WO2020091415A1 - 합성가스로부터 단환 방향족 화합물의 직접 합성방법 - Google Patents

합성가스로부터 단환 방향족 화합물의 직접 합성방법 Download PDF

Info

Publication number
WO2020091415A1
WO2020091415A1 PCT/KR2019/014465 KR2019014465W WO2020091415A1 WO 2020091415 A1 WO2020091415 A1 WO 2020091415A1 KR 2019014465 W KR2019014465 W KR 2019014465W WO 2020091415 A1 WO2020091415 A1 WO 2020091415A1
Authority
WO
WIPO (PCT)
Prior art keywords
monocyclic aromatic
aromatic compound
catalyst
based catalyst
reaction
Prior art date
Application number
PCT/KR2019/014465
Other languages
English (en)
French (fr)
Inventor
곽근재
박경아
강석창
전기원
이윤조
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2020091415A1 publication Critical patent/WO2020091415A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for directly synthesizing a monocyclic aromatic compound from a synthesis gas, and more specifically, synthesis of a monocyclic aromatic compound using a synthesis gas as a raw material and directly producing a high value-added monocyclic aromatic compound in one-step. It's about how.
  • the Fischer-Tropsch (FT) synthesis process which is a core process of GTL technology, is a process for producing hydrocarbons from synthesis gas produced through a reforming reaction of natural gas.
  • FT synthesis process hydrocarbons discharged through the FT synthesis process have a wide carbon number range, so additional separation and upgrading processes are required for product production. Accordingly, research is being actively conducted to synthesize hydrocarbons in a relatively narrow carbon number range by adjusting the conditions of the FT synthesis process in order to simplify the GTL process and produce an efficient product.
  • iron-based catalysts and cobalt-based catalysts are mainly used.
  • iron-based catalysts were mainly used, but recently, cobalt-based catalysts are mainly used.
  • the molar ratio of H 2 / CO as the composition ratio of the synthesis gas used as a raw material has to be closely matched to 2, so it is not only difficult to meet the operating conditions, but also for the use of carbon dioxide contained in the synthesis gas. Because it is not considered, the thermal efficiency and carbon efficiency of the entire process are relatively low, and secondary environmental problems may occur.
  • carbon dioxide can be converted to hydrocarbon by a water gas conversion reaction, so it is an eco-friendly process with relatively high thermal efficiency and carbon efficiency (Patent Document 1).
  • Patent Document 2 proposes a method for producing from a polycyclic aromatic compound contained in light cycle oil (LCO) or the like using a zeolite catalyst.
  • LCO light cycle oil
  • Patent Document 2 it can be produced only in a mixed fuel oil, the yield of the monocyclic aromatic compound is not high, and catalyst deactivation by carbon deposition easily occurs.
  • the present inventors use synthetic gas as a raw material to directly synthesize a monocyclic aromatic compound and a long-chain olefin compound by the Fischer-Tropsch (FT) synthesis process of the C1-C15 short-chain hydrocarbon production step and the prepared short-chain hydrocarbon.
  • FT Fischer-Tropsch
  • a synthesis method including a dehydrogenation step has been disclosed (see Patent Document 3)
  • the composition and temperature and pressure conditions of the catalyst used in the short-chain hydrocarbon production step and the dehydrogenation step must be separately controlled, and the deactivation rate of the catalyst is
  • the design and process of the two processes are different, and there is a problem that a separation and purification process with a long-chain olefin compound is necessary in order to obtain a monocyclic aromatic compound.
  • Patent Document 1 Korean Registered Patent No. 10-1418911 (Announcement date: 2014.07.14)
  • Patent Document 2 Korean Patent Publication No. 10-2014-0027082 (Publication Date: 2011.12.28)
  • Patent Document 3 Korean Registered Patent No. 10-1600430 (Publication date: 2016.03.07)
  • the main object of the present invention is to solve the above-mentioned problems, and provides a method for synthesizing a monocyclic aromatic compound that can produce a monocyclic aromatic compound simply and efficiently in a one-step process using synthetic gas as a raw material. Is doing.
  • an embodiment of the present invention comprises the steps of preparing a monocyclic aromatic compound by reacting a synthesis gas in the presence of a mixed catalyst in which an iron-based catalyst and a crystalline aluminosilicate-based catalyst are mixed.
  • a method for synthesizing an aromatic compound is provided.
  • the reaction may be characterized in that it is carried out at 1 bar to 25 bar at 250 ° C to 400 ° C.
  • the reaction may be characterized in that it is carried out at 10 bar ⁇ 20 bar at 340 °C ⁇ 380 °C.
  • the synthesis gas may be characterized in that the molar ratio of H 2 / CO is in the range of 0.1 to 3.
  • the composite catalyst may be characterized in that the weight ratio of the iron-based catalyst and the crystalline aluminosilicate-based catalyst is 1: 0.1 to 1: 10.
  • the iron-based catalyst is copper (Cu), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al), sodium (Na), chromium ( Cr), silicon (Si) and potassium (K) may be characterized in that it further contains at least one co-catalyst selected from the group consisting of.
  • the crystalline aluminosilicate-based catalyst is selected from the group consisting of ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 and H-USY It can be characterized by one or more.
  • the crystalline aluminosilicate-based catalyst is gallium (Ga), zinc (Zn), platinum (Pt), palladium (Pd), tungsten (W), cobalt (Co) and iron ( Fe) may be characterized in that it further contains at least one co-catalyst selected from the group consisting of.
  • the monocyclic aromatic compound may be characterized in that it comprises at least one compound selected from the group consisting of benzene, toluene, ethylbenzene and xylene.
  • the present invention in the production of a monocyclic aromatic compound, it is possible to simplify the process by a one-step process with specific reaction conditions, and because the operation is simple and the process time is fast, not only mass production of the monocyclic aromatic compound is possible, but also natural gas, coal,
  • synthetic gas which can be obtained from various raw materials such as petroleum refining compounds, as a raw material, the utilization of technology is high, and direct monocyclic aromatic compounds can be produced in high yield, thereby solving the problem of supplying high value-added monocyclic aromatic compounds.
  • FIG. 1 is a schematic diagram schematically showing a method for directly synthesizing a monocyclic aromatic compound from a synthesis gas according to the present invention.
  • the present invention relates to a method for synthesizing a monocyclic aromatic compound, comprising the step of preparing a monocyclic aromatic compound by reacting a synthesis gas in the presence of a mixed catalyst in which an iron-based catalyst and a crystalline aluminosilicate-based catalyst are mixed.
  • the method for synthesizing the monocyclic aromatic compound of the present invention uses a synthetic gas as a raw material to prepare a monocyclic aromatic compound in a single step process under a specific reaction condition, and an iron-based catalyst 151 and crystals as shown in FIG.
  • Synthetic gas CO and H 2
  • a monocyclic aromatic compound is prepared by the Fischer-Tropsch reaction of syngas in the presence of the mixed catalyst 150 in which the catalyst is mixed and the dehydrogenation reaction of hydrocarbons formed in the Fischer-Tropsch reaction.
  • Synthesis gas used as a raw material in the present invention include hydrogen (H 2) and a and containing carbon monoxide (CO), H 2 / CO molar ratio of 0.1 to 3 range, preferably at a molar ratio of H 2 / CO of 1 - 2 Phosphorus syngas is used. If, when the molar ratio of H 2 / CO of the synthesis gas is less than 0.1, the carbon deposition rate increases, the catalyst life may be shortened, the yield of aromatic compounds may decrease, and the molar ratio of H 2 / CO exceeds 3 When the hydrogenation (hydrogenation) is promoted, the selectivity of unnecessary methane and short-chain paraffins increases, which may eventually lower the yield of monocyclic aromatic compounds.
  • the synthesis gas may be produced through a reforming process of natural gas, and methods for reforming the natural gas may include a steam reforming method, a carbon dioxide reforming method, a complex reforming method, and a partial oxidation method. Particularly preferred is to produce and use the syngas by a composite reforming method capable of controlling the composition of the syngas.
  • the composite catalyst applied to the synthesis reaction of the monocyclic aromatic compound from the synthesis gas is a composite catalyst in which an iron-based catalyst and a crystalline aluminosilicate-based catalyst are mixed, and the mixture of the iron-based catalyst and a crystalline aluminosilicate-based catalyst is laminated It can be physically mixed by a layer by layer method, a simple mixing method, or the like.
  • the mixing ratio of the composite catalyst may be a composite catalyst in which the weight ratio of the iron-based catalyst and the crystalline aluminosilicate-based catalyst is 1: 0.1 to 1:10, preferably 1: 2 to 1: 4. If, in the composite catalyst, the weight ratio of the crystalline aluminosilicate-based catalyst to the iron-based catalyst is less than 0.1, the Fischer-Tropsch synthesis reaction occurs predominantly, the yield of aromatic compounds decreases, and the yield of short-chain olefins increases. When the weight ratio of the crystalline aluminosilicate-based catalyst to the iron-based catalyst exceeds 10, carbon deposition may occur due to excessive cracking and dehydrogenation reaction, resulting in a decrease in the life of the catalyst.
  • the iron-based catalyst may be a conventional catalyst used in the Fischer-Tropsch synthesis process, wherein the iron-based catalyst is copper (Cu), manganese (Mn), cobalt (Co), nickel (Ni), if necessary. It may further include one or more cocatalysts selected from the group consisting of zinc (Zn), aluminum (Al), sodium (Na), chromium (Cr), silicon (Si), and potassium (K).
  • the crystalline aluminosilicate-based catalyst may be one or more selected from the group consisting of ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 and H-USY,
  • a crystalline aluminosilicate-based catalyst having a Si / Al molar ratio of 10 to 150, preferably 15 to 25, may be used. If the molar ratio of Si / Al is less than 10, the dehydrogenation reaction proceeds violently, which is not preferable because the productivity of the polycyclic aromatic compound rather than the monocyclic aromatic compound is high. On the other hand, when the molar ratio of Si / Al exceeds 150, it is not preferable because the chain growth reaction is dominant and the productivity of the monocyclic aromatic compound decreases.
  • the crystalline aluminosilicate-based catalyst is a crystalline porous body and includes an intermediate pore of 10 nm or less, and a micropore size of 1 to 8 mm 2 is used. At this time, if the pore size of the crystalline porous body does not satisfy the above range, it is not preferable because the productivity of the monocyclic aromatic compound decreases.
  • the crystalline aluminosilicate-based catalyst may be used alone, but the crystalline aluminosilicate-based catalyst may be gallium (Ga), zinc (Zn), platinum (Pt), palladium (Pd), tungsten as required. (W), cobalt (Co) and iron (Fe) may further include one or more cocatalysts selected from the group consisting of.
  • the weight ratio of A / Al is preferably maintained at 0.01 to 2.5.
  • the weight ratio of the cocatalyst metal element (A) based on the aluminum atom is included to be 0.1 to 1.
  • the reactor 100 When the synthesis gas flows into the reactor 100 filled with the complex catalyst 150 as described above, hydrocarbons are formed by Fischer-Tropsch reaction of the synthesis gas in the reactor, and the formed hydrocarbons are monocyclic aromatic by dehydrogenation reaction.
  • the compound is prepared.
  • the reactor 100 may be applied without limitation to the reactor surface that can be used in a conventional Fischer-Tropsch synthesis process such as a slurry bed reactor, a fixed bed reactor, a fluidized bed reactor, and the like.
  • reaction pressure is maintained at a temperature lower than 340 ° C. and the reaction pressure is higher than 10 bar.
  • the reaction temperature high at 400 ° C. or higher while maintaining a reaction pressure as low as 5 bar or less.
  • the reaction conditions of the present invention can proceed to a pressure range of 1 bar to 25 bar in a temperature range of 250 ° C to 400 ° C, preferably a pressure range of 10 bar to 20 bar in a temperature range of 340 ° C to 380 ° C.
  • the product produced by such a reaction may include a monocyclic aromatic compound, which is an aromatic compound having one ring, such as benzene, toluene, ethylbenzene, and xylene, and light hydrocarbons (C1 to C4) as reaction by-products.
  • a separation / purification step through a gas / liquid separation device or the like can be added to the rear stage to separate gaseous light hydrocarbons (C1 to C4) and liquid monocyclic aromatic compounds.
  • the distillation temperature of the gas / liquid separation device is preferably -5 ° C to 5 ° C. If the temperature of the separator is less than -5 ° C, it is not preferable because water, a by-product of the reaction, may be frozen, and the separator may be damaged. If it exceeds 5 ° C, light hydrocarbons (C1 to C4) and liquid hydrocarbons (C5 +) Is not preferred because of insufficient separation.
  • the light hydrocarbons of C1 to C4 separated through the gas / liquid separation device may be recycled to a reforming reactor for syngas production.
  • Example 1-1 The reaction was carried out in the same manner as in Example 1-1, but as a catalyst, 0.3 g of an iron-based catalyst having a composition ratio of 100Fe-6Cu-16Al-4K was charged instead of a composite catalyst, and the reaction was carried out under the conditions in Table 1 below.
  • Table 2 shows the results of analyzing the composition of the product.
  • Example 1-1 100Fe-6Cu-16Al-4K + HZSM-5 1) 300 20
  • Example 1-2 100Fe-6Cu-16Al-4K + HZSM-5 1) 320 20
  • Example 1-3 100Fe-6Cu-16Al-4K + HZSM-5 1) 340 20
  • Example 1-4 100Fe-6Cu-16Al-4K + HZSM-5 1) 360 20
  • Example 1-5 100Fe-6Cu-16Al-4K + HZSM-5 1)
  • Example 1-6 100Fe-6Cu-16Al-4K + HZSM-5 1) 340
  • One Example 1-7 100Fe-6Cu-16Al-4K + HZSM-5 1) 340 5
  • Example 1-8 100Fe-6Cu-16Al-4K + HZSM-5 1) 340 10
  • Example 1-1 98.7 31.8 11.4 44.1 0.43 44.5 10.1
  • Example 1-2 98.4 30.7 14.1 46.9 0.44 39.0 10.0
  • Example 1-3 98.0 29.6 18.0 48.1 0.69 33.9 13.7
  • Example 1-4 97.4 31.0 20.9 46.9 0.78 32.2 14.1
  • Example 1-5 96.8 29.8 26.4 46.5 0.99 27.2 17.5
  • Example 1-6 7.5 55.0 28.4 22.5 48 49.1 7.9
  • Example 1-7 96.6 35.5 26.9 43.0 2.0 30.1 16.9
  • Example 1-8 97.6 32.1 21.4 46.7 0.95 31.9 18.3 Comparative Example 1-1 98.3 29.8 10.5 31.9 74.3 57.6 - Comparative Example 1-2 98.0 31.0 12.9 31.3 76.6 55.8 - 2)
  • BTEX BTEX:
  • the synthesis reaction was carried out by varying the H 2 / CO molar ratio of the synthesis gas used as a raw material under the same conditions as in Example 1-8, and the results are shown in Table 3 below.
  • Example 1-8 Under the same conditions as in Example 1-8, the catalytic conditions were changed to the conditions in Table 4 below, and the synthesis reaction was performed, and the results are shown in Table 5 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 합성가스로부터 단환 방향족 화합물의 직접 합성방법에 관한 것으로, 보다 상세하게는 단환 방향족 화합물의 제조시 특정 반응조건의 원스텝 공정으로 공정의 단순화가 가능하고, 조작이 간단한 동시에 공정 시간이 빠르기 때문에 단환 방향족 화합물의 대량 생산이 가능할 뿐만 아니라, 합성가스를 원료로 사용하여 직접 단환 방향족 화합물을 고수율로 생산할 수 있어 고부가가치의 단환 방향족 화합물의 공급 문제를 해결할 수 있는 합성가스로부터 단환 방향족 화합물의 직접 합성방법에 관한 것이다.

Description

합성가스로부터 단환 방향족 화합물의 직접 합성방법
본 발명은 합성가스로부터 단환 방향족 화합물의 직접 합성방법에 관한 것으로, 보다 상세하게는 합성가스를 원료로 사용하여 고부가가치의 단환 방향족 화합물을 원스텝(one-step)으로 직접 제조하는 단환 방향족 화합물의 합성방법에 관한 것이다.
GTL 기술의 핵심 공정인 피셔-트롭쉬(FT) 합성공정은 천연가스의 개질 반응을 통해 제조된 합성가스로부터 탄화수소를 제조하는 공정이다. 그러나 FT 합성공정을 통해 배출되는 탄화수소는 탄소수 범위가 광범위하므로, 제품생산을 위해서는 추가적인 분리 및 업그레이딩 공정이 필요하다. 이에, GTL 공정의 간소화 및 효율적인 제품생산을 위하여 FT 합성공정 조건을 조절하여, 비교적 좁은 탄소수 범위의 탄화수소를 합성하고자 하는 연구가 활발하게 진행되고 있다.
FT 합성공정에는 주로 철계 촉매와 코발트계 촉매가 사용된다. 기술 개발 초기에는 철계 촉매가 주로 사용되었으나, 최근에는 코발트계 촉매가 주로 이용되고 있다. 하지만, 코발트계 촉매를 이용한 FT 합성공정에서는 원료로 사용되는 합성가스의 조성비로서 H2/CO의 몰비를 2에 가깝게 맞추어야 하므로 운전 조건을 맞추기가 까다로울 뿐만 아니라, 합성가스 내에 포함된 이산화탄소의 이용에 대해서는 고려치 않고 있기 때문에 공정 전체의 열효율 및 탄소효율이 비교적 낮으며 이차적인 환경문제가 발생할 수 있다. 이에 반하여 철계 촉매를 이용한 FT 합성공정에서는 수성가스전환반응에 의하여 이산화탄소를 탄화수소로 전환할 수 있기 때문에 열효율 및 탄소효율이 비교적 높은 친환경 공정이다(특허 문헌 1).
한편, 벤젠, 톨루엔, 자일렌, 에틸벤젠 등의 단환 방향족 화합물은 합성섬유, 각종 플라스틱, 휘발유 첨가제 등 석유화학제품의 기초 원료로 이용되고 있다. 종래 방법에서는 단환 방향족 화합물은 주로 혼합 연료유로부터 제조되고 있다. 상기 방향족 화합물의 제조방법으로서 특허문헌 2에는 제올라이트 촉매를 사용하여 경질 사이클유(LCO) 등에 포함된 다환 방향족 화합물로부터 제조하는 방법이 제안되어 있다.
그러나 상기 특허문헌 2에서 제시한 방법에 의하면 혼합 연료유에서만 제조 가능하고, 단환 방향족 화합물의 수율이 높지 않으며, 탄소 침적에 의한 촉매 비활성화가 쉽게 발생되는 문제가 있었다.
이에, 본 발명자는 합성가스를 원료로 사용하여 단환 방향족 화합물과 장쇄 올레핀 화합물을 직접 합성하기 위해 피셔-트롭쉬(FT) 합성공정에 의한 C1 ~ C15의 단쇄 탄화수소의 제조 단계와 제조된 단쇄 탄화수소의 탈수소화 단계를 포함하는 합성방법을 개시한 바 있으나(특허문헌 3 참조), 단쇄 탄화수소 제조단계와 탈수소화 단계에 사용되는 촉매의 조성과 온도 및 압력 조건을 별도로 제어해야 하며, 촉매의 비활성화 속도가 달라 두 공정의 설계 및 과정이 복잡하고, 단환 방향족 화합물을 얻기 위해서는 장쇄 올레핀 화합물과의 분리정제 공정이 필수적으로 필요하다는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 제10-1418911호(공고일 : 2014.07.14)
(특허문헌 2) 한국공개특허 제10-2014-0027082호(공개일 : 2011.12.28)
(특허문헌 3) 한국등록특허 제10-1600430호(공고일 : 2016.03.07)
본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로서, 합성가스를 원료로 사용하여 원스텝(one-step) 공정으로 단환 방향족 화합물을 간단하면서 효율적으로 제조할 수 있는 단환 방향족 화합물의 합성방법을 제공하는데 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는 철계 촉매 및 결정성 알루미노실리케이트계 촉매가 혼합된 복합촉매 존재하에 합성가스를 반응시켜 단환 방향족 화합물을 제조하는 단계를 포함하는, 단환 방향족 화합물의 합성방법을 제공한다.
본 발명의 바람직한 일 구현예에서, 상기 반응은 250 ℃ ~ 400 ℃에서 1 bar ~ 25 bar로 수행하는 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 반응은 340 ℃ ~ 380 ℃에서 10 bar ~ 20 bar로 수행하는 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 합성가스는 H2/CO의 몰비가 0.1 ~ 3 범위인 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 복합촉매는 철계 촉매 및 결정성 알루미노실리케이트계 촉매의 중량비가 1 : 0.1 내지 1 : 10인 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 철계 촉매는 구리(Cu), 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 나트륨(Na), 크롬(Cr), 실리콘(Si) 및 칼륨(K)으로 구성된 군에서 선택되는 1종 이상의 조촉매가 더 함유된 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 결정성 알루미노실리케이트계 촉매는 ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 및 H-USY로 구성된 군에서 선택되는 1 종 이상인 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 결정성 알루미노실리케이트계 촉매는 갈륨(Ga), 아연(Zn), 백금(Pt), 팔라듐(Pd), 텅스텐(W), 코발트(Co) 및 철(Fe)로 구성된 군에서 선택되는 1종 이상의 조촉매가 더 함유된 것을 특징으로 할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 단환 방향족 화합물은 벤젠, 톨루엔, 에틸벤젠 및 자일렌으로 구성된 군에서 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 할 수 있다.
본 발명에 따르면, 단환 방향족 화합물의 제조시 특정 반응조건의 원스텝 공정으로 공정의 단순화가 가능하고, 조작이 간단한 동시에 공정 시간이 빠르기 때문에 단환 방향족 화합물의 대량 생산이 가능할 뿐만 아니라, 천연가스, 석탄, 석유 정제화합물 등 다양한 원료로부터 얻어질 수 있는 합성가스를 원료로 사용함으로써, 기술의 활용도가 높으며, 직접 단환 방향족 화합물을 고수율로 생산할 수 있어 고부가가치의 단환 방향족 화합물의 공급 문제를 해결할 수 있는 효과가 있다.
도 1은 본 발명에 따른 합성가스로부터 단환 방향족 화합물의 직접 합성방법을 개략적으로 도시한 개략도이다.
[부호의 설명]
100 : 반응기
150 : 복합촉매
151 : 철계 촉매
152 : 결정성 알루미노실리케이트계 촉매
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본원 명세서 전체에서 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 철계 촉매 및 결정성 알루미노실리케이트계 촉매가 혼합된 복합촉매 존재하에 합성가스를 반응시켜 단환 방향족 화합물을 제조하는 단계를 포함하는, 단환 방향족 화합물의 합성방법에 관한 것이다.
보다 구체적으로, 본 발명의 단환 방향족 화합물의 합성방법은 합성가스를 원료로 사용하여 특정 반응 조건의 단일 단계 공정으로 단환 방향족 화합물을 제조하는 것으로, 도 1에 나타난 바와 같이 철계 촉매(151) 및 결정성 알루미노실리케이트계 촉매(152)가 혼합된 복합촉매(150)를 장입한 반응기(100) 내로 합성가스(CO 및 H2)를 유입시키고, 유입된 합성가스는 철계 촉매 및 결정성 알루미노실리케이트계 촉매가 혼합된 복합촉매(150) 존재하에 합성가스의 피셔-트롭쉬 반응과, 피셔-트롭쉬 반응에서 형성된 탄화수소의 탈수소화 반응으로 단환 방향족 화합물을 제조한다.
본 발명에서 원료로 사용하는 합성가스는 수소(H2) 및 일산화탄소(CO)를 함유하고 있으며, H2/CO의 몰비가 0.1 ~ 3 범위, 바람직하게는 H2/CO의 몰비가 1 ~ 2인 합성가스를 사용한다. 만일, 상기 합성가스의 H2/CO의 몰비가 0.1 미만일 경우, 탄소 침적율이 증가하여 촉매 수명이 짧아질 수 있고, 방향족 화합물의 수율이 줄어들 수 있으며, H2/CO의 몰비가 3을 초과할 경우에는 수소화(hydrogenation)가 촉진됨에 따라 불필요한 메탄 및 단쇄 파라핀의 선택도가 증가하게 되어 결국엔 단환 방향족 화합물의 수율을 낮추는 원인이 될 수 있다.
또한, 상기 합성가스는 천연가스의 개질 공정을 통해 제조될 수 있으며, 상기 천연가스의 개질을 위한 방법으로는 수증기 개질법, 이산화탄소 개질법, 복합 개질법, 부분 산화법 등이 포함될 수 있다. 특히 좋기로는 합성가스의 조성 조절이 가능한 복합 개질법에 의해 합성가스를 제조하여 사용하는 것이다.
한편, 상기 합성가스로부터 단환 방향족 화합물의 합성 반응에 적용되는 복합촉매는 철계 촉매 및 결정성 알루미노실리케이트계 촉매가 혼합된 복합촉매로, 상기 철계 촉매 및 결정성 알루미노실리케이트계 촉매의 혼합은 적층혼합(layer by layer) 방법, 단순혼합(mixing) 방법 등으로 물리적으로 혼합시킬 수 있다.
상기 복합촉매의 혼합비율은 철계 촉매 및 결정성 알루미노실리케이트계 촉매의 중량비가 1 : 0.1 내지 1 : 10, 바람직하게 1 : 2 내지 1 : 4로 혼합된 복합촉매일 수 있다. 만일, 상기 복합촉매에 있어서, 철계 촉매에 대한 결정성 알루미노실리케이트계 촉매 중량비가 0.1 미만일 경우, 피셔-트롭쉬 합성반응이 우세하게 일어나 방향족 화합물의 수율은 감소하고, 단쇄 올레핀의 수율이 증가하게 되며, 철계 촉매에 대한 결정성 알루미노실리케이트계 촉매 중량비가 10을 초과할 경우에는 과도한 크래킹과 탈수소화 반응으로 인해 탄소 침적이 일어나 촉매의 수명이 저하되는 문제가 발생될 수 있다.
이때, 상기 철계 촉매로는 피셔-트롭쉬 합성공정에서 사용되는 통상의 촉매일 수 있으며, 상기 철계 촉매는 필요에 따라 구리(Cu), 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 나트륨(Na), 크롬(Cr), 실리콘(Si) 및 칼륨(K)으로 구성된 군에서 선택된 1종 이상의 조촉매를 더 포함할 수 있다.
또한, 상기 결정성 알루미노실리케이트계 촉매는 ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 및 H-USY로 구성된 군에서 선택되는 1 종 이상일 수 있으며, 바람직하게는 Si/Al의 몰비가 10 ~ 150, 바람직하게는 15 ~ 25인 결정성 알루미노실리케이트계 촉매를 사용할 수 있다. 만일, 상기 Si/Al의 몰비가 10 미만이면 탈수소화 반응이 격렬하게 진행되어 단환 방향족 화합물이 아닌 다환 방향족 화합물의 생산성이 높기 때문에 바람직하지 않다. 반면에, Si/Al의 몰비가 150을 초과하면 사슬 성장반응이 우세하여 단환 방향족 화합물의 생산성이 저하되기 때문에 바람직하지 않다.
또한, 상기 결정성 알루미노실리케이트계 촉매는 결정성 다공체로서 10 nm 이하의 중간기공을 포함하고 있으며, 미세기공 크기가 1 ~ 8 Å 범위인 것을 사용한다. 이때 결정성 다공체의 기공 크기가 상기 범위를 만족시키지 못하는 경우는 단환 방향족 화합물의 생산성이 저하되기 때문에 바람직하지 않다.
한편, 상기 결정성 알루미노실리케이트계 촉매는 단독으로 사용될 수도 있지만, 상기 결정성 알루미노실리케이트계 촉매는 필요에 따라 갈륨(Ga), 아연(Zn), 백금(Pt), 팔라듐(Pd), 텅스텐(W), 코발트(Co) 및 철(Fe)로 구성된 군에서 선택되는 1종 이상의 조촉매를 더 포함할 수도 있다.
상기 조촉매로 포함되는 금속원소(A)의 함량은 결정성 알루미노실리케이트계 촉매 중의 알루미늄 원자(Al)를 기준으로 할 때 A/Al의 중량비가 0.01 ~ 2.5를 유지하는 것이 좋다. 바람직하기로는 알루미늄 원자를 기준으로 조촉매 금속원소(A)의 중량비(즉, A/Al의 중량비)가 0.1 ~ 1이 되도록 포함하는 것이다.
전술된 바와 같은 복합촉매(150)가 충진한 반응기(100) 내로 합성가스가 유입되면, 반응기 내에서 합성가스의 피셔-트롭쉬 반응으로 탄화수소가 형성되고, 상기 형성된 탄화수소는 탈수소화 반응으로 단환 방향족 화합물이 제조된다. 이때, 상기 반응기(100)로는 슬러리층 반응기, 고정층 반응기, 유동층 반응기 등의 통상의 피셔-트롭쉬 합성 공정에서 사용할 수 있는 반응기면 제한 없이 적용 가능할 수 있다.
일반적으로 철계 촉매 기반 합성가스의 피셔-트롭쉬 반응에서 단쇄 탄화수소의 선택도를 높이고, 메탄(CH4)으로 선택도를 낮추기 위해서는 반응온도를 340 ℃ 이하로 낮게 유지하면서 반응 압력을 10 bar 이상 높게 유지하는 것이 바람직한 반면, 단쇄 탄화수소의 탈수소화 반응을 유도하여 단환 방향족 화합물의 선택도를 높이기 위해서는 반응온도를 400 ℃ 이상 높게 유지하면서 반응압력을 5 bar 이하로 낮게 유지하는 것이 바람직하므로, 두 반응을 원스텝 공정으로 하나의 반응기에서 진행할 경우, 각 반응 생성물의 수율을 최대화시키기 위한 단일화된 반응 조건을 찾기 어려운 문제점이 있다.
이에, 본 발명에서는 원스텝 공정에서 단환 방향족 화합물의 수율을 극대화시키기 위해 촉매의 조성과, 반응 온도, 반응 압력 및 합성 가스의 조성비를 제어함으로써, 피셔-트롭쉬 합성반응과 탈수소화 방향족화 반응 각각의 최적 조건을 확보해야 하는 다단 공정 구축문제를 해결할 수 있다.
본 발명의 반응조건은 250 ℃ ~ 400 ℃의 온도범위에서 1 bar ~ 25 bar의 압력범위, 바람직하게는 340 ℃ ~ 380 ℃의 온도범위에서 10 bar ~ 20 bar의 압력범위로 진행할 수 있다.
상기한 반응에 있어서, 상기 반응 온도가 250 ℃ 미만일 경우, 탈수소화 방향족화 반응에 대한 활성이 나타나지 않아 단환 방향족 화합물의 수율이 낮아지는 문제점이 발생될 수 있고, 400 ℃를 초과할 경우에는 메탄화 반응이 우세하게 일어나 대부분의 생성물이 메탄(CH4)과 이산화탄소로 발생될 수 있으며, 촉매의 신터링(sintering)과 과도한 탄소 침적으로 인해 촉매의 수명이 짧아지는 문제점이 발생될 수 있다.
또한, 상기한 반응에 있어서, 상기 반응 압력이 25 bar를 초과할 경우에는 결정성 알루미노실리케이트계 촉매 내 물질전달의 문제로 과도한 탄화수소 탈수소화 반응이 일어나 다환 방향족 화합물이 주로 생성되거나 탄소침적의 문제가 발생될 수 있으며, 고압 유지를 위한 안정상의 문제로 공정 운전이 까다로운 문제점이 발생될 수 있다.
이와 같은 반응으로 제조된 생성물은 벤젠, 톨루엔, 에틸벤젠, 자일렌 등의 하나의 고리를 가지는 방향족 화합물인 단환 방향족 화합물과 경질 탄화수소(C1 ~ C4)가 반응 부산물로서 포함될 수 있다. 이에, 본 발명에서는 기/액상 분리장치 등을 통한 분리정제 단계를 후단에 추가하여 기상의 경질 탄화수소(C1 ~ C4)와 액상의 단환 방향족 화합물을 분리할 수 있다.
상기 기/액상 분리장치의 증류온도는 -5 ℃ ~ 5 ℃가 바람직하다. 상기 분리장치의 온도가 -5 ℃ 미만이면 반응의 부생성물인 물이 동결되어 분리장치가 파손될 우려가 있기 때문에 바람직하지 않고, 5 ℃를 초과하면 경질 탄화수소(C1 ~ C4)와 액상 탄화수소(C5+)의 분리가 미흡하여 바람직하지 않다.
또한, 상기 기/액상 분리장치를 통해 분리된 C1 ~ C4의 경질탄화수소는 합성가스 제조를 위한 개질 반응기로 재순환되어 사용될 수 있다.
이상에서 설명한 바와 같은 본 발명의 합성방법은 하기의 실시예를 통해 보다 구체적으로 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.
< 실시예 1-1 내지 1-8>
도 1의 1/2인치 스테인리스 고정층 반응기에 촉매를 장입하고, 합성가스를 3600 mlh- 1gcat-1의 유속으로 22시간 동안 공급하고, 표 1의 조건에서 반응을 수행하여 단환 방향족 화합물을 제조하였다. 단환 방향족 화합물을 포함하여 생성된 탄화수소는 On-line GC(TCD, FID) 및 GC/MS를 사용하여 분석하였다. 이때, 상기 촉매로는 100Fe-6Cu-16Al-4K의 조성비를 가지는 철계 촉매 0.3 g와 HZSM-5(Si/Al=15)의 결정성 알루미노실리케이트계 촉매 0.6 g가 혼합된 복합촉매를 사용하였고, 합성가스는 H2/CO 몰비가 2(5 % Ar)인 합성가스를 사용하였으며, 반응온도 및 반응압력 조건에 따른 제조된 생성물의 조성을 분석한 결과를 표 2에 나타내었다.
< 비교예 1-1 및 1-2>
실시예 1-1과 동일한 방법으로 반응을 수행하되, 촉매로는 복합촉매 대신 100Fe-6Cu-16Al-4K의 조성비를 가지는 철계 촉매 0.3 g만을 장입하였고, 하기 표 1의 조건으로 반응을 수행하여 제조된 생성물의 조성을 분석한 결과를 하기 표 2에 나타내었다.
구분 촉매 반응 조건
온도(℃) 압력(bar)
실시예 1-1 100Fe-6Cu-16Al-4K + HZSM-51) 300 20
실시예 1-2 100Fe-6Cu-16Al-4K + HZSM-51) 320 20
실시예 1-3 100Fe-6Cu-16Al-4K + HZSM-51) 340 20
실시예 1-4 100Fe-6Cu-16Al-4K + HZSM-51) 360 20
실시예 1-5 100Fe-6Cu-16Al-4K + HZSM-51) 380 20
실시예 1-6 100Fe-6Cu-16Al-4K + HZSM-51) 340 1
실시예 1-7 100Fe-6Cu-16Al-4K + HZSM-51) 340 5
실시예 1-8 100Fe-6Cu-16Al-4K + HZSM-51) 340 10
비교예 1-1 100Fe-6Cu-16Al-4K 320 20
비교예 1-2 100Fe-6Cu-16Al-4K 340 20
1) HZSM-5: Si/Al = 15, 비표면적 = 402.1 m2/g, 브뢴스테드산점/루이스산점 = 0.81, 기공 크기: 5.1~5.6Å
구분 CO 전환율(%) CO2 선택도(%) 생성물 분포(몰 %)
CH4 C2 ~ C4 Olefin in C2 ~ C4 C5+ 단환 방향족 화합물(BTEX2))
실시예 1-1 98.7 31.8 11.4 44.1 0.43 44.5 10.1
실시예 1-2 98.4 30.7 14.1 46.9 0.44 39.0 10.0
실시예 1-3 98.0 29.6 18.0 48.1 0.69 33.9 13.7
실시예 1-4 97.4 31.0 20.9 46.9 0.78 32.2 14.1
실시예 1-5 96.8 29.8 26.4 46.5 0.99 27.2 17.5
실시예 1-6 7.5 55.0 28.4 22.5 48 49.1 7.9
실시예 1-7 96.6 35.5 26.9 43.0 2.0 30.1 16.9
실시예 1-8 97.6 32.1 21.4 46.7 0.95 31.9 18.3
비교예 1-1 98.3 29.8 10.5 31.9 74.3 57.6 -
비교예 1-2 98.0 31.0 12.9 31.3 76.6 55.8 -
2) BTEX: 벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbenzene), 자일렌(Xylene)
표 2에 나타난 바와 같이, 비교예 1-1 및 1-2의 경우 대부분 단쇄 탄화수소가 생성되며, 올레핀의 선택도가 높고, 단환 방향족 화합물이 전혀 생성되지 않은 반면, 실시예 1-1 내지 1-9에서는 포화 탄화수소의 분포가 높고, 단환 방향족 화합물이 생성되는 것으로 나타났다. 또한, 실시예 1-1 내지 1-9에서는 반응온도 및 반응압력 조건에 의해 생성물 내의 단환 방향족 화합물의 선택도가 변화됨을 확인할 수 있었다. 즉, 반응 압력이 20 bar일 때 반응 온도가 380 ℃로 증가할수록 CO 전환율이 감소되고, 단환 방향족 화합물의 선택도가 증가되는 경향을 보였으며, 반응 온도가 340 ℃일 때 반응 압력이 증가함에 따라 CO 전환율이 증가되나, 1 bar의 낮은 압력 조건에서는 피셔-트롭쉬 합성반응의 활성이 낮아 원료인 합성가스가 거의 전환되지 않음을 확인할 수 있었다. 특히, 반응 조건이 340 ℃ ~ 380 ℃, 10 bar ~ 20 bar일 때 단환 방향족 화합물의 선택도가 가장 높은 수치를 보였다.
< 실시예 2-1 내지 2-3>
상기 실시예 1-8과 동일 조건에서 원료로 사용된 합성가스의 H2/CO 몰비로 달리하여 합성반응을 진행하였고, 그 결과를 하기 표 3에 나타내었다.
구분 합성가스 CO 전환율(%) CO2 선택도(%) 생성물 분포(몰 %)
H2/CO 몰비 CH4 C2 ~ C4 Olefin in C2 ~ C4 C5+ 단환 방향족 화합물(BTEX2))
실시예 2-1 0.5 71.8 43.7 15.4 33.0 0.46 51.6 15.9
실시예 2-2 1 97.1 44.5 17.0 43.4 0.69 39.6 20.0
실시예 2-3 2 97.6 32.1 21.4 46.7 0.95 31.9 18.3
2) BTEX: 벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbenzene), 자일렌(Xylene)
표 3에 나타난 바와 같이, H2/CO의 몰비가 증가함에 따라 수성가스전환반응이 억제됨에 따라 CO2 선택도가 감소되고, 수소화(hydrogenation)가 촉진됨에 따라 단쇄 탄화수소의 선택도가 증가되는 반면, 단환 방향족 화합물의 선택도가 감소됨을 확인하였으며, H2/CO의 몰비가 0.5 이하인 경우, 코크스 발생으로 인한 압력이 증가되고, 촉매의 비활성화가 빠르게 나타났다. 특히, 합성 가스의 H2/CO 몰비가 1 ~ 2일 때 단환 방향족 화합물의 선택도가 가장 높은 수치를 보였다.
< 실시예 3-1 내지 3-8>
상기 실시예 1-8과 동일 조건에서 촉매 조건을 하기 표 4의 조건으로 달리하여 합성반응을 진행하였고, 그 결과를 하기 표 5에 나타내었다.
구분 촉매
100Fe-6Cu-16Al-4K : HZSM-51) 중량비 HZSM-51)의 Si/Al 몰비
실시예 3-1 1 : 4 15
실시예 3-2 1 : 3 15
실시예 3-3 1 : 2 15
실시예 3-4 1 : 1 15
실시예 3-5 1 : 0.5 15
실시예 3-6 1 : 2 25
실시예 3-7 1 : 2 40
실시예 3-8 1 : 2 140
1) HZSM-5: Si/Al = 15, 비표면적 = 402.1 m2/g, 브뢴스테드산점/루이스산점 = 0.81
구분 CO 전환율(%) CO2 선택도(%) 생성물 분포(몰 %)
CH4 C2 ~ C4 Olefin in C2 ~ C4 C5+ 단환 방향족 화합물(BTEX2 ))
실시예 3-1 97.6 33.0 21.1 49.0 0.99 29.7 20.2
실시예 3-2 97.8 30.9 23.5 47.8 0.99 28.7 18.7
실시예 3-3 97.6 32.1 21.4 46.7 0.95 31.9 18.3
실시예 3-4 97.5 34.8 18.2 42.7 1.60 39.1 17
실시예 3-5 97.4 31.1 22.5 38.4 3.0 39.1 15.2
실시예 3-6 97.6 32.6 21.6 46.3 0.99 32.1 17.5
실시예 3-7 97.6 31.1 22.3 43.4 1.2 34.3 16.8
실시예 3-8 97.6 31.5 21.4 44.2 1.3 34.4 16.6
2) BTEX: 벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbenzene), 자일렌(Xylene)
상기 표 5의 실시예 3-1 내지 3-5에 나타난 바와 같이, 결정성 알루미노실리케이트계 촉매의 혼합된 함량이 감소될수록 올레핀 함량과 C5 이상의 탄화수소 함량이 증가되는 반면, 단환 방향족 화합물의 선택도가 감소되는 것으로 나타났다.
또한, 표 5의 실시예 3-5 내지 3-8에 나타난 바와 같이, 결정성 알루미노실리케이트계 촉매의 Si/Al 몰비가 증가함에 따라 C5 이상의 탄화수소와 올레핀의 선택도가 증가되는 반면, 단환 방향족 화합물의 선택도가 감소되는 것으로 나타났다. 특히, 철계 촉매와 결정성 알루미노실리케이트계 촉매의 중량비가 1 : 2 ~ 1 : 4이고, 결정성 알루미노실리케이트계 촉매의 Si/Al 몰비가 15 ~ 25일 때 단환 방향족 화합물의 선택도가 가장 높은 수치를 보였다.
본 발명은 상기한 실시예와 첨부한 도면을 참조하여 설명되었지만, 본 발명의 개념 및 범위 내에서 상이한 실시예를 구성할 수도 있다. 따라서 본 발명의 범위는 첨부된 청구범위 및 이와 균등한 것들에 의해 정해지며, 본 명세서에 기재된 특정 실시예에 의해 한정되지는 않는다.

Claims (10)

  1. 철계 촉매 및 결정성 알루미노실리케이트계 촉매가 혼합된 복합촉매 존재하에 합성가스를 반응시켜 단환 방향족 화합물을 제조하는 단계를 포함하는, 단환 방향족 화합물의 합성방법.
  2. 제1항에 있어서,
    상기 반응은 250 ℃ ~ 400 ℃에서 1 bar ~ 25 bar로 수행하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  3. 제1항에 있어서,
    상기 반응은 340 ℃ ~ 380 ℃에서 5 bar ~ 20 bar로 수행하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  4. 제1항에 있어서,
    상기 합성가스는 H2/CO의 몰비가 0.1 ~ 3 범위인 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  5. 제1항에 있어서,
    상기 복합촉매는 철계 촉매 및 결정성 알루미노실리케이트계 촉매의 중량비가 1 : 0.1 내지 1 : 10인 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  6. 제1항에 있어서,
    상기 철계 촉매는 구리(Cu), 망간(Mn), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 나트륨(Na), 크롬(Cr), 실리콘(Si) 및 칼륨(K)으로 구성된 군에서 선택되는 1종 이상의 조촉매가 더 함유된 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  7. 제1항에 있어서,
    상기 결정성 알루미노실리케이트계 촉매는 ZSM-5, H-beta, L-zeolite, Y-zeolite, SAPO-34, MCM-22 및 H-USY로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  8. 제1항에 있어서,
    상기 결정성 알루미노실리케이트계 촉매는 Si/Al의 몰비가 10 ~ 150인 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  9. 제1항에 있어서,
    상기 결정성 알루미노실리케이트계 촉매는 갈륨(Ga), 아연(Zn), 백금(Pt), 팔라듐(Pd), 텅스텐(W), 코발트(Co) 및 철(Fe)로 구성된 군에서 선택되는 1종 이상의 조촉매가 더 함유된 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
  10. 제1항에 있어서,
    상기 단환 방향족 화합물은 벤젠, 톨루엔, 에틸벤젠 및 자일렌으로 구성된 군에서 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 하는 단환 방향족 화합물의 합성방법.
PCT/KR2019/014465 2018-10-30 2019-10-30 합성가스로부터 단환 방향족 화합물의 직접 합성방법 WO2020091415A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0131124 2018-10-30
KR1020180131124A KR102186035B1 (ko) 2018-10-30 2018-10-30 합성가스로부터 단환 방향족 화합물의 직접 합성방법

Publications (1)

Publication Number Publication Date
WO2020091415A1 true WO2020091415A1 (ko) 2020-05-07

Family

ID=70463140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014465 WO2020091415A1 (ko) 2018-10-30 2019-10-30 합성가스로부터 단환 방향족 화합물의 직접 합성방법

Country Status (2)

Country Link
KR (1) KR102186035B1 (ko)
WO (1) WO2020091415A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543484A (ja) * 1991-08-16 1993-02-23 Res Assoc Util Of Light Oil 芳香族炭化水素の製造方法
KR19990006692A (ko) * 1997-06-06 1999-01-25 키아오 잉빈 방향족 탄화수소의 전환용 촉매 및 방법, 및 방향족 탄화수소의 제조에 있어서 그의 용도
JP2012062255A (ja) * 2010-09-14 2012-03-29 Jx Nippon Oil & Energy Corp 芳香族炭化水素の製造方法
JP2012201802A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
KR101600430B1 (ko) * 2015-01-08 2016-03-07 한국화학연구원 이산화탄소가 풍부한 합성가스로부터 단환 방향족 화합물 및 장쇄올레핀 화합물의 직접 합성방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139640A (ja) 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
KR101418911B1 (ko) 2014-04-17 2014-07-14 한국에너지기술연구원 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543484A (ja) * 1991-08-16 1993-02-23 Res Assoc Util Of Light Oil 芳香族炭化水素の製造方法
KR19990006692A (ko) * 1997-06-06 1999-01-25 키아오 잉빈 방향족 탄화수소의 전환용 촉매 및 방법, 및 방향족 탄화수소의 제조에 있어서 그의 용도
JP2012062255A (ja) * 2010-09-14 2012-03-29 Jx Nippon Oil & Energy Corp 芳香族炭化水素の製造方法
JP2012201802A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
KR101600430B1 (ko) * 2015-01-08 2016-03-07 한국화학연구원 이산화탄소가 풍부한 합성가스로부터 단환 방향족 화합물 및 장쇄올레핀 화합물의 직접 합성방법

Also Published As

Publication number Publication date
KR20200050006A (ko) 2020-05-11
KR102186035B1 (ko) 2020-12-07

Similar Documents

Publication Publication Date Title
WO2016111463A1 (ko) 이산화탄소가 풍부한 합성가스로부터 단환 방향족 화합물 및 장쇄올레핀 화합물의 직접 합성방법
CN101671226B (zh) 一种甲醇芳构化制取二甲苯工艺
KR100710542B1 (ko) 탄화수소 원료 혼합물로부터 경질 올레핀계 탄화수소의증산방법
US7919661B2 (en) Method for production of styrene from toluene and syngas
WO2013066029A1 (en) Method of producing aromatic hydrocarbons and olefin from hydrocarbonaceous oils comprising large amounts of polycyclic aromatic compounds
EP0418251A4 (en) Alkanes and alkenes conversion to high octane gasoline
US20100179365A1 (en) Method and apparatus for producing propylene
US9790145B2 (en) Production of C2+ olefins
WO2011026744A3 (de) Verfahren zur herstellung von benzol aus methan
CN104557361A (zh) 多功能甲醇和/或二甲醚转化制乙烯、丙烯和芳烃的***及其方法
CN108017490B (zh) 含有含氧化合物原料催化转化制芳烃的方法
CN101585747B (zh) 一种将含氧化合物转化为丙烯的方法
WO2020091415A1 (ko) 합성가스로부터 단환 방향족 화합물의 직접 합성방법
CN110201609B (zh) 一种利用合成气加氢联产烯烃和芳烃的设备及方法
CN114989865B (zh) 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法
CN107540502A (zh) 含氧化合物原料催化转化为乙烯、丙烯和芳烃的方法
CN1884444A (zh) C4烃类和/或催化汽油芳构化移动床反应器耦合方法和***
US20240182794A1 (en) Process and plant for improving gasoline yield and octane number
CN115010570B (zh) 由费托合成石脑油生产乙烯、丙烯和c4组分的方法
CN114950281B (zh) 一种高效裂解c3-c9非芳烃制备芳烃的***与方法
US20240124783A1 (en) Process and plant for converting oxygenates to gasoline with improved gasoline yield and octane number as well as reduced durene levels
Keusenkothen et al. Production of C 2+ olefins
JP2023550002A (ja) アルキル化フェノールのトランスアルキル化
CN112707777A (zh) 一种以含氧化合物为原料生产芳烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880683

Country of ref document: EP

Kind code of ref document: A1