WO2020109133A1 - Resistance-heating layer structure and method for producing same - Google Patents

Resistance-heating layer structure and method for producing same Download PDF

Info

Publication number
WO2020109133A1
WO2020109133A1 PCT/EP2019/082095 EP2019082095W WO2020109133A1 WO 2020109133 A1 WO2020109133 A1 WO 2020109133A1 EP 2019082095 W EP2019082095 W EP 2019082095W WO 2020109133 A1 WO2020109133 A1 WO 2020109133A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance heating
heating layer
resistance
layer structure
structure according
Prior art date
Application number
PCT/EP2019/082095
Other languages
German (de)
French (fr)
Inventor
Stefan Scheitz
Annegret Potthoff
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2020109133A1 publication Critical patent/WO2020109133A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/019Heaters using heating elements having a negative temperature coefficient

Definitions

  • the invention relates to a resistance heating layer structure and a manufacturing process.
  • the resistance heating layer structure can be used for the controlled, direct heating of, for example, components and devices in mechanical engineering, the automotive industry, the food industry, medical technology, the chemical industry or interior design.
  • Heating devices such as sleeve heaters or heating mats are independent components with a specific geometry, size and heating output that must be taken into account when designing components or devices.
  • An alternative to these heating devices are heating systems that are formed directly on a surface to be heated.
  • heaters made of metallic or ceramic resistance heating layers are known from the prior art.
  • Metallic resistance heating layers have a low specific electrical resistance.
  • the high resistance values required for the conversion of electrical energy into heat must therefore inevitably be generated by a low layer thickness and long, narrow geometries, such as a meander or spiral shape.
  • metallic heating layers are susceptible to mechanical loads.
  • the production of such complex geometries requires material and time-consuming process steps.
  • Another disadvantage is local increases in electrical current density and thermal energy at narrow points, which result from the low layer thicknesses and complex geometries. Therefore, the electrical and thermal resilience and thus the lifespan of these heating layers are limited.
  • Ceramic resistance heating layers can be used as an alternative to metallic resistance heating layers. Ceramic resistance heating layers based on substoichiometric titanium suboxide (TiO x ) are known from the prior art. A major disadvantage of these layers is, however, that the suboxide oxidizes under the influence of oxygen even at low temperatures from approx. 300 ° C. The absorption of oxygen reduces the electrical conductivity in the heating layer. Over time, titanium dioxide Ti0 2 forms , which is electrically insulating and therefore unsuitable as a heating layer.
  • TiO x substoichiometric titanium suboxide
  • the temperature stability of TiO x heating layers can be improved by alloying with chromium oxide (Cr 2 0 3 ), but the chromium oxide only slows down the oxygen uptake.
  • the specific electrical resistance increases with an increasing proportion of chromium oxide, so that the layer geometry has to be adjusted in order to be able to achieve a defined current and power density in the resistance heating layer.
  • a resistance heating layer structure with at least one resistance heating layer with preferably stoichiometric zinc titanate
  • the zinc titanate should preferably be in the resistance heating layer as a mixed crystal.
  • the solid volume fraction and the degree of purity of the resistance layer are preferably above 95%, so that a high mechanical strength and power density can be achieved.
  • Tightly closed resistance heating layers can already be formed with layer thicknesses from 5 pm. Because of the high specific electrical resistance of zinc titanate, however, higher layer thicknesses can also be formed.
  • the resistance heating layer preferably has a layer thickness of 20 pm to 1 mm. Due to higher layer thicknesses and the possibility of forming the resistance heating layer according to the invention over a large area without complex structuring, a homogeneous heat emission and a high mechanical and thermal resistance of the resistance heating layer can be achieved. Due to the low tendency of zinc titanate to oxidize, the resistance heating layer is also thermally stable even at temperatures above 300 ° C. Resistance heating layers with an increased service life can thus be provided.
  • the resistance heating layer can be connected to flat, convex and / or concave surfaces in a positive and / or non-positive manner. As a result, low-loss heat transfer can also be achieved when heating components with curved surfaces.
  • Wi derstandscream harsh according to the invention for example, nozzles, transport pipes, pressure rollers or automotive heaters, but also medical devices such as, for example Sterilizers to be heated homogeneously.
  • the electrical resistance of the resistance heating layer decreases with increasing temperature.
  • doping of the zinc titanate with at least one donor from the group of transition metals can therefore be provided.
  • the electrical resistance and the power density can thus be adjusted via the material composition without having to change the layer thickness or geometry of the resistance heating layer.
  • the zinc titanate can preferably be doped with at least one donor from the group of transition metals, the ionic radius of which, in coordination with six neighboring ions, is similar to that of the tetravalent titanium cations Ti 4+ of 74.5 pm and the divalent zinc cations Zn 2+ of Is 74 pm.
  • These are, for example, vanadium, chromium, manganese, iron, cobalt, nickel and copper.
  • Manganese and nickel are particularly advantageous donors.
  • the donors can be introduced into the zinc titanate in concentrations of 0.1 mol% to 60 mol%, preferably 1 mol% to 30 mol%. Through the doping, the temperature-dependent specific electrical resistance of the resistance heating layer can be systematically adjusted to a preferred temperature range in which heating is to be carried out. This means that even at very high temperatures, thick layers and flat resistance heating layers can be achieved without complex structuring.
  • an electrically insulating layer is formed between the resistance heating layer and the surface of the substrate, so that leakage currents through the surface of the substrate are avoided.
  • An insulating layer can also be formed on at least one of the surfaces of the resistance heating layer that is not in contact with the surface of the substrate or the at least one adhesion promoter layer, so that protection against contact is achieved.
  • the electrically insulating layer can, for example, be produced using thermal spray processes. Electrically insulating layers can usually be made of
  • the resistance heating layer structure has at least one metallic adhesion promoter layer which is formed between the surface of the substrate and the resistance heating layer and compensates for the different thermal expansions between the heating layer element and the surface. In this way, thermal stresses in the resistance heating layer and the surface as well as damage resulting therefrom can be avoided.
  • Typical adhesion promoter layers are aluminum, nickel, cobalt, molybdenum and iron-based alloys, for example NiCrAIY, CoCrAIY, NiCoCrAIY or NiPtAI.
  • the at least one adhesion promoter layer can be produced, for example, galvanically, with a physical or chemical vapor deposition or with a thermal spraying process.
  • the invention further relates to a method for producing a resistance heating layer structure according to the invention.
  • a surface of a substrate is provided and a resistance heating layer is formed on this surface using a thermal spraying method.
  • the surface can be prepared accordingly, e.g. be mechanically and chemically cleaned and / or be provided with at least one adhesion promoter layer and / or an electrically insulating layer and be roughened.
  • the resistance heating layer is preferably formed from a dry powder, a suspension and / or a solution, in particular a salt solution, which has proportions of zinc to titanium between 3: 1 and 2: 1.
  • aqueous solutions of zinc nitrate and titanium tetrabutanolate or powder and / or suspensions of finely dispersed zinc oxide and titanium dioxide are suitable.
  • Another zinc salt that is soluble in a liquid can also be used.
  • zinc acetate can be used, which has the advantage that a thermal see process no nitrogen-containing gaseous component is released.
  • Titanium acetate or tris (isopropoxy) titanium acetate can also be used as the chemical compound containing organic titanium.
  • Solutions and / or suspensions can be heated more evenly compared to dry powders. This makes it easier to regulate the reaction energy and the parameter settings of the spraying process. In addition, solutions and / or suspensions are still flowable even at high concentrations, so that high application rates can be achieved.
  • the suspension can contain at least one preferably organic dispersant, for example polyacrylic acid, so that the suspension is stable against agglomeration and sedimentation.
  • a dispersant should have a low concentration and should not exceed 1% by mass of the zinc and titanium-containing amount of the suspension.
  • the method is particularly preferably carried out with a solution of zinc and titanium salts or a nanodisperse, colloidal suspension. These can be used to achieve resistance heating layers with a finer microstructure and thus to form compact and very homogeneous resistance heating layers even with multi-component systems.
  • the powder, the solution and / or suspension for thermal spraying can be added to donors from the group of transition metals.
  • These can be present as finely dispersed metals, metal oxides and / or water and / or alcohol-soluble salts, for example as soluble nitrates, chlorides, phosphates or organocomplexes with a melting point at temperatures below 900 ° C.
  • the production process is particularly preferably carried out using an atmospheric plasma spraying process using an argon / hydrogen plasma or a high-speed flame spraying process at temperatures above 1000 ° C.
  • the powder, the solution and / or suspension can be applied with a very high thermal and kinetic energy to the surface on which the resistance heating Layer is formed. It is therefore possible to produce very compact, mechanically and thermally very stable resistance heating layers with a low surface roughness, a homogeneous structure and a uniform layer thickness over a large area.
  • Fig. 1 shows a schematic sectional view of an embodiment of a resistance heating layer structure according to the invention
  • Fig. 2 in a schematic flow chart, for example, a manufacturing process for a resistance heating layer structure.
  • Figure 1 shows a schematic sectional view of an embodiment of a resistance heating layer structure according to the invention on a surface S.
  • the resistance heating layer 1 is formed with thermally sprayed zinc titanate depending on the desired resistance, usually with a layer thickness in the range between 50 pm and 300 pm connected by two electrical contacts 2 to a voltage source.
  • the contacts 2 are designed as contact surfaces 3.
  • the contact surfaces can consist of thermally sprayed copper or Ni / Cr 80/20 with a layer thickness between 50 pm and 100 pm.
  • the resistance heating layer 1 has a metallic adhesion promoter layer 4 on the surface S. On this adhesion promoter layer 4, an electrical insulating layer 5 made of Al 2 0 3 or another electrically insulating material is formed as a discharge protection.
  • the adhesion promoter layer with a layer thickness of 30 pm - 80 pm, an electrically insulating layer with a layer thickness of 50 pm - 300 pm made of e.g. AI203, MgAI204, AI203 / T ⁇ 02), a resistance heating layer made of zinc titanate with a layer thickness of 20 pm to 1 mm, one Cover insulation layer 50 pm - 300 pm can be formed.
  • Connection contacts can be soldered copper wires and contact surfaces with copper or NiCr with a layer thickness of 30 pm - 80 mih thickness be formed.
  • a manufacturing method for a resistance heating layer structure is exemplarily shown in a schematic flow diagram.
  • a surface of a substrate is provided and pretreated in the subsequent step, the surface being mechanically and / or chemically cleaned / degreased, then roughened and optionally coated with an adhesion promoter layer 4 and / or an electrically insulating layer 5.
  • the pretreatment can optionally also provide for the surface to be warmed up in order to reduce thermal stresses in the subsequent production step.
  • the usual pre-heating temperatures are 50 ° C to 200 ° C.
  • a thermal spraying process is carried out, in which a spray additive, which consists of a powder, a suspension and / or a precursor solution, is heated above 1000 ° C. and sprayed onto the surface provided, so that a resistance heating layer 1 forms on the surface.
  • a spray additive which consists of a powder, a suspension and / or a precursor solution
  • Zn2Ti04 or ZnO with Ti02 as a powder mixture can be used, which is used to form a water-based suspension with Zn2Ti04 or ZnO with Ti02 nano- / microscale powder particles (500 nm to 5 pm) for salts.
  • Suitable layer thicknesses are between 20 pm and 1 mm, with a specific electrical resistance which can be adjusted by donors in the range from 10 ⁇ 6 ohm meters to 0.5 * IO 1 ohm meters, preferably 10 ⁇ 5 ohm meters to 10 1 ohm meters.
  • Process gases in the plasma Ar / H 2 mixture but also pure He or Ar / He; HVOF 0 2 with C 2 H 4 or C 2 H 2 , propane, propylene, H 2 can be used.
  • the substrate When coating, the substrate can be cooled by additional compressed air.
  • the electrical contacts 2 are on the Resistance heating layer 1 applied and the resistance heating layer 1 optionally treated.
  • the resistance heating layer 1 can, for example, be coated with an electrically insulating layer 5 and / or a heat-insulating layer and then sealed in order to further increase the mechanical stability, resistance to oxidation and / or moisture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

In the resistance-heating layer structure, at least one resistance-heating layer (1) comprising zinc titanate Zn2TiO4 is formed on one surface of a substrate (S). The at least one resistance-heating layer (1) is connected to an electric voltage supply by at least two contacts (2).

Description

WIDERSTANDSHEIZSCHICHTAUFBAU UND VERFAHREN ZUR HERSTELLUNG RESISTANCE HEATING LAYER STRUCTURE AND METHOD FOR PRODUCING IT
Die Erfindung betrifft einen Widerstandsheizschichtaufbau sowie ein Herstel lungsverfahren. Der Widerstandsheizschichtaufbau kann für das kontrollierte, direkte Beheizen von beispielsweise Bauteilen und Vorrichtungen im Maschi nenbau, der Fahrzeugindustrie, der Lebensmittelindustrie, der Medizintech nik, der Chemieindustrie oder der Innenarchitektur eingesetzt werden. The invention relates to a resistance heating layer structure and a manufacturing process. The resistance heating layer structure can be used for the controlled, direct heating of, for example, components and devices in mechanical engineering, the automotive industry, the food industry, medical technology, the chemical industry or interior design.
Heizvorrichtungen wie Manschettenheizungen oder Heizmatten sind eigen- ständige Komponenten mit einer spezifischen Geometrie, Größe und Heizleis tung, die bereits bei der Auslegung von Bauteilen oder Vorrichtungen berück sichtigt werden müssen. Eine Alternative zu diesen Heizvorrichtungen stellen Heizsysteme dar, die direkt auf einer zu beheizenden Fläche ausgebildet wer den. Aus dem Stand der Technik sind hierfür Heizungen aus metallischen oder keramischen Widerstandsheizschichten bekannt. Heating devices such as sleeve heaters or heating mats are independent components with a specific geometry, size and heating output that must be taken into account when designing components or devices. An alternative to these heating devices are heating systems that are formed directly on a surface to be heated. For this purpose, heaters made of metallic or ceramic resistance heating layers are known from the prior art.
Metallische Widerstandsheizschichten weisen einen niedrigen spezifischen elektrischen Widerstand auf. Die für die Umwandlung von elektrischer Energie in Wärme geforderten hohen Widerstandswerte müssen daher zwangsläufig durch eine niedrige Schichtdicke und lange, schmale Geometrien, wie Mäan der- oder Spiralform, erzeugt werden. Demzufolge sind metallische Heiz schichten anfällig gegenüber mechanischen Belastungen. Zudem setzt die Herstellung solcher komplexer Geometrien material- und zeitaufwendige Ver fahrensschritte voraus. Ein weiterer Nachteil sind lokale Erhöhungen der elektrischen Stromdichte und Wärmeenergie an Engstellen, die durch die niedrigen Schichtdicken und komplexen Geometrien entstehen. Daher sind die elektrische und thermische Belastbarkeit und somit auch die Lebensdauer dieser Heizschichten eingeschränkt. Metallic resistance heating layers have a low specific electrical resistance. The high resistance values required for the conversion of electrical energy into heat must therefore inevitably be generated by a low layer thickness and long, narrow geometries, such as a meander or spiral shape. As a result, metallic heating layers are susceptible to mechanical loads. In addition, the production of such complex geometries requires material and time-consuming process steps. Another disadvantage is local increases in electrical current density and thermal energy at narrow points, which result from the low layer thicknesses and complex geometries. Therefore, the electrical and thermal resilience and thus the lifespan of these heating layers are limited.
Alternativ zu metallischen Widerstandsheizschichten können keramische Wi derstandsheizschichten verwendet werden. Aus dem Stand der Technik sind keramische Widerstandsheizschichten basierend auf unterstöchiometrischem Titansuboxid (TiOx) bekannt. Ein wesentlicher Nachteil dieser Schichten be steht allerdings darin, dass das Suboxid unter Sauerstoffeinfluss bereits bei niedrigen Temperaturen ab ca. 300°C oxidiert. Durch die Aufnahme von Sau erstoff nimmt die elektrische Leitfähigkeit in der Heizschicht ab. Mit der Zeit bildet sich Titandioxid Ti02, das elektrisch isolierend und somit als Heizschicht ungeeignet ist. As an alternative to metallic resistance heating layers, ceramic resistance heating layers can be used. Ceramic resistance heating layers based on substoichiometric titanium suboxide (TiO x ) are known from the prior art. A major disadvantage of these layers is, however, that the suboxide oxidizes under the influence of oxygen even at low temperatures from approx. 300 ° C. The absorption of oxygen reduces the electrical conductivity in the heating layer. Over time, titanium dioxide Ti0 2 forms , which is electrically insulating and therefore unsuitable as a heating layer.
Die Temperaturstabilität von TiOx-Heizschichten kann zwar durch Zu legierungen von Chromoxid (Cr203) verbessert werden, das Chromoxid be wirkt jedoch lediglich eine Verlangsamung der Sauerstoffaufnahme. Außer dem nimmt mit steigendem Chromoxid-Anteil unter anderem der spezifische elektrische Widerstand zu, so dass die Schichtgeometrie angeglichen werden muss, um eine definierte Strom- und Leistungsdichte in der Widerstandsheiz schicht erreichen zu können. The temperature stability of TiO x heating layers can be improved by alloying with chromium oxide (Cr 2 0 3 ), but the chromium oxide only slows down the oxygen uptake. In addition, the specific electrical resistance increases with an increasing proportion of chromium oxide, so that the layer geometry has to be adjusted in order to be able to achieve a defined current and power density in the resistance heating layer.
Es ist daher Aufgabe der Erfindung, einen Widerstandheizschichtaufbau zur Verfügung zu stellen, der die Nachteile im Stand der Technik überwindet, der also mechanisch und thermisch stabil ist. Darüber hinaus sollen mit dem er findungsgemäßen Widerstandheizschichtaufbau systematisch einstellbare Widerstandsverhalten und Leistungsdichten erreicht und über längere Zeit räume beibehalten werden. Erfindungsgemäß wird diese Aufgabe mit einem Widerstandsheizschichtauf bau, der die Merkmale des Anspruchs 1 aufweist, gelöst. Zudem ist ein Ver fahren zur Herstellung eines erfindungsgemäßen Widerstandsheizschichtauf- baus im Anspruch 8 angeben. Vorteilhafte Ausgestaltungen und Weiterbil dungen der Erfindung können mit in untergeordneten Ansprüchen bezeichne- ten Merkmalen realisiert werden. It is therefore an object of the invention to provide a resistance heating layer structure which overcomes the disadvantages in the prior art and which is therefore mechanically and thermally stable. In addition, with the inventive resistance heating layer structure, systematically adjustable resistance behavior and power densities are to be achieved and spaces are to be maintained over a long period of time. According to the invention, this object is achieved with a resistance heating layer construction which has the features of claim 1. In addition, a method for producing a resistance heating layer structure according to the invention is specified in claim 8. Advantageous refinements and developments of the invention can be realized with features designated in the subordinate claims.
Erfindungsgemäß ist ein Widerstandsheizschichtaufbau mit mindestens einer Widerstandsheizschicht mit bevorzugt stöchiometrischem Zinktitanat According to the invention is a resistance heating layer structure with at least one resistance heating layer with preferably stoichiometric zinc titanate
(Zn2Ti04) auf einer Oberfläche eines Substrates ausgebildet und mit mindes tens zwei Kontakten an eine elektrische Spannungsquelle angeschlossen. Das Zinktitanat sollte in der Widerstandsheizschicht vorzugsweise als Mischkristall vorliegen. Der Feststoffvolumenanteil und der Reinheitsgrad der Widerstand schicht liegen bevorzugt über 95%, so dass eine hohe mechanische Festigkeit und Leistungsdichte erreicht werden können. (Zn 2 Ti0 4 ) formed on a surface of a substrate and connected to an electrical voltage source with at least two contacts. The zinc titanate should preferably be in the resistance heating layer as a mixed crystal. The solid volume fraction and the degree of purity of the resistance layer are preferably above 95%, so that a high mechanical strength and power density can be achieved.
Dicht geschlossene Widerstandsheizschichten können bereits mit Schichtstär ken ab 5 pm gebildet werden. Wegen des hohen spezifischen elektrischen Widerstands des Zinktitanats können jedoch auch höhere Schichtstärken aus gebildet werden. Bevorzugt weist die Widerstandsheizschicht eine Schicht stärke von 20 pm bis 1 mm auf. Durch höhere Schichtstärken und die Mög lichkeit, die erfindungsgemäße Widerstandsheizschicht großflächig ohne komplexe Strukturierungen auszubilden, können eine homogene Wärmeab gabe und eine hohe mechanische und thermische Belastbarkeit der Wider standsheizschicht erzielt werden. Auf Grund der geringen Oxidationsneigung des Zinktitanats ist die Widerstandsheizschicht außerdem auch bei Tempera turen über 300°C thermisch stabil. Somit können Widerstandsheizschichten mit einer erhöhten Lebensdauer bereitgestellt werden. Tightly closed resistance heating layers can already be formed with layer thicknesses from 5 pm. Because of the high specific electrical resistance of zinc titanate, however, higher layer thicknesses can also be formed. The resistance heating layer preferably has a layer thickness of 20 pm to 1 mm. Due to higher layer thicknesses and the possibility of forming the resistance heating layer according to the invention over a large area without complex structuring, a homogeneous heat emission and a high mechanical and thermal resistance of the resistance heating layer can be achieved. Due to the low tendency of zinc titanate to oxidize, the resistance heating layer is also thermally stable even at temperatures above 300 ° C. Resistance heating layers with an increased service life can thus be provided.
Die Widerstandsheizschicht kann mit ebenen, konvexen und/oder konkaven Oberflächen form- und/oder kraftschlüssig verbunden sein. Dadurch kann auch beim Beheizen von Bauteilen mit gekrümmten Oberflächen eine verlust arme Wärmeübertragung erreicht werden. Mit der erfindungsgemäßen Wi derstandsheizschicht können beispielsweise Düsen, Transportrohre, Druck walzen oder Automobilzuheizer, aber auch medizinischen Geräte wie, z.B. Sterilisatoren, homogen beheizt werden. The resistance heating layer can be connected to flat, convex and / or concave surfaces in a positive and / or non-positive manner. As a result, low-loss heat transfer can also be achieved when heating components with curved surfaces. With the Wi derstandsheizschicht according to the invention, for example, nozzles, transport pipes, pressure rollers or automotive heaters, but also medical devices such as, for example Sterilizers to be heated homogeneously.
Da Zinktitanat ein Heißleiter ist, nimmt der elektrische Widerstand der Wider standsheizschicht mit steigender Temperatur ab. Zur Anpassung des tempera turabhängigen, elektrischen Widerstandsverhaltens der Widerstandsheiz schicht kann daher eine Dotierung des Zinktitanats mit mindestens einem Donator aus der Gruppe der Übergangsmetalle vorgesehen sein. Der elektri sche Widerstand und die Leistungsdichte können somit über die Werkstoffzu sammensetzung eingestellt werden, ohne die Schichtstärke oder Geometrie der Widerstandsheizschicht ändern zu müssen. Since zinc titanate is a thermistor, the electrical resistance of the resistance heating layer decreases with increasing temperature. To adjust the temperature-dependent electrical resistance behavior of the resistance heating layer, doping of the zinc titanate with at least one donor from the group of transition metals can therefore be provided. The electrical resistance and the power density can thus be adjusted via the material composition without having to change the layer thickness or geometry of the resistance heating layer.
Vorzugsweise kann das Zinktitanat mit mindestens einem Donator aus der Gruppe der Übergangsmetalle dotiert werden, dessen lonenradius in einer Koordination mit sechs Nachbarionen ähnlich dem der vier-wertigen Titanka tionen Ti4+ von 74,5 pm und der zwei-wertigen Zinkkationen Zn2+ von 74 pm ist. Dies sind beispielsweise Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel und Kupfer. Besonders vorteilhafte Donatoren sind Mangan und Nickel. Die Donatoren können in das Zinktitanat mit Konzentrationen von 0,1 mol% bis 60 mol%, bevorzugt 1 mol% bis 30 mol% eingebracht werden. Durch die Do tierung kann der temperaturabhängige spezifische elektrische Widerstand der Widerstandheizschicht systematisch an einen bevorzugten Temperaturbe reich, in dem geheizt werden soll, angepasst werden. Somit können auch bei sehr hohen Temperaturen noch große Schichtdicken und flächige Wider standsheizschichten ohne komplexe Strukturierungen erreicht werden. The zinc titanate can preferably be doped with at least one donor from the group of transition metals, the ionic radius of which, in coordination with six neighboring ions, is similar to that of the tetravalent titanium cations Ti 4+ of 74.5 pm and the divalent zinc cations Zn 2+ of Is 74 pm. These are, for example, vanadium, chromium, manganese, iron, cobalt, nickel and copper. Manganese and nickel are particularly advantageous donors. The donors can be introduced into the zinc titanate in concentrations of 0.1 mol% to 60 mol%, preferably 1 mol% to 30 mol%. Through the doping, the temperature-dependent specific electrical resistance of the resistance heating layer can be systematically adjusted to a preferred temperature range in which heating is to be carried out. This means that even at very high temperatures, thick layers and flat resistance heating layers can be achieved without complex structuring.
Es kann weiterhin vorgesehen sein, dass zwischen der Widerstandsheizschicht und der Oberfläche des Substrates eine elektrisch isolierende Schicht ausge bildet ist, so dass Ableitströme durch die Oberfläche des Substrates vermie den werden. Eine isolierende Schicht kann auch auf mindestens einer der Oberflächen der Widerstandsheizschicht ausgebildet sein, die nicht mit der Oberfläche des Substrates oder der mindestens einen Haftvermittlerschicht in Kontakt steht, so dass ein Berührungsschutz erreicht wird. Die elektrisch iso lierende Schicht kann beispielsweise mit thermischen Spritzverfahren herge stellt sein. Üblicherweise können elektrisch isolierende Schichten aus It can further be provided that an electrically insulating layer is formed between the resistance heating layer and the surface of the substrate, so that leakage currents through the surface of the substrate are avoided. An insulating layer can also be formed on at least one of the surfaces of the resistance heating layer that is not in contact with the surface of the substrate or the at least one adhesion promoter layer, so that protection against contact is achieved. The electrically insulating layer can, for example, be produced using thermal spray processes. Electrically insulating layers can usually be made of
MgAI204, Al203 oder Al203/Ti02 Keramiken verwenden werden. Des Weiteren kann vorgesehen sein, dass der Widerstandheizschichtaufbau mindestens eine metallische Haftvermittlerschicht aufweist, die zwischen der Oberfläche des Substrates und der Widerstandsheizschicht ausgebildet ist und die unterschiedlichen Wärmeausdehnungen zwischen dem Heizschichtele ment und der Oberfläche ausgleicht. Somit können thermische Spannungen in der Widerstandheizschicht und der Oberfläche sowie daraus resultierende Beschädigungen vermieden werden. Zwischen der Widerstandsheizschicht und der Haftvermittlerschicht sollte eine Elektrisch isolierende Schicht zur Vermeidung von Kurzschlüssen vorhanden sein. Mit der mindestens einen Haftvermittlerschicht können außerdem definierte Oberflächenrauigkeiten bereitgestellt werden, so dass ein Ablösen des thermisch gespritzten Heiz schichtelements als Widerstandsheizschicht vermieden wird. Typische Haft vermittlerschichten sind Aluminium-, Nickel-, Kobalt-, Molybdän- und Eisen basislegierungen, beispielsweise NiCrAIY, CoCrAIY, NiCoCrAIY oder NiPtAI. Die mindestens eine Haftvermittlerschicht kann beispielsweise galvanisch, bei einer physikalischen oder chemischen Gasphasenabscheidung oder mit einem thermischen Spritzverfahren hergestellt sein. MgAI 2 0 4 , Al 2 0 3 or Al 2 0 3 / Ti0 2 ceramics are used. Furthermore, it can be provided that the resistance heating layer structure has at least one metallic adhesion promoter layer which is formed between the surface of the substrate and the resistance heating layer and compensates for the different thermal expansions between the heating layer element and the surface. In this way, thermal stresses in the resistance heating layer and the surface as well as damage resulting therefrom can be avoided. There should be an electrically insulating layer between the resistance heating layer and the adhesion promoter layer to avoid short circuits. Defined surface roughness can also be provided with the at least one adhesion promoter layer, so that detachment of the thermally sprayed heating layer element as a resistance heating layer is avoided. Typical adhesion promoter layers are aluminum, nickel, cobalt, molybdenum and iron-based alloys, for example NiCrAIY, CoCrAIY, NiCoCrAIY or NiPtAI. The at least one adhesion promoter layer can be produced, for example, galvanically, with a physical or chemical vapor deposition or with a thermal spraying process.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines erfin dungsgemäßen Widerstandsheizschichtaufbaus. Bei diesem Verfahren wird eine Oberfläche eines Substrates bereitgestellt und auf dieser Oberfläche eine Widerstandsheizschicht mit einem thermischen Spritzverfahren ausgebildet. Die Oberfläche kann dafür entsprechend vorbereitet sein, z.B. mechanisch und chemisch gereinigt sein und/oder mit mindestens einer Haftvermittler schicht und/oder einer elektrisch isolierenden Schicht versehen sein und auf geraut sein. The invention further relates to a method for producing a resistance heating layer structure according to the invention. In this method, a surface of a substrate is provided and a resistance heating layer is formed on this surface using a thermal spraying method. The surface can be prepared accordingly, e.g. be mechanically and chemically cleaned and / or be provided with at least one adhesion promoter layer and / or an electrically insulating layer and be roughened.
Beim thermischen Spritzverfahren wird die Widerstandsheizschicht vorzugs weise aus einem trockenen Pulvers, einer Suspension und/oder einer Lösung, insbesondere einer Salzlösung, die Stoffmengenanteile von Zink zu Titan zwi schen 3:1 und 2:1 aufweisen, ausgebildet. Für die Ausbildung der erfindungs gemäßen Widerstandsheizschicht eignen sich beispielsweise wässrige Lösun gen aus Zinknitrat und Titantetrabutanolat oder Pulver und/oder Suspensio nen von feindispersem Zinkoxid und Titandioxid. Es kann auch ein anderes Zinksalz, das in einer Flüssigkeit lösbar ist, eingesetzt werden. Man kann bei spielsweise Zinkacetat einsetzen, was den Vorteil hat, dass bei einem thermi- sehen Prozess keine Stickstoff enthaltende gasförmige Komponente freige setzt wird. In the thermal spraying process, the resistance heating layer is preferably formed from a dry powder, a suspension and / or a solution, in particular a salt solution, which has proportions of zinc to titanium between 3: 1 and 2: 1. For the formation of the resistance heating layer according to the invention, for example, aqueous solutions of zinc nitrate and titanium tetrabutanolate or powder and / or suspensions of finely dispersed zinc oxide and titanium dioxide are suitable. Another zinc salt that is soluble in a liquid can also be used. For example, zinc acetate can be used, which has the advantage that a thermal see process no nitrogen-containing gaseous component is released.
Es kann auch Titanacetat bzw. Tris(isopropoxy)titanium acetate als organische Titan enthaltende chemische Verbindung eingesetzt werden. Titanium acetate or tris (isopropoxy) titanium acetate can also be used as the chemical compound containing organic titanium.
Lösungen und/oder Suspensionen können im Vergleich zu trockenen Pulvern gleichmäßiger aufgeheizt werden. Dadurch lassen sich die Reaktionsenergie und die Parametereinstellungen des Spritzverfahrens leichter regeln. Zudem sind Lösungen und/oder Suspensionen auch bei hohen Konzentrationen noch fließfähig, so dass hohe Auftragsraten erreicht werden können. Solutions and / or suspensions can be heated more evenly compared to dry powders. This makes it easier to regulate the reaction energy and the parameter settings of the spraying process. In addition, solutions and / or suspensions are still flowable even at high concentrations, so that high application rates can be achieved.
Für das thermische Spritzen kann in der Suspension mindestens ein bevorzugt organisches_Dispergiermittel, beispielsweise Polyacrylsäure, enthalten sein, so dass die Suspension gegen Agglomeration und Sedimentation stabil ist. Ein Dispergiermittel sollte dabei niedrig konzentriert sein und 1 Masse-% der Zink und Titan-enthaltenden Stoffmenge der Suspension nicht überschreiten. Be sonders bevorzugt wird das Verfahren mit einer Lösung aus Zink- und Titan- Salzen oder einer nanodispersen, kolloidalen Suspension, durchgeführt. Mit diesen lassen sich Widerstandsheizschichten mit einer feineren Mikrostruktu ren erreichen und somit auch bei Mehrstoff Systemen kompakte und sehr ho mogene Widerstandsheizschichten ausbilden. For thermal spraying, the suspension can contain at least one preferably organic dispersant, for example polyacrylic acid, so that the suspension is stable against agglomeration and sedimentation. A dispersant should have a low concentration and should not exceed 1% by mass of the zinc and titanium-containing amount of the suspension. The method is particularly preferably carried out with a solution of zinc and titanium salts or a nanodisperse, colloidal suspension. These can be used to achieve resistance heating layers with a finer microstructure and thus to form compact and very homogeneous resistance heating layers even with multi-component systems.
Zur Anpassung des temperaturabhängigen, elektrischen Widerstandsverhal tens der Widerstandsheizschicht können dem Pulver, der Lösung und/oder Suspension für das thermische Spritzen Donatoren aus der Gruppe der Über gangsmetalle beigefügt sein. Diese können als feindisperse Metalle, Metall oxide und/oder wasser- und/oder alkohollösliche Salze vorliegen, beispiels weise als lösliche Nitrate, Chloride, Phosphate oder Organokomplexe mit ei nem Schmelzpunkt bei Temperaturen kleiner als 900°C. To adjust the temperature-dependent electrical resistance behavior of the resistance heating layer, the powder, the solution and / or suspension for thermal spraying can be added to donors from the group of transition metals. These can be present as finely dispersed metals, metal oxides and / or water and / or alcohol-soluble salts, for example as soluble nitrates, chlorides, phosphates or organocomplexes with a melting point at temperatures below 900 ° C.
Das Herstellungsverfahren wird besonders bevorzugt mit einem atmosphäri schen Plasmaspritzverfahren mit einem Argon/Wasserstoff-Plasma oder ei nem Hochgeschwindigkeitsflammspritzverfahren bei Temperaturen über 1000°C durchgeführt. Mit diesen Verfahren kann das Pulver, die Lösung und/oder Suspension mit einer sehr hohen thermischen und kinetischen Energie auf die Oberfläche aufgebracht werden, auf der die Widerstandsheiz- Schicht ausgebildet wird. Somit ist es möglich, sehr kompakte, mechanisch und thermisch sehr stabile Widerstandsheizschichten mit einer geringen Oberflächenrauigkeit, einem homogenen Gefüge und einer gleichmäßigen Schichtstärke großflächig herzustellen. The production process is particularly preferably carried out using an atmospheric plasma spraying process using an argon / hydrogen plasma or a high-speed flame spraying process at temperatures above 1000 ° C. With these processes, the powder, the solution and / or suspension can be applied with a very high thermal and kinetic energy to the surface on which the resistance heating Layer is formed. It is therefore possible to produce very compact, mechanically and thermally very stable resistance heating layers with a low surface roughness, a homogeneous structure and a uniform layer thickness over a large area.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend anhand der Figuren 1 und 2 erläutert. Exemplary embodiments of the invention are shown in the drawings and are explained below with reference to FIGS. 1 and 2.
Dabei zeigen: Show:
Fig. 1 in einer schematischen Schnittansicht ein Ausführungsbeispiel eines erfindungsgemäßen Widerstandsheizschichtaufbaus und Fig. 1 shows a schematic sectional view of an embodiment of a resistance heating layer structure according to the invention and
Fig. 2 in einem schematischen Ablaufdiagramm beispielhaft ein Herstel lungsverfahren für einen Widerstandheizschichtaufbau. Fig. 2 in a schematic flow chart, for example, a manufacturing process for a resistance heating layer structure.
Figur 1 stellt in einer schematischen Schnittansicht ein Ausführungsbeispiel eines erfindungsgemäßen Widerstandsheizschichtaufbau auf einer Oberflä che S dar. Die Widerstandsheizschicht 1 ist mit thermisch gespritztem Zinktitanat in Abhängigkeit des gewünschten Widerstandes, in der Regel mit einer Schichtdicke im Bereich zwischen 50 pm und 300 pm, gebildet und durch zwei elektrische Kontakte 2 mit einer Spannungsquelle verbunden. Die Kontakte 2 sind im Ausführungsbeispiel als Kontaktflächen 3 ausgebildet. Die Kontaktflächen können aus thermisch gespritztem Kupfer oder Ni/Cr 80/20 mit einer Schichtdicke zwischen 50 pm und 100 pm bestehen. Für eine ver besserte Haftung auf der Oberfläche S weist die Widerstandsheizschicht 1 eine metallische Haftvermittlerschicht 4 auf der Oberfläche S auf. Auf dieser Haftvermittlerschicht 4 ist eine elektrische isolierende Schicht 5 aus Al203 oder einem anderen elektrisch isolierenden Werkstoff als Ableitschutz ausge bildet. Figure 1 shows a schematic sectional view of an embodiment of a resistance heating layer structure according to the invention on a surface S. The resistance heating layer 1 is formed with thermally sprayed zinc titanate depending on the desired resistance, usually with a layer thickness in the range between 50 pm and 300 pm connected by two electrical contacts 2 to a voltage source. In the exemplary embodiment, the contacts 2 are designed as contact surfaces 3. The contact surfaces can consist of thermally sprayed copper or Ni / Cr 80/20 with a layer thickness between 50 pm and 100 pm. For a better adhesion on the surface S, the resistance heating layer 1 has a metallic adhesion promoter layer 4 on the surface S. On this adhesion promoter layer 4, an electrical insulating layer 5 made of Al 2 0 3 or another electrically insulating material is formed as a discharge protection.
So kann die Haftvermittlerschicht mit einer Schichtdicke 30 pm - 80 pm, eine elektrisch isolierende Schicht mit einer Schichtdicke 50 pm - 300 pm aus z.B. AI203, MgAI204, AI203/TΪ02), eine Widerstandsheizschicht aus Zinktitanat mit einer Schichtdicke 20 pm bis 1 mm, eine Deckisolationsschicht 50 pm - 300 pm gebildet sein. Anschlusskontakte können als aufgelötete Drähte aus Kupfer und Kontaktflächen mit Kupfer oder NiCr mit Schichtdicke 30 pm - 80 mih Dicke gebildet sein. For example, the adhesion promoter layer with a layer thickness of 30 pm - 80 pm, an electrically insulating layer with a layer thickness of 50 pm - 300 pm made of e.g. AI203, MgAI204, AI203 / TΪ02), a resistance heating layer made of zinc titanate with a layer thickness of 20 pm to 1 mm, one Cover insulation layer 50 pm - 300 pm can be formed. Connection contacts can be soldered copper wires and contact surfaces with copper or NiCr with a layer thickness of 30 pm - 80 mih thickness be formed.
In Figur 2 ist ein Herstellungsverfahren für einen erfindungsgemäßen Wider standsheizschichtaufbau in einem schematischen Ablaufdiagramm beispiel haft dargestellt. In einem ersten Schritt wird eine Oberfläche eines Substrates bereitgestellt und im nachfolgenden Schritt vorbehandelt, wobei die Oberflä che mechanisch und/oder chemisch gereinigt/entfettet wird anschließend aufgeraut und optional mit einer Haftvermittlerschicht 4 und/oder einer elektrisch isolierenden Schicht 5 beschichtet wird. Die Vorbehandlung kann optional auch ein Aufwärmen der Oberfläche vorsehen, um thermische Span nungen beim nachfolgenden Herstellungsschritt zu mindern. Übliche Vor wärmtemperaturen sind dabei 50°C bis 200°C. In Figure 2, a manufacturing method for a resistance heating layer structure according to the invention is exemplarily shown in a schematic flow diagram. In a first step, a surface of a substrate is provided and pretreated in the subsequent step, the surface being mechanically and / or chemically cleaned / degreased, then roughened and optionally coated with an adhesion promoter layer 4 and / or an electrically insulating layer 5. The pretreatment can optionally also provide for the surface to be warmed up in order to reduce thermal stresses in the subsequent production step. The usual pre-heating temperatures are 50 ° C to 200 ° C.
Im anschließenden Schritt wird ein thermisches Spritzverfahren durchgeführt, bei dem ein Spritzzusatz, der aus einem Pulver, einer Suspension und/oder einen Präkursor-Lösung besteht, über 1000°C erhitzt und auf die bereitgestell te Oberfläche gespritzt wird, so dass sich eine Widerstandheizschicht 1 auf der Oberfläche ausbildet. In the subsequent step, a thermal spraying process is carried out, in which a spray additive, which consists of a powder, a suspension and / or a precursor solution, is heated above 1000 ° C. and sprayed onto the surface provided, so that a resistance heating layer 1 forms on the surface.
Für die Herstellung kann ein Pulver: Zn2Ti04 oder ZnO mit Ti02 als Pulverge misch, das zu einer Suspension auf Wasserbasis mit Zn2Ti04 oder ZnO mit Ti02 nano-/mikroskaligen Pulverpartikeln (500 nm bis 5 pm) bei Salzen einge setzt werden. For the production a powder: Zn2Ti04 or ZnO with Ti02 as a powder mixture can be used, which is used to form a water-based suspension with Zn2Ti04 or ZnO with Ti02 nano- / microscale powder particles (500 nm to 5 pm) for salts.
Geignete Schichtdicken liegen zwischen 20 pm und 1 mm, mit einem durch Donatoren anpassbaren spezifischen elektrischen Widerstand im Bereich von 10~6 OhmMeter bis 0,5 * IO 1 OhmMeter, bevorzugt bei 10~5 OhmMeter bis 10 1 OhmMeter. Suitable layer thicknesses are between 20 pm and 1 mm, with a specific electrical resistance which can be adjusted by donors in the range from 10 ~ 6 ohm meters to 0.5 * IO 1 ohm meters, preferably 10 ~ 5 ohm meters to 10 1 ohm meters.
Prozessgase bei Plasma Ar / H2 -Gemisch aber auch reines He oder Ar/He; bei HVOF 02 mit C2H4 oder C2H2, Propan, Propylen, H2 können eingesetzt werden. Process gases in the plasma Ar / H 2 mixture but also pure He or Ar / He; HVOF 0 2 with C 2 H 4 or C 2 H 2 , propane, propylene, H 2 can be used.
Bei der Beschichtung kann das Substrat durch zusätzliche Druckluft gekühlt werden. When coating, the substrate can be cooled by additional compressed air.
In einem abschließenden Schritt werden die elektrischen Kontakte 2 auf die Widerstandsheizschicht 1 aufgebracht und die Widerstandsheizschicht 1 op tional nachbehandelt. Die Widerstandsheizschicht 1 kann zum Beispiel mit einer elektrisch isolierenden Schicht 5 und/oder einer wärmeisolierenden Schicht beschichtet und anschließend versiegelt werden, um die mechanische Stabilität, Oxidations- und/oder Feuchtigkeitsbeständigkeit weiter zu erhöhen. In a final step, the electrical contacts 2 are on the Resistance heating layer 1 applied and the resistance heating layer 1 optionally treated. The resistance heating layer 1 can, for example, be coated with an electrically insulating layer 5 and / or a heat-insulating layer and then sealed in order to further increase the mechanical stability, resistance to oxidation and / or moisture.

Claims

Patentansprüche Claims
1. Widerstandsheizschichtaufbau, dadurch gekennzeichnet, dass mindes tens eine Widerstandsheizschicht (1) mit Zinktitanat Zn2Ti04 auf einer Oberfläche eines Substrates (S) ausgebildet ist und die mindestens ei ne Widerstandsheizschicht (1) mit mindestens zwei Kontakten (2) an eine elektrische Spannungsversorgung angeschlossen ist. 1. resistance heating layer structure, characterized in that at least one resistance heating layer (1) with zinc titanate Zn 2 Ti0 4 is formed on a surface of a substrate (S) and the at least one resistance heating layer (1) with at least two contacts (2) to an electrical Power supply is connected.
2. Widerstandsheizschichtaufbau nach Anspruch 1, dadurch gekenn 2. resistance heating layer structure according to claim 1, characterized
zeichnet, dass die mindestens eine Widerstandsheizschicht (1) mit ei ner Schichtstärke von 20 pm bis 1 mm ausgebildet ist. is characterized in that the at least one resistance heating layer (1) is formed with a layer thickness of 20 pm to 1 mm.
3. Widerstandsheizschichtaufbau nach einem der vorhergehenden An sprüche, dadurch gekennzeichnet, dass die mindestens eine Wider standsheizschicht (1) auf einer flachen, konvexen und/oder konkaven Oberfläche ausgebildet ist. 3. resistance heating layer structure according to one of the preceding claims, characterized in that the at least one resistance heating layer (1) is formed on a flat, convex and / or concave surface.
4. Widerstandsheizschichtaufbau nach einem der vorhergehenden An sprüche, dadurch gekennzeichnet, dass die mindestens eine Wider standsheizschicht (1) mit Zinkoxid ZnO und Zinktitanat Zn2Ti04 gebildet ist, wobei das Zinktitanat zur Anpassung des temperaturabhängigen, elektrischen Widerstandsverhaltens mit mindestens einem Donator, der aus der Gruppe der Übergangsmetalle ausgewählt ist, dotiert ist. 4. resistance heating layer structure according to one of the preceding claims, characterized in that the at least one resistance heating layer (1) is formed with zinc oxide ZnO and zinc titanate Zn 2 Ti0 4 , the zinc titanate for adapting the temperature-dependent electrical resistance behavior with at least one donor is selected from the group of transition metals, is doped.
5. Widerstandsheizschichtaufbaunach einem der vorhergehenden An sprüche, dadurch gekennzeichnet, dass die mindestens eine Wider standsheizschicht (1) mit Zinkoxid ZnO und Zinktitanat Zn2Ti04 gebildet ist, wobei das Zinktitanat zur Anpassung des temperaturabhängigen, elektrischen Widerstandsverhaltens mit mindestens einem Donator, der aus der Gruppe der Übergangsmetalle ausgewählt ist, mit einer Konzentration von 0,1 mol% bis 60 mol% dotiert ist. 5. Resistance heating layer structure according to one of the preceding claims, characterized in that the at least one resistance heating layer (1) is formed with zinc oxide ZnO and zinc titanate Zn 2 Ti0 4 , the zinc titanate being used to adapt the temperature-dependent electrical resistance behavior with at least one donor the group of transition metals is selected, is doped with a concentration of 0.1 mol% to 60 mol%.
6. Widerstandsheizschichtaufbau nach einem der vorhergehenden An sprüche, dadurch gekennzeichnet, dass der Widerstandsheizschicht aufbau eine elektrisch isolierende Schicht (5) zwischen der mindestens einen Widerstandsheizschicht (1) und der Oberfläche des Substrates (S) und/oder eine elektrisch isolierende Schicht (5) auf mindestens ei ner Oberfläche der Widerstandsheizschicht (1), die nicht mit der Ober fläche des Substrates (S)in Kontakt ist, aufweist. 6. resistance heating layer structure according to one of the preceding claims, characterized in that the resistance heating layer structure an electrically insulating layer (5) between the at least one resistance heating layer (1) and the surface of the substrate (S) and / or an electrically insulating layer (5) on at least one surface of the resistance heating layer (1) which is not in contact with the upper surface of the substrate (S).
7. Widerstandsheizschichtaufbau nach Anspruch 6, dadurch gekenn zeichnet, dass der Widerstandsheizschichtaufbau mindestens eine me tallische Haftvermittlerschicht (4) zwischen elektrisch isolierenden Schicht (5) und der Oberfläche des Substrates (S) aufweist. 7. resistance heating layer structure according to claim 6, characterized in that the resistance heating layer structure has at least one metallic adhesion promoter layer (4) between the electrically insulating layer (5) and the surface of the substrate (S).
8. Verfahren zur Herstellung eines Widerstandsheizschichtaufbaus nach einem der vorhergehenden Ansprüche bei dem eine Oberfläche eines Substrates (S) bereitgestellt wird und eine Widerstandsheizschicht (1) auf der Oberfläche ausgebildet wird, dadurch gekennzeichnet, dass die Widerstandsheizschicht (1) mit einem thermischen Spritzverfahren ausgebildet wird. 8. A method for producing a resistance heating layer structure according to one of the preceding claims, in which a surface of a substrate (S) is provided and a resistance heating layer (1) is formed on the surface, characterized in that the resistance heating layer (1) is formed using a thermal spraying process .
9. Verfahren nach dem vorhergehenden Anspruch, dadurch gekenn zeichnet, dass die Widerstandsheizschicht (1) aus einem trockenen Pulver und/oder einer Lösung und/oder einer Suspension, die Stoff mengenanteile von Zink zu Titan zwischen 3:1 und 2:1 aufweisen, ge bildet wird; wobei bei Einsatz von ZnO und Ti0 ein Pulver eingesetzt ist. 9. The method according to the preceding claim, characterized in that the resistance heating layer (1) from a dry powder and / or a solution and / or a suspension, the substance quantitative proportions of zinc to titanium between 3: 1 and 2: 1, is formed; a powder is used when using ZnO and Ti0.
10. Verfahren nach einem der zwei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Pulver und/oder der Lösung und/oder der Suspension mindestens ein Donator, der aus der Gruppe der Über gangsmetalle ausgewählt ist, zur Anpassung des temperaturabhängi gen, elektrischen Widerstandsverhaltens und des spezifischen elektri schen Widerstandes der Widerstandsheizschicht (1) eingesetzt ist. 10. The method according to any one of the two preceding claims, characterized in that in the powder and / or the solution and / or the suspension at least one donor, which is selected from the group of transition metals, for adapting the temperature-dependent, electrical resistance behavior and specific electrical resistance of the resistance heating layer (1) is used.
11. Verfahren nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Widerstandsheizschicht (1) in einem atmo- sphärischen Plasmaspritzverfahren oder einem Hochgeschwindigkeits- flammspritzverfahren ausgebildet wird. 11. The method according to any one of the three preceding claims, characterized in that the resistance heating layer (1) in an atmospheric spherical plasma spraying process or a high-speed flame spraying process is formed.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das tro ckene Pulver und/oder die Lösung und/oder die Suspension für die Ausbildung der Widerstandsheizschicht (1) auf eine Temperatur grö ßer als 1000°C erhitzt wird. 12. The method according to claim 11, characterized in that the dry powder and / or the solution and / or the suspension for the formation of the resistance heating layer (1) is heated to a temperature greater than 1000 ° C.
PCT/EP2019/082095 2018-11-26 2019-11-21 Resistance-heating layer structure and method for producing same WO2020109133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018220288.5A DE102018220288B4 (en) 2018-11-26 2018-11-26 Resistance heating layer structure and method of manufacture
DE102018220288.5 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020109133A1 true WO2020109133A1 (en) 2020-06-04

Family

ID=68621318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/082095 WO2020109133A1 (en) 2018-11-26 2019-11-21 Resistance-heating layer structure and method for producing same

Country Status (2)

Country Link
DE (1) DE102018220288B4 (en)
WO (1) WO2020109133A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819698A1 (en) * 1987-06-09 1988-12-29 Hitachi Metals Ltd HEATING ROLL FOR FIXING TONER
US20010003336A1 (en) * 1997-05-06 2001-06-14 Richard C. Abbott Deposited resistive coatings
US20020096512A1 (en) * 2000-11-29 2002-07-25 Abbott Richard C. Resistive heaters and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037942A (en) * 1959-11-02 1962-06-05 Gen Electric Positive temperature coefficient of resistivity resistor
DE29913496U1 (en) * 1999-08-02 1999-11-18 Glaverbel Electrical connectors for vehicle glazing
DE102015211366B4 (en) * 2015-06-19 2022-10-27 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Device with an electric window heater for a window pane of a motor vehicle and with a capacitive proximity sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819698A1 (en) * 1987-06-09 1988-12-29 Hitachi Metals Ltd HEATING ROLL FOR FIXING TONER
US20010003336A1 (en) * 1997-05-06 2001-06-14 Richard C. Abbott Deposited resistive coatings
US20020096512A1 (en) * 2000-11-29 2002-07-25 Abbott Richard C. Resistive heaters and uses thereof

Also Published As

Publication number Publication date
DE102018220288B4 (en) 2021-01-14
DE102018220288A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
AT412002B (en) DIAMOND ELECTRODE AND METHOD FOR THEIR PRODUCTION
EP1495151B1 (en) Plasma injection method
DE2118211B2 (en) Razor blade with coatings
DE102005018062A1 (en) Method for producing heated components for injection molding machines and heating equipment in general
DE10053432A1 (en) Self-binding MCrAlY powder
TWI632728B (en) Fuel cell interconnect with reduced voltage degradation over time and associated method
EP2326742B1 (en) Use of a target for spark evaporation, and method for producing a target suitable for said use
DE102006024039A1 (en) Interconnector for a fuel cell stack and method of manufacture
DE102008064190A1 (en) Method for the production of powder from iron based alloy with carbon portion, comprises producing a melt of the alloy in a melt container, flowing the melt through a flow opening, and atomizing the flowing melt
DE102018220288B4 (en) Resistance heating layer structure and method of manufacture
DE19935164A1 (en) Method of bonding thermally sprayed coating to non-roughened light metal surface by pre-treating with fluoride
DE19826681B4 (en) Process for the production of new getter materials in the form of thin metallic and carbon-containing nanostructured layers and use of the same for high vacuum generation and gas storage
DE2228770A1 (en) Solid electrolyte with electrode
AT521011B1 (en) Component with a two-layer, oxidic protective layer
CN100422110C (en) Seepage type Ag-PbTiO3 composite ceramic film and preparation method therefor
KR101311784B1 (en) Coating method of anti-corrosion for sepertator of molten cabonate fuel cell
DE102007053075B4 (en) Functional layer for high temperature fuel cells and method of manufacture
EP2232617B1 (en) Bipolar plate and method for producing a protective layer on a bipolar plate
EP2999807B1 (en) Barrier coating for turbochargers
AT13830U1 (en) Arc evaporation coating source
DE20302566U1 (en) Soldering tip has heat conductive body with non-wettable layer and outer tinned layer with adhesive layer between
DE10110448A1 (en) Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder
DE838167C (en)
WO2019175013A1 (en) Distribution structure for a bipolar plate of a fuel cell
DE102013218322B4 (en) Evaporator body for a PVD coating system and a method for providing such an evaporator body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806235

Country of ref document: EP

Kind code of ref document: A1