WO2020111247A1 - Round steel material marking detection device and detection method, and method for manufacturing steel material - Google Patents

Round steel material marking detection device and detection method, and method for manufacturing steel material Download PDF

Info

Publication number
WO2020111247A1
WO2020111247A1 PCT/JP2019/046841 JP2019046841W WO2020111247A1 WO 2020111247 A1 WO2020111247 A1 WO 2020111247A1 JP 2019046841 W JP2019046841 W JP 2019046841W WO 2020111247 A1 WO2020111247 A1 WO 2020111247A1
Authority
WO
WIPO (PCT)
Prior art keywords
marking
steel material
round steel
image
circumferential direction
Prior art date
Application number
PCT/JP2019/046841
Other languages
French (fr)
Japanese (ja)
Inventor
雄翔 田中
匡将 佐藤
松本 実
美喜雄 田中
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201980078830.7A priority Critical patent/CN113165040A/en
Priority to JP2020557863A priority patent/JP7081687B2/en
Publication of WO2020111247A1 publication Critical patent/WO2020111247A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/033Other grinding machines or devices for grinding a surface for cleaning purposes, e.g. for descaling or for grinding off flaws in the surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention a marking detection device and a detection method for a round steel material, in particular, a round billet, a round bar steel, a steel pipe, etc., a marking applied to the position of a surface flaw existing on the surface of a long round steel material having a circular cross section.
  • the present invention also relates to a method for manufacturing a steel material, and more particularly to a method for manufacturing a steel material including grinding a surface flaw using the above-described marking detection method.
  • round steel slabs with a circular cross section are manufactured directly by casting, or by slabbing the cast steel slabs.
  • the round steel slab often has some kind of flaw (casting flaw, hole, linear flaw, cut flaw, etc.) on its surface in the manufacturing process. These flaws become an obstacle in the later process. That is, for example, in the case of hot rolling a round steel slab, flaws caused by these defect parts may remain in the steel material after hot rolling, or fracture of the steel material may occur during hot rolling. Failures such as relaxation occur. Therefore, a so-called “maintenance work” is carried out to grind and remove the surface flaws before the round steel pieces are sent to the subsequent process. Further, since surface steel products such as round steel bars and product steel pipes may also have surface flaws in the manufacturing process, maintenance work is also performed on round steel products such as steel bar products and product steel pipes.
  • Patent Document 1 As a conventional surface flaw care device for round steel products, for example, one shown in Patent Document 1 is known.
  • the surface flaw maintenance device for a round steel material shown in Patent Document 1 is reciprocally movable along the axial direction of a rotating round steel material, and is detected as a surface flaw inspection device for detecting a surface flaw in contact with the round steel material. It is provided with a marking device for injecting a marking liquid at a position of a surface flaw to make a mark, and a work deck for caring for the marked surface flaw.
  • a marking device for injecting a marking liquid at a position of a surface flaw to make a mark
  • a work deck for caring for the marked surface flaw.
  • the conventional surface flaw care device for a round steel material disclosed in Patent Document 1 has the following problems. That is, in the case of the round steel surface flaw care device shown in Patent Document 1, the operator visually finds the marking applied to the detected position of the surface flaw, and grinds the spot.
  • the marking applied to the position of the surface flaw of the round steel material may change its size and shape depending on the spraying condition of the marking liquid, and it may be difficult for the operator to find it visually. Therefore, the method of finding the marking by the operator's eyes has a problem that the risk of missing the marking is large and the grinding efficiency is low. Further, this problem has led to the problem that the manufacturing efficiency is low in the steel material manufacturing method in which the method of visually finding the marking is incorporated as one step in the series of steel material manufacturing processes.
  • the present invention has been made in order to solve this conventional problem, and its purpose is to detect a marking automatically and thereby significantly reduce the risk of missing a marking.
  • Another object of the present invention is to provide a detection method and a steel material manufacturing method using the detection method.
  • a marking detection device for a round steel material is a marking detection device for a round steel material, which detects a marking applied to a position of a surface flaw of the round steel material, in a circumferential direction.
  • An image pickup device that picks up a specific position in the circumferential direction of the surface of the round steel material that rotates in a predetermined cycle with a resolution smaller than the dimension of the marking to be measured, and an image of the specific position picked up by the image pickup device.
  • the gist of the present invention is to include an image processing unit that processes an image obtained by joining in a direction and a marking extraction unit that extracts a marking from the image processed by the image processing unit.
  • a marking detection method for a round steel material is a marking detection method for a round steel material, which detects a marking applied to a position of a surface flaw of the round steel material, wherein the circle rotating in the circumferential direction is used.
  • the gist is to include an image processing step of processing the obtained image and a marking extraction step of extracting a marking from the image subjected to the image processing in the image processing step.
  • a method for manufacturing a steel material according to another aspect of the present invention is to detect a defective portion of a round steel material, apply a marking to a portion having a defective portion having a predetermined depth or more found by the inspection, and then apply it.
  • a method for manufacturing a steel material which comprises detecting a marking and grinding the surface of the detected marking and then performing a treatment in a post-process, wherein the marking is detected by the marking detecting method according to the aspect of the present invention described above. That is the summary.
  • the marking detection apparatus and the detection method of the round steel material which concern on this invention, the marking detection apparatus and detection method of the round steel material which detected the marking automatically, and greatly reduced the risk of missing the marking, and manufacturing of the steel material.
  • a method can be provided.
  • An example of the image after the original image joining process, the binarized image after removal of the binarized noise, and the image of the marking extraction result is displayed from one end face in the axial direction of the round steel material to the first position in the axial direction. It is the figure divided and shown in three from the 1st position to the 2nd position and the said 2nd position to the 3rd position. It is a figure which shows a part of example of the binarized image after a binarized noise removal process. It is the figure which looked at the schematic structure of the marking detection device of the round steel material concerning another embodiment of the present invention from the front side.
  • FIG. 1 shows a schematic configuration of a marking detection device for a round steel material according to an embodiment of the present invention.
  • a marking detection device 1 for a round steel material is a marking device for marking a position of a surface flaw of a round steel material S. It is installed on the downstream side (not shown). The marking device is provided in the middle of a transportation line that conveys the round steel material S to the downstream process. The marking device applies the marking to the position of the surface flaw of the round steel material S, and the round steel material S to which the marking is applied is transferred. It is transferred to the marking detection device 1 by (not shown).
  • the marking device is provided in association with a flaw detection device such as a leakage magnetic flux flaw detector (MLFT) or an ultrasonic flaw detector (AUT) that detects a defect on the surface or in the vicinity of the surface. Then, the marking device applies the paint to a portion of the round steel material S where there is a defect having a predetermined depth or more found by the flaw detection device to make marking.
  • a flaw detection device such as a leakage magnetic flux flaw detector (MLFT) or an ultrasonic flaw detector (AUT) that detects a defect on the surface or in the vicinity of the surface.
  • the marking device applies the paint to a portion of the round steel material S where there is a defect having a predetermined depth or more found by the flaw detection device to make marking.
  • the size of the marked round steel material S is any size between the minimum diameter ⁇ 80 mm and the maximum diameter ⁇ 450 mm, and in FIG. 1 to FIG. , The minimum diameter round steel material is indicated by S2.
  • the color of the marking applied to the position of the surface flaw of the round steel material S by the marking device is preferably different from the color of the illumination by the illumination device 5 described later (a color similar to white).
  • the marking color and the illumination color are not confused with each other, and the marking can be easily detected.
  • the marking detection device 1 detects the marking M (see FIG. 8) applied to the position of the surface flaw of the round steel material S, and moves the round steel material S transferred by the transfer to a predetermined rotation speed (in the present embodiment).
  • a predetermined rotation speed in the present embodiment.
  • the turning roller 2 is provided with a pulse generator 17 as a rotation angle detection device that detects the rotation angle of the round steel material S.
  • the rotation number of the turning roller 2 is input from the pulse generator 17 to the marking extraction unit 9 to be described later, and the marking extraction unit 9 determines the rotation angle from the imaging start point of the round steel material S based on the input rotation number of the turning roller 2. To detect.
  • the marking detection device 1 includes a plurality of image pickup devices 3 for picking up an image of the surface of the round steel material S that rotates on the turning roller 2 in the circumferential direction, a computer system 7, and a display device 10.
  • a plurality of first support members 13 are attached to a plurality of support legs 12 erected on a pedestal portion 11 so as to be orthogonal to the support legs 12.
  • the second support member 14 is attached to the first support member 13 so as to be orthogonal to the first support member 13.
  • a plurality of third support members 15 are attached so as to be orthogonal to the support legs 12 at positions above the portions of the plurality of support legs 12 to which the first support members 13 are attached.
  • a fourth support member 16 is attached to the third support member 15 so as to be orthogonal to the third support member 15.
  • Each imaging device 3 is attached to the tip of the fourth support member 16.
  • Each imaging device 3 is composed of a line sensor camera. As shown in FIG. 2, the direction in which the imaging line of the line sensor camera extends and the axial direction of the round steel material S coincide with each other, and as shown in FIG.
  • the sensor camera is installed so that the angle ⁇ formed by the optical axis L3 and the tangent line TL in contact with the uppermost position P of the round steel material S is 90 degrees.
  • the angle ⁇ formed by the optical axis L3 and the tangent line TL is not limited to 90 degrees, and it is preferable that the acute side has a range of 30 degrees or more.
  • the installation height of the line sensor cameras constituting each imaging device 3 is such that the distance WD between the lens of the line sensor camera and the round steel material S is a predetermined distance (of the round steel material S1 having the maximum diameter).
  • the distance WD( ⁇ max) 900 mm
  • the distance WD( ⁇ min) 1270 mm.
  • a camera having a lens in focus is selected.
  • the depth of field is set to 771 mm, and a lens that is in focus is selected regardless of whether the diameter of the round steel material S1 having the maximum diameter is ⁇ 450 mm and the diameter of the round steel material S2 having the minimum diameter is ⁇ 80 mm.
  • each image pickup device 3 has a marking M (FIG. 8) that is a measurement target at the uppermost position (specific position) P in the circumferential direction of the surface of the round steel material S that rotates on the turning roller 2 in the circumferential direction.
  • An image of one round of the round steel material S is picked up at a predetermined cycle with a resolution smaller than the dimension of (see).
  • the uppermost position P of the surface of the round steel S that rotates in the circumferential direction (the uppermost position of the surface of the round steel S1 having the largest diameter is P1, the uppermost position of the surface of the round steel S2 having the smallest diameter is P2).
  • the size of the marking M is a circle having a diameter of about 4 mm
  • the resolution of the line sensor camera that is, the width R in the circumferential direction of each pixel n (see FIG. 3) of one line is the maximum diameter circle.
  • the width R ( ⁇ max) in the circumferential direction of each pixel n when imaging the steel material S1 is 630 ⁇ m/pix
  • the width R ( ⁇ min) in the circumferential direction of each pixel n when imaging the round steel material S2 having the minimum diameter is 889 ⁇ m/ It is pix.
  • the cycle of imaging with the line sensor camera is 1/2381 s so that the rotation speed of the round steel material S is 1500 mm/s and the circumferential surface of the round steel material S can be imaged without gaps. Is becoming
  • the number of pixels n of one line of the line sensor camera constituting each imaging device 3 is 2048 pix
  • the axial width R ( ⁇ max) of each pixel n when imaging the round steel S1 having the maximum diameter is 630 ⁇ m/ Pix
  • the width R ( ⁇ min) in the axial direction of each pixel n when imaging the round steel material S2 having the smallest diameter is 889 ⁇ m/pix. Therefore, the visual field width L ( ⁇ max) when capturing the maximum diameter round steel material S1 is 1290 mm
  • the visual field width L ( ⁇ min) when capturing the minimum diameter round steel material S2 is 1821 mm.
  • a plurality of imaging devices 3 are installed along the axial direction of the round steel material S so that the entire length of the round steel material S1 having the maximum diameter and the total length of the round steel material S2 having the minimum diameter can be imaged.
  • the reason why the imaging device 3 is a line sensor camera whose imaging line extends in the axial direction of the round steel material S is as follows. That is, when the round steel material S is viewed from the axial direction, the surface of the round steel material S is circular. Therefore, when the imaging device 3 is an area sensor camera, the distance from the area sensor camera to the surface of the round steel material S is large. Are different along the circumferential direction, and the angle between the position on the surface of the round steel S when viewed from the axial direction of the round steel S and the straight line connecting the camera with the surface of the round steel S at this position is the circumferential direction. Different along.
  • the imaging device 3 is an area sensor camera
  • the appearance of the shape of the marking applied to the surface of the round steel material S in the captured image changes along the circumferential direction of the round steel material S.
  • the straight line connecting the position on the surface of the round steel material S and the camera forms an acute angle with the surface of the round steel material at this position
  • the area of the marking in the captured image becomes small, and it is difficult to distinguish between the marking and noise.
  • the image pickup device 3 is composed of a line sensor camera, and the image pickup device 3 is arranged so that the image pickup line extends in the axial direction of the round steel material S, and the position of the uppermost position P on the surface of the round steel material S rotating in the circumferential direction is set. Images are taken along the axial direction.
  • the image at the uppermost position (specific position) P captured by the line sensor camera is taken as an image obtained by joining the images in the circumferential direction, and the marking is extracted from this image.
  • the distance from the line sensor camera to the position of the uppermost position P on the surface of the round steel S does not change, and the line connecting the camera and the uppermost position P is not changed.
  • the angle formed by the surface of the round steel S at the uppermost position P is constant. Therefore, by using the image pickup device 3 as a line sensor camera, it is possible to appropriately detect the shape of the marking applied to the surface of the round steel S that is the image pickup target.
  • Each imaging device 3 is connected to a camera control device 4 that controls a power supply, an imaging cycle, and the like, which are not shown.
  • the marking detection device 1 includes a plurality of illumination devices 5 as shown in FIGS. 1 to 3.
  • Each lighting device 5 is rotatably attached to the tip of the second support member 14 described above.
  • Each illuminating device 5 is composed of two rows of bar illuminators that continuously illuminate the surface of the round steel material S, especially near the uppermost position P where an image is taken. The color of the illumination is close to white.
  • the angle ⁇ formed by the optical axis L5 of the lighting device 5 and the vertical line VL is from the vicinity of the uppermost position P2 of the round steel material S2 having the smallest diameter to the uppermost position P1 of the round steel material S1 having the largest diameter.
  • a plurality of lighting devices 5 are installed along the axial direction of the round steel S so that the entire length of the round steel S1 having the maximum diameter and the total length of the round steel S2 having the minimum diameter can be illuminated.
  • Each lighting device 5 is connected to a lighting power supply (not shown) and a lighting control device 6 that controls the brightness of the lighting and the like.
  • the computer system 7 includes an image processing unit 8 that processes an image obtained by joining the images at the above-described uppermost position (specific position) P captured by each imaging device 3 in the circumferential direction, and the image processing unit 8.
  • the marking extraction unit 9 is provided for extracting the marking M (see FIG. 8) from the image processed in (1).
  • Each image pickup device 3 and the pulse generator 17 are connected to the computer system 7.
  • the computer system 7 is a computer system having an arithmetic processing function for realizing each function of the image processing unit 8 and the marking extraction unit 9 by executing a program on computer software.
  • the computer system is configured to include a ROM, a RAM, a CPU, and the like, and executes the various dedicated programs stored in the ROM or the like in advance to realize the above-described functions on software.
  • the display device 10 displays the marking M extracted by the marking extraction unit 9, the mark 18 (see FIG. 7) for pointing out the location of the marking M, the circumferential position and the longitudinal position of the marking M.
  • the functions of the image processing unit 8, the marking extraction unit 9, and the display device 10 will be described in detail in the following description of the marking detection method using the marking detection device 1 for the round steel material S.
  • each of the line sensor cameras constituting the plurality of image pickup devices 3 arranged along the axial direction of the round steel material S rotates the turning steel 2 in the circumferential direction.
  • the uppermost position (specific position) P of the surface of S in the circumferential direction is imaged at a predetermined cycle with a resolution smaller than the dimension of the marking M to be measured (imaging step). That is, each imaging device 3 images the position of the uppermost position P on the surface of the round steel material S that rotates in the circumferential direction for one round of the round steel material S at a predetermined cycle with the above-described resolution.
  • the size of the marking M is a circle having a diameter of about 4 mm
  • the resolution of the line sensor camera that is, the width R in the circumferential direction of each pixel n (see FIG. 3) of one line is the maximum diameter circle.
  • the width R ( ⁇ max) in the circumferential direction of each pixel n when imaging the steel material S1 is 630 ⁇ m/pix
  • the width R ( ⁇ min) in the circumferential direction of each pixel n when imaging the round steel material S2 having the minimum diameter is 889 ⁇ m/ It is pix.
  • the cycle of imaging with the line sensor camera is 1/2381 s so that the rotation speed of the round steel material S is 1500 mm/s, and the circumferential front surface of the round steel material S can be imaged without gaps. Has become.
  • step S2 the image processing unit 8 of the computer system 7 obtains an image obtained by joining the images at the uppermost position (specific position) P captured by the line sensor cameras constituting each image capturing apparatus 3 in the circumferential direction.
  • Process image processing step.
  • the image processing unit 8 firstly outputs the original image (images of the plurality of uppermost positions P) from the line sensor cameras constituting each image pickup apparatus 3. ) Is taken in.
  • step S22 the image processing unit 8 joins the captured original images (images at the plurality of uppermost positions P) in the circumferential direction of the round steel material S.
  • An example of an image obtained by joining the original images in the circumferential direction of the round steel materials S is shown in the upper part of FIG. 7. Since it is difficult to detect the marking M in an image obtained by joining the original images in the circumferential direction of the round steel materials S, the binarization processing is performed later.
  • step S23 the image processing unit 8 performs noise removal processing other than marking on the joined original images.
  • step S24 the image processing unit 8 performs binarization processing on the stitched original image from which noise has been removed. Further, in step S25, the image processing unit 8 performs noise removal processing other than marking on the binarized image.
  • An example of the image after noise removal is shown in the middle part of FIG. 7.
  • step S26 the binarized image from which noise has been removed is output to the marking extraction unit 9.
  • step S3 the marking extraction unit 9 of the computer system 7 extracts the marking M from the image subjected to the image processing in the image processing step (marking extraction step).
  • marking extraction step will be described in detail.
  • the marking extraction unit 9 fetches the binarized image from the image processing unit 8 in step S31.
  • step S32 it is determined whether or not there is a region a (see FIG. 8) of a set of pixels n1 (see FIG. 8) having a pixel value of 0 (white) having a predetermined area or more in the captured binary image.
  • a pixel having a pixel value of 1 (black) is indicated by n2.
  • the marking shape is circular and the diameter of the circular shape is D
  • the number of pixels n1 that are equal to or greater than a value D/R obtained by dividing the diameter D by the width R ( ⁇ D) of each pixel are consecutive. It is determined whether or not there is an area a of the set that exists.
  • the marking diameter is 4 mm
  • the presence or absence of marking can be determined by determining whether or not there is marking.
  • step S33 the marking extraction unit 9 determines that the area a is the marking M
  • step S35 the marking extraction unit 9 determines the circumferential position x and the longitudinal position y of the marking M (see the lower row in FIG. 7). Identify.
  • the marking extraction unit 9 determines that the area a is the marking M, as shown in the lower part of FIG. 7, the marking extraction unit 9 puts a mark 18 around the marking M to indicate the location of the marking M.
  • the circumferential position x of the marking M means the circumferential length of the round steel material S from the imaging start point to the marking M in the circumferential direction.
  • the marking extraction unit 9 receives the rotation speed of the turning roller 2 from the pulse generator 17, and the marking extraction unit 9 receives the rotation speed of the turning roller 2 and the diameter of the turning roller 2 which have been input.
  • the circumferential length of the steel material S from the imaging start point to the marking M in the circumferential direction is calculated, and the circumferential position x of the marking M is specified.
  • the longitudinal position y of the marking M means the axial length from the end surface of the round steel S in the axial direction to the marking M.
  • the marking extraction unit 9 determines the number of pixels n from the end surface in the axial direction of the round steel material S to the marking M and the axial width R of each pixel n from the end surface in the axial direction of the round steel material S to the marking M.
  • the length in the axial direction is calculated, and the longitudinal position y of the marking M is specified.
  • the marking extraction unit 9 outputs the marking extraction result to the display device 10 in step S36.
  • An example of the marking extraction result is shown in the lower part of FIG. 7, and the marking M, the mark 18 indicating the location of the marking M, and the circumferential position x and the longitudinal position y of the marking M are extracted.
  • the circumferential position of the specific marking M is shown as x1 and the longitudinal position thereof is shown as y1.
  • step S4 the display device 10 causes the marking extraction result output from the marking extraction unit 9 of the computer system 7, that is, the marking M, the marking 18 indicating the location of the marking M, and the circumferential direction of the marking M.
  • the position x and the longitudinal position y are displayed.
  • the operator who grinds the surface flaw of the round steel material S may grind the spot on the surface of the marked round steel material S based on the marking extraction result displayed on the display device 10. Further, the marking detection result extracted by the marking extraction unit 9 may be transferred to a surface flaw grinding device provided in a later process, and the marking portion may be automatically ground by the surface flaw grinding device.
  • the round steel material S after grinding the marking points on the surface is sent to a further post-process (processes after the surface flaw grinding) and processed there to be a steel product which is a product.
  • the further post-process is the whole of the subsequent process steps in which a round steel material having a defective portion whose surface is ground is processed.
  • the round steel material S is a bar steel product such as a round bar steel or a product steel pipe, it is a refining process, a shipping process or the like performed after defect grinding.
  • the round steel S is a material for rolling, it is a rolling process, a refining process performed thereafter, a shipping process, or the like.
  • the steel material After the surface of the marked portion of the round steel material S, which has been marked on the surface with flaws (defects) by the above-mentioned marking detection method, is subjected to surface grinding, the steel material is sent to the subsequent step to visually detect the marking. Marking can be detected more efficiently and more accurately than in the case of. Therefore, the manufacturing efficiency of the steel material is improved. Further, since the marking detection accuracy is improved, the occurrence of obstacles in the subsequent process is suppressed.
  • the obstacle in the post-process means that when the round steel is the material for rolling, the steel material after the rolling step in the post-process has a flaw caused by the surface defect in the material for rolling.
  • the steel material is broken or the steel material is broken during the rolling process due to the surface defect in the material for rolling. Further, when the round steel material S is a bar steel product or a product steel pipe, it means that a product whose defective portion is not completely removed by grinding is shipped in the subsequent shipping process.
  • the steel material from the step of applying the marking to the step of grinding the marking is a round steel material, that is, if it is a steel material with a circular cross section
  • the steel material after the treatment in the post process does not necessarily have to be a round steel material.
  • the steel material after the treatment in the process may be a steel material having a square cross section.
  • the marking detection method according to the present invention is applied to either the marking detection of the raw material or the marking detection of the steel bar product. Can also be applied.
  • the detection method of the present invention is used only for the marking detection of the material.
  • the detection method of the present invention may be used only for detecting the marking of a product, or the marking detection method of the present invention may be used for both the detection of material marking and the detection of product marking.
  • the uppermost position (specific position) in the circumferential direction of the surface of the round steel S that rotates in the circumferential direction is imaged in a predetermined cycle with a resolution smaller than the dimension of the marking M to be measured (imaging device 3, step S1 (imaging step)). Then, the image obtained by connecting the captured images of the above-mentioned uppermost position (specific position) P in the circumferential direction is processed (image processing unit 8, step S2 (image processing step)). Further, the marking M is extracted from the image processed image (marking extraction unit 9, step S3 (marking extraction step)).
  • the marking detection device 1 and the detection method for the round steel material in which the risk of missing the marking M is significantly reduced by automatically detecting the marking M.
  • the image pickup device 3 is a line sensor camera, it is possible to appropriately detect the shape of the marking M applied to the surface of the round steel material S which is an image pickup target.
  • the pulse generator 17 for detecting the rotation speed of the turning roller 2 as a rotation angle detection device for detecting the rotation angle of the round steel material S is provided, the round steel material is calculated from the rotation speed of the turning roller 2 and the diameter of the turning roller.
  • a circumferential position x of the marking M can be specified by calculating the circumferential length from the image pickup start point in the circumferential direction of S to the marking M.
  • the size of the marking M is a circle having a diameter of about 4 mm
  • the resolution of the line sensor camera that constitutes the imaging device 3 is 630 ⁇ m/pix and the minimum diameter when the round steel material S1 having the largest diameter is imaged.
  • 889 ⁇ m/pix is set when the round steel material S2 is imaged
  • the size of the marking M may be other than 4 mm in diameter.
  • the resolution of the line sensor camera constituting the imaging device 3 may be any size as long as it is smaller than the size of the marking M.
  • the line sensor camera constituting the image pickup device 3 images the specific position (uppermost position P) on the surface of the round steel material S rotating in the circumferential direction for one round of the round steel material S at a predetermined cycle. It is not limited to one round, and a plurality of rounds may be picked up.
  • the imaging cycle of the line sensor camera which constitutes the imaging device 3 is not limited to 1/2381 s as long as it can image the surface of the round steel S in the circumferential direction without gaps.
  • the size of the round steel material S to which the marking is applied is ⁇ 450 mm in maximum diameter and ⁇ 80 mm in minimum diameter, but can be arbitrarily changed.
  • the color of the marking applied to the position of the surface flaw of the round steel material S by the marking device is different from the color of the illumination by the illumination device 5 (a color approximate to white), but it may be the same color.
  • the color of the marking applied to the surface flaw position of the round steel material S by the marking device is described as a single color, but it may be a color.
  • MLFT leakage flux flaw detection
  • AUT ultrasonic flaw detection
  • EC peeling flaw detection
  • magner Magnetic particle flaw detection
  • the marking device may perform marking of different colors for each flaw detection method.
  • a color camera may be selected as the imaging device 3, and image processing, marking extraction, and marking extraction result display may be performed for each color.
  • the line sensor camera is used as the imaging device 3
  • an area sensor camera may be used.
  • a range in which an angle ⁇ (acute angle side) formed between the line connecting the imaging device 3 and the position P on the surface of the round steel S to be imaged and the surface of the round steel S at the position P on the surface is 30 degrees or more.
  • is 30 degrees or more, it is easy to distinguish the marking from the noise, and the marking detection accuracy is improved.
  • the number of the image pickup device 3 may be one as long as the single image pickup device 3 can pick up an image of the entire surface of the round steel S.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Provided are a round steel material marking detection device and detection method, and a method for manufacturing a steel material, with which the risk of a marking being missed is significantly reduced by detecting markings automatically. A round steel material marking detection device (1) detects a marking (M) that has been applied at the position of a surface flaw on a round steel material (S). The marking detection device (1) is provided with: an image capturing device (3) which captures images of a prescribed position (P) in the circumferential direction on the surface of the round steel material (S), which is rotating in a circumferential direction, with a prescribed period and with a resolution smaller than the dimension of the marking (M) being a measurement target; an image processing unit (8) which processes an image obtained by joining, in the circumferential direction, the images of the prescribed position (P) captured by the image capturing device (3); and a marking extraction unit (9) which extracts the marking (M) from the image that has been subjected to image processing by the image processing unit (8).

Description

丸鋼材のマーキング検出装置及び検出方法及び鋼材の製造方法Round steel marking detection device and detection method, and steel manufacturing method
 本発明は、丸鋼材のマーキング検出装置及び検出方法、特に、丸ビレット・丸棒鋼、鋼管等、断面が円形で且つ長尺の丸鋼材の表面に存在する表面疵の位置に塗布されたマーキングを検出する装置及び方法に関する。また、本発明は鋼材の製造方法、特に、上記のマーキング検出方法を用いて表面疵を研削することを含む、鋼材の製造方法に関する。 The present invention, a marking detection device and a detection method for a round steel material, in particular, a round billet, a round bar steel, a steel pipe, etc., a marking applied to the position of a surface flaw existing on the surface of a long round steel material having a circular cross section. A detection device and method. The present invention also relates to a method for manufacturing a steel material, and more particularly to a method for manufacturing a steel material including grinding a surface flaw using the above-described marking detection method.
 一般に、断面が円形の丸鋼片(例えば丸ビレット)は、鋳造で直接製造されたり、あるいは鋳造された鋼片を分塊圧延することによって製造される。そして、丸鋼片は、その製造工程で表面に何らかの疵(鋳造疵、孔、線状疵、切り疵等)が生じていることが多い。これらの疵は、後工程で障害となる。すなわち、例えば、丸鋼片を熱間圧延する場合には、熱間圧延後の鋼材にこれらの欠陥部が起因となった疵が残ってしまったり、熱間圧延時に鋼材の破断が生じてしまったりする等の障害が発生する。したがって、後工程へ丸鋼片を送る前に、表面疵を研削してなくす所謂「手入れ作業」が行われている。また、丸棒鋼のような条鋼製品や製品鋼管も製造工程で表面疵を生じることがあるため、条鋼製品や製品鋼管等の丸棒鋼についても手入れ作業が行われている。 Generally, round steel slabs with a circular cross section (for example, round billets) are manufactured directly by casting, or by slabbing the cast steel slabs. The round steel slab often has some kind of flaw (casting flaw, hole, linear flaw, cut flaw, etc.) on its surface in the manufacturing process. These flaws become an obstacle in the later process. That is, for example, in the case of hot rolling a round steel slab, flaws caused by these defect parts may remain in the steel material after hot rolling, or fracture of the steel material may occur during hot rolling. Failures such as relaxation occur. Therefore, a so-called "maintenance work" is carried out to grind and remove the surface flaws before the round steel pieces are sent to the subsequent process. Further, since surface steel products such as round steel bars and product steel pipes may also have surface flaws in the manufacturing process, maintenance work is also performed on round steel products such as steel bar products and product steel pipes.
 従来の丸鋼材の表面疵手入れ装置として、例えば、特許文献1に示すものが知られている。
 特許文献1に示す丸鋼材の表面疵手入れ装置は、回転している丸鋼材の軸線方向に沿い往復移動自在で、丸鋼材と接触して表面疵を検出する表面疵検査装置と、検出された表面疵の位置にマーキング液を噴射して印を付けるマーキング装置と、マーキングされた表面疵を手入れする作業デッキとを備えている。
 この特許文献1に示す丸鋼材の表面疵手入れ装置によれば、検出された表面疵の位置をマーキングするようにしたので、作業者の研削位置判断を正確にし、研削作業を迅速に行うことができる。
BACKGROUND ART As a conventional surface flaw care device for round steel products, for example, one shown in Patent Document 1 is known.
The surface flaw maintenance device for a round steel material shown in Patent Document 1 is reciprocally movable along the axial direction of a rotating round steel material, and is detected as a surface flaw inspection device for detecting a surface flaw in contact with the round steel material. It is provided with a marking device for injecting a marking liquid at a position of a surface flaw to make a mark, and a work deck for caring for the marked surface flaw.
According to the surface flaw care device for a round steel material disclosed in Patent Document 1, since the position of the detected surface flaw is marked, the operator can accurately determine the grinding position and perform the grinding work quickly. it can.
特開2002-28724号公報JP 2002-28724A
 しかしながら、この従来の特許文献1に示す丸鋼材の表面疵手入れ装置にあっては、以下の問題点があった。
 即ち、特許文献1に示す丸鋼材の表面疵手入れ装置の場合、検出された表面疵の位置に塗布されたマーキングを作業者が目視により見つけ、その箇所を研削するようにしている。
 ここで、丸鋼材の表面疵の位置に塗布されるマーキングは、マーキング液の吹付け具合によりその大きさや形が変わることがあり、作業者が目視で見つけにくい場合がある。従って、作業者の目視によってマーキングを見つける方法では、マーキングを見逃すリスクが大きく、研削能率が低いという問題があった。さらに、この問題は、マーキングを作業者の目視によって見つける方法を、一連の鋼材の製造プロセスの中の一工程として組み込んでいる鋼材の製造方法においては、製造能率が低いという問題に繋がっていた。
However, the conventional surface flaw care device for a round steel material disclosed in Patent Document 1 has the following problems.
That is, in the case of the round steel surface flaw care device shown in Patent Document 1, the operator visually finds the marking applied to the detected position of the surface flaw, and grinds the spot.
Here, the marking applied to the position of the surface flaw of the round steel material may change its size and shape depending on the spraying condition of the marking liquid, and it may be difficult for the operator to find it visually. Therefore, the method of finding the marking by the operator's eyes has a problem that the risk of missing the marking is large and the grinding efficiency is low. Further, this problem has led to the problem that the manufacturing efficiency is low in the steel material manufacturing method in which the method of visually finding the marking is incorporated as one step in the series of steel material manufacturing processes.
 従って、本発明は、この従来の問題点を解決するためになされたものであり、その目的は、自動でマーキングを検出するようにしてマーキングの見逃しリスクを大幅に低減した丸鋼材のマーキング検出装置及び検出方法、及び、この検出方法を用いた鋼材の製造方法を提供することにある。 Therefore, the present invention has been made in order to solve this conventional problem, and its purpose is to detect a marking automatically and thereby significantly reduce the risk of missing a marking. Another object of the present invention is to provide a detection method and a steel material manufacturing method using the detection method.
 上記目的を達成するために、本発明の一態様に係る丸鋼材のマーキング検出装置は、丸鋼材の表面疵の位置に塗布されたマーキングを検出する丸鋼材のマーキング検出装置であって、周方向に回転する前記丸鋼材の表面の周方向の特定位置を測定対象であるマーキングの寸法よりも小さい分解能で所定周期で撮像する撮像装置と、該撮像装置で撮像された前記特定位置の画像を周方向に繋ぎ合せて得られた画像を処理する画像処理部と、該画像処理部で画像処理された画像からマーキングを抽出するマーキング抽出部とを備えていることを要旨とする。 In order to achieve the above object, a marking detection device for a round steel material according to an aspect of the present invention is a marking detection device for a round steel material, which detects a marking applied to a position of a surface flaw of the round steel material, in a circumferential direction. An image pickup device that picks up a specific position in the circumferential direction of the surface of the round steel material that rotates in a predetermined cycle with a resolution smaller than the dimension of the marking to be measured, and an image of the specific position picked up by the image pickup device. The gist of the present invention is to include an image processing unit that processes an image obtained by joining in a direction and a marking extraction unit that extracts a marking from the image processed by the image processing unit.
 また、本発明の別の態様に係る丸鋼材のマーキング検出方法は、丸鋼材の表面疵の位置に塗布されたマーキングを検出する丸鋼材のマーキング検出方法であって、周方向に回転する前記丸鋼材の表面の周方向の特定位置を測定対象であるマーキングの寸法よりも小さい分解能で所定周期で撮像する撮像ステップと、該撮像ステップで撮像された前記特定位置の画像を周方向に繋ぎ合せて得られた画像を処理する画像処理ステップと、該画像処理ステップで画像処理された画像からマーキングを抽出するマーキング抽出ステップとを含むことを要旨とする。 Further, a marking detection method for a round steel material according to another aspect of the present invention is a marking detection method for a round steel material, which detects a marking applied to a position of a surface flaw of the round steel material, wherein the circle rotating in the circumferential direction is used. An image capturing step of capturing a specific position in the circumferential direction of the surface of the steel material at a predetermined cycle with a resolution smaller than the dimension of the marking to be measured, and connecting the image of the specific position captured in the imaging step in the circumferential direction. The gist is to include an image processing step of processing the obtained image and a marking extraction step of extracting a marking from the image subjected to the image processing in the image processing step.
 また、本発明の別の態様に係る鋼材の製造方法は、丸鋼材の欠陥部を探傷し、探傷により発見した所定深さ以上の欠陥部がある箇所にマーキングを塗布し、その後に塗布されたマーキングを検出し、検出されたマーキングの部分を表面研削した後に、後工程で処理を行う鋼材の製造方法であって、前記マーキングの検出は、前述した本発明の態様に係るマーキング検出方法により行うことを要旨とする。 In addition, a method for manufacturing a steel material according to another aspect of the present invention is to detect a defective portion of a round steel material, apply a marking to a portion having a defective portion having a predetermined depth or more found by the inspection, and then apply it. A method for manufacturing a steel material, which comprises detecting a marking and grinding the surface of the detected marking and then performing a treatment in a post-process, wherein the marking is detected by the marking detecting method according to the aspect of the present invention described above. That is the summary.
 本発明に係る丸鋼材のマーキング検出装置及び検出方法によれば、自動でマーキングを検出するようにしてマーキングの見逃しリスクを大幅に低減した丸鋼材のマーキング検出装置及び検出方法、及び、鋼材の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to the marking detection apparatus and the detection method of the round steel material which concern on this invention, the marking detection apparatus and detection method of the round steel material which detected the marking automatically, and greatly reduced the risk of missing the marking, and manufacturing of the steel material. A method can be provided.
本発明の一実施形態に係る丸鋼材のマーキング検出装置の概略構成を正面側から見た図である。It is the figure which looked at the schematic structure of the marking detection device of the round steel material concerning one embodiment of the present invention from the front side. 図1に示す丸鋼材のマーキング検出装置の概略構成を右側面側から見た図である。It is the figure which looked at the schematic structure of the marking detection apparatus of the round steel material shown in FIG. 1 from the right side. 撮像装置を構成するラインセンサカメラの仕様を説明するための図である。It is a figure for demonstrating the specification of the line sensor camera which comprises an imaging device. 図1に示す丸鋼材のマーキング検出装置を用いた丸鋼材のマーキング検出方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the marking detection method of the round steel material using the marking detection apparatus of the round steel material shown in FIG. 図4に示すフローチャートにおけるステップS2(画像処理ステップ)の手順を示すフローチャートである。5 is a flowchart showing a procedure of step S2 (image processing step) in the flowchart shown in FIG. 4. 図4に示すフローチャートにおけるステップS3(マーキング抽出ステップ)の手順を示すフローチャートである。It is a flowchart which shows the procedure of step S3 (marking extraction step) in the flowchart shown in FIG. 原画像繋ぎ合わせ処理後の画像、2値化ノイズ除去後の2値化画像、及びマーキング抽出結果の画像の一例を、丸鋼材の軸方向の一端面から軸方向の第1位置まで、当該第1位置から第2位置まで、当該第2位置から第3位置までの3つに分割して示した図である。An example of the image after the original image joining process, the binarized image after removal of the binarized noise, and the image of the marking extraction result is displayed from one end face in the axial direction of the round steel material to the first position in the axial direction. It is the figure divided and shown in three from the 1st position to the 2nd position and the said 2nd position to the 3rd position. 2値化ノイズ除去処理後の2値化画像の一例の一部を示す図である。It is a figure which shows a part of example of the binarized image after a binarized noise removal process. 本発明の別の実施形態に係る丸鋼材のマーキング検出装置の概略構成を正面側から見た図である。It is the figure which looked at the schematic structure of the marking detection device of the round steel material concerning another embodiment of the present invention from the front side.
 以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Embodiments of the present invention will be described below with reference to the drawings. The embodiments described below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is that the material, shape, structure, arrangement, etc. of components are It is not limited to the following embodiments. Further, the drawings are schematic. Therefore, it should be noted that the relationship between the thickness and the plane size, the ratio, and the like are different from the actual ones, and the drawings include portions in which the dimensional relationship and ratio are different from each other.
 図1には、本発明の一実施形態に係る丸鋼材のマーキング検出装置の概略構成が示されており、丸鋼材のマーキング検出装置1は、丸鋼材Sの表面疵の位置にマーキングするマーキング装置(図示せず)の下流側に設置される。マーキング装置は、丸鋼材Sを下流工程へ搬送する搬送ラインの途中に設けられており、マーキング装置で丸鋼材Sの表面疵の位置にマーキングを塗布し、マーキングを塗布された丸鋼材Sがトランスファー(図示せず)によってマーキング検出装置1に移送される。ここで、マーキング装置は、漏洩磁束探傷装置(MLFT)や超音波探傷装置(AUT)などの、表面あるいは表面近傍にある欠陥を検出する探傷装置に付随して設けられる。そして、マーキング装置は、丸鋼材Sの、探傷装置により発見した所定深さ以上の欠陥部がある箇所に塗料を塗布して、マーキングとする。マーキングされる丸鋼材Sの大きさは、本実施形態にあっては最小径φ80mmから最大径φ450mmまでの間の任意の大きさであり、図1乃至図3において、最大径の丸鋼材をS1、最小径の丸鋼材をS2で示している。なお、マーキング装置で丸鋼材Sの表面疵の位置に塗布するマーキングの色は、後述する照明装置5による照明の色(白色に近似した色)と異なる色とすることが好ましい。これにより、マーキングの色と照明の色とが混同せず、マーキングを検出しやすくなる。 FIG. 1 shows a schematic configuration of a marking detection device for a round steel material according to an embodiment of the present invention. A marking detection device 1 for a round steel material is a marking device for marking a position of a surface flaw of a round steel material S. It is installed on the downstream side (not shown). The marking device is provided in the middle of a transportation line that conveys the round steel material S to the downstream process. The marking device applies the marking to the position of the surface flaw of the round steel material S, and the round steel material S to which the marking is applied is transferred. It is transferred to the marking detection device 1 by (not shown). Here, the marking device is provided in association with a flaw detection device such as a leakage magnetic flux flaw detector (MLFT) or an ultrasonic flaw detector (AUT) that detects a defect on the surface or in the vicinity of the surface. Then, the marking device applies the paint to a portion of the round steel material S where there is a defect having a predetermined depth or more found by the flaw detection device to make marking. In the present embodiment, the size of the marked round steel material S is any size between the minimum diameter φ80 mm and the maximum diameter φ450 mm, and in FIG. 1 to FIG. , The minimum diameter round steel material is indicated by S2. The color of the marking applied to the position of the surface flaw of the round steel material S by the marking device is preferably different from the color of the illumination by the illumination device 5 described later (a color similar to white). As a result, the marking color and the illumination color are not confused with each other, and the marking can be easily detected.
 マーキング検出装置1は、丸鋼材Sの表面疵の位置に塗布されたマーキングM(図8参照)を検出するものであり、トランスファーによって移送された丸鋼材Sを所定の回転速度(本実施形態にあっては、例えば1500mm/s程度)で周方向(図1における矢印で示す方向)に回転させる複数のターニングローラ2を備えている。ターニングローラ2には、丸鋼材Sの回転角度を検出する回転角度検出装置としてのパルスジェネレータ17が設置されている。後述するマーキング抽出部9には、パルスジェネレータ17からターニングローラ2の回転数が入力され、マーキング抽出部9は、入力されたターニングローラ2の回転数から丸鋼材Sの撮像開始点からの回転角度を検出する。 The marking detection device 1 detects the marking M (see FIG. 8) applied to the position of the surface flaw of the round steel material S, and moves the round steel material S transferred by the transfer to a predetermined rotation speed (in the present embodiment). In this case, a plurality of turning rollers 2 that rotate in the circumferential direction (direction indicated by an arrow in FIG. 1) at a speed of, for example, about 1500 mm/s are provided. The turning roller 2 is provided with a pulse generator 17 as a rotation angle detection device that detects the rotation angle of the round steel material S. The rotation number of the turning roller 2 is input from the pulse generator 17 to the marking extraction unit 9 to be described later, and the marking extraction unit 9 determines the rotation angle from the imaging start point of the round steel material S based on the input rotation number of the turning roller 2. To detect.
 そして、マーキング検出装置1は、ターニングローラ2上を周方向に回転する丸鋼材Sの表面を撮像する複数の撮像装置3と、コンピュータシステム7と、表示装置10とを備えている。
 マーキング検出装置1において、図1及び図2に示すように、台座部11上に立設された複数の支持脚12に複数の第1支持部材13が支持脚12に対して直交するように取り付けられている。そして、これら第1支持部材13には、第2支持部材14が第1支持部材13に直交するように取り付けられている。また、複数の支持脚12の第1支持部材13を取り付けた部分より上方の位置には、複数の第3支持部材15が支持脚12に直交するように取り付けられている。また、これら第3支持部材15には、第4支持部材16が第3支持部材15に直交するように取り付けられている。
The marking detection device 1 includes a plurality of image pickup devices 3 for picking up an image of the surface of the round steel material S that rotates on the turning roller 2 in the circumferential direction, a computer system 7, and a display device 10.
In the marking detection device 1, as shown in FIGS. 1 and 2, a plurality of first support members 13 are attached to a plurality of support legs 12 erected on a pedestal portion 11 so as to be orthogonal to the support legs 12. Has been. The second support member 14 is attached to the first support member 13 so as to be orthogonal to the first support member 13. Further, a plurality of third support members 15 are attached so as to be orthogonal to the support legs 12 at positions above the portions of the plurality of support legs 12 to which the first support members 13 are attached. Further, a fourth support member 16 is attached to the third support member 15 so as to be orthogonal to the third support member 15.
 そして、この第4支持部材16の先端に各撮像装置3が取り付けられている。
 そして、各撮像装置3は、ラインセンサカメラで構成され、図2に示すようにラインセンサカメラの撮像ラインが延びる方向と丸鋼材Sの軸方向とが一致し、且つ図1に示すようにラインセンサカメラの光軸L3と丸鋼材Sの最上位置Pに接する接線TLとの成す角度δが90度となるように設置される。この光軸L3と接線TLとのなす角度δは90度に限ることなく、鋭角側が30度以上の範囲であれば好適である。
Each imaging device 3 is attached to the tip of the fourth support member 16.
Each imaging device 3 is composed of a line sensor camera. As shown in FIG. 2, the direction in which the imaging line of the line sensor camera extends and the axial direction of the round steel material S coincide with each other, and as shown in FIG. The sensor camera is installed so that the angle δ formed by the optical axis L3 and the tangent line TL in contact with the uppermost position P of the round steel material S is 90 degrees. The angle δ formed by the optical axis L3 and the tangent line TL is not limited to 90 degrees, and it is preferable that the acute side has a range of 30 degrees or more.
 各撮像装置3を構成するラインセンサカメラの設置高さは、図3に示すように、ラインセンサカメラのレンズと丸鋼材Sとの間の距離WDが所定の距離(最大径の丸鋼材S1の場合の前記距離WD(Φmax):900mm、最小径の丸鋼材S2の場合の前記距離WD(Φmin):1270mm)に設定される。
 各撮像装置3を構成するラインセンサカメラの選定に際しては、被写界深度を計算し、被写体である最大径の丸鋼材S1の表面の最上位置P1と最小径の丸鋼材S2の表面の最上位置P2の場合でもピントが合うレンズを有するカメラを選定する。本実施形態の場合、被写界深度を771mmとし、最大径の丸鋼材S1の径がΦ450mm、最小径の丸鋼材S2の径がΦ80mmのいずれ場合でもピントが合うレンズを選定している。
As shown in FIG. 3, the installation height of the line sensor cameras constituting each imaging device 3 is such that the distance WD between the lens of the line sensor camera and the round steel material S is a predetermined distance (of the round steel material S1 having the maximum diameter). In the case, the distance WD(Φmax): 900 mm, and in the case of the round steel material S2 having the smallest diameter, the distance WD(Φmin): 1270 mm).
When selecting the line sensor camera that constitutes each image pickup device 3, the depth of field is calculated, and the uppermost position P1 of the surface of the round steel S1 having the maximum diameter and the uppermost position of the surface of the round steel S2 having the minimum diameter, which are the subjects, are selected. Even in the case of P2, a camera having a lens in focus is selected. In the case of this embodiment, the depth of field is set to 771 mm, and a lens that is in focus is selected regardless of whether the diameter of the round steel material S1 having the maximum diameter is Φ450 mm and the diameter of the round steel material S2 having the minimum diameter is Φ80 mm.
 そして、各撮像装置3を構成するラインセンサカメラは、ターニングローラ2上を周方向に回転する丸鋼材Sの表面の周方向の最上位置(特定位置)Pを測定対象であるマーキングM(図8参照)の寸法よりも小さい分解能で所定周期で丸鋼材Sの一周分撮像する。各撮像装置3は、周方向に回転する丸鋼材Sの表面の最上位置P(最大径の丸鋼材S1の表面の最上位置はP1、最小径の丸鋼材S2の表面の最上位置はP2)の位置を所定周期で丸鋼材Sの一周分撮像する。本実施形態の場合、マーキングMの寸法は、直径約4mmの円形であり、ラインセンサカメラの分解能、即ち1ラインの各画素n(図3参照)の周方向の幅Rは、最大径の丸鋼材S1を撮像するときの各画素nの周方向の幅R(Φmax)で630μm/pix、最小径の丸鋼材S2を撮像するときの各画素nの周方向の幅R(Φmin)で889μm/pixとなっている。また、ラインセンサカメラで撮像する周期は、本実施形態の場合、丸鋼材Sの回転速度が1500mm/sであり、丸鋼材Sの周方向の表面を隙間なく撮像できるように、1/2381sとなっている。 Then, the line sensor camera constituting each image pickup device 3 has a marking M (FIG. 8) that is a measurement target at the uppermost position (specific position) P in the circumferential direction of the surface of the round steel material S that rotates on the turning roller 2 in the circumferential direction. An image of one round of the round steel material S is picked up at a predetermined cycle with a resolution smaller than the dimension of (see). In each imaging device 3, the uppermost position P of the surface of the round steel S that rotates in the circumferential direction (the uppermost position of the surface of the round steel S1 having the largest diameter is P1, the uppermost position of the surface of the round steel S2 having the smallest diameter is P2). The position is imaged for one round of the round steel material S at a predetermined cycle. In the case of the present embodiment, the size of the marking M is a circle having a diameter of about 4 mm, and the resolution of the line sensor camera, that is, the width R in the circumferential direction of each pixel n (see FIG. 3) of one line is the maximum diameter circle. The width R (Φmax) in the circumferential direction of each pixel n when imaging the steel material S1 is 630 μm/pix, and the width R (Φmin) in the circumferential direction of each pixel n when imaging the round steel material S2 having the minimum diameter is 889 μm/ It is pix. Further, in the case of the present embodiment, the cycle of imaging with the line sensor camera is 1/2381 s so that the rotation speed of the round steel material S is 1500 mm/s and the circumferential surface of the round steel material S can be imaged without gaps. Is becoming
 また、各撮像装置3を構成するラインセンサカメラの1ラインの画素nの数は、2048pix、最大径の丸鋼材S1を撮像するときの各画素nの軸方向の幅R(Φmax)は630μm/pix、最小径の丸鋼材S2を撮像するときの各画素nの軸方向の幅R(Φmin)は889μm/pixである。このため、最大径の丸鋼材S1を撮像するときの視野幅L(Φmax)は1290mm、最小径の丸鋼材S2を撮像するときの視野幅L(Φmin)は1821mmである。撮像装置3は、最大径の丸鋼材S1の全長及び最小径の丸鋼材S2の全長を撮像できるように、丸鋼材Sの軸方向に沿って複数設置されている。 Further, the number of pixels n of one line of the line sensor camera constituting each imaging device 3 is 2048 pix, and the axial width R (Φmax) of each pixel n when imaging the round steel S1 having the maximum diameter is 630 μm/ Pix, the width R (Φmin) in the axial direction of each pixel n when imaging the round steel material S2 having the smallest diameter is 889 μm/pix. Therefore, the visual field width L (Φmax) when capturing the maximum diameter round steel material S1 is 1290 mm, and the visual field width L (Φmin) when capturing the minimum diameter round steel material S2 is 1821 mm. A plurality of imaging devices 3 are installed along the axial direction of the round steel material S so that the entire length of the round steel material S1 having the maximum diameter and the total length of the round steel material S2 having the minimum diameter can be imaged.
 ここで、撮像装置3を撮像ラインが丸鋼材Sの軸方向に延びるラインセンサカメラとしたのは、次の理由による。即ち、丸鋼材Sを軸方向から見たときに、丸鋼材Sの表面は円形となっているため、撮像装置3をエリアセンサカメラとした場合、エリアセンサカメラから丸鋼材Sの表面までの距離が周方向に沿って異なり、また、丸鋼材Sの軸方向から見た時の丸鋼材Sの表面上の位置とカメラとを結ぶ直線がこの位置における丸鋼材S表面とのなす角度が周方向に沿って異なる。このため、撮像装置3をエリアセンサカメラとした場合、撮像画像における丸鋼材Sの表面に塗布されたマーキングの形状の見え方が、丸鋼材Sの周方向に沿って変化するからである。丸鋼材Sの表面上の位置とカメラとを結ぶ直線がこの位置における丸鋼材の表面とのなす角度が鋭角になると、撮像画像におけるマーキングの面積は小さくなり、マーキングとノイズとの判別がしにくくなる。撮像装置3をラインセンサカメラで構成し、その撮像ラインが丸鋼材Sの軸方向に延びるように撮像装置3を配置して、周方向に回転する丸鋼材Sの表面の最上位置Pの位置を軸方向に沿って撮像するようにする。そして、後述するように、ラインセンサカメラで撮像した最上位置(特定位置)Pの画像を周方向に繋ぎ合わせて得られた画像とし、この画像からマーキングを抽出するようにする。これにより、丸鋼材Sの軸方向から見たときに、ラインセンサカメラから丸鋼材Sの表面の最上位置Pの位置までの距離に変化はなく、また、カメラと最上位置Pとを結ぶ線とこの最上位置Pにおける丸鋼材S表面とのなす角度は一定となるから、このような不都合はなくなる。従って、撮像装置3をラインセンサカメラとすることにより、撮像対象である丸鋼材Sの表面に塗布されたマーキングの形状を適切に検出することができる。
 各撮像装置3は、図示しない電源及び撮像周期等を制御するカメラ制御装置4に接続されている。
Here, the reason why the imaging device 3 is a line sensor camera whose imaging line extends in the axial direction of the round steel material S is as follows. That is, when the round steel material S is viewed from the axial direction, the surface of the round steel material S is circular. Therefore, when the imaging device 3 is an area sensor camera, the distance from the area sensor camera to the surface of the round steel material S is large. Are different along the circumferential direction, and the angle between the position on the surface of the round steel S when viewed from the axial direction of the round steel S and the straight line connecting the camera with the surface of the round steel S at this position is the circumferential direction. Different along. Therefore, when the imaging device 3 is an area sensor camera, the appearance of the shape of the marking applied to the surface of the round steel material S in the captured image changes along the circumferential direction of the round steel material S. When the straight line connecting the position on the surface of the round steel material S and the camera forms an acute angle with the surface of the round steel material at this position, the area of the marking in the captured image becomes small, and it is difficult to distinguish between the marking and noise. Become. The image pickup device 3 is composed of a line sensor camera, and the image pickup device 3 is arranged so that the image pickup line extends in the axial direction of the round steel material S, and the position of the uppermost position P on the surface of the round steel material S rotating in the circumferential direction is set. Images are taken along the axial direction. Then, as will be described later, the image at the uppermost position (specific position) P captured by the line sensor camera is taken as an image obtained by joining the images in the circumferential direction, and the marking is extracted from this image. As a result, when viewed from the axial direction of the round steel S, the distance from the line sensor camera to the position of the uppermost position P on the surface of the round steel S does not change, and the line connecting the camera and the uppermost position P is not changed. Such an inconvenience is eliminated because the angle formed by the surface of the round steel S at the uppermost position P is constant. Therefore, by using the image pickup device 3 as a line sensor camera, it is possible to appropriately detect the shape of the marking applied to the surface of the round steel S that is the image pickup target.
Each imaging device 3 is connected to a camera control device 4 that controls a power supply, an imaging cycle, and the like, which are not shown.
 また、マーキング検出装置1は、図1乃至図3に示すように、複数の照明装置5を備えている。
 各照明装置5は、前述した第2支持部材14の先端に回転可能に取り付けられている。
 この各照明装置5は、丸鋼材Sの表面、特に撮像される最上位置Pの近傍を連続的に点灯する2列のバー照明で構成されている。照明の色は白色に近似した色である。そして、図1に示すように、照明装置5の光軸L5と垂直線VLとのなす角度θは、最小径の丸鋼材S2の最上位置P2の近傍から最大径の丸鋼材S1の最上位置P1の近傍に至るまですべての場合に照射できるように、調節可能となっている。照明装置5は、最大径の丸鋼材S1の全長及び最小径の丸鋼材S2の全長を照明できるように、丸鋼材Sの軸方向に沿って複数設置されている。各照明装置5には、図示しない照明電源及び照明の輝度等を制御する照明制御装置6に接続されている。
Further, the marking detection device 1 includes a plurality of illumination devices 5 as shown in FIGS. 1 to 3.
Each lighting device 5 is rotatably attached to the tip of the second support member 14 described above.
Each illuminating device 5 is composed of two rows of bar illuminators that continuously illuminate the surface of the round steel material S, especially near the uppermost position P where an image is taken. The color of the illumination is close to white. Then, as shown in FIG. 1, the angle θ formed by the optical axis L5 of the lighting device 5 and the vertical line VL is from the vicinity of the uppermost position P2 of the round steel material S2 having the smallest diameter to the uppermost position P1 of the round steel material S1 having the largest diameter. It is adjustable so that it can be illuminated in all cases up to the vicinity. A plurality of lighting devices 5 are installed along the axial direction of the round steel S so that the entire length of the round steel S1 having the maximum diameter and the total length of the round steel S2 having the minimum diameter can be illuminated. Each lighting device 5 is connected to a lighting power supply (not shown) and a lighting control device 6 that controls the brightness of the lighting and the like.
 また、コンピュータシステム7は、各撮像装置3で撮像された前述の最上位置(特定位置)Pの画像を周方向に繋ぎ合せて得られた画像を処理する画像処理部8と、画像処理部8で画像処理された画像からマーキングM(図8参照)を抽出するマーキング抽出部9とを備えている。各撮像装置3及びパルスジェネレータ17は、コンピュータシステム7に接続されている。
 このコンピュータシステム7は、画像処理部8及びマーキング抽出部9の各機能をコンピュータソフトウェア上でプログラムを実行することで実現するための演算処理機能を有するコンピュータシステムである。そして、このコンピュータシステムは、ROM,RAM,CPU等を備えて構成され、ROM等に予め記憶された各種専用のプログラムを実行することにより、前述した各機能をソフトウェア上で実現する。
In addition, the computer system 7 includes an image processing unit 8 that processes an image obtained by joining the images at the above-described uppermost position (specific position) P captured by each imaging device 3 in the circumferential direction, and the image processing unit 8. The marking extraction unit 9 is provided for extracting the marking M (see FIG. 8) from the image processed in (1). Each image pickup device 3 and the pulse generator 17 are connected to the computer system 7.
The computer system 7 is a computer system having an arithmetic processing function for realizing each function of the image processing unit 8 and the marking extraction unit 9 by executing a program on computer software. The computer system is configured to include a ROM, a RAM, a CPU, and the like, and executes the various dedicated programs stored in the ROM or the like in advance to realize the above-described functions on software.
 また、表示装置10は、マーキング抽出部9で抽出されたマーキングM、当該マーキングMの箇所を指摘する印18(図7参照)、マーキングMの周方向位置及び長手方向位置を表示する。
 画像処理部8、マーキング抽出部9及び表示装置10の各機能は、次の丸鋼材Sのマーキング検出装置1を用いたマーキング検出方法の説明にて詳細に説明する。
Further, the display device 10 displays the marking M extracted by the marking extraction unit 9, the mark 18 (see FIG. 7) for pointing out the location of the marking M, the circumferential position and the longitudinal position of the marking M.
The functions of the image processing unit 8, the marking extraction unit 9, and the display device 10 will be described in detail in the following description of the marking detection method using the marking detection device 1 for the round steel material S.
 次に、図4乃至図7を参照して丸鋼材Sのマーキング検出装置1を用いたマーキング検出方法を説明する。
 先ず、図4に示すステップS1で、丸鋼材Sの軸方向に沿って配置された複数個の撮像装置3を構成するラインセンサカメラの各々が、ターニングローラ2上を周方向に回転する丸鋼材Sの表面の周方向の最上位置(特定位置)Pを測定対象であるマーキングMの寸法よりも小さい分解能で所定周期で撮像する(撮像ステップ)。つまり、各撮像装置3が、周方向に回転する丸鋼材Sの表面の最上位置Pの位置を前述の分解能で所定周期で丸鋼材Sの一周分撮像する。本実施形態の場合、マーキングMの寸法は、直径約4mmの円形であり、ラインセンサカメラの分解能、即ち1ラインの各画素n(図3参照)の周方向の幅Rは、最大径の丸鋼材S1を撮像するときの各画素nの周方向の幅R(Φmax)で630μm/pix、最小径の丸鋼材S2を撮像するときの各画素nの周方向の幅R(Φmin)で889μm/pixとなっている。また、ラインセンサカメラで撮像する周期は、本実施形態の場合、丸鋼材Sの回転速度が1500mm/sであり、丸鋼材Sの周方向の前面を隙間なく撮像できるように、1/2381sとなっている。
Next, a marking detection method using the marking detection device 1 for the round steel material S will be described with reference to FIGS. 4 to 7.
First, in step S1 shown in FIG. 4, each of the line sensor cameras constituting the plurality of image pickup devices 3 arranged along the axial direction of the round steel material S rotates the turning steel 2 in the circumferential direction. The uppermost position (specific position) P of the surface of S in the circumferential direction is imaged at a predetermined cycle with a resolution smaller than the dimension of the marking M to be measured (imaging step). That is, each imaging device 3 images the position of the uppermost position P on the surface of the round steel material S that rotates in the circumferential direction for one round of the round steel material S at a predetermined cycle with the above-described resolution. In the case of the present embodiment, the size of the marking M is a circle having a diameter of about 4 mm, and the resolution of the line sensor camera, that is, the width R in the circumferential direction of each pixel n (see FIG. 3) of one line is the maximum diameter circle. The width R (Φmax) in the circumferential direction of each pixel n when imaging the steel material S1 is 630 μm/pix, and the width R (Φmin) in the circumferential direction of each pixel n when imaging the round steel material S2 having the minimum diameter is 889 μm/ It is pix. Further, in the case of the present embodiment, the cycle of imaging with the line sensor camera is 1/2381 s so that the rotation speed of the round steel material S is 1500 mm/s, and the circumferential front surface of the round steel material S can be imaged without gaps. Has become.
 次いで、ステップS2において、コンピュータシステム7の画像処理部8が、各撮像装置3を構成するラインセンサカメラで撮像した最上位置(特定位置)Pの画像を周方向に繋ぎ合わせて得られた画像を処理する(画像処理ステップ)。
 この画像処理ステップについて詳しく述べると、図5に示すように、ステップS21において、画像処理部8は、先ず、各撮像装置3を構成するラインセンサカメラからの原画像(複数の最上位置Pの画像)を取り込む。
 次いで、ステップS22において、画像処理部8は、取りこんだ原画像(複数の最上位置Pの画像)を丸鋼材Sの周方向に繋ぎ合わせる。原画像を丸鋼材Sの周方向に繋ぎ合わせた後の画像の一例が、図7の上段に示されている。原画像を丸鋼材Sの周方向に繋ぎ合わせた画像ではマーキングMが検出しづらいため、後に2値化処理を行う。
Next, in step S2, the image processing unit 8 of the computer system 7 obtains an image obtained by joining the images at the uppermost position (specific position) P captured by the line sensor cameras constituting each image capturing apparatus 3 in the circumferential direction. Process (image processing step).
To describe this image processing step in detail, as shown in FIG. 5, in step S21, the image processing unit 8 firstly outputs the original image (images of the plurality of uppermost positions P) from the line sensor cameras constituting each image pickup apparatus 3. ) Is taken in.
Next, in step S22, the image processing unit 8 joins the captured original images (images at the plurality of uppermost positions P) in the circumferential direction of the round steel material S. An example of an image obtained by joining the original images in the circumferential direction of the round steel materials S is shown in the upper part of FIG. 7. Since it is difficult to detect the marking M in an image obtained by joining the original images in the circumferential direction of the round steel materials S, the binarization processing is performed later.
 その後、ステップS23において、画像処理部8は、繋ぎ合わされた原画像に対しマーキング以外のノイズ除去処理を行う。
 次いで、ステップS24において、画像処理部8は、ノイズを除去した繋ぎ合わせ原画像に2値化処理を行う。
 更に、ステップS25において、画像処理部8は、2値化処理後の画像に対しマーキング以外のノイズ除去処理を行う。ノイズ除去後の画像の一例が、図7の中段に示されている。
After that, in step S23, the image processing unit 8 performs noise removal processing other than marking on the joined original images.
Next, in step S24, the image processing unit 8 performs binarization processing on the stitched original image from which noise has been removed.
Further, in step S25, the image processing unit 8 performs noise removal processing other than marking on the binarized image. An example of the image after noise removal is shown in the middle part of FIG. 7.
 その後、ステップS26において、ノイズを除去した2値化画像をマーキング抽出部9に対し出力する。
 そして、画像処理ステップの後、ステップS3において、コンピュータシステム7のマーキング抽出部9が、画像処理ステップで画像処理された画像からマーキングMを抽出する(マーキング抽出ステップ)。
 このマーキング抽出ステップについて詳しく述べると、図6に示すように、先ず、マーキング抽出部9は、ステップS31において、画像処理部8から2値化画像を取り込む。
Then, in step S26, the binarized image from which noise has been removed is output to the marking extraction unit 9.
Then, after the image processing step, in step S3, the marking extraction unit 9 of the computer system 7 extracts the marking M from the image subjected to the image processing in the image processing step (marking extraction step).
This marking extraction step will be described in detail. First, as shown in FIG. 6, the marking extraction unit 9 fetches the binarized image from the image processing unit 8 in step S31.
 次いで、ステップS32において、取りこんだ2値化画像中に、所定面積以上の画素値0(白色)の画素n1(図8参照)の集合の領域a(図8参照)があるか否かを判断する。図8において、画素値1(黒色)の画素はn2で示されている。例えばマーキング形状が円形状である場合、その円形状の直径をDとすると、この直径Dを各画素の幅R(<D)で除した値D/R以上の個数の画素n1が連続して存在する集合の領域aがあるか否かを判断する。具体例を示すと、マーキングの直径が4mmのときは、画素の幅は上述のとおり最大で889μm/pixであるから、4/0.889=4.5個以上の画素n1の集合領域があるか否かを判断することで、マーキングの有無の判定を行うことができる。 Next, in step S32, it is determined whether or not there is a region a (see FIG. 8) of a set of pixels n1 (see FIG. 8) having a pixel value of 0 (white) having a predetermined area or more in the captured binary image. To do. In FIG. 8, a pixel having a pixel value of 1 (black) is indicated by n2. For example, when the marking shape is circular and the diameter of the circular shape is D, the number of pixels n1 that are equal to or greater than a value D/R obtained by dividing the diameter D by the width R (<D) of each pixel are consecutive. It is determined whether or not there is an area a of the set that exists. As a specific example, when the marking diameter is 4 mm, the maximum pixel width is 889 μm/pix as described above, and therefore there is an aggregate region of 4/0.889=4.5 or more pixels n1. The presence or absence of marking can be determined by determining whether or not there is marking.
 そして、ステップS32の結果がYESの場合、ステップS33に移行し、当該結果がNoの場合、ステップS34に移行する。
 ステップS33では、マーキング抽出部9は、当該領域aをマーキングMと判定し、ステップS35で、マーキング抽出部9は、マーキングMの周方向位置x及び長手方向位置y(図7における下段参照)を特定する。
 ここで、マーキング抽出部9は、当該領域aをマーキングMと判定した際に、図7における下段に示すように、マーキングMの周囲に、マーキングMの箇所を指摘する印18を付ける。
Then, if the result of step S32 is YES, the process proceeds to step S33, and if the result is No, the process proceeds to step S34.
In step S33, the marking extraction unit 9 determines that the area a is the marking M, and in step S35, the marking extraction unit 9 determines the circumferential position x and the longitudinal position y of the marking M (see the lower row in FIG. 7). Identify.
Here, when the marking extraction unit 9 determines that the area a is the marking M, as shown in the lower part of FIG. 7, the marking extraction unit 9 puts a mark 18 around the marking M to indicate the location of the marking M.
 また、マーキングMの周方向位置xは、丸鋼材Sの周方向における撮像開始点から当該マーキングMまでの周方向の長さを意味する。前述したように、マーキング抽出部9には、パルスジェネレータ17からターニングローラ2の回転数が入力され、マーキング抽出部9は、入力されたターニングローラ2の回転数とターニングローラ2の直径とから丸鋼材Sの周方向における撮像開始点から当該マーキングMまでの周方向の長さを算出し、マーキングMの周方向位置xを特定する。また、マーキングMの長手方向位置yは、丸鋼材Sの軸方向における端面から当該マーキングMまでの軸方向の長さを意味する。マーキング抽出部9は、丸鋼材Sの軸方向における端面から当該マーキングMまでの画素nの数と各画素nの軸方向の幅Rとから丸鋼材Sの軸方向における端面から当該マーキングMまでの軸方向の長さを算出し、マーキングMの長手方向位置yを特定する。 Further, the circumferential position x of the marking M means the circumferential length of the round steel material S from the imaging start point to the marking M in the circumferential direction. As described above, the marking extraction unit 9 receives the rotation speed of the turning roller 2 from the pulse generator 17, and the marking extraction unit 9 receives the rotation speed of the turning roller 2 and the diameter of the turning roller 2 which have been input. The circumferential length of the steel material S from the imaging start point to the marking M in the circumferential direction is calculated, and the circumferential position x of the marking M is specified. The longitudinal position y of the marking M means the axial length from the end surface of the round steel S in the axial direction to the marking M. The marking extraction unit 9 determines the number of pixels n from the end surface in the axial direction of the round steel material S to the marking M and the axial width R of each pixel n from the end surface in the axial direction of the round steel material S to the marking M. The length in the axial direction is calculated, and the longitudinal position y of the marking M is specified.
 そして、ステップS35でマーキングMの周方向位置x及び長手方向位置yを特定した後、ステップS36において、マーキング抽出部9はマーキング抽出結果を表示装置10に出力する。
 図7における下段には、マーキング抽出結果の一例が示されており、マーキングM、当該マーキングMの箇所を指摘する印18、及びマーキングMの周方向位置x及び長手方向位置yが抽出される。図7における下段には、特定のマーキングMの周方向位置がx1、長手方向位置がy1で示されている。
 最後に、ステップS4において、表示装置10は、コンピュータシステム7のマーキング抽出部9から出力されたマーキング抽出結果、即ち、マーキングM、当該マーキングMの箇所を指摘する印18、及びマーキングMの周方向位置x及び長手方向位置yを表示する。
Then, after the circumferential position x and the longitudinal position y of the marking M are specified in step S35, the marking extraction unit 9 outputs the marking extraction result to the display device 10 in step S36.
An example of the marking extraction result is shown in the lower part of FIG. 7, and the marking M, the mark 18 indicating the location of the marking M, and the circumferential position x and the longitudinal position y of the marking M are extracted. In the lower part of FIG. 7, the circumferential position of the specific marking M is shown as x1 and the longitudinal position thereof is shown as y1.
Finally, in step S4, the display device 10 causes the marking extraction result output from the marking extraction unit 9 of the computer system 7, that is, the marking M, the marking 18 indicating the location of the marking M, and the circumferential direction of the marking M. The position x and the longitudinal position y are displayed.
 そして、丸鋼材Sの表面疵を研削する作業者は、表示装置10で表示されたマーキング抽出結果を基にして、マーキングされた丸鋼材Sの表面の箇所を研削すればよい。
 また、マーキング抽出部9で抽出されたマーキング検出結果を、後工程に設けられる表面疵研削装置に転送し、表面疵研削装置にて自動でマーキング箇所を研削するようにしてもよい。
 表面のマーキング箇所を研削した後の丸鋼材Sは、さらなる後工程(表面疵研削以降の工程)へ送られて、そこで処理されて製品である鋼材とされる。
 ここで、さらなる後工程とは、欠陥部が表面研削された丸鋼材を処理対象とした、その後の処理工程の全般のことである。すなわち、丸鋼材Sが丸棒鋼のような条鋼製品や製品鋼管である場合には、欠陥研削後に行われる精整工程、出荷工程等である。丸鋼材Sが圧延用素材である場合には、圧延工程やその後に行われる精整工程、出荷工程等である。
Then, the operator who grinds the surface flaw of the round steel material S may grind the spot on the surface of the marked round steel material S based on the marking extraction result displayed on the display device 10.
Further, the marking detection result extracted by the marking extraction unit 9 may be transferred to a surface flaw grinding device provided in a later process, and the marking portion may be automatically ground by the surface flaw grinding device.
The round steel material S after grinding the marking points on the surface is sent to a further post-process (processes after the surface flaw grinding) and processed there to be a steel product which is a product.
Here, the further post-process is the whole of the subsequent process steps in which a round steel material having a defective portion whose surface is ground is processed. That is, when the round steel material S is a bar steel product such as a round bar steel or a product steel pipe, it is a refining process, a shipping process or the like performed after defect grinding. When the round steel S is a material for rolling, it is a rolling process, a refining process performed thereafter, a shipping process, or the like.
 上記したマーキング検出方法により表面の疵(欠陥)がある部分にマーキングを施した丸鋼材Sのマーキングの部分を表面研削した後に、後工程に送って鋼材を製造することにより、マーキングの検出を目視で行う場合に比べて効率良く、かつ、精度よくマーキング検出が行える。したがって、鋼材の製造効率は向上する。またマーキングの検出精度が向上するので、後工程での障害の発生も抑制される。ここで、後工程での障害とは、丸鋼が圧延用素材である場合には、後工程にある圧延工程後の鋼材に、圧延用素材にあった表面欠陥に起因した疵が発生してしまったり、圧延用素材にあった表面欠陥が原因となり圧延工程中に鋼材の破断が生じるといった障害である。また、丸鋼材Sが条鋼製品や製品鋼管である場合には、後工程である出荷工程で、欠陥部を研削により除去しきれていない製品を出荷してしまうことである。 After the surface of the marked portion of the round steel material S, which has been marked on the surface with flaws (defects) by the above-mentioned marking detection method, is subjected to surface grinding, the steel material is sent to the subsequent step to visually detect the marking. Marking can be detected more efficiently and more accurately than in the case of. Therefore, the manufacturing efficiency of the steel material is improved. Further, since the marking detection accuracy is improved, the occurrence of obstacles in the subsequent process is suppressed. Here, the obstacle in the post-process means that when the round steel is the material for rolling, the steel material after the rolling step in the post-process has a flaw caused by the surface defect in the material for rolling. It is a problem that the steel material is broken or the steel material is broken during the rolling process due to the surface defect in the material for rolling. Further, when the round steel material S is a bar steel product or a product steel pipe, it means that a product whose defective portion is not completely removed by grinding is shipped in the subsequent shipping process.
 なお、マーキングを塗布する段階からマーキングを研削する段階の鋼材が丸鋼材、すなわち、円形の断面の鋼材であれば、後工程で処理した後の鋼材は、必ずしも丸鋼材である必要はなく、後工程で処理した後の鋼材が角断面の鋼材であってもよい。
 なお、丸ビレットのような丸鋼材を素材として、丸棒鋼のような条鋼製品を製造する場合において、本発明に係るマーキングの検出方法は、素材についてのマーキング検出、条鋼製品のマーキング検出のいずれにも適用できる。つまり、鋼材の製造方法に、本発明に係るマーキング検出方法を適用する場合は、素材、製品のいずれもが丸棒鋼である場合は、素材についてのマーキング検出にのみ、本発明の検出方法を用いてもよいし、製品についてのマーキング検出についてのみ本発明の検出方法を用いてもよいし、素材のマーキング検出と製品のマーキング検出との両方に本発明のマーキング検出方法を用いてもよい。
In addition, if the steel material from the step of applying the marking to the step of grinding the marking is a round steel material, that is, if it is a steel material with a circular cross section, the steel material after the treatment in the post process does not necessarily have to be a round steel material. The steel material after the treatment in the process may be a steel material having a square cross section.
In the case of manufacturing a steel bar product such as a round bar steel using a round steel material such as a round billet as a raw material, the marking detection method according to the present invention is applied to either the marking detection of the raw material or the marking detection of the steel bar product. Can also be applied. That is, when the marking detection method according to the present invention is applied to the steel material manufacturing method, when both the material and the product are round bar steel, the detection method of the present invention is used only for the marking detection of the material. Alternatively, the detection method of the present invention may be used only for detecting the marking of a product, or the marking detection method of the present invention may be used for both the detection of material marking and the detection of product marking.
 このように、本実施形態に係る丸鋼材Sのマーキング検出装置1及び検出方法、あるいは鋼材の製造方法によれば、周方向に回転する丸鋼材Sの表面の周方向の最上位置(特定位置)Pを測定対象であるマーキングMの寸法よりも小さい分解能で所定周期で撮像する(撮像装置3、ステップS1(撮像ステップ))。そして、撮像された前述の最上位置(特定位置)Pの画像を周方向に繋ぎ合せて得られた画像を処理する(画像処理部8、ステップS2(画像処理ステップ))。また、画像処理された画像からマーキングMを抽出する(マーキング抽出部9、ステップS3(マーキング抽出ステップ))。 As described above, according to the marking detection device 1 and the detection method for the round steel S according to the present embodiment, or the method for manufacturing the steel, the uppermost position (specific position) in the circumferential direction of the surface of the round steel S that rotates in the circumferential direction. The P is imaged in a predetermined cycle with a resolution smaller than the dimension of the marking M to be measured (imaging device 3, step S1 (imaging step)). Then, the image obtained by connecting the captured images of the above-mentioned uppermost position (specific position) P in the circumferential direction is processed (image processing unit 8, step S2 (image processing step)). Further, the marking M is extracted from the image processed image (marking extraction unit 9, step S3 (marking extraction step)).
 これにより、自動でマーキングMを検出するようにしてマーキングMの見逃しリスクを大幅に低減した丸鋼材のマーキング検出装置1及び検出方法を提供できる。
 また、撮像装置3は、ラインセンサカメラであるので、撮像対象である丸鋼材Sの表面に塗布されたマーキングMの形状を適切に検出することができる。
 また、丸鋼材Sの回転角度を検出する回転角度検出装置としてのターニングローラ2の回転数を検出するパルスジェネレータ17を備えているので、ターニングローラ2の回転数とターニングローラの直径とから丸鋼材Sの周方向における撮像開始点から当該マーキングMまでの周方向の長さを算出し、マーキングMの周方向位置xを特定することができる。
Accordingly, it is possible to provide the marking detection device 1 and the detection method for the round steel material in which the risk of missing the marking M is significantly reduced by automatically detecting the marking M.
Further, since the image pickup device 3 is a line sensor camera, it is possible to appropriately detect the shape of the marking M applied to the surface of the round steel material S which is an image pickup target.
Further, since the pulse generator 17 for detecting the rotation speed of the turning roller 2 as a rotation angle detection device for detecting the rotation angle of the round steel material S is provided, the round steel material is calculated from the rotation speed of the turning roller 2 and the diameter of the turning roller. A circumferential position x of the marking M can be specified by calculating the circumferential length from the image pickup start point in the circumferential direction of S to the marking M.
 以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
 例えば、本実施形態において、マーキングMの寸法は直径約4mmの円形としてあり、撮像装置3を構成するラインセンサカメラの分解能は、最大径の丸鋼材S1を撮像するときで630μm/pix、最小径の丸鋼材S2を撮像するときで889μm/pixとしてあるが、マーキングMの寸法は直径4mm以外でもよい。また、撮像装置3を構成するラインセンサカメラの分解能は、マーキングMの寸法よりも小さければ、いかなる大きさであってもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications and improvements can be made.
For example, in the present embodiment, the size of the marking M is a circle having a diameter of about 4 mm, and the resolution of the line sensor camera that constitutes the imaging device 3 is 630 μm/pix and the minimum diameter when the round steel material S1 having the largest diameter is imaged. Although 889 μm/pix is set when the round steel material S2 is imaged, the size of the marking M may be other than 4 mm in diameter. Further, the resolution of the line sensor camera constituting the imaging device 3 may be any size as long as it is smaller than the size of the marking M.
 また、撮像装置3を構成するラインセンサカメラは、周方向に回転する丸鋼材Sの表面の特定位置(最上位置P)を所定周期で丸鋼材Sの一周分撮像しているが、丸鋼材Sの一周分に限らず、複数周分撮像しても良い。
 また、撮像装置3を構成するラインセンサカメラの撮像周期は、丸鋼材Sの周方向の表面を隙間なく撮像できる周期であれば1/2381sに限らない。
 また、マーキングが塗布される丸鋼材Sの大きさは、最大径でΦ450mm、最小径でΦ80mmとしてあるが、任意に変更することができる。
 また、マーキング装置で丸鋼材Sの表面疵の位置に塗布するマーキングの色は、照明装置5による照明の色(白色に近似した色)と異なる色としてあるが、同一色であってもよい。
Further, the line sensor camera constituting the image pickup device 3 images the specific position (uppermost position P) on the surface of the round steel material S rotating in the circumferential direction for one round of the round steel material S at a predetermined cycle. It is not limited to one round, and a plurality of rounds may be picked up.
Moreover, the imaging cycle of the line sensor camera which constitutes the imaging device 3 is not limited to 1/2381 s as long as it can image the surface of the round steel S in the circumferential direction without gaps.
Further, the size of the round steel material S to which the marking is applied is Φ450 mm in maximum diameter and Φ80 mm in minimum diameter, but can be arbitrarily changed.
Further, the color of the marking applied to the position of the surface flaw of the round steel material S by the marking device is different from the color of the illumination by the illumination device 5 (a color approximate to white), but it may be the same color.
 また、マーキング装置で丸鋼材Sの表面疵の位置に塗布するマーキングの色は、単一色として説明してあるが、カラーであってもよい。例えば、丸鋼材Sの表面にある表面疵を探傷する探傷方法として、表面疵の深さなどを考慮し、MLFT(漏洩磁束探傷)、AUT(超音波探傷)、EC(ピーリング探傷)、マグナー(磁粉探傷)などがあり、これらの探傷をマーキング装置の上流側で行う。この際に、マーキング装置では、探傷の方法毎に異なる色のマーキングを行っても良い。そして、この場合、本実施形態に係るマーキング検出装置1及び検出方法では、撮像装置3としてカラーカメラを選定するとともに、その色ごとに画像処理、マーキング抽出及びマーキング抽出結果の表示を行えばよい。 The color of the marking applied to the surface flaw position of the round steel material S by the marking device is described as a single color, but it may be a color. For example, as a flaw detection method for flaw detection on the surface of the round steel S, considering depth of the flaw, etc., MLFT (leakage flux flaw detection), AUT (ultrasonic flaw detection), EC (peeling flaw detection), magner ( Magnetic particle flaw detection), etc., and these flaw detections are performed on the upstream side of the marking device. At this time, the marking device may perform marking of different colors for each flaw detection method. In this case, in the marking detection device 1 and the detection method according to the present embodiment, a color camera may be selected as the imaging device 3, and image processing, marking extraction, and marking extraction result display may be performed for each color.
 また、撮像装置3としてラインセンサカメラを用いているが、エリアセンサカメラを用いてもよい。この場合、図9に示すように、エリアセンサカメラである撮像装置3で1回の撮像で得られる丸鋼材Sの表面上の視野範囲(繋ぎ合せを行うひとつの撮像画像の視野範囲)として、撮像装置3と撮像される丸鋼材Sの表面上の位置Pとを結ぶ線と、表面上の位置Pにおける丸鋼Sの表面とのなす角α(鋭角側)が30度以上となる範囲とすることが好ましい。αが30度以上であると、マーキングとノイズとを判別し易くなり、マーキングの検出精度が向上する。
 また、撮像装置3は複数設置されているが、単一の撮像装置3で丸鋼材Sの全長の表面を撮像できるものであれば1台であってもよい。
Further, although the line sensor camera is used as the imaging device 3, an area sensor camera may be used. In this case, as shown in FIG. 9, as the visual field range on the surface of the round steel material S (visual field range of one picked-up image to be joined) obtained by the imaging device 3 which is an area sensor camera at one time, A range in which an angle α (acute angle side) formed between the line connecting the imaging device 3 and the position P on the surface of the round steel S to be imaged and the surface of the round steel S at the position P on the surface is 30 degrees or more. Preferably. When α is 30 degrees or more, it is easy to distinguish the marking from the noise, and the marking detection accuracy is improved.
Although a plurality of image pickup devices 3 are installed, the number of the image pickup device 3 may be one as long as the single image pickup device 3 can pick up an image of the entire surface of the round steel S.
 1 丸鋼材のマーキング検出装置
 2 ターニングローラ
 3 撮像装置
 4 カメラ制御装置
 5 照明装置
 6 照明制御装置
 7 コンピュータシステム
 8 画像処理部
 9 マーキング抽出部
 10 表示装置
 11 台座部
 12 支持脚
 13 第1支持部材
 14 第2支持部材
 15 第3支持部材
 16 第4支持部材
 17 パルスジェネレータ(回転角度検出装置)
 P 最上位置(特定位置)
 S 丸鋼材
1 Marking Detection Device for Round Steel Material 2 Turning Roller 3 Imaging Device 4 Camera Control Device 5 Illumination Device 6 Illumination Control Device 7 Computer System 8 Image Processing Unit 9 Marking Extraction Unit 10 Display Device 11 Pedestal 12 Support Leg 13 First Support Member 14 Second support member 15 Third support member 16 Fourth support member 17 Pulse generator (rotation angle detection device)
P Top position (specific position)
S round steel

Claims (5)

  1.  丸鋼材の表面疵の位置に塗布されたマーキングを検出する丸鋼材のマーキング検出装置であって、
     周方向に回転する前記丸鋼材の表面の周方向の特定位置を測定対象であるマーキングの寸法よりも小さい分解能で所定周期で撮像する撮像装置と、該撮像装置で撮像された前記特定位置の画像を周方向に繋ぎ合せて得られた画像を処理する画像処理部と、該画像処理部で画像処理された画像からマーキングを抽出するマーキング抽出部とを備えていることを特徴とする丸鋼材のマーキング検出装置。
    A marking detection device for a round steel material, which detects the marking applied to the position of the surface flaw of the round steel material,
    An imaging device that images a specific position in the circumferential direction of the surface of the round steel material that rotates in the circumferential direction at a predetermined cycle with a resolution smaller than the dimension of the marking to be measured, and an image of the specific position that is imaged by the imaging device Of a round steel material, comprising: an image processing unit that processes an image obtained by joining the pieces in the circumferential direction; and a marking extraction unit that extracts a marking from the image processed by the image processing unit. Marking detection device.
  2.  前記撮像装置が、ラインセンサカメラであることを特徴とする請求項1に記載の丸鋼材のマーキング検出装置。 The round steel marking detection device according to claim 1, wherein the imaging device is a line sensor camera.
  3.  前記丸鋼材の回転角度を検出する回転角度検出装置を備えていることを特徴とする請求項1又は2に記載の丸鋼材のマーキング検出装置。 The marking detection device for a round steel product according to claim 1 or 2, further comprising a rotation angle detection device for detecting a rotation angle of the round steel product.
  4.  丸鋼材の表面疵の位置に塗布されたマーキングを検出する丸鋼材のマーキング検出方法であって、
     周方向に回転する前記丸鋼材の表面の周方向の特定位置を測定対象であるマーキングの寸法よりも小さい分解能で所定周期で撮像する撮像ステップと、該撮像ステップで撮像された前記特定位置の画像を周方向に繋ぎ合せて得られた画像を処理する画像処理ステップと、該画像処理ステップで画像処理された画像からマーキングを抽出するマーキング抽出ステップとを含むことを特徴とする丸鋼材のマーキング検出方法。
    A method for detecting the marking of a round steel material, which detects the marking applied to the position of the surface flaw of the round steel material,
    An imaging step of imaging a specific position in the circumferential direction of the surface of the round steel material that rotates in the circumferential direction at a predetermined cycle with a resolution smaller than the dimension of the marking to be measured, and an image of the specific position imaged in the imaging step Marking detection of a round steel material, characterized by including an image processing step of processing an image obtained by joining in the circumferential direction, and a marking extraction step of extracting a marking from the image processed in the image processing step. Method.
  5.  丸鋼材の欠陥部を探傷し、探傷により発見した所定深さ以上の欠陥部がある箇所にマーキングを塗布し、その後に塗布されたマーキングを検出し、検出されたマーキングの部分を表面研削した後に、後工程で処理を行う鋼材の製造方法であって、
     前記マーキングの検出は、請求項4に記載の丸鋼材のマーキング検出方法により行うことを特徴とする、鋼材の製造方法。
    After detecting the defective part of the round steel material, applying the marking to the part where there is a defective part with a predetermined depth or more found by the flaw detection, detecting the applied marking after that, and grinding the surface of the detected marking part A method of manufacturing a steel material that is processed in a post process,
    The method for manufacturing a steel product according to claim 4, wherein the marking is detected by the method for detecting a marking of a round steel product according to claim 4.
PCT/JP2019/046841 2018-11-29 2019-11-29 Round steel material marking detection device and detection method, and method for manufacturing steel material WO2020111247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980078830.7A CN113165040A (en) 2018-11-29 2019-11-29 Apparatus and method for detecting mark of round steel and method for manufacturing steel product
JP2020557863A JP7081687B2 (en) 2018-11-29 2019-11-29 Marking detection device and detection method for round steel materials and manufacturing method for steel materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-224181 2018-11-29
JP2018224182 2018-11-29
JP2018224181 2018-11-29
JP2018-224182 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111247A1 true WO2020111247A1 (en) 2020-06-04

Family

ID=70853023

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/046841 WO2020111247A1 (en) 2018-11-29 2019-11-29 Round steel material marking detection device and detection method, and method for manufacturing steel material
PCT/JP2019/046840 WO2020111246A1 (en) 2018-11-29 2019-11-29 Defect grinding method for round steel and manufacturing method for steel

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046840 WO2020111246A1 (en) 2018-11-29 2019-11-29 Defect grinding method for round steel and manufacturing method for steel

Country Status (3)

Country Link
JP (2) JP6897889B2 (en)
CN (2) CN113165040A (en)
WO (2) WO2020111247A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139630A (en) * 2020-03-02 2021-09-16 日本製鉄株式会社 Surface inspection device and surface inspection method
JP2022063136A (en) * 2020-10-09 2022-04-21 Jfeスチール株式会社 Method for overlapping images of steel material and method for detecting marking of steel material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415590A (en) * 1977-07-06 1979-02-05 Kawasaki Steel Corp Metho of and apparatus for cutting surface defect of rod-shaped material
JPH07237106A (en) * 1994-02-28 1995-09-12 Nippon Steel Corp Remote control flaw repairing method and device therefor
JP2002039948A (en) * 2000-07-27 2002-02-06 Sony Corp Apparatus and method for inspecting appearance
KR20050063459A (en) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 On-line inspection system for circle rod by image processing
JP2017146302A (en) * 2016-02-12 2017-08-24 Jfeスチール株式会社 Surface defect inspection device and surface defect inspection method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626786B2 (en) * 1986-04-30 1994-04-13 三島光産株式会社 Grinding method and device for cylindrical outer surface flaw
JP3156140B2 (en) * 1992-03-12 2001-04-16 株式会社日立製作所 Metal member damage inspection method and damage inspection device
JP2820632B2 (en) * 1994-12-21 1998-11-05 株式会社ノリタケカンパニーリミテド Automatic scratch removal device
CN1253713C (en) * 1997-10-31 2006-04-26 杰富意钢铁株式会社 Ultrasonic flaw detection method on cylinder surface
JP3663050B2 (en) * 1998-05-19 2005-06-22 山陽特殊製鋼株式会社 Automatic stripping method and stripping apparatus for long materials
JP2000117612A (en) * 1998-10-16 2000-04-25 Sumitomo Metal Ind Ltd Flaw repairing method for material to be ground and device therefor
JP2000141198A (en) * 1998-11-05 2000-05-23 Kawasaki Steel Corp Method and device for automatically grinding defect of round bar material
DE10154036A1 (en) * 2001-11-02 2003-05-15 Koenig & Bauer Ag Device for detecting the position of a side edge
US6909988B2 (en) * 2002-10-15 2005-06-21 General Electric Company Method for positioning defects in metal billets
ES2222839B1 (en) * 2004-01-23 2005-10-01 Recobriments Industrials De Tecnologia Avancada, S.L. PROCEDURE FOR THE MANUFACTURE OF CALIBRATED STEEL BARS FREE OF DEFECTS AND INSTALLATION FOR MANUFACTURING.
JP4509833B2 (en) * 2005-03-18 2010-07-21 株式会社神戸製鋼所 Surface defect inspection method for aluminum alloy bar
CN102652960B (en) * 2011-03-02 2015-09-30 宁波宝新不锈钢有限公司 The processing method of rolling mill bearing surface defect
JP5590249B2 (en) * 2012-07-04 2014-09-17 新日鐵住金株式会社 Defect detection apparatus, defect detection method, program, and storage medium
CN102878955B (en) * 2012-10-09 2015-05-20 中天科技精密材料有限公司 Measuring equipment and measuring method for eccentricity ratios of large-diameter preform
CN104422693B (en) * 2013-08-23 2018-12-14 上海金艺检测技术有限公司 The qualitative checking method of the small linear discontinuities of cold rolling roller surface
CN104076042B (en) * 2014-07-18 2016-08-24 株洲硬质合金集团有限公司 Cylindrical bar outward appearance automatic detection device
CN105424722A (en) * 2015-11-05 2016-03-23 天津大学 Bottle cap unqualified product marking method based on machine vision
CN105333828B (en) * 2015-11-19 2016-11-30 西安交通大学 A kind of four-axle linked tracking mode crank shaft measurement method
JP6493340B2 (en) * 2016-08-31 2019-04-03 Jfeスチール株式会社 Steel pipe maintenance guidance system
CN106645181A (en) * 2017-02-24 2017-05-10 清华大学 Microscopic vision-based roller grinding surface defect detecting system
CN107576664A (en) * 2017-09-28 2018-01-12 清华大学 A kind of roll dressing surface defect Machine Vision Inspecting System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415590A (en) * 1977-07-06 1979-02-05 Kawasaki Steel Corp Metho of and apparatus for cutting surface defect of rod-shaped material
JPH07237106A (en) * 1994-02-28 1995-09-12 Nippon Steel Corp Remote control flaw repairing method and device therefor
JP2002039948A (en) * 2000-07-27 2002-02-06 Sony Corp Apparatus and method for inspecting appearance
KR20050063459A (en) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 On-line inspection system for circle rod by image processing
JP2017146302A (en) * 2016-02-12 2017-08-24 Jfeスチール株式会社 Surface defect inspection device and surface defect inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139630A (en) * 2020-03-02 2021-09-16 日本製鉄株式会社 Surface inspection device and surface inspection method
JP7360048B2 (en) 2020-03-02 2023-10-12 日本製鉄株式会社 Surface inspection device and surface inspection method
JP2022063136A (en) * 2020-10-09 2022-04-21 Jfeスチール株式会社 Method for overlapping images of steel material and method for detecting marking of steel material
JP7351282B2 (en) 2020-10-09 2023-09-27 Jfeスチール株式会社 Method for superimposing captured images of steel materials and method for detecting markings on steel materials

Also Published As

Publication number Publication date
CN113165041B (en) 2022-11-01
CN113165040A (en) 2021-07-23
JP6897889B2 (en) 2021-07-07
CN113165041A (en) 2021-07-23
JP7081687B2 (en) 2022-06-07
JPWO2020111246A1 (en) 2021-09-02
JPWO2020111247A1 (en) 2021-10-14
WO2020111246A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5888035B2 (en) Method and apparatus for inspecting surface defects of cylindrical body or cylindrical body material
JP5388250B2 (en) Filter inspection method and apparatus
JP6633454B2 (en) How to detect deformed parts
JP5954284B2 (en) Surface defect inspection apparatus and surface defect inspection method
WO2020111247A1 (en) Round steel material marking detection device and detection method, and method for manufacturing steel material
JP4739044B2 (en) Appearance inspection device
JP2007230706A (en) Vertical split detecting method and device of belt conveyor
EP3315951A1 (en) Surface defect detection apparatus and surface defect detection method
JP2009008659A (en) Surface flaw detection device
CN110926378A (en) Improved bar straightness detection system and method based on visual detection
JP2009092474A (en) Flash detection method for molded article
JP6605772B1 (en) Defect inspection apparatus and defect inspection method
JP6387909B2 (en) Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
JP7351282B2 (en) Method for superimposing captured images of steel materials and method for detecting markings on steel materials
JP3593544B2 (en) Metal surface defect detection method
JP2010002232A (en) Inspection method of forged product
JP6432448B2 (en) Glass tube inspection method
JP2008045957A (en) Visual inspection device of bearing roll
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP5994413B2 (en) Inspection device for lack of ring-shaped articles
JP2008080358A (en) Method and apparatus for detecting position of seam of seam welded pipe
JPH0694660A (en) Method and device for surface defect inspection
JPH01157770A (en) Method for removing surface defect of slab
JP2008309708A (en) Visual inspection method of long article, and its device
JP2507093B2 (en) Defect detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890172

Country of ref document: EP

Kind code of ref document: A1