WO2020111013A1 - ウェーハストッカ - Google Patents

ウェーハストッカ Download PDF

Info

Publication number
WO2020111013A1
WO2020111013A1 PCT/JP2019/046033 JP2019046033W WO2020111013A1 WO 2020111013 A1 WO2020111013 A1 WO 2020111013A1 JP 2019046033 W JP2019046033 W JP 2019046033W WO 2020111013 A1 WO2020111013 A1 WO 2020111013A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
wafer cassette
foup
transfer
housing
Prior art date
Application number
PCT/JP2019/046033
Other languages
English (en)
French (fr)
Inventor
育志 谷山
俊宏 河合
Original Assignee
シンフォニアテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンフォニアテクノロジー株式会社 filed Critical シンフォニアテクノロジー株式会社
Priority to US17/297,509 priority Critical patent/US11610797B2/en
Priority to CN201980078149.2A priority patent/CN113169103A/zh
Priority to KR1020217015597A priority patent/KR20210093911A/ko
Priority to JP2020557711A priority patent/JP7445138B2/ja
Publication of WO2020111013A1 publication Critical patent/WO2020111013A1/ja
Priority to US18/115,044 priority patent/US11823934B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0485Check-in, check-out devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67379Closed carriers characterised by coupling elements, kinematic members, handles or elements to be externally gripped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67389Closed carriers characterised by atmosphere control
    • H01L21/67393Closed carriers characterised by atmosphere control characterised by the presence of atmosphere modifying elements inside or attached to the closed carrierl
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67775Docking arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0297Wafer cassette

Definitions

  • the present invention relates to a wafer stocker that temporarily stores wafers.
  • a storage pod transport container
  • FOUP Front-Opening Unified Pod
  • a FOUP stocker for temporarily storing such a FOUP in a clean room is conventionally known (for example, Patent Document 1).
  • the FOUP stocker has a plurality of shelves arranged in a multi-tiered manner in the height direction, and FOUPs containing unprocessed wafers inside or FOUPs containing processed wafers inside can be placed on the shelf. Is configured. In other words, the FOUP stocker is configured to store and store each FOUP (the entire FOUP containing wafers) on a shelf in the stocker.
  • An object of the present invention is to provide a wafer stocker that can further improve the atmosphere around the wafer.
  • the wafer stocker includes a housing, a loading device provided on the front surface of the housing, on which a transfer container capable of accommodating a plurality of wafers is mounted, and arranged in the housing.
  • a wafer cassette shelf that can store a plurality of wafer cassettes that can store the plurality of wafers in a multi-stage manner, a transfer container that is placed on the loading device, and a wafer cassette that is stored in the wafer cassette shelf.
  • a wafer transfer robot for loading and unloading wafers between the wafer cassette and a wafer for moving the wafer cassette stored in a predetermined stage of the plurality of stages of the wafer cassette shelf to a stage having a height different from at least the predetermined stage.
  • a cassette transfer device, and a fan filter unit for generating a laminar flow in the wafer transfer space in which the wafer transfer robot is disposed and the wafer cassette transfer space in which the wafer cassette transfer device is disposed in the housing. It is characterized by
  • the wafer stocker according to the present invention has a configuration in which wafers are stored in wafer cassette units capable of accommodating in multiple stages. Therefore, as compared with the conventional stocker in which the transport container such as a FOUP is housed in the stocker, it is possible to prevent/suppress the situation where the dust adhering to the outer surface of the transport container is mixed into the housing and scattered/accumulated. it can.
  • the wafer stocker according to the present invention is generally configured to store wafers by using a wafer cassette smaller than the transfer container. Therefore, it is possible to reduce the size of the stocker as a whole, increase the number of accommodated stockers, and narrow the foot stamp, as compared with a conventional stocker that stores the entire transport container in the stocker. Further, in the wafer stocker according to the present invention, since the wafer cassette is transferred in the housing, the transfer efficiency is improved when the wafers are moved to different stages as compared with the case where the wafers are moved one by one. Can be made
  • a laminar flow is generated in the wafer transfer space and the wafer cassette transfer space by the fan filter unit. For this reason, it is possible to suppress the scattering of dust generated during the operation of the wafer transfer robot or the operation of the wafer cassette transfer device.
  • the wafer transfer robot has a height in which the transfer container placed on the loading device and the transfer container of the plurality of stages of the wafer cassette shelf face each other in the front-rear direction. It is advisable to transfer wafers between the wafer cassettes and the wafer cassettes arranged on the stage.
  • a circulation path for circulating a gas including the wafer transfer space and the wafer cassette transfer space is formed in the housing.
  • the gas supply amount can be reduced and running costs can be reduced.
  • FIG. 1 is an overall schematic diagram of a wafer stocker according to an embodiment of the present invention.
  • FIG. 2 is an exploded view of the wafer stocker shown in FIG. 1. The figure which expands and shows a part of FIG.
  • the side surface schematic diagram which shows the operation
  • the side surface schematic diagram of the wafer stocker which shows the gas circulation path of the same embodiment.
  • movement flow of the wafer stocker which concerns on the same embodiment corresponding to FIG. The figure which shows the operation
  • the wafer stocker X according to this embodiment (see FIG. 1) is provided in a clean room used in the semiconductor manufacturing process.
  • the wafer stocker X is capable of temporarily storing a wafer taken out of a transfer container capable of accommodating the wafer, inside the housing 1 which is maintained at high cleanliness.
  • the FOUP 10 is used as the transport container.
  • the FOUP 10 includes a FOUP body Y3 (conveyor container body) capable of opening the internal space YS through a carry-in/out port Y1 which is an opening, and a FOUP door Y2 (conveyor container door) capable of opening/closing the carry-in/out port Y1.
  • the FOUP 10 is configured to accommodate a plurality of wafers in a multi-tiered manner in the height direction H therein and to allow these wafers to be taken in and out through the carry-in/out port Y1.
  • FIG. 4 is a schematic diagram showing an operation flow regarding the FOUP 10 that follows the order of (a), (b), (c), and (d) in FIG.
  • the FOUP main body Y3 is provided with a shelf portion (wafer mounting shelf) capable of mounting a plurality of wafers in a predetermined pitch in the internal space YS.
  • a port Y4 is provided at a predetermined position on the bottom wall of the FOUP body Y3.
  • the port Y4 has, for example, a hollow cylindrical grommet seal fitted in a port mounting through hole formed in the bottom wall of the FOUP body Y3, and is configured to be opened and closed by a check valve.
  • a flange portion to be gripped by a container carrying device such as an OHT is provided at the center of the upward surface of the upper wall of the FOUP main body Y3, a flange portion to be gripped by a container carrying device such as an OHT is provided.
  • FOUP door Y2 is a substantially plate-shaped member.
  • the FOUP door Y2 is arranged so as to face the loading device door 23 of the loading device 2 in a state where the FOUP door Y2 is mounted on a mounting table 21 (described later) of the loading device 2.
  • the FOUP door Y2 is provided with a latch key (not shown) for locking the FOUP door Y2 to the FOUP main body Y3.
  • a gasket Y5 is provided on a predetermined portion of the FOUP door Y2 that comes into contact with or comes close to the FOUP body Y3 when the carry-in/out port Y1 is closed by the FOUP door Y2.
  • the FOUP door Y2 is configured so as to seal the internal space YS of the FOUP 10 by bringing the gasket Y5 into contact with the FOUP body Y3 and elastically deforming it (see FIGS. 4A and 4C).
  • the FOUP 10 adheres to the surface of the FOUP 10 in the clean room. Dust may be brought into the stocker and accumulated.
  • the FOUP 10 is made of a water-absorbing resin material (for example, polycarbonate). Therefore, even if the internal space of the conventional stocker is filled with nitrogen or dry air, the moisture taken into the FOUP 10 in the clean room is diffused in the stocker, so that the humidity of the internal space of the stocker is kept low. It becomes difficult to control.
  • the wafer stocker X of the present embodiment is specifically configured as follows in order to further improve the atmosphere around the wafer.
  • the wafer stocker X includes a housing 1, a loading device 2, a wafer cassette shelf 3, a wafer transfer robot 4, and a wafer cassette transfer device 5.
  • Prepare The loading device 2 is arranged in close contact with the front wall 11 of the housing 1 so as to form a part of the front wall 11 of the housing 1.
  • the loading device 2 has a mounting table 21 on which a wafer can be mounted.
  • the wafer cassette shelf 3 is provided in the housing 1 at a position spaced apart from the front wall 11 of the housing 1 by a predetermined distance rearward, and has a plurality of wafer cassettes C smaller than the FOUP 10 in a multi-stage manner (in other words, in the height direction). Store (along with H).
  • the wafer transfer robot 4 performs a wafer loading/unloading process with respect to the FOUP 10 on the mounting table 21 of the loading device 2.
  • the wafer cassette transfer device 5 moves the wafer cassettes C stored in the wafer cassette shelf 3 to stages of different heights (that is, moves the wafer cassettes C in the height direction H).
  • the wafer cassette C is a well-known open cassette capable of accommodating a plurality of wafers in multiple stages (arranged in the height direction H).
  • the housing 1 is in the shape of a hollow rectangular parallelepiped, and includes a front wall 11, a rear wall 12, a ceiling wall 13, a floor base 14, and left and right edges extending forward from the left and right side edges of the rear wall 12, respectively. And a pair of side walls (not shown).
  • the housing 1 can maintain the internal space 1S in a substantially sealed state at a positive pressure (details will be described later).
  • a housing window portion (not shown) that penetrates in the front-rear direction D is formed at a predetermined height position of the front wall 11. Wafer loading/unloading can be performed through the housing window.
  • a plurality of (three in the illustrated example) housing window portions are formed in the front wall 11 at a predetermined pitch along the width direction W.
  • the front wall 11 is provided with an emergency off (EMO) button 11b and a monitor 11c.
  • EMO emergency off
  • the loading device 2 includes a plate-shaped standing base 22 arranged in a standing posture, a loading device door 23 for opening and closing an opening 22a formed in the standing base 22, and a standing base. 22 and a mounting table 21 provided in a substantially horizontal posture.
  • the loading device 2 is provided on the front surface of the housing 1. That is, the loading device 2 is arranged so that the standing base 22 is brought into close contact with the front wall 11 of the housing 1 from the front side of the housing 1. In this arrangement, the opening 22a formed in the standing base 22 and the housing window formed in the front wall 11 of the housing 1 overlap (communicate) in the front-rear direction D.
  • the mounting table 21 is provided on an upper part of a horizontal base 24 (supporting table) which is arranged in a substantially horizontal posture at a position slightly above the center of the standing base 22 in the height direction H.
  • the mounting table 21 is capable of mounting the FOUP 10 in a direction in which the FOUP door Y2 described above faces the loading device door 23.
  • the mounting table 21 is configured to be movable back and forth with respect to the standing base 22.
  • the mounting table 21 includes a predetermined docking position where the FOUP door Y2 approaches the opening 22a of the standing base 22 (see FIG. 4C), and the FOUP door Y2 is located closer to the opening base 22 than the docking position.
  • the mounting table 21 has a plurality of protrusions (pins) (not shown) protruding upward.
  • the FOUP 10 is positioned on the mounting table 21 by engaging these protrusions with holes (not shown) formed in the bottom surface of the FOUP 10.
  • the mounting table 21 is provided with a lock claw (not shown) for fixing the FOUP 10.
  • the lock claw is hooked on a locked portion (not shown) provided on the bottom surface of the FOUP 10 to be in a locked state, so that the FOUP 10 can be positioned at an appropriate position on the mounting table 21 in cooperation with the positioning projection. It can be guided and fixed. Further, by releasing the locked state of the lock claw with respect to the locked portion provided on the bottom surface of the FOUP 10, the FOUP 10 can be placed in a state in which it can be separated from the mounting table 21.
  • the loading device door 23 includes a coupling mechanism 26 for coupling the loading device door 23 and the FOUP door Y2, and is configured to be movable along a predetermined movement path while holding the FOUP door Y2. There is.
  • the connection mechanism 26 changes the state between the lid connection state in which the loading device door 23 and the FOUP door Y2 are connected and the lid connection release state in which the connection between the loading device door 23 and the FOUP door Y2 is released. It can be switched.
  • the FOUP door Y2 can be removed from the FOUP body Y3. In the state where the lid is disconnected, the FOUP door Y2 is attached to the FOUP body Y3.
  • the loading device door 23 is configured to be movable at least between a fully closed position (C) shown in FIG. 4A and the like and an open position (not shown).
  • the fully closed position (C) is the position of the loading device door 23 when the internal space YS of the FOUP body Y3 is sealed by the FOUP door Y2.
  • the open position is the position of the loading device door 23 when the FOUP door Y2 is separated from the FOUP main body Y3 and the internal space YS of the FOUP main body Y3 is open toward the internal space 1S of the housing 1.
  • the loading device 2 moves the loading device door 23 from the fully closed position to the open position while maintaining the standing posture of the loading device door 23, and further from the open position to the fully open position (O) shown in FIG.
  • the loading device 2 also includes a movement restricting portion (not shown) that restricts the FOUP 10 on the mounting table 21 positioned at the docking position from moving in a direction away from the standing base 22.
  • the loading device 2 is equipped with a purging device P (see FIG. 4).
  • the purge device P is configured to inject an inert gas such as nitrogen gas or a purge gas such as dry air into the internal space YS of the FOUP 10 and replace the atmosphere in the internal space YS of the FOUP 10 with the purge gas.
  • the purging device P replaces the atmosphere of the internal space YS of the FOUP 10 with an inert gas of the same type as the inert gas supplied from the gas introducing device 6 described later to the internal space 1S of the housing 1.
  • the purging device P includes a plurality of purging nozzles 2N (gas supply/discharging devices) arranged at predetermined positions on the mounting table 21 with the upper end thereof being exposed.
  • the plurality of purge nozzles 2N are attached at appropriate positions on the mounting table 21 according to the position of the port Y4 provided on the bottom surface of the FOUP 10 and can be connected to the port Y4.
  • the following bottom purging process is performed using such a purging device P.
  • the purging device P causes some of the plurality of ports Y4 to function as “supply ports”, and appropriately selects nitrogen gas, inert gas, dry air, or the like in the FOUP 10 through the purge nozzle 2N connected to the supply ports.
  • the purge gas thus prepared is injected.
  • the purging device P causes the remaining port Y4 to function as an “exhaust port” and discharges the gas in the FOUP 10 through the purge nozzle 2N connected to the exhaust port.
  • the FOUP 10 is filled with the purging gas.
  • the loading device 2 of the present embodiment includes a mapping unit (not shown) capable of detecting the presence/absence of wafers and the storage attitude in the FOUP 10.
  • a plurality of such loading devices 2 are arranged side by side in the width direction W of the housing 1 on the front side of the housing 1.
  • the wafer cassette shelf 3 includes a wafer cassette shelf base 31 and a shelf body 32 supported by the wafer cassette shelf base 31.
  • the shelf main body 32 is one in which a plurality of shelf plates (not shown) arranged in a step shape and a shelf frame having side walls capable of supporting both ends of each shelf plate are integrally assembled.
  • the wafer cassette shelf 3 of this embodiment can store 10 wafer cassettes C in the height direction H.
  • the mounting space of the lowermost wafer cassette C (the mounting space of the first stage) is set on the upper surface 31a of the wafer cassette shelf base 31, and the wafer cassettes C of the second or higher stages from the bottom are mounted on the respective shelf plates. It is set to be available.
  • the upper surface 31a of the wafer cassette shelf base 31 and the upper surface of the mounting table 21 of the loading device 2 are set at substantially the same height position.
  • the separation pitch in the height direction H of the wafer cassettes C, which are stored in the wafer cassette shelf 3 in multiple stages, may be equal intervals.
  • the spacing pitch between the shelves may be changed as appropriate in consideration of, for example, the location of parts (for example, beams not shown) forming the wafer cassette shelf 3.
  • the wafer stocker X of the present embodiment is set so that the same number of wafer cassettes C as the number of loading devices 2 can be placed on the wafer cassette shelf 3. That is, in the present embodiment, the wafer cassette shelf 3 on which the wafer cassettes C can be placed side by side in three rows in the width direction W is applied.
  • the wafer transfer robot 4 is provided between the front wall 11 of the housing 1 and the wafer cassette shelf 3.
  • the wafer transfer robot 4 can execute a process of taking out a wafer from the FOUP 10 on the mounting table 21 of the loading device 2 and transferring the wafer to the wafer cassette C stored in the wafer cassette shelf 3. Further, the wafer transfer robot 4 can execute a process of taking out a wafer from the wafer cassette C of the wafer cassette shelf 3 and putting it back into the FOUP 10.
  • the wafer transfer robot 4 includes, for example, an arm mechanism 42 in which a wafer gripping portion (hand) is provided at the tip ends of a plurality of link elements connected to each other so as to be horizontally rotatable, and an arm mechanism 42.
  • the base part 43 which supports.
  • the wafer transfer robot 4 has a link structure (multi-joint structure) whose shape changes between a folded state in which the arm length of the arm mechanism 42 is minimized and an extended state in which the arm length is longer than in the folded state. ..
  • a plurality of individually controllable wafer grips may be provided in a multi-step manner in the height direction H.
  • the space in which the wafer transfer robot 4 is provided in the internal space 1S of the housing 1 is a space in front of the wafer cassette shelf 3 in the front-rear direction D and functions as a wafer transfer chamber 4S.
  • Space wafer transfer space
  • one wafer transfer robot 4 and one wafer aligner A are provided in the wafer transfer chamber 4S.
  • the wafer transfer robot 4 includes an exhaust box 44 that communicates with the internal space of the base 43. Dust generated from a drive mechanism (drive mechanism of the arm mechanism 42) or the like provided in the base portion 43 is forcibly collected in the exhaust box 44 set to a negative pressure (see FIG. 5 ).
  • the wafer cassette transfer device 5 moves the wafer cassette C stored in the wafer cassette shelf 3 to at least stages of different heights in the wafer cassette shelf 3.
  • the wafer cassette transfer device 5 includes a wafer cassette transfer arm 51 that is movable in the front-rear direction D and the height direction H, and a wafer cassette transfer device frame 52 that supports the wafer cassette transfer arm 51.
  • the wafer cassette transfer arm 51 has a hand with a forked end, but the present invention is not limited to this.
  • the wafer cassette transfer device frame 52 has a substantially rectangular parallelepiped shape, and has a drive mechanism inside for moving the wafer cassette transfer arm 51 up and down and back and forth. In the wafer cassette transfer device 5, as shown in FIG.
  • wafer cassette transfer arms 51 as the number of rows (three rows in this embodiment) of wafer cassettes C that can be placed on the wafer cassette shelf 3 are provided. They are arranged side by side in the direction W. Further, the wafer cassette transfer device 5 is configured to transfer the wafer cassettes C in a row facing the front of each wafer cassette transfer arm 51 in the height direction H in the same row. As shown in FIG. 5, a space between the wafer cassette transfer device frame 52 and the wafer cassette shelf 3 that functions as a wafer cassette transfer chamber 5S that allows the wafer cassette C to move in the height direction H (wafer A cassette carrying space) is formed.
  • the wafer stocker X includes a gas introduction device 6, an exhaust device 7, and a fan filter unit (FFU) 8.
  • the gas introduction device 6 supplies an inert gas into the housing 1.
  • the exhaust device 7 exhausts the gas in the internal space 1S of the housing 1.
  • the fan filter unit 8 allows the inert gas supplied from the gas introduction device 6 to pass therethrough, and extends from the wafer cassette transfer device 5 to the front wall 11 of the housing 1 (wafer cassette transfer chamber 5S and wafer transfer chamber 4S).
  • a downward airflow (laminar flow) is generated in a space including.
  • the gas introduction device 6 includes a mass flow controller 61 (MFC) and a gas introduction pipe 62 (see FIG. 5).
  • the mass flow controller 61 is provided at a predetermined position behind the wafer cassette transfer device 5 in the housing 1, and controls the flow rate while measuring the mass flow rate of the fluid.
  • the gas introduction pipe 62 is a pipe for supplying an inert gas (nitrogen gas in this embodiment) to the internal space 1S of the housing 1 through the mass flow controller 61.
  • the gas introduction pipe 62 includes a gas introduction start pipe 63, a gas introduction vertical pipe 64, and a gas introduction horizontal pipe 65.
  • the gas-introducing start-end pipe 63 is a pipe provided at the rear end of the housing 1 and communicating with the valve 61v of the mass flow controller 61.
  • the gas introducing vertical pipe 64 extends from the front end (tip) of the gas introducing starting pipe 63 to the vicinity of the ceiling wall 13 of the housing 1 along the inward surface of the back wall 12 of the housing 1.
  • the gas introduction horizontal pipe 65 extends from the upper end of the gas introduction vertical pipe 64 along the ceiling wall 13 of the housing 1 to the vicinity of the front wall 11 of the housing 1.
  • holes (downward holes) opening downward are formed at a predetermined pitch in the front-rear direction.
  • the fan filter unit 8 is a unit in which a fan and a filter are unitized and exhibits an air cleaning function.
  • the fan filter unit 8 is provided in a region extending from the upper end of the wafer cassette transfer device 5 (upper end of the wafer cassette transfer device frame 52) to the inward surface of the front wall 11 of the housing 1. It is arranged.
  • the inert gas supplied to the internal space 1S of the housing 1 by the gas introduction device 6 is supplied to the wafer cassette transfer chamber 5S and the wafer transfer chamber 4S by the fan filter unit 8 as a descending airflow (laminar flow) having high cleanliness. Sent.
  • the exhaust device 7 includes an automatic pressure controller 71 (APC: automatic pressure controller) and an exhaust port 72 that communicates with a valve 71v of the automatic pressure controller 71.
  • the automatic pressure controller 71 is provided in the housing 1 behind the wafer cassette transfer device 5 and below the mass flow controller 61 of the gas introduction device 6.
  • the gas riding on the descending air flow generated by the fan filter unit 8, reaches the vicinity of the floor base 14 of the housing 1 through the space between the wafer cassette transfer device 5 and the front wall 11 of the housing 1, and exhausts the gas. Flows towards mouth 72.
  • a predetermined amount of gas is discharged to the outside of the housing 1 through the exhaust port 72 and the valve 71v of the automatic pressure controller 71.
  • passages 3T, 5T through which the airflow flowing toward the exhaust device 7 can pass are provided at the lower end portion of the wafer cassette shelf 3 and the lower end portion of the wafer cassette transfer device 5, respectively (FIG. 2). And FIG. 5).
  • the exhaust device 7 also includes an exhaust horizontal pipe 73 extending from the exhaust box 44 of the wafer transfer robot 4 toward the exhaust port 72. The dust collected in the exhaust box 44 of the wafer transfer robot 4 is discharged to the outside of the housing 1 through the exhaust horizontal pipe 73 and the exhaust port 72.
  • a part of the gas flowing toward the exhaust device 7 is discharged, and most of the remaining gas rises along the back wall 12 of the housing 1.
  • a pair of left and right partition walls 15 are provided upright in the housing 1.
  • a cylindrical space is formed by the partition wall, the rear wall of the wafer cassette transfer device 5, and the rear wall 12 of the housing 1.
  • the blower 9 is provided between the wafer cassette transfer device 5 and the back wall 12 of the housing 1 and at a position higher than the exhaust port 72 of the exhaust device 7. The blower 9 generates an updraft in the above-mentioned cylindrical space.
  • the gas riding on the upward airflow of the blower 9 reaches the vicinity of the ceiling wall 13 of the housing 1, and joins the airflow flowing toward the front wall 11 of the housing 1. Then, the gas flows through the fan filter unit 8 together with the inert gas supplied downward from the horizontal gas introducing pipe 65 of the gas introducing device 6, and flows along the downward flowing air flow. As described above, in the housing 1, a gas circulation path for circulating most of the inert gas supplied from the gas introduction device 6 is formed.
  • the atmosphere outside the housing 1 is kept inside the housing 1 by circulating the inert gas in the housing 1 to maintain the internal space 1S of the housing 1 at a positive pressure. It is possible to prevent the situation from entering the.
  • the automatic pressure controller 71 controls the pressure of the entire gas circulation path to be a positive pressure with respect to the atmosphere outside the housing 1. More specifically, the pressure of the space (storage area) in which the wafer cassette C is stored is controlled to be, for example, 10 to 300 Pa (gauge pressure). More preferably, the pressure in the storage area is controlled to a low positive pressure (slight positive pressure), for example, 10 to 100 Pa (gauge pressure).
  • the space in which a large number of wafer cassettes C are stored and the space in which wafers are transported are kept in a highly clean space, and low oxygen concentration (eg 10 to 100 ppm) and low humidity (eg dew point temperature is -50°C or less). ), the characteristics of the wafer can be maintained.
  • the FOUP 10 is mounted on the mounting table 21 of the loading device 2 by a container transfer device such as an OHT (see FIG. 4A).
  • a container transfer device such as an OHT
  • the positioning projection provided on the mounting table 21 fits into the positioning recess of the FOUP 10, and the locking claw on the mounting table 21 is brought into the locked state (locking process).
  • the FOUPs 10 can be mounted on the mounting bases 21 of the loading device 2 arranged side by side in the width direction W, respectively.
  • a seating sensor (not shown) that detects whether or not the FOUP 10 is mounted on the mounting table 21 at a predetermined position is used to detect that the FOUP 10 is mounted at the regular position on the mounting table 21. It can also be configured to.
  • the bottom surface of the FOUP 10 presses the pressed portion of, for example, a pressure sensor provided on the mounting table 21. Detect what you have done.
  • all the purge nozzles 2N provided on the mounting table 21 advance above the upper surface of the mounting table 21 and are connected to the respective ports Y4 of the FOUP 10.
  • each port Y4 is switched from the closed state to the open state.
  • the loading device 2 performs a process (bottom purge process) of supplying the nitrogen gas, which is an inert gas, to the internal space YS of the FOUP 10 by the purge device P to replace the internal space YS of the FOUP 10 with the nitrogen gas (FIG. 4(b)).
  • the nitrogen gas which is an inert gas
  • the purge device P replaces the internal space YS of the FOUP 10 with the nitrogen gas
  • the gas inside the FOUP 10 is discharged to the outside of the FOUP 10 through the purge nozzle 2N connected to the port Y4 that functions as an exhaust port.
  • the nitrogen gas supply direction and the gas discharge direction in the FOUP 10 during the bottom purge process are schematically shown by arrows.
  • the loading apparatus 2 lowers the water concentration and the oxygen concentration in the FOUP 10 to a predetermined value or less by such a bottom purge process, and makes the surrounding environment of the wafer in the FOUP 10 a low humidity environment and a low oxygen environment.
  • the loading device 2 of the present embodiment moves the mounting table 21 at the position shown in FIG. 4B to the docking position shown in FIG. 4C (docking process).
  • the loading device 2 performs a process (clamping process) of holding and fixing at least both sides of the FOUP 10 using the movement restricting unit, and switches the connecting mechanism 26 to the lid connecting state (lid connecting process).
  • the loading device 2 moves the FOUP door Y2 together with the loading device door 23 to open the opening 22a of the upright base 22 and the loading/unloading port Y1 of the FOUP 10 to release the sealed state in the FOUP 10 (release of sealing). Processing) is executed (see FIG. 4D).
  • the loading device 2 may be set to perform the mapping process by the mapping unit during the process of moving the loading device door 23 from the open position to the fully open position (O). Accordingly, the presence/absence of wafers stored in the FOUP 10 in the height direction H can be sequentially detected.
  • the internal space YS of the FOUP body Y3 and the internal space 1S of the housing 1 are in communication with each other. Then, the wafer transfer robot 4 performs the following wafer transfer process based on the information (wafer position) detected by the mapping process. That is, the wafer transfer robot 4 transfers the wafer in the FOUP 10 to the wafer cassette C stored in the wafer cassette shelf 3 or stores the wafer in the wafer cassette C in the FOUP 10.
  • the mounting space of the first stage of the wafer cassette shelf 3 (specifically, the upper surface 31a of the wafer cassette shelf base 31) is set at the wafer transfer position for the wafer cassette C by the wafer transfer robot 4.
  • the wafer stocker X performs the following process at a point before the wafer transfer process (the process of putting the wafer in the FOUP 10 into the wafer cassette C).
  • the wafer cassette C is not placed on the first stage of the left column of the wafer cassette shelf 3 (idle state).
  • the wafer stocker X moves the wafer cassettes C stored in the first stage of the wafer cassette shelf 3 to the stage (third stage in the illustrated example) above the second stage in the same row. Transfer is performed by the mounting device 5 (wafer cassette transfer processing, see FIG. 7).
  • FIG. 6 the transfer route of the wafer cassette C by the wafer cassette transfer arm 51 is schematically shown by an arrow.
  • the wafer stocker X transfers the wafers between the wafer cassette C set in the first stage of the wafer cassette shelf 3 and the FOUP 10 during the wafer transfer process as follows.
  • "Use wafer cassette transfer process” is performed. That is, in the wafer stocker X, the wafer cassette transfer device 5 transfers the wafer cassette C to be used next in the wafer processing to the idle space of the first-stage mounting space of the wafer cassette shelf 3.
  • the wafer cassette C stored in the upper stage (third stage in the illustrated example) of the wafer cassette shelf 3 in the central row is referred to as the “next-use wafer cassette”. It shows a state of transferring to the mounting space in the center of the first stage.
  • the transfer path of the wafer cassette C by the wafer cassette transfer arm 51 is schematically shown by a relatively thick arrow
  • the wafer transfer path by the wafer transfer robot 4 is schematically shown by a relatively thin arrow.
  • the wafer transfer robot 4 is provided between the FOUP 10 placed on the loading device 2 and the wafer cassette C arranged in a step having a height facing the transfer container in the front-rear direction among a plurality of steps of the wafer cassette shelf 3. Hand off the wafer.
  • the wafer stocker X performs the following sealing process on the FOUP 10 for which the wafer transfer process has been completed.
  • the door moving mechanism 27 of the loading device 2 moves the loading device door 23 to the fully closed position (C) to close the opening 22a of the upright base 22 and the loading/unloading port Y1 of the FOUP 10.
  • the loading device 2 executes a process of switching the connection mechanism 26 from the lid connection state to the lid connection release state (lid connection release process).
  • the internal space YS of the FOUP 10 becomes a hermetically sealed state.
  • the loading device 2 performs a clamp release process for releasing the fixed state (clamp state) of the FOUP 10 by the movement restricting unit.
  • the loading device 2 executes a process (docking release process) of moving the mounting table 21 in a direction away from the upright base 22, and then releases the state in which the FOUP 10 is locked by the lock claw on the mounting table 21. (Unlock process).
  • the FOUP 10 is delivered from the top of the mounting table 21 of each loading device 2 to the container transfer device, and is carried out to the mounting table of the load port that constitutes an EFEM (Equipment Front End Module), for example.
  • EFEM Equipment Front End Module
  • the wafer cassette C that has undergone the wafer transfer process is transferred from the mounting space of the first stage of the wafer cassette shelf 3 to the mounting space of the original stage at an appropriate timing after the sealing process by the loading device 2. It is transferred by the mounting device 5 (wafer cassette returning process). As shown in FIG. 8, the wafer cassette returning process can be executed during the wafer transfer process using another wafer cassette C different from the wafer cassette returning process target.
  • the wafer stocker X transports wafers in a state in which the wafer cassettes C in which wafers are stored in a multi-tiered manner or a large number of wafer cassettes C in which wafers are not accommodated are stored in the housing 1.
  • the treatment can be repeated as needed.
  • the FOUP 10 on the loading device 2 is carried out to the next step, and the wafer cassette C for which the wafer transfer processing is completed is moved from the mounting space of the first stage of the wafer cassette shelf 3 to the mounting space of the original stage.
  • FIG. 9 shows the state in which it has been returned to.
  • the wafer transfer process using the wafer transfer robot 4 is a process of transferring the wafers in the FOUP 10 to the wafer cassette C of the wafer cassette shelf 3 or a process of transferring the wafers stored in the wafer cassette C to the FOUP 10. Is either. Which processing is to be performed can be appropriately selected. Further, the wafer in the FOUP 10 is transferred to the wafer cassette C via the wafer aligner A provided in the wafer transfer chamber 4S, or the wafer in the wafer cassette C is transferred to the FOUP 10 via the wafer aligner A. (See FIGS. 7 and 8). The operation of the wafer stocker X is controlled by a controller (not shown).
  • the inert gas is supplied into the housing 1 by the gas introduction device 6, and the positive pressure kept at high cleanliness with reduced oxygen concentration and water concentration.
  • a plurality of wafer cassettes C can be stored in the housing 1 in multiple stages.
  • the invasion of air from the outside can be prevented, and outgas and the like generated from the wafer after the semiconductor processing step can be blown down by the down flow by the fan filter unit 8 and discharged to the outside of the housing 1 by the exhaust device 7. it can.
  • the wafer stocker X can store a large number of wafers, it is difficult to supply the entire amount of the inert gas from the outside in order to form the laminar flow. Therefore, the formation of the circulation path of the inert gas in the internal space 1S of the housing 1 is effective for suppressing an increase in running cost.
  • the wafer stocker X has a configuration in which wafers are stored in units of wafer cassettes C capable of accommodating multiple stages. Therefore, compared with the conventional FOUP stocker that stores the entire FOUP 10 in the stocker, it is possible to prevent the dust adhering to the outer surface of the FOUP 10 and the moisture taken in the outer surface of the FOUP from being released in the stocker. it can. Therefore, it is possible to suppress deterioration of the cleanliness inside the stocker. Further, with such a configuration, it is possible to prevent or suppress a situation in which outgas or the like generated from the wafer after the semiconductor processing step is mixed and scattered in the stocker.
  • the wafer stocker X it is possible to prevent/suppress the situation where the wafer is contaminated in the housing 1 of the wafer stocker X or the internal space YS of the FOUP 10 which is in communication with the internal space 1S of the housing 1. That is, according to the wafer stocker X according to the present embodiment, it is possible to always maintain a high degree of cleanliness around the wafer and prevent/suppress the situation where particles and moisture adhere to the wafer surface. Therefore, the atmosphere around the wafer in the stocker can be further improved.
  • the wafer is stored using the wafer cassette C which is generally smaller than the FOUP 10. Therefore, it is possible to reduce the size of the entire wafer stocker X and the foot stamp as compared with the conventional stocker in which the FOUP is housed in the stocker. Alternatively, the number of wafers that can be accommodated in the wafer stocker X can be increased while suppressing an increase in the size of the entire apparatus, as compared with the conventional stocker that accommodates each FOUP in the stocker. Further, the wafer stocker X according to the present embodiment is configured to transfer the wafer cassette C stored in the wafer cassette shelf 3 in the housing 1. Therefore, as compared with the conventional stocker that transfers the entire FOUP in the housing, the transfer space in the housing can be made compact.
  • the wafer stocker X is configured so that the wafer cassettes C can be stored in a plurality of rows along the width direction W on the wafer cassette shelf 3, and the number of the loading devices 2 and the wafer cassette transfer arms 51 corresponding to the number of rows are provided. ing. Therefore, the transfer process of the wafer cassette C and the wafer transfer process can be efficiently performed.
  • the wafer cassette C at a height position (specifically, one stage) facing the FOUP 10 mounted on the mounting table 21 of the loading device 2 in the front-rear direction D.
  • the wafer cassette C) placed in the eye placement space is set as the wafer cassette C to which the wafer is transferred by the wafer transfer robot 4. That is, the wafer transfer robot 4 is provided between the FOUP 10 placed on the loading device and the wafer cassette C arranged in a step having a height facing the FOUP 10 in the front-rear direction among the plurality of steps of the wafer cassette shelf 3. Hand off the wafer.
  • the wafer transfer robot is used for the wafer cassette C at a height position that does not directly face the FOUP 10 mounted on the mounting table 21 of the loading device 2 in the front-rear direction D.
  • the height of the wafer transfer position by the wafer transfer robot 4 can be limited to a predetermined range, as compared with the structure in which the wafer is transferred from the FOUP 10 in 4. Therefore, it is possible to shorten the takt time of the wafer transfer robot 4 that transfers a wafer between the FOUP 10 and the wafer cassette C.
  • the wafer stocker X it is possible to partition the storage locations in the wafer cassette shelf 3 according to the type and state of the wafer, the semiconductor processing process performed on the wafer, and the like.
  • An appropriate partition may be provided on the wafer cassette shelf 3 to define the partition range.
  • the loading device 2 of the wafer stocker X the same configuration as the load port constituting the EFEM or a similar configuration is applied to save the labor of designing and manufacturing a new loading device. be able to.
  • the present invention is not limited to the configurations of the above embodiments.
  • the number of wafer cassette shelves (the number of wafer cassette mounting spaces in the height direction) and the number of rows (the number of wafer cassette mounting spaces in the width direction) can be appropriately changed.
  • the wafer cassette transfer device it is possible to apply a device equipped with a wafer cassette transfer arm that can move in the width direction of the housing in addition to moving up and down. With such a wafer cassette transfer device, the wafer cassettes stored in the wafer cassette shelf can be moved to different rows by the wafer cassette transfer arm.
  • a rotary shelf that rotates in a horizontal plane can be applied.
  • a plurality of wafer cassette mounting spaces (for example, four at a 90° pitch) may be provided at a predetermined angular pitch in the circumferential direction orthogonal to the height direction H.
  • the wafer cassettes placed in the respective wafer cassette placement spaces may be configured so as to be able to take a rotation angle posture facing the wafer transfer robot or the wafer cassette transfer arm, respectively. In this way, access to the wafer cassette mounting space by the wafer transfer robot or the wafer cassette transfer arm may be permitted. By doing so, the wafer transfer process and the wafer cassette transfer process can be efficiently performed.
  • a wafer cassette that can be accessed from a total of four directions that is, one side and the other side in the width direction W and one side and the other side in the front-rear direction D, can be applied. Is.
  • the wafer cassette transfer device may be capable of storing wafer cassettes in a plurality of stages along the height direction of one row.
  • the wafer cassettes mounted in the mounting spaces of the stages other than the first stage of the wafer cassette shelf are configured to be at a height position in the front-rear direction that faces the transfer container placed on the loading device. It may be. In such a configuration, it is possible to set the wafer cassette at the height position as the "wafer cassette to which the wafer is transferred by the wafer transfer robot". That is, the wafer stocker of the present invention also includes a configuration in which the wafer cassettes mounted on the second and higher stages are set as "wafer cassettes to be delivered by the wafer transfer robot".
  • FOUP is adopted as the transport container.
  • MAC Multi Application Carrier
  • H-MAC Horizontal-MAC
  • FOSB Front Open Shipping Box
  • an appropriate transfer device other than the OHT may be used. It is also possible to apply OHS (Overhead Shuttle: overhead traveling shuttle), RGV (Rail Guided Vehicle: unmanned guided vehicle), AGV (Automated Guided Vehicle).
  • OHS Overhead Shuttle: overhead traveling shuttle
  • RGV Vehicle Guided Vehicle: unmanned guided vehicle
  • AGV Automatic Guided Vehicle
  • the RGV and AGV are container transportation devices that travel on the floor side in the factory.
  • the rail (track) is installed on the floor of the factory.
  • the wafer transfer robot may have a traveling axis capable of traveling in the width direction of the housing (parallel direction of the loading device). For example, when the number of rows of loading devices arranged in the width direction of the housing is large, it is preferable to use a wafer transfer robot having a traveling axis extending in the width direction of the housing.
  • the nitrogen gas is used as an example of the inert gas supplied to the inside of the housing, but the invention is not limited to this, and a dry gas, an argon gas, or the like can be used.
  • the inert gas used for the bottom purge process is not limited to nitrogen gas.
  • the gas supplied to the inside of the housing does not necessarily have to be an inert gas, and may be dry air, for example. According to this, although it is not an environment of low oxygen concentration, an environment of low humidity can be realized.
  • the container door may be temporarily in an inclined posture (with a motion of drawing a partial arcuate locus) in the process of moving from the fully closed position to the fully opened position.
  • the cost can be reduced by not providing a wafer aligner in the wafer transfer space.
  • the gas introduction device may be configured using an appropriate device other than a mass flow controller (MFC) that controls the flow rate while measuring the mass flow rate of the fluid.
  • the gas exhaust device may be configured by using an appropriate device other than the automatic pressure control device (APC) that maintains the positive pressure inside by the amount of exhaust.
  • MFC mass flow controller
  • APC automatic pressure control device
  • a structure may be used in which an inert gas is introduced through a return duct that forms a gas circulation path. If an inert gas is introduced into the return duct, a backflow may occur in the housing when the flow rate is high. Therefore, by introducing the inert gas into the housing from a position higher than the fan filter unit, the problem of backflow can be addressed. Furthermore, by introducing the inert gas into the housing from a position higher than the fan filter unit, the atmospheric pressure locally rises at a position higher than the fan filter unit, so that the laminar flow is not disturbed.
  • the gas circulation path does not necessarily have to be formed in the housing. That is, the wafer stocker may be configured so that the gas supplied to the housing by the gas introduction device is completely exhausted by the exhaust device without circulating the gas.
  • each wafer cassette is, for example, 25, but it is also possible to apply a wafer cassette capable of accommodating a number other than 25 in multiple stages.
  • the return duct may be provided on the side surface of the housing.
  • the fan filter unit generated the downdraft as a laminar flow, but it is not limited to this.
  • the wafer stocker may be configured to generate a laminar flow that flows horizontally in the wafer transfer space and the wafer cassette transfer space, for example.
  • a dedicated loading device different from the load port used in EFEM may be applied.
  • the wafer stocker according to the present invention can be used as a sorter.
  • the transfer system 1a may include a moving mechanism 80.
  • the moving mechanism 80 includes a pair of columnar members 81 standing upright on the front side and the left and right sides of the wafer cassette shelf 3, and a vertically movable unit along the columnar member 81, which is arranged substantially horizontally and is not shown.
  • the floor member 82 may be included.
  • the wafer transfer robot 4 and the wafer aligner A described above, and the buffer stocker 83 capable of temporarily storing a plurality of wafers may be arranged.
  • the wafer transfer robot 4 may move the wafer between the FOUP 10 and the buffer stocker 83, and further move the wafer between the buffer stocker 83 and the wafer cassette shelf 3.
  • the transfer system 1a may not include the wafer cassette transfer device 5 (see FIG. 2), and may instead include a vertical plate 91 having a passage 92 through which a gas can pass.
  • a fan filter unit 84 that generates downflow (laminar flow) may be attached to the floor member 82. Accordingly, it is possible to prevent the dust generated due to the vertical movement of the floor member 82 from scattering.
  • the wafer transfer robot 4 and the moving mechanism 80 may be additionally provided on the rear side of the wafer cassette shelf 3. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

ウェーハの周囲の雰囲気をより改善可能なウェーハストッカを提供する。 ウェーハストッカXは、筐体1と、筐体1の前面に設けられたローディング装置2と、筐体1内に設けられたウェーハカセット棚3と、ローディング装置2に載置された搬送容器からウェーハカセット棚3のウェーハカセットCにウェーハを出し入れするウェーハ搬送ロボット4と、ウェーハカセット棚3のウェーハカセットCを異なる高さの段に移動させるウェーハカセット移載装置5と、ウェーハ搬送空間及びウェーハカセット搬送空間に層流を発生させるファンフィルタユニット8と、を備える。

Description

ウェーハストッカ
 本発明は、ウェーハを一時的に保管するウェーハストッカに関する。
 半導体デバイスの製造工程においては、歩留まりや品質の向上のため、クリーンルーム内でウェーハの処理がなされる。ウェーハ周辺の雰囲気を適切に維持するために、FOUP(Front-Opening Unified Pod)と呼ばれる格納ポッド(搬送容器)が用いられる。このようなFOUPをクリーンルーム内において一時的に保管するFOUPストッカが、従来から知られている(例えば特許文献1)。
 FOUPストッカは、高さ方向に多段状に配置された複数の棚を備え、処理前のウェーハが内部に収容されたFOUPや、処理済みのウェーハが内部に収容されたFOUPを棚に載置可能に構成されている。言い換えれば、FOUPストッカは、FOUPごと(ウェーハが収容されたFOUP全体を)ストッカ内の棚に載置して保管するように構成されている。
特表2009-541599号公報
 半導体デバイスのさらなる微細化に伴い、ストッカの内部空間においても、ウェーハの周辺の雰囲気をさらに改善することが求められうる。ここで、クリーンルーム内にもわずかながら粉塵が存在するため、FOUPの表面に粉塵が付着しうる。また、一般的に、FOUPは吸水性のある樹脂材料で形成されているので、クリーンルーム内の大気中の水分がFOUPに取り込まれうる。このようなFOUPが特許文献1に記載のFOUPストッカ内に代わる代わる持ち込まれると、FOUPから放出される粉塵或いは水分によって、FOUPストッカ内の雰囲気を良好に維持することが困難になるおそれがある。このため、特許文献1に記載のようにFOUPごとストッカ内に保管する構成では、ストッカ内に例えば窒素或いはドライエアを充填したとしても、ウェーハの周辺の雰囲気を改善することが阻害されうる。
 本発明の目的は、ウェーハの周囲の雰囲気をより改善可能なウェーハストッカを提供することである。
 すなわち、本発明に係るウェーハストッカは、筐体と、前記筐体の前面に設けられた、複数のウェーハを収容可能な搬送容器が載置されるローディング装置と、前記筐体内に配置された、前記複数のウェーハを多段式に収納可能な複数のウェーハカセットを多段式に格納可能なウェーハカセット棚と、前記ローディング装置に載置された前記搬送容器と前記ウェーハカセット棚に格納されたウェーハカセットとの間でウェーハを出し入れするウェーハ搬送ロボットと、前記ウェーハカセット棚の前記複数の段のうち所定の段に格納された前記ウェーハカセットを少なくとも前記所定の段とは異なる高さの段に移動させるウェーハカセット移載装置と、前記筐体内の、前記ウェーハ搬送ロボットが配置されたウェーハ搬送空間及び前記ウェーハカセット移載装置が配置されたウェーハカセット搬送空間に層流を発生させるファンフィルタユニットと、を備えることを特徴とする。
 本発明に係るウェーハストッカは、ウェーハを多段状に収容可能なウェーハカセット単位で保管する構成である。このため、FOUP等の搬送容器ごとストッカ内に収容する従来のストッカと比較して、搬送容器の外表面に付着した粉塵が筐体内に混入して飛散・蓄積する事態を防止・抑制することができる。
 加えて、本発明に係るウェーハストッカは、一般的に搬送容器よりも小さいウェーハカセットを用いてウェーハを保管する構成である。このため、搬送容器ごとストッカ内に収容する従来のストッカと比較して、ストッカ全体の小型化や収容枚数増、及びフットスタンプの狭小化を図ることができる。さらに、本発明に係るウェーハストッカであれば、筐体内でウェーハカセットを移載する構成であるため、ウェーハを異なる段に移動させる際、ウェーハを1枚ずつ移動させる場合と比べて搬送効率を向上させることができる。
 さらに、本発明に係るウェーハストッカでは、ファンフィルタユニットによって、ウェーハ搬送空間及びウェーハカセット搬送空間において層流が生成される。このため、ウェーハ搬送ロボットの動作時又はウェーハカセット移載装置の動作時に発生する粉塵の飛散を抑制できる。
 また、本発明に係るウェーハストッカにおいて、前記ウェーハ搬送ロボットは、前記ローディング装置に載置された前記搬送容器と、前記ウェーハカセット棚の前記複数の段のうち前記搬送容器と前後方向において向かい合う高さの段に配置された前記ウェーハカセットと、の間でウェーハを受け渡しすると良い。
 このようにすることで、搬送容器とウェーハカセットとの間でウェーハを受け渡すためにかかる時間を必要最小限に抑えることができ、タクトタイムを短縮できる。
 また、本発明に係るウェーハストッカにおいて、前記筐体内に、前記ウェーハ搬送空間及び前記ウェーハカセット搬送空間を含む、気体を循環させるための循環経路が形成されていると良い。
 このようにすることで、例えば、気体を筐体内に供給して筐体から全て排出する構成と比べて、気体の供給量を減らすことができ、ランニングコストを削減できる。
 本発明によれば、ウェーハの周囲の雰囲気をより改善可能なウェーハストッカを提供することができる。
本発明の一実施形態に係るウェーハストッカの全体模式図。 図1に示すウェーハストッカの分解図。 図1の一部を拡大して示す図。 同実施形態におけるローディング装置の動作フローを示す側面模式図。 同実施形態のガス循環経路を示すウェーハストッカの側面模式図。 同実施形態に係るウェーハストッカの動作フローを図1に対応して示す図。 同実施形態に係るウェーハストッカの動作フローを図1に対応して示す図。 同実施形態に係るウェーハストッカの動作フローを図1に対応して示す図。 同実施形態に係るウェーハストッカの動作フローを図1に対応して示す図。 変形例に係るウェーハストッカの分解図。 別の変形例に係るウェーハストッカの分解図。
 以下、本発明の一実施形態を、図面を参照して説明する。
 本実施形態に係るウェーハストッカX(図1参照)は、半導体の製造工程において使用されるクリーンルーム内に設けられている。ウェーハストッカXは、ウェーハを収容可能な搬送容器から取り出されたウェーハを、高い清浄度に維持された筐体1の内部に一時的に保管可能なものである。
 本実施形態では、搬送容器としてFOUP10が用いられる。FOUP10は、図4に示すように、開口部である搬出入口Y1を通じて内部空間YSを開放可能なFOUP本体Y3(搬送容器本体)と、搬出入口Y1を開閉可能なFOUPドアY2(搬送容器ドア)とを備える。FOUP10は、内部に複数枚のウェーハを高さ方向Hに多段状に収容し、搬出入口Y1を介してこれらウェーハが出し入れされることが可能に構成されている。なお、図4は、後述するように、同図(a)(b)(c)(d)の順を辿るFOUP10に関する動作フローを示す模式図である。
 FOUP本体Y3は、内部空間YSにウェーハを所定ピッチで複数段載せることが可能な棚部(ウェーハ載置棚)を備える。FOUP本体Y3の底壁には、図4(a)に示すように、ポートY4が所定箇所に設けられている。ポートY4は、例えば、FOUP本体Y3の底壁に形成したポート取付用貫通孔に嵌め込まれた中空筒状のグロメットシールを有し、チェック弁によって開閉可能に構成されている。FOUP本体Y3の上壁における上向面の中央部には、OHT等の容器搬送装置に把持されるフランジ部が設けられている。
 FOUPドアY2は、略板状の部材である。FOUPドアY2は、ローディング装置2の載置台21(後述)に載置された状態において、ローディング装置2のローディング装置ドア23と対面するように配置される。FOUPドアY2には、このFOUPドアY2をFOUP本体Y3にロックするためのラッチキー(図示省略)が設けられている。FOUPドアY2のうち、搬出入口Y1をFOUPドアY2で閉止した状態においてFOUP本体Y3に接触または近接する所定の部分には、ガスケットY5が設けられている。FOUPドアY2は、ガスケットY5をFOUP本体Y3に接触させて弾性変形させることで、FOUP10の内部空間YSを密閉できるように構成されている(図4(a)、(c)参照)。
 ここで、FOUP10全体を保管する従来のストッカにおいては、FOUP10が保管される空間の雰囲気を窒素或いはドライエア等で充填し、より高い清浄度を実現しようとしても、クリーンルーム内でFOUP10の表面に付着した粉塵等がストッカ内に持ち込まれて蓄積されるおそれがある。また、一般的に、FOUP10は、吸水性のある樹脂材料(例えばポリカーボネート)によって形成されている。このため、従来のストッカの内部空間が仮に窒素或いはドライエア等で充填されていても、クリーンルーム内でFOUP10に取り込まれた水分がストッカ内で拡散されることにより、ストッカの内部空間の湿度を低く維持制御することが困難になる。このように、FOUPごとストッカ内に保管する構成では、ウェーハの周辺の雰囲気をより改善することが阻害されうる。そこで、本実施形態のウェーハストッカXは、ウェーハの周辺の雰囲気をより改善可能にするため、具体的に以下のように構成されている。
 本実施形態に係るウェーハストッカXは、図1及び図2に示すように、筐体1と、ローディング装置2と、ウェーハカセット棚3と、ウェーハ搬送ロボット4と、ウェーハカセット移載装置5とを備える。ローディング装置2は、筐体1の前面壁11の一部を形成するように筐体1の前面壁11に密着した状態に配置されている。ローディング装置2は、ウェーハを載置可能な載置台21を有する。ウェーハカセット棚3は、筐体1内において筐体1の前面壁11から所定距離後方に離間した位置に設けられ、FOUP10よりも小さい複数のウェーハカセットCを多段式に(言い換えると、高さ方向Hに並べて)格納する。ウェーハ搬送ロボット4は、ローディング装置2の載置台21上のFOUP10に対するウェーハ出し入れ処理を行う。ウェーハカセット移載装置5は、ウェーハカセット棚3に格納されているウェーハカセットCを異なる高さの段に移動させる(つまり、ウェーハカセットCを高さ方向Hに移動させる)。ウェーハカセットCは、複数枚のウェーハを多段式に(高さ方向Hに並べて)収納可能な周知のオープンカセットである。
 筐体1は、中空直方体状をなすものであり、前面壁11と、背面壁12と、天井壁13と、床ベース14と、背面壁12の左右両側縁近傍からそれぞれ前方に延出する左右一対の側壁(図示省略)とを備える。筐体1は、内部空間1Sを略密閉状態として陽圧に維持可能なものである(詳細については後述)。前面壁11の所定高さ位置には、前後方向Dに貫通する筐体窓部(図示省略)が形成されている。この筐体窓部を通じて、ウェーハの出し入れ処理を行うことが可能となっている。本実施形態では、幅方向Wに沿って所定ピッチで複数(図示例では3つ)の筐体窓部が前面壁11に形成されている。前面壁11には、図2及び図3に示すように、緊急遮断(EMO: Emergency off)ボタン11b及びモニター11cが設けられている。
 ローディング装置2は、図3及び図4等に示すように、起立姿勢で配置される板状の起立ベース22と、起立ベース22に形成した開口部22aを開閉するローディング装置ドア23と、起立ベース22に略水平姿勢で設けられた載置台21とを備えている。ローディング装置2は、筐体1の前面に設けられている。すなわち、ローディング装置2は、筐体1の前面壁11に対し起立ベース22を筐体1の前面側から密着させるように配置されている。この配置状態において、起立ベース22に形成された開口部22aと筐体1の前面壁11に形成された筐体窓部とが前後方向Dに重なっている(連通している)。
 載置台21は、起立ベース22のうち高さ方向Hにおける中央よりもやや上方の位置に略水平姿勢で配置された水平基台24(支持台)の上部に設けられている。載置台21は、上述したFOUPドアY2をローディング装置ドア23に対向させる向きでFOUP10を載置可能なものである。また、載置台21は、起立ベース22に対して進退移動可能に構成されている。具体的には、載置台21は、FOUPドアY2が起立ベース22の開口部22aに接近する所定のドッキング位置(図4(c)参照)と、FOUPドアY2をドッキング位置よりも起立ベース22から所定距離離間した位置(図4(a)、(b)参照)との間で進退可能である。載置台21は、上向きに突出した図示しない複数の突起(ピン)を有する。これらの突起をFOUP10の底面に形成された穴(図示省略)に係合させることで、載置台21上でFOUP10が位置決めされる。また、載置台21には、FOUP10を固定するためのロック爪(図示省略)が設けられている。このロック爪をFOUP10の底面に設けた被ロック部(図示省略)に引っ掛けて固定したロック状態にすることで、位置決め用の突起と協働して、FOUP10を載置台21上における適正な位置に案内して固定することができる。また、FOUP10の底面に設けた被ロック部に対するロック爪のロック状態を解除することで、FOUP10を載置台21から離間可能な状態にすることができる。
 ローディング装置ドア23は、ローディング装置ドア23とFOUPドアY2とを連結するための連結機構26を備え、連結機構26によってFOUPドアY2を保持したまま所定の移動経路に沿って移動可能に構成されている。連結機構26は、ローディング装置ドア23とFOUPドアY2とを連結している蓋連結状態と、ローディング装置ドア23とFOUPドアY2との連結を解除している蓋連結解除状態との間で状態を切換可能である。蓋連結状態においては、FOUPドアY2をFOUP本体Y3から取り外すことが可能である。蓋連結解除状態においては、FOUPドアY2はFOUP本体Y3に取り付けられている。ローディング装置ドア23は、少なくとも、図4(a)等に示す全閉位置(C)と、開放位置(図示省略)との間で移動可能に構成されている。全閉位置(C)は、FOUPドアY2によってFOUP本体Y3の内部空間YSが密閉されているときのローディング装置ドア23の位置である。開放位置は、FOUPドアY2がFOUP本体Y3から離間しており、FOUP本体Y3の内部空間YSが筐体1の内部空間1Sに向かって開放されているときのローディング装置ドア23の位置である。ローディング装置2は、ローディング装置ドア23の起立姿勢を維持したまま、ローディング装置ドア23を全閉位置から開放位置まで移動させ、さらに、開放位置から図4(d)に示す全開位置(O)まで起立姿勢を維持したまま下方向に移動させることが可能である。このようなローディング装置ドア23の移動は、ローディング装置2に設けられたドア移動機構27によって実現される。また、ローディング装置2は、ドッキング位置に位置付けられた載置台21上のFOUP10が起立ベース22から離間する方向に移動することを規制する移動規制部(図示省略)を備えている。
 ローディング装置2は、パージ装置Pを備えている(図4参照)。パージ装置Pは、窒素ガス等の不活性ガス或いはドライエア等のパージ用気体をFOUP10の内部空間YSに注入し、FOUP10の内部空間YSの雰囲気をパージ用気体に置換するように構成されている。パージ装置Pは、後述するガス導入装置6から筐体1の内部空間1Sに供給される不活性ガスと同じ種類の不活性ガスでFOUP10の内部空間YSの雰囲気を置換する。パージ装置Pは、載置台21上に上端部を露出可能な状態で所定箇所に配置された複数のパージノズル2N(気体給排装置)を備える。これら複数のパージノズル2Nは、FOUP10の底面に設けられたポートY4の位置に応じて載置台21上の適宜位置に取り付けられ、ポートY4に接続可能なものである。このようなパージ装置Pを用いて、以下のようなボトムパージ処理が行われる。まず、パージ装置Pは、複数のポートY4のうち一部のポートを「供給ポート」として機能させ、供給ポートに接続されたパージノズル2Nを通じてFOUP10内に窒素ガス、不活性ガス又はドライエア等の適宜選択されたパージ用気体を注入する。それとともに、パージ装置Pは、残りのポートY4を「排気ポート」として機能させ、排気ポートに接続されたパージノズル2Nを通じてFOUP10内の気体を排出する。これにより、FOUP10内にパージ用気体が充満させられる。
 本実施形態のローディング装置2は、FOUP10内におけるウェーハの有無や収納姿勢を検出可能なマッピング部(図示省略)を備えている。
 このようなローディング装置2が、筐体1の前面側において筐体1の幅方向Wに複数台(図示例では3台)並べて配置されている。
 ウェーハカセット棚3は、図1及び図2に示すように、ウェーハカセット棚ベース31と、ウェーハカセット棚ベース31に支持された棚本体32とを備える。棚本体32は、段状に配置された複数の棚板(図示省略)と、各棚板の両端を支持可能な側壁を有する棚フレームとが一体的に組付けられたものである。本実施形態のウェーハカセット棚3は、ウェーハカセットCを高さ方向Hに10段格納可能である。最下段のウェーハカセットCの載置スペース(1段目の載置スペース)は、ウェーハカセット棚ベース31の上面31aに設定され、下から2段目以上のウェーハカセットCは、それぞれ棚板に載置可能に設定されている。なお、本実施形態では、ウェーハカセット棚ベース31の上面31aと、ローディング装置2の載置台21の上面とが略同じ高さ位置に設定されている。
 ウェーハカセット棚3に複数多段式に格納されるウェーハカセットCの高さ方向Hにおける離間ピッチは、等間隔であってもよい。或いは、棚板同士の離間ピッチは、例えばウェーハカセット棚3を構成するパーツ(例えば図示しない梁等)の配置箇所を考慮して、適宜変更されてもよい。本実施形態のウェーハストッカXにおいては、ローディング装置2の台数と同数列のウェーハカセットCをウェーハカセット棚3に載置できるように設定されている。すなわち、本実施形態では、ウェーハカセットCを幅方向Wに3列並べて載置可能なウェーハカセット棚3が適用されている。
 ウェーハ搬送ロボット4は、筐体1の前面壁11とウェーハカセット棚3との間に設けられている。ウェーハ搬送ロボット4は、ローディング装置2の載置台21上のFOUP10からウェーハを取り出して、ウェーハカセット棚3に格納されているウェーハカセットCに移載する処理を実行可能である。また、ウェーハ搬送ロボット4は、ウェーハカセット棚3のウェーハカセットCからウェーハを取り出して、FOUP10に入れ戻す処理を実行可能である。ウェーハ搬送ロボット4は、図2に示すように、例えば相互に水平旋回可能に連結された複数のリンク要素の先端部にウェーハ把持部(ハンド)が設けられたアーム機構42と、アーム機構42を支持する基台部43とを備える。ウェーハ搬送ロボット4は、アーム機構42のアーム長が最小になる折畳状態と、アーム長が折畳状態時よりも長くなる伸長状態との間で形状が変わるリンク構造(多関節構造)を有する。アーム機構42の先端には、個別に制御可能な複数のウェーハ把持部が高さ方向Hに多段状に設けられていても良い。
 筐体1の内部空間1Sのうちウェーハ搬送ロボット4が設けられた空間は、図5に示すように、前後方向Dにおいてウェーハカセット棚3よりも前方の空間であり、ウェーハ搬送室4Sとして機能する空間(ウェーハ搬送空間)である。本実施形態では、図1等に示すように、ウェーハ搬送室4Sに1台のウェーハ搬送ロボット4と、1台のウェーハアライナAが設けられている。
 ウェーハ搬送ロボット4は、基台部43の内部空間に連通する排気ボックス44を備える。基台部43内に設けた駆動機構(アーム機構42の駆動機構)等から生じる粉塵は、陰圧に設定された排気ボックス44内に強制的に収集される(図5参照)。
 ウェーハカセット移載装置5は、図1及び図2に示すように、ウェーハカセット棚3に格納されているウェーハカセットCを少なくともウェーハカセット棚3における異なる高さの段に移動させるものである。ウェーハカセット移載装置5は、前後方向D及び高さ方向Hに移動可能なウェーハカセット搬送アーム51と、ウェーハカセット搬送アーム51を支持するウェーハカセット移載装置フレーム52とを備える。本実施形態では、ウェーハカセット搬送アーム51は、先端部分が二股状のハンドを有するが、これには限られない。また、ウェーハカセット移載装置フレーム52は、外略直方体状をなし、内部にウェーハカセット搬送アーム51を上下移動・進退移動させる駆動機構を有する。ウェーハカセット移載装置5においては、図2に示すように、ウェーハカセット棚3に載置可能なウェーハカセットCの列数(本実施形態では3列)と同数のウェーハカセット搬送アーム51が、幅方向Wに並べて配置されている。また、ウェーハカセット移載装置5は、各ウェーハカセット搬送アーム51と前方正面に向かい合う列のウェーハカセットCを、同じ列内で高さ方向Hに移載するように構成されている。ウェーハカセット移載装置フレーム52とウェーハカセット棚3との間には、図5に示すように、ウェーハカセットCの高さ方向Hへの移動を許容するウェーハカセット搬送室5Sとして機能する空間(ウェーハカセット搬送空間)が形成されている。
 ウェーハストッカXは、図1、図2及び図5に示すように、ガス導入装置6と、排気装置7と、ファンフィルタユニット(FFU)8とを備えている。ガス導入装置6は、筐体1内へ不活性ガスを供給する。排気装置7は、筐体1の内部空間1Sの気体を排気する。ファンフィルタユニット8は、ガス導入装置6から供給される不活性ガスを通過させて、ウェーハカセット移載装置5から筐体1の前面壁11に亘る空間(ウェーハカセット搬送室5S及びウェーハ搬送室4Sを含む空間)に下降気流(層流)を生じさせる。
 ガス導入装置6は、マスフローコントローラ61(MFC)と、ガス導入用配管62とを備えている(図5参照)。マスフローコントローラ61は、筐体1のうちウェーハカセット移載装置5よりも後方の所定箇所に設けられ、流体の質量流量を計測しながら流量制御を行う。ガス導入用配管62は、マスフローコントローラ61を通じて不活性ガス(本実施形態では窒素ガス)を筐体1の内部空間1Sに供給するための配管である。ガス導入用配管62は、ガス導入用始端配管63と、ガス導入用縦配管64と、ガス導入用横配管65とを備える。ガス導入用始端配管63は、筐体1の後端部に設けられ、マスフローコントローラ61のバルブ61vに連通する管である。ガス導入用縦配管64は、ガス導入用始端配管63の前端(先端)から、筐体1の背面壁12の内向き面に沿って筐体1の天井壁13近傍まで延伸している。ガス導入用横配管65は、ガス導入用縦配管64の上端から筐体1の天井壁13に沿って筐体1の前面壁11近傍まで延伸している。ガス導入用横配管65には、下方に開口する孔(下向き孔)が前後方向に所定ピッチで形成されている。これにより、マスフローコントローラ61のバルブ61vからガス導入用始端配管63及びガス導入用縦配管64を経てガス導入用横配管65に到達した不活性ガスは、ガス導入用横配管65の下向き孔から筐体1の内部空間1Sに供給される(図5参照)。
 ファンフィルタユニット8は、ファン及びフィルタがユニット化された、空気清浄機能を発揮するものである。本実施形態のウェーハストッカXにおいては、ウェーハカセット移載装置5の上端(ウェーハカセット移載装置フレーム52の上端)から筐体1の前面壁11の内向き面に亘る領域にファンフィルタユニット8が配置されている。ガス導入装置6によって筐体1の内部空間1Sに供給された不活性ガスは、ファンフィルタユニット8によって、ウェーハカセット搬送室5S及びウェーハ搬送室4Sに、清浄度の高い下降気流(層流)として送られる。
 排気装置7は、図5に示すように、自動圧力制御機71(APC:オートプレッシャコントローラ)と、自動圧力制御機71のバルブ71vに連通する排気口72とを備える。自動圧力制御機71は、筐体1のうちウェーハカセット移載装置5よりも後側且つガス導入装置6のマスフローコントローラ61よりも下側に設けられている。ファンフィルタユニット8によって生成される下降気流に乗って、気体は、ウェーハカセット移載装置5と筐体1の前面壁11との空間を通って筐体1の床ベース14近傍まで到達し、排気口72に向かって流れる。所定量の気体が、排気口72及び自動圧力制御機71のバルブ71vを通じて筐体1外に排出される。本実施形態では、ウェーハカセット棚3の下端部分及びウェーハカセット移載装置5の下端部分に、排気装置7に向かって流れる気流が通過可能な通過路3T,5Tがそれぞれ設けられている(図2及び図5参照)。また、排気装置7は、上述のウェーハ搬送ロボット4の排気ボックス44から排気口72に向かって延出する排気用横配管73を備える。ウェーハ搬送ロボット4の排気ボックス44内に収集された粉塵等は、排気用横配管73及び排気口72を通じて筐体1の外部に排出される。
 本実施形態のウェーハストッカXでは、排気装置7に向かって流れる気体の一部が排出され、残りの大部分の気体が筐体1の背面壁12に沿って上昇するように設定されている。具体的には、図1、図2及び図5に示すように、筐体1内に左右一対の仕切壁15が立設されている。この仕切り壁と、ウェーハカセット移載装置5の後壁と筐体1の背面壁12とによって、筒状の空間が形成されている。また、ウェーハカセット移載装置5と筐体1の背面壁12との間であって且つ排気装置7の排気口72よりも高い位置に送風機9が設けられている。この送風機9によって、上述した筒状の空間内に上昇気流が生成される。筐体1内において、送風機9による上昇気流に乗った気体は、筐体1の天井壁13付近まで到達すると、筐体1の前面壁11に向かって流れる気流に合流する。そして、気体は、ガス導入装置6のガス導入用横配管65から下方に向かって供給される不活性ガスと共にファンフィルタユニット8を通り、下方に向かって流れる気流に沿って流れる。このように、筐体1内には、ガス導入装置6から供給される不活性ガスの大部分を循環させるガス循環経路が形成されている。
 このような構成を有するウェーハストッカXは、筐体1内に不活性ガスを循環させて筐体1の内部空間1Sを陽圧に維持することで、筐体1外の大気が筐体1内に侵入する事態を防止できる。具体的には、自動圧力制御機71によって、ガス循環経路全体の圧力が、筐体1外の大気に対して陽圧になるように制御される。より詳しくは、ウェーハカセットCが格納される空間(保管エリア)の圧力は、例えば10~300Pa(ゲージ圧)になるように制御される。さらに好ましくは、保管エリア内の圧力は、例えば10~100Pa(ゲージ圧)と、低い陽圧(微陽圧)に制御される。これにより、多数のウェーハカセットCが格納される空間及びウェーハが搬送される空間を清浄度の高い空間に保ち、低酸素濃度(例えば10~100ppm)・低湿度(例えば露点温度が-50℃以下)の雰囲気によって、ウェーハの特性を維持することができる。
 次に、本実施形態に係るウェーハストッカXの動作フローを図4、図6~図9を参照して説明する。なお、図6~図9では、説明の便宜上、筐体1の前面壁11及び仕切壁15を省略している。
 先ず、OHT等の容器搬送装置によって、FOUP10がローディング装置2の載置台21上に載置される(図4(a)参照)。この際、例えば載置台21に設けられた位置決め用突起がFOUP10の位置決め用凹部に嵌まり、載置台21上のロック爪をロック状態にする(ロック処理)。本実施形態では、幅方向Wに3台並べて配置されたローディング装置2の載置台21にそれぞれFOUP10を載置することができる。また、FOUP10が載置台21上に所定の位置に載置されているか否かを検出する着座センサ(図示省略)により、FOUP10が載置台21上の正規位置に載置されたことを検出するように構成することもできる。
 本実施形態のローディング装置2では、載置台21上の所定の正規位置にFOUP10が載置された時点で、載置台21に設けられた例えば加圧センサの被押圧部をFOUP10の底面部が押圧したことを検出する。これをきっかけに、載置台21に設けられた全てのパージノズル2Nが、載置台21の上面よりも上方へ進出してFOUP10の各ポートY4に連結される。これにより、各ポートY4は閉止状態から開放状態に切り替わる。そして、ローディング装置2は、パージ装置Pにより、FOUP10の内部空間YSに不活性ガスである窒素ガスを供給して、FOUP10の内部空間YSを窒素ガスに置換する処理(ボトムパージ処理)を行う(図4(b)参照)。ボトムパージ処理時に、FOUP10内の気体は、排気ポートとして機能するポートY4に接続されているパージノズル2Nを通って、FOUP10外に排出される。図4(b)にボトムパージ処理時の窒素ガスの供給方向及びFOUP10内の気体の排出方向を矢印で模式的に示す。ローディング装置2は、このようなボトムパージ処理によって、FOUP10内の水分濃度及び酸素濃度をそれぞれ所定値以下に低下させて、FOUP10内におけるウェーハの周囲環境を低湿度環境及び低酸素環境にする。
 本実施形態のローディング装置2は、ロック処理後に、図4(b)に示す位置にある載置台21を図4(c)に示すドッキング位置まで移動させる(ドッキング処理)。次に、ローディング装置2は、移動規制部を用いてFOUP10の少なくとも両サイドを保持して固定する処理(クランプ処理)を行い、連結機構26を蓋連結状態に切り替える(蓋連結処理)。さらに、ローディング装置2は、FOUPドアY2をローディング装置ドア23とともに移動させて、起立ベース22の開口部22a及びFOUP10の搬出入口Y1を開放して、FOUP10内の密閉状態を解除する処理(密閉解除処理)を実行する(図4(d)参照)。なお、ローディング装置2は、ローディング装置ドア23を開放位置から全開位置(O)に移動させる処理中に、マッピング部によるマッピング処理を実施するように設定されていても良い。これにより、FOUP10内において高さ方向Hに並んで収納されているウェーハの有無及び収納姿勢を順次検出することができる。
 密閉解除処理を実行することによって、FOUP本体Y3の内部空間YSと筐体1の内部空間1Sとが連通した状態になる。その後、マッピング処理で検出された情報(ウェーハ位置)に基づいて、ウェーハ搬送ロボット4が以下のようなウェーハ搬送処理を実施する。すなわち、ウェーハ搬送ロボット4は、FOUP10内のウェーハをウェーハカセット棚3に格納されているウェーハカセットCに移載したり、ウェーハカセットC内のウェーハをFOUP10内に収納したりする。
 ウェーハストッカXにおいては、ウェーハカセット棚3のうち1段目の載置スペース(具体的にはウェーハカセット棚ベース31の上面31a)が、ウェーハ搬送ロボット4によるウェーハカセットCに対するウェーハの受け渡し位置に設定されている。したがって、ウェーハ搬送処理(FOUP10内のウェーハをウェーハカセットCに入れる処理)よりも前の時点で、ウェーハストッカXは以下のような処理を行う。まず、例えば、図6に示すように、前方から見たときに、ウェーハカセット棚3の左側の列の1段目には、ウェーハカセットCが載置されていない(アイドル状態)。この状態において、ウェーハストッカXは、ウェーハカセット棚3の1段目に、同じ列の2段目よりも上の段(図示例では3段目)に格納されているウェーハカセットCをウェーハカセット移載装置5によって移載する(ウェーハカセット移載処理、図7参照)。
 なお、図6では、ウェーハカセット搬送アーム51によるウェーハカセットCの搬送経路を矢印で模式的に示している。
 ウェーハストッカXは、図7に示すように、ウェーハカセット棚3の1段目にセットされたウェーハカセットCとFOUP10との間でウェーハを受け渡しするウェーハ搬送処理中に、以下のような「次位使用ウェーハカセット移載処理」を行う。すなわち、ウェーハストッカXは、ウェーハカセット棚3の1段目の載置スペースのうちアイドル状態のスペースに、次にウェーハ処理時に使用されるウェーハカセットCをウェーハカセット移載装置5によって移載する。図7では、ウェーハカセット棚3の中央の列の2段目よりも上の段(図示例では3段目)に格納されているウェーハカセットCを「次位使用ウェーハカセット」としてウェーハカセット棚3の1段目中央の載置スペースに移載する様子を示す。なお、図7~図9では、ウェーハカセット搬送アーム51によるウェーハカセットCの搬送経路を相対的に太い矢印で模式的に示し、ウェーハ搬送ロボット4によるウェーハの搬送経路を相対的に細い矢印で模式的に示す。ウェーハ搬送ロボット4は、ローディング装置2に載置されたFOUP10と、ウェーハカセット棚3の複数の段のうち搬送容器と前後方向において向かい合う高さの段に配置されたウェーハカセットCと、の間でウェーハを受け渡しする。
 ウェーハストッカXは、ウェーハ搬送処理が完了したFOUP10に対して、以下のような密閉処理を行う。まず、ウェーハストッカXは、ローディング装置2のドア移動機構27によりローディング装置ドア23を全閉位置(C)に移動させて、起立ベース22の開口部22a及びFOUP10の搬出入口Y1を閉止する。続いて、ローディング装置2は、連結機構26を蓋連結状態から蓋連結解除状態に切り替える処理(蓋連結解除処理)を実行する。この処理により、FOUP10の内部空間YSは密閉状態になる。
 続いて、ローディング装置2は、移動規制部によるFOUP10の固定状態(クランプ状態)を解除するクランプ解除処理を行う。次いで、ローディング装置2は、載置台21を起立ベース22から離間する方向に移動させる処理(ドッキング解除処理)を実行した後、載置台21上のロック爪でFOUP10をロックしている状態を解除する(ロック解除処理)。これにより、FOUP10は、各ローディング装置2の載置台21上から容器搬送装置に引き渡され、例えばEFEM(Equipment Front End Module)を構成するロードポートの載置台へと運び出される。
 一方、ウェーハ搬送処理が終わったウェーハカセットCは、ローディング装置2による密閉処理以降の適宜のタイミングで、ウェーハカセット棚3の1段目の載置スペースから元の段の載置スペースにウェーハカセット移載装置5によって移載される(ウェーハカセット戻し処理)。図8に示すように、ウェーハカセット戻し処理は、ウェーハカセット戻し処理対象とは異なる他のウェーハカセットCを使用したウェーハ搬送処理中に実行することができる。
 ウェーハストッカXは、上述のように、ウェーハが多段状に収容された状態のウェーハカセットC、またはウェーハが収容されていない状態のウェーハカセットCを筐体1内に多数格納した状態で、ウェーハ搬送処理を必要に応じて繰り返し行うことができる。図8に示す状態からローディング装置2上のFOUP10が次工程に運び出され、且つウェーハ搬送処理が終わったウェーハカセットCがウェーハカセット棚3の1段目の載置スペースから元の段の載置スペースに戻された状態を図9に示す。
 なお、ウェーハ搬送ロボット4を用いたウェーハ搬送処理は、FOUP10内のウェーハをウェーハカセット棚3のウェーハカセットCに移載する処理、またはウェーハカセットCに格納されたウェーハをFOUP10内に移載する処理の何れかである。何れの処理を行うかは適宜選択することができる。また、ウェーハ搬送室4Sに設けたウェーハアライナAを経由してFOUP10内のウェーハをウェーハカセットCに移載したり、ウェーハアライナAを経由してウェーハカセットCのウェーハをFOUP10内に移載することもできる(図7及び図8参照)。なお、ウェーハストッカXの作動は、図示しないコントローラによって制御される。
 このように、本実施形態に係るウェーハストッカXによれば、ガス導入装置6によって筐体1内に不活性ガスを供給し、酸素濃度及び水分濃度を低減した高い清浄度に保たれた陽圧の筐体1内に複数のウェーハカセットCを多段状に格納できる。これにより、外からの大気侵入を防止するとともに、半導体処理工程後にウェーハから発生しているアウトガス等をファンフィルタユニット8によるダウンフローで吹き下ろし、排気装置7によって筐体1外に排出することができる。特に、ウェーハストッカXは、大量のウェーハを保管可能なものであるため、ラミナーフローを形成するために、外部から不活性ガスの全量の供給を行うことは困難である。したがって、筐体1の内部空間1Sに不活性ガスの循環経路が形成されていることは、ランニングコストの増大を抑制するために有効である。
 また、本実施形態に係るウェーハストッカXは、ウェーハを多段状に収容可能なウェーハカセットC単位で保管する構成である。このため、FOUP10ごとストッカ内に収容する従来のFOUPストッカと比較して、FOUP10の外表面に付着した粉塵や、FOUP外表面に取り込まれている水分などが、ストッカ内で放出されることを回避できる。したがって、ストッカ内の清浄度が低下することを抑制できる。また、このような構成により、半導体処理工程後にウェーハから発生しているアウトガス等がストッカ内に混入して飛散する事態を防止・抑制できる。これにより、ウェーハストッカXの筐体1内や、筐体1の内部空間1Sに連通した状態にあるFOUP10の内部空間YSでウェーハが汚染する事態を防止・抑制することが可能である。すなわち、本実施形態に係るウェーハストッカXによれば、ウェーハ周辺を常に高いクリーン度に維持して、ウェーハ表面へのパーティクルや水分の付着が生じる事態を防止・抑制することができる。したがって、ストッカ内のウェーハの周辺の雰囲気をより改善できる。
 また、本実施形態に係るウェーハストッカXによれば、一般的にFOUP10よりも小さいウェーハカセットCを用いてウェーハを保管する構成である。このため、FOUPごとストッカ内に収容する従来のストッカと比較して、ウェーハストッカX全体の小型化及びフットスタンプの狭小化を図ることができる。或いは、FOUPごとストッカ内に収容する従来のストッカと比較して、装置全体の大型化を抑制しつつ、ウェーハストッカX内に収容可能なウェーハの枚数を増やすことができる。さらに、本実施形態に係るウェーハストッカXは、筐体1内においてウェーハカセット棚3に格納するウェーハカセットCを移載する構成である。このため、筐体内においてFOUPごと移載する従来のストッカと比較して、筐体内における移載用スペースのコンパクト化も図ることができる。
 また、ウェーハストッカXは、ウェーハカセット棚3にウェーハカセットCを幅方向Wに沿って複数列に格納可能に構成し、この列数に応じた数のローディング装置2及びウェーハカセット搬送アーム51を備えている。このため、ウェーハカセットCの移載処理や、ウェーハ搬送処理を効率良く行うことができる。
 さらに、ウェーハカセット棚3に格納されるウェーハカセットCのうち、ローディング装置2の載置台21に載置されたFOUP10と前後方向Dにおいて正対する高さ位置のウェーハカセットC(具体的には1段目の載置スペースに載置したウェーハカセットC)が、ウェーハ搬送ロボット4によるウェーハ受け渡し対象のウェーハカセットCに設定されている。つまり、ウェーハ搬送ロボット4が、ローディング装置に載置されたFOUP10と、ウェーハカセット棚3の複数の段のうちFOUP10と前後方向において向かい合う高さの段に配置されたウェーハカセットCと、の間でウェーハを受け渡しする。このため、例えば、ウェーハカセット棚3に格納するウェーハカセットCのうちローディング装置2の載置台21に載置したFOUP10と前後方向Dにおいて正対しない高さ位置のウェーハカセットCに対してウェーハ搬送ロボット4でウェーハをFOUP10から受け渡す構成と比較して、ウェーハ搬送ロボット4によるウェーハ受け渡し位置の高さを所定範囲に限定することができる。したがって、FOUP10内とウェーハカセットCの間でウェーハを搬送するウェーハ搬送ロボット4のタクトタイムの短縮化を図ることができる。
 ウェーハストッカXのウェーハカセット棚3におけるウェーハカセットCの具体的な格納形態として、使用頻度の高いウェーハを収容したウェーハカセットCほど1段目の載置スペースに近い載置スペースに格納する形態を挙げることができる。これにより、優先的に使用されることが見込まれるウェーハに対するアクセスタイムの短縮化を図ることができる。また、相対的に汚染度の高いウェーハ(アウトガス発生量の多いウェーハ)は、相対的に汚染度の低いウェーハよりも下の段の載置スペースに格納されるように設定することで、汚染の広がりを抑制することができる。なお、筐体内における長期保管によって脱気したウェーハは上の段に移動させてもよい。
 本実施形態に係るウェーハストッカXによれば、ウェーハの種類や状態、ウェーハに施される半導体処理プロセス等によってウェーハカセット棚3における格納場所を区画することも可能である。ウェーハカセット棚3に適宜の仕切りを設けて区画範囲を規定してもよい。
 さらにまた、本実施形態では、ウェーハストッカXのローディング装置2として、EFEMを構成するロードポートと同じ構成または準じた構成のものを適用することで、新たなローディング装置を設計・製造する手間を省くことができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態の構成に限られるものではない。例えば、ウェーハカセット棚の段数(高さ方向におけるウェーハカセットの載置スペースの数)や列数(幅方向におけるウェーハカセットの載置スペースの数)は適宜変更することができる。
 ウェーハカセット移載装置として、昇降移動に加えて筐体の幅方向にも移動可能なウェーハカセット搬送アームを備えたものを適用することが可能である。このようなウェーハカセット移載装置であれば、ウェーハカセット棚に格納されているウェーハカセットをウェーハカセット搬送アームによって異なる列に移動させることもできる。
 また、ウェーハカセット棚として、水平面内で回転する回転式の棚を適用することができる。この場合、例えば高さ方向Hと直交する周方向に所定角度ピッチで複数(例えば90度ピッチで4つ)のウェーハカセット載置スペースが設けられていても良い。そして、各ウェーハカセット載置スペースに載置されたウェーハカセットが、それぞれウェーハ搬送ロボット又はウェーハカセット搬送アームと正対する回転角度姿勢をとれるように構成されていても良い。このようにして、ウェーハカセット載置スペースに対するウェーハ搬送ロボットやウェーハカセット搬送アームのアクセスを許容しても良い。このようにすることで、ウェーハ搬送処理やウェーハカセット移載処理を効率良く行うことができる。
 さらにはまた、ウェーハカセット棚に格納するウェーハカセットとして、幅方向Wにおける一方側・他方側及び前後方向Dにおける一方側・他方側の、計4方向からアクセス可能なウェーハカセットを適用することも可能である。
 ウェーハカセット移載装置がウェーハカセットを1列の高さ方向に沿って複数段状に格納可能なものであってもよい。
 また、ウェーハカセット棚の1段目以外の段の載置スペースに載置されているウェーハカセットが、ローディング装置に載置された搬送容器と前後方向において正対する高さ位置となるように構成されていても良い。このような構成において、当該高さ位置のウェーハカセットを、「ウェーハ搬送ロボットによるウェーハ受け渡し対象のウェーハカセット」に設定することも可能である。すなわち、本発明のウェーハストッカは、2段目以上の段に載置したウェーハカセットを、「ウェーハ搬送ロボットによるウェーハ受け渡し対象のウェーハカセット」に設定した構成も包含する。
 上述の実施形態では、搬送容器としてFOUPが採用されている。しかし本発明では、FOUP以外の搬送容器、例えば、MAC(Multi Application Carrier)、H-MAC(Horizontal-MAC)、FOSB(Front Open Shipping Box)などを用いることも可能である。
 また、容器搬送装置として、OHT以外の適宜の搬送装置を用いても構わない。OHS(Over Head Shuttle:天井走行式シャトル)、RGV(Rail Guided Vehicle:有軌道式無人搬送車)、AGV(Automated Guided Vehicle:無人搬送車)等を適用することもできる。RGV及びAGVは、工場内の床面側を走行する容器搬送装置である。容器搬送装置がRGVの場合は、レール(軌道)は工場の床等に設置される。
 また、ウェーハ搬送ロボットが、筐体の幅方向(ローディング装置の並列方向)に走行可能な走行軸を有するものであってよい。例えば、筐体の幅方向に並ぶローディング装置の列数が多い場合には、筐体の幅方向に延伸する走行軸を有するウェーハ搬送ロボットを用いることが好ましい。
 上述の実施形態では筐体の内部に供給する不活性ガスとして窒素ガスを例にしたが、これに限定されず、乾燥ガス、アルゴンガス等を用いることができる。ボトムパージ処理に用いる不活性ガスも同様に窒素ガスに限定されない。或いは、筐体の内部に供給されるガスは、必ずしも不活性ガスでなくても良く、例えばドライエアでも良い。これによれば、低酸素濃度の環境ではないものの、低湿度の環境を実現できる。
 また、容器ドア(FOUPドア)が、全閉位置から全開位置に移動する過程で一時的に傾斜姿勢となる(部分円弧状の軌跡を描くような動作を伴う)ものであっても構わない。
 ウェーハのアライメント処理を省略してもよい場合には、ウェーハ搬送空間にウェーハアライナを設けない構成にすることで、コストの削減を図ることができる。
 また、ガス導入装置を、流体の質量流量を計測しながら流量制御を行うマスフローコントローラ(MFC)以外の適宜の機器を用いて構成しても良い。また、ガス排気装置を、排気の量で内部の陽圧を保つ自動圧力制御機器(APC)以外の適宜の機器を用いて構成しても良い。例えば、ガス循環経路を形成するリターンダクトで不活性ガスを入れる構成にしてもよい。なお、リターンダクトで不活性ガスを入れると、流量が多い場合、筐体内で逆流が生じ得るおそれがある。そこで、ファンフィルタユニットよりも高い位置から筐体内に不活性ガスを導入することで、逆流の問題にも対処することができる。さらに、ファンフィルタユニットよりも高い位置から筐体内に不活性ガスを導入することで、ファンフィルタユニットよりも高い位置で局所的に気圧が高くなってラミナーフローが乱れないようになる。
 筐体内には、必ずしもガス循環経路が形成されていなくても良い。すなわち、ウェーハストッカは、気体を循環させず、ガス導入装置によって筐体内に供給された気体を排気装置によって全て排出するように構成されていても良い。
 ウェーハカセット1つあたりのウェーハ収容枚数は、例えば25枚であるが、25枚以外の枚数を多段状に収容可能なウェーハカセットを適用することも可能である。
 リターンダクトや送風機周辺にケミカルフィルタが設けられていてもよい。また、リターンダクトが筐体の側面に設けられていても良い。
 ウェーハストッカにおいて、ファンフィルタユニットが層流として下降気流を生成するものとしたが、これには限られない。ウェーハストッカは、例えば、ウェーハ搬送空間及びウェーハカセット搬送空間において水平方向に流れる層流を生成するように構成されていても良い。
 ローディング装置として、EFEMで用いるロードポートとは異なる専用のローディング装置を適用してもよい。
 また、本発明に係るウェーハストッカをソータとして使用することも可能である。この場合、ウェーハ搬送空間にウェーハアライナと共にウェーハ表裏反転機を設けることが好ましい。
 ウェーハカセットを用いずにウェーハを筐体内に保管する構成でもよく、ウェーハ搬送装置のハンドが複数枚同時にウェーハを保持して搬送できるように構成してもよい。また、ウェーハ搬送ロボットに上下移動機構を持たせることで、各棚にアクセスさせてウェーハを入れ替えるように構成することもできる。具体的には、図10に示すように、搬送システム1aが移動機構80を有していても良い。例えば、移動機構80は、ウェーハカセット棚3の前側且つ左右両側に立設された一対の柱状部材81と、略水平に配置され且つ柱状部材81に沿って不図示のモータ等によって上下移動可能な床部材82と、を有していても良い。床部材82の上には、上述したウェーハ搬送ロボット4及びウェーハアライナAと、複数のウェーハを一時的に貯蔵可能なバッファストッカ83とが配置されていても良い。ウェーハ搬送ロボット4は、FOUP10とバッファストッカ83との間でウェーハを移動させ、さらに、バッファストッカ83とウェーハカセット棚3との間でウェーハを移動させても良い。搬送システム1aは、ウェーハカセット移載装置5(図2参照)を備えていなくても良く、代わりに、気体が通過可能な通過路92が形成された垂直板91を備えていても良い。なお、床部材82には、ダウンフロー(層流)を生成するファンフィルタユニット84が取り付けられていても良い。これにより、例えば床部材82の上下移動に伴って発生する粉塵が飛び散ることを抑制できる。
 また、搬送システム1aのさらなる変形例として、図11に示すように、搬送システム1bにおいて、ウェーハ搬送ロボット4及び移動機構80等が、ウェーハカセット棚3の後側にも追加で設けられていても良い。
 その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 1   筐体
 2   ローディング装置
 3   ウェーハカセット棚
 4   ウェーハ搬送ロボット
 4S  ウェーハ搬送室(ウェーハ搬送空間)
 5   ウェーハカセット移載装置
 5S  ウェーハカセット搬送室(ウェーハカセット搬送空間)
 8   ファンフィルタユニット
 10  FOUP(搬送容器)
 X   ウェーハストッカ

Claims (3)

  1.  筐体と、
     前記筐体の前面に設けられた、複数のウェーハを収容可能な搬送容器が載置されるローディング装置と、
     前記筐体内に配置された、前記複数のウェーハを多段式に収納可能な複数のウェーハカセットを多段式に格納可能なウェーハカセット棚と、
     前記ローディング装置に載置された前記搬送容器と前記ウェーハカセット棚に格納されたウェーハカセットとの間でウェーハを出し入れするウェーハ搬送ロボットと、
     前記ウェーハカセット棚の前記複数の段のうち所定の段に格納された前記ウェーハカセットを少なくとも前記所定の段とは異なる高さの段に移動させるウェーハカセット移載装置と、
     前記筐体内の、前記ウェーハ搬送ロボットが配置されたウェーハ搬送空間及び前記ウェーハカセット移載装置が配置されたウェーハカセット搬送空間に層流を発生させるファンフィルタユニットと、を備えることを特徴とするウェーハストッカ。
  2.  前記ウェーハ搬送ロボットは、
     前記ローディング装置に載置された前記搬送容器と、前記ウェーハカセット棚の前記複数の段のうち前記搬送容器と前後方向において向かい合う高さの段に配置された前記ウェーハカセットと、の間でウェーハを受け渡しすることを特徴とする請求項1に記載のウェーハストッカ。
  3.  前記筐体内に、前記ウェーハ搬送空間及び前記ウェーハカセット搬送空間を含む、気体を循環させるための循環経路が形成されていることを特徴とする請求項1又は2に記載のウェーハストッカ。
PCT/JP2019/046033 2018-11-28 2019-11-25 ウェーハストッカ WO2020111013A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/297,509 US11610797B2 (en) 2018-11-28 2019-11-25 Wafer stocker
CN201980078149.2A CN113169103A (zh) 2018-11-28 2019-11-25 晶片储存器
KR1020217015597A KR20210093911A (ko) 2018-11-28 2019-11-25 웨이퍼 스토커
JP2020557711A JP7445138B2 (ja) 2018-11-28 2019-11-25 ウェーハストッカ
US18/115,044 US11823934B2 (en) 2018-11-28 2023-02-28 Wafer stocker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-222883 2018-11-28
JP2018222883 2018-11-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/297,509 A-371-Of-International US11610797B2 (en) 2018-11-28 2019-11-25 Wafer stocker
US18/115,044 Continuation US11823934B2 (en) 2018-11-28 2023-02-28 Wafer stocker

Publications (1)

Publication Number Publication Date
WO2020111013A1 true WO2020111013A1 (ja) 2020-06-04

Family

ID=70853022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046033 WO2020111013A1 (ja) 2018-11-28 2019-11-25 ウェーハストッカ

Country Status (6)

Country Link
US (2) US11610797B2 (ja)
JP (1) JP7445138B2 (ja)
KR (1) KR20210093911A (ja)
CN (1) CN113169103A (ja)
TW (1) TWI830825B (ja)
WO (1) WO2020111013A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326314B (zh) * 2020-09-29 2023-05-30 上海微电子装备(集团)股份有限公司 一种片库装置
US11854851B2 (en) * 2021-03-05 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Interface tool
CN114084565B (zh) * 2021-11-30 2022-08-19 重庆机电智能制造有限公司 一种具备惰性气体保护的自动存取立体库

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124301A (ja) * 1998-10-13 2000-04-28 Tokyo Electron Ltd 容器載置ユニット、容器収納装置、及び処理装置
JP2006256794A (ja) * 2005-03-17 2006-09-28 Shimizu Corp クリーンストッカー設備
JP2011241020A (ja) * 2010-05-17 2011-12-01 Hitachi Plant Technologies Ltd カセットストッカ
WO2017038269A1 (ja) * 2015-08-31 2017-03-09 村田機械株式会社 パージ装置、パージストッカ、及びパージ方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646906B1 (ko) * 1998-09-22 2006-11-17 동경 엘렉트론 주식회사 기판처리장치 및 기판처리방법
JP2004303835A (ja) 2003-03-28 2004-10-28 Fasl Japan 株式会社 基板保管装置
JP4186861B2 (ja) 2004-04-06 2008-11-26 ブラザー工業株式会社 インクジェット装置の駆動回路及びインクジェットプリンタ
US20060216137A1 (en) * 2004-07-02 2006-09-28 Katsunori Sakata Carrying apparatus and carrying control method for sheet-like substrate
US7833351B2 (en) 2006-06-26 2010-11-16 Applied Materials, Inc. Batch processing platform for ALD and CVD
JP5331687B2 (ja) 2006-07-26 2013-10-30 テック・セム アーゲー 基板を処理することによる電子部品の製造における対象物用保存装置
JP4756372B2 (ja) 2006-09-13 2011-08-24 株式会社ダイフク 基板処理方法
JP4807579B2 (ja) * 2006-09-13 2011-11-02 株式会社ダイフク 基板収納設備及び基板処理設備
JP2008100805A (ja) 2006-10-18 2008-05-01 Ihi Corp 基板保管庫
US20130251493A1 (en) * 2012-03-26 2013-09-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. Stacking device and air purification system thereof
CN104221136B (zh) 2012-04-16 2017-05-31 日商乐华股份有限公司 收纳容器、收纳容器的开闭器开闭单元、及使用它们的晶圆储料器
TW202349607A (zh) * 2013-12-13 2023-12-16 日商昕芙旎雅股份有限公司 搬運機械手臂
JP6551240B2 (ja) 2016-01-06 2019-07-31 株式会社ダイフク 物品収納棚、及び、それを備えた物品収納設備
EP3584827B1 (en) 2017-02-20 2022-02-16 Murata Machinery, Ltd. Purge stocker
JP6963179B2 (ja) * 2018-03-15 2021-11-05 シンフォニアテクノロジー株式会社 Efem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124301A (ja) * 1998-10-13 2000-04-28 Tokyo Electron Ltd 容器載置ユニット、容器収納装置、及び処理装置
JP2006256794A (ja) * 2005-03-17 2006-09-28 Shimizu Corp クリーンストッカー設備
JP2011241020A (ja) * 2010-05-17 2011-12-01 Hitachi Plant Technologies Ltd カセットストッカ
WO2017038269A1 (ja) * 2015-08-31 2017-03-09 村田機械株式会社 パージ装置、パージストッカ、及びパージ方法

Also Published As

Publication number Publication date
US11610797B2 (en) 2023-03-21
CN113169103A (zh) 2021-07-23
TW202029387A (zh) 2020-08-01
JP7445138B2 (ja) 2024-03-07
US20220037184A1 (en) 2022-02-03
US11823934B2 (en) 2023-11-21
KR20210093911A (ko) 2021-07-28
US20230207367A1 (en) 2023-06-29
TWI830825B (zh) 2024-02-01
JPWO2020111013A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
US11621182B2 (en) Multi-blade robot apparatus, electronic device manufacturing apparatus, and methods adapted to transport multiple substrates in electronic device manufacturing
JP7305857B2 (ja) インデックス可能な側方収容ポッド装置、加熱側方収容ポッド装置、システム、及び方法
KR100799415B1 (ko) 제품 컨테이너용 퍼지 시스템 및 퍼지 시스템에 사용하기위한 테이블
JP4251580B1 (ja) 被収容物搬送システム
US11823934B2 (en) Wafer stocker
US11373891B2 (en) Front-ducted equipment front end modules, side storage pods, and methods of operating the same
KR20190122161A (ko) 배기 노즐 유닛, 로드 포트 및 efem
KR20090013097A (ko) 닫힘 용기용 덮개 개폐 시스템 및 이를 이용한 기재 처리방법
JP2003045933A (ja) ロードポート、基板処理装置および雰囲気置換方法
TW201633436A (zh) 門開閉裝置、搬運裝置、分類裝置、收納容器之開放方法
TWI787327B (zh) 設備前端模組
US20030077150A1 (en) Substrate processing apparatus and a method for fabricating a semiconductor device by using same
JP7496493B2 (ja) 搬送ロボット、及びefem
KR20210066937A (ko) 측면 저장 포드들, 장비 전단부 모듈들, 및 이를 동작시키기 위한 방법들
JP2009290102A (ja) 基板処理装置
JP3856726B2 (ja) 半導体製造装置
JP7277813B2 (ja) 搬送システム及び容器開閉装置
KR20220148113A (ko) 이에프이엠
US20220336245A1 (en) Transport system
JP2023083554A (ja) Efem
JP2000091399A (ja) 半導体製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891342

Country of ref document: EP

Kind code of ref document: A1