WO2020111702A1 - 내구성이 우수한 고강도 강재 및 이의 제조방법 - Google Patents

내구성이 우수한 고강도 강재 및 이의 제조방법 Download PDF

Info

Publication number
WO2020111702A1
WO2020111702A1 PCT/KR2019/016299 KR2019016299W WO2020111702A1 WO 2020111702 A1 WO2020111702 A1 WO 2020111702A1 KR 2019016299 W KR2019016299 W KR 2019016299W WO 2020111702 A1 WO2020111702 A1 WO 2020111702A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
cooling
phase
hot
strength
Prior art date
Application number
PCT/KR2019/016299
Other languages
English (en)
French (fr)
Inventor
김성일
나현택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2021529852A priority Critical patent/JP7244723B2/ja
Priority to EP19889604.5A priority patent/EP3889298A4/en
Priority to CN201980078073.3A priority patent/CN113166893B/zh
Priority to US17/294,250 priority patent/US20220010399A1/en
Publication of WO2020111702A1 publication Critical patent/WO2020111702A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high strength steel material having excellent durability and a method for manufacturing the same.
  • members of chassis parts and wheel disks of commercial vehicles have used high-strength steel plates having a thickness of 5 mm or more and a yield strength of 450 to 600 MPa in order to secure high rigidity due to vehicle characteristics.
  • a high-strength steel material with a tensile strength of 650 MPa or more.
  • Patent Document 1 the ferrite phase is formed as a matrix structure by winding at a high temperature after a hot rolling of an ordinary austenite station, and fine precipitates are formed.
  • Patent Document 2 proposes a technique for cooling the winding temperature to a temperature at which the bainite phase is formed as a matrix structure so that a coarse pearlite structure is not formed.
  • Patent Document 3 discloses a technique for miniaturizing austenite grains by rolling with a rolling reduction of 40% or more in an unrecrystallized region during hot rolling using titanium (Ti), niobium (Nb), or the like.
  • alloy components such as Si, Mn, Al, Mo, and Cr are mainly used.
  • it is effective in improving the strength of the hot-rolled steel sheet, but when a large amount of alloy components is added, some components are segregated in the steel ( segregation), or causing micro-structure non-uniformity, resulting in poor shear formability, and micro-cracks on the shear surface are easily propagated in the fatigue environment, resulting in component damage.
  • the microstructure non-uniformity between the thickness surface layer portion and the center portion increases, resulting in increased cracking of the shear surface, and a faster propagation rate of cracks in a fatigue environment, resulting in poor durability.
  • Patent Documents 1 to 3 do not consider the fatigue properties of thick steel materials having high strength.
  • Patent Document 1 Japanese Patent Publication No. 2002-322541
  • Patent Document 2 Korean Registered Publication No. 10-1528084
  • Patent Document 3 Japanese Patent Publication No. 1997-143570
  • One aspect of the present invention is to provide a steel material having a certain thickness, and not only has high strength, but also has excellent durability and a method for manufacturing the same.
  • carbon (C) 0.05 to 0.15%
  • silicon (Si) 0.01 to 1.0%
  • manganese (Mn) 1.0 to 2.3%
  • aluminum (Al) 0.01 to 0.1%
  • Chromium (Cr) 0.005 to 1.0%
  • Phosphorus (P) 0.001 to 0.05%
  • Sulfur (S) 0.001 to 0.01%
  • Titanium (Ti) 0.005 ⁇ 0.11%
  • the fraction of ferrite and bainite phases is 90% or more, and the proportion of crystal grains (ratio of short side/long side) in the center (t/4 to t/2 point in the thickness direction) is 0.3 or less.
  • the proportion of crystal grains (ratio of short side/long side) in the center (t/4 to t/2 point in the thickness direction) is 0.3 or less.
  • And provides a high strength steel material having excellent durability at a grain boundary length of 700 mm or more observed in a unit area (1 mm 2 ) at the center.
  • Another aspect of the present invention heating the steel slab having the above-described alloy composition in a temperature range of 1200 ⁇ 1350 °C; Hot-rolling the heated steel slab to produce a hot-rolled steel sheet; Cooling the hot-rolled steel sheet to a temperature range of 400 ⁇ 500 °C and then winding (CT); And after the winding, including the step of air cooling to a temperature range of room temperature ⁇ 200 °C,
  • the hot rolling is finished hot rolling at a temperature (FDT (°C)) satisfying the following [Relational Formula 1], and the cooling is performed by the following primary cooling and secondary cooling, and the primary cooling is [Relational Formula 2].
  • FDT °C
  • the secondary cooling provides a method of making high-strength steel material having excellent durability, characterized in that for performing a cooling rate (CR 2) satisfying the following [Expression 3].
  • Tn 730 + 92 ⁇ [C] + 70 ⁇ [Mn] + 45 ⁇ [Cr] + 650 ⁇ [Nb] + 410 ⁇ [Ti]-80 ⁇ [Si]-1.4 ⁇ (t-5) (where Each element means weight content (%), and t means thickness (mm) of the final hot rolled steel sheet)
  • the steel material of the present invention has an effect that can be suitably applied to members of a chassis component of a vehicle and wheel disk.
  • 1 is a graph showing the ratio of fatigue strength and yield strength according to the thickness of an invention steel and a comparative steel in one embodiment of the present invention.
  • the present inventors have studied in depth to solve the problem of deterioration in durability when molding steel materials for existing automobiles.
  • the present inventors investigated the change in the distribution of cracks and durability in the shear surface after molding according to the components and microstructures of the existing thick steel materials, and confirmed that the durability characteristics were changed according to the shape control of the grains in the center of the thickness of the steel material.
  • the present inventors have confirmed that it is possible to provide a steel material having high strength and a targeted durability due to excellent cross-section quality during molding, and to complete the present invention.
  • the high strength steel material having excellent durability according to an aspect of the present invention is in weight%, carbon (C): 0.05 to 0.15%, silicon (Si): 0.01 to 1.0%, manganese (Mn): 1.0 to 2.3%, aluminum (Al ): 0.01 to 0.1%, chromium (Cr): 0.005 to 1.0%, phosphorus (P): 0.001 to 0.05%, sulfur (S): 0.001 to 0.01%, nitrogen (N): 0.001 to 0.01%, niobium (Nb) ): 0.005 to 0.07%, titanium (Ti): may include 0.005 to 0.11%.
  • the content of each element is based on weight, and the proportion of tissue is based on area.
  • Carbon (C) is the most economical and effective element for reinforcing steel, and as the amount added increases, the precipitation strengthening effect increases or the fraction of bainite phase increases, thereby improving tensile strength.
  • the thicker the thickness of the hot-rolled steel material the slower the cooling rate in the center of the thickness during cooling after hot rolling, so that when the content of C is large, coarse carbide or pearlite is likely to be formed.
  • the content of C is less than 0.05%, it is difficult to sufficiently obtain the strengthening effect of steel, whereas when it exceeds 0.15%, pearlite phase or coarse carbide is formed in the center of the thickness, resulting in poor shear formability and reduced durability. there is a problem.
  • the C may be included as 0.05 to 0.15%, and more advantageously as 0.06 to 0.12%.
  • Silicon (Si) deoxidizes molten steel and has a solid solution strengthening effect, and is advantageous in improving moldability by delaying the formation of coarse carbide.
  • the Si content is less than 0.01%, the solid solution strengthening effect is small, and the effect of delaying carbide formation is also low, making it difficult to improve formability.
  • the content exceeds 1.0%, a red scale formed by Si is formed on the surface of the steel sheet during hot rolling, and not only the surface quality of the steel sheet is very deteriorated, but also ductility and weldability are deteriorated.
  • the Si may be included in an amount of 0.01 to 1.0%, and more advantageously, in an amount of 0.2 to 0.7%.
  • Manganese (Mn), like Si, is an effective element for solid solution strengthening of steel, and increases the hardenability of steel to facilitate formation of a bainite phase during cooling after hot rolling.
  • the Mn content is less than 1.0%, the above-described effect cannot be sufficiently obtained.
  • the content exceeds 2.3%, the hardenability is greatly increased, so that the transformation of martensite phase is likely to occur, and the segregation part is greatly developed at the center of the thickness during slab casting in the playing process, and when cooled after hot rolling, fineness in the thickness direction The tissue is formed non-uniformly, resulting in poor shear formability and durability.
  • the Mn may be included in an amount of 1.0 to 2.3%, and more advantageously, in an amount of 1.1 to 2.0%.
  • Aluminum (Al) is an element mainly added for deoxidation. If the content is less than 0.01%, the additive effect cannot be sufficiently obtained. On the other hand, when the content exceeds 0.1%, by forming AlN in combination with nitrogen (N) in steel, corner cracks are likely to occur in the slab during continuous casting, and there is a risk of defects due to inclusion formation.
  • Al may be included as 0.01 to 0.1.
  • aluminum means soluble aluminum (Sol.Al).
  • Chromium (Cr) solidifies and strengthens the steel, and helps to form bainite at the coiling temperature by delaying transformation of the ferrite phase when cooled.
  • Cr Chromium
  • the segregation part is greatly developed in the center of the thickness, and the shearing formability and durability are deteriorated by making the microstructure in the thickness direction non-uniform.
  • the Cr may be included at 0.005 to 1.0%, and more advantageously at 0.3 to 0.9%.
  • Phosphorus (P) is an element that simultaneously has the effect of strengthening solid solution and promoting ferrite transformation.
  • the manufacturing cost is excessive, which is economically disadvantageous, and it is difficult to secure a target level of strength.
  • the content of P exceeds 0.05%, brittleness by grain boundary segregation occurs, fine cracking is likely to occur during molding, and shear moldability and durability are greatly deteriorated.
  • the P may be included in 0.001 to 0.05%.
  • S Sulfur
  • S is an impurity present in the steel, and when its content exceeds 0.01%, it forms a non-metallic inclusion by combining with Mn and the like, and thus it is easy to cause micro-cracks when cutting steel, and greatly improves shear formability and durability. There is a problem of deterioration.
  • S Sulfur
  • S may be included in 0.001 to 0.01%.
  • N Nitrogen
  • N is a typical solid solution strengthening element with C, and combines with Ti, Al, etc. to form coarse precipitates.
  • the solid solution strengthening effect of N is superior to that of carbon, but there is a problem that the toughness of steel decreases as the amount of N increases in steel.
  • the N may be included as 0.001 to 0.01%.
  • Niobium (Nb) precipitation strengthening element It is effective in improving the strength and impact toughness of steel due to the grain refinement effect due to recrystallization delay by precipitation during hot rolling. In order to sufficiently obtain the above-described effect, it may be included in an amount of 0.005% or more, while when the content exceeds 0.07%, formability and durability are formed by formation of stretched grains due to excessive recrystallization delay during hot rolling and formation of coarse composite precipitates. You are inferior.
  • the Nb may be included as 0.005 to 0.07%, more advantageously as 0.01 to 0.06%.
  • Titanium (Ti) is a representative precipitation strengthening element together with the Nb, and forms a coarse TiN in the steel with strong affinity with N.
  • the TiN has an effect of inhibiting the growth of crystal grains during the heating process for hot rolling.
  • the Ti remaining after reacting with N is dissolved in the steel and bonds with carbon to form a TiC precipitate, which is useful for improving the strength of the steel.
  • the Ti may be included in an amount of 0.005 to 0.11%, and more advantageously, in an amount of 0.01 to 0.1%.
  • the remaining component of the invention is iron (Fe).
  • impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and therefore cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, they are not specifically mentioned in this specification.
  • the steel material of the present invention having the above-described alloy composition may be composed of a microstructure is a composite structure of ferrite and bainite.
  • the sum of the fractions of the ferrite and bainite phases is preferably 90% or more of the area fraction, and among these, the bainite phase may be 50% or more of the area fraction.
  • the fraction of the bainite phase is less than 50% of the area fraction, it is difficult to secure the target strength, and when the coarse ferrite phase increases, it has a non-uniform microstructure, and thus, it is easy to generate fine cracks during shear deformation or punching deformation.
  • the ferrite phase means a polygonal ferrite phase that is a high temperature ferrite phase
  • the bainite phase collectively refers to both a needle-shaped ferrite phase and a bainitic ferrite phase, which are low temperature reverse ferrite phases.
  • Residual tissues other than the composite tissue may include a MA phase (a mixture of martensite and austenite) and a martensite phase.
  • the two phases may be combined to include an area fraction of 1 to 10%, of which the MA phase is preferably less than 3%.
  • the MA phase has an average size of 1/10 of that of the martensite phase, but the tendency to crack at the interface of the phase is similar to that of the martensite phase. It is preferred.
  • the steel material of the present invention contains 3% or less (including 0%) of the pearlite phase in addition to the above-described structure, there is no great difficulty in securing the intended physical properties.
  • the steel material of the present invention is formed of crystal grains having a shape ratio (ratio of short side length (short axis)/long side length (long axis), aspect ratio) of 0.3 or less within a center portion corresponding to a t/2 point in a thickness direction. It is preferable that the fraction is less than 50%, and the length of the grain boundaries observed in the unit area (1 mm 2 ) in the center is 700 mm or more.
  • the proportion of crystal grains having a shape ratio of crystal grains of 0.3 or less in the central portion is 50% or more, the growth of cracks is facilitated when cracks are generated, and durability is inferior.
  • the length of the grain boundary in the central portion is less than 700 mm, the strength of the central portion decreases, and cracks are easily propagated, resulting in poor durability.
  • the method for analyzing the shape ratio of the crystal grains and the length of the grain boundaries is not particularly limited, but for example, it can be analyzed by using Back Scattered Diffraction (EBSD). Specifically, from the EBSD measurement result of the rolled section, the grain size having a large-diameter grain boundary of 15° or more is determined as the length of the grain boundary per unit area (1 mm 2 ), and the shape ratio can be determined by the ratio of the shortening of the grain size and the long axis.
  • EBSD Back Scattered Diffraction
  • the steel material of the present invention having the above-described alloy composition and microstructure is a thick steel material having a thickness of 5 mm or more and a maximum of 12 mm, the tensile strength is 650 MPa or more, and the ratio of fatigue limit and yield strength (fatigue limit/yield strength) is 0.25 or more. As a result, it is possible to secure excellent durability with high strength.
  • the high-strength steel according to the present invention can be produced by performing a series of processes of [heating-hot rolling-winding-cooling] a steel slab satisfying the alloy composition proposed in the present invention.
  • the heating temperature is less than 1200°C, the precipitates are not sufficiently re-used, so that the formation of precipitates is reduced in the process after hot rolling, and there is a problem that coarse TiN remains.
  • the temperature exceeds 1350°C, the strength is lowered due to abnormal grain growth of austenite grains, which is not preferable.
  • the hot rolling When the hot rolling is performed at a temperature higher than 1150°C, the temperature of the hot rolled steel sheet becomes high, the grain size becomes coarse, and the surface quality of the hot rolled steel sheet becomes inferior.
  • the hot rolling when hot rolling is performed at a temperature lower than 800° C., the grains stretched due to excessive recrystallization delay develop, anisotropy increases, moldability deteriorates, and unevenness occurs due to rolling at a temperature below the austenite temperature range. Microstructure develops more severely.
  • the hot rolling process of the present invention when rolling is terminated at a temperature higher than the temperature range suggested in the following relational formula 1 (temperature above Tn), the microstructure of the steel is coarse and non-uniform, and phase transformation is delayed to coarse. Due to the formation of the MA phase and martensite phase, fine cracks are excessively formed during shear forming and knitting forming, resulting in poor durability.
  • the thickness direction t/4 under the surface layer having a relatively low temperature in a thick steel material having a thickness of 5 mm or more.
  • Ferrite phase transformation is promoted at the point, and the phase fraction of fine ferrite increases, but it has an elongated grain shape, which causes cracks to spread rapidly, and uneven microstructure can remain in the center of the thickness, which is disadvantageous in securing durability. do.
  • Tn 730 + 92 ⁇ [C] + 70 ⁇ [Mn] + 45 ⁇ [Cr] + 650 ⁇ [Nb] + 410 ⁇ [Ti]-80 ⁇ [Si]-1.4 ⁇ (t-5) (where Each element means weight content (%), and t means thickness (mm) of the final hot rolled steel sheet)
  • the hot-rolled steel sheet manufactured by performing hot rolling as described above can be cooled to a temperature range of 400 to 500° C., and then a winding process can be performed at that temperature.
  • the cooling is performed by primary cooling and secondary cooling, and the primary cooling is a cooling rate (CR 1 ) satisfying [Relational Formula 2], and a cooling rate (CR) satisfying [Relational Formula 3] for the secondary cooling. It is preferable to perform with 2 ).
  • the primary cooling is preferably terminated in a temperature section in which phase transformation of ferrite occurs during cooling, but the temperature at which phase transformation of ferrite occurs may vary according to the alloy composition proposed in the present invention. More specifically, the primary cooling is preferably performed to a temperature at which transformation of hard phases such as bainite phase, MA phase and martensite phase does not occur. Even more preferably, the primary cooling may be performed until the temperature of the hot-rolled steel sheet obtained by hot rolling reaches 600°C.
  • the cooling rate in the center of the thickness of the rolled sheet is slower than the cooling rate in the area directly below the surface layer ⁇ t/4, so adjust the thickness from the center of thickness.
  • the ferrite phase it may have a non-uniform microstructure.
  • Secondary cooling is performed immediately after the primary cooling is completed under the above-described conditions, and the secondary cooling is preferably terminated at a coiling temperature (CT (° C.)).
  • CT coiling temperature
  • the untransformed phase is transformed into the bainite phase over the entire thickness of the steel material, so that 90% (area fraction) of the matrix structure is formed into the ferrite and bainite phases.
  • CR 2 a specific cooling rate
  • carbides are formed rather than the bainite phase to grow coarse, which mainly exists at the grain boundary of the ferrite phase, and when the cooling rate is slower, a pearlite phase is formed and cracks during shear molding or punching molding It is easy to form, and there is a problem that cracks propagate along grain boundaries even with a small external force.
  • the cooling rate exceeds CR Max the MA phase or the martensite phase, which increases the difference in hardness between phases, is excessively formed, resulting in poor durability.
  • the coiling temperature exceeds 500°C during coiling after completing the above-described cooling process, the pearlite phase is formed and the strength of the steel becomes insufficient.
  • it is less than 400°C, the martensite phase is excessively formed, resulting in shear formability and punching formability. Durability is inferior.
  • the area ratio of the crystal grains having an aspect ratio of 0.3 or less in the center of the thickness of the steel material is less than 50% While securing it, the length of the grain boundary observed within the unit area (1 mm 2 ) can be secured to 700 mm or more.
  • relational expressions 2 and 3 correspond to the cooling conditions for optimizing the microstructure so that the strength and durability of the steel can be improved through a phase transformation process during cooling. That is, since not only the type and fraction of the tissue phase, but also the shape ratio of the crystal grains and the size of the grain boundaries vary depending on the cooling conditions, it will be preferable to perform cooling under the conditions satisfying the above relational expressions 2 and 3.
  • the coil obtained by completing the cooling and coiling process according to the above can be air-cooled to a temperature range of room temperature to 200°C.
  • the air cooling process of the coil has a cooling rate of 0.001 to 10°C/hour, which means cooling in the air.
  • the cooling rate exceeds 10°C/hour, some untransformed phases of the steel are easily transformed into the MA phase, thereby deteriorating the shear formability and punching formability and durability of the steel.
  • a separate heating and heat preservation facility is required, which is economically disadvantageous.
  • the air-cooled steel can be pickled and oiled, and then heated to a temperature range of 450 to 740°C to perform a hot dip galvanizing process.
  • the hot dip galvanizing process may use a zinc-based plating bath, the alloy composition in the zinc-based plating bath is not particularly limited, for example, magnesium (Mg): 0.01 to 30% by weight, aluminum (Al): 0.01 It may be a plating bath containing ⁇ 50% by weight and the balance Zn and unavoidable impurities.
  • a steel slab having an alloy composition of Table 1 below was prepared. At this time, the content of the alloy composition is weight%, and the rest includes Fe and unavoidable impurities.
  • the prepared steel slabs were manufactured according to the manufacturing conditions in Table 2 below. At this time, when cooling after hot rolling, the primary cooling was completed at 600°C, and the secondary cooling was completed at the coiling temperature.
  • FDT is the temperature at the time of finishing hot rolling (the end temperature of hot rolling)
  • CT is the winding temperature
  • the yield strength and elongation each indicate 0.2% off-set yield strength and elongation at break
  • the tensile strength was measured by taking specimens of JIS 5 standard specimens in a direction perpendicular to the rolling direction.
  • the durability was evaluated by performing a high-cycle fatigue test (bending fatigue test) on the test piece having the punched molded part.
  • the test piece for the fatigue test was produced by punching a hole of 10 mm in diameter with a clearance of 12% by punching molding in the center of a bending fatigue test piece having a length of 40 mm and a width of 20 mm, and tested under a stress ratio of -1 and a frequency of 15 Hz.
  • the fatigue strength (S Fatigue ) was expressed as the strength ratio (S Fatigue /YS) compared to the yield strength, from which it was possible to confirm the change in cross-section quality and durability of the punched area.
  • the aspect ratio (AR) which is the ratio of grain length and grain size per unit area (1 mm 2 ) corresponding to the area of grain boundaries, is applied to back-scattered electron diffraction (EBSD) for grains with large-angle grain boundaries of 15° or more. It was measured using.
  • EBSD back-scattered electron diffraction
  • the results analyzed at 1000 magnification using an optical microscope and an image analyzer were shown.
  • the phase fractions of martensite (M), ferrite (F), bainite (B), and pearlite (P) were measured from the results analyzed at 3000 magnification and 5000 magnification using an electron scanning microscope (SEM).
  • F denotes a polygonal ferrite having an equiaxed crystal shape
  • B denotes the sum of all fractions of the ferrite phase observed in a low temperature region such as a bainite phase, acicular ferrite, and bainitic ferrite.
  • AR0.3 represents a ratio (area fraction) of crystal grains having an aspect ratio of 0.3 or less, and shows results obtained by observing at 1000 magnification.
  • the inventive steels 1 to 7 satisfying both the alloy composition and manufacturing conditions proposed in the present invention were formed of a ferrite and bainite composite structure.
  • the fraction of crystal grains having a grain shape ratio of 0.3 or less in the center of the thickness direction of the steel was less than 50% (see FIG. 2), and since the grain boundary lengths were all formed to be 700 mm or more, the intended high strength and excellent durability were secured. .
  • the comparative steel 1 to 11 is satisfactory alloy composition proposed in the present invention, but the manufacturing conditions are out of the present invention, it was not possible to secure the intended physical properties.
  • Comparative steel 1 to 3 is a case where the hot-rolled finish temperature does not satisfy the relational expression 1 proposed in the present invention, Comparative steel 1 has a final steel thickness of 2.9 mm, and a ferrite phase stretched from the center is excessively formed, but fatigue The characteristics showed a result that was not significantly inferior. This is due to the fact that, when hot-rolled to a thickness of 2.9 mm, the amount of rolling in the unrecrystallized temperature range greatly increased, and elongated microstructure developed, but the quality of the cross-section of the punched area was good as the microstructure in the thickness direction was uniform. Was judged.
  • Comparative Steels 2 and 3 are thick steels with a thickness of 10 mm and 7 mm, respectively, and Comparative Steel 2 has micro-cracks formed in the cross section when exposed to a fatigue environment as the MA phase develops in the central microstructure and the grain boundary length is less than 700 mm. It has been shown to grow easily and have poor fatigue properties.
  • Comparative Steel 3 due to hot rolling in a low-temperature region, excessively formed crystal grains stretched in the center of the thickness, and it was judged that fatigue fracture occurred along the weak grain boundaries. That is, this is due to the development of fine cracks in the center of the thickness during punching molding along the drawn ferrite grain boundaries.
  • Comparative steels 4 and 5 have the same components, and the conditions of primary cooling when cooling after hot rolling do not satisfy relational expression 2, comparative steel 4 has a thickness of 3.2 mm, and comparative steel 5 has a thickness of 8 mm. To have. Among them, comparative steel 4 having a thickness of less than 5 mm formed many elongated grains similar to comparative steel 1, but even when the cooling rate was slow during primary cooling, coarse carbides were hardly formed at the grain boundaries, so fatigue characteristics were not significantly inferior. .
  • the comparative steel 5 having a thick thickness has a slow cooling rate during the first cooling, so that pearlite is formed in the center of the thickness, and the fraction of ferrite phase is somewhat excessive, and the MA phase is also observed in the crystal grains, indicating that the fatigue properties are deteriorated. .
  • Comparative steels 6 and 7 have the same components as each other, but have thicknesses of 3.3 mm and 9 mm, respectively, and are not satisfied with both relations 1 and 2.
  • Comparative steel 6 is a thin material, and it is judged that the effect of delaying recrystallization can be secured over the entire thickness even when the hot rolling temperature is high. It was good.
  • thick comparative steel 7 has a large microstructure due to a high rolling temperature and a slow cooling rate during primary cooling, and a grain boundary length of less than 700 mm is formed, and a MA phase and a pearlite phase are also formed, resulting in poor fatigue properties.
  • Comparative steels 8 and 9 are cases in which the finishing temperature at the time of hot pressure is lower than the range suggested by the present invention, and the cooling rate at the time of primary cooling is slow. These also have the same components but different thicknesses.
  • the comparative steel 8 which is a thin material, many fine and elongated ferrite phases are formed over the entire thickness, but the fatigue properties are not inferior, whereas the comparative steel 9, a thick material, is MA at the center of the thickness. The phase and pearlite phase were excessively formed, resulting in poor fatigue properties.
  • Comparative steel 10 is a relational formula 3, that is, when the cooling rate during secondary cooling is out of the present invention, the cooling rate during secondary cooling is too fast, so that the martensite phase is excessively formed in the center of the thickness, resulting in an ambient phase when exposed to a fatigue environment. It was judged that the fracture proceeded easily in the region where the hardness difference with) was large.
  • Comparative steel 11 also does not satisfy the relational expression (3), and the cooling rate is too slow during secondary cooling, resulting in excessive formation of the pearlite phase, resulting in inferior fatigue properties.
  • the comparative steel 12 to 17 is the case where the alloy composition is out of the present invention, all of the relational formulas 1 to 3 are satisfied at the time of manufacture, and they are all manufactured to have the same thickness (8 mm), but the fatigue properties are inferior.
  • the comparative steel 12 is a case where the C content is insufficient, the ferrite phase is excessively formed in the center of the thickness, and the bainite phase is not sufficiently formed. Due to this, the microstructure was coarse and the fatigue strength was low.
  • Comparative steel 13 is a case in which the C content is excessively added, and the pearlite and martensite phases are excessively formed due to the high C concentration in the untransformed phase during the phase transformation process, thereby exhibiting lower fatigue strength than the yield strength.
  • Comparative steel 14 is a case where the Si content is too high, and the MA phase is formed together with the bainite phase, and a lot of stretched microstructures are observed. Due to this, the fatigue properties were inferior, which is thought to be due to the formation of many cracks around the relatively hard phase MA phase.
  • Comparative steel 15 is a case where the Mn content is insufficient, and despite the fact that it was prepared by satisfying the relations 1 to 3 to obtain a recrystallization delay effect and a uniform microstructure, the ferrite phase was excessively formed in the center of the thickness, resulting in strength and fatigue strength All appeared low.
  • Min and Max mean the minimum and maximum values of the aspect ratio (short side length of crystal grains/long side length of crystal grains), and Total Fraction corresponds to the range above the minimum value (Min) and below the maximum value (Max). It means the area fraction of crystal grain.
  • the fraction of crystal grains having a shape ratio (ratio of short side/long side) of crystal grains of 0.3 or less is less than 50% (total fraction 0.5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 상용차의 샤시부품의 멤버류 및 휠 디스크 등에 사용되는 강재에 관한 것으로서, 보다 상세하게는 내구성이 우수한 고강도 강재 및 이의 제조방법에 관한 것이다.

Description

내구성이 우수한 고강도 강재 및 이의 제조방법
본 발명은 내구성이 우수한 고강도 강재 및 이의 제조방법에 관한 것이다.
종래에는 상용차의 샤시부품의 멤버류 및 휠 디스크는 차량 특성상 높은 강성을 확보하기 위하여 두께가 5mm 이상이고, 450~600MPa의 항복강도를 가지는 고강도 강판을 사용하여 왔으나, 최근들어 자동차의 경량화 및 고강도화를 위하여 인장강도 650MPa 이상의 고강도 강재를 적용하는 있는 실정이다.
고강도 강재를 사용하여 부품으로의 제조시 전단성형 및 펀칭성형을 행한 판재를 프레스(press) 성형하여 제조하는 단계를 거치는데, 위 전단성형 및 펀칭성형시 강판의 전단부위에 미세한 균열이 생성되어 최종 제품(부품)의 내구수명이 단축되는 단점이 있다.
이러한 문제를 해결하기 위한 방안으로서 특허문헌 1에서는 통상의 오스테나이트역 열간압연을 거친 후 고온에서 권취하여 페라이트 상을 기지조직으로 하고, 석출물을 미세하게 형성하였다. 또한, 특허문헌 2에서는 조대한 펄라이트 조직이 형성되지 않도록 권취 온도를 베이나이트 상이 기지조직으로 형성되는 온도까지 냉각한 후, 권취하는 기술을 제안하였다. 특허문헌 3에서는 티타늄(Ti), 니오븀(Nb) 등을 활용하여 열간압연 중 미재결정역에서 압하율 40% 이상으로 압연하여 오스테나이트 결정립을 미세화시키는 기술을 개시하고 있다.
고강도 강의 제조를 위해 Si, Mn, Al, Mo, Cr 등의 합금성분을 주로 활용하는데, 이 경우 열연강판의 강도를 향상시키는데에는 효과적이나, 다량의 합금성분이 첨가되면 일부 성분이 강 중에 편석(segregation)되거나, 미세조직의 불균일을 초래하여 전단 성형성이 열위하게 되고, 전단면에 발생한 미세한 균열이 피로환경에서 쉽게 전파되어 부품의 파손이 발생하게 된다.
특히, 강재의 두께가 두꺼워질수록 두께 표층부와 중심부 간의 미세조직 불균일성이 높아져 전단면의 균열 발생이 증가하고, 피로환경에서 균열의 전파속도도 빨라져 내구성이 열위하게 된다.
하지만, 앞선 기술들(특허문헌 1 내지 3)은 고강도를 가지는 후물 강재의 피로 특성에 대해서는 고려하지 못하고 있다.
또한, 후물 강재의 결정립을 미세화하고 석출 강화 효과를 얻기 위하여 Ti, Nb, V 등의 석출물 형성 원소들을 활용하는 경우, 석출물이 형성되기 용이한 500~700℃ 정도의 고온에서 권취하거나, 열연 후 냉각 중에 강판의 냉각속도를 제어하지 아니하게 되면 후물 강재의 두께 중심부에서 조대한 탄화물이 형성되어 전단면의 품질이 열위하게 된다. 게다가, 열간압연 중 미재결정역에서 40%의 대압하를 가하는 것은 압연판의 형상 품질을 열위하게 하며, 설비의 부하를 가져오므로 실제 적용하기 곤란한 문제가 있다.
(특허문헌 1) 일본 공개특허공보 제2002-322541호
(특허문헌 2) 한국 등록공보 제10-1528084호
(특허문헌 3) 일본 공개특허공보 제1997-143570호
본 발명의 일 측면은, 일정 두께를 가지는 후물 강재이면서, 고강도를 가질 뿐만 아니라, 내구성이 우수한 강재 및 이것을 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는데 어려움이 없을 것이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.01~1.0%, 망간(Mn): 1.0~2.3%, 알루미늄(Al): 0.01~0.1%, 크롬(Cr): 0.005~1.0%, 인(P): 0.001~0.05%, 황(S): 0.001~0.01%, 질소(N): 0.001~0.01%, 니오븀(Nb): 0.005~0.07%, 티타늄(Ti): 0.005~0.11%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
미세조직으로 페라이트와 베이나이트 상의 분율 합이 90% 이상이고, 중심부(두께방향 t/4~t/2 지점) 내 결정립의 형상비(단변/장변의 비)가 0.3 이하인 결정립의 분율이 50% 미만이고, 중심부에서 단위면적(1mm 2) 내 관찰되는 결정립계 길이가 700mm 이상인 내구성이 우수한 고강도 강재를 제공한다.
본 발명의 다른 일 측면은, 상술한 합금조성을 가지는 강 슬라브를 1200~1350℃의 온도범위에서 가열하는 단계; 상기 가열된 강 슬라브를 열간압연하여 열연강판을 제조하는 단계; 상기 열연강판을 400~500℃의 온도범위로 냉각한 후 권취(CT)하는 단계; 및 상기 권취 후 상온~200℃의 온도범위로 공냉하는 단계를 포함하고,
상기 열간압연은 하기 [관계식 1]을 만족하는 온도(FDT(℃))에서 마무리 열간압연을 행하고, 상기 냉각은 하기 1차 냉각 및 2차 냉각으로 행하며, 상기 1차 냉각은 [관계식 2]를 만족하는 냉각속도(CR 1)로, 상기 2차 냉각은 하기 [관계식 3]을 만족하는 냉각속도(CR 2)로 행하는 것을 특징으로 하는 내구성이 우수한 고강도 강재의 제조방법을 제공한다.
[관계식 1]
Tn-50 ≤ FDT(열간압연 종료온도(℃)) ≤ Tn
Tn = 730 + 92×[C] + 70×[Mn] + 45×[Cr] + 650×[Nb] + 410×[Ti] - 80×[Si] - 1.4×(t-5) (여기서, 각 원소는 중량 함량(%)을 의미하며, t는 최종 열연강판의 두께(mm)를 의미한다)
[관계식 2]
CR 1 ≥ 196 - 300×[C] + 4.5×[Si] - 71.8×[Mn] - 59.6×[Cr] + 187×[Ti] + 852×[Nb] (여기서, 각 원소는 중량 함량(%)을 의미한다)
[관계식 3]
CR Min ≤ CR 2 ≤ CR Max
(CR Max = 76.6 - 157×[C] - 25.2×[Si] - 14.1×[Mn] - 27.3×[Cr] + 61×[Ti] + 448×[Nb] 이고, CR Min = 27.4 - 45.3×[C] + 5.28×[Si] - 11×[Mn] - 7.33×[Cr] + 42.3×[Ti] + 82×[Nb] 이며, 각 원소는 중량 함량(%)을 의미한다)
본 발명에 의하면, 고강도를 가지면서도 성형시 단면의 품질이 우수하여 성형 후 강재의 피로한도와 항복강도의 비를 우수하게 확보할 수 있는 후물 강재를 제공할 수 있다.
상기 본 발명의 강재는 자동차의 샤시부품의 멤버류 및 휠 디스트 등에 적합하게 적용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 있어서, 발명강과 비교강의 두께에 따른 피로강도 및 항복강도의 비를 그래프로 나타낸 것이다.
본 발명자들은 기존 자동차용 후물 강재의 성형시 내구성이 저하되는 문제점을 해결하기 위하여 깊이 연구하였다.
특별히, 본 발명자들은 기존 후물 강재들의 성분 및 미세조직에 따른 성형 후 전단면에서의 균열 분포와 내구성의 변화를 조사한 결과, 강재의 두께 중심부에서 결정립의 형상제어에 따라 내구 특성이 달라지는 것을 확인하였다.
이로부터, 본 발명자들은 고강도를 가지면서 성형시 단면의 품질이 우수하여 목표로 하는 내구성을 가지는 강재를 제공할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 내구성이 우수한 고강도 강재는 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.01~1.0%, 망간(Mn): 1.0~2.3%, 알루미늄(Al): 0.01~0.1%, 크롬(Cr): 0.005~1.0%, 인(P): 0.001~0.05%, 황(S): 0.001~0.01%, 질소(N): 0.001~0.01%, 니오븀(Nb): 0.005~0.07%, 티타늄(Ti): 0.005~0.11%를 포함할 수 있다.
이하에서는, 본 발명에서 제공하는 열연강판의 합금조성을 위와 같이 제한하는 이유에 대하여 상세히 설명한다.
한편, 본 발명에서 특별히 언급하지 않는 한 각 원소의 함량은 중량을 기준으로 하며, 조직의 비율은 면적을 기준으로 한다.
탄소(C): 0.05~0.15%
탄소(C)는 강을 강화시키는데 가장 경제적이며 효과적인 원소로서, 그 첨가량이 높아지면 석출 강화 효과가 상승하거나 베이나이트 상의 분율이 증가하여 인장강도가 향상된다. 또한, 열연강재의 두께가 두꺼워질수록 열간압연 후 냉각 중 두께 중심부의 냉각속도가 느려져 C의 함량이 큰 경우에는 조대한 탄화물 또는 펄라이트가 형성되기 쉽다.
본 발명에서는 상기 C의 함량이 0.05% 미만이면 강의 강화 효과를 충분히 얻기 어렵고, 반면 0.15%를 초과하게 되면 두께 중심부에서 펄라이트 상 또는 조대한 탄화물이 형성되어 전단 성형성이 열위해지고, 내구성이 저하되는 문제가 있다.
따라서, 본 발명에서는 상기 C를 0.05~0.15%로 포함할 수 있으며, 보다 유리하게는 0.06~0.12%로 포함할 수 있다.
실리콘(Si): 0.01~1.0%
실리콘(Si)은 용강을 탈산시키고 고용 강화 효과가 있으며, 조대한 탄화물의 형성을 지연시켜 성형성을 향상시키는데에 유리하다.
이러한 Si의 함량이 0.01% 미만이면 고용 강화 효과가 작고, 탄화물 형성을 지연시키는 효과도 낮아져 성형성을 향상시키기 어렵다. 반면, 그 함량이 1.0%를 초과하게 되면 열간압연시 강판 표면에 Si에 의한 붉은색 스케일이 형성되어 강판의 표면 품질이 매우 나빠질 뿐만 아니라, 연성과 용접성도 저하되는 문제가 있다.
따라서, 본 발명에서는 상기 Si을 0.01~1.0%로 포함할 수 있으며, 보다 유리하게는 0.2~0.7%로 포함할 수 있다.
망간(Mn): 1.0~2.3%
망간(Mn)은 상기 Si과 마찬가지로 강을 고용 강화시키는데에 효과적인 원소이며, 강의 경화능을 증가시켜 열간압연 후 냉각 중에 베이나이트 상의 형성을 용이하게 한다.
이러한 Mn의 함량이 1.0% 미만이면 상술한 효과를 충분히 얻을 수 없다. 반면, 그 함량이 2.3%를 초과하게 되면 경화능이 크게 증가하여 마르텐사이트 상 변태가 일어나기 쉽고, 연주 공정에서 슬라브 주조시 두께 중심부에서 편석부가 크게 발달되며, 열연 후 냉각시에는 두께 방향으로의 미세조직을 불균일하게 형성하여 전단 성형성 및 내구성이 열위하게 된다.
따라서, 본 발명에서는 상기 Mn을 1.0~2.3%로 포함할 수 있으며, 보다 유리하게는 1.1~2.0%로 포함할 수 있다.
알루미늄(Al): 0.01~0.1%
알루미늄(Al) 주로 탈산을 위해 첨가하는 원소로서, 그 함량이 0.01% 미만이면 첨가 효과를 충분히 얻을 수 없다. 반면, 그 함량이 0.1%를 초과하게 되면 강 중 질소(N)와 결합하여 AlN을 형성함으로써 연속주조시 슬라브에 코너 크랙이 발생되기 쉬워지며, 개재물 형성에 의한 결함이 발생할 우려가 있다.
따라서, 본 발명에서 상기 Al은 0.01~0.1로 포함할 수 있다.
한편, 본 발명에서 알루미늄은 가용 알루미늄(Sol.Al)을 의미한다.
크롬(Cr): 0.005~1.0%
크롬(Cr)은 강을 고용 강화시키며, 냉각시 페라이트 상의 변태를 지연시켜 권취온도에서 베이나이트의 형성을 돕는 역할을 한다. 상술한 효과를 얻기 위해서는 0.005% 이상으로 Cr을 함유함이 바람직하나, 그 함량이 1.0%를 초과하게 되면 페라이트 변태를 과도하게 지연시켜 마르텐사이트 상이 형성됨에 따라 연신율이 열위하게 된다. 또한, Mn과 유사하게 두께 중심부에서 편석부가 크게 발달되며, 두께 방향 미세조직을 불균일하게 하여 전단 성형성 및 내구성이 열화된다.
따라서, 본 발명에서는 상기 Cr을 0.005~1.0%로 포함할 수 있으며, 보다 유리하게는 0.3~0.9%로 포함할 수 있다.
인(P): 0.001~0.05%
인(P)은 고용 강화 및 페라이트 변태 촉진 효과를 동시에 가지는 원소이다. 이러한 P의 함량을 0.001% 미만으로 제조하기 위해서는 제조비용이 과다하게 소요되어 경제적으로 불리하며, 목표 수준의 강도 확보도 어려워진다. 한편, 상기 P의 함량이 0.05%를 초과하게 되면 입계 편석에 의한 취성이 발생하며, 성형시 미세한 균열이 발생하기 쉽고, 전단 성형성과 내구성을 크게 악화시킨다.
따라서, 본 발명에서는 상기 P을 0.001~0.05%로 포함할 수 있다.
황(S): 0.001~0.01%
황(S)은 강 중에 존재하는 불순물로서, 그 함량이 0.01%를 초과하게 되면 Mn 등과 결합하여 비금속 개재물을 형성하며, 이에 따라 강의 절단 가공시 미세한 균열이 발생하기 쉽고, 전단 성형성과 내구성을 크게 저하시키는 문제가 있다. 한편, 상기 S의 함량을 0.001% 미만으로 제조하기 위해서는 제강 조업시 시간이 과다하게 소요되어 생산성이 저하된다.
따라서, 본 발명에서 상기 S은 0.001~0.01%로 포함할 수 있다.
질소(N): 0.001~0.01%
질소(N)는 C와 함께 대표적인 고용 강화 원소이며, Ti, Al 등과 결합하여 조대한 석출물을 형성한다. 일반적으로 N의 고용 강화 효과는 탄소보다 우수하지만, 강 중 N의 양이 증가할수록 강의 인성이 저하되는 문제가 있다. 이를 고려하여, 상기 N을 0.01% 이하로 포함하는 것이 바람직하나, 그 함량을 0.001% 미만으로 제조하기 위해서는 제강 조업시 시간이 많이 소요되어 생산성이 저하된다.
따라서, 본 발명에서 상기 N은 0.001~0.01%로 포함할 수 있다.
니오븀(Nb): 0.005~0.07%
니오븀(Nb) 석출 강화 원소로서 열간압연 중 석출하여 재결정 지연에 의한 결정립 미세화 효과로 인해 강의 강도 및 충격인성 향상에 유효하다. 상술한 효과를 충분히 얻기 위해서는 0.005% 이상으로 포함할 수 있으며, 반면 그 함량이 0.07%를 초과하게 되면 열간압연 중 지나친 재결정 지연으로 연신된 결정립의 형성 및 조대한 복합 석출물의 형성으로 성형성과 내구성이 열위하게 된다.
따라서, 본 발명에서는 상기 Nb을 0.005~0.07%로 포함할 수 있으며, 보다 유리하게는 0.01~0.06%로 포함할 수 있다.
티타늄(Ti): 0.005~0.11%
티타늄(Ti)은 상기 Nb과 함께 대표적인 석출 강화 원소로서, N와의 강한 친화력으로 강중 조대한 TiN을 형성한다. 상기 TiN은 열간압연을 위한 가열과정에서 결정립이 성장하는 것을 억제하는 효과가 있다. 또한 N과 반응하고 남은 Ti이 강 중에 고용되어 탄소와 결합함으로써 TiC 석출물을 형성하며, 이는 강의 강도를 향상시키는데에 유용하다.
상술한 효과를 충분히 얻기 위해서는 Ti을 0.005% 이상으로 함유할 필요가 있으나, 그 함량이 0.11%를 초과하게 되면 조대한 TiN의 발생 및 석출물의 조대화로 성형시 내충돌 특성을 열위하게 하는 문제가 있다.
따라서, 본 발명에서는 상기 Ti을 0.005~0.11%로 포함할 수 있으며, 보다 유리하게는 0.01~0.1%로 포함할 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 합금조성을 가지는 본 발명의 강재는 미세조직이 페라이트 및 베이나이트 상의 복합조직으로 구성될 수 있다.
이때, 상기 페라이트와 베이나이트 상의 분율 합이 면적분율 90% 이상인 것이 바람직하며, 이 중 상기 베이나이트 상은 면적분율 50% 이상일 수 있다.
상기 베이나이트 상의 분율이 면적분율 50% 미만이면 목표로 하는 강도를 확보하기 어렵고, 조대한 페라이트 상이 증가하면 불균일 미세조직을 가지게 되어 전단변형 또는 펀칭변형시 미세한 균열이 발생하기 쉽게 된다.
여기서, 상기 페라이트 상은 고온역 페라이트 상인 폴리고날 페라이트 상을 의미하며, 상기 베이나이트 상은 저온역 페라이트 상인 침상형 페라이트와 베이니틱 페라이트 상을 모두 총칭한다.
상기 복합조직을 제외한 잔부 조직으로는 MA 상(마르텐사이트 및 오스테나이트 혼합조직)과 마르텐사이트 상을 포함할 수 있다. 이때, 이 두 상을 합하여 면적분율 1~10%로 포함할 수 있으며, 이 중 상기 MA 상은 3% 미만인 것이 바람직하다.
만일, 상기 MA 상과 마르텐사이트 상을 합한 분율이 10%를 초과하게 되면 인장강도는 상승하는 반면, 주변의 조직 상(phase)에 비해 경도값이 높아 전단변형 또는 펀칭변형시 MA 상 및 마르텐사이트 상 계면에서 크랙이 발생하고, 그에 따라 피로 특성이 나빠지게 된다. 특히, MA 상은 마르텐사이트 상에 비해 그 평균 크기가 1/10 수준이나 상의 계면에서의 크랙 발생 경향이 마르텐사이트 상과 유사하여, 피로 환경에 노출시 전파속도가 커지므로 면적분율 3% 이내로 제한하는 것이 바람직하다.
이와 같이, 기지조직 내 조대한 MA 상과 마르텐사이트 상의 분율을 최소화함으로써 조직 불균일을 해소하는 효과를 얻을 수 있다.
한편, 본 발명의 강재는 상술한 조직 이외에 펄라이트 상을 3% 이하(0% 포함)로 포함하더라도 의도하는 물성 확보에는 큰 무리가 없다.
특별히, 본 발명의 강재는 두께방향 t/4 지점에서부터 t/2 지점에 해당하는 중심부 내에서 결정립의 형상비(단변길이(단축)/장변길이(장축)의 비, aspect ratio)가 0.3 이하인 결정립의 분율이 50% 미만이고, 상기 중심부에서 단위면적(1mm 2) 내 관찰되는 결정립계의 길이가 700mm 이상인 것이 바람직하다.
만일, 상기 중심부 내에서 결정립의 형상비가 0.3 이하인 결정립의 분율이 50% 이상이면 균열이 발생되었을 때 균열의 성장이 용이하게 되어 내구성이 열위하게 된다. 또한, 중심부 내에서 결정립계의 길이가 700mm 미만이면 중심부 강도가 감소하고, 균열이 쉽게 전파하게 되어 역시 내구성이 열위하게 된다.
상기 결정립의 형상비와 결정립계의 길이를 분석하는 방법으로는 특별히 한정하지 아니하나, 일 예로 후방산란전자회절(Electron Back Scattered Diffraction, EBSD)을 이용하여 분석할 수 있다. 구체적으로, 압연 단면의 EBSD 측정 결과에서 15° 이상의 대경각 입계를 갖는 결정립에 대해 단위면적(1mm 2)당 결정립계의 길이로 구하며, 형상비는 결정립 크기의 단축와 장축의 비로 구할 수 있다.
상술한 합금조성과 미세조직을 가지는 본 발명의 강재는 5mm 이상, 최대 12mm의 두께를 가지는 후물 강재이며, 인장강도가 650MPa 이상이고, 피로한도와 항복강도의 비(피로한도/항복강도)가 0.25 이상으로서, 고강도와 더불어 내구성을 우수하게 확보할 수 있다.
이하, 본 발명의 다른 일 측면인 내구성이 우수한 고강도 강재를 제조하는 방법에 대하여 상세히 설명한다.
본 발명에 따른 고강도 강재는 본 발명에서 제안하는 합금조성을 만족하는 강 슬라브를 [가열 - 열간압연 - 권취 - 냉각]의 일련의 공정을 행함으로써 제조할 수 있다.
이하에서는 상기 각각의 공정 조건에 대하여 상세히 설명한다.
강 슬라브 가열
본 발명에서는 열간압연을 행하기에 앞서 강 슬라브를 가열하여 균질화 처리하는 공정을 거치는 것이 바람직하며, 이때 1200~1350℃에서 가열 공정을 행함이 바람직하다.
만일, 가열 온도가 1200℃ 미만이면 석출물이 충분히 재고용되지 못하여 열간압연 이후의 공정에서 석출물의 형성이 감소하게 되며, 조대한 TiN이 잔존하게 되는 문제가 있다. 반면, 그 온도가 1350℃를 초과하게 되면 오스테나이트 결정립의 이상입성장에 의해 강도가 저하되므로 바람직하지 못하다.
열간압연
상기 재가열된 강 슬라브를 열간압연하여 열연강판으로 제조하는 것이 바람직하며, 이때 800~1150℃의 온도범위에서 행하며, 하기 [관계식 1]을 만족하는 조건에서 마무리 열간압연을 실시하는 것이 바람직하다.
상기 열간압연을 1150℃ 보다 높은 온도에서 행하면, 열연강판의 온도가 높아져 결정립 크기가 조대해지고 열연강판의 표면 품질이 열위하게 된다. 반면, 800℃ 보다 낮은 온도에서 열간압연을 행하면, 지나친 재결정 지연에 의해 연신된 결정립이 발달하여 이방성이 심해지고, 성형성도 나빠지게 되며, 오스테나이트 온도역 이하의 온도에서 압연이 이루어짐에 따라 불균일한 미세조직이 더욱 심하게 발달하게 된다.
특히, 본 발명의 열간압연 공정에 있어서, 하기 관계식 1에서 제안된 온도범위보다 높은 온도(Tn 초과의 온도)에서 압연을 종료하게 되면 강의 미세조직이 조대하고 불균일하며, 상 변태가 지연되어 조대한 MA 상 및 마르텐사이트 상의 형성으로 전단성형 및 편칭성형시 미세한 균열이 과도하게 형성되어 내구성이 열위하게 된다. 반면, 하기 관계식 1에서 제안하는 온도범위보다 낮은 온도(Tn-50 미만의 온도)에서 압연이 종료되면, 강판의 두께가 5mm 이상인 후물 강재에 있어서 온도가 상대적으로 낮은 표층 직하에서 두께방향 t/4 지점에서 페라이트 상 변태가 촉진되어 미세한 페라이트의 상 분율은 증가하나, 연신된 결정립 형상을 가지게 되어 균열이 빠르게 전파하는 원인이 되며, 두께 중심부에서는 불균일한 미세조직이 잔존할 수 있어 내구성 확보에 불리하게 된다.
[관계식 1]
Tn-50 ≤ FDT(열간압연 종료온도(℃)) ≤ Tn
Tn = 730 + 92×[C] + 70×[Mn] + 45×[Cr] + 650×[Nb] + 410×[Ti] - 80×[Si] - 1.4×(t-5) (여기서, 각 원소는 중량 함량(%)을 의미하며, t는 최종 열연강판의 두께(mm)를 의미한다)
냉각 및 권취
상술한 바에 따라 열간압연을 행하여 제조된 열연강판을 400~500℃의 온도범위까지 냉각한 후 그 온도에서 권취 공정을 행할 수 있다.
상기 냉각은 1차 냉각 및 2차 냉각으로 행하며, 상기 1차 냉각은 [관계식 2]를 만족하는 냉각속도(CR 1)로, 상기 2차 냉각을 하기 [관계식 3]을 만족하는 냉각속도(CR 2)로 행하는 것이 바람직하다.
구체적으로, 상기 1차 냉각은 냉각 중에 페라이트의 상 변태가 발생하는 온도 구간에서 종료하는 것이 바람직하나, 상기 페라이트의 상 변태가 발생하는 온도는 본 발명에서 제안하는 합금조성에 따라 달라질 수 있다. 보다 구체적으로, 상기 1차 냉각은 베이나이트 상, MA 상, 마르텐사이트 상과 같은 경질상의 변태가 일어나지 않는 온도까지 행하는 것이 바람직하다. 보다 더 바람직하게 상기 1차 냉각은 열간압연하여 얻은 열연강판의 온도가 600℃에 도달할 때까지 실시할 수 있다.
상기 온도 구간에서 1차 냉각시 본 발명과 같이 압연판의 두께가 5mm 이상인 경우, 상기 압연판의 두께 중심부의 냉각속도가 표층직하~t/4 영역의 냉각속도에 비해 느리므로, 두께 중심부에서 조대한 페라이트 상이 형성되어 불균일한 미세조직을 가질 수 있다.
이에, 본 발명에서는 1차 냉각 중에 과도한 페라이트 상이 형성되거나 페라이트 상이 조대화되지 않도록 하기 관계식 2로 나타내는 특정 냉각속도(CR 1) 보다 빠른 냉각속도로 냉각하는 것이 바람직하다.
[관계식 2]
CR 1 ≥ 196 - 300×[C] + 4.5×[Si] - 71.8×[Mn] - 59.6×[Cr] + 187×[Ti] + 852×[Nb] (여기서, 각 원소는 중량 함량(%)을 의미한다)
상술한 조건으로 1차 냉각을 종료한 직후 2차 냉각을 행하며, 상기 2차 냉각은 권취온도(CT(℃))에서 종료하는 것이 바람직하다.
상기 온도 구간에서의 2차 냉각시 강재의 전 두께에 걸쳐 미변태된 상이 베이나이트 상으로 변태되어 기지조직의 90%(면적분율)가 페라이트 및 베이나이트 상으로 형성되도록 하기 위하여, 하기 관계식 3으로 나타내는 특정 냉각속도(CR 2)로 냉각을 행하는 것이 바람직하다. 이때, 냉각 속도가 CR Min 보다 느리면 베이나이트 상보다는 탄화물이 형성되어 조대하게 성장하며, 이는 주로 페라이트 상의 입계에 존재하게 되며, 냉각 속도가 더욱 느린 경우에는 펄라이트 상이 형성되어 전단성형 또는 펀칭성형시 균열이 형성되기 쉽고, 작은 외력에도 입계를 따라 균열이 전파하게 되는 문제가 있다. 반면, 냉각 속도가 CR Max를 초과하게 되면 상(phase)간 경도 차이를 크게 하는 MA 상 또는 마르텐사이트 상이 과도하게 형성되어 내구성이 열위하게 된다.
따라서, 상기 온도 구간에서의 2차 냉각시 하기 관계식 3을 만족하는 냉각 속도로 냉각을 행할 필요가 있는 것이다.
[관계식 3]
CR Min ≤ CR 2 ≤ CR Max
(CR Max = 76.6 - 157×[C] - 25.2×[Si] - 14.1×[Mn] - 27.3×[Cr] + 61×[Ti] + 448×[Nb] 이고, CR Min = 27.4 - 45.3×[C] + 5.28×[Si] - 11×[Mn] - 7.33×[Cr] + 42.3×[Ti] + 82×[Nb] 이며, 각 원소는 중량 함량(%)을 의미한다)
한편, 상술한 냉각 공정을 완료한 후 권취시 권취 온도가 500℃를 초과하게 되면 펄라이트 상이 형성되어 강의 강도가 부족해지며, 반면 400℃ 미만이면 마르텐사이트 상이 과도하게 형성되어 전단 성형성 및 펀칭 성형성과 내구성이 열위하게 된다.
본 발명은 의도하는 강재를 제조함에 있어서 상술한 관계식 1 내지 3을 만족하도록 공정 조건을 제어함에 따라, 강재의 두께 중심부에 형성되는 결정립의 형상비(aspect ratio)가 0.3 이하인 결정립을 면적분율 50% 미만으로 확보하면서, 단위면적(1mm 2) 내에서 관찰되는 결정립계의 길이를 700mm 이상으로 확보할 수 있다.
두께 5mm 이상의 후물 강재를 제조함에 있어서 통상의 열간압연으로 행할 경우, 두께 중심부의 미세조직을 균일하게 확보하기 어렵다. 특히, 두께 중심부에서의 재결정의 지연 효과를 얻기 위하여 과도하게 낮은 온도에서 열간압연을 행하게 되면 변형된 조직이 압연판 두께 방향 표층 직하에서 t/4까지의 영역에서 강하게 발달하여 오히려 두께 중심부와의 상 불균일성이 증가하여 전단변형 또는 펀칭변형시 불균일 부위에서 미세한 균열이 발생하기 쉬워지며, 부품의 내구성도 열위하게 된다. 따라서, 상기 관계식 1에 나타낸 바와 같이, 열간압연을 재결정의 지연이 개시되는 온도인 Tn(℃) 온도와 Tn-50(℃) 사이에서 완료할 필요가 있는 것이다.
상기 관계식 1에서 제안된 온도가 높은 온도에서 열간압연이 종료되면 조대한 페라이트 상과 폴리고날 페라이트 상이 형성되어 형상비가 0.3 이하인 결정립의 면적분율은 크게 감소하는 반면, 결정립계의 크기도 현저히 감소되어 중심부 강도가 저하될 우려가 있고, 균열의 형성시 그 균열의 성장을 용이하게 하는 문제가 있다. 또한, 상기 관계식 1에서 제안된 온도보다 낮은 온도에서 열간압연이 종료되면 심하게 연신된 결정립이 증가하게 되어 형성비가 0.3 이하인 결정립의 면적분율이 크게 증가하게 되고, 결정립계에 조대한 탄화물 또는 마르텐사이트 상의 형성으로 전단 성형시 형성된 균열이 외력에 의해 쉽게 전파되어 내구성이 열위하게 된다.
더불어, 상기 관계식 2 및 관계식 3은 냉각 중에 상 변태 과정을 통해 강의 강도 및 내구성의 향상이 가능하도록 미세조직을 최적화하기 위한 냉각조건에 해당하는 것이다. 즉, 냉각 조건에 따라 조직 상의 종류 및 분율뿐만 아니라, 결정립의 형상비 및 결정립계의 크기도 달라지므로, 위 관계식 2와 관계식 3을 만족하는 조건으로 냉각을 행하는 것이 바람직하다 할 것이다.
공냉
상술한 바에 따라 냉각 및 권취 공정을 완료하여 얻은 코일은 상온~200℃의 온도 범위까지 공냉할 수 있다. 이때, 상기 코일의 공냉 공정은 냉각 속도가 0.001~10℃/hour로서, 대기 중에 냉각하는 것을 의미한다. 이때, 냉각 속도가 10℃/hour를 초과하게 되면 강 중 일부 미변태된 상이 MA 상으로 변태되기 쉬워져 강의 전단 성형성 및 펀칭 성형성과 내구성이 열화된다. 반면, 그 냉각속도를 0.001℃/hour 미만으로 제어하기 위해서는 별도의 가열 및 보열 설비 등이 요구되는 바, 경제적으로 불리해진다.
한편, 상술한 바와 같이 공냉이 완료된 강재를 산세 및 도유한 다음, 450~740℃의 온도범위로 가열하여 용융아연도금공정을 행할 수 있다.
상기 용융아연도금공정은 아연계 도금욕을 이용할 수 있으며, 상기 아연계 도금욕 내 합금조성에 대해서는 특별히 한정하지 아니하나, 일 예로 마그네슘(Mg): 0.01~30중량%, 알루미늄(Al): 0.01~50중량% 및 잔부 Zn과 불가피한 불순물을 포함하는 도금욕일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1의 합금조성을 갖는 강 슬라브를 준비하였다. 이때, 상기 합금조성의 함량은 중량%이며, 나머지는 Fe와 불가피한 불순물을 포함한다. 준비된 강 슬라브를 하기 표 2의 제조조건에 따라 각각의 강재를 제조하였다. 이때, 열간압연 후 냉각시 1차 냉각은 600℃에서 완료하였으며, 2차 냉각은 권취온도에서 완료하였다.
하기 표 2에서 FDT는 마무리 열간압연시 온도(열간압연 종료온도), CT는 권취온도를 의미하며, 권취를 완료한 후 공냉시 냉각속도는 1℃/hour로 일정하게 적용하였다.
강종 합금조성 (중량%)
C Si Mn Cr Al P S N Ti Nb
비교강 1 0.06 0.3 1.8 0.2 0.03 0.01 0.004 0.004 0.005 0.02
비교강 2 0.06 0.3 1.8 0.2 0.03 0.008 0.004 0.004 0.005 0.02
비교강 3 0.07 0.04 1.7 0.6 0.03 0.01 0.005 0.004 0.05 0.005
비교강 4 0.06 0.5 2.0 0.007 0.03 0.01 0.004 0.005 0.04 0.03
비교강 5 0.06 0.5 2.0 0.007 0.03 0.005 0.004 0.005 0.04 0.03
비교강 6 0.07 0.5 1.6 0.008 0.03 0.01 0.003 0.004 0.08 0.03
비교강 7 0.07 0.5 1.6 0.008 0.03 0.01 0.003 0.004 0.08 0.03
비교강 8 0.07 0.4 2.2 0.012 0.03 0.007 0.004 0.004 0.1 0.02
비교강 9 0.07 0.4 2.2 0.012 0.03 0.01 0.004 0.004 0.1 0.02
비교강 10 0.08 0.4 1.6 0.8 0.05 0.01 0.003 0.006 0.04 0.045
비교강 11 0.08 0.4 1.6 0.8 0.05 0.01 0.003 0.006 0.04 0.045
비교강 12 0.04 0.5 1.8 0.3 0.03 0.01 0.002 0.004 0.065 0.03
비교강 13 0.16 0.55 1.6 0.2 0.03 0.01 0.003 0.004 0.07 0.03
비교강 14 0.08 1.2 2.0 0.3 0.03 0.01 0.003 0.004 0.06 0.025
비교강 15 0.08 0.5 0.8 0.8 0.03 0.01 0.003 0.004 0.05 0.035
비교강 16 0.07 0.5 2.5 0.01 0.03 0.01 0.003 0.004 0.07 0.03
비교강 17 0.08 0.5 1.7 1.1 0.03 0.01 0.004 0.004 0.05 0.03
발명강 1 0.06 0.05 1.5 0.05 0.03 0.005 0.003 0.005 0.095 0.03
발명강 2 0.06 0.3 1.2 0.9 0.03 0.01 0.003 0.005 0.04 0.04
발명강 3 0.08 0.5 1.7 0.5 0.03 0.01 0.003 0.005 0.06 0.05
발명강 4 0.07 0.3 1.6 0.8 0.03 0.008 0.003 0.005 0.07 0.06
발명강 5 0.09 0.3 1.6 0.9 0.03 0.01 0.002 0.004 0.07 0.04
발명강 6 0.09 0.1 1.85 0.8 0.03 0.01 0.003 0.004 0.05 0.04
발명강 7 0.11 0.5 1.95 0.7 0.03 0.01 0.003 0.004 0.06 0.045
(하기 표 1에서 비교강 1 내지 11은 합금조성은 본 발명의 범위를 만족하나, 하기 표 2에서 제조조건이 본 발명을 벗어남에 따라 비교강으로 표기한다.)
강종 두께(mm) FDT(℃) CT(℃) CR 1(℃/s) CR 2(℃/s) 관계식 1 관계식 2 관계식 3
Tn 만족여부 CR 1 만족여부 CR Max CR Min 만족여부
비교강 1 2.9 890 455 78 30 865 × 56.2 38.0 6.9
비교강 2 10 885 460 65 25 855 × 56.2 38.0 6.9
비교강 3 7 835 470 72 22 900 × 31.0 29.5 3.9
비교강 4 3.2 870 443 54 38 874 69.3 × 42.1 9.4
비교강 5 8 858 485 51 25 868 69.3 × 42.1 9.4
비교강 6 3.3 906 475 88 35 863 × 102.4 × 48.6 15.1
비교강 7 9 895 430 80 42 856 × 102.4 × 48.6 15.1
비교강 8 3.8 850 450 35 30 915 × 53.9 × 39.2 7.9
비교강 9 8 845 448 33 35 909 × 53.9 × 39.2 7.9
비교강 10 9 880 450 78 75 893 57.1 32.2 7.8 ×
비교강 11 9 875 465 85 3 893 57.1 32.2 7.8 ×
비교강 12 8 840 450 120 35 875 76.8 41.6 11.4 ×
비교강 13 8 848 450 95 22 866 62.3 27.3 9.4
비교강 14 8 820 455 105 12 832 48.4 12.3 10.5 ×
비교강 15 8 816 450 125 28 828 108.3 37.1 16.7
비교강 16 8 910 445 80 20 916 35.8 35.2 4.7
비교강 17 8 904 462 75 9 902 21.5 13.9 4.2
발명강 1 8 855 442 120 42 893 110.9 62.6 14.6
발명강 2 7 850 450 125 31 876 81.1 38.5 11.4
발명강 3 9 870 443 98 18 890 76.2 39.9 10.7
발명강 4 8 880 455 85 20 924 78.0 44.8 10.2
발명강 5 9 872 466 105 28 916 49.0 30.0 7.0
발명강 6 10 890 452 89 25 935 32.4 33.0 3.0
발명강 7 11 880 440 102 18 914 33.1 23.9 4.7
상술한 바에 따라 제조된 각각의 강판에 대해, 인장강도(TS), 항복강도(YS), 연신율(T-El)의 기계적 특성과, 내구성을 평가하였으며, 또한 미세조직을 관찰하고 그 결과를 아래 표 3에 나타내었다.
구체적으로, 항복강도와 연신율은 각각 0.2% off-set 항복강도, 파괴 연신율을 의미하며, 이와 함께 인장강도의 측정은 JIS5호 규격 시험편을 압연방향에 수직한 방향으로 시편을 채취하여 시험하였다.
내구성의 평가는 펀칭 성형부를 갖는 시험편에 대해 고주기 피로시험(굽힘 피로시험)을 행하고, 그 결과로 나타내었다. 이때, 피로시험을 위한 시험편은 게이지 length부 길이 40mm, 폭 20mm인 굽힘 피로시험편 중앙부에 펀칭 성형으로 직경 10mm의 구멍을 clearance 12%로 펀칭하여 제작하였으며, 응력비 -1 및 주파수 15Hz 조건으로 시험하였다. 피로강도(S Fatigue)는 항복강도와 비교하여 강도비(S Fatigue/YS)로 나타내었으며, 이로부터 펀칭 부위의 단면 품질과 내구성의 변화를 확인할 수 있다.
한편, 각 강재의 미세조직은 두께 방향 중심부(t/2)에서 관찰한 결과를 나타내었다. 결정립계의 면적에 해당하는 단위면적(1mm 2)당 결정립계 길이와 결정립의 형상비인 Aspect ratio(AR)는 15°이상의 대경각 입계를 갖는 결정립에 대하여 후방산란전자회절(Electron Back Scattered Diffraction, EBSD)를 이용하여 측정하였다. MA 상의 면적분율은 레페라(Lepera) 에칭법으로 에칭한 후 광학현미경과 이미지 분석기(Image analyser)를 이용하여 1000 배율에서 분석한 결과를 나타내었다. 또한, 마르텐사이트(M), 페라이트(F), 베이나이트(B) 및 펄라이트(P)의 상 분율은 전자주사현미경(SEM)을 이용하여 3000 배율, 5000 배율에서 분석한 결과로부터 측정하였다.
하기 표 3에서 F는 등축정 형상을 갖는 폴리고날 페라이트(Polygonal Ferrite)를 의미하며, B는 베이나이트 상과 침상형 페라이트, 베이니틱 페라이트 등 저온역에서 관찰되는 페라이트 상의 분율을 모두 합하여 나타낸 것이다.
또한, 하기 표 3에서 AR0.3은 형상비(Aspect ratio)가 0.3 이하인 결정립의 비율(면적분율)을 나타낸 것으로서 1000 배율로 관찰하여 얻은 결과를 나타낸 것이다.
강종 기계적 물성 미세조직 내구성
YS(MPa) TS(MPa) T-El(%) 결정립계 길이(mm) AR0.3(%) F(%) B(%) P(%) M(%) MA(%) S Fatigue(MPa) S Fatigue/YS
비교강 1 518 632 19 855 56 54 43 0 1 2 169 0.33
비교강 2 470 565 27 608 35 47 45 2 1 5 113 0.24
비교강 3 539 651 26 785 53 66 30 1 2 1 128 0.24
비교강 4 632 775 17 880 58 43 53 0 3 1 198 0.31
비교강 5 510 623 18 730 45 59 32 4 1 4 121 0.24
비교강 6 560 686 17 826 48 41 54 1 2 2 172 0.31
비교강 7 538 652 26 688 29 45 46 4 1 4 129 0.24
비교강 8 715 872 14 1028 62 61 30 2 5 2 204 0.29
비교강 9 602 738 22 840 39 67 22 6 1 4 130 0.22
비교강 10 625 764 22 963 31 40 48 0 8 4 142 0.23
비교강 11 587 708 24 765 40 56 38 4 1 1 136 0.23
비교강 12 499 604 26 670 45 70 28 0 1 1 117 0.23
비교강 13 762 915 16 966 41 29 50 8 9 4 180 0.24
비교강 14 568 690 25 799 67 36 56 1 1 6 137 0.24
비교강 15 504 611 27 882 72 59 38 0 1 2 123 0.24
비교강 16 715 866 19 1036 28 13 72 2 8 5 168 0.23
비교강 17 721 882 20 1015 35 17 76 0 6 1 172 0.24
발명강 1 554 675 25 750 25 47 51 0 1 1 169 0.31
발명강 2 601 724 22 882 30 35 62 0 1 2 187 0.31
발명강 3 674 816 22 977 28 30 65 0 4 1 193 0.29
발명강 4 690 821 21 1014 30 32 64 0 3 1 195 0.28
발명강 5 762 943 19 1020 35 28 67 0 3 2 213 0.28
발명강 6 771 924 18 1155 38 20 76 1 2 1 208 0.27
발명강 7 780 955 17 1084 42 9 85 1 3 2 220 0.28
상기 표 1 내지 표 3에 나타낸 바와 같이, 본 발명에서 제안하는 합금조성 및 제조조건을 모두 만족하는 발명강 1 내지 7은 기지조직이 페라이트 및 베이나이트 복합조직으로 형성되었다. 또한, 강재의 두께 방향 중심부에서의 결정립 형상비가 0.3 이하인 결정립의 분율이 50% 미만이었으며 (도 2 참조), 결정립계 길이도 모두 700mm 이상으로 형성됨에 따라, 의도하는 고강도와 함께 내구성이 우수하게 확보되었다.
반면, 비교강 1 내지 11은 본 발명에서 제안하는 합금조성은 만족하나, 제조조건이 본 발명을 벗어난 경우로서, 의도하는 물성을 확보할 수 없었다.
비교강 1 내지 3은 열간압연 마무리 온도가 본 발명에서 제안하는 관계식 1을 만족하지 못한 경우로서, 비교강 1은 최종 강재의 두께가 2.9mm이며, 중심부에서 연신된 페라이트 상이 과도하게 형성되었으나, 피로 특성은 크게 열위하지 않은 결과를 보였다. 이는, 두께 2.9mm로 열간압연할 시 미재결정 온도역에서의 압하량이 크게 증가하여 연신된 미세조직이 발달하였으나, 두께 방향으로의 미세조직이 균일함에 따라 펀칭 부위의 단면 품질이 양호함에 기인한 것으로 판단되었다.
반면, 비교강 2와 3은 각각 두께 10mm, 7mm의 후물 강재로서, 비교강 2는 중심부 미세조직 중 MA 상이 발달하고 결정립계의 길이가 700mm 미만으로 형성됨에 따라 피로 환경에 노출시 단면에 형성된 미세 균열이 쉽게 성장하여 피로 특성이 열위한 것으로 나타났다. 또한, 비교강 3은 저온역에서의 열간압연으로 인해 두께 중심부에서 연신된 형태의 결정립이 과도하게 형성되었으며, 이로 인해 취약한 입계를 따라 피로 파괴가 발생한 것으로 판단되었다. 즉, 펀칭 성형시 두께 중심부에서 미세한 균열이 연신된 페라이트 결정립계를 따라 발달함에 기인한 것이다.
비교강 4와 5는 동일한 성분을 가지면서 열간압연 후 냉각시 1차 냉각의 조건이 관계식 2를 만족하지 못한 경우로서, 비교강 4는 3.2mm의 두께를 갖고, 비교강 5는 8mm의 두께를 가지는 것이다. 이 중 두께가 5mm 미만인 비교강 4는 비교강 1과 유사하게 연신된 결정립이 많이 형성되었으나, 1차 냉각시 냉각 속도가 느려도 결정립계에서 조대한 탄화물의 형성이 거의 없어 피로 특성이 크게 열위하지는 아니하였다. 반면, 두께가 두꺼운 비교강 5는 1차 냉각시 냉각 속도가 느려 두께 중심부에서 펄라이트가 형성되었으며, 페라이트 상 분율도 다소 과도하고, 결정립내에는 MA 상도 관찰됨에 따라 피로 특성이 열위해진 것을 확인할 수 있다.
비교강 6과 7은 서로 동일한 성분을 가지나, 각각 3.3mm, 9mm의 두께를 가지며, 관계식 1과 관계식 2를 모두 만족하지 못한 경우이다. 비교강 6은 박물재로서 열연온도가 높아도 재결정이 지연되는 효과를 두께 전체에서 확보할 수 있었던 것으로 판단되며, 1차 냉각시 냉각 속도가 느렸으나 두께 중심부에서 펄라이트 또는 MA 상이 발달하지 않아 피로 특성이 양호하였다. 반면, 두께가 두꺼운 비교강 7은 높은 압연온도와 1차 냉각시 느린 냉각 속도로 인하여 미세조직 크고, 결정립계 길이가 700mm 미만으로 형성되었으며, MA 상과 펄라이트 상도 형성되어 피로 특성이 열위하였다.
비교강 8 및 9는 열간압시 마무리 온도가 본 발명에서 제안하는 범위보다 낮고, 1차 냉각시 냉각 속도가 느린 경우이다. 이들 역시 동일한 성분을 가지나 두께가 서로 다른 경우로서, 박물재인 비교강 8은 두께 전체에 걸쳐 미세하고 연신된 페라이트 상이 많이 형성되었으나 피로 특성이 열위하지 않은 반면, 후물재인 비교강 9는 두께 중심부에서 MA 상과 펄라이트 상이 과도하게 형성되어 피로 특성이 열위하였다.
비교강 10은 관계식 3 즉, 2차 냉각시 냉각 속도가 본 발명을 벗어나는 경우로서, 2차 냉각시 냉각 속도가 지나치게 빨라 두께 중심부에서 마르텐사이트 상이 과도하게 형성되어 피로 환경에 노출시 주변 상(phase)과의 경도차가 큰 영역에서 파괴가 쉽게 진행된 것으로 판단되었다.
비교강 11 역시 관계식 3을 만족하지 못하는 경우로서, 2차 냉각시 냉각 속도가 너무 느려 펄라이트 상이 과도하게 형성되어 피로 특성이 열위하였다.
한편, 비교강 12 내지 17은 합금조성이 본 발명을 벗어나는 경우로서, 제조시 관계식 1 내지 3을 모두 만족하고, 모두 동일한 두께(8mm)를 가지도록 제조되었으나, 피로 특성이 열위하였다.
구체적으로, 비교강 12는 C 함량이 불충분한 경우로서, 두께 중심부에서 페라이트 상이 과도하게 형성되었으며, 베이나이트 상이 충분히 형성되지 못하였다. 이로 인해, 미세조직이 조대해지고 피로강도가 낮았다.
비교강 13은 C 함량이 과다하게 첨가된 경우로서, 상 변태 과정에서 미변태상 내 높은 C 농도로 인해 펄라이트와 마르텐사이트 상이 과도하게 형성되어 항복강도에 비해 낮은 피로강도를 나타내었다.
비교강 14는 Si 함량이 지나치게 높은 경우로서, 베이나이트 상과 함께 MA 상이 형성되었으며, 연신된 미세조직이 많이 관찰되었다. 이로 인해 피로 특성이 열위하였는데, 이는 상대적으로 경질상인 MA 상 주변에서 균열이 많이 형성됨에 기인한 것으로 판단된다
비교강 15는 Mn 함량이 불충분한 경우로서, 재결정 지연 효과와 균일한 미세조직을 얻기 위해 관계식 1 내지 관계식 3을 만족하여 제조되었음에도 불구하고, 두께 중심부에서 페라이트 상이 과도하게 형성되어 강도 및 피로강도가 모두 낮게 나타났다.
비교강 16은 Mn 함량이 과도하게 첨가된 경우로서, 두께 중심부에 발달한 Mn 편석대를 따라서 마르텐사이트 상이 지나치게 발달하여 단면 품질과 피로 특성이 열위하였다.
또한, 비교강 17은 Cr의 함량이 과도한 경우로서, 위 비교강 16과 유사하게 두께 중심부에서 국부적으로 형성된 마르텐사이트 상이 많이 관찰되었으며, 이로 인해 피로 특성이 열위하였다.
한편, 발명강 4의 미세조직을 관찰한 후, 결정립의 형상비를 측정한 결과를 하기 표 4에 나타내었다.
Min Max Total Fraction
0 0.1 0.000
0.1 0.2 0.088
0.2 0.3 0.212
0.3 0.5 0.523
0.5 1 0.176
표 4에서 Min과 Max는 각각 형상비(결정립의 단변길이/결정립의 장변길이)의 최소값과 최대값을 의미하며, Total Fraction은 상기 최소값(Min) 초과~최대값(Max) 이하의 범위에 해당하는 결정립의 면적분율을 의미한다.
표 4에 나타낸 바와 같이, 발명강 4의 경우 결정립의 형상비(단변/장변의 비)가 0.3 이하인 결정립의 분율이 50% 미만(Total Fraction 0.5 미만)인 것을 확인할 수 있다.

Claims (10)

  1. 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.01~1.0%, 망간(Mn): 1.0~2.3%, 알루미늄(Al): 0.01~0.1%, 크롬(Cr): 0.005~1.0%, 인(P): 0.001~0.05%, 황(S): 0.001~0.01%, 질소(N): 0.001~0.01%, 니오븀(Nb): 0.005~0.07%, 티타늄(Ti): 0.005~0.11%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    미세조직으로 페라이트와 베이나이트 상의 분율 합이 90% 이상이고,
    중심부(두께방향 t/4~t/2 지점) 내 결정립의 형상비(단변/장변의 비)가 0.3 이하인 결정립의 분율이 50% 미만이고, 중심부에서 단위면적(1mm 2) 내 관찰되는 결정립계 길이가 700mm 이상인 내구성이 우수한 고강도 강재.
  2. 제 1항에 있어서,
    상기 강판은 MA 상(마르텐사이트 및 오스테나이트 혼합조직)의 분율이 3% 미만인 내구성이 우수한 고강도 강재.
  3. 제 1항에 있어서,
    상기 강판은 MA 상(마르텐사이트 및 오스테나이트 혼합조직) 및 마르텐사이트 상의 합이 면적분율 1~10%인 내구성이 우수한 고강도 강재.
  4. 제 1항에 있어서,
    상기 강판은 인장강도가 650MPa 이상이고, 피로한도와 항복강도의 비(피로한도/항복강도)가 0.25 이상인 내구성이 우수한 고강도 강재.
  5. 중량%로, 탄소(C): 0.05~0.15%, 실리콘(Si): 0.01~1.0%, 망간(Mn): 1.0~2.3%, 알루미늄(Al): 0.01~0.1%, 크롬(Cr): 0.005~1.0%, 인(P): 0.001~0.05%, 황(S): 0.001~0.01%, 질소(N): 0.001~0.01%, 니오븀(Nb): 0.005~0.07%, 티타늄(Ti): 0.005~0.11%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1200~1350℃의 온도범위에서 가열하는 단계;
    상기 가열된 강 슬라브를 열간압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 400~500℃의 온도범위로 냉각한 후 권취(CT)하는 단계; 및
    상기 권취 후 상온~200℃의 온도범위로 공냉하는 단계를 포함하고,
    상기 열간압연은 하기 [관계식 1]을 만족하는 온도(FDT(℃))에서 마무리 열간압연을 행하고,
    상기 냉각은 하기 1차 냉각 및 2차 냉각으로 행하며, 상기 1차 냉각은 [관계식 2]를 만족하는 냉각속도(CR 1)로, 상기 2차 냉각을 하기 [관계식 3]을 만족하는 냉각속도(CR 2)로 행하는 것을 특징으로 하는 내구성이 우수한 고강도 강재의 제조방법.
    [관계식 1]
    Tn-50 ≤ FDT(열간압연 종료온도(℃)) ≤ Tn
    Tn = 730 + 92×[C] + 70×[Mn] + 45×[Cr] + 650×[Nb] + 410×[Ti] - 80×[Si] - 1.4×(t-5) (여기서, 각 원소는 중량 함량(%)을 의미하며, t는 최종 열연강판의 두께(mm)를 의미한다)
    [관계식 2]
    CR 1 ≥ 196 - 300×[C] + 4.5×[Si] - 71.8×[Mn] - 59.6×[Cr] + 187×[Ti] + 852×[Nb] (여기서, 각 원소는 중량 함량(%)을 의미한다)
    [관계식 3]
    CR Min ≤ CR 2 ≤ CR Max
    (CR Max = 76.6 - 157×[C] - 25.2×[Si] - 14.1×[Mn] - 27.3×[Cr] + 61×[Ti] + 448×[Nb] 이고, CR Min = 27.4 - 45.3×[C] + 5.28×[Si] - 11×[Mn] - 7.33×[Cr] + 42.3×[Ti] + 82×[Nb] 이며, 각 원소는 중량 함량(%)을 의미한다)
  6. 제 5항에 있어서,
    상기 1차 냉각은 600℃에서 종료하는 것인 내구성이 우수한 고강도 강재의 제조방법.
  7. 제 5항에 있어서,
    상기 2차 냉각은 권취온도(CT(℃))에서 종료하는 것인 내구성이 우수한 고강도 강재의 제조방법.
  8. 제 5항에 있어서,
    상기 냉각 후 강판을 산세 및 도유하는 단계를 더 포함하는 내구성이 우수한 고강도 강재의 제조방법.
  9. 제 8항에 있어서,
    상기 산세 및 도유 후 강판을 450~740℃의 온도범위로 가열한 다음, 용융아연도금하는 단계를 더 포함하는 내구성이 우수한 고강도 강재의 제조방법.
  10. 제 9항에 있어서,
    상기 용융아연도금은 마그네슘(Mg): 0.01~30중량%, 알루미늄(Al): 0.01~50% 및 잔부 Zn과 불가피한 불순물을 포함하는 도금욕을 이용하는 것인 내구성이 우수한 고강도 강재의 제조방법.
PCT/KR2019/016299 2018-11-26 2019-11-26 내구성이 우수한 고강도 강재 및 이의 제조방법 WO2020111702A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021529852A JP7244723B2 (ja) 2018-11-26 2019-11-26 耐久性に優れた高強度鋼材及びその製造方法
EP19889604.5A EP3889298A4 (en) 2018-11-26 2019-11-26 High-strength steel with excellent durability and method for manufacturing same
CN201980078073.3A CN113166893B (zh) 2018-11-26 2019-11-26 耐久性优异的高强度钢材及其制造方法
US17/294,250 US20220010399A1 (en) 2018-11-26 2019-11-26 High-strength steel with excellent durability and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0147124 2018-11-26
KR1020180147124A KR102131527B1 (ko) 2018-11-26 2018-11-26 내구성이 우수한 고강도 강재 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2020111702A1 true WO2020111702A1 (ko) 2020-06-04

Family

ID=70852967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016299 WO2020111702A1 (ko) 2018-11-26 2019-11-26 내구성이 우수한 고강도 강재 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20220010399A1 (ko)
EP (1) EP3889298A4 (ko)
JP (1) JP7244723B2 (ko)
KR (1) KR102131527B1 (ko)
CN (1) CN113166893B (ko)
WO (1) WO2020111702A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397583B1 (ko) 2020-09-25 2022-05-13 주식회사 포스코 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
KR102409896B1 (ko) * 2020-10-23 2022-06-20 주식회사 포스코 성형성이 우수한 고강도 후물 강판 및 그 제조방법
KR102403648B1 (ko) * 2020-11-17 2022-05-30 주식회사 포스코 고강도 열연강판, 열연 도금강판 및 이들의 제조방법
CN113084453B (zh) * 2021-03-18 2022-04-29 湖南三一路面机械有限公司 耐磨钢轮、钢轮制造方法、钢轮焊接方法和压路机
KR20230072050A (ko) 2021-11-17 2023-05-24 주식회사 포스코 냉간 성형 후 내충격성이 우수한 고항복비형 고강도강 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143570A (ja) 1995-11-17 1997-06-03 Kawasaki Steel Corp 極微細組織を有する高張力熱延鋼板の製造方法
JP2000297350A (ja) * 1999-02-09 2000-10-24 Kawasaki Steel Corp 焼付硬化性、耐疲労性、耐衝撃性および耐常温時効性に優れた高張力熱延鋼板およびその製造方法
JP2001226744A (ja) * 2000-02-15 2001-08-21 Kawasaki Steel Corp 焼付け硬化性および耐衝撃性に優れた高張力熱延鋼板およびその製造方法
JP2002322541A (ja) 2000-10-31 2002-11-08 Nkk Corp 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
KR20040027981A (ko) * 2001-08-24 2004-04-01 신닛뽄세이테쯔 카부시키카이샤 가공성이 우수한 강판 및 제조 방법
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
KR101528084B1 (ko) 2010-09-17 2015-06-10 제이에프이 스틸 가부시키가이샤 타발 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
KR20150074943A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 전단변형부 성형이방성 및 내피로특성이 우수한 열연강판 및 그 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188787B2 (ja) * 1993-04-07 2001-07-16 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度熱延鋼板の製造方法
JP3455567B2 (ja) * 1993-08-17 2003-10-14 日新製鋼株式会社 加工性に優れた高強度溶融Znめっき鋼板の製造方法
CA2652821C (en) * 2006-05-16 2015-11-24 Jfe Steel Corporation Hot-rollled high strength steel sheet having excellent ductility, stretch-flangeability, and tensile fatigue properties and method for producing the same
JP5124866B2 (ja) 2007-09-03 2013-01-23 新日鐵住金株式会社 ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
JP4978741B2 (ja) 2010-05-31 2012-07-18 Jfeスチール株式会社 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP5126326B2 (ja) 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
CN103732779B (zh) * 2011-08-17 2015-11-25 株式会社神户制钢所 高强度热轧钢板
TWI463018B (zh) 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp 具優異裂縫阻滯性之高強度厚鋼板
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법
CN109563580A (zh) 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143570A (ja) 1995-11-17 1997-06-03 Kawasaki Steel Corp 極微細組織を有する高張力熱延鋼板の製造方法
JP2000297350A (ja) * 1999-02-09 2000-10-24 Kawasaki Steel Corp 焼付硬化性、耐疲労性、耐衝撃性および耐常温時効性に優れた高張力熱延鋼板およびその製造方法
JP2001226744A (ja) * 2000-02-15 2001-08-21 Kawasaki Steel Corp 焼付け硬化性および耐衝撃性に優れた高張力熱延鋼板およびその製造方法
JP2002322541A (ja) 2000-10-31 2002-11-08 Nkk Corp 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
KR20040027981A (ko) * 2001-08-24 2004-04-01 신닛뽄세이테쯔 카부시키카이샤 가공성이 우수한 강판 및 제조 방법
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
KR101528084B1 (ko) 2010-09-17 2015-06-10 제이에프이 스틸 가부시키가이샤 타발 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
KR20150074943A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 전단변형부 성형이방성 및 내피로특성이 우수한 열연강판 및 그 제조방법

Also Published As

Publication number Publication date
KR20200062422A (ko) 2020-06-04
JP7244723B2 (ja) 2023-03-23
EP3889298A4 (en) 2021-12-29
JP2022509655A (ja) 2022-01-21
US20220010399A1 (en) 2022-01-13
EP3889298A1 (en) 2021-10-06
KR102131527B1 (ko) 2020-07-08
CN113166893B (zh) 2022-10-04
CN113166893A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2020111702A1 (ko) 내구성이 우수한 고강도 강재 및 이의 제조방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2017111456A1 (ko) 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법
WO2015099382A1 (ko) 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
WO2018117544A1 (ko) 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
WO2019124688A1 (ko) 충돌특성 및 성형성이 우수한 고강도 강판 및 이의 제조방법
WO2019088762A1 (ko) 저온인성이 우수한 용접강관용 강재, 용접후열처리된 강재 및 이들의 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2019124776A1 (ko) 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2017111322A1 (ko) 연성이 우수한 초고강도 열연강판 및 그 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2018117466A1 (ko) 용접성이 우수한 전봉강관용 열연강판 및 이의 제조방법
WO2019124807A1 (ko) 소부경화성 및 내식성이 우수한 강판 및 그 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2019124746A1 (ko) 확관성이 우수한 열연강판 및 그 제조방법
WO2018117539A1 (ko) 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
WO2017086745A1 (ko) 전단가공성이 우수한 고강도 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019889604

Country of ref document: EP

Effective date: 20210628