image generation system, which physically generates the detected image information , Modulate the desired light wavefront and/or light field.
  • control system performs the real-time calculation or reading according to the feedback of the image detection system.
  • the judgment criteria include any one or more of the following criteria:
  • the detection result includes: any one or more of MTF in the same field of view, MTF in different fields of view, aberration parameters, chromatic aberration parameters, focal length.
  • test image information is generated and wavefront compensation is added to the test image information.
  • the wavefront compensation is used to compensate the aberration existing in the device under test.
  • the wavefront compensation is used to compensate for missing components in the device under test.
  • the wavefront compensation is achieved by obtaining a wavefront set to propagate to the surface of the device under test, the entrance and exit pupils of the system, or the position of the system diaphragm, and simulating the wavefront using an image generation system.
  • the wavefront is calculated by propagating the image back to the wavefront to the image generation system, system entrance and exit pupil, or system diaphragm position.
  • the aberration includes any one or more types of spherical aberration, coma, astigmatism, defocus, dispersion, curvature of field, distortion, and higher-order aberrations.
  • the wavefront compensation is calculated using zernike polynomials and/or seidal polynomials.
  • any one or more of Fourier transform, inverse Fourier transform, Fresnel transform, inverse Fresnel transform, and spatial angle spectrum propagation are used to calculate the wavefront corresponding image. propagation.
  • the wavefront compensation and the wavefront propagated by the test image are superimposed to generate a hologram or a phase diagram.
  • An optical device manufacturing system provided by the present invention includes the optical detection method.
  • an optical device moving system is included, wherein the optical device moving system obtains the imaging quality of the detected image information according to the light passing through the device under test, and translates and/or rotates the optical device.
  • the optical device processing system processes the optical device according to the imaging quality of the detected image information obtained by the light passing through the device under test.
  • the optical device processing system includes a dispensing system and/or an exposure system.
  • the present invention has the following beneficial effects:
  • the invention can generate any wavefront through the spatial light modulator of the image generation system, and can simulate any lens or optical surface;
  • the invention can detect the entire lens (a group of lenses), and can simulate the lens that has not been assembled in the lens, and realize the function of assembling a lens to detect whether it is assembled correctly during the assembly process;
  • the lens assembly of the present invention can simulate an arbitrary wavefront to detect and adjust the position during the assembly process.
  • the present invention can directly simulate the assembled lens according to the lens that has not been assembled in the compensation lens.
  • the lens can achieve the final imaging effect. If there is a problem, you can also analyze the possible causes of the above problem according to the aberration (such as the defects of the assembled lens, such as wrong surface type, wrong refractive index, etc.), which can be directly given Feedback stops the assembly and makes corrections to avoid assembling the good lens to the lens that already has problems, thereby improving the yield and reducing waste.
  • FIG. 1 is a schematic structural diagram of an optical detection system provided by the present invention.
  • the figure shows:
  • the image generation system uses a silicon-based liquid crystal spatial light modulator based on pure phase modulation and a 520nm laser;
  • the device under test is an optical lens
  • the image detection system uses a CCD image sensor
  • the control system uses a PC and an FPGA or ASIC chip.
  • the control system can convert it into a hologram through calculation Or the interest diagram information (detection image information), which is output to the spatial light modulator.
  • the spatial light modulator After the laser light source illuminates the spatial light modulator, the spatial light modulator outputs the light containing the test image information to the optical lens of the device under test.
  • the optical lens of the device is imaged on the CCD image sensor (MTF line pair, division, etc.) to obtain the detected image information.
  • the control system reads the detected image information on the CCD image sensor, uses image algorithms to obtain aberration parameters based on the imaging quality, and determines whether the aberration parameters meet the judgment criteria (such as the design index parameters of the optical lens or the number of detection iterations), If the judgment criterion is met, the detection result (such as the parameters of the optical lens itself and aberration parameters, or whether it is qualified, etc.) is directly output.
  • the judgment criteria such as the design index parameters of the optical lens or the number of detection iterations
  • the current estimated aberration parameters are used to generate a new compensation phase according to the zernike or seidal polynomial, and superimposed on the current test image information for compensation, and then output to the spatial light modulator after calculation, and then the spatial light
  • the modulator generates compensated test image information.
  • the light source illuminates the spatial light modulator to output light containing the compensated test image information to the device under test.
  • the control system obtains new estimated aberration parameters. And judge again whether to meet the judgment standard. Iterate like this until it reaches the judgment standard.
  • the final control system outputs the detection results of the measured optical lens, where the detection results include parameters such as optical parameters or aberration parameters of the device under test.
  • the judgment criterion may be one or several optical parameter indicators, such as MTF value, MTF in each field of view, focal length, etc.
  • the initial test image information for example, using black and white line pairs
  • the control system can analyze whether the MTF requirements are met according to the captured test image information, and according to the test image situation
  • the aberration parameters for example, after detecting the image information and processing the algorithm, it is found that the X-direction image line pair is clearer, the Y-direction is more blurry, and there is suspected astigmatism aberration, which can be compensated according to the zernike polynomial Aberration, generate a new phase superimposed on the original test image (for example, on the plane of the spatial light modulator, the phase point distribution of the original test image is multiplied by the phase distribution of e i2 ⁇ sy2 , where s is the coefficient, and the incident wavelength, spatial light.
  • the test image After the test image is captured again, it can be compared with the previous or previous detection test images to analyze the aberration changes (become worse or better), calculate the aberration parameters again, and output, so iterate until the image is captured There is no measurable sharpness difference between the pairs in the middle X direction and Y direction, or the MTF judgment criteria can be met in both directions. At this time, it can be determined that when the corresponding astigmatism coefficient is added to compensate for astigmatism, the system If there is no astigmatism, the quantitative value of the astigmatic aberration in the optical lens of the device under test can be output. Of course, there may be other aberrations in the lens, such as spherical aberration, coma aberration, etc.
  • the above steps can be corrected and output one by one.
  • preliminary parameters of the device under test may also be given, and the control system generates initial test images according to the relevant parameters, thereby reducing the number of iterations.
  • the test image can be generated according to the following methods: 1. Select the appropriate target test image (such as line pairs, cross divisions of different fields of view, etc.) 2. Virtually set the target image at a certain distance behind the spatial light modulator (such as Infinity), and add a certain phase distribution according to the need (for example, the initial phase can be random phase), calculate the light field distribution after the above image is propagated to the spatial light modulator (infinite distance can use Fourier/inverse Fourier transform, The propagation at a certain distance can be calculated using Fresnel transform or spatial angular spectrum propagation) 3.
  • the appropriate target test image such as line pairs, cross divisions of different fields of view, etc.
  • Virtually set the target image at a certain distance behind the spatial light modulator such as Infinity
  • the initial phase can be random phase
  • calculate the light field distribution after the above image is propagated to the spatial light modulator infinite distance can use Fourier/inverse Fourier transform, The propagation at a certain distance can be calculated using Fresnel transform
  • the compensation parameters required on the plane where the spatial light modulator is located can be generated according to the zernike polynomial, the parameters of the polynomial can be passed through zemax, etc.
  • the software derives that it is used to compensate for aberrations and/or simulate specific optics) superimposed on the light field distribution generated in step 2 (point multiplication of phases, equivalent to addition of complex exponents).
  • Another method for calculating the test image is to obtain the wavefront input to the surface of the device under test and/or the light wavefront output from the device under test (for example, it can be obtained from the design file of optical design software such as zemax).
  • the inverse/backward propagation of the optical wavefront to the spatial light modulator can use Fourier/inverse Fourier transform, and the propagation at a certain distance can use Fresnel transform or spatial angular spectrum propagation (or the spatial light can also be
  • the modulator is directly set on the surface of the acquired light wavefront so that it does not need to propagate, or the corresponding zernike coefficient can be read by software such as zemax instead of the light wavefront) to obtain the light field distribution/hologram on the spatial light modulator that needs to be simulated Figure.
  • the step 4 may be added after step 3 or after obtaining the surface light field distribution of the spatial light modulator to output the hologram/phasogram actually used for the modulation of the spatial light modulator.
  • the step 4 is a step of discretizing the calculated light field distribution. For example, when using a single-chip pure phase modulation spatial light modulator, the intensity information of the light field distribution can be discarded and the phase information can be discretized and output. It is also possible to optimize the phase distribution through iterations and other methods to reduce the discarding intensity and the phase discretization process Errors and noise generated in (for example, to homogenize the intensity distribution).
  • one block can modulate the intensity and one block can modulate the phase (in this case, step 2 can be omitted, because the image has actually been displayed at a specific position through the intensity spatial light modulator, and there is no need to calculate its propagation); or two Both phases are modulated, but the intensity and phase are restored by the dual-phase synthesis method, so that the intensity is not discarded and better image quality is achieved.
  • the above embodiments may also include other optical devices, such as a beam splitter prism to couple the light beam into the optical path, and other lenses to collimate the light emitted by the light source or re-modulate the light output by the spatial modulator (such as zooming in and out of the beam angle)
  • other optical devices such as a beam splitter prism to couple the light beam into the optical path, and other lenses to collimate the light emitted by the light source or re-modulate the light output by the spatial modulator (such as zooming in and out of the beam angle)
  • the light source of the above embodiment can also add other wavelength bands, such as adding 450nm blue light and 650nm red light lasers, and coupling into the optical path through coupling devices (such as X prisms, dichroic mirrors, optical fibers, etc.), then the device can measure different wavelength bands simultaneously The corresponding parameters of the device under test, so as to obtain parameters such as color difference.
  • other wavelength bands such as adding 450nm blue light and 650nm red light lasers, and coupling into the optical path through coupling devices (such as X prisms, dichroic mirrors, optical fibers, etc.), then the device can measure different wavelength bands simultaneously The corresponding parameters of the device under test, so as to obtain parameters such as color difference.
  • the above equipment can also be used in the assembly process of optical devices.
  • the control system can simulate the ideal modulation of the light field of the lenses that have not yet been assembled in the above equipment according to the design file, and output it to Two assembled lenses, and then output the test image to the inspection system to determine whether the assembled lens/lens group meets the requirements, such as whether each lens is qualified and whether there are problems with the assembly (such as eccentricity, uneven thickness of the adhesive layer, etc.) ).
  • each piece or several pieces are tested in sequence, and the assembly process can be corrected or terminated immediately when a problem occurs, thus avoiding the situation that the entire test can only be completed after all lenses are assembled, which can improve the yield and reduce the assembly process. Of loss.
  • the lens is tested every time the position is adjusted, so as to iterate. During each iteration, the detection picture information can be unchanged or can be changed to improve the detection accuracy. .
  • the spatial light modulator may use a wavefront distribution to test and correct aberrations under all parameters of the lens (or lens with all lenses assembled).
  • Use multiple holograms multiple wavefront distributions, each corresponding to the partial parameter range of the lens to be tested, and output them separately in time to achieve better testing and correction.
  • the MTF parameters are often different.
  • the aberration of the center field of view for example, -5 to 5° range
  • the generated hologram contains only the central field of view pattern and undergoes a calibration test. After completing the central field of view, test and correct the field of view of the next level (for example, -10 to -5°, 5 to 10° ) Perform test calibration, and so on, until the test calibration for the entire field of view is completed.
  • the spatial bandwidth product of the spatial light modulator (Lagrange invariant) does not match the device under test.
  • the spatial bandwidth product of the spatial light modulator is less than the device under test, simulation may occur
  • the light wavefront cannot cover all the image heights or fields of view used by the device under test. Redesigning spatial light modulators is often costly.
  • one method is to design the system to test only a part of the field of view or image height area of the device under test.
  • a device under test is designed to use a field of view of -30° to 30°, which can make the space
  • the optical modulator simulates the optical wavefront that only contains a 0-30° field of view input. Due to the symmetry of many optical devices, such practices often do not affect the actual test results.
  • a rotatable or movable system can be designed on the jig holding the device under test, so that the device under test can be rotated or moved. For example, in this example, rotate the device under test by 180° to obtain the measurement result of the -30 ⁇ 0° field of view.
  • another method to solve the problem that the spatial bandwidth product of the existing spatial light modulator is smaller than the device under test is to use multiple spatial light modulators or multiple sets of spatial light modulator systems to achieve the field of view or image height Splicing to achieve a larger spatial bandwidth product. For example, placing two spatial light modulators in parallel and illuminating them simultaneously or separately using one or more light sources can achieve twice the spatial bandwidth product of a single spatial light modulator.
  • a temperature control and/or humidity control system can be added to the equipment to improve the reliability, stability, and applicability of the equipment.
  • a system capable of processing the device under test can also be added to the equipment, thereby turning the equipment into an instrument that integrates processing and testing.
  • a rotating and/or air-blowing part is added to the mechanism that holds the device under test, another lens that needs to be assembled is automatically inserted into the above lens, and the control system controls the movement of the lens according to information such as aberration.
  • system, device and various modules provided by the present invention can be made by logically programming method steps
  • the same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded microcontrollers. Therefore, the system, device, and various modules provided by the present invention can be considered as a hardware component, and the modules included therein for implementing various programs can also be regarded as structures within the hardware component; Modules for realizing various functions are regarded as both a software program of an implementation method and a structure within a hardware component.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种光学检测方法、***及光学器件制造***,光学检测***包括:图像生成***(1):生成测试图像信息,将含有测试图像信息的光输出至待测器件;图像检测***(4):根据经过待测器件的光得到检测图像信息;控制***:根据检测图像信息的成像质量,得到像差参数。光学检测方法、***及光学器件制造***可以模拟任意波前,根据补偿镜头中尚未装配的镜片,可以直接模拟出已装配的镜片能够达到的最终成像效果,若发现存在问题,则可以直接给出反馈,停止装配进行修正,避免将后续好的镜片装配到已存在问题的镜头上。

Description

光学检测方法、***及光学器件制造*** 技术领域
本发明涉及光学检测领域,具体地,涉及光学检测方法、***及光学器件制造***。
背景技术
经检索,专利文献CN207976139U公开了一种可变物距光学检测装置,用以检测一待测光学装置,其中,可变物距镜头影像模块的位移改变模块,连接于望远镜头模块的该些镜头或影像感测器,用以调整该些镜头间的一镜头间距离、影像感测器与望远镜头模块间的一像距、或该镜头间距离及该像距的组合。现有技术的不足之处在于,镜头影像模块仅可以改变物距镜头的位置,无法对波前进行相应的模拟,能够适用的被测试器件的种类较少,且通用应用范围较窄。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种光学检测方法、***及光学器件制造***。
根据本发明提供的一种光学检测***,包括:
图像生成***:生成测试图像信息,将含有所述测试图像信息的光输出至待测器件;
图像检测***:根据经过所述待测器件的光得到检测图像信息;
控制***:计算或选取测试图像信息,并输出至图像生成***。
优选地,所述控制***根据所述检测图像信息的成像质量,得到像差参数。
优选地,所述控制***包括:
标准判断***:判断检测参数是否满足判断标准;若满足判断标准,则输出检测结果;否则,则根据当前的像差参数得到补偿参数,并将补偿参数叠加到当前的测试图像信息上进行补偿,由图像生成***生成补偿后的测试图像信息。
优选地,所述测试图像信息包括调制波前的全息图或者相息图。
优选地,所述测试图像信息占待测器件目标像高的全部或部分;和/或,所述测试图 像信息占待测器件目标视场的全部或部分。
优选地,所述图像生成***分别生成包含设定波前调制的测试图像信息,对应待测器件目标像高的不同部分,和/或目标视场的不同部分;并且所述测试图像信息以不同参数和/或针对对象先后输出多次。
优选地,所述图像生成***包括至少一个空间光调制器。
优选地,所述多个空间光调制器中具有相位空间光调制器和/或强度空间光调制器。
优选地,所述空间光调制器包含硅基液晶、LCD、微镜阵列DMD、OLED、微振镜、光栅、光栅阵列中的任一种或任多种器件。
优选地,所述硅基液晶器件采用相位调制方式.
优选地,所述硅基液晶器件采用ECB或VAN模式。
优选地,所述图像生成***包括光源、透镜、光阑、旋光片、玻片、偏振片、棱镜中的任一种或任多种光学元器件。
优选地,所述光源包含至少一个或多个波长。
优选地,所述图像检测***包括CCD、CMOS、胶片中的任一种或任多种成像器件。
优选地,所述控制***控制并同步图像生成***及图像检测***。
优选地,所述控制***根据所得输入图像和/或波前信息,以实时计算或者读取检测图像信息,输出至所述图像生成***,所述图像生成***在物理上生成所述检测图像信息,调制出所需光波前和/或光场。
优选地,所述控制***根据所述图像检测***的反馈进行所述实时计算或者读取。
优选地,所述判断标准包括如下任一种或任多种标准:
光学镜头的设计指标参数;
检测的次数;
检测的时间;
精度值。
优选地,所述检测结果包括:相同视场下的MTF、不同视场下的MTF、像差参数、色差参数、焦距中的任一种或任多种参数。
根据本发明提供的一种光学检测方法,生成测试图像信息并在测试图像信息中加入波前补偿。
优选地,所述波前补偿用于补偿被测器件中存在的像差。
优选地,所述波前补偿用于补偿被测器件中缺失的部件。
优选地,所述波前补偿通过获得设定传播至待测器件表面、***出入瞳或者***光阑位置的波前,并使用图像生成***模拟所述波前来实现。
优选地,通过将图像逆向传播所述波前至图像生成***、***出入瞳或者***光阑位置来计算所述波前。
优选地,像差包括:球差、彗差、像散、离焦、色散、场曲、畸变、高阶像差中的中任一种或任多种类型。
优选地,波前补偿采用zernike多项式和/或seidal多项式计算。
优选地,采用傅里叶变换、傅里叶逆变换、菲涅尔变换、菲涅尔逆变换、空间角频谱传播中的任一种或任多种方式来计算生成所述波前对应图像的传播。
优选地,采用将波前补偿与所述测试图像传播的波前叠加来生成全息图或者相息图。
根据本发明提供的一种光学器件制造***,包括所述的光学检测方法。
优选地,包括光学器件移动***,其中,所述光学器件移动***根据经过所述待测器件的光得到检测图像信息的成像质量,对光学器件进行平动和/或转动。
优选地,包括光学器件加工***,其中,所述光学器件加工***根据经过所述待测器件的光得到检测图像信息的成像质量,对光学器件进行加工。
优选地,所述光学器件加工***包括点胶***和/或曝光***。
与现有技术相比,本发明具有如下的有益效果:
1、本发明通过图像生成***的空间光调制器能够生成任意波前,可以模拟任意的透镜或光学表面;
2、本发明能够检测整个镜头(一组透镜),可以模拟镜头中尚未被组装的镜片,在装配过程中实现装配一片镜片检测是否装配正确的功能;
3、本发明在镜头装配的应用中,一方面可以模拟任意波前,以对装配过程中的位置进行检测调整,尤其是本发明根据补偿镜头中尚未装配的镜片,可以直接模拟出已装配的镜片能够达到最终成像效果,若发现存在问题还可以根据像差的情况分析造成上述问题的可能的原因(例如已装配的镜片存在缺陷,比如面型错误,折射率错误等),可以直接给出反馈停止装配进行修正,避免将后续好的镜片装配到已存在问题的镜头上,从而提高成品率,降低废品。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、 目的和优点将会变得更明显:
图1为本发明提供的光学检测***的框架结构示意图。
图中示出:
图像生成***1
光束耦合器件2
光源3
图像检测***4
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
所述图像生成***,采用基于纯相位调制的硅基液晶空间光调制器,520nm的激光器;
所述待测器件,为光学镜头;
所述图像检测***,使用CCD图像传感器;
所述控制***,使用PC机及FPGA或ASIC芯片。
使用时,将待测器件的光学镜头放入光路,空间光调制器生成一测试图像信息(例如内容是MTF线对测试图,分划图案等),控制***可以通过计算将其转换为全息图或者相息图信息(检测图像信息),输出至空间光调制器,激光光源照射空间光调制器后,空间光调制器将含有测试图像信息的光输出至待测器件的光学镜头,经过待测器件的光学镜头后在CCD图像传感器上成像(MTF线对,分划等),得到检测图像信息。
控制***读取CCD图像传感器上的检测图像信息,使用图像算法,根据成像质量得到像差参数,并判断像差参数是否满足判断标准(例如光学镜头的设计指标参数,或检测的迭代次数),若满足判断标准,则直接输出检测结果(例如光学镜头本身的参数以及像差参数,或者是否合格等)。
若不满足判断标准,则使用当前的预估像差参数,根据zernike或seidal多项式生 成新的补偿相位,并叠加至当前的测试图像信息进行补偿,计算后输出至空间光调制器,然后空间光调制器生成补偿后的测试图像信息,光源照射空间光调制器以输出含有补偿后的测试图像信息的光至待测器件,CCD图形传感器再次检测后,控制***得到新的预估像差参数,并再次判断是否满足判断标准。如此循环迭代,直至达到判断标准为止。最终控制***输出所测光学镜头的检测结果,其中,所述检测结果包括待测器件的光学参数或像差参数等参数。
上述步骤中判断标准也可以只是简单的是否合格,而无需给出其它参数,无论器件是否合格都会结束流程,开始新的器件检测。
上述过程中,所述的判断标准可以是某一个或几个光学参数指标,例如MTF值,各视场下的MTF,焦距等。当光学镜头中存在像差时,初始的测试图像信息(例如使用黑白线对)将无法满足MTF指标,则控制***可以根据拍摄到的检测图像信息来分析是否满足MTF要求,并且根据检测图像情况来判断像差的情况,给出像差参数,例如检测图像信息经过算法处理后发现X方向图像线对较为清晰,Y方向则较为模糊,存在疑似像散的像差,则可以根据zernike多项式补偿像差,生成新的相位在叠加到原测试图像上(例如在空间光调制器的平面上原测试图像的相息图点乘以e i2πsy2的相位分布,其中s为系数,与入射波长、空间光调制器的像素点大小、像散本身的严重程度等相关,y为坐标)并生成新的测试图像。再次拍摄到测试图像后可以与上一次或上几次的检测测试图像做对比,分析像差变化情况(变差或变好),再次计算像差参数,并输出,如此循环迭代,直至拍摄图像中X方向、Y方向上的线对不存在可测的清晰度区别或两个方向上都能满足MTF的判断标准,此时就可以判定当加入了相应的像散系数补偿像散后,***中不存在像散,则可以输出待测器件的光学镜头中存在像散像差的定量数值。当然,镜头中还可能同时存在其它像差,例如球差,彗差等,此时可以根据情况按上述步骤一一校正并输出。当然也可以采取将常规像差全部罗列(穷举)的方法,一一改变每一像差参数,根据拍摄的检测图像的像质变换判断光学镜头中是否存在所测像差及其定量分析。
具体实施中,也可以给出待测器件的初步参数,控制***根据相关参数生成初始的测试图像,从而可以减少迭代次数。
测试图像可以根据如下方法生成:1.选择合适的目标测试图像(例如线对,不同视场的十字分划等)2.将目标图像虚拟的设置在空间光调制器后一定的距离上(例如无穷远),并根据需要加入一定相位分布(例如初始可以是随机相位),计算上述图像传播至空间光调制器后的光场分布(无穷远距离可以使用傅里叶/傅里叶逆变换,一定距离的传播则可以使用菲涅尔变换或空间角频谱传播等方式计算)3.在空间光调制器所在的平面上将需要的补偿参数(可以根据zernike多项式生成,多项式的参数可以通过zemax等软件得出,用于补偿像差和/或模拟特定光学器件)叠加在步骤2中生成的光场分布上(相位的点乘,等效于复指数的相加)。
测试图像的另一种计算方法是获取设计时输入到待测器件表面的波前和/或待测器件输出的光波前(例如可以从zemax等光学设计软件的设计文件中获取),将所述光波前逆传播/反向传播至空间光调制器可以使用傅里叶/傅里叶逆变换,一定距离的传播则可以使用菲涅尔变换或空间角频谱传播等方式(或者也可以将空间光调制器直接设置在所获取的光波前的面上从而无需传播,或者也可以通过zemax等软件读取相应zernike系数而非光波前),从而获得空间光调制器上需要模拟的光场分布/全息图。
上述方法中,可以根据空间光调制器的类型在步骤3之后或获得空间光调制器表面光场分布之后再加入步骤4输出实际供空间光调制器调制用的全息图/相息图。所述步骤4是将计算获得的光场分布离散化的步骤。例如当使用单片纯相位调制的空间光调制器时,可以将光场分布的强度信息丢弃,将相位信息离散化输出,也可以通过迭代等方法优化相位分布,减少丢弃强度及相位离散化过程中产生的误差和噪声(例如使强度分布均匀化)。当使用多块空间光调制器时则可以一块调制强度,一块调制相位(此时可以省略步骤2,因为图像已通过强度空间光调制器实际显示在特定位置,无需计算其传播);或者两块都调制相位,但通过双相位合成的方法还原强度和相位,从而不丢弃强度,实现更好的图像质量。
上述实施例中还可以包括其它光学器件,例如分光棱镜来将光束耦合入光路,其它透镜准直光源发出的光或再次调制空间调制器输出的光(例如放大缩小光束角度等)
上述实施例的光源还可以增加其它波段,例如增加450nm蓝光,650nm红光激光器, 通过耦合器件(例如X棱镜,二项色镜子,光纤等)耦合入光路,则所述设备可以同时测量不同波段时待测器件的相应参数,从而得出色差等参数。
上述设备还可以用于光学器件的装配过程中。例如在一个具有5片透镜的镜头装配过程中,第一和第二片镜片胶合后,可以在上述设备中控制***根据设计文件模拟后续尚未装配的镜片对光场的理想调制,将其输出到两片已组装的镜片上,然后将测试图像输出至检测***,判断已组装的镜片/镜片组是否满足要求,比如每片镜片是否合格,装配是否存在问题(比如偏心,胶层厚度不均等问题)。依次每组装一片或几片做一次检测,当出现问题时就可以立即纠正或终止装配过程,从而避免现在只有等所有镜片都组装完毕后才能整体测试的情况,可以提高成品率,降低装配过程中的损耗。以对已装配的镜片的位置纠正调整为例,镜片每调整一次位置就检测一次,以此进行迭代,在每次迭代的过程中,检测图片信息可以不变,也可以进行变化以提高检测精度。
此外,对于一些情况下(例如待测器件参数未知),空间光调制器可能难以用一种波前分布来测试和校正镜头(或组装所有镜片的镜头)所有参数下的像差,此时可以使用多张全息图(多种波前分布),每张对应待测镜头的部分参数范围,在时间上分别输出的方式来实现更好的测试与校正。例如对于不同的视场(例如全视场范围为-50至50°往往MTF参数会不同,此种情况下也可以采用先测试补偿中心视场(例如-5至5°范围)的像差,即生成的全息图(波前)只包含中心视场图案并做校正测试。待完成中心视场后测试校正后再对下一级的视场(例如-10至-5°,5至10°)做测试校正,依次类推,直至完成全部视场范围的测试校正。
在实际应用中,存在空间光调制器的空间带宽积(拉格朗日不变量)与待测器件不匹配的现象,当空间光调制器的空间带宽积小于待测器件时,可能会产生模拟的光波前无法覆盖待测器件使用的全部像高或视场的情况。而重新设计空间光调制器往往成本高昂。
为了解决这一问题,一种方法是可以将***设计成只测试待测器件部分视场或像高区域,例如一个待测器件的设计使用视场为-30°至30°,则可以使空间光调制器模拟只包含0~30°的视场输入的光波前,由于许多光学器件具有对称性,这类做法往往不会影响实际测试结果。或者也可以在夹持待测器件的夹具上设计可旋转或移动的***,从 而实现对待测器件的旋转或移动。例如此例中将待测器件旋转180°,即可获得对-30~0°视场的测量结果。
此外,解决已有的空间光调制器的空间带宽积小于待测器件这一问题的另一种办法是使用多块空间光调制器或多套空间光调制器***来实现视场或像高的拼接,从而实现更大的空间带宽积。例如将两块空间光调制器平行并列放置,使用一个或多个光源同时或分别照射它们,就可以实现单片空间光调制器两倍的空间带宽积。
此外,还可以在设备里加入温控和/或湿度控制***,从而提高设备的可靠性、稳定性及适用性。
此外,还可以在设备里加入能够对待测器件进行加工的***,从而将设备变为融加工及检测一体的仪器。例如在夹持待测器件的机构中加入旋转和/或气吹类部件,在上述镜头中自动装入另一片需要被组装的镜片,控制***根据像差等信息控制镜片移动。还可以加入点胶及紫外曝光等部件,先完成点胶工作,然后当器件移动到合适位置时对其曝光固化,从而完成镜片的胶合。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的***、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的***、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的***、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (32)

  1. 一种光学检测***,其特征在于,包括:
    图像生成***:生成测试图像信息,将含有所述测试图像信息的光输出至待测器件;
    图像检测***:根据经过所述待测器件的光得到检测图像信息;
    控制***:计算和/或选取所述测试图像信息,输出至图像生成***。
  2. 根据权利要求1所述的光学检测***,其特征在于,所述控制***,根据所述检测图像信息的成像质量,得到像差参数。
  3. 根据权利要求2所述的光学检测***,其特征在于,所述控制***包括:
    标准判断***:判断检测参数是否满足判断标准;若满足判断标准,则输出检测结果;否则,则根据当前的像差参数得到补偿参数,并将补偿参数叠加到当前的测试图像信息上进行补偿,由图像生成***生成补偿后的测试图像信息。
  4. 根据权利要求1所述的光学检测***,其特征在于,所述测试图像信息包括调制波前的全息图或者相息图。
  5. 根据权利要求1所述的光学检测***,其特征在于,所述测试图像信息占待测器件目标像高的全部或部分;和/或,所述测试图像信息占待测器件目标视场的全部或部分。
  6. 根据权利要求4所述的光学检测***,其特征在于,所述图像生成***分别生成包含设定波前调制的测试图像信息,对应待测器件目标像高的不同部分,和/或目标视场的不同部分;并且所述测试图像信息以不同参数和/或针对对象先后输出多次。
  7. 根据权利要求1所述的光学检测***,其特征在于,所述图像生成***包括至少一个空间光调制器。
  8. 根据权利要求7所述的光学检测***,其特征在于,所述多个空间光调制器中具有相位空间光调制器和/或强度空间光调制器。
  9. 根据权利要求7所述的光学检测***,其特征在于,所述空间光调制器包含硅基液晶、LCD、微镜阵列DMD、OLED、微振镜、光栅、光栅阵列中的任一种或任多种器件。
  10. 根据权利要求9所述的光学检测***,其特征在于,所述硅基液晶器件采用相位调制方式.
  11. 根据权利要求9所述的光学检测***,其特征在于,所述硅基液晶器件采用ECB或VAN模式。
  12. 根据权利要求1所述的光学检测***,其特征在于,所述图像生成***包括光源、透镜、光阑、旋光片、玻片、偏振片、棱镜中的任一种或任多种光学元器件。
  13. 根据权利要求12所述的光学检测***,其特征在于,所述光源包含至少一个或多个波长。
  14. 根据权利要求1所述的光学检测***,其特征在于,所述图像检测***包括CCD、CMOS、胶片中的任一种或任多种成像器件。
  15. 根据权利要求1所述的光学检测***,其特征在于,所述控制***控制并同步图像生成***及图像检测***。
  16. 根据权利要求1所述的光学检测***,其特征在于,所述控制***根据所得输入图像和/或波前信息,以实时计算或者读取的方式得出所述检测图像信息,输出至所述图像生成***,所述图像生成***在物理上生成所述检测图像信息,调制出所需光波前和/或光场。
  17. 根据权利要求16所述的光学检测***,其特征在于,所述控制***根据所述图像检测***的反馈进行所述实时计算或者读取。
  18. 根据权利要求3所述的光学检测***,其特征在于,所述判断标准包括如下任一种或任多种标准:
    光学镜头的设计指标参数;
    检测的次数;
    检测的时间;
    精度值。
  19. 根据权利要求3所述的光学检测***,其特征在于,所述检测结果包括:相同视场下的MTF、不同视场下的MTF、像差参数、色差参数、焦距中的任一种或任多种参数。
  20. 一种光学检测方法,其特征在于,生成测试图像信息并在测试图像信息中加入波前补偿。
  21. 根据权利要去20所述的光学检测方法,其特征在于,所述波前补偿用于补偿被测器件中存在的像差。
  22. 根据权利要去20所述的光学检测方法,其特征在于,所述波前补偿用于补偿被测器件中缺失的部件。
  23. 根据权利要去20所述的光学检测方法,其特征在于,所述波前补偿通过获得设 定传播至待测器件表面、***出入瞳或***光阑位置的波前,并使用图像生成***模拟所述波前来实现。
  24. 根据权利要去20所述的光学检测方法,其特征在于,通过将图像逆向传播所述波前至***出入瞳、***光阑位置或图像生成***来计算所述波前。
  25. 根据权利要去21所述的光学检测方法或者权利要求1所述的光学检测***,其特征在于,像差包括:球差、彗差、像散、离焦、色散、场曲、畸变、高阶像差中的中任一种或任多种类型。
  26. 根据权利要去20所述的光学检测方法或者权利要求4所述的光学检测***,其特征在于,波前补偿采用zernike多项式和/或seidal多项式计算。
  27. 根据权利要去20所述的光学检测方法或者权利要求4所述的光学检测***,其特征在于,采用傅里叶变换、傅里叶逆变换、菲涅尔变换、菲涅尔逆变换、空间角频谱传播中的任一种或任多种方式来计算生成所述波前对应图像的传播。
  28. 根据权利要求20所述的光学检测方法或者权利要求4所述的光学检测***,其特征在于,采用将波前补偿与所述测试图像传播的波前叠加来生成全息图或者相息图。
  29. 一种光学器件制造***,其特征在于,包括权利要求1所述的光学检测***或者使用权利要求20所述的光学检测方法。
  30. 根据权利要求29所述的光学器件制造***,其特征在于,包括光学器件移动***,其中,所述光学器件移动***根据经过所述待测器件的光得到检测图像信息的成像质量,对光学器件进行平动和/或转动。
  31. 根据权利要求30所述的光学器件制造***,其特征在于,包括光学器件加工***,其中,所述光学器件加工***根据经过所述待测器件的光得到检测图像信息的成像质量,对光学器件进行加工。
  32. 根据权利要求31所述的光学器件制造***,其特征在于,所述光学器件加工***包括点胶***和/或曝光***。
PCT/CN2019/079069 2018-12-03 2019-03-21 光学检测方法、***及光学器件制造*** WO2020113855A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19894123.9A EP3889568B1 (en) 2018-12-03 2019-03-21 Optical detection method and system, and optical device manufacturing system
US17/298,662 US11841288B2 (en) 2018-12-03 2019-03-21 Optical measurement method and system and optical device manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811468152.9A CN109520712B (zh) 2018-12-03 2018-12-03 光学检测方法、***及光学器件制造***
CN201811468152.9 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020113855A1 true WO2020113855A1 (zh) 2020-06-11

Family

ID=65794006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079069 WO2020113855A1 (zh) 2018-12-03 2019-03-21 光学检测方法、***及光学器件制造***

Country Status (4)

Country Link
US (1) US11841288B2 (zh)
EP (1) EP3889568B1 (zh)
CN (2) CN109520712B (zh)
WO (1) WO2020113855A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341873A (zh) * 2021-08-06 2021-09-03 武汉中导光电设备有限公司 一种光学检测设备的运动平台控制***及控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111630B (zh) * 2019-04-29 2021-03-02 中国人民解放军战略支援部队航天工程大学士官学校 器件组装训练的模拟方法、装置及电子设备
CN112153365A (zh) * 2019-06-26 2020-12-29 上海光启智城网络科技有限公司 一种数字化测试图像显示***、测试方法及应用
CN110514407B (zh) * 2019-07-17 2021-08-24 江西吉铖光电有限公司 一种光学检测仪器及其检测方法和偏心调校方法
CN111090215A (zh) * 2020-01-09 2020-05-01 上海慧希电子科技有限公司 组装设备、方法及组装***
CN111122439A (zh) * 2020-01-14 2020-05-08 仪锐实业有限公司 检测光学镜组的质量的设备与方法
CN114088349A (zh) * 2021-09-29 2022-02-25 歌尔光学科技有限公司 合色棱镜的测试方法、装置及***

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644606A (zh) * 2009-07-28 2010-02-10 中国科学院长春光学精密机械与物理研究所 光学成像***波相差的测试方法
US20130092816A1 (en) * 2011-10-14 2013-04-18 Canon Kabushiki Kaisha Apparatus and method for estimating wavefront parameters
CN103412404A (zh) * 2013-07-26 2013-11-27 北京空间机电研究所 一种基于多视场波前探测与全视场优化的波前校正方法
CN105263396A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学***的对应关系确定方法、自适应光学***和存储自适应光学***用程序的记录介质
CN106415354A (zh) * 2014-05-21 2017-02-15 浜松光子学株式会社 显微镜装置以及图像获取方法
CN107525654A (zh) * 2017-08-23 2017-12-29 马晓燠 成像***像差检测方法及装置
CN108037594A (zh) * 2018-01-02 2018-05-15 北京全欧光学检测仪器有限公司 一种全视场镜头的装配方法及装置
CN108061639A (zh) * 2017-12-13 2018-05-22 中国科学院光电技术研究所 一种结合自适应光学技术的大动态范围、高精度相位差法波前测量仪
CN108107579A (zh) * 2017-12-18 2018-06-01 杭州光粒科技有限公司 一种基于空间光调制器的全息光场大视域大出瞳的近眼显示***
CN108152991A (zh) * 2018-01-02 2018-06-12 北京全欧光学检测仪器有限公司 一种光学镜头的装配方法及装置
CN207976139U (zh) 2018-03-23 2018-10-16 九骅科技股份有限公司 可变物距光学检测装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844927B2 (en) * 2002-11-27 2005-01-18 Kla-Tencor Technologies Corporation Apparatus and methods for removing optical abberations during an optical inspection
US7643149B2 (en) * 2005-05-24 2010-01-05 Carl Zeiss Smt Ag Method of aligning an optical system
CN101266194B (zh) * 2007-08-27 2011-09-07 温州医学院眼视光研究院 光学眼用镜片高精度像质检测***
US20110026033A1 (en) 2008-12-19 2011-02-03 Metroalaser, Inc. Optical Inspection Using Spatial Light Modulation
GB0907277D0 (en) * 2009-04-29 2009-06-10 Univ Kent Kanterbury Method for depth resolved wavefront sensing, depth resolved wavefront sensors and method and apparatus for optical imaging
CA2811301C (en) * 2010-09-29 2015-05-12 Institut National D'optique Wavefront compensation in optical synthetic aperture imaging processors
JP2013007740A (ja) * 2011-05-23 2013-01-10 Canon Inc 波面測定装置及び波面測定方法、物体測定装置
JP5919100B2 (ja) 2012-06-04 2016-05-18 浜松ホトニクス株式会社 補償光学システムの調整方法および補償光学システム
WO2014196448A1 (ja) * 2013-06-06 2014-12-11 浜松ホトニクス株式会社 補償光学システムの調整方法、補償光学システム、及び補償光学システム用プログラムを記憶する記録媒体
JP6494205B2 (ja) * 2013-07-31 2019-04-03 キヤノン株式会社 波面計測方法、形状計測方法、光学素子の製造方法、光学機器の製造方法、プログラム、波面計測装置
TWI589851B (zh) * 2015-11-20 2017-07-01 九驊科技股份有限公司 光學波前量測裝置與方法
US9808153B1 (en) * 2016-04-14 2017-11-07 Canon Kabushiki Kaisha Wavefront correction method for adaptive optics system
CN106289107A (zh) * 2016-09-29 2017-01-04 西安交通大学 一种lc‑slm误差补偿方法及其非球面面型检测方法
WO2018138538A1 (en) 2017-01-30 2018-08-02 Universitat Politecnica De Catalunya System and method for characterizing, designing and/or modifying optical properties of a lens
CN106735875B (zh) * 2017-02-20 2019-01-18 湖北工业大学 一种基于液晶空间光调制器的激光柔性微加工***及方法
CN107152998B (zh) * 2017-04-20 2019-09-20 苏州大学 一种基于检测波前编码***的光子筛对准方法
CN206741110U (zh) * 2017-05-05 2017-12-12 西安枭龙科技有限公司 一种光学显示模组精确装配***
CN108592820B (zh) 2018-05-21 2020-04-07 南京理工大学 基于动态波前调制结合计算全息片的干涉面形检测方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644606A (zh) * 2009-07-28 2010-02-10 中国科学院长春光学精密机械与物理研究所 光学成像***波相差的测试方法
US20130092816A1 (en) * 2011-10-14 2013-04-18 Canon Kabushiki Kaisha Apparatus and method for estimating wavefront parameters
CN105263396A (zh) * 2013-06-06 2016-01-20 浜松光子学株式会社 自适应光学***的对应关系确定方法、自适应光学***和存储自适应光学***用程序的记录介质
CN103412404A (zh) * 2013-07-26 2013-11-27 北京空间机电研究所 一种基于多视场波前探测与全视场优化的波前校正方法
CN106415354A (zh) * 2014-05-21 2017-02-15 浜松光子学株式会社 显微镜装置以及图像获取方法
CN107525654A (zh) * 2017-08-23 2017-12-29 马晓燠 成像***像差检测方法及装置
CN108061639A (zh) * 2017-12-13 2018-05-22 中国科学院光电技术研究所 一种结合自适应光学技术的大动态范围、高精度相位差法波前测量仪
CN108107579A (zh) * 2017-12-18 2018-06-01 杭州光粒科技有限公司 一种基于空间光调制器的全息光场大视域大出瞳的近眼显示***
CN108037594A (zh) * 2018-01-02 2018-05-15 北京全欧光学检测仪器有限公司 一种全视场镜头的装配方法及装置
CN108152991A (zh) * 2018-01-02 2018-06-12 北京全欧光学检测仪器有限公司 一种光学镜头的装配方法及装置
CN207976139U (zh) 2018-03-23 2018-10-16 九骅科技股份有限公司 可变物距光学检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889568A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341873A (zh) * 2021-08-06 2021-09-03 武汉中导光电设备有限公司 一种光学检测设备的运动平台控制***及控制方法
CN113341873B (zh) * 2021-08-06 2021-11-12 武汉中导光电设备有限公司 一种光学检测设备的运动平台控制***及控制方法

Also Published As

Publication number Publication date
US11841288B2 (en) 2023-12-12
CN109520712B (zh) 2021-08-17
CN113218630A (zh) 2021-08-06
US20220034751A1 (en) 2022-02-03
CN109520712A (zh) 2019-03-26
CN113218630B (zh) 2024-02-13
EP3889568A4 (en) 2022-01-26
EP3889568A1 (en) 2021-10-06
EP3889568B1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2020113855A1 (zh) 光学检测方法、***及光学器件制造***
JP5351976B2 (ja) 二重グレーチング横方向シアリング波面センサ
JP7489403B2 (ja) デフレクトメトリ測定システム
CN104949763A (zh) 一种基于逆哈特曼原理的透镜波前像差测量方法
Gappinger et al. Iterative reverse optimization procedure for calibration of aspheric wave-front measurements on a nonnull interferometer
Huang High precision optical surface metrology using deflectometry
CN109799672B (zh) 非完善成像镜头的检测装置和方法
CN107894690A (zh) 一种结构光三维测量中的投影***
Mieda et al. Testing the pyramid truth wavefront sensor for NFIRAOS in the lab
CN111256956A (zh) 波前测量设备及波前测量方法
CN109883656B (zh) 非完善成像镜头的检测装置和方法
CN211602365U (zh) 光学检测设备及光学器件制造设备
JP2005510861A (ja) 投影照明システムの照明角度分布の特性化
Sirbu et al. Demonstration of broadband contrast at 1.2 λ/D and greater for the EXCEDE starlight suppression system
Wu et al. Measuring transmitted wavefronts for non-circular apertures in broad bandwidths using discrete points
US20200158597A1 (en) Optical Analysis System For HOE Quality Appraisal
CN111090215A (zh) 组装设备、方法及组装***
CN112525343A (zh) 一种针对色散型成像光谱仪的检测方法及装置
TW201001085A (en) Exposure apparatus and device fabrication method
TWI805969B (zh) 表面形貌檢測系統
US7760362B1 (en) Telescope interferometric maintenance evaluation tool
Montoya-Martínez et al. DIPSI: the diffraction image phase sensing instrument for APE
US9207145B1 (en) System and method for null-lens wavefront sensing
Liu et al. Correction of the error induced by obscurations of Ritchey-Chretien collimators for high-resolution space camera MTF measured with the ISO 12233 slanted-edge method
WO2018138538A1 (en) System and method for characterizing, designing and/or modifying optical properties of a lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019894123

Country of ref document: EP

Effective date: 20210630