WO2020087770A1 - 一种双端羟基聚苯醚低聚物的合成方法 - Google Patents

一种双端羟基聚苯醚低聚物的合成方法 Download PDF

Info

Publication number
WO2020087770A1
WO2020087770A1 PCT/CN2019/070032 CN2019070032W WO2020087770A1 WO 2020087770 A1 WO2020087770 A1 WO 2020087770A1 CN 2019070032 W CN2019070032 W CN 2019070032W WO 2020087770 A1 WO2020087770 A1 WO 2020087770A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
ether oligomer
polyethyleneimine
synthesizing
ended
Prior art date
Application number
PCT/CN2019/070032
Other languages
English (en)
French (fr)
Inventor
麦裕良
钟本镔
李伟浩
彭小权
许可
Original Assignee
广东省石油与精细化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省石油与精细化工研究院 filed Critical 广东省石油与精细化工研究院
Priority to US17/289,713 priority Critical patent/US20220002485A1/en
Publication of WO2020087770A1 publication Critical patent/WO2020087770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/44Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • B01J31/1683Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins the linkage being to a soluble polymer, e.g. PEG or dendrimer, i.e. molecular weight enlarged complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Definitions

  • the invention relates to a synthesis method of double-ended hydroxyl polyphenyl ether oligomer.
  • Polyphenylene ether resin is one of the world's five general engineering plastics. Its molecular structure is an aromatic ring high-rigidity skeleton chain without strong polar groups. It has good heat resistance, flame retardancy, low moisture absorption and Dimensional stability, especially excellent dielectric properties in a wide temperature range, is one of the ideal alternative materials for high-performance copper clad laminate substrates.
  • polyphenylene ether resins have high melt viscosity, poor fluidity, and poor compatibility with most resins, and are prone to phase separation after curing, which limits the use of traditional high molecular weight polyphenylene ethers on copper clad laminate substrates.
  • polyphenylene ether oligomers with double-ended hydroxyl groups not only maintain the original excellent performance of polyphenylene ether, but also have the advantages of low viscosity, good fluidity, and good compatibility with other resins. It still maintains good thermal performance at the glass transition temperature, and is suitable for the added component of the matrix resin or other polymer materials of composite materials such as high-frequency circuit boards.
  • polyphenylene ether oligomers are mainly obtained through the redistribution method and the copolymerization method.
  • CN101389691A Low molecular weight polyphenylene ether is prepared by redistribution method, under the action of peroxide initiator, high molecular weight polyphenylene ether and polyphenolic compound are radicalized, and the radicalized polyphenolic compound seizes the structure of polyphenylene ether A part of the unit forms a double-ended hydroxyl polyphenylene ether oligomer.
  • CN101305030A adopts a copolymerization method to prepare multifunctional polyphenylene ether, uses copper-amine complex as a catalyst, and forms a multifunctional polyphenylene ether by oxidative copolymerization of monohydric phenol and polyphenol. Its catalytic system uses small molecules such as alkylene diamine, primary monoamine, secondary monoamine, tertiary monoamine, amino alcohol, oxime, 8-hydroxyquinoline, and cyanide as monomers.
  • the homopolymerization activity is high, the reactivity with the polyphenol is low, the copolymerization process is difficult to control, the product is difficult to achieve a high hydroxyl functionality, and the polyphenol monomers that have not participated in the reaction are more residual and difficult to meet Production requirements.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a synthesis method of double-ended hydroxypolyphenyl ether oligomers, which solves the low reaction activity between the next phenol and polyphenol in the conventional catalytic system, and the residual polyphenol monomer Many problems.
  • a synthesis method of double-ended hydroxypolyphenyl ether oligomer is to use metal-polyethyleneimine complex as a catalyst, through the oxidative copolymerization of monohydric phenol and dihydric phenol, to obtain double-ended hydroxy polyphenyl ether oligomer Thing
  • m and n are integers greater than or equal to 0;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 each independently represent a hydrogen atom, an alkyl group, a phenyl group, and an alkoxy group , Aminoalkyl, halogen or halogenated alkyl;
  • Y is selected from the following structures:
  • Q 1 , Q 2 and Q 3 independently represent a hydrogen atom, an alkyl group or a halogenated alkyl group
  • the number average molecular weight of the resulting double-ended hydroxyl polyphenylene ether oligomer is 800-8000.
  • the metal-polyethyleneimine complex is a complex formed by a metal salt and a polyethyleneimine ligand; further, metal-polyimide
  • the ethyleneimine complex is a complex of metal salt and polyethyleneimine ligand in solution.
  • the metal salt is at least one of copper salt, manganese salt, cobalt salt, and iron salt; further preferably, the metal salt is a copper salt, that is, metal-polyethylene imide
  • the amine complex is a complex of copper salt and polyethyleneimine ligand in solution.
  • the polyethyleneimine ligand is at least one of linear polyethyleneimine, branched polyethyleneimine, and alkylated polyethyleneimine; further preferred
  • the polyethyleneimine ligand is an alkylated polyethyleneimine.
  • the polyethyleneimine ligand has a number average molecular weight Mn of 500 to 10,000; further preferably, the polyethyleneimine ligand has a number average molecular weight Mn of 500 to 2,000.
  • the molar ratio of the polyethyleneimine ligand to the metal is (0.3 to 15): 1.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, an alkyl group, a phenyl group, an alkoxy group, an aminoalkyl group, a halogen, or a halogenated alkyl group.
  • the monohydric phenol is 2,6-dimethylphenol.
  • R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 independently represent a hydrogen atom, an alkyl group, a phenyl group, an alkoxy group, an aminoalkyl group, and a halogen Or halogenated alkyl;
  • Y is selected from the following structures:
  • the dihydric phenol is at least one of bisphenol A, bisphenol F, tetramethyl bisphenol A, and tetramethyl bisphenol F .
  • the method for synthesizing the double-ended hydroxy polyphenyl ether oligomer specifically includes the following steps:
  • step 2) Mix and react the polymer solution obtained in step 1) with the chelating agent solution to separate and extract the oil phase product;
  • step 3 Concentrate and purify the oil phase product obtained in step 2) to obtain a double-ended hydroxyl polyphenylene ether oligomer having the structure shown in formula (I).
  • the molar ratio of monohydric phenol to dihydric phenol is (2-20): 1.
  • the molar ratio of the polyethyleneimine ligand to the monohydric phenol is (0.001 to 0.05): 1.
  • the solvent is C 6 to C 18 aromatic hydrocarbon, or a mixed solvent of C 6 to C 18 aromatic hydrocarbon and C 1 -C 10 alkyl alcohol; further preferably, the solvent is toluene, One of xylene, a mixed solvent of toluene and methanol, and a mixed solvent of toluene and ethanol; still further preferably, the solvent is one of toluene, a mixed solvent of toluene and methanol.
  • the metal salt solution is a hydrogen halide solution of metal halide; still further preferably, the metal salt solution is a hydrochloric acid solution of cuprous chloride or a hydrobromic acid solution of cuprous bromide One of them; the hydrochloric acid solution of cuprous chloride can be prepared with cuprous oxide and hydrochloric acid, and the hydrobromic acid solution of cuprous bromide can be prepared with cuprous oxide and hydrobromic acid.
  • the oxidant is oxygen, air, or a mixed gas composed of oxygen and inert gas; further preferably, the oxidant is oxygen.
  • step 1) of the synthesis method performing the oxidative copolymerization reaction under the action of an oxidant specifically involves passing oxygen to perform the oxidative copolymerization reaction; the flow rate of oxygen is 100 sccm to 300 sccm.
  • the reaction kettle is provided with a condensation reflux device.
  • the temperature of the oxidative copolymerization reaction is 20 ° C to 60 ° C; the reaction time is 1h to 3h.
  • the chelating agent is at least one of ammonia triacetate and ethylenediaminetetraacetate; further preferably, the chelating agent is ammoniatriacetate sodium salt and ethylenediaminetetraacetate At least one of sodium acetate salts.
  • the reaction temperature is 50 ° C.-90 ° C .; the reaction time is 30 min-180 min.
  • step 2) of the synthesis method the oil phase product is separated and extracted by specifically removing the water phase by a liquid-liquid centrifugal separation method to obtain the oil phase product.
  • the oil phase product is concentrated, and the purification is specifically to evaporate and concentrate the oil phase product, precipitate out in a non-solvent added to polyphenylene ether, separate, wash, and dry; further preferably,
  • the non-solvent for polyphenylene ether is a C 1 -C 10 alkyl alcohol; still further preferably, the non-solvent for polyphenylene ether is methanol.
  • the invention provides a method for synthesizing a double-ended hydroxyl polyphenylene ether oligomer.
  • the method uses a metal-polyethyleneimine complex as a catalyst, and its catalytic activity is more gentle, which can effectively promote the dihydric phenol and monohydric phenol The reaction between them can increase the hydroxyl content of the product, and at the same time reduce the residue of the dihydric phenol monomer of the product and improve the product quality.
  • the double-ended hydroxyl polyphenylene ether oligomer prepared by the invention can be used as an additive and copolymer block of other thermoplastics, thermoplastic elastomers and thermosetting materials to improve the thermal properties, adhesion, mechanical properties and chemical resistance of the materials And electrical performance.
  • FIG. 1 is an infrared spectrum diagram of Example 1.
  • a method for synthesizing double-ended hydroxyl polyphenyl ether oligomer includes the following steps:
  • step 3 The oil phase obtained by centrifugation in step 2) is concentrated to about 900 mL, and then precipitated in 9000 mL of methanol, filtered, washed with methanol 3 times, and dried under vacuum at 80 ° C. overnight to obtain the double-ended hydroxy polyphenyl ether oligomer of Example 1 Thing.
  • a method for synthesizing double-ended hydroxyl polyphenyl ether oligomer includes the following steps:
  • step 3 The oil phase obtained by centrifugation in step 2) is concentrated to about 900 mL, and then precipitated by adding 9000 mL of methanol, filtered, washed with methanol 3 times, and dried under vacuum at 80 ° C. overnight to obtain the oligomeric hydroxy polyphenyl ether of Example 2 Thing.
  • a method for synthesizing double-ended hydroxyl polyphenyl ether oligomer includes the following steps:
  • step 3 The oil phase obtained by centrifugation in step 2) is concentrated to about 900 mL, and then precipitated in 9000 mL of methanol, filtered, washed with methanol 3 times, and dried under vacuum at 80 ° C. overnight to obtain the double-ended hydroxy polyphenyl ether oligomer of Example 3 Thing.
  • a method for synthesizing double-ended hydroxyl polyphenyl ether oligomer includes the following steps:
  • step 3 The oil phase obtained by centrifugation in step 2) is concentrated to about 900 mL, and then added to 9000 mL of methanol to precipitate out, filtered, washed with methanol 3 times, and dried under vacuum at 80 ° C. overnight to obtain the oligomeric double-ended hydroxyl polyphenyl ether of Example Thing.
  • Example 1 The dodecyl polyethyleneimine ligand of Example 1 was replaced with equimolar N content of N, N-dimethyl-n-butylamine, and other materials and reaction conditions remained unchanged.
  • Example 2 The branched polyethyleneimine ligand of Example 2 was replaced with di-n-butylamine with an equimolar N content, and other materials and reaction conditions remained unchanged.
  • Figure 1 shows the infrared spectrum of the double-ended hydroxyl polyphenylene ether oligomer of Example 1.
  • the infrared spectrum is consistent with the standard infrared spectrum of polyphenylene ether, indicating that the method of the present invention can effectively prepare polyphenylene ether products.
  • Table 1 shows the performance test results of the polyphenylene ether products obtained in Examples 1 to 4 and Comparative Examples 1 to 2.
  • the polyphenylene ether product prepared by the present invention has a lower molecular weight, an intrinsic viscosity of less than 0.10dl / g, and a hydroxyl terminal functionality greater than 1.8, indicating that the method of the present invention can effectively prepare double-ended hydroxyl polyphenylene Ether oligomer.
  • the use of metal-polyethyleneimine complex as a catalyst the residual dihydric phenol monomer is significantly reduced.
  • the polyphenylene ether product prepared by the invention has a low number average molecular weight, high hydroxyl functionality, and little residual diphenolic monomer, and can be used as an additive and copolymer block of various thermoplastics, thermoplastic elastomers and thermosetting materials. Improve the thermal properties, adhesion, mechanical properties, chemical resistance and electrical properties of materials, and have a wide range of applications in the fields of electronic and electrical, automotive industry, machinery manufacturing and other fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了一种双端羟基聚苯醚低聚物的合成方法。这种双端羟基聚苯醚低聚物的合成方法是以金属-聚乙烯亚胺络合物为催化剂,通过一元酚和二元酚的氧化共聚反应,得到双端羟基聚苯醚低聚物。本发明的合成方法使用金属-聚乙烯亚胺络合物为催化剂,其催化活性更加温和,能够有效地促进二元酚与一元酚之间的反应,提高产品羟基含量,同时减少产品二元酚单体残余,提高产品质量。本发明所制备的双端羟基聚苯醚低聚物,可用作其它热塑性塑料、热塑性弹性体和热固性材料的添加剂和共聚嵌段,改善材料的热性能、附着力、机械性能、抗化学性能和电性能等。

Description

一种双端羟基聚苯醚低聚物的合成方法 技术领域
本发明涉及一种双端羟基聚苯醚低聚物的合成方法。
背景技术
信息产业的飞速发展,对覆铜板用基体树脂提出了更高的要求,要求其具有低介电常数和介电损耗、高玻璃化转变温度、高耐热性、低吸水率。聚苯醚树脂(PPO)是世界五大通用工程塑料之一,其分子结构为芳环高刚性骨架链,且无强极性基团,具有良好的耐热性、阻燃性、低吸湿性和尺寸稳定性,尤其在较宽的温度范围内具有优异的介电性能,是高性能覆铜板基材的理想替代材料之一。
然而,常规聚苯醚树脂熔体粘度大,流动性差,与大部分树脂相容性差,固化后容易出现相分离现象,这限制了传统高分子量聚苯醚在覆铜板基体上的使用。与常规聚苯醚相比,具有双端羟基的聚苯醚低聚物除了保持聚苯醚原有的优良性能外,还具有黏度低、流动性好,与其它树脂相容性好等优点,在玻璃化温度时仍保持良好的热性能,适用于高频电路板等复合材料的基体树脂或其他高分子材料的添加组分。
目前,聚苯醚低聚物主要通过再分配法和共聚法得到。CN101389691A采用再分配法制备低分子量聚苯醚,在过氧化物引发剂的作用下,将高分子量聚苯醚和多酚性化合物自由基化,自由基化的多酚性化合物夺取聚苯醚结构单元的一部分,形成双端羟基聚苯醚低聚物。该方法制备过程需要引入大量的引发剂,制程时间长;同时所得产品分子量分布不均,存在部分高分子量聚苯醚残留。CN101305030A采用共聚法制备多官能聚苯醚,以铜-胺络合物作为催化剂,通过一元酚和多元酚的氧化共聚形成多官能聚苯醚。其催化体系中使用亚烷基二胺、伯单胺、仲单胺、叔单胺、氨基醇、肟、8-羟基喹啉类和氰化物等小分子作为配体,单体一元酚在此催化体系下均聚活性较高,与多元酚之间的反应活性较低,共聚过程难以控制,产品难以达到较高的羟基官能度,同时未参与反应的多酚单体残余较多,难以满足生产要求。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种双端羟基聚苯醚低聚物的合成方法,解决常规催化体系下一元酚与多元酚之间反应活性低,残余多酚单体较多的问题。
本发明所采取的技术方案是:
一种双端羟基聚苯醚低聚物的合成方法,是以金属-聚乙烯亚胺络合物为催化剂,通过一 元酚和二元酚的氧化共聚反应,得到双端羟基聚苯醚低聚物;
所得双端羟基聚苯醚低聚物的结构如式(Ⅰ)所示:
Figure PCTCN2019070032-appb-000001
式(Ⅰ)中,m、n为大于或等于0的整数;
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12分别独立表示氢原子、烷基、苯基、烷氧基、氨基烷基、卤素或卤代烷基;
Y选自以下的结构:
Figure PCTCN2019070032-appb-000002
或者没有Y基团;其中,Q 1、Q 2、Q 3分别独立表示氢原子、烷基或卤代烷基;
所得双端羟基聚苯醚低聚物的数均分子量为800~8000。
优选的,这种双端羟基聚苯醚低聚物的合成方法中,金属-聚乙烯亚胺络合物为金属盐和聚乙烯亚胺配体形成的络合物;进一步的,金属-聚乙烯亚胺络合物为金属盐和聚乙烯亚胺配体在溶液中的络合物。
优选的,金属-聚乙烯亚胺络合物中,金属盐为铜盐、锰盐、钴盐、铁盐中的至少一种;进一步优选的,金属盐为铜盐,即金属-聚乙烯亚胺络合物为铜盐和聚乙烯亚胺配体在溶液中的络合物。
优选的,金属-聚乙烯亚胺络合物中,聚乙烯亚胺配体为线性聚乙烯亚胺、支化聚乙烯亚胺、烷基化聚乙烯亚胺中的至少一种;进一步优选的,聚乙烯亚胺配体为烷基化聚乙烯亚胺。
优选的,金属-聚乙烯亚胺络合物中,聚乙烯亚胺配体的数均分子量Mn为500~10000;进一步优选的,聚乙烯亚胺配体的数均分子量Mn为500~2000。
优选的,金属-聚乙烯亚胺络合物中,聚乙烯亚胺配体与金属的摩尔比为(0.3~15):1。
优选的,这种双端羟基聚苯醚低聚物的合成方法中,一元酚的结构如式(Ⅱ)所示:
Figure PCTCN2019070032-appb-000003
式(Ⅱ)中,R 1、R 2、R 3、R 4分别独立表示氢原子、烷基、苯基、烷氧基、氨基烷基、卤素或卤代烷基。
进一步优选的,这种双端羟基聚苯醚低聚物的合成方法中,一元酚为2,6-二甲基苯酚。
优选的,这种双端羟基聚苯醚低聚物的合成方法中,二元酚的结构如式(Ⅲ)所示:
Figure PCTCN2019070032-appb-000004
式(Ⅲ)中,R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12分别独立表示氢原子、烷基、苯基、烷氧基、氨基烷基、卤素或卤代烷基;
Y选自以下的结构:
Figure PCTCN2019070032-appb-000005
或者没有Y基团;其中,Q 1、Q 2、Q 3分别独立表示氢原子、烷基或卤代烷基。没有Y基团即二元酚中两个苯环结构直接相连,如式(Ⅳ)所示:
Figure PCTCN2019070032-appb-000006
进一步优选的,这种双端羟基聚苯醚低聚物的合成方法中,二元酚为双酚A、双酚F、四甲基双酚A、四甲基双酚F中的至少一种。
优选的,这种双端羟基聚苯醚低聚物的合成方法中,具体包括以下步骤:
1)在反应釜中,将一元酚和二元酚溶解于溶剂中,加入聚乙烯亚胺配体和金属盐溶液, 在氧化剂作用下进行氧化共聚反应,得到聚合物溶液;
2)将步骤1)得到的聚合物溶液与螯合剂溶液混合反应,分离提取油相产物;
3)将步骤2)得到的油相产物浓缩,提纯,得到式(Ⅰ)所示结构的双端羟基聚苯醚低聚物。
优选的,合成方法的步骤1)中,一元酚和二元酚的摩尔比为(2~20):1。
优选的,合成方法的步骤1)中,聚乙烯亚胺配体与一元酚的摩尔比为(0.001~0.05):1。
优选的,合成方法的步骤1)中,溶剂为C 6~C 18芳香烃,或者C 6~C 18芳香烃和C 1-C 10烷基醇的混合溶剂;进一步优选的,溶剂为甲苯、二甲苯、甲苯与甲醇混合溶剂、甲苯与乙醇混合溶剂中的其中一种;再进一步优选的,溶剂为甲苯、甲苯与甲醇混合溶剂的其中一种。
优选的,合成方法的步骤1)中,金属盐溶液为金属卤化物的卤化氢溶液;再进一步优选的,金属盐溶液为氯化亚铜的盐酸溶液、溴化亚铜的氢溴酸溶液的其中一种;氯化亚铜的盐酸溶液可以用氧化亚铜和盐酸进行配制,溴化亚铜的氢溴酸溶液可以用氧化亚铜和氢溴酸进行配制。
优选的,合成方法的步骤1)中,氧化剂为氧气、空气、或者由氧气和惰性气体组成的混合气;进一步优选的,氧化剂为氧气。
进一步优选的,合成方法的步骤1)中,在氧化剂作用下进行氧化共聚反应具体为通入氧气进行氧化共聚反应;氧气的流量为100sccm~300sccm。
优选的,合成方法的步骤1)中,反应釜带有冷凝回流装置。
优选的,合成方法的步骤1)中,氧化共聚反应的温度为20℃~60℃;反应的时间为1h~3h。
优选的,合成方法的步骤2)中,螯合剂为氨三乙酸盐、乙二胺四乙酸盐中的至少一种;进一步优选的,螯合剂为氨三乙酸钠盐、乙二胺四乙酸钠盐中的至少一种。
优选的,合成方法的步骤2)中,反应的温度为50℃~90℃;反应的时间为30min~180min。
优选的,合成方法的步骤2)中,分离提取油相产物具体是通过液液离心分离的方法除去水相,得到油相产物。
优选的,合成方法的步骤3)中,将油相产物浓缩,提纯具体是将油相产物蒸发浓缩,在加入到聚苯醚的非溶剂中沉淀析出,分离,洗涤,干燥;进一步优选的,聚苯醚的非溶剂为C 1-C 10的烷基醇;再进一步优选的,聚苯醚的非溶剂为甲醇。
本发明的有益效果是:
本发明提供一种双端羟基聚苯醚低聚物的合成方法,该方法使用金属-聚乙烯亚胺络合物为催化剂,其催化活性更加温和,能够有效地促进二元酚与一元酚之间的反应,提高产品羟 基含量,同时减少产品二元酚单体残余,提高产品质量。本发明所制备的双端羟基聚苯醚低聚物,可用作其它热塑性塑料、热塑性弹性体和热固性材料的添加剂和共聚嵌段,改善材料的热性能、附着力、机械性能、抗化学性能和电性能等。
附图说明
图1是实施例1的红外光谱图。
具体实施方式
以下通过具体的实施例对本发明的内容作进一步详细的说明。实施例中所用的原料如无特殊说明,均可从常规商业途径得到。
实施例1
一种双端羟基聚苯醚低聚物的合成方法,包括以下步骤:
1)在带有冷凝回流装置的反应釜中加入335.50g 2,6-二甲基苯酚、57.00g双酚A、779.13g甲苯和114.00g甲醇,搅拌至单体全部溶解后,加入16.50g十二烷基聚乙烯亚胺配体(M n=2000)和6.17g溴化亚铜的氢溴酸溶液(预先用0.45g氧化亚铜和5.72g 48%氢溴酸新鲜配制),混合均匀,通入氧气(流量为200sccm),40℃反应150min;
2)将反应完的聚合物溶液加入到50.81mL 10%的氨三乙酸三钠溶液中,70℃反应60min后液液离心除去水相;
3)将步骤2)离心所得油相浓缩至900mL左右,随后加入9000mL甲醇里沉淀析出,过滤,用甲醇洗涤3次,80℃真空干燥过夜,得到实施例1的双端羟基聚苯醚低聚物。
实施例2
一种双端羟基聚苯醚低聚物的合成方法,包括以下步骤:
1)在带有冷凝回流装置的反应釜中加入305.00g 2,6-二甲基苯酚、47.33g四甲基双酚A、942.62g甲苯和94.00g甲醇,搅拌至单体全部溶解后,加入12.53g支化聚乙烯亚胺配体(M n=600)和4.11g溴化亚铜的氢溴酸溶液(预先用0.30g氧化亚铜和3.81g 48%氢溴酸新鲜配制),混合均匀,通入氧气(流量为200sccm),40℃反应150min;
2)将反应完的聚合物溶液加入到33.87mL 10%的氨三乙酸三钠溶液中,70℃反应60min后液液离心除去水相;
3)将步骤2)离心所得油相浓缩至900mL左右,随后加入9000mL甲醇里沉淀析出,过滤,用甲醇洗涤3次,80℃真空干燥过夜,得到实施例2的双端羟基聚苯醚低聚物。
实施例3
一种双端羟基聚苯醚低聚物的合成方法,包括以下步骤:
1)在带有冷凝回流装置的反应釜中加入341.60g 2,6-二甲基苯酚、80.00g双酚F、801.26g甲苯和160.00g甲醇,搅拌至单体全部溶解后,加入16.85g线性聚乙烯亚胺配体(M n=1200)和5.22g氯化亚铜的盐酸溶液(预先用0.60g氧化亚铜和4.62g 37%盐酸新鲜配制),混合均匀,通入氧气(流量为200sccm),45℃反应150min;
2)将反应完的聚合物溶液加入到33.87mL 20%的氨三乙酸三钠溶液中,70℃反应60min后液液离心除去水相;
3)将步骤2)离心所得油相浓缩至900mL左右,随后加入9000mL甲醇里沉淀析出,过滤,用甲醇洗涤3次,80℃真空干燥过夜,得到实施例3的双端羟基聚苯醚低聚物。
实施例4
一种双端羟基聚苯醚低聚物的合成方法,包括以下步骤:
1)在带有冷凝回流装置的反应釜中加入325.00g 2,6-二甲基苯酚、76.00g双酚A、767.02g甲苯和152.00g甲醇,搅拌至单体全部溶解后,加入15.33g支化聚乙烯亚胺配体(M n=800)和6.17g溴化亚铜的氢溴酸溶液(预先用0.45g氧化亚铜和5.72g 48%氢溴酸新鲜配制),混合均匀,通入氧气(流量为200sccm),45℃反应150min;
2)将反应完的聚合物溶液加入到50.25mL 20%的乙二胺四乙酸四钠溶液中,70℃反应60min后液液离心除去水相;
3)将步骤2)离心所得油相浓缩至900mL左右,随后加入9000mL甲醇里沉淀析出,过滤,用甲醇洗涤3次,80℃真空干燥过夜,得到实施例4的双端羟基聚苯醚低聚物。
对比例1
将实施例1的十二烷基聚乙烯亚胺配体更换为等摩尔N含量的N,N-二甲基正丁胺,其它物料与反应条件保持不变。
对比例2
将实施例2的支化聚乙烯亚胺配体更换为等摩尔N含量的二正丁基胺,其它物料与反应条件保持不变。
附图1所示为实施例1双端羟基聚苯醚低聚物的红外光谱图。图1中,1305cm -1,1188cm - 1,1020cm -1为苯环C-O的振动特征吸收峰;1603cm -1和1470cm -1为苯环骨架C=C的伸缩振动特征吸收峰;2963cm -1,2856cm -1是苯环上甲基C-H的伸缩振动特征吸收峰;1379cm -1为苯环上甲基C-H弯曲振动特征吸收峰,857cm -1为苯环上C-H弯曲振动特征吸收峰。红外谱图与聚苯醚标准红外谱图相符,表明本发明方法能够有效制备聚苯醚产品。
表1 所示为实施例1~4和对比例1~2所得聚苯醚产品的性能测试结果。
表1 实施例1~4和对比例1~2所得聚苯醚产品的性能测试结果
Figure PCTCN2019070032-appb-000007
从测试结果来看,本发明所制备的聚苯醚产品具有较低的分子量,特性黏度低于0.10dl/g,端羟基官能度大于1.8,表明本发明方法能够有效制备双端羟基的聚苯醚低聚物。同时,产品与金属-小分子配体催化体系相比,使用金属-聚乙烯亚胺络合物作为催化剂,残余的二元酚单体明显减少。
本发明制备的聚苯醚产品具有较低的数均分子量,羟基官能度高,二酚类单体残余少,可用作各种热塑性塑料、热塑性弹性体和热固性材料的添加剂和共聚嵌段,改善材料的热性能、附着力、机械性能、抗化学性能和电性能等,在电子电气、汽车工业、机械制造等领域具有广泛应用。
上述实施例只是用于帮助理解本发明的方法及其核心思想,本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种双端羟基聚苯醚低聚物的合成方法,其特征在于:是以金属-聚乙烯亚胺络合物为催化剂,通过一元酚和二元酚的氧化共聚反应,得到双端羟基聚苯醚低聚物;
    所得双端羟基聚苯醚低聚物的结构如式(Ⅰ)所示:
    Figure PCTCN2019070032-appb-100001
    式(Ⅰ)中,m、n为大于或等于0的整数;
    R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12分别独立表示氢原子、烷基、苯基、烷氧基、氨基烷基、卤素或卤代烷基;
    Y选自以下的结构:
    Figure PCTCN2019070032-appb-100002
    或者没有Y基团;其中,Q 1、Q 2、Q 3分别独立表示氢原子、烷基或卤代烷基;
    所得双端羟基聚苯醚低聚物的数均分子量为800~8000。
  2. 根据权利要求1所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:金属-聚乙烯亚胺络合物为金属盐和聚乙烯亚胺配体形成的络合物;所述的金属盐为铜盐、锰盐、钴盐、铁盐中的至少一种;聚乙烯亚胺配体为线性聚乙烯亚胺、支化聚乙烯亚胺、烷基化聚乙烯亚胺中的至少一种。
  3. 根据权利要求2所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:金属-聚乙烯亚胺络合物中,聚乙烯亚胺配体的数均分子量为500~10000。
  4. 根据权利要求2或3所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:金属-聚乙烯亚胺络合物中,聚乙烯亚胺配体与金属的摩尔比为(0.3~15):1。
  5. 根据权利要求1所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:一元酚的结构如式(Ⅱ)所示:
    Figure PCTCN2019070032-appb-100003
    式(Ⅱ)中,R 1、R 2、R 3、R 4分别独立表示氢原子、烷基、苯基、烷氧基、氨基烷基、卤素或卤代烷基;
    二元酚的结构如式(Ⅲ)所示:
    Figure PCTCN2019070032-appb-100004
    式(Ⅲ)中,R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12分别独立表示氢原子、烷基、苯基、烷氧基、氨基烷基、卤素或卤代烷基;
    Y选自以下的结构:
    Figure PCTCN2019070032-appb-100005
    或者没有Y基团;其中,Q 1、Q 2、Q 3分别独立表示氢原子、烷基或卤代烷基。
  6. 根据权利要求1~5所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:具体包括以下步骤:
    1)在反应釜中,将一元酚和二元酚溶解于溶剂中,加入聚乙烯亚胺配体和金属盐溶液,在氧化剂作用下进行氧化共聚反应,得到聚合物溶液;
    2)将步骤1)得到的聚合物溶液与螯合剂溶液混合反应,分离提取油相产物;
    3)将步骤2)得到的油相产物浓缩,提纯,得到式(Ⅰ)所示结构的双端羟基聚苯醚低聚物。
  7. 根据权利要求6所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:步骤1)中,一元酚和二元酚的摩尔比为(2~20):1;聚乙烯亚胺配体与一元酚的摩尔比为(0.001~0.05):1。
  8. 根据权利要求6所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:步骤1)中, 溶剂为C 6~C 18芳香烃,或者C 6~C 18芳香烃和C 1-C 10烷基醇的混合溶剂;氧化剂为氧气、空气、或者由氧气和惰性气体组成的混合气。
  9. 据权利要求7或8所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:步骤1)中,氧化共聚反应的温度为20℃~60℃;反应的时间为1h~3h。
  10. 根据权利要求6所述的一种双端羟基聚苯醚低聚物的合成方法,其特征在于:步骤2)中,螯合剂为氨三乙酸盐、乙二胺四乙酸盐中的至少一种。
PCT/CN2019/070032 2018-10-29 2019-01-02 一种双端羟基聚苯醚低聚物的合成方法 WO2020087770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/289,713 US20220002485A1 (en) 2018-10-29 2019-01-02 Method for synthesizing dihydroxyl-terminated polyphenylene oxide oligomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811265191.9 2018-10-29
CN201811265191.9A CN109517164B (zh) 2018-10-29 2018-10-29 一种双端羟基聚苯醚低聚物的合成方法

Publications (1)

Publication Number Publication Date
WO2020087770A1 true WO2020087770A1 (zh) 2020-05-07

Family

ID=65772549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070032 WO2020087770A1 (zh) 2018-10-29 2019-01-02 一种双端羟基聚苯醚低聚物的合成方法

Country Status (3)

Country Link
US (1) US20220002485A1 (zh)
CN (1) CN109517164B (zh)
WO (1) WO2020087770A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437439A (zh) * 2019-08-27 2019-11-12 广东省石油与精细化工研究院 一种烯基封端聚苯醚的合成方法
CN112552510A (zh) * 2019-12-16 2021-03-26 四川大学 邻苯二甲腈封端聚苯醚及其制备方法与应用
CN111793203B (zh) * 2020-07-22 2022-12-27 广东省石油与精细化工研究院 一种聚苯醚及其合成方法
CN113980265B (zh) * 2021-10-29 2023-06-27 湘潭大学 一种高纯度低分子量双羟基聚苯醚的制备方法
CN114573426B (zh) * 2022-04-02 2022-10-14 江门建滔电子发展有限公司 一种苯并环丁烯衍生物及其应用
CN115490847B (zh) * 2022-09-30 2024-01-30 湖南长炼新材料科技股份公司 含砜基双羟基聚苯醚、可交联聚苯醚及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070106051A1 (en) * 2005-11-10 2007-05-10 Alvaro Carrillo Polyfunctional poly(arylene ether) method
US20070135609A1 (en) * 2005-12-08 2007-06-14 Alvaro Carrillo Poly(arylene ether) copolymer
JP2008127497A (ja) * 2006-11-22 2008-06-05 Mitsubishi Gas Chem Co Inc フェニレンエーテルオリゴマー体混合物の製造方法
CN102604075A (zh) * 2012-03-02 2012-07-25 浙江大学 一种水介质中制备双端羟基聚苯醚的方法及其产物与应用
CN105199097A (zh) * 2015-10-22 2015-12-30 南通星辰合成材料有限公司 生产多酚羟基聚苯醚树脂的方法
US20160159980A1 (en) * 2014-12-05 2016-06-09 Industrial Technology Research Institute Aqueous-phase catalyst compositions and method for preparing polyphenylene ether

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080207822A1 (en) * 2007-02-22 2008-08-28 General Electric Company Composition and associated method
CN101544755B (zh) * 2009-04-28 2010-12-08 浙江大学 金属离子-聚乙烯基咪唑络合物催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070106051A1 (en) * 2005-11-10 2007-05-10 Alvaro Carrillo Polyfunctional poly(arylene ether) method
US20070135609A1 (en) * 2005-12-08 2007-06-14 Alvaro Carrillo Poly(arylene ether) copolymer
JP2008127497A (ja) * 2006-11-22 2008-06-05 Mitsubishi Gas Chem Co Inc フェニレンエーテルオリゴマー体混合物の製造方法
CN102604075A (zh) * 2012-03-02 2012-07-25 浙江大学 一种水介质中制备双端羟基聚苯醚的方法及其产物与应用
US20160159980A1 (en) * 2014-12-05 2016-06-09 Industrial Technology Research Institute Aqueous-phase catalyst compositions and method for preparing polyphenylene ether
CN105199097A (zh) * 2015-10-22 2015-12-30 南通星辰合成材料有限公司 生产多酚羟基聚苯醚树脂的方法

Also Published As

Publication number Publication date
CN109517164A (zh) 2019-03-26
US20220002485A1 (en) 2022-01-06
CN109517164B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020087770A1 (zh) 一种双端羟基聚苯醚低聚物的合成方法
JP6976981B2 (ja) ジシクロペンタジエンを有する官能化ポリ(2,6−ジメチルフェニレンオキシド)オリゴマー及びその製造方法、並びにその用途
TWI510517B (zh) 聚酚醚寡聚物及包含其之產品
CN111793203B (zh) 一种聚苯醚及其合成方法
CN107793566B (zh) 一种热塑性聚苯并咪唑酰亚胺及其制备方法
CN111909371B (zh) 一种四烯基聚苯醚及其制备方法
JP7505873B2 (ja) ポリ(アリーレンエーテル)コポリマー
JPS6120575B2 (zh)
US10544261B2 (en) Phosphinated poly(2,6-dimethyl phenylene oxide) oligomers and thermosets thereof
CN110396210B (zh) 一种低介电高玻璃化转变温度聚芳醚腈树脂的制备方法
CN113980265B (zh) 一种高纯度低分子量双羟基聚苯醚的制备方法
CN107892745B (zh) 一种热塑性聚苯并噁唑酰亚胺及其制备方法
CN114409900B (zh) 一种低环二聚体含量聚砜的制备方法
CN113683772B (zh) 一种低分子量官能化星型聚苯醚及其制备方法
JPS6120576B2 (zh)
CN110498923B (zh) 一种耐超高温易成型聚酰亚胺树脂及其制备方法与应用
CN112552510A (zh) 邻苯二甲腈封端聚苯醚及其制备方法与应用
CN113801317B (zh) 低分子量聚(亚芳基醚)及其制备方法
JP2010070658A (ja) ポリエーテルエーテルケトンの製法
CN113637133A (zh) 一种含有碳氢链段及聚苯醚链段的低介电高耐热苯并噁嗪树脂及其制备方法
TWI839757B (zh) 一種多官能聚亞芳基醚樹脂之製備方法
CN113956467B (zh) 一种双端羟基聚苯醚改性的方法
CN109422878B (zh) 聚芳醚硫醚砜的制备方法及得到的聚芳醚硫醚砜
CN117143330A (zh) 一种低醌含量聚苯醚树脂及其制备方法
CN118325069A (zh) 一种双端乙烯基低分子量聚苯醚的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880036

Country of ref document: EP

Kind code of ref document: A1