WO2020095406A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2020095406A1
WO2020095406A1 PCT/JP2018/041477 JP2018041477W WO2020095406A1 WO 2020095406 A1 WO2020095406 A1 WO 2020095406A1 JP 2018041477 W JP2018041477 W JP 2018041477W WO 2020095406 A1 WO2020095406 A1 WO 2020095406A1
Authority
WO
WIPO (PCT)
Prior art keywords
air volume
air
dampers
fan motor
fan
Prior art date
Application number
PCT/JP2018/041477
Other languages
English (en)
French (fr)
Inventor
雄輝 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/272,789 priority Critical patent/US11473808B2/en
Priority to GB2106106.4A priority patent/GB2593080B/en
Priority to PCT/JP2018/041477 priority patent/WO2020095406A1/ja
Priority to JP2020556425A priority patent/JP7086216B2/ja
Publication of WO2020095406A1 publication Critical patent/WO2020095406A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/40Damper positions, e.g. open or closed

Definitions

  • the present invention relates to an air conditioner that supplies air from an indoor unit to an air-conditioned space.
  • Patent Document 1 there is an air conditioner that controls the rotation of the blower of the indoor unit by calculating the external static pressure and the air volume without using the static pressure detector (for example, see Patent Document 1).
  • the air conditioner disclosed in Patent Document 1 controls the rotation of the blower based on the external static pressure obtained from the rotational speed of the blower and the external static pressure stored in advance during rated air volume control.
  • the present invention has been made to solve the above problems, and provides an air conditioner with improved controllability of the rotation speed of a fan in response to static pressure fluctuations.
  • An air conditioner includes a fan that sends out air to a space to be air-conditioned, a fan motor that drives the fan, a plurality of outlets, and a duct through which the air sent out by the fan flows, Rotation of the fan motor so that the air volume becomes constant with respect to a change in the opening degree of a plurality of detection units, a damper provided in each of the plurality of blowout ports, and the dampers And fan motor control means for controlling the number.
  • the rotation speed of the fan motor is controlled so that the air volume becomes constant on the basis of the air volume detected by the detection means against static pressure fluctuations. Therefore, the controllability of the rotation of the fan is improved corresponding to the change in the air volume.
  • FIG. 3 is a block diagram for explaining control performed by the control device shown in FIG. 1. It is a figure which shows an example of the table which the memory
  • FIG. 6 is a diagram for explaining an example of static pressure related information stored in a storage unit shown in FIG. 5.
  • FIG. 1 It is a flowchart which shows the operation procedure of the air conditioner which concerns on Embodiment 1 of this invention. It is a figure which shows one structural example of the principal part of the indoor unit in the air conditioner which concerns on Embodiment 2 of this invention. It is a block diagram for explaining the control which the control device in the air conditioner concerning Embodiment 2 of the present invention performs. It is a figure which shows one structural example of the principal part of the indoor unit in the air conditioner which concerns on Embodiment 3 of this invention. It is a block diagram for demonstrating the control which the control apparatus in the air conditioner which concerns on Embodiment 3 of this invention performs. It is a flowchart which shows the operation procedure of the air conditioner which concerns on Embodiment 3 of this invention. FIG.
  • FIG. 13 is a diagram for explaining an example of static pressure related information stored in the storage unit shown in FIG. 12 in the air conditioner according to Embodiment 4 of the present invention. It is a figure which shows one structural example of the principal part of the indoor unit in the air conditioner which concerns on Embodiment 5 of this invention. It is a schematic diagram which shows an example of the damper shown in FIG. It is a block diagram for demonstrating the control which the control apparatus in the air conditioner which concerns on Embodiment 5 of this invention performs. It is a flowchart which shows the operation procedure of the air conditioner which concerns on Embodiment 5 of this invention.
  • FIG. 1 is a diagram showing a configuration example of an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes an outdoor unit 20, an indoor unit 30, a duct 5 connected to the indoor unit 30, a branch duct 14 in which the duct 5 is branched into a plurality, and each branch duct 14 And a damper 15 provided at the blow-out port 7.
  • the plurality of dampers 15 are connected to the air conditioning target space SP.
  • a room temperature sensor 34 that detects the room temperature of the room to be the air conditioning target space SP is installed in the air conditioning target space SP.
  • the number of outlets 7 formed in the duct 5 is three, but the number of outlets 7 is not limited to three.
  • the plurality of dampers 15 are connected to the common air conditioning target space SP, different air conditioning target spaces may be connected to each damper 15.
  • the room of the air conditioning target space SP shown in FIG. 1 may be partitioned into a plurality of spaces corresponding to the damper 15.
  • the damper 15 is an air flow control valve whose opening can be adjusted.
  • the damper 15 shown in FIG. 2 is a cylindrical volume damper.
  • the arrow shown in FIG. 2 indicates the flow direction of air.
  • the damper 15 has a handle 51 for adjusting the opening degree, a circular rotary blade 52 attached to the handle 51, and a scale plate 53 having a scale indicating the opening degree.
  • the needle 54 is attached to the handle 51, and when the user turns the handle 51, the position of the needle tip changes according to the rotation angle of the handle 51.
  • the user can finely adjust the air volume by adjusting the opening degree of the damper 15 not only in the fully open state and the fully closed state but also between the fully open state and the fully closed state while looking at the scale plate 53.
  • the case where the damper 15 is in the fully open state is simply referred to as the open state
  • the case where the damper 15 is in the fully closed state is simply referred to as the closed state.
  • the outdoor unit 20 includes a compressor 21 that compresses and discharges the refrigerant, a flow path switching device 22 that switches the flow direction of the refrigerant, a heat source side heat exchanger 23 that exchanges heat between the refrigerant and the outside air, and decompresses the refrigerant. And a throttling device 25 for expanding.
  • the indoor unit 30 includes a load-side heat exchanger 31 in which the air supplied to the air conditioning target space SP and the refrigerant exchange heat, a fan 2 for sending the air after the heat exchange to the air conditioning target space SP, and a control device 6. It has a remote controller 13.
  • the remote controller 13 is an input device for the user to input instructions such as the operation mode and the set temperature Ts to the air conditioner 1.
  • a fan motor 3 for driving the fan is connected to the fan 2.
  • an inverter 8 is connected to the fan motor 3.
  • the compressor 21, the load-side heat exchanger 31, the expansion device 25, and the heat-source-side heat exchanger 23 are connected by the refrigerant pipe 11 to configure the refrigerant circuit 10 in which the refrigerant circulates.
  • the compressor 21 is, for example, an inverter type compressor whose capacity can be controlled.
  • the flow path switching device 22 switches the flow path of the refrigerant according to an operation mode such as heating operation or cooling operation.
  • the flow path switching device 22 is, for example, a four-way valve.
  • the expansion device 25 is a device that adjusts the flow rate of the refrigerant.
  • the expansion device 25 is, for example, an electronic expansion valve.
  • the heat source side heat exchanger 23 and the load side heat exchanger 31 are, for example, fin-and-tube heat exchangers.
  • a fan that supplies outside air to the heat source side heat exchanger 23 may be provided in the outdoor unit 20.
  • the control device 6 is provided in the indoor unit 30, but may be provided in the outdoor unit 20.
  • FIG. 4 is a diagram for explaining the configuration of the main part of the indoor unit shown in FIG.
  • the fan 2 is covered with a fan casing 4.
  • the arrow shown in FIG. 4 indicates the flow direction of the air sent by the fan 2.
  • the shaft of the fan 2 is connected to the fan motor 3.
  • the fan motor 3 is connected to the inverter 8 via a power line 61.
  • the inverter 8 is connected to the control device 6 via a signal line 62.
  • the inverter 8 is provided with an ammeter 18 for detecting the secondary current I of the inverter 8.
  • the secondary current I of the inverter 8 corresponds to the input current of the fan motor 3.
  • the inverter 8 switches the power supplied to the fan motor 3 according to the frequency Fj designated by the control device 6.
  • the flow of the refrigerant in the refrigerant circuit 10 shown in FIG. 3 will be described.
  • the flow path switching device 22 switches the flow path so that the refrigerant discharged from the compressor 21 flows into the heat source side heat exchanger 23 according to the instruction of the control device 6. ..
  • the compressor 21 compresses the low temperature and low pressure refrigerant and discharges the high temperature and high pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 21 flows into the heat source side heat exchanger 23 via the flow path switching device 22.
  • the heat source side heat exchanger 23 the refrigerant is condensed by exchanging heat with the outside air, becomes a low temperature and high pressure liquid refrigerant, and flows out from the heat source side heat exchanger 23.
  • the liquid refrigerant becomes low-temperature and low-pressure liquid refrigerant by the expansion device 25.
  • the low-temperature low-pressure liquid refrigerant flows into the load-side heat exchanger 31.
  • the refrigerant evaporates by exchanging heat with air to become a low-temperature low-pressure gas refrigerant.
  • the load side heat exchanger 31 the refrigerant absorbs heat from the air, so that the air supplied to the air conditioning target space SP by the fan 2 is cooled.
  • the refrigerant after the heat exchange flows out of the load side heat exchanger 31 and is sucked into the compressor 21 via the flow path switching device 22. While the air conditioner 1 is performing the cooling operation, the refrigerant discharged from the compressor 21 is sucked into the compressor 21 after sequentially flowing through the heat source side heat exchanger 23, the expansion device 25, and the load side heat exchanger 31. Cycle is repeated.
  • the flow path switching device 22 switches the flow path according to the instruction of the control device 6 so that the refrigerant discharged from the compressor 21 flows into the load side heat exchanger 31. ..
  • the high temperature and high pressure gas refrigerant discharged from the compressor 21 flows into the load side heat exchanger 31 via the flow path switching device 22.
  • the load-side heat exchanger 31 the refrigerant is condensed by exchanging heat with air, and becomes a medium-temperature high-pressure liquid refrigerant.
  • the heat radiated by the refrigerant to the air warms the air supplied to the air conditioning target space SP by the fan 2.
  • the liquid refrigerant flows out of the load side heat exchanger 31 and flows into the expansion device 25.
  • the liquid refrigerant becomes low-temperature and low-pressure liquid refrigerant by the expansion device 25.
  • the low-temperature low-pressure liquid refrigerant flows into the heat source side heat exchanger 23.
  • the refrigerant evaporates by exchanging heat with the outside air, becomes a low temperature and low pressure gas refrigerant, and flows out from the heat source side heat exchanger 23.
  • the refrigerant flowing out of the heat source side heat exchanger 23 is sucked into the compressor 21 via the flow path switching device 22. While the air conditioner 1 is performing the heating operation, the refrigerant discharged from the compressor 21 flows through the load side heat exchanger 31, the expansion device 25, and the heat source side heat exchanger 23 in this order, and is then sucked into the compressor 21. Cycle is repeated.
  • FIG. 5 is a block diagram for explaining control performed by the control device shown in FIG.
  • the control device 6 includes a memory 33 that stores a program and a CPU (Central Processing Unit) 32 that executes the program.
  • the control device 6 receives detection values from the ammeter 18 and the room temperature sensor 34.
  • the control device 6 may receive detection values from the ammeter 18 and the room temperature sensor 34 at regular intervals.
  • the control device 6 receives from the remote controller 13 an instruction signal including the contents input by the user operating the remote controller 13.
  • the control device 6 has a refrigeration cycle control means 41, a storage means 42, a calculation means 43, and a fan motor control means 44.
  • the storage means 42 is a part of the memory 33.
  • the refrigeration cycle control means 41 controls the flow path switching device 22 according to the set operation mode.
  • the refrigeration cycle control means 41 controls the refrigeration cycle of the refrigerant circulating in the refrigerant circuit 10 so that the detection value of the room temperature sensor 34 approaches the set temperature Ts.
  • the refrigeration cycle control means 41 controls the operating frequency of the compressor 21 and the opening degree of the expansion device 25.
  • the refrigeration cycle control means 41 notifies the calculation means 43 of the air volume Q0 set by the user via the remote controller 13.
  • the air conditioner 1 has a detection means 9 for detecting the air volume Q of the fan 2, as shown in FIG.
  • the detection means 9 comprises a storage means 42, an ammeter 18 and a calculation means 43.
  • the storage means 42 stores a table showing the relationship among the air volume Q of the fan 2, the secondary current I of the inverter 8 and the rotation speed of the fan motor 3. In the first embodiment, a case will be described in which the table stored in the storage unit 42 describes the frequency F of the inverter 8 instead of the rotation speed of the fan motor 3.
  • the storage means 42 also stores static pressure related information indicating the relationship between the static pressure of the duct 5, the air volume Q, and the rotation speed of the fan motor 3.
  • the static pressure related information stored in the storage unit 42 includes the frequency F of the inverter 8 instead of the rotation speed of the fan motor 3 will be described.
  • the table stored in the storage unit 42 will be referred to as an IQF relation table.
  • the calculating means 43 obtains the air volume Q of the fan 2 from the secondary side current I detected by the ammeter 18 and the IQF relation table stored in the storage means 42. Further, the calculation means 43 makes the air volume Q of the fan 2 equal to the air volume Q0 notified from the refrigeration cycle control means 41, and the frequency of the inverter 8 for keeping the air volume Q constant from the obtained air volume Q and the static pressure related information. Find Fj. j is a positive integer of 0 or more. The calculation means 43 notifies the fan motor control means 44 of the obtained frequency Fj of the inverter 8. The fan motor control means 44 controls the rotation speed of the fan motor 3 so that the air volume of the fan 2 becomes constant with respect to changes in the opening degrees of the plurality of dampers 15. In the first embodiment, the fan motor control unit 44 controls the rotation speed of the fan motor 3 by designating the frequency Fj notified from the calculation unit 43 to the inverter 8.
  • FIG. 6 is a diagram showing an example of a table stored in the storage means shown in FIG.
  • the IQF relation table describes the secondary current I and the air volume Q of the inverter 8 corresponding to the frequency F.
  • the frequency Fj is changed to make the air volume Q constant when the secondary current I changes.
  • the frequency Fj is F 1
  • the secondary current I rises from the range of I 1-1 to I 1-2 to the range of I 1-2 to I 1-3 , so that the air volume Q is Q.
  • the frequency Fj is reduced from F 1 to F 0 and the secondary current I is reduced within the range of I 0-1 to I 0-2 , whereby the air volume Q returns to Q 12 .
  • the IQF relationship table shown in FIG. 6 is an example, and the relationship between the air volume Q, the secondary side current I, and the frequency Fj depends on the flow path length of the duct 5, the size and shape of the flow path cross section, and the like. It may be different from the case of 6.
  • FIG. 7 is a diagram for explaining an example of static pressure related information stored in the storage unit shown in FIG.
  • the vertical axis of FIG. 7 is the static pressure P in the duct 5, and the horizontal axis is the air volume Q.
  • the frequency F of the inverter 8 is written in the static pressure related information.
  • the air volume Q ⁇ 0 is used as a reference value.
  • the range of the air volume Q ⁇ 0 ⁇ ⁇ is an air volume range Qr which is considered to be a range substantially equivalent to the air volume Q ⁇ 0.
  • the frequency Fj is changed to keep the air volume Q constant.
  • the air volume Q decreases to Q ⁇ 1.
  • the frequency Fj is changed to the frequency Fj1
  • the air volume Q is restored to the air volume Q ⁇ 2.
  • the frequency Fj is set to the frequency Fj2
  • the air volume Q increases and enters the air volume range Qr. In this way, by referring to the static pressure related information, even if the air volume Q deviates from the air volume range Qr, the frequency F for returning the air volume Q to the air volume range Qr can be determined.
  • FIG. 8 is a flowchart which shows the operation procedure of the air conditioner which concerns on Embodiment 1 of this invention. A case where the user operates the remote controller 13 to set the air volume Q ⁇ 0 when the air conditioner 1 is activated will be described.
  • the operation mode of the air conditioner 1 may be heating or cooling.
  • the control device 6 receives the secondary side current I from the ammeter 18.
  • the calculation unit 43 obtains the air volume Q of the fan 2 from the secondary side current I and the IQF relation table stored in the storage unit 42 (step S101).
  • the calculation means 43 use the detection value received from the ammeter 18 after a certain time ⁇ 0 has elapsed from the start of operation of the air conditioner 1.
  • the time ⁇ 0 is a stable time until the rotation of the fan 2 stabilizes.
  • the time ⁇ 0 is, for example, 10 to 30 seconds.
  • the calculating unit 43 determines the initial stage frequency F ⁇ 0 of the inverter 8 by referring to the IQF relation table stored in the storage unit 42 so that the obtained air amount Q becomes the set air amount Q ⁇ 0 (step S40). S102).
  • the storage means 42 stores the frequency F ⁇ 0 at the initial stage.
  • the calculation means 43 notifies the fan motor control means 44 of the determined frequency F ⁇ 0.
  • the fan motor control means 44 assigns the frequency F ⁇ 0 to the inverter 8.
  • the open / closed state here is information indicating whether the damper 15 is in the open state or the closed state.
  • the resistance of the air flowing through the duct 5 varies depending on the open / close state of the plurality of dampers 15 provided on the outlet side of the duct 5. The larger the number of dampers 15 in the open state, the smaller the air resistance tends to be, and the larger the number of dampers 15 in the closed state, the larger the air resistance tends to become.
  • the amount of air resistance in the duct 5 affects the air volume Q.
  • the static pressure of the air-conditioned space SP into which air flows from the plurality of dampers 15 also affects the air volume Q. Therefore, when the air volume Q is set to the air volume Q ⁇ 0 by the user, the calculating unit 43 needs to obtain the air volume Q according to the open / close state of the plurality of dampers 15 in the initial stage after the operation of the air conditioner 1 is started. There is.
  • the calculation means 43 obtains the air volume Q in a fixed cycle and determines whether or not the air volume Q is in the air volume range Qr based on the air volume Q ⁇ 0 (step S103). If the air volume Q is within the air volume range Qr, the calculation means 43 determines that the air volume Q is constant, and returns to step S103. On the other hand, when the air volume Q is out of the air volume range Qr, the calculation means 43 determines that the air volume Q is not constant. In step S103, as an example of the situation in which the air volume Q changes, the opening of at least one damper 15 among the plurality of dampers 15 shown in FIG. 1 changes, so that the static pressure in the duct 5 varies. It can occur. Further, when the number of dampers 15 in the closed state increases, the rotation of the fan motor 3 is restricted, and the secondary current I of the inverter 8 may increase.
  • step S103 when the air volume Q is out of the air volume range Qr, the calculation unit 43 refers to the static pressure related information and determines the frequency Fj of the inverter 8 at which the air volume Q falls within the air volume range Qr (step S104). .. Specifically, the calculating means 43 increases the frequency Fj when the obtained air volume Q is smaller than the air volume range Qr. The calculating means 43 reduces the frequency Fj when the obtained air volume Q is larger than the air volume range Qr. The calculation means 43 notifies the fan motor control means 44 of the determined frequency Fj. The fan motor control means 44 assigns the frequency Fj to the inverter 8.
  • the air volume Q ⁇ 0 serving as the reference value may be the air volume stored in advance in the storage unit 42.
  • the storage unit 42 stores the air volume Q when the air conditioner 1 is finally stopped, and the air volume Q stored in the storage unit 42 is used as a reference for the air volume Q when the air conditioner 1 is next started. It may be a value.
  • the storage unit 42 may store not only the air volume Q ⁇ 0 serving as the reference value but also the frequency F ⁇ 0 corresponding to the air volume Q ⁇ 0.
  • the air conditioning target space SP is a work space of a manufacturing factory and a plurality of workers work side by side along the manufacturing line. And in this case, the damper 15 shall be arrange
  • the damper 15 at the place where the worker is absent is closed.
  • the static pressure of the duct 5 changes.
  • An operator who remains in the production line and works may increase the air volume Q hitting himself and feel uncomfortable.
  • the air conditioner 1 is in the cooling operation, the worker feels cold as the air volume Q increases.
  • the number of workers may vary depending on the products in the manufacturing process that flow through the manufacturing line.
  • the number of workers when manufacturing the product A is smaller than the number of workers when manufacturing the product B
  • the product flowing on the manufacturing line is switched from the product A to the product B
  • the damper 15 is opened.
  • the static pressure of the duct 5 changes. If the air volume Q when the product A is flowing in the manufacturing line is maintained, the worker who is involved in the manufacturing operation of the product B may feel the air volume Q uncomfortable.
  • the air conditioner 1 is in the cooling operation, the worker feels sultry as the air volume Q decreases.
  • the air conditioner 1 rotates the fan motor 3 so that the air volume Q becomes constant with respect to the change in the opening degree of the detection unit 9 and the dampers 15 that detect the air volume of the fan 2. And a fan motor control means 44 for controlling the number.
  • the rotation speed of the fan motor 3 is controlled so that the air volume becomes constant on the basis of the air volume detected by the detection means 9 with respect to the static pressure fluctuation. Therefore, the controllability of the rotation of the fan 2 is improved corresponding to the change in the air volume.
  • the rotation of the fan 2 is controlled so that the air volume in the duct 5 automatically becomes constant even if the opening degree of any one of the dampers 15 changes. Therefore, even if there is a static pressure change due to a change in the opening degree of the damper 15, the change in the air volume from the damper 15 is suppressed, and it is possible to prevent the person in the air conditioning target space SP from feeling uncomfortable.
  • the calculation unit 43 calculates the air volume Q of the fan 2 from the detected value of the secondary current I of the inverter 8 by the ammeter 18 and the table stored in the storage unit 42.
  • the secondary side current of the inverter 8 is the input current of the fan motor 3, and reflects the actual rotation of the fan motor 3. As a result, it is possible to obtain a value that is closer to the actual air volume.
  • Embodiment 2 In the air conditioner of the second embodiment, the detection unit detects the air volume of the duct as the air volume of the fan.
  • the same components as those described in the first embodiment will be designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 9 is a figure which shows one structural example of the principal part of the indoor unit in the air conditioner which concerns on Embodiment 2 of this invention.
  • FIG. 10 is a block diagram for explaining control performed by the control device in the air-conditioning apparatus according to Embodiment 2 of the present invention. In the second embodiment, points different from the first embodiment will be described in detail.
  • the duct 5 connected to the indoor unit 30 is provided with detection means 9a for detecting the air volume Q in the duct 5.
  • the detection means 9a is, for example, an air flow sensor.
  • the detection means 9a is connected to the control device 6 by wire or wirelessly.
  • the detecting means 9a detects the air volume Q at a constant cycle.
  • the detection means 9a transmits the detected value to the control device 6.
  • the refrigeration cycle control means 41 notifies the fan motor control means 44 of the air volume Q ⁇ 0 set by the user via the remote controller 13.
  • the fan motor control means 44 controls the rotation speed of the fan motor 3 using the frequency F of the inverter 8 so that the air volume Q received from the detection means 9a is constant at the air volume Q ⁇ 0.
  • the fan motor control unit 44 causes the air volume Q received from the detection unit 9a to fall within a certain air volume range Qr with the air volume Q ⁇ 0 as a reference. Then, the frequency Fj of the inverter 8 is controlled.
  • the fan motor control means 44 increases the frequency Fj.
  • the fan motor control means 44 reduces the frequency Fj.
  • control device 6 may include the storage unit 42 and the calculation unit 43 described in the first embodiment.
  • an air volume sensor that detects the air volume is provided in the duct 5. According to the second embodiment, not only the same effect as that of the first embodiment is obtained, but also the air volume is directly detected, so that the detection accuracy of the air volume of the fan 2 is improved. As a result, the controllability of keeping the air volume constant is further improved.
  • Embodiment 3 the air conditioner described in the first embodiment is provided with a sensor that detects the opening degree of the damper.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 11 is a figure which shows one structural example of the principal part of the indoor unit in the air conditioner which concerns on Embodiment 3 of this invention.
  • FIG. 12 is a block diagram for demonstrating the control which the control apparatus in the air conditioner which concerns on Embodiment 3 of this invention performs.
  • points different from the first embodiment will be described in detail.
  • the air conditioner 1a shown in FIG. 11 has, in addition to the configuration described in the first embodiment, open / close sensors 71a to 71c provided on the dampers 15a to 15c of the plurality of branch ducts 14 and communication connections with the open / close sensors 71a to 71c. And a communication unit 17 that is operated.
  • the communication connection between the open / close sensors 71a to 71c and the communication unit 17 may be wired or wireless. In the case of wireless communication, communication between the open / close sensors 71a to 71c and the communication unit 17 is short-range wireless communication such as Bluetooth (registered trademark).
  • the communication unit 17 is communicatively connected to the control device 6.
  • the communication connection between the communication unit 17 and the control device 6 may be wired or wireless.
  • the communication unit 17 receives the detection values from the open / close sensors 71a to 71c at a constant cycle and transmits the received detection values to the control device 6.
  • the opening / closing sensor 71a detects the opening degree of the damper 15a and transmits the detected value to the communication unit 17.
  • the open / close sensor 71b detects the opening degree of the damper 15b and transmits the detected value to the communication unit 17.
  • the open / close sensor 71c detects the opening degree of the damper 15c and transmits the detected value to the communication unit 17.
  • the storage means 42 stores, in addition to the IQF relation table, opening degree relation information indicating the relation between the open / closed states of the dampers 15a to 15c, the air volume of the duct 5 and the rotation speed of the fan motor 3.
  • the calculation unit 43 determines the rotation speed of the fan motor 3 that keeps the air volume Q constant based on the open / closed states of the dampers 15a to 15c detected by the open / close sensors 71a to 71c and the opening degree relation information stored in the storage unit 42.
  • the opening degree relation information stored in the storage unit 42 includes the frequency F of the inverter 8 instead of the rotation speed of the fan motor 3, and the calculation unit 43 keeps the air volume Q constant. A case of determining the frequency F will be described.
  • FIG. 13 is a flowchart which shows the operation procedure of the air conditioner which concerns on Embodiment 3 of this invention.
  • the operation mode of the air conditioner 1 may be heating or cooling.
  • a case where the user operates the remote controller 13 to set the air volume Q ⁇ 0 when the air conditioner 1 is activated will be described.
  • the communication unit 17 transmits the detection values of the open / close sensors 71a to 71c to the control device 6.
  • the calculation means 43 calculates the number N0 of dampers in the open state from the detection values of the open / close sensors 71a to 71c. Then, the calculation means 43 stores the number N0 of dampers in the open state in the storage means 42 as the reference value in the initial stage (step S201). Further, as in the first embodiment, the calculation unit 43 includes a detection value received from the ammeter 18 after a certain time ⁇ 0 has elapsed from the start of operation of the air conditioner 1 and an IQF relation table stored in the storage unit 42. Then, the air volume Q of the fan 2 is obtained (step S202).
  • the calculation means 43 determines the frequency F ⁇ 0 at the initial stage of the inverter 8 by referring to the IQF relation table stored in the storage means 42 so that the air volume Q becomes the air volume Q ⁇ 0 (step S203).
  • the calculation means 43 notifies the fan motor control means 44 of the determined frequency F ⁇ 0.
  • the fan motor control means 44 assigns the frequency F ⁇ 0 to the inverter 8.
  • the calculation unit 43 receives the detection values from the open / close sensors 71a to 71c via the communication unit 17 at a constant cycle, and determines whether the number Nk of dampers in the open state changes from the reference value N0 (Ste S204). Specifically, the calculating unit 43 calculates the number Nk of dampers in the current open state from the detection values received from the open / close sensors 71a to 71c and the reference value N0 of the dampers in the initial open state. When the number Nk of dampers in the open state matches the reference value N0, the calculation means 43 determines that the air volume Q is constant and returns to step S204. On the other hand, when the number Nk of dampers in the open state does not match the reference value N0, the calculation means 43 determines that the air volume Q is not constant.
  • the calculating means 43 adds 1 to the reference value N0 when the number of dampers in the open state increases by 1, and subtracts 1 from the reference value N0 when the number of dampers in the closed state increases by 1.
  • step S204 when the number Nk of dampers in the open state does not match the reference value N0, the calculation unit 43 refers to the opening degree relation information, and when the number Nk of the dampers in the current open state becomes the air volume Q ⁇ 0, The frequency Fj of the inverter 8 is determined (step S205). Specifically, the calculation unit 43 increases the frequency Fj when the damper number Nk in the open state is larger than the reference value N0. The calculating means 43 reduces the frequency Fj when the number Nk of dampers in the open state is smaller than the reference value N0. The calculation means 43 notifies the fan motor control means 44 of the determined frequency Fj. The fan motor control means 44 assigns the frequency Fj to the inverter 8.
  • the air-conditioned space SP shown in FIG. 11 is used as a working space
  • a plurality of workers who work along the manufacturing line freely open and close dampers near them, so that static pressure is applied to the duct 5. Fluctuations may occur. Even in such a case, in the air conditioner 1a of the third embodiment, the air volume is automatically adjusted so that the air volume Q becomes constant. Therefore, each worker can work without discomfort.
  • the case where the communication unit 17 is provided has been described, but the open / close sensors 71a to 71c and the control device 6 may be directly connected for communication. Further, although the case where the detection values of the open / close sensors 71a to 71c are signals indicating either the open state or the closed state has been described, the signals indicating the opening degrees of the dampers 15a to 15c may be used. Further, although the third embodiment has been described based on the air conditioner of the first embodiment, it may be applied to the air conditioner of the second embodiment.
  • the air conditioner 1a has a constant air volume based on the opening / closing sensors 71a to 71c provided on the plurality of dampers 15a to 15c and the detected opening degree of each damper and the opening degree relation information.
  • the current opening degrees of the dampers 15a to 15c are obtained from the detection values of the opening / closing sensors 71a to 71c.
  • the number of rotations of the fan 2 that keeps the air volume constant can be obtained more accurately from the obtained overall opening degree and the opening degree relation information.
  • the air volume is made constant according to the number of dampers in the open state set by the user.
  • the same components as those described in Embodiments 1 and 3 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the storage unit 42 stores static pressure relationship information indicating the relationship between the static pressure of the duct 5, the air volume of the duct 5, and the rotation speed of the fan motor 3. Also in the fourth embodiment, the static pressure related information stored in the storage unit 42 includes the frequency F of the inverter 8 instead of the rotation speed of the fan motor 3, and the calculation unit 43 keeps the air volume Q constant. A case of determining the frequency F will be described.
  • the refrigeration cycle control unit 41 When the user operates the remote controller 13 and inputs the number Nset of dampers set to the open state and the air volume Q ⁇ 0 as the air volume to be set, the refrigeration cycle control unit 41 notifies the calculation unit 43 of the damper number Nset and the air volume Q ⁇ 0. To do.
  • Nset may be the total number of all the dampers 15a to 15c. In the case of the configuration example shown in FIG. 11, the total number of dampers 15a to 15c is three.
  • the calculation means 43 refers to the IQF relation table and the static pressure relation information, and obtains the frequency F ⁇ 0 at which the air volume Q of the duct 5 becomes the air volume Q ⁇ 0 when the Nset dampers are in the open state.
  • the calculating unit 43 calculates the air volume Q ⁇ c per damper according to the following equation (1).
  • Q ⁇ c Q ⁇ 0 / Nset (1)
  • the calculation unit 43 stores the air volume Q ⁇ k calculated by the equation (2) in the storage unit 42 as the reference air volume.
  • the calculation unit 43 obtains the frequency F ⁇ 0 that becomes the air volume Q ⁇ k based on the air volume Q ⁇ k and the static pressure relation information, and notifies the fan motor control unit 44 of the frequency F ⁇ 0.
  • the calculating means 43 determines that the number Nk of dampers in the open state has changed from the detection values received from the open / close sensors 71a to 71c, the calculating means 43 newly calculates the air volume Q ⁇ k according to the equation (2). Letting the newly calculated air volume Q ⁇ k be Q ⁇ n, the calculation unit 43 updates the air volume Q ⁇ n to the reference air volume stored in the storage unit 42.
  • the calculating unit 43 sets the air amount range Qr in which a certain range is regarded as a range substantially equivalent to the air amount Q ⁇ n based on the air amount Q ⁇ n, and stores the air amount range Qr including the air amount Q ⁇ n in the storage unit 42.
  • the calculation unit 43 obtains the frequency Fn0 that becomes the air volume Q ⁇ n based on the air volume Q ⁇ n and the static pressure relation information, and notifies the fan motor control unit 44 of the frequency Fn0.
  • FIG. 14 is a diagram for explaining an example of static pressure related information stored in the storage unit shown in FIG. 12 in the air conditioner according to Embodiment 4 of the present invention.
  • the vertical axis of FIG. 14 is the static pressure P in the duct 5, and the horizontal axis is the air volume Q.
  • the frequency F of the inverter 8 is written in the static pressure related information.
  • the frequency Fj is changed to keep the air volume Q constant.
  • the air volume Q decreases to Q ⁇ 3.
  • the reference air volume is updated from the air volume Q ⁇ 0 to the air volume Q ⁇ n.
  • the frequency Fj is set to the frequency Fn0, the air volume Q recovers to the air volume Q ⁇ 4.
  • the range of the air volume Q ⁇ n ⁇ ⁇ is the air volume range Qr based on the air volume Q ⁇ n.
  • the air volume Q ⁇ 4 is within the air volume range Qr. In this way, by referring to the static pressure related information, it is possible to determine the frequency F for returning the air volume Q to the air volume range Qr even if the reference air volume is updated due to the static pressure variation.
  • the operation of the air conditioner of the fourth embodiment is the same as the procedure described with reference to FIG. 8 except for the processes in steps S201 and S205 shown in FIG. 13, and thus detailed description thereof will be omitted.
  • the number of dampers N0 is set to the number of dampers Nset in step S201 shown in FIG. 13, and when the number of dampers Nk in the open state changes in step S204, the calculation unit 43 causes the calculation means 43 to perform step S205.
  • the reference air volume is updated using equation (2).
  • the difference between the reference air volume Q ⁇ 0 at the initial stage and the updated reference air volume Q ⁇ n is larger than the range ⁇ .
  • the reference air volume is within the air volume range Qr of the reference air volume Q ⁇ 0.
  • Q ⁇ n may belong.
  • the air volume in the duct 5 is also kept constant.
  • the detection values of the open / close sensors 71a to 71c are signals indicating either the open state or the closed state has been described, but it is a signal indicating the opening degrees of the dampers 15a to 15c. May be.
  • the detecting means 9 may be the detecting means 9a described in the second embodiment.
  • the calculation means 43 changes the opening degree of the dampers 15a to 15c detected by the opening / closing sensors 71a to 71c
  • the reference air volume is changed based on the static pressure related information.
  • the number of rotations of the fan motor 3 for keeping the air volume constant is obtained.
  • the rotation speed of the fan 2 is controlled so that the air volume of each damper becomes constant based on the reference air volume set by the user.
  • the reference air volume in the duct 5 is updated according to the number of open dampers. Therefore, the air volume of each damper in the open state is controlled to be constant before and after the change in the number of dampers in the open state. Even if the opening degree of any one of the dampers 15a to 15c changes, the change in the air volume of each damper is suppressed, so that the person near the damper does not feel uncomfortable.
  • Embodiment 5 the air conditioner described in the third embodiment is provided with a human sensor for detecting whether or not there is a person within a certain range from the position of the damper 15.
  • the same components as those described in the first and third embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 15 is a figure which shows one structural example of the principal part of the indoor unit in the air conditioner which concerns on Embodiment 5 of this invention.
  • points different from the third embodiment will be mainly described.
  • the air conditioner 1b shown in FIG. 15 has, in addition to the configuration described in the first and third embodiments, a plurality of motion sensors for detecting whether or not there is a person within a certain range from the positions of the dampers 15a to 15c. 81a to 81c.
  • the human sensors 81a to 81c are communicatively connected to the communication unit 17.
  • the communication connection between the motion sensors 81a to 81c and the communication unit 17 may be wired or wireless.
  • the communication unit 17 receives the detected values from the human sensors 81a to 81c at a constant cycle and transmits the received detected values to the control device 6.
  • a range ar1 is a range in which the presence sensor 81a detects the presence or absence of a person
  • a range ar2 is a range in which the presence sensor 81b detects the presence or absence of a person
  • a range ar3 is a presence sensor.
  • 81c is a range for detecting the presence or absence of a person.
  • FIG. 16 is a schematic diagram showing an example of the damper shown in FIG.
  • the damper 15a has a rotary blade 52 whose opening is adjusted by rotating about a shaft, and a damper drive unit 55 which drives the rotary blade 52.
  • the damper drive unit 55 is communicatively connected to the control device 6 via the communication unit 17.
  • the communication connection between the damper drive unit 55 and the communication unit 17 may be wired or wireless.
  • the damper drive unit 55 has a stepping motor 56.
  • the rotating shaft of the stepping motor 56 and the rotating blade 52 are connected by a belt.
  • the rotary blade 52 rotates as the stepping motor 56 rotates.
  • the stepping motor 56 rotates according to the rotation angle designated by the control device 6. For example, when the rotation angle is 0 degree, the stepping motor 56 does not drive the rotating blades 52 and maintains the damper 15a in the closed state. When the rotation angle is 90 degrees, the stepping motor 56 drives the rotary blade 52 to open the damper 15a.
  • FIG. 17 is a block diagram for explaining control performed by the control device in the air-conditioning apparatus according to Embodiment 5 of the present invention.
  • the control device 6 includes a damper control unit 45 that controls a damper drive unit 55 provided in each of the dampers 15a to 15c.
  • the damper control means 45 receives the detection values of the human presence sensors 81a to 81c via the communication unit 17, and controls the damper drive unit 55 to close the damper opening degree when the human presence sensor detects that there is no person. Put in a state.
  • the damper control means 45 transmits a control signal designating a rotation angle of 0 degree to the damper drive unit 55 of the damper, which is detected by the motion sensor as a person.
  • FIG. 18 is a flowchart which shows the operation procedure of the air conditioner which concerns on Embodiment 5 of this invention.
  • the operation mode of the air conditioner 1b may be heating or cooling.
  • a case where the user operates the remote controller 13 to set the air volume Q ⁇ 0 when the air conditioner 1b is activated will be described. Since steps S301 to S303 shown in FIG. 18 are similar to steps S201 to S203 described with reference to FIG. 13, detailed description thereof will be omitted here.
  • step S303 when the calculating means 43 determines the initial frequency F ⁇ 0 of the inverter 8, the calculating means 43 notifies the fan motor control means 44 of the determined frequency F ⁇ 0.
  • the fan motor control means 44 assigns the frequency F ⁇ 0 to the inverter 8.
  • the damper control means 45 receives the detection values from the motion sensors 81a to 81c via the communication unit 17 at a constant cycle, and determines whether or not the number of detected people changes (step S304). If there is no change in the number of people detected, the damper control unit 45 returns to the process of step S304. On the other hand, when there is a change in the number of people detected, the damper control means 45 controls the damper drive unit 55 provided in the damper, which is detected by the motion sensor that the person is absent, and opens the damper. The state is switched to the closed state (step S305).
  • the calculating means 43 determines that the number Nk of the open dampers has changed from the detection values received from the open / close sensors 71a to 71c at a constant cycle, it calculates the number Nk of the open dampers (step S306). ). Subsequently, the calculation unit 43 refers to the opening degree relation information, and determines the frequency Fj of the inverter 8 that becomes the air volume Q ⁇ 0 in the case of the number Nk of the dampers in the current open state (step S307). The calculation means 43 notifies the fan motor control means 44 of the determined frequency Fj. The fan motor control means 44 assigns the frequency Fj to the inverter 8.
  • the damper is automatically closed even if the operator does not close the damper near him.
  • static pressure fluctuations occur in the duct 5 by automatically closing the damper, the air volume is automatically adjusted so that the air volume Q becomes constant. Therefore, the person who is working can work without discomfort.
  • the damper control unit 45 detects that there is a person by the motion sensor when the number of people detected by the motion sensor increases. You may control a damper to an open state.
  • the case where the communication unit 17 is provided has been described, but the plurality of damper drive units 55 and the motion sensors 81a to 81c and the control device 6 may be directly connected for communication.
  • the fifth embodiment has been described based on the air conditioner of the third embodiment, it may be applied to the air conditioner of the fourth embodiment, and the detection means 9 will be described in the second embodiment. It may be the detecting means 9a.
  • the air conditioner 1b includes a plurality of motion sensors 81a to 81c that detect whether or not there is a person within a certain range from the positions of the dampers, and the dampers according to the detection results of the motion sensors. And a damper control means 45 for controlling the open / closed state.
  • the damper when there is no person near the damper, the damper automatically switches to the closed state, and the air volume can be kept constant even if the number of dampers in the opened state changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

空気調和機は、空調対象空間に空気を送り出すファンと、ファンを駆動させるファンモータと、複数の吹き出し口が形成され、ファンによって送り出される空気が流通するダクトと、ファンの風量を検出する検出手段と、複数の吹き出し口のそれぞれに設けられたダンパーと、複数のダンパーの開度の変化に対して、風量が一定になるようにファンモータの回転数を制御するファンモータ制御手段とを有するものである。

Description

空気調和機
 本発明は、室内機から空調対象空間に空気を供給する空気調和機に関する。
 従来、静圧検知器を使用せずに、機外静圧および風量を算出し、室内機の送風機の回転を制御する空気調和装置がある(例えば、特許文献1参照)。特許文献1に開示された空気調和装置は、送風機の回転数から得られる機外静圧と、予め記憶された定格風量制御時の機外静圧とに基づいて送風機の回転を制御する。
国際公開第2010/131336号
 特許文献1に開示された空気調和装置は、ダクトの開度の変化に起因して静圧変動が発生する場合、風量の変化を検出せずに、機外静圧から送風機に必要な回転数を算出する。そのため、静圧変動が生じる度に算出される回転数の誤差が大きくなるおそれがある。
 本発明は、上記のような課題を解決するためになされたもので、静圧変動に対応してファンの回転数の制御性を向上させた空気調和機を提供するものである。
 本発明に係る空気調和機は、空調対象空間に空気を送り出すファンと、前記ファンを駆動させるファンモータと、複数の吹き出し口が形成され、前記ファンによって送り出される前記空気が流通するダクトと、前記ファンの風量を検出する検出手段と、前記複数の吹き出し口のそれぞれに設けられたダンパーと、複数の前記ダンパーの開度の変化に対して、前記風量が一定になるように前記ファンモータの回転数を制御するファンモータ制御手段と、を有するものである。
 本発明によれば、静圧変動に対して、検出手段が検出する風量を基に風量が一定になるようにファンモータの回転数を制御する。そのため、風量の変化に対応してファンの回転の制御性が向上する。
本発明の実施の形態1に係る空気調和機の一構成例を示す図である。 図1に示したダンパーの一例を示す模式図である。 図1に示した室外機および室内機における冷媒回路の一例を示す図である。 図3に示した室内機の要部の構成を説明するための図である。 図1に示した制御装置が行う制御を説明するためのブロック図である。 図5に示した記憶手段が記憶するテーブルの一例を示す図である。 図5に示した記憶手段が記憶する静圧関係情報の一例を説明するための図である。 本発明の実施の形態1に係る空気調和機の動作手順を示すフローチャートである。 本発明の実施の形態2に係る空気調和機における室内機の要部の一構成例を示す図である。 本発明の実施の形態2に係る空気調和機における制御装置が行う制御を説明するためのブロック図である。 本発明の実施の形態3に係る空気調和機における室内機の要部の一構成例を示す図である。 本発明の実施の形態3に係る空気調和機における制御装置が行う制御を説明するためのブロック図である。 本発明の実施の形態3に係る空気調和機の動作手順を示すフローチャートである。 本発明の実施の形態4に係る空気調和機において、図12に示した記憶手段が記憶する静圧関係情報の一例を説明するための図である。 本発明の実施の形態5に係る空気調和機における室内機の要部の一構成例を示す図である。 図15に示したダンパーの一例を示す模式図である。 本発明の実施の形態5に係る空気調和機における制御装置が行う制御を説明するためのブロック図である。 本発明の実施の形態5に係る空気調和機の動作手順を示すフローチャートである。
実施の形態1.
 本実施の形態1の空気調和機の構成を説明する。図1は、本発明の実施の形態1に係る空気調和機の一構成例を示す図である。図1に示すように、空気調和機1は、室外機20と、室内機30と、室内機30に接続されたダクト5と、ダクト5が複数に分岐した分岐ダクト14と、各分岐ダクト14の吹き出し口7に設けられたダンパー15とを有する。複数のダンパー15は空調対象空間SPに接続されている。空調対象空間SPとなる部屋の室温を検出する室温センサ34が空調対象空間SPに設置されている。
 図1に示す構成例では、ダクト5に形成された吹き出し口7の数が3つの場合を示しているが、吹き出し口7の数は3つに限らない。また、複数のダンパー15は共通の空調対象空間SPに接続されているが、ダンパー15毎に異なる空調対象空間が接続されていてもよい。例えば、図1に示す空調対象空間SPの部屋がダンパー15に対応して複数に仕切られていてもよい。
 図2は、図1に示したダンパーの一例を示す模式図である。ダンパー15は開度が調節できる空気流量制御弁である。図2に示すダンパー15は、円筒式ボリュームダンパーである。図2に示す矢印は空気の流通方向を示す。ダンパー15は、開度調整のためのハンドル51と、ハンドル51に取り付けられた円形の回転羽根52と、開度を示す目盛りが記された目盛り板53とを有する。ハンドル51に針54が取り付けられており、ユーザがハンドル51を回すと、針先の位置がハンドル51の回転角度に応じて変化する。ユーザは、ダンパー15の開度について、全開状態および全閉状態だけでなく、目盛り板53を見ながら全開状態と全閉状態との間で調節することで、風量を微調節できる。以下では、ダンパー15が全開状態の場合を単に開状態と称し、ダンパー15が全閉状態の場合を単に閉状態と称する。
 図3は、図1に示した室外機および室内機における冷媒回路の一例を示す図である。室外機20は、冷媒を圧縮して吐出する圧縮機21と、冷媒の流通方向を切り替える流路切替装置22と、冷媒と外気とが熱交換する熱源側熱交換器23と、冷媒を減圧して膨張させる絞り装置25とを有する。室内機30は、空調対象空間SPに供給される空気と冷媒とが熱交換する負荷側熱交換器31と、熱交換後の空気を空調対象空間SPに送り出すファン2と、制御装置6と、リモートコントローラ13とを有する。リモートコントローラ13は、ユーザが空気調和機1に運転モードおよび設定温度Ts等の指示を入力するための入力装置である。ファン2にはファンを駆動させるファンモータ3が接続されている。また、図3に示す構成例では、ファンモータ3にインバータ8が接続されている。圧縮機21、負荷側熱交換器31、絞り装置25および熱源側熱交換器23が冷媒配管11で接続され、冷媒が循環する冷媒回路10が構成される。
 圧縮機21は、例えば、容量を制御できるインバータ式圧縮機である。流路切替装置22は、暖房運転または冷房運転等の運転モードにしたがって冷媒の流路を切り替える。流路切替装置22は、例えば、四方弁である。絞り装置25は、冷媒の流量を調整する装置である。絞り装置25は、例えば、電子膨張弁である。熱源側熱交換器23および負荷側熱交換器31は、例えば、フィンアンドチューブ式熱交換器である。
 なお、図3に示していないが、熱源側熱交換器23に外気を供給するファンが室外機20に設けられていてもよい。また、図3に示す構成例では、制御装置6は、室内機30に設けられているが、室外機20に設けられていてもよい。
 図4は、図3に示した室内機の要部の構成を説明するための図である。図4に示すように、ファン2はファンケーシング4に覆われている。図4に示す矢印はファン2が送り出す空気の流通方向を示す。ファン2の軸がファンモータ3に接続されている。ファンモータ3は電力線61を介してインバータ8と接続されている。インバータ8は信号線62を介して制御装置6と接続されている。インバータ8には、インバータ8の二次側電流Iを検出する電流計18が設けられている。インバータ8の二次側電流Iはファンモータ3の入力電流に相当する。インバータ8は制御装置6から指定される周波数Fjにしたがって、ファンモータ3に供給する電力をスイッチングする。
 ここで、図3に示した冷媒回路10における冷媒の流れを説明する。はじめに、空気調和機1が冷房運転を行う場合の冷媒の流れを説明する。空気調和機1が冷房運転を行う場合、流路切替装置22は、制御装置6の指示にしたがって、圧縮機21から吐出される冷媒が熱源側熱交換器23に流入するように流路を切り替える。圧縮機21が、低温かつ低圧の冷媒を圧縮して、高温かつ高圧のガス冷媒を吐出する。圧縮機21から吐出されたガス冷媒は、流路切替装置22を経由して、熱源側熱交換器23に流入する。熱源側熱交換器23において、冷媒は、外気と熱交換することで凝縮し、低温かつ高圧の液冷媒となって熱源側熱交換器23から流出する。
 液冷媒は、絞り装置25によって低温かつ低圧の液冷媒になる。低温かつ低圧の液冷媒は、負荷側熱交換器31に流入する。負荷側熱交換器31において、冷媒は、空気と熱交換することで蒸発し、低温かつ低圧のガス冷媒となる。負荷側熱交換器31において、冷媒が空気から吸熱することで、ファン2によって空調対象空間SPに供給される空気が冷却される。熱交換した後の冷媒は、負荷側熱交換器31を流出し、流路切替装置22を介して圧縮機21に吸入される。空気調和機1が冷房運転を行う間、圧縮機21から吐出される冷媒が、熱源側熱交換器23、絞り装置25および負荷側熱交換器31を順に流通した後、圧縮機21に吸引されるまでのサイクルが繰り返される。
 続いて、空気調和機1が暖房運転を行う場合の冷媒の流れを説明する。空気調和機1が暖房運転を行う場合、流路切替装置22は、制御装置6の指示にしたがって、圧縮機21から吐出される冷媒が負荷側熱交換器31に流入するように流路を切り替える。圧縮機21から吐出された高温かつ高圧のガス冷媒は、流路切替装置22を経由して、負荷側熱交換器31に流入する。負荷側熱交換器31において、冷媒は、空気と熱交換することで凝縮され、中温かつ高圧の液冷媒となる。負荷側熱交換器31において、冷媒が空気に放熱することで、ファン2によって空調対象空間SPに供給される空気が暖められる。
 熱交換した後の液冷媒は、負荷側熱交換器31を流出し、絞り装置25に流入する。液冷媒は、絞り装置25によって低温かつ低圧の液冷媒になる。低温かつ低圧の液冷媒は、熱源側熱交換器23に流入する。熱源側熱交換器23において、冷媒は、外気と熱交換することで蒸発し、低温かつ低圧のガス冷媒となって熱源側熱交換器23から流出する。熱源側熱交換器23から流出した冷媒は、流路切替装置22を介して圧縮機21に吸入される。空気調和機1が暖房運転を行う間、圧縮機21から吐出される冷媒が、負荷側熱交換器31、絞り装置25および熱源側熱交換器23を順に流通した後、圧縮機21に吸引されるまでのサイクルが繰り返される。
 次に、図1に示した制御装置6の構成を説明する。図5は、図1に示した制御装置が行う制御を説明するためのブロック図である。図3に示すように、制御装置6は、プログラムを記憶するメモリ33と、プログラムを実行するCPU(Central Processing Unit)32とを有する。図5に示すように、制御装置6は、電流計18および室温センサ34から検出値が入力される。制御装置6は、電流計18および室温センサ34から一定の周期で検出値を受信してもよい。制御装置6は、ユーザがリモートコントローラ13を操作して入力した内容を含む指示信号をリモートコントローラ13から受信する。
 制御装置6は、冷凍サイクル制御手段41、記憶手段42、算出手段43およびファンモータ制御手段44を有する。記憶手段42はメモリ33の一部である。CPU32がプログラムを実行することで、冷凍サイクル制御手段41、算出手段43およびファンモータ制御手段44が構成される。
 冷凍サイクル制御手段41は、設定される運転モードにしたがって流路切替装置22を制御する。冷凍サイクル制御手段41は、室温センサ34の検出値が設定温度Tsに近づくように、冷媒回路10を循環する冷媒の冷凍サイクルを制御する。具体的には、冷凍サイクル制御手段41は、圧縮機21の運転周波数および絞り装置25の開度を制御する。冷凍サイクル制御手段41は、ユーザによってリモートコントローラ13を介して設定される風量Q0を算出手段43に通知する。
 空気調和機1は、図5に示すように、ファン2の風量Qを検出する検出手段9を有する。検出手段9は、記憶手段42、電流計18および算出手段43で構成される。記憶手段42は、ファン2の風量Q、インバータ8の二次側電流Iおよびファンモータ3の回転数の関係を示すテーブルを記憶する。本実施の形態1では、記憶手段42が記憶するテーブルには、ファンモータ3の回転数の代わりに、インバータ8の周波数Fが記載されている場合で説明する。また、記憶手段42は、ダクト5の静圧、風量Qおよびファンモータ3の回転数の関係を示す静圧関係情報を記憶する。本実施の形態1では、記憶手段42が記憶する静圧関係情報には、ファンモータ3の回転数の代わりに、インバータ8の周波数Fが記載されている場合で説明する。以下では、記憶手段42が記憶するテーブルを、IQF関係テーブルと称する。
 算出手段43は、電流計18が検出する二次側電流Iと記憶手段42が記憶するIQF関係テーブルとからファン2の風量Qを求める。また、算出手段43は、ファン2の風量Qが冷凍サイクル制御手段41から通知される風量Q0になるように、求めた風量Qと静圧関係情報とから風量Qを一定にするインバータ8の周波数Fjを求める。jは0以上の正の整数とする。算出手段43は、求めたインバータ8の周波数Fjをファンモータ制御手段44に通知する。ファンモータ制御手段44は、複数のダンパー15の開度の変化に対して、ファン2の風量が一定になるようにファンモータ3の回転数を制御する。本実施の形態1では、ファンモータ制御手段44は、算出手段43から通知される周波数Fjをインバータ8に指定することで、ファンモータ3の回転数を制御する。
 図6は、図5に示した記憶手段が記憶するテーブルの一例を示す図である。図6に示すように、IQF関係テーブルには、周波数Fに対応して、インバータ8の二次側電流Iおよび風量Qが記載されている。図6を参照して、二次側電流Iが変動したときに、周波数Fjを変化させて風量Qを一定にすることを説明する。例えば、周波数FjがFの場合に、二次側電流IがI1-1~I1-2の範囲からI1-2~I1-3の範囲に上昇したことで、風量QがQ12からQ23に上昇する場合を考える。この場合、周波数FjをFからFに下げ、二次側電流IをI0-1~I0-2の範囲に下げることで、風量QがQ12に戻る。
 なお、図6に示すIQF関係テーブルは一例であり、ダクト5の流路の長さ、ならびに流路断面の大きさおよび形状等によって、風量Q、二次側電流Iおよび周波数Fjの関係は図6の場合と異なってもよい。
 図7は、図5に示した記憶手段が記憶する静圧関係情報の一例を説明するための図である。図7の縦軸はダクト5内の静圧Pであり、横軸は風量Qである。図7に示すように、静圧関係情報にインバータ8の周波数Fが書き込まれている。図7において、風量Qα0を基準値とする。風量Qα0を基準として、風量Qα0±βの範囲は風量Qα0と実質的に同等の範囲と見なす風量範囲Qrとする。
 図7を参照して、風量Qが変化したときに、周波数Fjを変化させて風量Qを一定にすることを説明する。周波数Fα0で風量Qα0の状態から静圧Pが上昇すると、風量QがQα1まで低下する。周波数Fjを周波数Fj1にすると、風量Qが風量Qα2まで回復する。さらに、周波数Fjを周波数Fj2にすると、風量Qが増加して風量範囲Qr内に入る。このようにして、静圧関係情報を参照することで、風量Qが風量範囲Qrから外れても、風量Qを風量範囲Qrに戻す周波数Fを決めることができる。
 本実施の形態1の空気調和機1の動作を説明する。図8は、本発明の実施の形態1に係る空気調和機の動作手順を示すフローチャートである。空気調和機1の起動時に、ユーザがリモートコントローラ13を操作して風量Qα0を設定する場合で説明する。空気調和機1の運転モードは、暖房であっても冷房であってもよい。
 空気調和機1が運転を開始すると、制御装置6が電流計18から二次側電流Iを受信する。算出手段43は、二次側電流Iと記憶手段42が記憶するIQF関係テーブルとからファン2の風量Qを求める(ステップS101)。風量Qを求める際、算出手段43は、空気調和機1の運転開始から一定の時間τ0が経過した後に電流計18から受信した検出値を用いることが望ましい。時間τ0は、ファン2の回転が安定するまでの安定時間である。時間τ0は、例えば、10~30秒である。
 続いて、算出手段43は、求めた風量Qが設定された風量Qα0になるように、記憶手段42が記憶するIQF関係テーブルを参照して、インバータ8の初期段階の周波数Fα0を決定する(ステップS102)。記憶手段42は初期段階の周波数Fα0を記憶する。算出手段43は決定した周波数Fα0をファンモータ制御手段44に通知する。ファンモータ制御手段44は、周波数Fα0をインバータ8に指定する。
 ここで、空気調和機1の起動時における、図1に示した3つのダンパー15の開閉状態と風量Qとの関係を考える。ここで言う開閉状態とは、ダンパー15が開状態および閉状態のいずれの状態であるかを示す情報である。ダクト5を流れる空気の抵抗は、ダクト5の出口側に設けられた複数のダンパー15の開閉状態によって異なる。開状態のダンパー15の数が多いほど、空気の抵抗は小さくなる傾向があり、閉状態のダンパー15の数が多いほど、空気の抵抗は大きくなる傾向がある。ダクト5内における空気の抵抗の大きさは風量Qに影響を及ぼす。また、複数のダンパー15から空気が流入する空調対象空間SPの静圧も風量Qに影響を及ぼす。そのため、風量Qがユーザによって風量Qα0に設定された場合、算出手段43は、空気調和機1の運転開始後の初期段階において、複数のダンパー15の開閉状態に応じた風量Qを求めておく必要がある。
 その後、算出手段43は、一定の周期で風量Qを求め、風量Qが風量Qα0を基準とした風量範囲Qrにあるか否かを判定する(ステップS103)。風量Qが風量範囲Qr内にある場合、算出手段43は、風量Qが一定と判断し、ステップS103に戻る。一方、風量Qが風量範囲Qrから外れている場合、算出手段43は、風量Qが一定ではないと判断する。ステップS103において、風量Qが変化する状況の一例として、図1に示した複数のダンパー15のうち、すくなとも1つのダンパー15の開度が変化することで、ダクト5内の静圧に変動が生じることが考えられる。また、閉状態のダンパー15が増えた場合、ファンモータ3の回転が拘束され、インバータ8の二次側電流Iが大きくなることも考えられる。
 ステップS103において、風量Qが風量範囲Qrから外れている場合、算出手段43は、静圧関係情報を参照し、風量Qが風量範囲Qrになる、インバータ8の周波数Fjを決定する(ステップS104)。具体的には、算出手段43は、求めた風量Qが風量範囲Qrより小さい場合、周波数Fjを大きくする。算出手段43は、求めた風量Qが風量範囲Qrより大きい場合、周波数Fjを小さくする。算出手段43は決定した周波数Fjをファンモータ制御手段44に通知する。ファンモータ制御手段44は、周波数Fjをインバータ8に指定する。
 なお、図8では、ユーザがリモートコントローラ13を操作して基準値となる風量Qα0を設定する場合で説明したが、基準値となる風量Qα0は空気調和機1の起動時にユーザが設定する場合に限らない。基準値となる風量Qα0は、記憶手段42が予め記憶した風量であってもよい。また、最後に空気調和機1が運転を停止したときに記憶手段42が風量Qを記憶し、記憶手段42が記憶した風量Qを、空気調和機1が次に起動したときの風量Qの基準値としてもよい。この場合、記憶手段42は、基準値となる風量Qα0だけでなく、風量Qα0に対応する周波数Fα0を記憶してもよい。
 例えば、空調対象空間SPが製造工場の作業空間であり、製造ラインに沿って複数の作業者が並んで作業する場合を考える。そして、この場合において、各作業者の上にダンパー15が配置されているものとする。このような製造ラインにおいて、作業者が順番に休憩をするとき、作業者が不在になる場所のダンパー15が閉じられる。このとき、ダクト5の静圧に変動が生じる。製造ラインに残って作業する作業者は、自分に当たる風量Qが増加して、不快に感じることがある。空気調和機1が冷房運転である場合、作業者は、風量Qが増加することで、寒く感じることになる。
 また、上述した工場の場合において、製造ラインを流れる製造過程の物によって作業者の人数が異なることがある。製品Aを製造する場合の作業者の人数が製品Bを製造する場合の作業者の人数より少ない場合、製造ラインを流れる製品が製品Aから製品Bに切り替わると、作業者が不在だった場所のダンパー15が開かれる。このとき、ダクト5の静圧に変動が生じる。製造ラインに製品Aが流れている場合の風量Qが維持されると、製品Bの製造作業に携わる作業者は、風量Qが減少し、不快に感じることがある。空気調和機1が冷房運転である場合、作業者は、風量Qが減少することで、蒸し暑く感じることになる。
 製造工場において、各作業者が自分の近くのダンパー15を自由に開閉することが原因で、ダクト5に静圧変動が生じても、本実施の形態1では、図8を参照して説明したように、風量Qが一定になるように自動的に風量が調節される。そのため、複数のダンパー15の開度に変化があっても、各作業者は不快にならずに作業できる。
 本実施の形態1の空気調和機1は、ファン2の風量を検出する検出手段9と、複数のダンパー15の開度の変化に対して、風量Qが一定になるようにファンモータ3の回転数を制御するファンモータ制御手段44とを有するものである。
 本実施の形態1によれば、静圧変動に対して、検出手段9が検出した風量を基に風量が一定になるようにファンモータ3の回転数を制御している。そのため、風量の変化に対応してファン2の回転の制御性が向上する。複数のダンパー15のうち、いずれかのダンパー15の開度が変化しても、ダクト5内の風量が自動的に一定になるようにファン2の回転が制御される。そのため、ダンパー15の開度変化に起因する静圧変動があっても、ダンパー15からの風量の変化が抑制され、空調対象空間SPにいる人に不快な感じを生じさせることが抑制される。
 また、本実施の形態1では、算出手段43は、電流計18による、インバータ8の二次側電流Iの検出値と、記憶手段42が記憶するテーブルからファン2の風量Qを算出する。インバータ8の二次側電流は、ファンモータ3の入力電流であり、実際のファンモータ3の回転が反映されている。その結果、実際の風量により近似した値を求めることができる。
実施の形態2.
 本実施の形態2の空気調和機は、検出手段がファンの風量としてダクトの風量を検出するものである。本実施の形態2においては、実施の形態1で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。
 本実施の形態2の空気調和機の構成を説明する。図9は、本発明の実施の形態2に係る空気調和機における室内機の要部の一構成例を示す図である。図10は、本発明の実施の形態2に係る空気調和機における制御装置が行う制御を説明するためのブロック図である。本実施の形態2では、実施の形態1と異なる点を詳細に説明する。
 図9に示すように、室内機30に接続されたダクト5には、ダクト5内の風量Qを検出する検出手段9aが設けられている。検出手段9aは、例えば、風量センサである。検出手段9aは、有線または無線で、制御装置6と通信接続される。検出手段9aは、一定の周期で風量Qを検出する。検出手段9aは検出値を制御装置6に送信する。冷凍サイクル制御手段41は、ユーザによってリモートコントローラ13を介して設定される風量Qα0をファンモータ制御手段44に通知する。ファンモータ制御手段44は、検出手段9aから受信する風量Qが風量Qα0で一定になるように、インバータ8の周波数Fを用いてファンモータ3の回転数を制御する。
 具体的には、ファンモータ制御手段44は、空気調和機1の運転開始時に風量Qα0が設定されると、検出手段9aから受信する風量Qが風量Qα0を基準として一定の風量範囲Qrに入るように、インバータ8の周波数Fjを制御する。検出手段9aの検出値が風量範囲Qrより小さい場合、ファンモータ制御手段44は、周波数Fjを大きくする。一方、検出手段9aの検出値が風量範囲Qrより大きい場合、ファンモータ制御手段44は、周波数Fjを小さくする。
 なお、本実施の形態2の空気調和機1についての動作は、図8に示したステップS103~S104の動作と同様になるため、その詳細な説明を省略する。また、本実施の形態2において、制御装置6は、実施の形態1で説明した記憶手段42および算出手段43を有していてもよい。
 本実施の形態2の空気調和機1は、風量を検出する風量センサがダクト5に設けられたものである。本実施の形態2によれば、実施の形態1と同様な効果が得られるだけでなく、直接に風量が検出されるため、ファン2の風量の検出精度が向上する。その結果、風量を一定にする制御性もより向上する。
実施の形態3.
 本実施の形態3は、実施の形態1で説明した空気調和機において、ダンパーの開度を検出するセンサが設けられたものである。本実施の形態3においては、実施の形態1で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。
 本実施の形態3の空気調和機の構成を説明する。図11は、本発明の実施の形態3に係る空気調和機における室内機の要部の一構成例を示す図である。図12は、本発明の実施の形態3に係る空気調和機における制御装置が行う制御を説明するためのブロック図である。本実施の形態3では、実施の形態1と異なる点を詳細に説明する。
 図11に示す空気調和機1aは、実施の形態1で説明した構成の他、複数の分岐ダクト14のダンパー15a~15cに設けられた開閉センサ71a~71cと、開閉センサ71a~71cと通信接続される通信部17とを有する。開閉センサ71a~71cと通信部17との通信接続は、有線であってもよく、無線であってもよい。無線の場合、開閉センサ71a~71cと通信部17との通信は、例えば、Bluetooth(登録商標)等の近距離無線通信である。通信部17は制御装置6と通信接続される。通信部17と制御装置6との通信接続も、有線であっても無線であってもよい。通信部17は、一定の周期で開閉センサ71a~71cから検出値を受信し、受信した検出値を制御装置6に送信する。
 開閉センサ71aは、ダンパー15aの開度を検出し、検出値を通信部17に送信する。開閉センサ71bは、ダンパー15bの開度を検出し、検出値を通信部17に送信する。開閉センサ71cは、ダンパー15cの開度を検出し、検出値を通信部17に送信する。以下では、開閉センサ71aが、ダンパー15aの開度として、ダンパー15aが開状態および閉状態のいずれの状態であるかを示す信号を出力する場合で説明する。このことは、開閉センサ71bおよび71cについても開閉センサ71aと同様とする。
 記憶手段42は、IQF関係テーブルの他に、ダンパー15a~15cの開閉状態、ダクト5の風量およびファンモータ3の回転数の関係を示す開度関係情報を記憶する。算出手段43は、開閉センサ71a~71cによって検出されるダンパー15a~15cの開閉状態と記憶手段42が記憶する開度関係情報とに基づいて、風量Qを一定にするファンモータ3の回転数を求める。本実施の形態3においても、記憶手段42が記憶する開度関係情報には、ファンモータ3の回転数の代わりに、インバータ8の周波数Fが記載され、算出手段43が風量Qを一定にする周波数Fを決定する場合で説明する。
 次に、本実施の形態3の空気調和機1の動作を説明する。図13は、本発明の実施の形態3に係る空気調和機の動作手順を示すフローチャートである。空気調和機1の運転モードは、暖房であっても冷房であってもよい。空気調和機1の起動時に、ユーザがリモートコントローラ13を操作して風量Qα0を設定する場合で説明する。
 空気調和機1が運転を開始すると、通信部17が開閉センサ71a~71cの検出値を制御装置6に送信する。算出手段43は、開閉センサ71a~71cの検出値から開状態のダンパーの数N0を算出する。そして、算出手段43は、開状態のダンパーの数N0を初期段階の基準値として記憶手段42に記憶させる(ステップS201)。また、算出手段43は、実施の形態1と同様に、空気調和機1の運転開始から一定の時間τ0が経過した後に電流計18から受信する検出値と記憶手段42が記憶するIQF関係テーブルとからファン2の風量Qを求める(ステップS202)。
 続いて、算出手段43は、風量Qが風量Qα0になるように、記憶手段42が記憶するIQF関係テーブルを参照して、インバータ8の初期段階の周波数Fα0を決定する(ステップS203)。算出手段43は決定した周波数Fα0をファンモータ制御手段44に通知する。ファンモータ制御手段44は、周波数Fα0をインバータ8に指定する。
 その後、算出手段43は、一定の周期で通信部17を介して開閉センサ71a~71cから検出値を受信し、開状態のダンパーの数Nkが基準値N0から変化するか否かを判定する(ステップS204)。具体的には、算出手段43は、開閉センサ71a~71cから受信する検出値と、初期状態で開状態のダンパーの基準値N0とから、現在の開状態のダンパーの数Nkを算出する。開状態のダンパーの数Nkが基準値N0と一致する場合、算出手段43は、風量Qが一定と判断し、ステップS204に戻る。一方、開状態のダンパーの数Nkが基準値N0と一致しない場合、算出手段43は、風量Qが一定ではないと判断する。
 ステップS204において、風量Qが変化する状況の一例として、図11に示したダンパー15a~15cのうち、いずれのダンパーの開閉状態が初期段階から変化したことが考えられる。算出手段43は、開状態のダンパーの数が1つ増えた場合、基準値N0に1を加算し、閉状態のダンパーの数が1つ増えた場合、基準値N0から1を減算する。制御時における開状態のダンパーの数Nkは、Nk=N0+(増加した開状態のダンパー数)-(増加した閉状態のダンパー数)の式で算出される。
 ステップS204において、開状態のダンパーの数Nkが基準値N0と一致しない場合、算出手段43は、開度関係情報を参照し、現在の開状態のダンパーの数Nkの場合で風量Qα0になる、インバータ8の周波数Fjを決定する(ステップS205)。具体的には、算出手段43は、開状態のダンパー数Nkが基準値N0より大きい場合、周波数Fjを大きくする。算出手段43は、開状態のダンパー数Nkが基準値N0より小さい場合、周波数Fjを小さくする。算出手段43は決定した周波数Fjをファンモータ制御手段44に通知する。ファンモータ制御手段44は、周波数Fjをインバータ8に指定する。
 例えば、図11に示す空調対象空間SPを作業空間とする製造工場において、製造ラインに沿って作業する複数の作業者が、自分の近くのダンパーを自由に開閉することで、ダクト5に静圧変動が生じることがある。このような場合であっても、本実施の形態3の空気調和機1aでは、風量Qが一定になるように自動的に風量が調節される。そのため、各作業者は不快にならずに作業できる。
 なお、本実施の形態3では、通信部17を設ける場合で説明したが、開閉センサ71a~71cと制御装置6とが直接に通信接続されてもよい。また、開閉センサ71a~71cの検出値が開状態および閉状態のいずれかの状態を示す信号の場合で説明したが、ダンパー15a~15cの開度を示す信号であってもよい。また、本実施の形態3では、実施の形態1の空気調和機をベースにして説明したが、実施の形態2の空気調和機に適用してもよい。
 本実施の形態3の空気調和機1aは、複数のダンパー15a~15cに設けられた開閉センサ71a~71cと、検出される各ダンパーの開度と開度関係情報とに基づいて、風量を一定にするファンモータ3の回転数を決定する算出手段43とを有する。
 本実施の形態3によれば、開閉センサ71a~71cの検出値から現在のダンパー15a~15cの全体の開度が求められる。その結果、求められた全体の開度と開度関係情報とから、風量を一定にするファン2の回転数をより精度よく求めることができる。
実施の形態4.
 本実施の形態4は、実施の形態3で説明した空気調和機において、ユーザが設定する、開状態のダンパー数に対応して風量を一定にするものである。本実施の形態4においては、実施の形態1および3で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。
 本実施の形態4の空気調和機の構成を、図11および図12を参照して説明する。記憶手段42は、IQF関係テーブルの他に、ダクト5の静圧、ダクト5の風量およびファンモータ3の回転数の関係を示す静圧関係情報を記憶する。本実施の形態4においても、記憶手段42が記憶する静圧関係情報には、ファンモータ3の回転数の代わりに、インバータ8の周波数Fが記載され、算出手段43が風量Qを一定にする周波数Fを決定する場合で説明する。
 ユーザがリモートコントローラ13を操作して、開状態に設定するダンパーの数Nsetと、設定する風量として風量Qα0を入力すると、冷凍サイクル制御手段41は、ダンパー数Nsetおよび風量Qα0を算出手段43に通知する。なお、Nsetは全てのダンパー15a~15cの総数であってもよい。図11に示す構成例の場合、ダンパー15a~15cの総数は3つである。
 算出手段43は、IQF関係テーブルおよび静圧関係情報を参照し、Nset個のダンパーが開状態の場合にダクト5の風量Qが風量Qα0となる周波数Fα0を求める。算出手段43は、ダクト5の風量Qが風量Qα0である場合に、1つのダンパーあたりの風量Qαcを、次の式(1)にしたがって算出する。
 Qαc=Qα0/Nset ・・・(1)
 また、算出手段43は、現在の開状態のダンパー数Nkとすると、式(1)で算出した風量Qαcを用いて、開状態のダンパー数Nkに応じた風量Qαkを、次の式(2)にしたがって算出する。
 Qαk=Qαc×Nk=Qα0×Nk/Nset ・・・(2)
 算出手段43は、式(2)で算出した風量Qαkを基準風量として記憶手段42に記憶させる。算出手段43は、風量Qαkと静圧関係情報とに基づいて、風量Qαkとなる周波数Fα0を求め、周波数Fα0をファンモータ制御手段44に通知する。算出手段43は、開閉センサ71a~71cから受信する検出値から、開状態のダンパー数Nkが変化したと判断すると、式(2)にしたがって風量Qαkを新たに算出する。新たに算出された風量QαkをQαnとすると、算出手段43は、風量Qαnを記憶手段42が記憶する基準風量に更新する。算出手段43は、風量Qαnを基準として一定の範囲は風量Qαnと実質的に同等の範囲と見なす風量範囲Qrとし、風量Qαnを含む風量範囲Qrを記憶手段42に記憶させる。算出手段43は、風量Qαnと静圧関係情報とに基づいて、風量Qαnとなる周波数Fn0を求め、周波数Fn0をファンモータ制御手段44に通知する。
 図14は、本発明の実施の形態4に係る空気調和機において、図12に示した記憶手段が記憶する静圧関係情報の一例を説明するための図である。図14の縦軸はダクト5内の静圧Pであり、横軸は風量Qである。図14に示すように、静圧関係情報にインバータ8の周波数Fが書き込まれている。
 図14を参照して、風量Qが変化したときに、周波数Fjを変化させて風量Qを一定にすることを説明する。基準風量Qα0の場合に周波数Fα0が設定された状態から静圧Pが上昇すると、風量QがQα3まで低下する。基準風量が風量Qα0から風量Qαnに更新される。周波数Fjを周波数Fn0にすると、風量Qが風量Qα4まで回復する。図14において、風量Qαn±βの範囲は、風量Qαnを基準とした風量範囲Qrである。風量Qα4は風量範囲Qr内に入っている。このようにして、静圧関係情報を参照することで、静圧変動が生じたことで基準風量が更新されても、風量Qを風量範囲Qrに戻す周波数Fを決めることができる。
 本実施の形態4の空気調和機の動作については、図13に示したステップS201およびS205における処理を除いて、図8を参照して説明した手順と同様になるため、その詳細な説明を省略する。具体的には、本実施の形態4では、図13に示したステップS201でダンパー数N0をダンパー数Nsetとし、ステップS204において、開状態のダンパー数Nkが変化すると、算出手段43は、ステップS205で式(2)を用いて基準風量を更新する。
 なお、図14に示す静圧関係情報では、初期段階の基準風量Qα0と更新後の基準風量Qαnとの差が範囲βより大きい場合を示しているが、基準風量Qα0の風量範囲Qrに基準風量Qαnが属していてもよい。この場合、ダクト5内の風量も一定に保たれる。また、本実施の形態4では、開閉センサ71a~71cの検出値が開状態および閉状態のいずれかの状態を示す信号の場合で説明したが、ダンパー15a~15cの開度を示す信号であってもよい。また、本実施の形態4では、実施の形態3の空気調和機をベースにして説明したが、検出手段9は実施の形態2で説明した検出手段9aであってもよい。
 本実施の形態4の空気調和機1aは、算出手段43が開閉センサ71a~71cによって検出されるダンパー15a~15cの開度が変化すると、静圧関係情報に基づいて、基準風量を変更し、風量を一定にするファンモータ3の回転数を求めるものである。
 本実施の形態4によれば、ユーザが設定した基準風量に基づいて各ダンパーの風量が一定になるようにファン2の回転数が制御される。開状態のダンパーの数が変化すると、開状態のダンパーの数に応じてダクト5における基準風量が更新される。そのため、開状態のダンパーのそれぞれの風量が、開状態のダンパー数の変化の前後で一定に制御される。ダンパー15a~15cのうち、いずれかのダンパーの開度が変化しても、各ダンパーの風量が変化することが抑制されるため、ダンパー近くにいる人は不快な感じを受けないですむ。
実施の形態5.
 本実施の形態5は、実施の形態3で説明した空気調和機において、ダンパー15の位置から一定の範囲に人がいるか否かを検出する人感センサが設けられたものである。本実施の形態5においては、実施の形態1および3で説明した構成と同様な構成について同一の符号を付し、その詳細な説明を省略する。
 本実施の形態5の空気調和機の構成を説明する。図15は、本発明の実施の形態5に係る空気調和機における室内機の要部の一構成例を示す図である。本実施の形態5では、実施の形態3と異なる点を中心に説明する。
 図15に示す空気調和機1bは、実施の形態1および3で説明した構成の他、ダンパー15a~15cの各ダンパーの位置から一定の範囲に人がいるか否かを検知する複数の人感センサ81a~81cを有する。人感センサ81a~81cは通信部17と通信接続される。人感センサ81a~81cと通信部17との通信接続は、有線であってもよく、無線であってもよい。通信部17は、一定の周期で人感センサ81a~81cから検出値を受信し、受信した検出値を制御装置6に送信する。図15において、範囲ar1は人感センサ81aが人の存在の有無を検出する範囲であり、範囲ar2は人感センサ81bが人の存在の有無を検出する範囲であり、範囲ar3は人感センサ81cが人の存在の有無を検出する範囲である。
 図16は、図15に示したダンパーの一例を示す模式図である。ここでは、ダンパー15a~15cは同一の構成であるため、ダンパー15aの構成を説明する。図16に示す矢印は空気の流通方向を示す。ダンパー15aは、軸を中心に回転することで開度が調整される回転羽根52と、回転羽根52を駆動するダンパー駆動部55とを有する。ダンパー駆動部55は通信部17を介して制御装置6と通信接続される。ダンパー駆動部55と通信部17との通信接続は、有線であってもよく、無線であってもよい。
 ダンパー駆動部55は、ステッピングモータ56を有する。ステッピングモータ56の回転軸と回転羽根52の軸とがベルトで接続されている。ステッピングモータ56の回転に伴って回転羽根52が回転する。ステッピングモータ56は、制御装置6から指示される回転角にしたがって回転する。例えば、回転角が0度の場合、ステッピングモータ56は、回転羽根52を駆動せず、ダンパー15aを閉状態に維持する。回転角が90度の場合、ステッピングモータ56は、回転羽根52を駆動し、ダンパー15aを開状態にする。
 図17は、本発明の実施の形態5に係る空気調和機における制御装置が行う制御を説明するためのブロック図である。図17に示すように、本実施の形態5における制御装置6は、ダンパー15a~15cの各ダンパーに設けられたダンパー駆動部55を制御するダンパー制御手段45を有する。ダンパー制御手段45は、通信部17を介して人感センサ81a~81cの検出値を受信し、人感センサによって人がいないと検知されるダンパーの開度についてダンパー駆動部55を制御して閉状態にする。例えば、ダンパー制御手段45は、人感センサによって人がいないと検知されるダンパーのダンパー駆動部55に対して、回転角=0度を指定する制御信号を送信する。
 次に、本実施の形態5の空気調和機1bの動作を説明する。図18は、本発明の実施の形態5に係る空気調和機の動作手順を示すフローチャートである。空気調和機1bの運転モードは、暖房であっても冷房であってもよい。空気調和機1bの起動時に、ユーザがリモートコントローラ13を操作して風量Qα0を設定する場合で説明する。図18に示すステップS301~S303は図13を参照して説明したステップS201~S203と同様な処理であるため、ここでは、その詳細な説明を省略する。
 ステップS303において、算出手段43は、インバータ8の初期段階の周波数Fα0を決定すると、決定した周波数Fα0をファンモータ制御手段44に通知する。ファンモータ制御手段44は、周波数Fα0をインバータ8に指定する。
 その後、ダンパー制御手段45は、一定の周期で通信部17を介して人感センサ81a~81cから検出値を受信し、検知される人の数に変化がないか判定する(ステップS304)。検知される人の数に変化がない場合、ダンパー制御手段45はステップS304の処理に戻る。一方、検知される人の数に変化がある場合、ダンパー制御手段45は、人感センサによって人が不在になったと検知されるダンパーに設けられたダンパー駆動部55を制御して、ダンパーを開状態から閉状態に切り替える(ステップS305)。
 その後、算出手段43は、一定の周期で開閉センサ71a~71cから受信する検出値から、開状態のダンパーの数Nkが変化したと判定すると、開状態のダンパーの数Nkを算出する(ステップS306)。続いて、算出手段43は、開度関係情報を参照し、現在の開状態のダンパーの数Nkの場合で風量Qα0になる、インバータ8の周波数Fjを決定する(ステップS307)。算出手段43は決定した周波数Fjをファンモータ制御手段44に通知する。ファンモータ制御手段44は、周波数Fjをインバータ8に指定する。
 例えば、図15に示す空調対象空間SPを作業空間とする製造工場で、製造ラインに沿って複数の作業者が作業する場合において、作業者が休憩するために製造ラインを離れることがある。この場合、本実施の形態5の空気調和機1bでは、作業者が自分の近くのダンパーを閉めなくても、自動的にダンパーが閉まる。ダンパーが自動的に閉まることで、ダクト5に静圧変動が生じるが、風量Qが一定になるように自動的に風量が調節される。そのため、作業中の人が不快にならずに作業できる。
 なお、図18を参照して、検知される人数が減る場合で説明したが、ダンパー制御手段45は、人感センサによって検知される人数が増える場合、人感センサによって人がいると検知されるダンパーを開状態に制御してもよい。本実施の形態5では、通信部17を設ける場合で説明したが、複数のダンパー駆動部55および人感センサ81a~81cと制御装置6とが直接に通信接続されてもよい。また、本実施の形態5では、実施の形態3の空気調和機をベースにして説明したが、実施の形態4の空気調和機に適用してもよく、検出手段9は実施の形態2で説明した検出手段9aであってもよい。
 本実施の形態5の空気調和機1bは、各ダンパーの位置から一定の範囲に人がいるか否かを検出する複数の人感センサ81a~81cと、人感センサの検知結果に応じてダンパーの開閉状態を制御するダンパー制御手段45とを有する。
 本実施の形態5によれば、ダンパーの近くから人がいなくなると、自動的にダンパーが閉状態に切り替わり、開状態のダンパー数が変化しても、風量を一定にすることができる。
 1、1a、1b 空気調和機、2 ファン、3 ファンモータ、4 ファンケーシング、5 ダクト、6 制御装置、7 吹き出し口、8 インバータ、9、9a 検出手段、10 冷媒回路、11 冷媒配管、13 リモートコントローラ、14 分岐ダクト、15、15a~15c ダンパー、17 通信部、18 電流計、20 室外機、21 圧縮機、22 流路切替装置、23 熱源側熱交換器、25 絞り装置、30 室内機、31 負荷側熱交換器、32 CPU、33 メモリ、34 室温センサ、41 冷凍サイクル制御手段、42 記憶手段、43 算出手段、44 ファンモータ制御手段、45 ダンパー制御手段、51 ハンドル、52 回転羽根、53 目盛り板、54 針、55 ダンパー駆動部、56 ステッピングモータ、61 電力線、62 信号線、71a~71c 開閉センサ、81a~81c 人感センサ、SP 空調対象空間、ar1~ar3 範囲。

Claims (6)

  1.  空調対象空間に空気を送り出すファンと、
     前記ファンを駆動させるファンモータと、
     複数の吹き出し口が形成され、前記ファンによって送り出される前記空気が流通するダクトと、
     前記ファンの風量を検出する検出手段と、
     前記複数の吹き出し口のそれぞれに設けられたダンパーと、
     複数の前記ダンパーの開度の変化に対して、前記風量が一定になるように前記ファンモータの回転数を制御するファンモータ制御手段と、
    を有する空気調和機。
  2.  前記検出手段は、
     前記ファンモータの入力電流を検出する電流計と、
     前記風量、前記入力電流および前記ファンモータの回転数の関係を示すテーブルと前記ダクトの静圧、前記風量および前記ファンモータの回転数の関係を示す静圧関係情報とを記憶する記憶手段と、
     前記電流計によって検出される前記入力電流と前記記憶手段が記憶する前記テーブルおよび前記静圧関係情報とに基づいて、前記風量を一定にする前記ファンモータの回転数を決定する算出手段と、
    を有する、請求項1に記載の空気調和機。
  3.  前記検出手段は、前記ダクトに設けられ、前記風量を検出する風量センサである、請求項1に記載の空気調和機。
  4.  前記複数のダンパーの前記開度、前記風量および前記ファンモータの回転数の関係を示す開度関係情報を記憶する記憶手段と、
     前記複数のダンパーのそれぞれに設けられ、前記開度を検出する開閉センサと、
     複数の前記開閉センサによって検出される前記複数のダンパーの前記開度と前記記憶手段が記憶する前記開度関係情報とに基づいて、前記風量を一定にする前記ファンモータの回転数を決定する算出手段と、
    をさらに有する、請求項1~3のいずれか1項に記載の空気調和機。
  5.  前記ダクトの静圧、前記風量および前記ファンモータの回転数の関係を示す静圧関係情報と設定される前記開度に対応する基準風量とを記憶する記憶手段と、
     前記複数のダンパーのそれぞれに設けられ、前記開度を検出する開閉センサと、
     複数の前記開閉センサによって検出される前記複数のダンパーの前記開度が変化すると、前記記憶手段が記憶する前記静圧関係情報に基づいて、前記基準風量を変更し、前記風量を一定にする前記ファンモータの回転数を求める算出手段と、
    をさらに有する、請求項1~3のいずれか1項に記載の空気調和機。
  6.  前記各ダンパーの位置から一定の範囲に人がいるか否かを検出する複数の人感センサと、
     前記複数のダンパーのそれぞれに設けられ、前記開度を調節するダンパー駆動部と、
     複数の前記ダンパー駆動部を制御することで、前記複数の前記人感センサの検知結果に応じて前記複数のダンパーの開閉状態を制御するダンパー制御手段と、
    をさらに有する、請求項1~5のいずれか1項に記載の空気調和機。
PCT/JP2018/041477 2018-11-08 2018-11-08 空気調和機 WO2020095406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/272,789 US11473808B2 (en) 2018-11-08 2018-11-08 Air-conditioning apparatus
GB2106106.4A GB2593080B (en) 2018-11-08 2018-11-08 Air-conditioning apparatus
PCT/JP2018/041477 WO2020095406A1 (ja) 2018-11-08 2018-11-08 空気調和機
JP2020556425A JP7086216B2 (ja) 2018-11-08 2018-11-08 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041477 WO2020095406A1 (ja) 2018-11-08 2018-11-08 空気調和機

Publications (1)

Publication Number Publication Date
WO2020095406A1 true WO2020095406A1 (ja) 2020-05-14

Family

ID=70611864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041477 WO2020095406A1 (ja) 2018-11-08 2018-11-08 空気調和機

Country Status (4)

Country Link
US (1) US11473808B2 (ja)
JP (1) JP7086216B2 (ja)
GB (1) GB2593080B (ja)
WO (1) WO2020095406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113241A (ja) * 2021-01-25 2022-08-04 パナソニックホームズ株式会社 送風流路の施工状態評価方法、及び、建物の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351658A (ja) * 1989-07-19 1991-03-06 Mitsubishi Electric Corp 空気調和機
WO2011087163A1 (en) * 2010-01-12 2011-07-21 Carrier Corporation Variable air volume system
WO2016092635A1 (ja) * 2014-12-09 2016-06-16 三菱電機株式会社 空気制御システム
JP2016156573A (ja) * 2015-02-25 2016-09-01 パナソニックIpマネジメント株式会社 給排気型換気装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351658B2 (ja) * 1995-06-06 2002-12-03 住友重機械工業株式会社 乾式脱硫・脱硝装置
US5863246A (en) * 1997-12-15 1999-01-26 Carrier Corporation Variable air volume control system
US6669547B2 (en) * 2001-08-28 2003-12-30 Board Of Regents Of University Of Nebraska Multi-stack exhaust system
US20060116067A1 (en) * 2004-12-01 2006-06-01 Federspiel Clifford C Method and apparatus for determining critical pressure of variable air volume heating, ventilating, and air-conditioning systems
US9423128B2 (en) * 2008-01-18 2016-08-23 Mpc, Inc. Control system for exhaust gas fan system
CN102422095B (zh) 2009-05-13 2015-04-22 三菱电机株式会社 空气调节装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351658A (ja) * 1989-07-19 1991-03-06 Mitsubishi Electric Corp 空気調和機
WO2011087163A1 (en) * 2010-01-12 2011-07-21 Carrier Corporation Variable air volume system
WO2016092635A1 (ja) * 2014-12-09 2016-06-16 三菱電機株式会社 空気制御システム
JP2016156573A (ja) * 2015-02-25 2016-09-01 パナソニックIpマネジメント株式会社 給排気型換気装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022113241A (ja) * 2021-01-25 2022-08-04 パナソニックホームズ株式会社 送風流路の施工状態評価方法、及び、建物の製造方法
JP7265566B2 (ja) 2021-01-25 2023-04-26 パナソニックホームズ株式会社 送風流路の施工状態評価方法、及び、建物の製造方法

Also Published As

Publication number Publication date
JP7086216B2 (ja) 2022-06-17
GB2593080A (en) 2021-09-15
US20210215381A1 (en) 2021-07-15
US11473808B2 (en) 2022-10-18
GB2593080B (en) 2022-08-31
JPWO2020095406A1 (ja) 2021-06-03
GB202106106D0 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP5404777B2 (ja) 空気調和装置
US10900684B2 (en) Thermostat and method for an environmental control system for HVAC system of a building
JP5507231B2 (ja) 空気調和機
JP7026781B2 (ja) 空気調和システム
JP2016194388A (ja) 空気調和システム
WO2020095406A1 (ja) 空気調和機
JP7002918B2 (ja) 換気システム、空調システム、換気方法及びプログラム
JP2020098079A (ja) 空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラム
EP3677852A1 (en) Control method and apparatus for self-cleaning of air conditioner, and air conditioner
WO2021214930A1 (ja) 空気調和システムおよび制御方法
JP2022170533A (ja) 空気調和装置の室内ユニット
JPH0833225B2 (ja) 多室用空気調和機
JP5967166B2 (ja) 空気調和装置
JP2001241799A (ja) 多室形空気調和機
KR101997443B1 (ko) 공기조화기 및 공기조화기의 제어방법
JP2007057189A (ja) 空気調和装置
JP3103583B2 (ja) 空気調和機
JP2020067203A (ja) 室内空調システム
JP2013200089A (ja) 空気調和機
JP7462830B2 (ja) 空気調和装置
WO2022097225A1 (ja) 空気調和機制御装置
JPH03217746A (ja) 多室形空気調和機
JP7519176B2 (ja) 空気調和システム
WO2023105605A1 (ja) 冷凍サイクル装置、および制御方法
JP2018096593A (ja) 空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556425

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202106106

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20181108

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939618

Country of ref document: EP

Kind code of ref document: A1