WO2020091146A1 - 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름 - Google Patents

폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름 Download PDF

Info

Publication number
WO2020091146A1
WO2020091146A1 PCT/KR2019/000909 KR2019000909W WO2020091146A1 WO 2020091146 A1 WO2020091146 A1 WO 2020091146A1 KR 2019000909 W KR2019000909 W KR 2019000909W WO 2020091146 A1 WO2020091146 A1 WO 2020091146A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor composition
polyimide precursor
group
polyimide
polyimide film
Prior art date
Application number
PCT/KR2019/000909
Other languages
English (en)
French (fr)
Inventor
황인환
이익상
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Publication of WO2020091146A1 publication Critical patent/WO2020091146A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a polyimide precursor composition for improving the adhesion of a polyimide film, and a polyimide film prepared therefrom.
  • Polyimide (PI) is a polymer material with thermal stability based on a rigid aromatic backbone and has mechanical properties such as excellent strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring.
  • polyimide is in the spotlight as a high-performance polymer material that can be applied to a wide range of industries such as electronics, communications, and optics due to its excellent electrical properties such as insulation properties and low dielectric constant.
  • the higher the molecular weight of the polyamic acid the higher the viscosity of the polyamic acid solution in a state in which the polyamic acid is dissolved in a solvent, resulting in a problem that the fluidity decreases and the process handling becomes very low.
  • polyimide resins undergo chemical changes, ie oxidation reactions, in the presence of oxygen by light, heat, pressure, shear force, and the like.
  • This oxidation reaction causes a problem of deteriorating the heat resistance and mechanical properties of the polyimide film produced by generating a change in physical properties by cutting, crosslinking, etc. of the molecular chain in the polyimide resin.
  • a method of adding a small amount of an additive such as an antioxidant is used, and the antioxidant removes oxygen atoms of an already oxidized polyimide resin, thereby stabilizing the polyimide resin.
  • an additive such as an antioxidant
  • a phosphate compound and a sulfur compound are typically used.
  • antioxidants have properties that decompose at high temperatures, and in particular, in the production of polyimide resins, it is common that high temperature heat treatment for imidization is involved, so that the antioxidants are decomposed to reduce the antioxidant effect. In some cases, there is a problem that these effects are not exerted at all.
  • a polyimide film is prepared through a method of forming a gel film by forming a polyamic acid on a support and drying the gel film, and imidizing the gel film.
  • a lifting phenomenon in which a part of the phase is peeled off occurs.
  • the polyamic acid composed of the dianhydride monomer and the diamine monomer is a material having very low or little adhesion to a support made of an inorganic substrate, a problem of separation from the support may occur during the manufacturing process.
  • the object of the present invention even if the solid content of the polyamic acid solution is high, the viscosity is kept low, satisfies the heat resistance and mechanical properties of the polyimide film produced therefrom at the same time, the adhesion to the support in the manufacturing process of the polyimide film It is to provide an excellent imide precursor composition and a polyimide film prepared therefrom.
  • a polyamic acid solution prepared by polymerizing one or more dianhydride monomers and one or more diamine monomers in an organic solvent.
  • a polyimide precursor composition comprising an aromatic carboxylic acid having 4 or more carboxyl groups and an antioxidant is disclosed as an essential factor for the implementation of a polyimide film satisfying the above properties.
  • the dianhydride monomer may satisfy the above-described properties by including an adhesive dianhydride monomer.
  • the present invention has a practical purpose to provide a specific embodiment thereof.
  • the present invention is a polyamic acid solution prepared by polymerizing one or more dianhydride monomers and one or more diamine monomers in an organic solvent;
  • Aromatic carboxylic acids having 4 or more carboxyl groups
  • the dianhydride monomer includes an adhesive dianhydride monomer represented by the following Chemical Formula 1,
  • a polyimide precursor composition having an elongation of 13% or more of a polyimide film prepared therefrom is provided.
  • X 1 and X 2 may be each independently selected from the group consisting of C1-C3 alkyl group, aryl group, carboxyl group, hydroxy group, fluoroalkyl group, and sulfonic acid group,
  • X 1 and X 2 are plural, they may be the same or different from each other,
  • n1 and n2 are each independently an integer of 0 to 3.
  • process handling may be improved due to a relatively low viscosity while having a high solid content, and the polyimide film produced therefrom has excellent heat resistance and mechanical properties, and a polyimide film It was found that the cutability and yield of the product were improved.
  • dianhydride dianhydride
  • dianhydride is intended to include its precursors or derivatives, which may not technically be dianhydrides, but nevertheless react with diamines to form polyamic acids. And this polyamic acid can be converted back to polyimide.
  • Diamine as used herein is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acids, which polyamic acids are again polydi Can be converted to mead.
  • the polyimide precursor composition according to the present invention includes: a polyamic acid solution prepared by polymerizing one or more dianhydride monomers and one or more diamine monomers in an organic solvent;
  • Aromatic carboxylic acids having 4 or more carboxyl groups
  • the dianhydride monomer includes an adhesive dianhydride monomer represented by the following Chemical Formula 1,
  • X 1 and X 2 may be each independently selected from the group consisting of C1-C3 alkyl group, aryl group, carboxyl group, hydroxy group, fluoroalkyl group, and sulfonic acid group,
  • X 1 and X 2 are plural, they may be the same or different from each other,
  • n1 and n2 are each independently an integer of 0 to 3.
  • the adhesion reaction includes, for example, physical bonding between the polyimide film and the surface of the support, hydrogen bonding between the polyimide film and the metalloid oxide or metal oxide film on the surface of the support, and chemical adsorption between the polyimide film and the surface of the support. Can be.
  • the carbonyl group included in the adhesive dianhydride monomer improves the chemical adsorption reaction by the polar functional group during the adhesion reaction as described above, and the gel film is dried or supported in the process of manufacturing the polyimide film. It is possible to minimize the lifting phenomenon in which a part of the phase is peeled off.
  • the adhesive dianhydride monomer that can be particularly preferably used in the present invention is 2,3,3 ', 4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-benzophenone It may include one or more selected from the group consisting of tetracarboxylic dianhydride (BTDA), but is not limited thereto.
  • BTDA tetracarboxylic dianhydride
  • the aromatic carboxylic acid is 3,3 ', 4,4'-biphenyltetracarboxylic acid (3,3', 4,4'-biphenyltetracarboxylic acid, BPTA), pyromellitic acid (PMA) , 1,2,3,4-benzenetetracarboxylic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid (benzophenone-3,3', 4,4'-tetracarboxylic acid, pyrazine tetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid (2,3,6,7-naphthalenetetracarboxylic acid) and naphthalene-1,4,5 , 8-tetracarboxylic acid (naphthalene-1,4,5,8-tetracarboxylic acid) may include one or more selected from the group consisting of.
  • aromatic carboxylic acids having 4 or more carboxyl groups are not polymerized with polyamic acid at a temperature in the process of polymerizing a polyamic acid solution or preparing a polyimide precursor composition, for example, at a temperature of 40 to 90 ° C. Subsequently, upon heat treatment for imidization, a closed ring dehydration reaction is caused, so that a carboxyl group may form a dianhydride group.
  • the terminal amine group of the polyamic acid chain or the polyimide chain can react with the dianhydride group to increase the length of the polymer chain while forming an amic acid group.
  • the amic acid group thus generated may be imidized at a high temperature to increase the length of the polyimide chain.
  • the polyimide precursor composition containing the aromatic carboxylic acid can maintain a low viscosity, thereby significantly improving process handling.
  • mechanical properties and heat resistance can be remarkably improved compared to polyimide prepared using polyamic acid having a similar molecular weight.
  • the content of the dianhydride monomer is 93 to 98.8 mol%
  • the content of the adhesive dianhydride monomer is 1 to 5 mol%
  • having four or more carboxyl groups The content of aromatic carboxylic acid may be 0.2 to 2 mol%.
  • an increase in the carbonyl group included in the monomer may increase the hygroscopicity of the polyimide film, and thus a problem such as an increase in the dielectric constant of the polyimide film may occur.
  • the heat resistance of the polyimide film may be lowered, flexibility may be lowered, and defects may occur in the appearance of the film. It is not preferable because a desired low viscosity cannot be achieved.
  • the antioxidant may have a 5% by weight decomposition temperature of 380 ° C or higher, and specifically, 5% by weight decomposition temperature of 400 ° C or higher.
  • the antioxidant may include a compound represented by Formula 2 below.
  • R 1 to R 6 may each independently be selected from the group consisting of C1-C3 alkyl groups, aryl groups, carboxylic acid groups, hydroxy groups, fluoroalkyl groups, and sulfonic acid groups,
  • n is an integer from 1 to 4,
  • R 1 to R 6 are plural, they may be the same or different from each other,
  • n1 to m6 are each independently an integer of 0 to 3.
  • n in Formula 2 may be 1, m1 to m6 may be 0, and more specifically, the antioxidant may include a compound of Formula 2-1.
  • antioxidants Since these antioxidants have low volatility and excellent thermal stability, they do not decompose or volatilize during the production process of the polyimide film, and thus exhibit an effect of preventing oxidation of the amide group or the imide group of the polyimide film in the polyimide precursor composition. Can be.
  • the polyimide film is decomposed by high temperature during the manufacturing process, and thus cannot exhibit the effect of introducing the above antioxidant.
  • the antioxidant may be included in the range of 0.1 to 2 parts by weight based on 100 parts by weight of the solid content of the polyimide precursor composition.
  • the content of the antioxidant exceeds the above range, the heat resistance of the polyimide film may deteriorate, and deposition or blooming may occur in the polyimide film, thereby deteriorating mechanical properties, and film appearance. It is not desirable because it may cause defects.
  • the polyimide precursor composition may include 10 to 20% by weight of solids based on the total weight of the polyimide precursor composition.
  • the polyimide precursor composition may have a viscosity at 23 ° C of 1,000 to 20,000 cp, specifically 2,000 to 10,000 cP, and more specifically 3,000 to 6,000 cP.
  • the polyimide precursor composition having such a viscosity has an advantage of easy handling in the process in terms of fluidity, and may be advantageous in film forming. Specifically, when the viscosity of the polyimide precursor composition exceeds the above range, higher pressure must be applied by friction with the pipe when the polyimide precursor composition is moved through the pipe during the polyimide production process. Process costs are increased and handling is degraded. In addition, the higher the viscosity, the more time and cost may be required for the mixing process.
  • the polyimide precursor composition may further include a silicone-based additive.
  • the polyimide precursor composition may contain 0.01 to 0.05 parts by weight of a silicone-based additive with respect to 100 parts by weight of solid content.
  • the content of the silicone-based additive exceeds the above range, the mechanical properties of the polyimide film to be produced may be deteriorated, and the silicone-based additive is decomposed at a high temperature during heat treatment for imidization, thereby increasing the adhesion between the gel film and the support. It is not preferable because it may decrease.
  • the content of the silicone-based additive is less than the above range, it is not preferable because it cannot exert a sufficient effect to improve the smoothness of the surface of the polyimide film to be produced.
  • the silicone-based additive is, for example, dimethylpolysiloxane (dimethylpolysiloxane),
  • Polyether-modified polydimethylsiloxane Polyether modified polydimethysiloxane
  • the polyimide precursor composition may further include an alkoxy silane coupling agent.
  • it may include 0.01 to 0.05 parts by weight of an alkoxy silane coupling agent with respect to 100 parts by weight of the solid content of the polyimide precursor composition.
  • the alkoxy silane coupling agent When the content of the alkoxy silane coupling agent exceeds the above range, mechanical properties may be deteriorated, and upon heat treatment for imidization, the alkoxy silane coupling agent decomposes at a high temperature to decrease the adhesion between the gel film and the support rather. This is not desirable.
  • the alkoxy silane coupling agent is, for example, 3-aminopropyl trimethoxysilane, 3-aminopropyl triethoxysilane, 3-aminopropyl methyl dimethoxysilane, 3-aminopropyl methyl diethoxysilane, 3- (2 -Aminoethyl) aminopropyl trimethoxysilane, 3-phenylaminopropyl trimethoxysilane, 2-aminophenyl trimethoxysilane, and 3-aminophenyl trimethoxysilane. It can, but is not limited to this.
  • the polyamic acid solution may be produced by polymerization of one or more dianhydride monomers and one or more diamine monomers.
  • the dianhydride monomer that can be used in the production of the polyamic acid of the present invention may be an aromatic tetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride is pyromellitic dianhydride (or PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (or BPDA), 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride (or a-BPDA), oxydiphthalic dianhydride (or ODPA), diphenylsulfone-3,4,3', 4'-tetracarboxylic Dianhydride (or DSDA), bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- Hexafluoropropane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis
  • PMDA pyromellitic dianhydrides
  • s-BPDA '-biphenyltetracarboxylic dianhydride
  • a-BPDA 2,3,3', 4'-biphenyltetracarboxylic dianhydride
  • the diamine monomers that can be used in the production of the polyamic acid solution of the present invention are aromatic diamines, and are classified as follows.
  • 1,4-diaminobenzene or paraphenylenediamine, PDA
  • 1,3-diaminobenzene 2,4-diaminotoluene
  • 2,6-diaminotoluene 3,5-diaminobenzo Diamines having one benzene nucleus in the structure, such as diacid (or DABA), etc., which have a relatively rigid structure in diamine;
  • Diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether (or oxidianiline, ODA) and 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane (Methylenediamine), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl ) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane , 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4,4'-dia
  • diamine monomers that can be particularly preferably used in the present invention include 1,4-diaminobenzene (PPD) and 1,3-diaminobenzene (MPD). ), 2,4-diaminotoluene, 2,6-diaminotoluene, and 3,5-diaminobenzoic acid (DABA).
  • PPD 1,4-diaminobenzene
  • MPD 1,3-diaminobenzene
  • DABA 3,5-diaminobenzoic acid
  • the dianhydride monomer includes an adhesive dianhydride monomer represented by Formula 1 below,
  • the polyimide film is characterized in that the elongation is 13% or more.
  • X 1 and X 2 may be each independently selected from the group consisting of C1-C3 alkyl group, aryl group, carboxyl group, hydroxy group, fluoroalkyl group, and sulfonic acid group,
  • X 1 and X 2 are plural, they may be the same or different from each other,
  • n1 and n2 are each independently an integer of 0 to 3.
  • the second composition In the dianhydride monomer component in excess, in the first composition when the dianhydride monomer component is excessive, in the second composition, the diamine monomer component in excess, the first and second compositions are mixed and used in these reactions So that the total diamine monomer component and the dianhydride monomer component become substantially equimolar It can be joined to the methods.
  • the organic solvent is not particularly limited as long as it is a solvent in which the polyamic acid can be dissolved, but as an example, the organic solvent may be an aprotic polar solvent.
  • Non-limiting examples of the aprotic polar solvent include amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, and o-chloro And phenol-based solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma brotirolactone (GBL) and digrime, and these may be used alone or in combination of two or more.
  • amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, and o-chloro And phenol-based solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma brotirolactone (GBL) and digrime, and these may be used alone or in combination of two or more.
  • the solubility of the polyamic acid may be controlled by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water.
  • auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water.
  • organic solvents that can be particularly preferably used for preparing the polyimide precursor composition of the present invention may be amide solvents N, N'-dimethylformamide and N, N'-dimethylacetamide.
  • the polymerization method is not limited to the above examples, and it is needless to say that any known method can be used.
  • the dianhydride monomer may be appropriately selected from the examples described above, and in detail, pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) and 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride (a-BPDA) may further include one or more selected from the group consisting of.
  • PMDA pyromellitic dianhydride
  • s-BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • a-BPDA 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride
  • the diamine monomer may be appropriately selected from the examples described above, and specifically, 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4-diaminotoluene, 2, One or more selected from the group consisting of 6-diaminotoluene and 3,5-diaminobenzoic acid (DABA) can be preferably used.
  • PPD 1,4-diaminobenzene
  • MPD 1,3-diaminobenzene
  • DABA 3,5-diaminobenzoic acid
  • the process (a) is carried out at 30 to 80 °C,
  • the polyamic acid solution may have a viscosity at 23 ° C of 1,000 to 20,000 cP.
  • process (b) is a silicone-based additive
  • an alkoxy silane coupling agent is further mixed in a polyamic acid solution, and is performed at 40 to 90 ° C
  • the process (c) is carried out at 40 to 90 °C,
  • the polyimide precursor composition formed on the support is dried at a temperature of 20 to 120 ° C. for 5 to 60 minutes to prepare a gel film, and the gel film is 1 to 8 ° C. to 450 to 500 ° C. / It can be carried out through a process of heating at a rate of minutes, heat treatment at 450 to 500 ° C for 30 to 60 minutes, and cooling at 20 to 120 ° C at a rate of 1 to 8 ° C / minute.
  • the support may be, for example, an inorganic substrate, and examples of the inorganic substrate include a glass substrate and a metal substrate, but it is preferable to use a glass substrate, and the glass substrate is soda-lime glass, borosilicate glass, and alkali-free glass. And the like may be used, but is not limited to this.
  • the adhesive force between the polyimide film and the support prepared from the gel film is measured to indirectly evaluate the adhesive force between the gel film and the support. Can be. This is because the polyimide film prepared from the gel film can be expected to exhibit similar properties in adhesion to the support.
  • the adhesive force between the polyimide film and the support may be 0.3 N / cm or more, and in particular, 0.5 to 1 N / cm.
  • the adhesive force between the gel film and the support is improved, the gel film is rolled up or partly peeled off the support It can minimize the lifting phenomenon.
  • the aromatic carboxylic acid contained in the polyimide precursor composition is not polymerized with polyamic acid in step (c), but the polyimide precursor is formed by increasing the length of the polyimide chain during heat treatment for imidization.
  • the process viscosity is good due to the low viscosity, and then the length of the polymer chain is increased in the curing process, it is possible to secure a level of heat resistance and mechanical properties similar to that of a polyimide film made from polyamic acid having a higher molecular weight. .
  • the polyimide film may be produced through a thermal imidization method, and chemical imidization method may be performed in parallel.
  • the thermal imidization method is a method of excluding chemical catalysts and inducing an imidization reaction with a heat source such as hot air or an infrared dryer.
  • the thermal imidization method may be included in the process (d), and the amic acid group present in the gel film is imidized by heat-treating the gel film at a variable temperature in the range of 100 to 600 ° C in the process (d). It can be made, and in detail, heat treatment at 200 to 500 ° C, and more specifically, 450 to 500 ° C, can imidize the amic acid group present in the gel film.
  • the polyimide precursor composition may be dried at a phosphorus temperature, which may also be included in the scope of the thermal imidization method.
  • the polyimide film of the present invention prepared according to the above manufacturing method has a thermal expansion coefficient (CTE) of 1 to 25 ppm / ° C, an elongation of 13% or more, and a thermal decomposition temperature of 1% by weight of 555 to 620 ° C.
  • CTE thermal expansion coefficient
  • Glass transition temperature is 380 °C or more
  • the modulus is 8 GPa or more
  • the tensile strength is 280 MPa or more
  • the thickness may be 10 to 20 ⁇ m.
  • a polyimide film may be prepared using a dehydrating agent and an imidizing agent according to methods known in the art.
  • the present invention can also provide an electronic device including the polyimide film.
  • a polyimide precursor composition was prepared having a molar ratio of 100: 98.5: 0.5: 1, 0.01 parts by weight of a silicone-based additive, 0.5 parts by weight of an antioxidant, and 0.01 parts by weight of an alkoxy silane coupling agent based on 100 parts by weight of solids.
  • Air bubbles were removed from the polyimide precursor composition through high-speed rotation of 1,500 rpm or more. Thereafter, the defoamed polyimide precursor composition was applied to a glass substrate using a spin coater. Then, under a nitrogen atmosphere and dried at a temperature of 120 ° C. for 30 minutes, a gel film was prepared. Cooling at a rate of 2 ° C / min yielded a polyimide film.
  • the polyimide film was peeled from the glass substrate by dipping in distilled water.
  • the thickness of the prepared polyimide film was 15 ⁇ m.
  • the thickness of the prepared polyimide film was measured using an Anritsu company's film thickness meter (Electric Film thickness tester).
  • Example 1 a polyimide film was prepared in the same manner as in Example 1, except that the viscosity of the monomer, additive, and polyimide precursor composition was changed as shown in Table 1 below.
  • Example 1 a polyimide film was prepared in the same manner as in Example 1, except that instead of the compound of Formula 2-1 as an antioxidant, a compound of Formula A having a 5 wt% decomposition temperature of about 377 ° C was added. .
  • Example 1 a polyimide film was prepared in the same manner as in Example 1, except that the compound of Formula B having a 5 wt% decomposition temperature of about 338 ° C. instead of the compound of Formula 2-1 as an antioxidant was added. .
  • Example 1 100 98.5 - 0.5 One Formula 2-1 0.1 0.1 0.1 5,100
  • Example 2 100 94.5 - 0.5 5 Formula 2-1 0.1 0.1 0.1 5,100
  • Example 3 100 97.5 - 0.5 2 Formula 2-1 0.1 0.1 0.1 5,100
  • Example 4 100 97 - 2 One Formula 2-1 0.1 0.1 0.1 5,100
  • Example 5 100 98.5 - 0.5 One Formula 2-1 0.5 0.1 0.1 5,100
  • Example 6 100 98.5 - 0.5
  • Example 7 100 98.5 - 0.5
  • Example 8 100 50 48.5 0.5 One Formula 2-1 0.1 0.1 0.1 4,900
  • Example 9 100 50 48.5 0.5 One Formula 2-1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
  • the polyimide film obtained in Examples before peeling the polyimide film from the glass substrate, it was cut to a width of 10 mm using a cutter knife, under a condition of 23 ° C., 55% RH, and a tensile speed of 50 m / min. In the case of 50 mm ⁇ , the average value of the 180 degree peel strength was measured.
  • a TA thermomechanical analyzer Q400 model was used, and the polyimide film was cut to a width of 2 mm and a length of 10 mm, and then subjected to a tension of 0.05 N under a nitrogen atmosphere, at a rate of 10 ° C./min, 500 at room temperature. After heating up to °C, while cooling at a rate of 10 °C / min again, the slope of the section at 100 °C to 350 °C was measured.
  • thermogravimetric analysis Q50 model was used, and the polyimide film was heated to 150 ° C. at a rate of 10 min / ° C. under a nitrogen atmosphere to maintain isotherm for 30 minutes to remove moisture. Thereafter, the temperature was raised to 600 ° C at a rate of 10 min / ° C, and the temperature at which 1% weight loss occurred was measured.
  • the polyimide film was cut to a width of 4 mm and a length of 20 mm, and then heated at a rate of 5 ° C./min under a nitrogen atmosphere and a temperature range of 550 ° C. at room temperature.
  • the glass transition temperature was measured under conditions. The glass transition temperature was determined as the maximum peak of tan ⁇ calculated according to the ratio of storage modulus and loss modulus.
  • modulus and tensile strength were measured by ASTM D-882 method using Instron5564 UTM equipment of Instron.
  • the cross head speed at this time was measured under the condition of 5 mm / min.
  • the polyimide precursor composition according to the present invention comprises an adhesive dianhydride monomer, thereby forming a gel film by forming a polyimide precursor composition on a support and drying the gel film and the support in the process of imidizing the gel film. It is possible to improve the production yield by improving the adhesion.
  • aromatic carboxylic acids having 4 or more carboxyl groups included in the polyimide precursor composition have good process handling properties due to low viscosity, and since the length of the polymer chain is increased in the curing process after being formed, from polyamic acids having higher molecular weight It is possible to secure a level of heat resistance and mechanical properties similar to those of the produced polyimide film.
  • an antioxidant having a 5 wt% decomposition temperature of 380 ° C or higher included in the polyimide precursor composition has low volatility and excellent thermal stability, and thus does not decompose or volatilize during the production process of the polyimide film, and the amide in the polyimide precursor composition The oxidation of the imide group of the group or the polyimide film can be prevented, thereby minimizing the change in physical properties of the polyimide film.
  • the polyimide film has an advantage of satisfying the heat resistance and mechanical properties required for the display substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

본 발명은 1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액; 4개 이상의 카르복실기를 갖는 방향족 카르복실산; 및 산화방지제를 포함하고, 상기 디안하이드라이드 단량체는, 화학식 1로 표현되는 접착성 디안하이드라이드 단량체를 포함하고, 이로부터 제조되는 폴리이미드 필름의 신율이 13 % 이상인, 폴리이미드 전구체 조성물을 제공한다.

Description

폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
본 발명은 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물, 및 이로부터 제조되는 폴리이미드 필름에 관한 것이다.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄를 기본으로 하는 열적 안정성을 가진 고분자 물질로 이미드 고리의 화학적 안정성을 기초로 하여 우수한 강도, 내화학성, 내후성, 내열성 등의 기계적 특성을 가진다.
뿐만 아니라 폴리이미드는 절연특성, 낮은 유전율과 같은 뛰어난 전기적 특성으로 전자, 통신, 광학 등 광범위한 산업 분야에 적용 가능한 고기능성 고분자 재료로 각광받고 있다.
최근에는 각종 전자기기가 박형화, 경량화 및 소형화 됨에 따라 가볍고 유연성이 우수한 박형의 폴리이미드 필름을 회로기판의 절연소재 또는 디스플레이용 유리기판을 대체할 수 있는 디스플레이 기판으로 사용하고자 하는 연구가 많이 진행되고 있다.
특히 높은 공정온도에서 제조되는 회로기판 또는 디스플레이 기판에 사용되는 폴리이미드 필름의 경우, 보다 높은 수준의 치수안정성, 내열성 및 기계적 물성을 확보하는 것이 필요하다.
이러한 물성 확보를 위한 방법의 하나로 폴리이미드의 분자량을 증가시키는 방법을 예로 들 수 있다.
분자 내에 이미드기가 많을수록 폴리이미드 필름의 내열성 및 기계적 물성을 향상시킬 수 있고, 고분자 사슬이 길어질수록 이미드기의 비율이 증가하므로, 높은 분자량의 폴리이미드를 제조하는 것이 물성 확보에 유리하기 때문이다.
높은 분자량의 폴리이미드를 제조하기 위해서는 그 전구체인 폴리아믹산을 고분자량으로 제조한 후 열처리를 통해 이미드화하는 것이 일반적이다.
그러나, 폴리아믹산의 분자량이 높을수록 폴리아믹산이 용매에 용해된 상태인 폴리아믹산 용액의 점도가 상승하여, 유동성이 저하되고 공정 취급성이 매우 낮아지는 문제가 발생한다.
또한, 폴리아믹산의 분자량을 유지하면서 폴리아믹산의 점도를 낮추기 위해서는 고형분의 함량을 낮추고 용매 함량을 증가시키는 방법을 고려할 수 있지만, 이 경우 경화 과정에서 다량의 용매를 제거해야 함에 따라 제조 비용과 공정 시간이 증가하는 문제가 발생할 수 있다.
한편, 일반적으로 폴리이미드 수지는 산소 존재 하에 빛, 열, 압력, 전단력 등에 의하여 화학적 변화, 즉 산화반응을 일으킨다. 이러한 산화반응은 폴리이미드 수지 내의 분자사슬의 절단, 가교 등으로 물성의 변화를 발생시켜 제조되는 폴리이미드 필름의 내열성 및 기계적 물성을 저하시키는 문제를 야기한다.
이러한 문제를 해결하기 위하여, 산화방지제 등의 첨가제를 소량 투입하는 방법이 사용되고 있으며, 상기 산화방지제는 예를 들어, 이미 산화된 폴리이미드 수지의 산소원자를 제거하여 폴리이미드 수지를 안정화시키는 역할을 하는 것으로서, 포스페이트(phosphate) 화합물과 유황 화합물이 대표적으로 사용되고 있다.
그러나, 일반적으로 사용되는 산화방지제의 경우 고온에서 분해되는 성질을 가지고 있으며, 특히 폴리이미드 수지의 제조 시에는 이미드화를 위한 고온 열처리가 수반되는 것이 일반적이므로 이때 산화방지제가 분해되어 산화방지 효과가 저감되거나 경우에 따라서는 이러한 효과를 전혀 발휘하지 못하는 문제가 있다.
한편, 일반적으로 폴리이미드 필름은 폴리아믹산을 지지체에 제막하고 건조하여 겔 필름을 제조하고, 상기 겔 필름을 이미드화하는 방법을 통해 제조되는데, 상기 제조공정 중에서 겔 필름이 말려 들어가는 액말림 현상 또는 지지체상에서 일부분이 박리되는 들뜸 현상이 발생하는 문제가 있다.
즉, 디안하이드라이드 단량체 및 디아민 단량체로 이루어진 폴리아믹산은 무기 기판으로 구성된 지지체와의 접착력이 매우 낮거나, 또는 거의 없는 물질이므로, 상기와 같은 제조공정 중에 지지체와 분리되는 문제가 발생할 수 있다.
이와 같이, 폴리이미드 필름에 요구되는 특성을 향상시키는 데에는 많은 어려움이 있으며, 특히 여러 가지 특성을 동시에 만족하는 폴리이미드 필름을 제조하는 것은 관련 기술분야에서 끊임없이 연구되고 있는 과제이다.
따라서, 앞서 설명한 폴리이미드 필름에 요구되는 특성을 모두 만족하는 기술에 대한 개발의 필요성이 높은 실정이다.
본 발명의 목적은, 폴리아믹산 용액의 고형분 함량이 높더라도 점도가 낮게 유지되고, 이로부터 제조되는 폴리이미드 필름의 내열성 및 기계적 물성을 동시에 만족하며, 폴리이미드 필름의 제조공정 중에서 지지체와의 접착력이 우수하게 유지되는 리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름을 제공하는 것이다.
본 발명의 일 측면에 따르면, 1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액. 4개 이상의 카르복실기를 갖는 방향족 카르복실산 및 산화방지제를 포함하는 폴리이미드 전구체 조성물이 상기와 같은 특성을 만족하는 폴리이미드 필름의 구현에 필수적인 인자로서 개시된다. 특히, 상기 디안하이드라이드 단량체는, 접착성 디안하이드라이드 단량체를 포함함으로써 상기와 같은 특성을 만족할 수 있다.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.
본 발명은, 1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액;
4개 이상의 카르복실기를 갖는 방향족 카르복실산; 및
산화방지제를 포함하고,
상기 디안하이드라이드 단량체는, 하기 화학식 1로 표현되는 접착성 디안하이드라이드 단량체를 포함하고,
이로부터 제조되는 폴리이미드 필름의 신율이 13 % 이상인, 폴리이미드 전구체 조성물을 제공한다.
Figure PCTKR2019000909-appb-I000001
(1)
상기 화학식 1에서, X1 및 X2는 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
X1 및 X2가 복수인 경우, 서로 동일 또는 상이할 수 있고,
n1 및 n2는 각각 독립적으로 0 내지 3의 정수이다.
상기 폴리이미드 전구체 조성물을 이용하는 경우, 고형분 함량이 높으면서 상대적으로 낮은 점도로 인해 공정 취급성이 향상될 수 있음은 물론, 이로부터 제조되는 폴리이미드 필름은 우수한 내열성 및 기계적 물성을 지니며, 폴리이미드 필름의 절단성 및 수율이 향상됨을 발견하였다.
따라서, 이의 구현을 위한 구체적인 내용을 본 명세서에서 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.
수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다.
본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
제1 양태: 폴리이미드 전구체 조성물
본 발명에 따른 폴리이미드 전구체 조성물은, 1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액;
4개 이상의 카르복실기를 갖는 방향족 카르복실산; 및
산화방지제를 포함하고,
상기 디안하이드라이드 단량체는, 하기 화학식 1로 표현되는 접착성 디안하이드라이드 단량체를 포함하고,
이로부터 제조되는 폴리이미드 필름의 신율이 13 % 이상인 것을 특징으로 한다.
Figure PCTKR2019000909-appb-I000002
(1)
상기 화학식 1에서, X1 및 X2는 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
X1 및 X2가 복수인 경우, 서로 동일 또는 상이할 수 있고,
n1 및 n2는 각각 독립적으로 0 내지 3의 정수이다.
상기 화학식 1에서 벤젠 고리의 치환기가 특별히 지정되지 않은 경우에는 수소를 의미한다.
상기 화학식 1로 표현되는 접착성 디안하이드라이드 단량체는 2개의 벤젠 고리 사이에 극성 관능기인 카르보닐기(C=O)를 포함하며, 이러한 극성 관능기는 폴리이미드 필름과 무기 기판으로 구성된 지지체의 표면 사이에 접착 반응을 향상시킨다.
상기 접착 반응은 예를 들어, 폴리이미드 필름과 지지체 표면과의 물리적 결합, 폴리이미드 필름과 지지체 표면의 준금속 산화막 또는 금속 산화막과의 수소 결합, 폴리이미드 필름과 지지체 표면과의 화학 흡착 등을 들 수 있다.
구체적으로, 본원 발명에서 접착성 디안하이드라이드 단량체에 포함되는 카르보닐기는 상기와 같은 접착 반응 중 극성 관능기에 의해 화학 흡착 반응을 향상시켜 폴리이미드 필름의 제조 과정에서 겔 필름이 말려 들어가는 액말림 현상 또는 지지체상에서 일부분이 박리되는 들뜸 현상을 최소화 할 수 있다.
본 발명에서 특히 바람직하게 이용될 수 있는 접착성 디안하이드라이드 단량체는, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(BTDA)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이것만으로 한정되는 것은 아니다.
다음으로, 상기 방향족 카르복실산은 3,3',4,4'-비페닐테트라카르복실산(3,3',4,4'-biphenyltetracarboxylic acid, BPTA), 피로멜리트산(pyromellitic acid, PMA), 1,2,3,4-벤젠테트라카르복실산(1,2,3,4-benzenetetracarboxylic acid), 벤조페논-3,3',4,4'-테트라카복실산(benzophenone-3,3',4,4'-tetracarboxylic acid), 피라진테트라카복실산(pyrazinetetracarboxylic acid), 2,3,6,7-나프탈렌테트라카르복실산(2,3,6,7-naphthalenetetracarboxylic acid) 및 나프탈렌-1,4,5,8-테트라카르복실산(naphthalene-1,4,5,8-tetracarboxylic acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명에서 4개 이상의 카르복실기를 갖는 방향족 카르복실산은 폴리아믹산 용액을 중합하거나 또는 폴리이미드 전구체 조성물을 제조하는 과정에서의 온도, 예를 들어, 40 내지 90℃의 온도에서는 폴리아믹산으로 중합되지 않지만, 이후 이미드화를 위한 열처리 시 폐환 탈수 반응을 일으켜, 카르복실기가 디안하이드라이드기를 형성할 수 있다.
상기 방향족 카르복실기가 디안하이드라이드기를 형성하면, 폴리아믹산 사슬 또는 폴리이미드 사슬의 말단 아민기와 상기 디안하이드라이드기가 반응하여 아믹산기를 형성하면서 고분자 사슬 길이를 증가시킬 수 있다.
이렇게 생성된 아믹산기는 고온에서 이미드화 되어 폴리이미드 사슬의 길이가 증가 될 수 있다.
이와 같이 상기 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물은 점도를 낮게 유지할 수 있으므로, 공정 취급성을 현저하게 향상시킬 수 있다. 또한, 이미드화를 위한 열처리 시 고분자 사슬의 길이를 증가시켜, 유사한 분자량의 폴리아믹산을 사용하여 제조된 폴리이미드에 비해 기계적 물성 및 내열성이 현저하게 향상될 수 있다.
상기 상기 디아민 단량체 100 몰%를 기준으로, 상기 디안하이드라이드 단량체의 함량이 93 내지 98.8 몰%이고, 상기 접착성 디안하이드라이드 단량체의 함량이 1 내지 5 몰%이고, 상기 4개 이상의 카르복실기를 갖는 방향족 카르복실산의 함량이 0.2 내지 2 몰%일 수 있다.
먼저, 상기 접착성 디안하이드라이드 단량체의 함량이 상기 범위를 상회하는 경우에는, 폴리이미드 필름의 내열성 및 기계적 물성이 저하될 수 있다.
또한, 상기 단량체에 포함되는 카르보닐기의 증가는 폴리이미드 필름의 흡습성을 증가시킬 수 있으므로, 그에 따라 폴리이미드 필름의 유전율이 증가 하는 등의 문제가 발생할 수 있다.
반대로, 접착성 디안하이드라이드 단량체의 함량이 상기 범위를 하회하는 경우에는, 소망하는 정도의 접착력을 확보할 수 없으므로 바람직하지 않다.
다음으로, 상기 방향족 카르복실산의 함량이 상기 범위를 상회하는 경우에는, 폴리이미드 필름의 내열성이 낮아질 수 있고, 유연성이 저하되어 필름 외관에 불량이 발생할 수 있으며, 상기 범위를 하회하는 경우에는, 소망하는 수준의 낮은 점도를 달성할 수 없으므로 바람직하지 않다.
한편, 상기 산화방지제는 5 중량% 분해온도가 380℃ 이상, 상세하게는 5 중량% 분해온도가 400℃ 이상일 수 있다.
구체적으로, 상기 산화방지제가 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
Figure PCTKR2019000909-appb-I000003
(2)
상기 화학식 2에서, R1 내지 R6은 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실산기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
n은 1 내지 4의 정수이고,
R1 내지 R6가 복수인 경우, 서로 동일 또는 상이할 수 있고,
m1 내지 m6은 각각 독립적으로 0 내지 3의 정수이다.
상기 화학식 2에서 벤젠 고리의 치환기가 특별히 지정되지 않은 경우에는 수소를 의미한다.
하나의 구체적인 예에서, 상기 화학식 2에서 n이 1이고, m1 내지 m6이 0 일 수 있으며, 더욱 상세하게는 상기 산화방지제는 하기 화학식 2-1의 화합물을 포함할 수 있다.
Figure PCTKR2019000909-appb-I000004
(2-1)
이러한 산화방지제는 낮은 휘발성과 우수한 열 안정성을 가지므로, 폴리이미드 필름의 제조 공정 중에서 분해되거나 휘발되지 않는 바, 폴리이미드 전구체 조성물 내의 아미드기 또는 폴리이미드 필름의 이미드기의 산화를 방지하는 효과를 발휘할 수 있다.
반대로, 5 중량% 분해온도가 380℃ 이하인 산화방지제의 경우, 폴리이미드 필름의 제조 공정 중에서 고온에 의해 분해되어 상기와 같은 산화방지제 투입에 따른 효과를 발휘할 수 없다.
상기 산화방지제는 폴리이미드 전구체 조성물의 고형분 100 중량부에 대해서 0.1 내지 2 중량부의 범위로 포함할 수 있다.
이러한 산화방지제의 함량이 상기 범위를 상회하는 경우에는, 폴리이미드 필름의 내열성이 저하될 수 있으며, 폴리이미드 필름 내에 침적 또는 블루밍(blooming) 현상이 발생하여 기계적 물성을 오히려 저하시킬 수 있고, 필름 외관에 불량이 발생할 수 있으므로 바람직하지 않다.
반대로, 상기 산화방지제의 함량이 상기 범위를 하회하는 경우에는, 산화방지 효과를 충분히 발휘할 수 없으므로 바람직하지 않다.
상기 폴리이미드 전구체 조성물은, 상기 폴리이미드 전구체 조성물의 전체 중량을 기준으로 10 내지 20 중량%의 고형분을 포함할 수 있다.
상기 폴리이미드 전구체 조성물의 고형분 함량이 상기 범위를 상회하는 경우에는, 폴리이미드 전구체 조성물의 점도가 상승하는 것이 불가피하므로 바람직하지 않고, 반대로, 상기 폴리이미드 전구체 조성물의 고형분 함량이 상기 범위를 하회하는 경우에는, 경화 과정에서 다량의 용매를 제거해야 함에 따라 제조 비용과 공정 시간이 증가하는 문제가 발생할 수 있다.
또한, 상기 폴리이미드 전구체 조성물은 23℃에서의 점도가 1,000 내지 20,000 cp 범위로서, 상세하게는 2,000 내지 10,000 cP 범위, 더욱 상세하게는 3,000 내지 6,000 cP 범위 일 수 있다.
이러한 점도를 가지는 폴리이미드 전구체 조성물은 유동성 측면에서 공정상 취급이 용이한 이점이 있고, 제막에도 유리할 수 있다. 상세하게는, 상기 폴리이미드 전구체 조성물의 점도가 상기 범위를 상회하는 경우에는, 폴리이미드 제조 공정 중에 폴리이미드 전구체 조성물을 파이프를 통해 이동시킬 때 파이프와의 마찰에 의해 더 높은 압력을 인가해야만 하므로, 공정 비용이 증가되고 취급성이 저하될 수 있다. 또한, 점도가 높을수록 혼합 공정에 더 많은 시간과 비용이 소요될 수 있다.
반면에, 상기 폴리이미드 전구체 조성물의 점도가 상기 범위를 하회하는 경우에는, 경화 과정에서 다량의 용매를 제거해야 함에 따라 제조 비용과 공정 시간이 증가하는 문제가 발생할 수 있다.
한편, 상기 폴리이미드 전구체 조성물이 실리콘계 첨가물을 추가로 포함할 수 있다.
상기 폴리이미드 전구체 조성물의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 실리콘계 첨가물을 포함할 수 있다.
이러한 실리콘계 첨가물의 함량이 상기 범위를 상회하는 경우에는, 제조되는 폴리이미드 필름의 기계적 물성이 저하될 수 있고, 이미드화를 위한 열처리 시 상기 실리콘계 첨가물이 고온에서 분해되어 겔 필름과 지지체 간의 접착력을 오히려 저하시킬 수 있으므로 바람직하지 않다.
반면에, 상기 실리콘계 첨가물의 함량이 상기 범위를 하회하는 경우에는, 제조되는 폴리이미드 필름 표면의 평활성 개선에 충분한 효과를 발휘할 수 없으므로 바람직하지 않다.
상기 실리콘계 첨가물은 예를 들어, 디메틸폴리실록산(dimethylpolysiloxane),
폴리에테르변성폴리디메틸실록산(Polyether modified polydimethysiloxane) 폴리메틸알킬실록산(Polymethylalkylsiloxane, 하이드록실 그룹(-OH) 및 이중결합구조(C=C)를 포함한 실리콘첨가제로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이것만으로 한정되는 것은 아니다.
하나의 구체적인 예에서, 상기 폴리이미드 전구체 조성물이 알콕시 실란 커플링제를 추가로 포함할 수 있다.
구체적으로, 상기 폴리이미드 전구체 조성물의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 알콕시 실란 커플링제를 포함할 수 있다.
이러한 알콕시 실란 커플링제의 함량이 상기 범위를 상회하는 경우에는, 기계적 물성이 저하될 수 있고, 이미드화를 위한 열처리 시 상기 알콕시 실란 커플링제가 고온에서 분해되어 겔 필름과 지지체 간의 접착력을 오히려 저하시킬 수 있으므로 바람직하지 않다.
반면에, 상기 알콕시 실란 커플링제의 함량이 상기 범위를 하회하는 경우에는, 지지체에 대한 박리 억제 효과를 충분히 발휘할 수 없으므로 바람직하지 않다.
상기 알콕시 실란 커플링제는 예를 들어, 3-아미노프로필 트리메톡시실란, 3-아미노프로필 트리에톡시실란, 3-아미노프로필 메틸 디메톡시실란, 3-아미노프로필 메틸 디에톡시실란, 3-(2-아미노에틸)아미노프로필 트리메톡시실란, 3-페닐아미노프로필 트리메톡시실란, 2-아미노페닐 트리메톡시실란, 및 3-아미노페닐 트리메톡시실란으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이것만으로 한정되는 것은 아니다.
한편, 앞서 설명한 바와 같이, 상기 폴리아믹산 용액은 1종 이상의 디안하이드라이드 단량체 및 1종 이상의 디아민 단량체의 중합 반응에 의해 생성될 수 있다.
본 발명의 폴리아믹산 제조에 사용될 수 있는 디안하이드라이드 단량체는 방향족 테트라카르복실릭 디안하이드라이드일 수 있다.
상기 방향족 테트라카르복실릭 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 BPDA), 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 a-BPDA), 옥시디프탈릭 디안하이드라이드(또는 ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(또는 DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로페인 디안하이드라이드, 비스(3,4-디카르복시페닐)메테인 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로페인 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로페인 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드 등을 예로 들 수 있다. 이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있다.
이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 발명에서 특히 바람직하게 이용될 수 있는 디안하이드라이드 단량체는 피로멜리틱 디안하이드라이드(PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 및 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
본 발명의 폴리아믹산 용액의 제조에 사용될 수 있는 디아민 단량체는 방향족 디아민으로서, 이하와 같이 분류하여 예를 들 수 있다.
1) 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(또는 DABA) 등과 같이, 구조 상 벤젠 핵 1개를 갖는 디아민으로서, 상대적으로 강직한 구조의 디아민;
2) 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드 등과 같이, 구조 상 벤젠 핵 2개를 갖는 디아민;
3) 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠(또는 TPE-Q), 1,4-비스(4-아미노페녹시)벤젠(또는 TPE-Q), 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이 드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠 등과 같이, 구조 상 벤젠 핵 3개를 갖는 디아민;
4) 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메테인, 비스〔3-(4-아미노페녹시)페닐〕메테인, 비스〔4-(3-아미노페녹시)페닐〕메테인, 비스〔4-(4-아미노페녹시)페닐〕메테인, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로페인(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인 등과 같이, 구조 상 벤젠 핵 4개를 갖는 디아민.
이들은 소망하는 바에 따라 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 발명에서 특히 바람직하게 이용될 수 있는 디아민 단량체는 1,4-디아미노벤젠(PPD), 1,3-디아미노벤젠(MPD), 2,4-디아미노톨루엔, 2,6-디아미노톨루엔 및 3,5-디아미노벤조익 애시드(DABA)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
제2 양태: 폴리이미드 필름의 제조방법 및 폴리이미드 필름
본 발명에 따른 폴리이미드 필름의 제조방법은,
(a) 1종 이상의 디안하이드라이드 단량체 및 1종 이상의 디아민 단량체를 유기 용매 중에서 중합하여 폴리아믹산 용액을 제조하는 과정;
(b) 상기 폴리아믹산 용액에 산화방지제를 혼합하여 혼합물을 제조하는 과정;
(c) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하여 폴리이미드 전구체 조성물을 제조하는 과정; 및
(d) 상기 폴리이미드 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조하고, 상기 겔 필름을 이미드화하여 폴리이미드 필름을 제조하는 과정을 포함하고,
상기 디안하이드라이드 단량체는 하기 화학식 1로 표현되는 접착성 디안하이드라이드 단량체를 포함하고,
상기 폴리이미드 필름은 신율이 13 % 이상인 것을 특징으로 한다.
Figure PCTKR2019000909-appb-I000005
(1)
상기 화학식 1에서, X1 및 X2는 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
X1 및 X2가 복수인 경우, 서로 동일 또는 상이할 수 있고,
n1 및 n2는 각각 독립적으로 0 내지 3의 정수이다.
상기 화학식 1에서 벤젠 고리의 치환기가 특별히 지정되지 않은 경우에는 수소를 의미한다.
본 발명에서 폴리아믹산 용액의 제조는 예를 들어,
(1) 디아민 단량체 전량을 용매 중에 넣고, 그 후 디안하이드라이드 단량체를 디아민 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(2) 디안하이드라이드 단량체 전량을 용매 중에 넣고, 그 후 디아민 단량체를 디안하이드라이드 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(3) 디아민 단량체 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디안하이드라이드 단량체 중 일부 성분을 약 95~105 몰%의 비율로 혼합한 후, 나머지 디아민 단량체 성분을 첨가하고 이에 연속해서 나머지 디안하이드라이드 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 디안하이드라이드 단량체를 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95~105 몰%의 비율로 혼합한 후, 다른 디안하이드라이드 단량체 성분을 첨가하고 계속되어 나머지 디아민 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(5) 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 단량체 성분이 과잉일 경우, 제 2조성물에서는 디안하이드라이드 단량체 성분을 과량으로 하고, 제1 조성물에서 디안하이드라이드 단량체 성분이 과잉일 경우, 제2 조성물에서는 디아민 단량체 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 단량체 성분과 디안하이드라이드 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
상기 유기 용매는 폴리아믹산이 용해될 수 있는 용매라면 특별히 한정되지는 않으나, 하나의 예로서, 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매의 비제한적인 예로서, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
경우에 따라서는 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.
하나의 예에서, 본 발명의 폴리이미드 전구체 조성물 제조에 특히 바람직하게 사용될 수 있는 유기 용매는 아미드계 용매인 N,N'-디메틸포름아미드 및 N,N'-디메틸아세트아미드일 수 있다.
상기 중합 방법이 이상의 예들로만 한정되는 것은 아니며, 공지된 어떠한 방법을 사용할 수 있음은 물론이다.
상기 디안하이드라이드 단량체는 앞서 설명한 예시로부터 적절하게 선택될 수 있으며, 상세하게는, 피로멜리틱 디안하이드라이드(PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 및 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA)로 이루어진 군에서 선택되는 1종 이상을 더 포함할 수 있다.
상기 디아민 단량체는 앞서 설명한 예시로부터 적절하게 선택될 수 있으며, 상세하게는 1,4-디아미노벤젠(PPD), 1,3-디아미노벤젠(MPD), 2,4-디아미노톨루엔, 2,6-디아미노톨루엔 및 3,5-디아미노벤조익 애시드(DABA)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 이용될 수 있다.
상기 과정 (a)는 30 내지 80℃에서 수행되고,
상기 폴리아믹산 용액은 23℃에서의 점도가 1,000 내지 20,000 cP일 수 있다.
또한, 상기 과정 (b)는 실리콘계 첨가물, 폴리아믹산 용액에 알콕시 실란 커플링제를 추가로 혼합하고, 40 내지 90℃에서 수행되고,
상기 과정 (c)는 40 내지 90℃에서 수행되고,
상기 과정 (d)는 상기 지지체에 제막된 폴리이미드 전구체 조성물을 20 내지 120℃의 온도에서 5 내지 60 분 동안 건조하여 겔 필름을 제조하고, 상기 겔 필름을 450 내지 500℃까지 1 내지 8 ℃/분의 속도로 승온하고, 450 내지 500℃에서 30 내지 60 분 동안 열처리하고, 20 내지 120℃까지 1 내지 8℃/분의 속도로 냉각하는 공정을 통해 수행될 수 있다.
상기 지지체는 예를 들어, 무기 기판일 수 있으며, 무기 기판으로는 유리 기판, 금속 기판을 들 수 있으나, 유리 기판을 사용하는 것이 바람직하며, 상기 유리 기판은 소다 석회 유리, 붕규산 유리, 무알칼리 유리 등이 사용될 수 있으나, 이것만으로 한정되는 것은 아니다.
한편, 겔 필름 상태에서는 겔 필름과 지지체 사이의 접착력을 직접 측정하는 것이 용이하지 않으므로, 상기 겔 필름으로부터 제조된 폴리이미드 필름과 지지체 사이의 접착력을 측정하여 간접적으로나마 겔 필름과 지지체 사이의 접착력을 평가할 수 있다. 상기 겔 필름으로부터 제조된 폴리이미드 필름은 지지체와의 접착력에 있어서 유사한 특성을 나타낼 것으로 예상할 수 있기 때문이다.
구체적으로, 상기 폴리이미드 필름과 지지체 사이의 접착력이 0.3 N/cm 이상, 상세하게는 0.5 내지 1 N/cm 일 수 있다.
즉, 상기 과정 (a)에서 접착성 디안하이드라이드 단량체를 포함함으로써, 상기 과정 (d)에서, 상기 겔 필름과 지지체 사이의 접착력이 향상되어 겔 필름이 말려 들어가는 액말림 현상 또는 지지체상에서 일부분이 박리되는 들뜸 현상을 최소화 할 수 있다.
또한, 상기 폴리이미드 전구체 조성물에 포함된 방향족 카르복실산은, 상기 과정 (c)에서는 폴리아믹산으로 중합되지 않지만, 이후 이미드화를 위한 열처리 시 폴리이미드 사슬의 길이를 증가시킴으로써, 상기 폴리이미드 전구체를 제막하는 과정에서는 낮은 점도로 인해 공정 취급성이 좋고, 이후 경화 과정에서 고분자 사슬의 길이가 증가되므로 보다 높은 분자량을 가지는 폴리아믹산으로부터 제조되는 폴리이미드 필름과 유사한 수준의 내열성 및 기계적 물성을 확보할 수 있다.
본 발명의 제조방법에서 폴리이미드 필름은 열 이미드화법을 통해 제조될 수 있으며 화학적 이미드화법도 병행될 수 있다.
상기 열 이미드화법이란, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법이다.
상기 열 이미드화법은, 상기 과정 (d)에 포함될 수 있고, 상기 과정 (d)에서 상기 겔 필름을 100 내지 600℃의 범위의 가변적인 온도에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있으며, 상세하게는 200 내지 500℃, 더욱 상세하게는, 450 내지 500℃에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있다.
다만, 상기 겔 필름을 형성하는 과정에서도 아믹산 중 일부(약 0.1 몰% 내지 10 몰%)가 이미드화될 수 있으며, 이를 위해 상기 겔 필름을 형성하는 과정에서는 50℃ 내지 200℃의 범위의 가변적인 온도에서 폴리이미드 전구체 조성물을 건조할 수 있고, 이 또한 상기 열 이미드화법의 범주에 포함될 수 있다.
이상과 같은 제조방법에 따라 제조된 본 발명의 폴리이미드 필름은, 열팽창 계수(CTE)가 1 내지 25 ppm/℃이고, 신율이 13 % 이상이고, 1 중량%의 열분해 온도가 555 내지 620℃이고, 유리전이온도가 380℃ 이상이고, 모듈러스가 8 GPa 이상이고, 인장강도가 280 MPa 이상이고, 두께가 10 내지 20 ㎛ 일 수 있다.
화학적 이미드화법을 병행하는 경우, 당업계에 공지된 방법에 따라 탈수제 및 이미드화제를 이용하여, 폴리이미드 필름을 제조할 수 있다.
본 발명은 또한, 상기 폴리이미드 필름을 포함하는 전자 장치를 제공할 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
이하 실시예 및 비교예에서 사용한 약어의 화합물명은 다음과 같다.
- 비페닐테트라카르복실릭 디안하이드라이드: BPDA
- 피로멜리틱 디안하이드라이드: PMDA
- 비페닐테트라카르복실산: BPTA
- 파라-페닐렌 디아민: p-PDA
- N-메틸 피롤리돈: NMP
<실시예 1>
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 NMP을 투입하고 반응기의 온도를 30℃로 설정한 후 디아민 단량체로서 p-PDA, 디안하이드라이드 단량체로서 BPDA, 접착성 디안하이드라이드 단량체로서 BTDA를 투입하여 완전히 용해된 것을 확인한다. 질소 분위기하에 40℃로 온도를 올려 가열하면서 120 분간 교반을 계속한 후, 23℃에서의 점도가 6100 cP를 나타내는 폴리아믹산 용액을 제조하였다.
반응기의 온도를 50℃로 설정한 후 상기 폴리아믹산 용액에 실리콘계 첨가물로서 BYK-378, 산화방지제로서 5 중량% 분해온도가 약 402℃인 상기 화학식 2-1의 화합물, 알콕시 실란 커플링제로서 OFS-6011을 1:50:1 중량비로 투입하고 30 분간 서서히 교반하여 실리콘계 첨가물, 산화방지제 및 알콕시 실란 커플링제를 포함하는 혼합액을 제조하였다.
Figure PCTKR2019000909-appb-I000006
(2-1)
반응기의 온도를 50℃로 설정한 후 상기 혼합액에 p-PDA 100 몰에 대하여 0.5 몰의 BPTA를 투입하였다. 반응이 완료될 때까지 충분히 교반하여 총 고형분의 함량이 약 15 중량%, 점도가 약 5,100 cP가 되도록 NMP를 투입하고, 디아민 단량체, 디안하이드라이드 단량체, 방향족 카르복실산, 접착성 디안하이드라이드의 몰비가 100:98.5:0.5:1이고, 고형분 100 중량부에 대하여 실리콘계 첨가물을 0.01 중량부, 산화방지제를 0.5 중량부, 알콕시 실란 커플링제를 0.01 중량부 포함하는 폴리이미드 전구체 조성물을 제조하였다.
상기 폴리이미드 전구체 조성물을 1,500 rpm 이상의 고속 회전을 통해 기포를 제거하였다. 이후 스핀 코터를 이용하여 유리 기판에 탈포된 폴리이미드 전구체 조성물을 도포하였다. 이후 질소 분위기하 및 120℃의 온도에서 30 분 동안 건조하여 겔 필름을 제조하고, 상기 겔 필름을 450℃까지 2 ℃/분의 속도로 승온하고, 450℃에서 60 분 동안 열처리하고, 30℃까지 2 ℃/분의 속도로 냉각하여 폴리이미드 필름을 수득하였다.
이후 증류수에 디핑(dipping)하여 유리 기판에서 폴리이미드 필름을 박리시켰다. 제조된 폴리이미드 필름의 두께는 15 ㎛였다. 제조된 폴리이미드 필름의 두께는 Anritsu사의 필름 두께 측정기(Electric Film thickness tester)를 사용하여 측정하였다.
<실시예 2 내지 11 및 비교예 1 내지 12, 15 내지 19>
실시예 1에서, 단량체, 첨가물 및 폴리이미드 전구체 조성물의 점도를 각각 하기 표 1과 같이 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
<비교예 13>
실시예 1에서, 산화방지제로서 화학식 2-1의 화합물 대신 5 중량% 분해온도가 약 377℃인 하기 화학식 A의 화합물을 투입한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
Figure PCTKR2019000909-appb-I000007
(A)
<비교예 14>
실시예 1에서, 산화방지제로서 화학식 2-1의 화합물 대신 5 중량% 분해온도가 약 338℃인 하기 화학식 B의 화합물을 투입한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하였다.
Figure PCTKR2019000909-appb-I000008
(B)
p-PDA(몰%) BPDA(몰%) PMDA(몰%) BPTA(몰%) BTDA(몰%) 산화방지제 커플링제(중량부) 실리콘계 첨가물(중량부) 점도(cP)
종류 함량(중량부)
실시예 1 100 98.5 - 0.5 1 화학식 2-1 0.1 0.1 0.1 5,100
실시예 2 100 94.5 - 0.5 5 화학식 2-1 0.1 0.1 0.1 5,100
실시예 3 100 97.5 - 0.5 2 화학식 2-1 0.1 0.1 0.1 5,100
실시예 4 100 97 - 2 1 화학식 2-1 0.1 0.1 0.1 5,100
실시예 5 100 98.5 - 0.5 1 화학식 2-1 0.5 0.1 0.1 5,100
실시예 6 100 98.5 - 0.5 1 화학식 2-1 0.1 0.5 0.1 5,100
실시예 7 100 98.5 - 0.5 1 화학식 2-1 0.1 0.1 0.5 5,100
실시예 8 100 50 48.5 0.5 1 화학식 2-1 0.1 0.1 0.1 4,900
실시예 9 100 50 44.5 0.5 5 화학식 2-1 0.1 0.1 0.1 4,900
실시예 10 100 50 47 2 1 화학식 2-1 0.1 0.1 0.1 4,900
실시예 11 100 50 48.5 0.5 1 화학식 2-1 0.5 0.1 0.1 4,900
비교예 1 100 99.5 - 0.5 - 화학식 2-1 0.1 0.1 0.1 5,100
비교예 2 100 92 - 0.5 0.5 화학식 2-1 0.1 0.1 0.1 5,100
비교예 3 100 92 - 0.5 6 화학식 2-1 0.1 0.1 0.1 5,100
비교예 4 100 99 - - 1 화학식 2-1 0.1 0.1 0.1 5,100
비교예 5 100 93 - 6 1 화학식 2-1 0.1 0.1 0.1 5,100
비교예 6 100 98.5 - 0.5 1 화학식 2-1 0.1 - 0.1 5,100
비교예 7 100 98.5 - 0.5 1 화학식 2-1 0.1 0.1 - 5,100
비교예 8 100 98.5 - 0.5 1 화학식 2-1 0.1 0.6 0.1 5,100
비교예 9 100 98.5 - 0.5 1 화학식 2-1 0.1 0.1 0.6 5,100
비교예 10 100 98.5 - 0.5 1 - - 0.1 0.1 5,100
비교예 11 100 98.5 - 0.5 1 화학식 2-1 0.01 0.1 0.1 5,100
비교예 12 100 98.5 - 0.5 1 화학식 2-1 2 0.1 0.1 5,100
비교예 13 100 98.5 - 0.5 1 화학식 A 0.1 0.1 0.1 5,100
비교예 14 100 98.5 - 0.5 1 화학식 B 0.1 0.1 0.1 5,100
비교예 15 100 50 49.5 0.5 - 화학식 2-1 0.1 0.1 0.1 4,900
비교예 16 100 50 49 - 1 화학식 2-1 0.1 0.1 0.1 4,900
비교예 17 100 50 48.5 0.5 1 - - 0.1 0.1 4,900
비교예 18 100 100 - - - 화학식 2-1 0.1 0.1 0.1 25,000
비교예 19 100 50 50 - - 화학식 2-1 0.1 0.1 0.1 25,000
<실험예 1: 접착력 평가>
실시예 1 내지 실시예 11, 비교예 1 내지 19에서 제조된 폴리이미드 필름에 대해서 인장시험기(Instron5564)를 사용해 유리 기판과의 접착력을 측정하고 그 결과를 하기 표 2에 나타내었다.
구체적으로, 실시예에서 수득된 폴리이미드 필름에 대해서 유리 기판에서 폴리이미드 필름을 박리시키기 전, 커터나이프를 이용하여 10 mm폭으로 절단, 23℃, 55 %RH 조건 하, 인장 속도 50 m/min으로 50 mm 뗐을 경우에 180도 박리 강도의 평균값을 측정하였다.
<실험예 2: 물성평가>
실시예 1 내지 실시예 11, 비교예 1 내지 19에서 제조된 폴리이미드 필름의 물성을 하기 방식을 이용하여 측정하고, 그 결과를 하기 표 2에 나타내었다.
(1) 열팽창 계수(CTE)
TA사 열기계 분석기(thermomechanical analyzer) Q400 모델을 사용하였으며, 폴리이미드 필름을 폭 2 mm, 길이 10 mm로 자른 후 질소 분위기하에서 0.05 N의 장력을 가하면서, 10 ℃/min의 속도로 상온에서 500℃까지 승온 후 다시 10 ℃/min의 속도로 냉각하면서 100℃에서 350℃ 구간의 기울기를 측정하였다.
(2) 신율
폴리이미드 필름을 폭 10 mm, 길이 40 mm로 자른 후 인스트론(Instron)사의 Instron5564 UTM 장비를 사용하여 ASTM D-882 방법으로 신율을 측정하였다.
(3) 1 중량%의 열분해온도(TD)
TA사 열무게 분석(thermogravimetric analysis) Q50 모델을 사용하였으며, 폴리이미드 필름을 질소 분위기하에서 10 min/℃의 속도로 150℃까지 승온시킨 후 30 분간 등온을 유지하여 수분을 제거했다. 이후 10 min/℃의 속도로 600℃까지 승온하여 1%의 중량 감소가 발생하는 온도를 측정하였다.
(4) 유리전이온도(Tg)
TA사 동적 역학적 거동 분석(Dynamic Mechanical Analysis) Q800 모델을 사용하여, 폴리이미드 필름을 폭 4 mm, 길이 20 mm로 자른 후 질소 분위기하에서 5℃/min의 승온 속도로, 상온에서 550℃의 온도구간 조건에서 유리전이온도를 측정하였다. 상기 유리전이온도는 저장 탄성률(storage modulus)과 손실 탄성률(lossmodulus)의 비에 따라 계산되는 tanδ의 최대 피크로 판정하였다.
(5) 모듈러스 및 인장강도
폴리이미드 필름을 폭 10 mm, 길이 40 mm로 자른 후 인스트론(Instron)사의 Instron5564 UTM 장비를 사용하여 ASTM D-882 방법으로 모듈러스 및 인장강도를 측정하였다. 이때의 Cross Head Speed는 5 mm/min의 조건으로 측정하였다.
접착력(N/cm) CTE(ppm/℃) 신율(%) TD(℃) Tg(℃) 모듈러스(GPa) 인장강도(MPa)
실시예 1 0.35 22 18 565 410 9.1 320
실시예 2 0.55 20 16 560 407 8.8 310
실시예 3 0.40 18 20 563 408 9.0 333
실시예 4 0.30 15 20 560 405 9.0 330
실시예 5 0.33 18 22 570 420 8.9 340
실시예 6 0.40 16 18 560 405 8.9 324
실시예 7 0.42 20 20 558 395 8.8 328
실시예 8 0.38 12 15 570 440 9.5 293
실시예 9 0.56 13 13 565 435 9.6 285
실시예 10 0.33 9 17 563 430 9.4 317
실시예 11 0.35 5 15 565 445 9.7 290
비교예 1 0.07 22 10 554 378 7.8 275
비교예 2 0.10 21 9 550 375 7.7 270
비교예 3 0.27 25 7 545 368 7.5 264
비교예 4 0.28 28 9 553 370 7.7 272
비교예 5 0.25 30 8 550 360 7.5 268
비교예 6 0.25 20 11 554 378 7.9 274
비교예 7 0.26 20 9 553 378 7.8 270
비교예 8 0.26 18 8 549 370 6.8 266
비교예 9 0.26 18 8 548 370 6.7 262
비교예 10 0.28 20 10 550 368 7.4 267
비교예 11 0.28 20 11 552 370 7.6 270
비교예 12 0.25 24 8 545 355 6.9 255
비교예 13 0.24 23 11 554 378 7.9 275
비교예 14 0.24 23 10 549 370 7.8 271
비교예 15 0.06 10 7 553 378 7.1 252
비교예 16 0.26 15 11 557 375 7.8 278
비교예 17 0.25 10 10 548 365 7.7 270
비교예 18 0.05 50 10 555 355 7.9 277
비교예 19 0.04 30 5 550 355 6.8 246
표 2를 참조하면, 본 발명의 범위를 만족하는 실시예들의 경우 접착력, 내열성 및 기계적 물성이 모두 우수함을 확인할 수 있다. 반면에, 본 발명의 범위를 벗어나는 비교예들의 경우 접착력, 내열성 및 기계적 물성 중 적어도 하나를 만족하지 못함을 확인할 수 있다.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
본 발명에 따른 폴리이미드 전구체 조성물은 접착성 디안하이드라이드 단량체를 포함함으로써, 폴리이미드 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조하고 상기 겔 필름을 이미드화하는 과정에서 겔 필름과 지지체와의 접착력을 향상시켜 생산 수율을 향상시킬 수 있다.
또한, 폴리이미드 전구체 조성물에 포함되는 4개 이상의 카르복실기를 갖는 방향족 카르복실산은 낮은 점도로 인해 공정 취급성이 좋고, 제막된 이후 경화 과정에서 고분자 사슬의 길이가 증가되므로 보다 높은 분자량을 가지는 폴리아믹산으로부터 제조되는 폴리이미드 필름과 유사한 수준의 내열성 및 기계적 물성을 확보할 수 있다.
또한, 폴리이미드 전구체 조성물에 포함되는 5 중량% 분해온도가 380℃ 이상인 산화방지제는 낮은 휘발성과 우수한 열 안정성을 가지므로, 폴리이미드 필름의 제조 공정 중에서 분해되거나 휘발되지 않고, 폴리이미드 전구체 조성물 내의 아미드기 또는 폴리이미드 필름의 이미드기의 산화를 방지할 수 있고, 그에 따라 폴리이미드 필름의 물성 변화를 최소화 할 수 있다.
이러한 폴리이미드 필름은 디스플레이기 기판에 요구되는 내열성 및 기계적 물성을 만족하는 이점이 있다.

Claims (21)

1종 이상의 디안하이드라이드 단량체와 1종 이상의 디아민 단량체가 유기 용매 중에서 중합되어 제조되는 폴리아믹산 용액;
4개 이상의 카르복실기를 갖는 방향족 카르복실산; 및
산화방지제를 포함하고,
상기 디안하이드라이드 단량체는, 하기 화학식 1로 표현되는 접착성 디안하이드라이드 단량체를 포함하고,
이로부터 제조되는 폴리이미드 필름의 신율이 13 % 이상인, 폴리이미드 전구체 조성물:
Figure PCTKR2019000909-appb-I000009
(1)
상기 화학식 1에서, X1 및 X2는 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
X1 및 X2가 복수인 경우, 서로 동일 또는 상이할 수 있고,
n1 및 n2는 각각 독립적으로 0 내지 3의 정수이다.
제1항에 있어서,
상기 접착성 디안하이드라이드 단량체는 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(BTDA)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 방향족 카르복실산이 3,3',4,4'-비페닐테트라카르복실산(3,3',4,4'-biphenyltetracarboxylic acid, BPTA), 피로멜리트산(pyromellitic acid, PMA), 1,2,3,4-벤젠테트라카르복실산(1,2,3,4-benzenetetracarboxylic acid), 벤조페논-3,3',4,4'-테트라카복실산(benzophenone-3,3',4,4'-tetracarboxylic acid), 피라진테트라카복실산(pyrazinetetracarboxylic acid), 2,3,6,7-나프탈렌테트라카르복실산(2,3,6,7-naphthalenetetracarboxylic acid) 및 나프탈렌-1,4,5,8-테트라카르복실산(naphthalene-1,4,5,8-tetracarboxylic acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 디아민 단량체 100 몰%를 기준으로, 상기 디안하이드라이드 단량체의 함량이 93 내지 98.8 몰%이고, 상기 접착성 디안하이드라이드 단량체의 함량이 1 내지 5 몰%이고, 상기 4개 이상의 카르복실기를 갖는 방향족 카르복실산의 함량이 0.2 내지 2 몰%인, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 산화방지제는 5 중량% 분해온도가 380℃ 이상인, 폴리이미드 전구체 조성물.
제5항에 있어서,
상기 산화방지제는 5 중량% 분해온도가 400℃ 이상인, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 산화방지제가 하기 화학식 2로 표현되는 화합물을 포함하는, 폴리이미드 전구체 조성물:
Figure PCTKR2019000909-appb-I000010
(2)
상기 화학식 2에서, R1 내지 R6은 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
n은 1 내지 4의 정수이고,
R1 내지 R6가 복수인 경우, 서로 동일 또는 상이할 수 있고,
m1 내지 m6은 각각 독립적으로 0 내지 3의 정수이다.
제7항에 있어서,
상기 화학식 2에서 n이 1이고, m1 내지 m6이 0 인, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 폴리이미드 전구체 조성물의 고형분 100 중량부에 대해서 0.1 내지 2 중량부의 산화방지제를 포함하는, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 폴리이미드 전구체 조성물이 실리콘계 첨가물을 추가로 포함하는, 폴리이미드 전구체 조성물.
제10항에 있어서,
상기 폴리이미드 전구체 조성물의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 실리콘계 첨가물을 포함하는, 폴리이미드 전구체 조성물.
제11항에 있어서,
상기 실리콘계 첨가물은 디메틸폴리실록산(dimethylpolysiloxane), 폴리에테르변성폴리디메틸실록산(Polyether modified polydimethysiloxane) 폴리메틸알킬실록산(Polymethylalkylsiloxane), 및 하이드록실 그룹(-OH) 및 탄소-탄소 이중결합구조(C=C)를 포함한 실리콘계 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 전구체 조성물.
제1항에 있어서,
상기 폴리이미드 전구체 조성물이 알콕시 실란 커플링제를 추가로 포함하는, 폴리이미드 전구체 조성물.
제13항에 있어서,
상기 폴리이미드 전구체 조성물의 고형분 100 중량부에 대해서 0.01 내지 0.05 중량부의 알콕시 실란 커플링제를 포함하는, 폴리이미드 전구체 조성물.
제13항에 있어서,
상기 알콕시 실란 커플링제는 3-아미노프로필 트리메톡시실란, 3-아미노프로필 트리에톡시실란, 3-아미노프로필 메틸 디메톡시실란, 3-아미노프로필 메틸 디에톡시실란, 3-(2-아미노에틸)아미노프로필 트리메톡시실란, 3-페닐아미노프로필 트리메톡시실란, 2-아미노페닐 트리메톡시실란, 및 3-아미노페닐 트리메톡시실란으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리이미드 전구체 조성물.
제1항 내지 제15항 중 어느 한 항의 폴리이미드 전구체 조성물로부터 제조된, 폴리이미드 필름.
제16항에 있어서,
상기 폴리이미드 필름은 1 중량%의 열분해 온도가 555 내지 620℃이고,
유리전이온도가 380℃ 이상이고,
모듈러스가 8 GPa 이상이고,
인장강도가 280 MPa 이상이고,
열팽창 계수(CTE)가 1 내지 25 ppm/℃ 이고,
두께가 10 내지 20 ㎛인, 폴리이미드 필름.
(a) 1종 이상의 디안하이드라이드 단량체 및 1종 이상의 디아민 단량체를 유기 용매 중에서 중합하여 폴리아믹산 용액을 제조하는 과정;
(b) 상기 폴리아믹산 용액에 산화방지제를 혼합하여 혼합물을 제조하는 과정;
(c) 상기 혼합물과 4개 이상의 카르복실기를 갖는 방향족 카르복실산을 혼합하여 폴리이미드 전구체 조성물을 제조하는 과정; 및
(d) 상기 폴리이미드 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조하고, 상기 겔 필름을 이미드화하여 폴리이미드 필름을 제조하는 과정을 포함하고,
상기 디안하이드라이드 단량체는 하기 화학식 1로 표현되는 접착성 디안하이드라이드 단량체를 포함하고,
상기 폴리이미드 필름은 신율이 13 % 이상인, 폴리이미드 필름의 제조방법:
Figure PCTKR2019000909-appb-I000011
(1)
상기 화학식 1에서, X1 및 X2는 각각 독립적으로 C1-C3의 알킬기, 아릴기, 카르복실기, 하이드록시기, 플루오로알킬기 및 술폰산기로 이루어진 군에서 선택될 수 있고,
X1 및 X2가 복수인 경우, 서로 동일 또는 상이할 수 있고,
n1 및 n2는 각각 독립적으로 0 내지 3의 정수이다.
제18항에 있어서,
상기 과정 (b)는 폴리아믹산 용액에 실리콘계 첨가물, 알콕시 실란 커플링제를 추가로 혼합하는 과정을 포함하는, 폴리이미드 필름의 제조방법.
제18항에 있어서,
상기 폴리이미드 필름과 지지체 사이의 접착력이 0.3 N/cm 이상인, 폴리이미드 필름의 제조방법.
제16항에 따른 폴리이미드 필름을 포함하는, 전자 장치.
PCT/KR2019/000909 2018-10-31 2019-01-22 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름 WO2020091146A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180131727A KR102004659B1 (ko) 2018-10-31 2018-10-31 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
KR10-2018-0131727 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020091146A1 true WO2020091146A1 (ko) 2020-05-07

Family

ID=68207818

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2019/000909 WO2020091146A1 (ko) 2018-10-31 2019-01-22 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
PCT/KR2019/014505 WO2020091432A1 (ko) 2018-10-31 2019-10-30 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014505 WO2020091432A1 (ko) 2018-10-31 2019-10-30 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름

Country Status (3)

Country Link
KR (1) KR102004659B1 (ko)
TW (1) TWI773889B (ko)
WO (2) WO2020091146A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004659B1 (ko) * 2018-10-31 2019-10-01 에스케이씨코오롱피아이 주식회사 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
CN117460762A (zh) * 2021-06-07 2024-01-26 杜邦电子公司 用于电子装置的聚合物
JPWO2023195206A1 (ko) * 2022-04-08 2023-10-12
CN114805806B (zh) * 2022-05-10 2024-04-02 上海华谊三爱富新材料有限公司 降低聚酰胺酸溶液粘度的方法和聚酰亚胺膜的制备方法
CN114920931A (zh) * 2022-05-27 2022-08-19 中化学科学技术研究有限公司 聚酰亚胺前体组合物、聚酰亚胺膜及其制备方法
CN116730631A (zh) * 2022-05-27 2023-09-12 中化学科学技术研究有限公司 聚酰亚胺层叠体及其制备方法
CN115505125B (zh) * 2022-10-31 2023-08-29 杭州福斯特电子材料有限公司 聚酰亚胺组合物、聚合物、薄膜及包含其的产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735989B2 (ko) * 1978-04-05 1982-07-31
JP2006259700A (ja) * 2005-03-15 2006-09-28 E I Du Pont De Nemours & Co ポリイミドコンポジットカバーレイならびにそれに関する方法および組成物
KR20110079810A (ko) * 2008-10-31 2011-07-08 우베 고산 가부시키가이샤 폴리이미드 전구체 용액 조성물
KR20160125377A (ko) * 2014-02-21 2016-10-31 미쓰비시 가가꾸 가부시키가이샤 폴리이미드 전구체 및/또는 폴리이미드를 포함하는 조성물, 및 폴리이미드 필름
KR20180078895A (ko) * 2016-12-30 2018-07-10 롯데첨단소재(주) 내열성 및 절연성이 우수한 수지 조성물 및 이로부터 제조된 성형품

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2292688B1 (en) * 2008-06-09 2016-05-11 Adeka Corporation Process for solidification of phosphoric ester flame retardants
KR101503189B1 (ko) * 2011-07-08 2015-03-16 미쓰이 가가쿠 가부시키가이샤 폴리이미드 수지 조성물 및 그것을 포함하는 적층체
CN105392842B (zh) * 2013-08-06 2018-06-26 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物和聚酰亚胺树脂-纤维复合材料
KR102004659B1 (ko) * 2018-10-31 2019-10-01 에스케이씨코오롱피아이 주식회사 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735989B2 (ko) * 1978-04-05 1982-07-31
JP2006259700A (ja) * 2005-03-15 2006-09-28 E I Du Pont De Nemours & Co ポリイミドコンポジットカバーレイならびにそれに関する方法および組成物
KR20110079810A (ko) * 2008-10-31 2011-07-08 우베 고산 가부시키가이샤 폴리이미드 전구체 용액 조성물
KR20160125377A (ko) * 2014-02-21 2016-10-31 미쓰비시 가가꾸 가부시키가이샤 폴리이미드 전구체 및/또는 폴리이미드를 포함하는 조성물, 및 폴리이미드 필름
KR20180078895A (ko) * 2016-12-30 2018-07-10 롯데첨단소재(주) 내열성 및 절연성이 우수한 수지 조성물 및 이로부터 제조된 성형품

Also Published As

Publication number Publication date
WO2020091432A1 (ko) 2020-05-07
KR102004659B1 (ko) 2019-10-01
TWI773889B (zh) 2022-08-11
TW202017972A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2020138687A1 (ko) 디스플레이 기판 제조용 폴리아믹산 조성물 및 이를 이용하여 디스플레이용 기판을 제조하는 방법
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2020096363A1 (ko) 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2020017697A1 (ko) 불소-함유 실란 첨가제 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2020080598A1 (ko) 표면 품질이 개선된 고후도 폴리이미드 필름 및 이의 제조방법
WO2020040356A1 (ko) 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
WO2020091147A1 (ko) 폴리이미드 피복물의 내열성을 향상시키기 위한 도체 피복용 폴리이미드 바니쉬 및 이로부터 제조된 폴리이미드 피복물
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
KR102121307B1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020017692A1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020022564A1 (ko) 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
WO2020141708A1 (ko) 폴리아믹산 조성물, 및 이의 제조 방법
WO2020075908A1 (ko) 접착력이 우수한 폴리이미드 수지를 제조하기 위한 폴리아믹산 조성물 및 이로부터 제조된 폴리이미드 수지
WO2022065804A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2022107966A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2022107969A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2021060612A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2020122410A1 (ko) 열전도도가 향상된 폴리이미드 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880804

Country of ref document: EP

Kind code of ref document: A1