WO2020113430A1 - 石墨烯导电结构及其制备方法、自修复方法 - Google Patents

石墨烯导电结构及其制备方法、自修复方法 Download PDF

Info

Publication number
WO2020113430A1
WO2020113430A1 PCT/CN2018/119212 CN2018119212W WO2020113430A1 WO 2020113430 A1 WO2020113430 A1 WO 2020113430A1 CN 2018119212 W CN2018119212 W CN 2018119212W WO 2020113430 A1 WO2020113430 A1 WO 2020113430A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
self
conductive structure
nanocellulose
graphene conductive
Prior art date
Application number
PCT/CN2018/119212
Other languages
English (en)
French (fr)
Inventor
李红变
史济东
刘恺然
李新国
李文波
Original Assignee
京东方科技集团股份有限公司
国家纳米科学中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 国家纳米科学中心 filed Critical 京东方科技集团股份有限公司
Priority to CN201880002737.3A priority Critical patent/CN111566157B/zh
Priority to PCT/CN2018/119212 priority patent/WO2020113430A1/zh
Publication of WO2020113430A1 publication Critical patent/WO2020113430A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the embodiments of the present disclosure relate to a graphene conductive structure having a self-repairing function and a preparation method thereof, and a self-repairing method of a graphene conductive structure having a self-repairing function.
  • Graphene is a two-dimensional carbon nanomaterial, which has extremely high mechanical strength, extremely high carrier mobility, good light transmittance, and a large specific surface area. Among them, the synthesis technology of graphene nanosheets is stable and mature. It has broad application prospects in the fields of optoelectronics, nanomedicine, new energy electrode materials (lithium ion batteries, solar cells, etc.) and catalysis.
  • the methods for preparing graphene nanosheets mainly include liquid phase peeling method, mechanical peeling method and chemical vapor deposition method.
  • large-area, high-quality graphene nanosheets can be prepared by chemical vapor deposition.
  • Nanocellulose also known as cellulose nanocrystals, cellulose nanowhiskers, nanocrystals, micro-nanofibrils, etc.
  • Nanocellulose has, for example, a linear structure, a diameter of 1 nm to 100 nm, and a length of tens to hundreds of nanometers. Nanocellulose has reproducibility, high crystallinity, high aspect ratio, high specific surface area and high transparency, etc. It has a good application prospect in food, medicine, paper making, textile and other fields.
  • methods for preparing nanocellulose include hydrolysis method, mechanical method, biological method, solvent method, electrospinning method and ionic liquid dissolution method.
  • At least one embodiment of the present disclosure provides a self-healing graphene conductive structure, including graphene nanosheets and nanocellulose.
  • the nanocellulose is adsorbed on the surface of the graphene nanosheet.
  • the graphene nanosheet and the nanocellulose are uniformly mixed.
  • the mass ratio of the graphene nanoplatelets to the nanocellulose is 1:1.
  • the graphene nanoplates have a thickness of 2 nm-3 nm and a width of 20 nm-5 ⁇ m.
  • the graphene nanosheets are interleaved, and the entire graphene conductive structure having a self-healing function forms a continuous sheet , There is no break in the middle.
  • the nanocellulose is a linear structure
  • the diameter of the linear structure is 5 nm-22 nm
  • the length is 2 ⁇ m-50 ⁇ m.
  • the nanocellulose is a D-glucopyranose ring as a unit, and each uses a ⁇ -1,4-glycosidic bond to a C1 chair Nanostructures formed by linear polymers connected by a conformation.
  • the thickness of the graphene conductive structure is 500 nm-50 ⁇ m.
  • the graphene conductive structure self-heals in an environment with water.
  • the self-healing of the graphene conductive structure includes self-healing of conductive properties and morphology.
  • the linear density of the graphene conductive structure with self-healing function is 0.7-1.5 tex, and the tensile strength is 170-450 MPa, The elongation at break is 3-12%, and the conductivity is 320-850 S/m.
  • At least one embodiment of the present disclosure also provides a method for preparing a graphene conductive structure having a self-healing function.
  • the preparation method includes: mixing graphene nanosheets and nanocellulose to form a first solution; and performing the first solution A film is formed to form the self-healing graphene conductive structure.
  • the preparation method provided in at least one embodiment of the present disclosure further includes providing a base substrate, forming a film on the first solution to form the self-healing graphene conductive structure includes using a spraying method to form the The first solution is formed on the base substrate and then dried at room temperature.
  • the preparation method provided in at least one embodiment of the present disclosure further includes providing a base substrate, and transferring the graphene conductive structure having a self-healing function to the base substrate.
  • the graphene nanosheets are prepared by a method of electrochemically exfoliating graphite or a method of reducing graphene oxide nanosheets.
  • the nanocellulose is formed from wood pulp after being oxidized by 2,2,6,6-tetramethylpiperidine oxide (TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine oxide
  • the mass ratio of the graphene nanosheets to the nanocellulose is 1:1.
  • mixing the graphene nanoplatelets and the nanocellulose to form the first solution includes: performing ultrasonic treatment after mixing the graphene nanoplatelets and the nanocellulose.
  • mixing the graphene nanosheets and the nanocellulose to form a first solution includes: mixing 1 mL to 20 mL with a mass percentage of 1% to 30%
  • the nanocellulose dispersion liquid is added to 1 mL to 20 mL of the graphene nanosheet dispersion liquid having a mass percentage of 1% to 30%, and the mixture is uniformly mixed by ultrasonication for 10 to 20 minutes.
  • the first solution after forming the first solution, is dried in a petri dish at room temperature to form a film or filtered and then dried to form a film.
  • a film is formed by drying at room temperature.
  • the volume of the first solution when the volume of the first solution is greater than 5 mL, it is filtered and dried to form a film.
  • the base substrate includes a rigid substrate or a flexible substrate.
  • At least one embodiment of the present disclosure further provides a self-repairing method for a self-repairing graphene conductive structure according to any one of the above, comprising: placing the self-repairing graphene conductive structure with deteriorated conductivity In the environment with water, the conductive properties of the self-healing graphene conductive structure can be restored.
  • the environment with water is an environment with a humidity of 40% to 80%.
  • the graphene conductive structure with self-healing function with deteriorated conductivity is placed in an environment with water for less than 1 minute.
  • FIG. 1 is a schematic diagram of a preparation process of a graphene conductive structure with a self-repairing function provided by an embodiment of the present disclosure
  • FIG. 2 is a scanning electron micrograph of a graphene conductive structure with self-healing function provided by an embodiment of the present disclosure
  • FIG. 3 is a scanning electron microscopy diagram of a graphene conductive structure with a self-repairing function after being broken according to an embodiment of the present disclosure
  • FIG. 4 is a scanning electron microscope diagram of a self-repairing graphene conductive structure provided by an embodiment of the present disclosure after self-repair;
  • FIG. 5 is a process diagram of self-repairing a graphene conductive structure with self-repair function provided by an embodiment of the present disclosure.
  • FIG. 6 is a comparison of initial resistance, post-fracture resistance and post-repair resistance of a graphene conductive structure with self-repair function provided by an embodiment of the present disclosure.
  • Graphene has a wide range of applications in the fields of energy storage, flexible electronic devices, etc. due to its special monoatomic two-dimensional structure and good conductivity.
  • the fracture of the conductive structure of graphene under the action of bending stress leads to the deterioration or even loss of conductivity, which is the most important reason for the failure of electronic devices.
  • graphene oxide films can be repaired by themselves, mainly based on the interaction between the oxygen-containing functional groups in the graphene oxide and water molecules, and the graphene oxide film can be repaired through the redispersion process of the graphene oxide nanosheets.
  • graphene oxide contains a large number of oxygen-containing functional groups and defects, making the graphene oxide film very poor in conductivity, making it impossible to directly use it as an electrode material.
  • the graphene nanosheets prepared by the electrochemical stripping method and the graphene oxide reduction method have few oxygen-containing functional groups and defects, and the thin films prepared by using the graphene nanosheets with less oxygen-containing functional groups and fewer defects have good conductivity.
  • the interaction force between graphene nanosheets and water molecules is very poor, and it is difficult to directly use water molecules for self-repair.
  • At least one embodiment of the present disclosure provides a graphene conductive structure with a self-healing function.
  • the graphene conductive structure with a self-healing function includes graphene nanosheets and nanocellulose.
  • the nanocellulose and graphene nanosheets self-assemble, the nanocellulose can make the graphene nanosheets staggered and overlap each other, and the linear nanocellulose is between the graphene nanosheet sheets Evenly dispersed, it will not hinder the conductive path, and can greatly improve the mechanical stability of the graphene conductive structure.
  • nanocellulose and graphene nanosheets are formed by physical blending, which can avoid the complicated preparation process and long process caused by chemical grafting, which is not conducive to continuous production.
  • the physical blending method It is simple and easy to operate, and can be completed at normal temperature.
  • the method is environmentally friendly, safe and reliable, and can be produced on a large scale.
  • the mixture of graphene nanosheets and nanocellulose has a linear density of 0.7-1.5 tex, a tensile strength of 170-450 MPa, an elongation at break of 3-12%, and a conductivity of 320-850 S/m.
  • the linear density of the mixture formed by graphene nanosheets and nanocellulose is to collect 50 ⁇ m long fibers, bake them in a 100°C oven for 8 hours to remove moisture, weigh them with a precision weighing instrument, and then calculate them; stretch The strength and elongation at break are tested by YG-001 monofilament strength machine; the conductivity is measured by Keithy 6487 conductivity tester.
  • nanocellulose is adsorbed on the surface of graphene nanosheets.
  • Adsorption of nanocellulose on the surface of graphene nanosheets includes: nanocellulose is only adsorbed on the upper surface of graphene nanosheets, nanocellulose is only adsorbed on the lower surface of graphene nanosheets, or nanocellulose is adsorbed simultaneously On the upper and lower surfaces of the graphene nanosheets.
  • the graphene nanosheets and nanocellulose are uniformly mixed.
  • homogeneous mixing is also called homogeneous mixing, which means that no matter which part of the mixture is extracted, its component content ratio is the same, the homogeneous mixing is not an absolute homogeneous mixing, and the basic homogeneous mixing is also Within the scope of protection of this application.
  • the mass ratio of the graphene nanosheets to nanocellulose is 1:1.
  • mixing graphene nanosheets and nanocellulose is by mixing graphene nanosheet powders and nanocellulose powders, and then dissolving the mixed graphene nanosheet powders and nanocellulose powders in deionized water As a result, it is necessary to ensure that the mass ratio of graphene nanosheets and nanocellulose is 1:1, as long as the graphene nanosheet powder and nanocellulose powder of equal quality are weighed.
  • the mixed graphene nanoplatelets and nanocellulose are obtained by mixing the dispersion liquid of graphene nanoplatelets and nanocellulose, according to the concentration of the dispersion liquid of graphene nanoplatelets and the nanofibers For the concentration of the pigment dispersion liquid, measure the appropriate volume of the graphene nanosheet dispersion liquid and the nanocellulose dispersion liquid so that the mass ratio of the graphene nanosheets and nanocellulose is 1:1.
  • mixing graphene nanoplatelets and nanocellulose is obtained by mixing a dispersion of graphene nanoplatelet powders and nanocellulose, and the method includes weighing the appropriate amount of graphene nanoplatelet powder and the amount Take an appropriate volume of nanocellulose dispersion, and dissolve the graphene nanosheet powder in the nanocellulose dispersion, as long as the mass ratio of graphene nanosheets and nanocellulose dry powder is 1:1.
  • the thickness of the graphene nanosheet is 2nm-3nm.
  • the thickness of the graphene nanosheet is 2 nm, 2.2 nm, 2.4 nm, 2.6 nm, 2.8 nm, or 3 nm.
  • the width of the graphene nanosheets is 20nm-5 ⁇ m.
  • the width of the graphene nanosheet is 100 nm, 500 nm, 1 ⁇ m, 2 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the thickness and width of the graphene nanosheets are obtained through optical microscope testing.
  • the nanocellulose has a linear structure, and the diameter of the linear structure is 5 nm-22 nm.
  • the diameter of the nanocellulose is 5 nm, 7 nm, 9 nm, 11 nm, 12 nm, 14 nm, 16 nm, 18 nm, 20 nm or 22 nm.
  • the length of the nanocellulose is 2 ⁇ m-50 ⁇ m.
  • the length of the nanocellulose is 2 ⁇ m, 10 ⁇ m, 20 ⁇ m, 40 ⁇ m or 50 ⁇ m.
  • the thickness of the self-healing graphene conductive structure is 500 nm-50 ⁇ m.
  • the thickness of the self-healing graphene conductive structure is 500 nm, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, or 40 ⁇ m.
  • the self-healing graphene conductive structure self-healing in an environment with water.
  • water environment refers to an environment with liquid water, an environment with water vapor, or an environment where liquid water and water vapor coexist, and the water in the water environment can make it have a self-healing function
  • the graphene's conductive structure is fully swollen.
  • the self-healing of the self-healing graphene conductive structure includes self-healing of the conductivity of the graphene conductive structure and self-healing of the topography of the graphene conductive structure, that is, the deteriorated conductivity of the graphene conductive structure can be restored in structure Completely without gaps, the conductivity can be restored to the conductivity before breaking.
  • the formation process of the nanocellulose includes a process of oxidation treatment, so that the surface of the nanocellulose contains a large number of functional groups such as hydroxyl groups and carboxyl groups.
  • the nanocellulose is a nano-structure formed by linear polymers connected in a C1 chair conformation with ⁇ -1,4-glucosidic bonds in units of D-glucopyranose rings.
  • the self-healing graphene conductive structure not only has high mechanical strength, but also has excellent electrical conductivity. After fracture, it can restore its morphology and conductivity in a water environment, and has good flexibility. , It can be widely used in high-performance fibers, biosensors, composite fiber materials and surface adsorption materials.
  • At least one embodiment of the present disclosure also provides a method for preparing a graphene conductive structure having a self-healing function.
  • the preparation method includes: mixing graphene nanosheets and nanocellulose to form a first solution; and forming a film on the first solution To form a self-healing graphene conductive structure.
  • the graphene nanoplatelets and nanocellulose are mixed to form a first solution; the first solution is applied (eg, coated) on a base substrate to form a graphene conductive structure having a self-healing function.
  • the fracture of the self-repairing graphene conductive structure causes at least part of the graphene nanosheets contained therein to be spaced apart, thereby deteriorating or even losing the conductivity of the self-repairing graphene conductive structure.
  • the graphene conductive structure with self-repair function provided in the example can realize the self-repair of the graphene conductive structure.
  • the principle of self-repair of the graphene conductive structure with self-repair function is as follows: nanocellulose expands in a water environment The graphene nanosheets around it slip to reconnect the graphene nanosheets spaced apart from each other, thereby achieving the restoration of the conductivity and morphology of the graphene conductive structure.
  • the repair conditions are mild, easy to operate, high repair efficiency, and can be repaired repeatedly.
  • FIG. 1 is a schematic diagram of a preparation process of a self-repairing graphene conductive structure provided by an embodiment of the present disclosure.
  • the preparation process includes mixing graphene nanosheets and nanocellulose to form The first solution, forming the first solution includes performing ultrasound on the first solution.
  • the mass ratio of graphene nanoplatelets to nanocellulose is 1:1.
  • mixing graphene nanosheets and nanocellulose to form a first solution includes: adding 1 mL to 20 mL of the nanofibers with a mass percentage of 1% to 30% Add the dispersion of element to 1mL ⁇ 20mL of the dispersion of the graphene nanosheets with a mass percentage of 1% ⁇ 30%, mix well by ultrasonication for 10-20 minutes, and then dry in a petri dish at room temperature to form a film or After filtration and drying to form a film.
  • mixing graphene nanosheets and nanocellulose to form the first solution 3 includes: adding 1 mL of a dispersion liquid of nanocellulose with a mass percentage of 1% to 1 mL of a mass percentage of 1 % Of the graphene nanosheet dispersion 1, mixed by ultrasonication for 10 minutes, and then dried in a Petri dish with a diameter of 5cm at room temperature to prepare a composite film of graphene nanosheets and nanocellulose, and the thickness of the film is 500nm, The method of drying and forming a film in a petri dish at room temperature can make the surface of the finally formed film layer smoother and smoother, so that the performance of the finally formed graphene conductive structure is more excellent.
  • mixing the graphene nanosheets and nanocellulose to form the first solution 3 includes: adding 6 mL of the nanocellulose dispersion 2 with a mass percentage of 1% to 6 mL of the mass percentage as In the 1% dispersion of graphene nanosheets, ultrasonically mix for 10 minutes, then filter, and then filter to dry at room temperature to form a film, the thickness of the film is 10 ⁇ m. Since the thickness of the formed film layer is large, most of the water can be removed by filtering first, and then the film is formed at room temperature to obtain a smoother and smoother film layer structure.
  • mixing the graphene nanosheets and nanocellulose to form the first solution 3 includes: adding 20 mL of a dispersion liquid of nanocellulose with a mass percentage of 1% to 20 mL of mass percentage In the dispersion 1 of 1% graphene nanosheets, ultrasonically mix for 10 minutes, and then filter. After filtration, the film is dried at room temperature. The thickness of the film is 100 ⁇ m. Since the thickness of the formed film layer is large, most of the water can be taken out by filtering first, and then the film is formed at room temperature to obtain a smoother and smoother film layer structure.
  • the base substrate 5 for applying the first solution 3 includes a rigid substrate or a flexible substrate.
  • the base substrate 5 may be a glass substrate, a quartz substrate, a plastic substrate, or an ultra-thin metal substrate.
  • the first solution formed by mixing graphene nanosheets and nanocellulose is formed on the base substrate by spraying to form a first thin film, and the thickness of the first thin film is measured to be 2 ⁇ m to 10 ⁇ m.
  • the thin film is processed to form a graphene conductive structure, and the initial resistance of the graphene conductive structure can be adjusted according to the spraying time.
  • the square resistance of the graphene conductive structure measured by a multimeter is 1 k ⁇ to 2 k ⁇ .
  • the graphene nanosheets are prepared by a method of electrochemically peeling graphite or a method of reducing graphene oxide nanosheets.
  • the method of electrochemically stripping graphite includes: using a graphite rod as the anode, Pt wire as the cathode, using 0.1mol/L of dilute sulfuric acid as the electrolyte, and applying a voltage of 10V to the anode of the graphite rod for 2min ,
  • the layered graphite in the graphite rod is peeled off, then the diluted sulfuric acid is removed by filtration, the graphene nanosheets are collected on the filter membrane, the graphene nanosheets are freeze-dried and dissolved in deionized water to make up a mass percentage It is a 1% graphene nanosheet dispersion.
  • the preparation of graphene nanosheets by reducing graphene oxide nanosheets includes: taking 5 g of graphite and 3.75 g of NaNO 3 powder into a round bottom flask placed in an ice water bath, adding 375 mL of concentrated sulfuric acid, and stirring well After that, slowly add 22.5g of KMnO 4 and add it in about 1 hour.
  • Hydrazine hydrate is added dropwise to the reaction system for reduction.
  • the ratio of hydrazine hydrate and graphene oxide is 1 mL hydrazine hydrate: 3 mg graphene oxide, and then stirred at room temperature for 2 hours to obtain a dispersion of graphene nanosheets.
  • the dispersion liquid of the nanosheets is washed and filtered, and then freeze-dried to obtain the powder of the graphene nanosheets.
  • the powder of the graphene nanosheets is dissolved in distilled water to prepare a dispersion with a mass percentage of 1% for use.
  • the preparation of graphene nanosheets by the method of reducing graphene oxide nanosheets includes: exfoliating natural graphite by hummer's oxidation method and drying to obtain graphene oxide solids, and dissolving the graphene oxide solids in water , N,N dimethylimide, N-methylpyrrolidone, N,N-dimethylformamide or isopropanol to form a dispersion liquid, and then add a reducing agent to the dispersion liquid, the reduction reaction proceeds 8 After -24h, graphene nanosheets were obtained after water washing, alcohol washing and drying.
  • the nanocellulose is oxidized by 2,2,6,6-tetramethylpiperidine oxide (TEMPO) from wood pulp, and then homogeneously formed.
  • TEMPO 2,2,6,6-tetramethylpiperidine oxide
  • cellulose is a tubular structure before being oxidized, and its diameter is 20 ⁇ m to 30 ⁇ m.
  • the oxidation of cellulose before the homogenization process is to reduce the interaction of hydrogen bonds within the cellulose molecules, making the subsequent homogenization and crushing process easier, and reducing the energy consumption of the homogenizer.
  • reaction process of oxidizing cellulose is:
  • the molecular structure of the intermediate C 6 -cellulose formed by the oxidation reaction is:
  • TEMPO reagent is:
  • the high-pressure homogenization method is a common mechanical preparation method for preparing nanocellulose.
  • the high-pressure homogenizer moves at high speed to crush the material, thereby reducing the size of the material.
  • the preparation of nanocellulose is usually carried out by a high-pressure homogenizer for homogenization.
  • the homogenization pressure used is 300 bar to 500 bar. For every 100 bar increase in the homogenization pressure, the material temperature rises by 3°C. Therefore, the homogenization pressure used should not be too high. high.
  • the size of the nanocellulose formed after the high-pressure homogenization method is further reduced, the dispersion of the nanocellulose in deionized water is more uniform, and the scattering effect of light is reduced, and it is in a transparent state.
  • the process of mixing the graphene nanosheets and nanocellulose to form the first solution includes:
  • the graphene nanosheet powder is prepared by the above method of electrochemically exfoliating graphite or the method of reducing graphene oxide nanosheets;
  • the supernatant is repeatedly rinsed and suction filtered until the pH of the residue in the supernatant is neutral, then all supernatant is removed by suction filtration to obtain wet nanocellulose, and the obtained wet nanocellulose is added to the dispersion
  • the nanocellulose dispersion is obtained in a medium (for example, deionized water);
  • the graphene nanosheet powder obtained in step (1) and the nanocellulose dispersion obtained in step (2) are added to a dispersion medium (for example, deionized water) and mixed to prepare a mass percentage content of graphene nanosheets
  • a dispersion medium for example, deionized water
  • the mixed solution is 2%-5%, and the mass percentage content of nanocellulose is 2%-5%.
  • the inorganic alkaline solution used in step (2) in the above method is sodium hydroxide solution or potassium hydroxide solution; the inorganic acidic solution used is any one of hydrochloric acid solution, sulfuric acid solution or nitric acid solution.
  • the mixing method in step (3) is to first mechanically stir for at least 4 hours, and then ultrasonically disperse for at least 15 minutes;
  • the dispersion medium used is water, N,N dimethyl imide, N-methyl pyrrolidone, N, Either N-dimethylformamide or isopropanol.
  • FIG. 2 is a scanning electron micrograph of a graphene conductive structure. As can be seen from FIG. 2, the sheets of graphene nanosheets are staggered, and the entire graphene conductive structure forms continuous sheets with no breaks in the middle.
  • At least one embodiment of the present disclosure also provides a self-repairing method for a graphene conductive structure having a self-repairing function as above, including: putting a graphene conductive structure having a self-repairing function with deteriorated conductivity into an environment with water To realize the restoration of the conductivity of the graphene conductive structure with self-healing function.
  • the environment with water is an environment with a humidity of 40% to 80%.
  • the self-healing graphene conductive structure self-healing in an environment with water includes the following steps: (1) Nanocellulose absorbs water and expands in an environment with water; (2) The expanded nanocellulose is conductive The broken graphene conductive structure is reconnected at the fracture, and the graphene nanosheets around it are caused to slide to reconnect the graphene nanosheets spaced apart from each other.
  • the width of the fracture of the graphene conductive structure can be adjusted, and the width of the fracture is not greater than 100 microns.
  • a graphene conductive structure with fractures of different widths is placed in a water environment for less than 1 minute, for example, a graphene conductive structure with fracture widths of 20 microns, 40 microns, 60 microns, 80 microns, and 100 microns
  • the time of putting in the environment with water is 5 seconds (s), 10 seconds (s), 15 seconds (s), 25 seconds (s), 35 seconds (s), 45 seconds (s) and 60 seconds (s ), observe the restoration of conductivity of graphene conductive structures with different fracture widths at different times, and find that graphene conductive structures with 20 micron fracture widths can be restored to conductivity in water for 5 s, and those with 40 micron fracture widths
  • the conductive structure of graphene can be restored after being placed in water for 10s; the conductive structure of graphene with a width of 60 microns can be restored after being placed in water for 20s; the conductive structure of graphene with a width of 80 microns
  • the conductivity can be
  • the following example illustrates the repair process of a self-repairing graphene conductive structure.
  • the first solution formed by mixing graphene nanosheets and nanocellulose is formed on the base substrate by spraying to form a first thin film, and the thickness of the first thin film is 2 ⁇ m.
  • the first thin film is dried to form a graphene conductive structure, and the square resistance of the graphene conductive structure is about 2 k ⁇ measured by a multimeter.
  • FIG. 3 is a scanning electron micrograph of a broken graphene conductive structure.
  • a fracture is formed in the graphene conductive structure, and the fracture causes the graphene conductive structure to be completely broken.
  • the width of the fracture is about 100 microns. .
  • FIG. 4 is a scanning electron micrograph of the graphene conductive structure after repair
  • FIG. 5 is a process diagram of self-repairing of the graphene conductive structure with deteriorated conductivity in a water environment.
  • the fracture The graphene conductive structures on both sides are reconnected together, and the graphene conductive structure is "stitched" at the fracture, which can realize the restoration of the morphology of the graphene conductive structure.
  • FIG. 6 is a comparison chart of the initial resistance of the self-repairing graphene conductive structure, the resistance after breakage, and the resistance after repair.
  • the initial structure of the self-repairing graphene conductive structure The square resistance is about 2k ⁇ , the square resistance after fracture is about 10000k ⁇ , and the square resistance after repair is about 2k ⁇ . It can be seen from FIG. 6 that the electrical conductivity of the self-healing graphene conductive structure can be restored.
  • the first solution formed by mixing graphene nanosheets and nanocellulose is formed on the base substrate by spraying to form a first thin film, and the thickness of the first thin film is 500 nm.
  • the first thin film is dried and processed to form a graphene conductive structure, and the square resistance of the graphene conductive structure is about 10 k ⁇ measured by a multimeter.
  • the process of this example can also restore the morphology and conductivity of the graphene conductive structure.
  • the first solution formed by mixing graphene nanosheets and nanocellulose is formed on the base substrate by spraying to form a first thin film, and the thickness of the first thin film is 50 ⁇ m.
  • the first thin film is dried to form a graphene conductive structure, and the square resistance of the graphene conductive structure is about 1 k ⁇ measured by a multimeter.
  • the method of spraying is used to form the graphene nanosheet dispersion on the base substrate to form a second thin film with a thickness of 2 ⁇ m.
  • the second thin film is dried to form a graphene conductive structure, and the square resistance of the graphene conductive structure is about 1 k ⁇ measured by a multimeter.
  • the above-mentioned placing of the conductive structure having a fracture into water may be either into liquid water, into an environment where water vapor is put, or into an environment where liquid water and water vapor coexist, and the Water in an environment with water can fully swell the graphene conductive structure.
  • Embodiments of the present invention provide a graphene conductive structure with a self-healing function and a preparation method thereof, and a self-repairing method of a graphene conductive structure with a self-healing function have at least one of the following beneficial effects:
  • the self-healing graphene conductive structure provided by at least one embodiment of the present disclosure not only has high mechanical strength, but also has excellent electrical conductivity. After fracture, it can recover its morphology and conductivity in a water environment, and it has better Its flexibility can be widely used in high-performance fibers, biosensors, composite fiber materials and surface adsorption materials.

Abstract

一种具有自修复功能的石墨烯导电结构及其制备方法、具有自修复功能的石墨烯导电结构的自修复方法。该具有自修复功能的石墨烯导电结构包括石墨烯纳米片和纳米纤维素。该具有自修复功能的石墨烯导电结构不仅机械强度高,同时导电性能优异,断裂之后在有水的环境中可以自恢复形貌和导电性,具有较好的柔性,其可广泛用于高性能纤维、生物传感器、复合纤维材料和表面吸附材料等领域。

Description

石墨烯导电结构及其制备方法、自修复方法 技术领域
本公开的实施例涉及一种具有自修复功能的石墨烯导电结构及其制备方法、具有自修复功能的石墨烯导电结构的自修复方法。
背景技术
石墨烯为二维碳纳米材料,其具有极高的机械强度、极高的载流子迁移率、良好的透光性以及较大的比表面积,其中,石墨烯纳米片的合成技术稳定成熟,其在光电子学、纳米医学、新能源电极材料(锂离子电池、太阳能电池等)及催化等领域具有广泛的应用前景。
目前,制备石墨烯纳米片的方法主要包括液相剥离法、机械剥离法和化学气相沉积法等。例如,通过化学气相沉积法可以制备大面积、高质量的石墨烯纳米片。
纳米纤维素,又称为纤维素纳米晶体、纤维素纳米晶须、纳米晶体、微纳纤丝等。纳米纤维素例如为线状结构,直径为1nm~100nm,长度为几十到几百纳米。纳米纤维素具有可再生性、高结晶度、高纵横比、高比表面积和高透明性等,其在食品、医药、造纸、纺织等方面具有很好的应用前景。
目前,制备纳米纤维素的方法包括水解法、机械法、生物法、溶剂法、静电纺丝法和离子液体溶解法等。
发明内容
本公开至少一实施例提供一种具有自修复功能的石墨烯导电结构,包括石墨烯纳米片和纳米纤维素。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述纳米纤维素吸附在所述石墨烯纳米片的表面上。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯纳米片和所述纳米纤维素均匀混合。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯纳米片和所述纳米纤维素的质量比为1:1。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯纳米片的厚度为2nm-3nm,宽度为20nm-5μm。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯纳米片的片层交错,整个所述具有自修复功能的石墨烯导电结构形成连续的片层,中间没有断口。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述纳米纤维素为线状结构,所述线状结构的直径为5nm-22nm,长度为2μm-50μm。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述纳米纤维素是D-吡喃葡萄糖环为单元,相互用β-1,4-糖苷键以C1椅式构象连接的线形高分子形成的纳米结构。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯导电结构的厚度为500nm-50μm。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯导电结构在有水的环境中自修复。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述石墨烯导电结构的自修复包括导电性能和形貌的自修复。
例如,在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构中,所述具有自修复功能的石墨烯导电结构的线密度为0.7-1.5tex,拉伸强度为170-450MPa,断裂伸长率为3-12%,导电率为320-850S/m。
本公开至少一实施例还提供一种具有自修复功能的石墨烯导电结构的制备方法,该制备方法包括:混合石墨烯纳米片和纳米纤维素以形成第一溶液;对所述第一溶液进行成膜以形成所述具有自修复功能的石墨烯导电结构。
例如,本公开至少一实施例提供的制备方法,还包括提供衬底基板,对所述第一溶液进行成膜以形成所述具有自修复功能的石墨烯导电结构包括使用喷涂的方法将所述第一溶液形成在所述衬底基板上,然后进行室温干燥。
例如,本公开至少一实施例提供的制备方法,还包括提供衬底基板,将所述具有自修复功能的石墨烯导电结构转移至所述衬底基板。
例如,在本公开至少一实施例提供的制备方法中,所述石墨烯纳米片由 电化学剥离石墨的方法或者还原氧化石墨烯纳米片的方法制备形成。
例如,在本公开至少一实施例提供的制备方法中,所述纳米纤维素由木浆经过2,2,6,6-四甲基哌啶氧化物(TEMPO)氧化后形成。
例如,在本公开至少一实施例提供的制备方法中,所述石墨烯纳米片和所述纳米纤维素的质量比为1:1。
例如,在本公开至少一实施例提供的制备方法中,混合石墨烯纳米片和纳米纤维素以形成第一溶液包括:在混合所述石墨烯纳米片和所述纳米纤维素之后进行超声处理。
例如,在本公开至少一实施例提供的制备方法中,混合所述石墨烯纳米片和所述纳米纤维素以形成第一溶液包括:将1mL~20mL质量百分含量为1%~30%的所述纳米纤维素的分散液加入到1mL~20mL质量百分含量为1%~30%的所述石墨烯纳米片的分散液中,超声10~20分钟分钟混合均匀。
例如,在本公开至少一实施例提供的制备方法中,形成所述第一溶液后,将所述第一溶液在培养皿中室温干燥成膜或者过滤后干燥成膜。
例如,在本公开至少一实施例提供的制备方法中,所述第一溶液体积为1-5ml时,采用室温干燥成膜。
例如,在本公开至少一实施例提供的制备方法中,所述第一溶液的体积大于5mL时,采用过滤后干燥成膜。
例如,在本公开至少一实施例提供的制备方法中,所述衬底基板包括刚性基板或者柔性基板。
本公开至少一实施例还提供一种如上任一项所述的具有自修复功能的石墨烯导电结构的自修复方法,包括:将导电性劣化的所述具有自修复功能的石墨烯导电结构放入有水的环境中,实现所述具有自修复功能的石墨烯导电结构导电性能的恢复。
例如,在本公开至少一实施例提供的自修复方法中,所述有水的环境是湿度为40%~80%的环境。
例如,在本公开至少一实施例提供的自修复方法中,将所述导电性劣化的所述具有自修复功能的石墨烯导电结构放入有水的环境中少于1分钟。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一实施例提供的一种具有自修复功能的石墨烯导电结构的制备过程的示意图;
图2为本公开一实施例提供的一种具有自修复功能的石墨烯导电结构的扫描电镜图;
图3为本公开一实施例提供的的一种具有自修复功能的石墨烯导电结构断裂后的扫描电镜图;
图4为本公开一实施例提供的的一种具有自修复功能的石墨烯导电结构自修复后的扫描电镜图;
图5为本公开一实施例提供的的一种具有自修复功能的石墨烯导电结构自修复的过程图;以及
图6为本公开一实施例提供的的一种具有自修复功能的石墨烯导电结构初始电阻、断裂后电阻及修复之后电阻的对照。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
石墨烯因具有特殊的单原子层二维结构和良好的导电性在能源存储、柔性电子器件等领域具有广泛的应用。在柔性电子器件的使用过程中,在弯曲 应力的作用下石墨烯导电结构断裂导致其导电性劣化甚至丧失是电子器件失效的最主要原因。为提高石墨烯导电结构的稳定性,延长柔性电子器件的使用寿命,提高石墨烯导电结构的修复能力具有重要的意义。
目前,氧化石墨烯薄膜可以自行修复,主要基于氧化石墨烯中的含氧官能团与水分子的相互作用,通过氧化石墨烯纳米片的再分散过程实现氧化石墨烯薄膜的修复。但是,氧化石墨烯上含有大量的含氧官能团和缺陷,使氧化石墨烯薄膜的导电性非常差,使其不能直接用作电极材料。电化学剥离的方法和还原氧化石墨烯的方法制备的石墨烯纳米片上含氧官能团和缺陷很少,且采用含氧官能团和缺陷较少的石墨烯纳米片制备的薄膜具有良好的导电性。然而,石墨烯纳米片与水分子相互作用力很差,很难实现直接利用水分子进行自行修复。
本公开至少一实施例提供一种具有自修复功能的石墨烯导电结构,该具有自修复功能的石墨烯导电结构包括石墨烯纳米片和纳米纤维素。
例如,该纳米纤维素与石墨烯纳米片自组装,该纳米纤维素能使石墨烯纳米片层错排布、互相搭接,且线状的纳米纤维素在石墨烯纳米片的片层之间均匀分散,因而不会阻碍导电通路,且还能大幅提高石墨烯导电结构的机械稳定性。
例如,纳米纤维素与石墨烯纳米片采用物理共混的方式形成,这样可以避免化学接枝法所带来的制备过程复杂,流程长,不利于连续生产的问题,且该物理共混的方法简单易操作,在常温下即可完成,此外,该方法绿色环保,安全可靠,可规模化生产。
例如,该石墨烯纳米片和纳米纤维素形成的混合物的线密度为0.7-1.5tex,拉伸强度为170-450MPa,断裂伸长率为3-12%,导电率为320-850S/m。
例如,石墨烯纳米片和纳米纤维素形成的混合物的线密度是收集50μm长的纤维,在100℃烘箱中烘8h除去水分后,采用精密称量仪称量,然后经计算得到的;拉伸强度和断裂伸长率是采用YG-001单丝强力机进行测试的;导电率是用Keithy6487电导率测试仪测得的。
例如,纳米纤维素吸附在石墨烯纳米片的表面上。纳米纤维素吸附在石墨烯纳米片的表面上包括:纳米纤维素仅吸附在石墨烯纳米片的上表面上,纳米纤维素仅吸附在石墨烯纳米片的下表面上,或者纳米纤维素同时吸附在石墨烯纳米片的上表面和下表面上。
例如,该石墨烯纳米片和纳米纤维素均匀混合。
需要说明的是,该“均匀混合”也叫均相混合,是指不管提取该混合物的哪一个部分,它的成分含量比例都是相同的,该均匀混合不是绝对的均匀混合,基本均匀混合也在本申请的保护范围之内。
例如,该石墨烯纳米片和纳米纤维素的质量之比为1:1。
例如,在一个示例中,混合石墨烯纳米片和纳米纤维素是通过混合石墨烯纳米片粉末和纳米纤维素粉末,然后将混合后的石墨烯纳米片粉末和纳米纤维素粉末溶于去离子水中得到的,要保证石墨烯纳米片和纳米纤维素的质量之比为1:1,只要称取等质量的石墨烯纳米片粉末和纳米纤维素粉末即可。
例如,在另一个示例中,混合石墨烯纳米片和纳米纤维素是通过混合石墨烯纳米片的分散液和纳米纤维素的分散液得到的,根据石墨烯纳米片的分散液的浓度和纳米纤维素的分散液的浓度,量取适当体积的石墨烯纳米片的分散液和纳米纤维素的分散液使得石墨烯纳米片和纳米纤维素的质量之比为1:1即可。
例如,在另一个示例中,混合石墨烯纳米片和纳米纤维素是通过混合石墨烯纳米片粉末和纳米纤维素的分散液得到的,该方法包括称取适当质量的石墨烯纳米片粉末和量取适当体积的纳米纤维素的分散液,且将石墨烯纳米片粉末溶于纳米纤维素的分散液中,只要保证石墨烯纳米片和纳米纤维素干粉的质量之比为1:1即可。
例如,该石墨烯纳米片的厚度为2nm-3nm。
例如,该石墨烯纳米片的厚度为2nm、2.2nm、2.4nm、2.6nm、2.8nm或者3nm。
例如,该石墨烯纳米片的宽度为20nm-5μm。
例如,该石墨烯纳米片的宽度为100nm、500nm、1μm、2μm、4μm或者5μm。
例如,该石墨烯纳米片的厚度和宽度是通过光学显微镜测试得到的。
例如,该纳米纤维素为线状结构,该线状结构的直径为5nm-22nm。
例如,该纳米纤维素的直径为5nm、7nm、9nm、11nm、12nm、14nm、16nm、18nm、20nm或者22nm。
例如,该纳米纤维素的长度为2μm-50μm。
例如,该纳米纤维素的长度为2μm,10μm,20μm,40μm或者50μm。
例如,该具有自修复功能的石墨烯导电结构的厚度为500nm-50μm。
例如,该具有自修复功能的石墨烯导电结构的厚度为500nm、10μm、20μm、30μm或者40μm。
例如,该具有自修复功能的石墨烯导电结构在有水的环境中自修复。
需要说明的是,该“有水的环境”是指有液态水的环境、有水蒸气的环境或者液态水和水蒸气共存的环境,且该有水的环境中的水可以使得具有自修复功能的石墨烯导电结构充分溶胀。
例如,该具有自修复功能的石墨烯导电结构的自修复包括石墨烯导电结构导电性的自修复和石墨烯导电结构形貌的自修复,即导电性劣化的石墨烯导电结构在结构上可以恢复完整无间隙,在导电性上也可以恢复到断裂之前的导电性。
例如,该纳米纤维素的形成过程包括氧化处理的过程,这样纳米纤维素表面含有大量羟基和羧基等官能团。
例如,该纳米纤维素是D-吡喃葡萄糖环为单元,相互用β-1,4-糖苷键以C1椅式构象连接的线形高分子形成的纳米结构。
例如,本公开的实施例提供的具有自修复功能的石墨烯导电结构不仅机械强度高,同时导电性能优异,断裂之后在有水的环境中可以自恢复形貌和导电性,具有较好的柔性,其可广泛用于高性能纤维、生物传感器、复合纤维材料和表面吸附材料等领域。
本公开至少一实施例还提供一种具有自修复功能的石墨烯导电结构的制备方法,该制备方法包括:混合石墨烯纳米片和纳米纤维素以形成第一溶液;对第一溶液进行成膜以形成具有自修复功能的石墨烯导电结构。
混合该石墨烯纳米片和纳米纤维素以形成第一溶液;将第一溶液施加(例如,涂覆)在衬底基板上以形成具有自修复功能的石墨烯导电结构。
例如,该具有自修复功能的石墨烯导电结构断裂导致其包含的至少部分石墨烯纳米片间隔开,从而使得该具有自修复功能的石墨烯导电结构的导电性劣化甚至丧失,采用本公开的实施例提供的具有自修复功能的石墨烯导电结构可以实现该石墨烯导电结构的自修复,该具有自修复功能的石墨烯导电结构自修复的原理为:纳米纤维素在有水的环境中膨胀带动其周围的石墨烯纳米片滑移以使得相互间隔开的石墨烯纳米片重新连接,从而实现石墨烯导电结构导电性和形貌的修复。该修复条件温和、操作方便、修复效率高,且 可以重复修复。
例如,图1为本公开一实施例提供的一种具有自修复功能的石墨烯导电结构的制备过程的示意图,如图1所示,该制备过程包括混合石墨烯纳米片和纳米纤维素以形成第一溶液,形成第一溶液包括对第一溶液进行超声。
如图1所示,将石墨烯纳米片溶于去离子水中形成石墨烯纳米片的分散液1,将纳米纤维素溶于去离子水中形成纳米纤维素的分散液2,将石墨烯纳米片的分散液1和纳米纤维素的分散液2混合并进行超声处理以形成第一溶液3,接着对第一溶液3进行过滤处理以去除杂质,并采用施加仪器4将第一溶液3施加到衬底基板5上。
例如,在混合石墨烯纳米片和纳米纤维素形成的第一溶液3中,石墨烯纳米片和纳米纤维素的质量之比为1:1。
例如,在本公开至少一实施例提供的制备方法中,混合石墨烯纳米片和纳米纤维素以形成第一溶液包括:将1mL~20mL质量百分含量为1%~30%的所述纳米纤维素的分散液加入到1mL~20mL质量百分含量为1%~30%的所述石墨烯纳米片的分散液中,超声10分钟~20分钟混合均匀,然后在培养皿中室温干燥成膜或者过滤后干燥成膜。
例如,在一个示例中,混合石墨烯纳米片和纳米纤维素以形成第一溶液3包括:将1mL质量百分含量为1%的纳米纤维素的分散液2加入到1mL质量百分含量为1%的石墨烯纳米片的分散液1中,超声10分钟混合均匀,然后在直径为5cm的培养皿中室温干燥制备石墨烯纳米片和纳米纤维素的复合薄膜,且该薄膜的厚度为500nm,采用在培养皿中室温干燥成膜的方式可以使得最终形成的膜层的表面更光滑、更平整,使得最终形成的石墨烯导电结构的性能更加优异。
例如,在另一个示例中,混合石墨烯纳米片和纳米纤维素以形成第一溶液3包括:将6mL质量百分含量为1%的纳米纤维素的分散液2加入到6mL质量百分含量为1%的石墨烯纳米片的分散液1中,超声10分钟混合均匀,然后过滤,过滤后在室温下干燥成膜,该薄膜的厚度为10μm。由于形成的膜层的厚度较大,可以采用先过滤的方法去出大部分的水分,然后在室温下成膜以得到表面更加光滑和平整的膜层结构。
例如,在又一个示例中,混合石墨烯纳米片和纳米纤维素以形成第一溶液3包括:将20mL质量百分含量为1%的纳米纤维素的分散液2加入到20 mL质量百分含量为1%的石墨烯纳米片的分散液1中,超声10分钟混合均匀,然后过滤,过滤后在室温下干燥成膜,该薄膜的厚度为100μm。由于形成的膜层的厚度较大,可以采用先过滤的方法取出大部分的水分,然后在室温下成膜以得到表面更加光滑和平整的膜层结构。
例如,用于施加第一溶液3的衬底基板5包括刚性基板或者柔性基板。例如,该衬底基板5可以为玻璃基板、石英基板、塑料基板或者超薄金属基板。
例如,将石墨烯纳米片与纳米纤维素混合形成的第一溶液采用喷涂的方法形成在衬底基板上以形成第一薄膜,测得该第一薄膜的厚度为2μm~10μm,对该第一薄膜进行处理以形成石墨烯导电结构,可以根据喷涂时间来调节石墨烯导电结构的初始电阻,例如,采用万用表测得石墨烯导电结构的方阻为1kΩ~2kΩ。
例如,该石墨烯纳米片由电化学剥离石墨的方法或者还原氧化石墨烯纳米片的方法制备形成。
例如,在一个示例中,电化学剥离石墨的方法包括:采用石墨棒作为阳极,Pt线作为阴极,采用浓度为0.1mol/L的稀硫酸作为电解质,在石墨棒阳极上施加10V的电压持续2min,使石墨棒中的层状石墨剥离,之后采用过滤的方法去除稀硫酸,在滤膜上收集石墨烯纳米片,将该石墨烯纳米片冷冻干燥后溶于去离子水配成质量百分含量为1%的石墨烯纳米片分散液。
例如,在一个示例中,通过还原氧化石墨烯纳米片的方法制备石墨烯纳米片包括:取5g石墨和3.75g NaNO 3粉末加入置于冰水浴的圆底烧瓶中,加入375mL浓硫酸,搅拌均匀后,缓慢加入22.5g KMnO 4,约用1小时加完,继续于冰水浴条件下搅拌2小时,然后在室温下搅拌(机械搅拌或者磁力搅拌)5天,之后在98℃下向反应体系中缓慢滴加700mL质量百分含量为5%的硫酸水溶液,继续搅拌使反应进行2小时,并进一步在60℃下加入15mL质量百分含量为30%的双氧水并继续在室温下搅拌2小时,反应结束后用大量蒸馏水稀释,过滤并反复用蒸馏水清洗,直至滤液为中性,将石墨烯分散液冷冻干燥得到氧化石墨烯粉末,将氧化石墨烯粉末溶于蒸馏水配置成3mg/mL的分散液,向反应体系中滴加水合肼进行还原,水合肼与氧化石墨烯的配比为1mL水合肼:3mg氧化石墨烯,然后在室温下搅拌2h反应得到石墨烯纳米片的分散液,将该石墨烯纳米片的分散液洗涤过滤,之后冷冻干 燥得到石墨烯纳米片的粉末,将石墨烯纳米片的粉末溶于蒸馏水中配置成质量百分含量为1%的分散液备用。
例如,在另一个示例中,通过还原氧化石墨烯纳米片的方法制备石墨烯纳米片包括:采用hummer’s氧化法将天然石墨剥离且经过干燥处理得到氧化石墨烯固体,将氧化石墨烯固体溶于水、N,N二甲基亚酰胺、N-甲基吡咯烷酮、N,N-二甲基甲酰胺或异丙醇等分散介质中形成分散液,然后在分散液中加入还原剂,还原反应进行8-24h后,依次水洗、醇洗和干燥后得到石墨烯纳米片。
例如,在一个示例中,该纳米纤维素由木浆经过2,2,6,6-四甲基哌啶氧化物(TEMPO)氧化后,然后均质形成,其形成的流程图为:
Figure PCTCN2018119212-appb-000001
纳米纤维素形成的具体过程为:
(1)将5g漂白干燥后的松木纸浆分散于250mL Na 2CO 3和NaHCO 3混合形成的缓冲溶液(pH=10)中,然后在该缓冲溶液中加入78.1mg 2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)和514.4mg NaBr,再缓慢加入3.1mL质量百分比浓度为12%的NaClO溶液并机械搅拌4h,反应过程中用1mol/L NaOH调控pH值并用pH计测量pH值,使最终的pH为10,以形成第一纤维素分散液。
例如,纤维素被氧化之前为管状结构,其直径为20μm-30μm。
例如,在进行均质过程之前对纤维素进行氧化是为了降低纤维素分子内氢键的相互作用,使后续的均质破碎过程更加容易,以降低均质机的能耗。
例如,纤维素之间形成的氢键的示意图为:
Figure PCTCN2018119212-appb-000002
例如,对纤维素进行氧化的反应过程为:
Figure PCTCN2018119212-appb-000003
需要说明的是,上述对纤维素进行氧化只是一部分羟基被最终氧化成了羧基,一部分羟基仍然保留,这样被部分氧化后的纤维素除了更容易被均质外,纤维素的其他特性仍然保留。
例如,氧化反应形成的中间体C 6-纤维素醛的分子结构为:
Figure PCTCN2018119212-appb-000004
例如,TEMPO试剂的分子结构为:
Figure PCTCN2018119212-appb-000005
(2)用抽滤法除去第一纤维素分散液中的反应试剂仅保留氧化后的纤维素,将氧化后的纤维素转移至1000mL烧杯中并加入500mL去离子水,于500rpm下磁力搅拌0.5h,重复上述抽滤过程3遍。
(3)将上述清洗后的氧化后的纤维素溶于500mL去离子水中,形成第二纤维素分散液,在1500bar的压力下使用高压均质机对第二纤维素分散液进行高压均质处理10min以得到纳米纤维素。
例如,采用高压均质法是制备纳米纤维素的一种常用机械制备方法,在高压均质的过程中,高压均质机高速运动使物料粉碎,从而减小物料的尺寸。目前,制备纳米纤维素通常采用高压均质机进行均质处理,所用的均质压力为300bar~500bar,均质压力每升高100bar,物料温度上升3℃,因此,所用的均质压力不宜太高。
例如,采用高压均质法后形成的纳米纤维素的尺寸进一步减小,纳米纤维素在去离子水中的分散更加均匀,且对光的散射作用降低,且呈透明态。
(4)将纳米纤维素分散液冷冻干燥,制备纳米纤维素粉末,并将纳米 纤维素粉末溶于去离子水中配置成质量百分含量为1%的纳米纤维素分散液。
例如,在另一个示例中,混合该石墨烯纳米片和纳米纤维素以形成第一溶液的过程包括:
(1)采用上述电化学剥离石墨的方法或者还原氧化石墨烯纳米片的方法制备石墨烯纳米片粉末;
(2)将20g松木纸浆加入到1000mL-1500mL去离子水中,在充分搅拌的条件下,依次加入1-4g溴化钠、30-100g次氯酸钠和0.2-0.8g四甲基哌啶催化剂,然后用无机碱性溶液将反应液的pH值调节至10-10.5,反应至pH值不再变化时,加入无机酸性溶液将反应液的pH值调节至1.8-2.2,反应0.5-1h,离心后取上层清液,反复冲洗、抽滤至上清液中剩余物的pH为中性,然后通过抽滤去除所有的上清液以得到湿态的纳米纤维素,将所得的湿态的纳米纤维素加入分散介质(例如,去离子水)中得到纳米纤维素分散液;
(3)将步骤(1)所得的石墨烯纳米片粉末与步骤(2)所得的纳米纤维素分散液加入到分散介质(例如,去离子水)中混合配制得到石墨烯纳米片的质量百分比含量为2%-5%,纳米纤维素的质量百分含量为2%-5%的混合溶液。
上述方法中步骤(2)所用的无机碱性溶液为氢氧化钠溶液或氢氧化钾溶液;所用的无机酸性溶液为盐酸溶液、硫酸溶液或硝酸溶液中的任意一种。
上述方法中步骤(3)中的混合方式为先机械搅拌至少4小时,然后超声分散至少15分钟;所用的分散介质为水、N,N二甲基亚酰胺、N-甲基吡咯烷酮、N,N-二甲基甲酰胺或异丙醇中的任意一种。
例如,图2为石墨烯导电结构的扫描电镜图,从图2可以看出,石墨烯纳米片的片层交错,整个石墨烯导电结构形成连续的片层,中间没有断口。
本公开至少一实施例还提供一种如上任一具有自修复功能的石墨烯导电结构的自修复方法,包括:将导电性劣化的具有自修复功能的石墨烯导电结构放入有水的环境中,实现具有自修复功能的石墨烯导电结构导电性的恢复。
例如,该有水的环境是湿度为40%~80%的环境。
例如,该具有自修复功能的石墨烯导电结构在有水的环境中自修复包括以下步骤:(1)纳米纤维素在有水的环境中吸水膨胀;(2)膨胀的纳米纤维 素在导电性劣化的石墨烯导电结构的断口处重新连接,且带动其周围的石墨烯纳米片滑移以使得相互间隔开的石墨烯纳米片重新连接。
例如,模拟石墨烯导电结构在弯曲、拉伸过程中断裂的情形,采用手术刀片对石墨烯导电结构进行切割。根据切割速度和力度的不同,石墨烯导电结构断口的宽度可以调节,且断口的宽度不大于100微米。
例如,将具有不同宽度的断口的石墨烯导电结构放入有水的环境中少于1分钟,例如,将断口宽度为20微米、40微米、60微米、80微米和100微米的石墨烯导电结构放入有水的环境中的时间为5秒(s)、10秒(s)、15秒(s)、25秒(s)、35秒(s)、45秒(s)和60秒(s),观察不同时间具有不同断口宽度的石墨烯导电结构导电性恢复的情况,发现具有20微米断口宽度的石墨烯导电结构在有水环境中放置5s即可恢复导电性,具有40微米断口宽度的石墨烯导电结构在有水环境中放置10s即可恢复导电性;具有60微米断口宽度的石墨烯导电结构在有水环境中放置20s即可恢复导电性;具有80微米断口宽度的石墨烯导电结构在有水环境中放置30s即可恢复导电性;具有100微米断口宽度的石墨烯导电结构在有水环境中放置35s即可恢复导电性。
例如,通过以下示例来说明具有自修复功能的石墨烯导电结构的修复过程。
示例一
(1)取5mL质量百分含量为1%的纳米纤维素分散液加入到5mL质量百分含量为1%的石墨烯纳米片分散液中,超声分散10分钟混合均匀,以形成第一溶液。
(2)将石墨烯纳米片与纳米纤维素混合形成的第一溶液采用喷涂的方法形成在衬底基板上以形成第一薄膜,该第一薄膜的厚度为2μm。
(3)对该第一薄膜进行干燥等处理形成石墨烯导电结构,采用万用表测得该石墨烯导电结构的方阻约为2kΩ。
(4)利用刀片对石墨烯导电结构进行刻划以使石墨烯导电结构断裂,断口的宽度约为100μm,此时石墨烯导电结构的导电性丧失。
(5)将具有断口的石墨烯导电结构放入水中20s,然后取出,实现石墨烯导电结构的自修复。
例如,图3为断裂的石墨烯导电结构的扫描电镜图,从图3可以看出, 石墨烯导电结构中形成有断口,该断口使得石墨烯导电结构完全断裂,该断口的宽度为约100微米。
例如,图4为修复之后的石墨烯导电结构的扫描电镜图,图5为导电性劣化的石墨烯导电结构在有水环境中自修复的过程图,从图4和图5可以看出,断口两侧的石墨烯导电结构重新连接在一起,该石墨烯导电结构在断口处被“缝合”上了,可以实现该石墨烯导电结构形貌上的恢复。
例如,图6为该具有自修复功能的石墨烯导电结构的初始电阻、断裂之后的电阻及修复之后的电阻的对照图,如图6所示,该具有自修复功能的石墨烯导电结构的初始方阻约为2kΩ,断裂之后的方阻约为10000kΩ,修复之后的方阻约为2kΩ。从图6可以看出,可以实现该具有自修复功能的石墨烯导电结构导电性的恢复。
示例二
(1)取1mL质量百分含量为1%的纳米纤维素分散液加入到1mL质量百分含量为1%的石墨烯纳米片分散液中,超声10分钟混合均匀,以形成第一溶液。
(2)将石墨烯纳米片与纳米纤维素混合形成的第一溶液采用喷涂的方法形成在衬底基板上以形成第一薄膜,该第一薄膜的厚度为500nm。
(3)对该第一薄膜进行干燥等处理形成石墨烯导电结构,采用万用表测得该石墨烯导电结构的方阻约为10kΩ。
(4)利用刀片对石墨烯导电结构进行刻划以使石墨烯导电结构断裂,断口的宽度约为80μm,此时石墨烯导电结构的导电性丧失。
(5)将具有断口的石墨烯导电结构放入水中18s,然后取出,实现石墨烯导电结构的自修复。
通过该示例的过程也可以实现该石墨烯导电结构形貌和导电性上的恢复。
示例三
(1)取20mL质量百分含量为1%的纳米纤维素分散液加入到20mL质量百分含量为1%的石墨烯纳米片分散液中,超声分散10分钟混合均匀,以形成第一溶液。
(2)将石墨烯纳米片与纳米纤维素混合形成的第一溶液采用喷涂的方法形成在衬底基板上以形成第一薄膜,该第一薄膜的厚度为50μm。
(3)对该第一薄膜进行干燥等处理形成石墨烯导电结构,采用万用表测得该石墨烯导电结构的方阻约为1kΩ左右。
(4)利用刀片对石墨烯导电结构进行刻划以使石墨烯导电结构断裂,断口的宽度约为60μm,此时石墨烯导电结构的导电性丧失。
(5)将具有断口的石墨烯导电结构放入水中12s,然后取出,实现石墨烯导电结构的自修复。
通过该示例的过程也可以实现该具有自修复功能的石墨烯导电结构形貌和导电性上的恢复。
对比例一
(1)取10mL质量百分含量为1%的石墨烯纳米片分散液;
(2)采用喷涂的方法将该石墨烯纳米片分散液形成在衬底基板上以形成第二薄膜,该第二薄膜的厚度为2μm。
(3)对该第二薄膜进行干燥等处理形成石墨烯导电结构,采用万用表测得该石墨烯导电结构的方阻约为1kΩ。
(4)利用刀片对石墨烯导电结构进行刻划以使石墨烯导电结构断裂,断口的宽度约为100μm,此时石墨烯导电结构的导电性丧失。
(5)将该具有断口的导电结构放入水中10分钟,然后取出。
对照实验显示,纯石墨烯导电结构即使放在水中10分钟也不能自行修复。
需要说明的是,上述将具有断口的导电结构放入水中,既可以是放入液态的水中,也可以是放入水蒸气的环境中,或者放入液态水和水蒸气共存的环境,且该有水的环境中的水可以使得石墨烯导电结构充分溶胀。
本发明的实施例提供一种具有自修复功能的石墨烯导电结构及其制备方法、具有自修复功能的石墨烯导电结构的自修复方法具有以下至少一项有益效果:
(1)本公开至少一实施例提供的具有自修复功能的石墨烯导电结构不仅机械强度高,同时导电性能优异,断裂之后在有水的环境中可以自恢复形貌和导电性,具有较好的柔性,其可广泛用于高性能纤维、生物传感器、复合纤维材料和表面吸附材料等领域。
(2)在本公开至少一实施例提供的具有自修复功能的石墨烯导电结构的制备方法中,避免了化学接枝法所带来的制备过程复杂,流程长,不利于 连续生产的问题,且该物理共混的方法简单易操作,且在常温即可完成,且绿色环保,安全可靠,可规模化生产。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种具有自修复功能的石墨烯导电结构,包括石墨烯纳米片和纳米纤维素。
  2. 根据权利要求1所述的具有自修复功能的石墨烯导电结构,其中,所述纳米纤维素吸附在所述石墨烯纳米片的表面上。
  3. 根据权利要求1所述的具有自修复功能的石墨烯导电结构,其中,所述石墨烯纳米片和所述纳米纤维素均匀混合。
  4. 根据权利要求1或3所述的具有自修复功能的石墨烯导电结构,其中,所述石墨烯纳米片和所述纳米纤维素的质量比为1:1。
  5. 根据权利要求1-4中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述石墨烯纳米片的厚度为2nm-3nm,宽度为20nm-5μm。
  6. 根据权利要求5所述的具有自修复功能的石墨烯导电结构,其中,所述石墨烯纳米片的片层交错,整个所述具有自修复功能的石墨烯导电结构形成连续的片层,中间没有断口。
  7. 根据权利要求1-6中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述纳米纤维素为线状结构,所述线状结构的直径为5nm-22nm,长度为2μm-50μm。
  8. 根据权利要求1-7中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述纳米纤维素是D-吡喃葡萄糖环为单元,相互用β-1,4-糖苷键以C1椅式构象连接的线形高分子形成的纳米结构。
  9. 根据权利要求1-8中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述具有自修复功能的石墨烯导电结构的厚度为500nm-50μm。
  10. 根据权利要求1-9中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述具有自修复功能的石墨烯导电结构在有水的环境中自修复。
  11. 根据权利要求1-10中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述具有自修复功能的石墨烯导电结构的自修复包括导电性能和形貌的自修复。
  12. 根据权利要求1-11中任一项所述的具有自修复功能的石墨烯导电结构,其中,所述具有自修复功能的石墨烯导电结构的线密度为0.7-1.5tex,拉伸强度为170-450MPa,断裂伸长率为3-12%,导电率为320-850S/m。
  13. 一种具有自修复功能的石墨烯导电结构的制备方法,包括:
    混合石墨烯纳米片和纳米纤维素以形成第一溶液;
    对所述第一溶液进行成膜以形成所述具有自修复功能的石墨烯导电结构。
  14. 根据权利要求13所述的制备方法,还包括提供衬底基板,对所述第一溶液进行成膜以形成所述具有自修复功能的石墨烯导电结构包括使用喷涂的方法将所述第一溶液形成在所述衬底基板上,然后进行室温干燥。
  15. 根据权利要求13所述的制备方法,还包括提供衬底基板,将所述具有自修复功能的石墨烯导电结构转移至所述衬底基板。
  16. 根据权利要求13-15中任一项所述的制备方法,其中,所述石墨烯纳米片由电化学剥离石墨的方法或者还原氧化石墨烯纳米片的方法制备形成。
  17. 根据权利要求13-15中任一项所述的制备方法,其中,所述纳米纤维素由木浆经过2,2,6,6-四甲基哌啶氧化物(TEMPO)氧化后形成。
  18. 根据权利要求13-17中任一项所述的制备方法,其中,所述石墨烯纳米片和所述纳米纤维素的质量比为1:1。
  19. 根据权利要求13-18中任一项所述的制备方法,其中,混合石墨烯纳米片和纳米纤维素以形成第一溶液包括:在混合所述石墨烯纳米片和所述纳米纤维素之后进行超声处理。
  20. 根据权利要求19所述的制备方法,其中,混合石墨烯纳米片和纳米纤维素以形成第一溶液包括:将1mL~20mL质量百分含量为1%~30%的所述纳米纤维素的分散液加入到1mL~20mL质量百分含量为1%~30%的所述石墨烯纳米片的分散液中,超声10分钟~20分钟混合均匀。
  21. 根据权利要求13所述的制备方法,其中,形成所述第一溶液后,将所述第一溶液在培养皿中室温干燥成膜或者过滤后干燥成膜。
  22. 根据权利要求21所述的制备方法,其中,所述第一溶液体积为1-5ml时,采用室温干燥成膜。
  23. 根据权利要求22所述的制备方法,其中,所述第一溶液的体积大于5mL时,采用过滤后干燥成膜。
  24. 根据权利要求15所述的制备方法,其中,所述衬底基板包括刚性基板或者柔性基板。
  25. 一种如权利要求1-12中任一项所述的具有自修复功能的石墨烯导电结构的自修复方法,包括:
    将导电性劣化的所述具有自修复功能的石墨烯导电结构放入有水的环境中,实现所述具有自修复功能的石墨烯导电结构导电性能的恢复。
  26. 根据权利要求25所述的自修复方法,其中,所述有水的环境是湿度为40%~80%的环境。
  27. 根据权利要求25或26所述的自修复方法,其中,将所述导电性劣化的所述具有自修复功能的石墨烯导电结构放入有水的环境中少于1分钟。
PCT/CN2018/119212 2018-12-04 2018-12-04 石墨烯导电结构及其制备方法、自修复方法 WO2020113430A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002737.3A CN111566157B (zh) 2018-12-04 2018-12-04 石墨烯导电结构及其制备方法、自修复方法
PCT/CN2018/119212 WO2020113430A1 (zh) 2018-12-04 2018-12-04 石墨烯导电结构及其制备方法、自修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119212 WO2020113430A1 (zh) 2018-12-04 2018-12-04 石墨烯导电结构及其制备方法、自修复方法

Publications (1)

Publication Number Publication Date
WO2020113430A1 true WO2020113430A1 (zh) 2020-06-11

Family

ID=70974842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119212 WO2020113430A1 (zh) 2018-12-04 2018-12-04 石墨烯导电结构及其制备方法、自修复方法

Country Status (2)

Country Link
CN (1) CN111566157B (zh)
WO (1) WO2020113430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163262A (zh) * 2021-12-27 2022-03-11 中国人民解放军陆军装甲兵学院 一种增强硬脆材料表面韧性的材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083895A1 (ko) * 2010-01-08 2011-07-14 전남대학교산학협력단 터보스트래틱 구조를 갖는 흑연성구조체부터의 그라핀시트 제조방법 및 상기 방법으로 제조된 그라핀시트
CN104910398A (zh) * 2014-03-12 2015-09-16 中国科学院金属研究所 以纳米纤维素辅助制备高含量石墨烯柔性导电复合膜方法
CN105860143A (zh) * 2016-05-14 2016-08-17 上海大学 一种柔性纳米纤维素-石墨烯复合膜及其制备方法
CN106633791A (zh) * 2016-10-20 2017-05-10 国家纳米科学中心 一种纳米纤维素塑基柔性导电薄膜的制备方法
CN106750396A (zh) * 2016-09-18 2017-05-31 南京林业大学 一种石墨烯‑纳米纤维素‑聚乙烯醇复合导电凝胶及其制备方法和应用
CN107915853A (zh) * 2017-10-27 2018-04-17 华南理工大学 一种纳米纤维素/石墨烯复合柔性薄膜及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083895A1 (ko) * 2010-01-08 2011-07-14 전남대학교산학협력단 터보스트래틱 구조를 갖는 흑연성구조체부터의 그라핀시트 제조방법 및 상기 방법으로 제조된 그라핀시트
CN104910398A (zh) * 2014-03-12 2015-09-16 中国科学院金属研究所 以纳米纤维素辅助制备高含量石墨烯柔性导电复合膜方法
CN105860143A (zh) * 2016-05-14 2016-08-17 上海大学 一种柔性纳米纤维素-石墨烯复合膜及其制备方法
CN106750396A (zh) * 2016-09-18 2017-05-31 南京林业大学 一种石墨烯‑纳米纤维素‑聚乙烯醇复合导电凝胶及其制备方法和应用
CN106633791A (zh) * 2016-10-20 2017-05-10 国家纳米科学中心 一种纳米纤维素塑基柔性导电薄膜的制备方法
CN107915853A (zh) * 2017-10-27 2018-04-17 华南理工大学 一种纳米纤维素/石墨烯复合柔性薄膜及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163262A (zh) * 2021-12-27 2022-03-11 中国人民解放军陆军装甲兵学院 一种增强硬脆材料表面韧性的材料及其制备方法
CN114163262B (zh) * 2021-12-27 2022-11-18 中国人民解放军陆军装甲兵学院 一种增强硬脆材料表面韧性的材料及其制备方法

Also Published As

Publication number Publication date
CN111566157A (zh) 2020-08-21
CN111566157B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Zheng et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion
Wei et al. MXene‐based conductive organohydrogels with long‐term environmental stability and multifunctionality
Han et al. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network
Wan et al. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding
Zhang et al. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect
Lay et al. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole
Shi et al. Efficient lightweight supercapacitor with compression stability
WO2019095751A1 (zh) 一种纤维素/二维层状材料复合水凝胶及其制备方法
US10311993B2 (en) Cotton fiber dissolution and regeneration and 3D printing of cellulose based conductive composites
Xu et al. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array
CN111252768A (zh) 一种碳化钛MXene官能化石墨烯纳米复合材料薄膜制备方法及应用
Song et al. Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties
Wang et al. Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application
Wang et al. Wet-spinning of highly conductive nanocellulose–silver fibers
Wang et al. Facile production of natural silk nanofibers for electronic device applications
Huang et al. Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels: Ambient-dried, recyclable, and 3D-Printable
CN116023705B (zh) 透明压电薄膜、超声换能器及其制备方法
Xu et al. Enhanced tensile and electrochemical performance of MXene/CNT hierarchical film
Liu et al. Green and cost-effective synthesis of flexible, highly conductive cellulose nanofiber/reduced graphene oxide composite film with deep eutectic solvent
KR101751349B1 (ko) 방향족 화합물을 포함하는 나노셀룰로오스 제조 및 이를 통한 유무기 복합체 제조방법
Wang et al. Ultra-robust and high-toughness graphene oxide papers via synergistic strengthening by addition of carbon-nanotubes and copper ions
KR20160021652A (ko) 탄소나노튜브 복합체 및 그 제조 방법
TWI549754B (zh) 具優先取向紋理的離子交換薄膜
WO2020113430A1 (zh) 石墨烯导电结构及其制备方法、自修复方法
Zou et al. Effects of different hot pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942294

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18942294

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 18942294

Country of ref document: EP

Kind code of ref document: A1