WO2020085681A1 - Thermoelectric element and manufacturing method therefor - Google Patents

Thermoelectric element and manufacturing method therefor Download PDF

Info

Publication number
WO2020085681A1
WO2020085681A1 PCT/KR2019/013176 KR2019013176W WO2020085681A1 WO 2020085681 A1 WO2020085681 A1 WO 2020085681A1 KR 2019013176 W KR2019013176 W KR 2019013176W WO 2020085681 A1 WO2020085681 A1 WO 2020085681A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
thermoelectric
resin layer
insulating resin
Prior art date
Application number
PCT/KR2019/013176
Other languages
French (fr)
Korean (ko)
Inventor
박주현
양승호
황병진
손경현
양승진
박정구
연병훈
최종일
장봉중
이태희
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Publication of WO2020085681A1 publication Critical patent/WO2020085681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Definitions

  • the present invention relates to a thermoelectric element and a method for manufacturing the thermoelectric element having improved thermal stability, high temperature durability, and improved thermoelectric properties by using a metal-based substrate provided with a plurality of slits.
  • Thermoelectric phenomenon refers to a reversible direct energy conversion between heat and electricity. This is a phenomenon caused by the movement of electrons and holes inside the material, and the Peltier effect and both ends of the material are applied to the cooling field by using the temperature difference between both ends formed by the current applied from the outside. It is divided into the Seebeck effect applied to the power generation field by using electromotive force generated from the temperature difference of.
  • thermoelectric elements and thermoelectric modules have been actively conducted in order to solve problems such as a sudden increase in the cost of energy-related resources and environmental pollution. They are applied to thermoelectric power generation such as waste heat generation or active cooling.
  • thermoelectric element is composed of a thermoelectric leg, an electrode, and a substrate, and an N-type semiconductor and a P-type semiconductor are used as the thermoelectric leg.
  • the thermoelectric elements After arranging a plurality of pairs of N-type and P-type semiconductors on a plane, the thermoelectric elements can be configured by connecting them in series using a metal electrode.
  • the conventional ceramic substrate which is widely used as a substrate, has a relatively low thermal conductivity, and thus has a limitation in reducing the thermal resistance of the thermoelectric element.
  • the ceramic-based direct bonded cupper (DBC) substrate cracks and the like occur in a high temperature region ( ⁇ 300 ° C), thereby significantly deteriorating the characteristics of the thermoelectric element, and the metal electrode is directly disposed on the DBC substrate described above, and the thermoelectric element In the case of constructing, there is a limit to uniformly manufacturing the height between each pair. Accordingly, there is a problem that the characteristic degradation of the thermoelectric element having the above-described ceramic-based substrate is essentially caused.
  • the conventional ceramic DBC substrate has a limitation in diversifying the size or shape of the substrate due to the occurrence of high temperature cracks.
  • thermoelectric element having improved thermal stability, durability under high temperature load, and improved thermoelectric properties by employing a metal-based substrate having a heat-resistant resin layer instead of a conventional ceramic-based substrate.
  • thermoelectric element when constructing a thermoelectric element using two metal-based substrates (for example, a metal laminated plate) having the above-described configuration, thermal expansion of the metal-based substrate is caused by temperature rise and peeling of the thermoelectric leg is caused, and consequently, the thermoelectric element. It was contemplated that the output characteristics of the product were not properly exhibited, and the reliability of the final product was lowered.
  • the present invention changes the conventional ceramic-based substrate to a metal-based substrate on which a heat-resistant resin layer is formed, but by using a metal-based substrate having a plurality of slits on one surface so as to provide flexibility during thermal expansion, high temperature due to thermal expansion It is a technical problem to provide a thermoelectric element and a method for manufacturing the thermoelectric element having improved thermal stability, durability, and thermoelectric properties.
  • the present invention is a conductive first substrate having a first insulating resin layer formed on one surface; A conductive second substrate disposed opposite to the first substrate and having a second insulating resin layer formed on one surface; A first electrode disposed on the first insulating resin layer; A second electrode disposed on the second insulating resin layer; And a plurality of thermoelectric legs interposed between the first electrode and the second electrode, wherein at least one of the conductive first substrate and the conductive second substrate is formed to be spaced apart at predetermined intervals along the longitudinal direction of the substrate.
  • a thermoelectric device having a plurality of slits.
  • the separation distance between the plurality of slits may be equal to or greater than a size corresponding to the plane of the first electrode or the second electrode.
  • the plurality of slits may be formed to be symmetrical with respect to the first electrode or the second electrode.
  • the plurality of slits the slit width formed along the first direction; A slit length formed along a second direction intersecting the first direction; And orthogonal to the first direction and the second direction, and having a slit depth formed along a direction perpendicular to the substrate, wherein the slit depth is based on the total thickness of the first substrate or the second substrate, respectively. It may be 70 to 90%.
  • the horizontal cross-sectional shape of the slit may be any one of a rectangle, a circle, an oval, a stripe, a rhombus and a polygon.
  • the first insulating resin layer and the second insulating resin layer are the same as or different from each other, and may each include a high heat resistance resin having a glass transition temperature (Tg) of 250 ° C or higher.
  • Tg glass transition temperature
  • the high heat resistance resin may include at least one epoxy resin selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins.
  • the first insulating resin layer and the second insulating resin layer may each include a ceramic filler.
  • the thickness of the first insulating resin layer and the second insulating resin layer may be 10 to 150 ⁇ m, respectively.
  • the first and second substrates and the first and second electrodes are the same as or different from each other, and aluminum (Al), zinc (Zn), copper (Cu), and nickel (Ni), respectively. And cobalt (Co).
  • thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal It may include at least one thermoelectric semiconductor material selected from silicide-based, skuttrudite-based, silicide-based, half heusler, and combinations thereof.
  • one of the conductive first substrate and the conductive second substrate having the plurality of slits may be a heating unit.
  • thermoelectric element provides a method of manufacturing the above-described thermoelectric element.
  • the manufacturing method includes the steps of preparing two metal laminated plates having metal layers on both sides of an insulating resin layer; Forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates; Placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween; And forming a plurality of slits on the other surface of any one of the two metal-clad laminates, spaced apart at equal or greater intervals corresponding to the plane of the first electrode or the second electrode. It may be configured to include.
  • thermoelectric element by adopting a configuration in which a heat-resistant resin layer is formed on one surface, a plurality of slits are formed on the other surface, and a predetermined patterned electrode is arranged on the heat-resistant resin layer, In terms of thermal stability and durability, it may exhibit better performance than a thermoelectric element using a conventional ceramic-based substrate and a metal-based substrate not including a plurality of slits.
  • thermoelectric elements since a metal-based substrate having various shapes and large area sizes can be used without limitation, compared to a conventional ceramic substrate, high design freedom of thermoelectric elements can be secured, and cross-sections of the first and second substrates or Since slits can be applied to both sides, it is possible to fundamentally suppress degradation of product characteristics due to thermal expansion.
  • thermoelectric device 1 is a perspective view showing a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 2 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 3 is a cross-sectional view of a thermoelectric device according to another embodiment of the present invention.
  • FIG. 4 is a plan view of a conductive first substrate and a conductive second substrate provided with a patterned first electrode, a second electrode, and a plurality of slits according to an embodiment of the present invention.
  • FIG. 5 is a plan view of a conductive first substrate and a conductive second substrate provided with a patterned first electrode, a second electrode, and a plurality of slits according to another embodiment of the present invention.
  • thermoelectric element 100, 200: thermoelectric element
  • planar this means when the object part is viewed from above, and when it is referred to as “cross-sectional”, it means when the cross section of the object part vertically cut is viewed from the side.
  • the present invention provides a thermoelectric element capable of improving thermoelectric properties while securing thermal stability, durability and product reliability according to a high temperature load, by changing the material and structure of a substrate constituting the thermoelectric element.
  • thermoelectric device in the case of manufacturing a thermoelectric device using a conventional electrically insulating ceramic-based substrate (eg, DBC) or using a metal-based substrate, a phenomenon in which the output characteristics exhibited by the device deteriorates due to a difference in thermal expansion coefficient between materials.
  • a conductive substrate having an insulating resin layer formed on one surface and a plurality of slits on the other surface.
  • the insulating resin layer may include a ceramic filler known in the art, such as aluminum oxide.
  • FIG. 1 is a perspective view schematically showing a structure of a thermoelectric element 100 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the thermoelectric element 100.
  • the thermoelectric device 100 includes a conductive first substrate 11a having a first insulating resin layer 12a formed on one surface; A conductive second substrate 11b disposed opposite to the conductive first substrate 11a and having a second insulating resin layer 12b formed on one surface; A first electrode 20a disposed on the first insulating resin layer 12a; A second electrode 20b disposed on the second insulating resin layer 12b; And a plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b, wherein the conductive first substrate 11a and the conductive second substrate 11b are included. At least one of the first and second insulating resin layers 12a and 12b includes a plurality of slits 40 formed on the other surface of the non-formed substrate.
  • the conductive first substrate 11a causes an exothermic or endothermic reaction when power is applied to the thermoelectric element 100, and may be made of a conventional conductive metal material known in the art.
  • the conductive first substrate 11a has aluminum (Al) as a main component, and may include at least one of iron (Fe), copper (Cu), and nickel (Ni).
  • the conductive first substrate 11a may have a flat plate shape, and is not particularly limited in size or thickness.
  • the thickness of the conductive first substrate 11a may be 0.5 to 2 mm, preferably 0.5 to 1.5 mm, and more preferably 0.6 to 0.8 mm.
  • the location of the heat absorption and heat generation of the substrate can be changed according to the direction of the current, and a heat dissipation pad may be applied when an endothermic reaction occurs on the conductive first substrate 11a.
  • the first electrode 20a when the first electrode 20a is directly disposed on the conductive first substrate 11a, it is electrically connected, and an electrically insulating material must be interposed therebetween.
  • problems such as peeling of a thermoelectric leg and loss of output characteristics of a thermoelectric element may occur due to rapid thermal expansion of a metal material according to a temperature rise of the thermoelectric element.
  • the first insulating resin layer 12a is formed on one surface of the conductive first substrate 11a on which the first electrode 20a is disposed, and a plurality of slits spaced apart at predetermined intervals on the other surface. , 40).
  • the metal substrate considering the thermal expansion properties of the metal substrate according to the temperature rise, it can be formed by appropriately adjusting the number or size of the slit (40).
  • the number of slits 40 formed on the first conductive substrate 11a is not particularly limited, and may be appropriately adjusted according to the size of the substrate. For example, it may be a plurality of two or more, specifically 2 To dozens, more specifically 2 to 10 may be around.
  • a predetermined separation distance is formed between one of the slits 40 and the other slits adjacent thereto.
  • the separation distance between the plurality of slits 40 is not particularly limited, and may be appropriately adjusted in consideration of the thermal expansion characteristics of the metal substrate.
  • the separation distance between the plurality of slits 40 may be the same as or larger than the size corresponding to the plane of the first electrode 20a or the second electrode 20b, which will be described later, and preferably a pair It may correspond to the size to form a unit cell, including the P-type thermoelectric leg (30a) and the N-type thermoelectric leg (30b). In one example, it may be 1.35 to 1.45 mm.
  • the plurality of slits 40 includes: a slit width formed along a first direction (eg, a longitudinal direction of the substrate); A slit length formed along a second direction intersecting the first direction; And a slit depth orthogonal to the first direction and the second direction, and formed along a direction perpendicular to the conductive 1-2 substrates 11a and 11b (eg, a thickness direction of the substrate).
  • the plurality of slits 40 have substantially the same slit depth.
  • the depth of the slit is not particularly limited, and may be, for example, 70 to 90% based on the total thickness of the conductive first substrate 11a or the conductive second substrate 11b, respectively.
  • the length of the slit may be the same as the length in the longitudinal direction (first direction) and the vertical direction (second direction) of the conductive first substrate 11a, and the width of the slit may be conductive. It may be approximately 7 to 10% based on the total length along the length direction (first direction) of the 1-2 substrates 11a and 11b.
  • the depth of the slit is 0.49 to 0.63 mm
  • the slit width is 3.0 to 4.0 mm
  • the slit length is 40.5 mm. It can have a size.
  • the depth of the slit is 1.05 to 1.35 mm
  • the slit width is 3.0 to 4.0 mm
  • the slit length is 40.5 mm.
  • the plurality of slits 40 When viewing a horizontal cross-sectional shape, the plurality of slits 40 have a structure in which a plurality of intaglio patterns are regularly arranged.
  • the horizontal cross-sectional shape of the intaglio pattern is not particularly limited, and for example, it may be any one of a rectangle, a circle, an oval, a stripe, a rhombus, and a polygon. In addition, various pattern shapes can be applied.
  • the plurality of slits 40 are formed on one surface of the conductive first substrate 11a on which the insulating first resin layer 12a is not formed, and preferably, the insulating first number of the conductive first substrate 11a
  • the first electrode 20a disposed on the base layer 12a is formed to be symmetric with each other. Specifically, it may be arranged to have a symmetrical or centrosymmetrically symmetrical structure based on a first direction line (eg, a long axis length direction of the first electrode) passing through the center of the first electrode 20a.
  • the first insulating resin layer 12a formed on one surface of the conductive first substrate 11a may use an electrically insulating material that is easy to form, and for example, conventional thermosetting resins and thermoplastics known in the art It may contain at least one of the resin.
  • the first insulating resin layer 12a uses a heat resistant resin having a glass transition temperature (Tg) of 250 ° C or higher, preferably 250 to 300 ° C. It is preferred.
  • thermosetting resin usable as the first insulating resin layer 12a include epoxy resin, polyurethane resin, alkyd resin, phenol resin, melamine resin, silicone resin, urea resin, vegetable oil modified phenol resin, xylene It may be one or more selected from the group consisting of resin, guanamine resin, diallyl phthalate resin, vinyl ester resin, unsaturated polyester resin, furan resin, polyimide resin, cyanate resin, maleimide resin and benzocyclobutene resin. Specifically, the thermosetting resin may be at least one selected from the group consisting of epoxy resin, phenol resin, melamine resin, silicone resin, urethane resin and urea resin.
  • Epoxy resins can be used without limitation, conventional epoxy resins known in the art, it is preferable that two or more epoxy groups are present, without containing a halogen element in one molecule.
  • Non-limiting examples of usable epoxy resins include bisphenol A / F / S type resins, phenol novolac epoxy resins, polyhydric phenol type epoxy resins, novolac type epoxy resins, alkylphenol novolac type epoxy, biphenyls Type, aralkyl type, naphthol type, dicyclopentadiene type, or a mixed form thereof.
  • More specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, anthracene epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, and phenol novolac Type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol S novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol phenol coaxial novolac type epoxy resin , Naphthol corsol coaxial novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, triphenyl methane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene phenol addition reaction epoxy resin, phenol aral Kill type epoxy resin, polyfunctional phenol resin, naphthol aralkyl type epoxy resin There is.
  • the above-described epoxy resin may be used alone or in combination of two or more.
  • the high heat resistance epoxy resin is one containing at least one selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins.
  • the polyhydric phenol type epoxy resin refers to an epoxy resin having two or more average epoxy groups in the molecule, and preferably 2 to 4.
  • thermoplastic resins include olefin resins, acrylic resins, rubbers, or mixtures thereof.
  • Specific examples include polyethylene, polypropylene, polystyrene, polyimide, teflon (PTFE), acrylonitrile-butadiene rubber (NBR), styrene butadiene rubber (SBR), acrylonitrile-butadiene-styrene rubber (ABS), carr Vxyl-terminated butadiene acrylonitrile rubber (CTBN), polybutadiene, styrene-butadiene-ethylene resin (SEBS), acrylic acid containing side chains of 1 to 8 carbon atoms ) And / or methacrylic acid ester resins (acrylic rubber), or mixtures of one or more thereof.
  • PTFE teflon
  • NBR acrylonitrile-butadiene rubber
  • SBR styrene butadiene rubber
  • ABS acrylonitrile-butadiene
  • the above-mentioned thermoplastic resin contains the functional group which can react with the epoxy resin which is a thermosetting resin. Specifically, it is at least one functional group selected from the group consisting of an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a methoxy group, and an isocyanate group. Since these functional groups form a strong bond with the epoxy resin, the heat resistance after curing is improved, which is preferable.
  • the first insulating resin layer 12a may further include a ceramic filler (powder) in addition to the heat-resistant resin described above.
  • the ceramic filler can use any conventional inorganic filler known in the art without limitation, and non-limiting examples of the ceramic filler usable include natural silica, fused silica, and amorphous silica.
  • Silica such as crystalline silica; Boehmite, alumina, talc, spherical glass, calcium carbonate, magnesium carbonate, magnesia, clay, calcium silicate, titanium oxide, antimony, glass fiber, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, barium zirconate, calcium zirconate, boron nitride, silicon nitride, or mica.
  • the above-mentioned powders may be used alone or in combination of two or more.
  • a filler in the form of a metal oxide such as aluminum oxide is used.
  • the first insulating resin layer 12a may be an epoxy resin layer containing a ceramic filler, and more preferably a resin layer in which aluminum oxide and an epoxy resin are mixed.
  • the average particle diameter (D 50 ) of the ceramic filler is not particularly limited, but in consideration of dispersibility, it is preferable that the average particle diameter is about 0.1 to 20 ⁇ m, specifically 0.5 to 15 ⁇ m. In addition, two or more types of ceramic fillers having different average particle diameters may be mixed.
  • the shape of the ceramic filler is also not particularly limited, and may have any one shape selected from the group consisting of a spherical shape, a plate shape, a needle shape, a fiber shape, a branch shape, a conical shape, a pyramid shape, and an amorphous shape.
  • the ceramic filler may be used as it is by mixing with an epoxy resin, or a ceramic filler already surface-treated with an organic material may be used. This is because when using a ceramic filler surface-treated with an organic material, compatibility with a resin is excellent, and thus dielectric properties, heat resistance, and workability of the epoxy resin can be further improved.
  • the organic material is not particularly limited, and resins or silane coupling agents in the art may be used.
  • the method of surface-treating the ceramic filler with an organic material is not particularly limited, and a method of drying after adding the ceramic filler to a solution containing an organic material, for example, a vinyl group-containing silane coupling agent, may be mentioned.
  • the content of the ceramic filler may be appropriately adjusted in consideration of mechanical properties or other physical properties of the first insulating resin layer 12a.
  • the content of the ceramic filler may be 0 to 70 parts by weight, specifically 5 to 50 parts by weight, and more specifically 10 to 30 parts by weight based on 100 parts by weight of the epoxy resin constituting the insulating resin layer 12a.
  • the thickness of the above-described first insulating resin layer 12a is not particularly limited, and may be appropriately adjusted within a range known in the art. In one example, the thickness of the first insulating resin layer 12a may be 20 to 150 ⁇ m, and preferably 80 to 120 ⁇ m.
  • the conductive second substrate 11b in which the second insulating resin layer 12b is formed on one surface is disposed at a position facing the aforementioned conductive first substrate 11a.
  • the first insulating resin layer 12a formed on one surface of the conductive first substrate 11a and the second insulating resin layer 12b formed on one surface of the conductive second substrate 11b are disposed to face each other.
  • the structures of the conductive first substrate 11a and the first insulating resin layer 12a may be applied to the conductive second substrate 11b and the second insulating resin layer 12b, detailed descriptions thereof. Is omitted.
  • the first electrode 20a and the second electrode 20b are disposed on the first insulating resin layer 12a and the second insulating resin layer 12b disposed to face each other.
  • first electrode 20a and the second electrode 20b are not particularly limited, and materials used as electrodes in the art may be used without limitation.
  • the first electrode 20a and the second electrode 20b are the same or different from each other, and each independently has at least one of aluminum (Al), zinc (Zn), copper (Cu), and nickel (Ni). Metal can be used.
  • Al aluminum
  • Zn zinc
  • Cu copper
  • Ni nickel
  • Metal can be used.
  • nickel, gold, silver, titanium, and the like may be further included. Its size can also be varied.
  • the first electrode 20a and the second electrode 20b may be patterned in a predetermined shape, and the shape is not particularly limited. As an example, it may be patterned as shown in Figures 4 and 5 below.
  • the thermoelectric leg 30 includes a plurality of P-type thermoelectric legs 30a and N-type thermoelectric legs 30b, respectively, and the N-type and P-type thermoelectric legs constituting a plurality of such pairs
  • the 30a, 30b are alternately arranged in one direction.
  • the upper and lower surfaces of the P-type thermoelectric legs 30a and N-type thermoelectric legs 30b adjacent in one direction are electrically connected in series with the first electrode 20a and the second electrode 20b, respectively.
  • the pair of electrically connected P-type thermoelectric legs 30a and N-type thermoelectric legs 30b may form a unit cell.
  • Each of these thermoelectric legs 30a, 30b includes a thermoelectric semiconductor substrate.
  • thermoelectric semiconductor included in the thermoelectric leg 30 may be formed of a conventional material in the art where temperature difference occurs at both ends when electricity is applied or electricity is generated when temperature difference occurs at both ends.
  • thermoelectric semiconductors including at least one element selected from the group consisting of transition metals, rare earth elements, group 13 elements, group 14 elements, group 15 elements, and group 16 elements may be used.
  • examples of rare earth elements include Y, Ce, La, etc.
  • examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, and Re may be one or more
  • examples of the Group 13 element may be one or more of B, Al, Ga, and In
  • examples of the Group 14 element may be C, Si, Ge, Sn, and Pb. It may be at least one, and examples of the group 15 element may be at least one of P, As, Sb, and Bi
  • examples of the group 16 element may be at least one of S, Se, and Te.
  • thermoelectric semiconductor As a thermoelectric semiconductor that can be used, it can be made of a composition containing at least two or more of bismuth (Bi), telelium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce).
  • Bi-Te-based thermoelectric semiconductors include (Bi, Sb) 2 (Te, Se) 3 thermoelectric semiconductors in which Sb and Se are used as dopants, and CoSb as the Co-Sb-based thermoelectric semiconductor.
  • Three -type thermoelectric semiconductors can be exemplified, AgSbTe 2 and CuSbTe 2 can be exemplified as Sb-Te-based thermoelectric semiconductors, and PbTe, (PbTe) mAgSbTe 2 and the like can be exemplified as Pb-Te-based thermoelectric semiconductors.
  • the thermoelectric semiconductor may be particles having a predetermined size, for example, may have an average particle diameter in the range of about 0.01 to about 100 ⁇ m.
  • thermoelectric semiconductor can be manufactured in various ways, and is not particularly limited.
  • the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method.
  • the thermoelectric leg 30 including the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b may be formed into a predetermined shape, such as a rectangular parallelepiped, by a method such as cutting, and applied to the thermoelectric element.
  • thermoelectric element 100 is between the first electrode 20a and the thermoelectric leg 30; And a bonding material (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b.
  • a bonding material can be used without limitation, conventional bonding material components known in the art.
  • the bonding material is Sn; A composition comprising a first metal of at least one of Pb, Al, and Zn; Or it may be made of a composition comprising the first metal; and at least one second metal of Ni, Co, and Ag.
  • thermoelectric element 100 is between the first electrode 20a and the thermoelectric leg 30; And a diffusion barrier layer (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b.
  • the diffusion barrier layer can be used without limitation, conventional components known in the art, for example, at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
  • the first electrode 20a and the second electrode 20b may be electrically connected to a power supply.
  • a DC voltage When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg 30a and the electrons of the n-type thermoelectric leg 30b move, so that heat and endothermic heat may occur at both ends of the thermoelectric leg.
  • thermoelectric element 100 in one embodiment, at least one of the first electrode 20a and the second electrode 20b may be exposed to a heat source.
  • heat When heat is supplied by an external heat source, electrons and holes move, and current flows in the thermoelectric element, thereby generating electricity.
  • thermoelectric leg and the thermoelectric element including the same may be provided in, for example, a thermoelectric cooling system or a thermoelectric power generation system.
  • a thermoelectric power generation system means a normal system that generates power using a temperature difference, and examples thereof include a waste heat furnace, a vehicle thermoelectric power generation system, and a solar thermoelectric power generation system.
  • the thermoelectric cooling system may include a micro cooling system, a general purpose cooling device, an air conditioner, and a waste heat power generation system, but is not limited thereto.
  • the power generation power can be increased because it has a high temperature use temperature range, and the final product is exhibited by enhancing durability and excellent thermal stability under high temperature load. It can have high reliability.
  • the conductive substrate provided with a plurality of slits may be a heating unit or a cooling unit, and is particularly preferably a heating unit in order to exert the effect of providing flexibility during thermal expansion.
  • thermoelectric power generation system and the thermoelectric cooling system are known in the art, and thus, detailed description is omitted.
  • FIG. 3 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 200 according to another embodiment of the present invention.
  • the same reference numerals as those in FIGS. 1 to 2 denote the same members.
  • thermoelectric element 200 in the thermoelectric element 200 according to the present embodiment, unlike the embodiment of FIG. 2 in which a plurality of slits 40 are formed on one surface of the conductive first substrate 11a, the plurality of slits 40
  • the conductive second substrate 11b provided is used.
  • the second insulating resin layer 12b is formed on one surface of the conductive second substrate 11b, and a plurality of slits 40 are provided on the other surface.
  • FIGS. 1 to 3 specifically illustrate an embodiment in which a plurality of slits 40 are formed on one of the conductive first substrate 11a and the conductive second substrate 11b, respectively.
  • the present invention is not limited thereto, and embodiments that are formed on both the conductive substrates 11a and 11b or are formed on the cross-section and / or both surfaces of the conductive substrates 11a and 11b also belong to the scope of the present invention.
  • FIGS. 1 to 3 specifically illustrate an embodiment in which the first insulating resin layer 12a and the second insulating resin layer 12b are each formed of a single layer.
  • the present invention is not limited thereto, and the number, shape, and size of the insulating resin layers 12a and 12b are not particularly limited. That is, the structure of the insulating resin layers 12a and 12b is not particularly limited, and can be freely deformed to have various shapes and sizes.
  • the insulating resin layer (12a, 12b), specifically aluminum oxide and epoxy resin mixed layer (12a, 12b) is within the range of maintaining the electrical insulation, conventional inorganic fillers and / or organic fillers known in the art further It can contain.
  • thermoelectric element ⁇ The manufacturing method of a thermoelectric element>
  • thermoelectric element according to an embodiment of the present invention.
  • it is not limited only by the following manufacturing method or order, and the steps of each process may be modified or selectively mixed as necessary.
  • thermoelectric device may be manufactured using a metal foil and / or metal laminate with a resin known in the art, and may preferably be a copper clad laminate (CCL).
  • CCL copper clad laminate
  • step'S10 step' For one embodiment of the manufacturing method, (i) preparing two metal laminated plates having metal layers on both sides of the insulating resin layer ('S10 step'); (ii) forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates ('S20 step'); iii) placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween ('S30 step'); And (iv) a plurality of slits spaced apart at the same or larger intervals corresponding to the plane of the first electrode or the second electrode, on the other surface of any one of the two metal laminated plates.
  • Forming step ('S40 step') (including may be configured.
  • thermoelectric element two metal laminated plates to be used as a substrate of a thermoelectric element are prepared.
  • the metal laminated plate may be used without limitation, in which a metal layer is laminated on both sides of the insulating resin layer.
  • the metal layers may be composed of the same or different metal components, and for example, may include at least one of aluminum (Al), copper (Cu), and nickel (Ni).
  • One of the metal layers (for example, the first metal layer and the second metal layer) disposed on both sides of one of the two metal laminated plates is used as a conductive first substrate, and the other is patterned in a predetermined form through etching. It is formed of one electrode.
  • one of the metal layers disposed on both sides of the other metal laminated plate among the two metal laminated plates is used as a conductive second substrate, and the other is formed as a second electrode.
  • an etching method known in the art may be used as an etching method without limitation, and for example, physical etching, chemical etching, or a combination of both may be applied.
  • the method of arranging and bonding the plurality of thermoelectric legs 30 on the patterned first electrode and the second electrode is not particularly limited, and a method known in the art can be used.
  • the bonding material one or more first metals of Sn and Pb, Al, and Zn; Or it may be applied by mixing the first metal and a second metal such as Ni, Co, Ag.
  • Thermoelectric legs can be made using thermoelectric semiconductors known in the art, such as Bi-Te or Co-Sb based thermoelectric materials.
  • thermoelectric semiconductors known in the art, such as Bi-Te or Co-Sb based thermoelectric materials.
  • the Bi-Te or CoSb-based thermoelectric material is melted using an RSP, and then primarily produced by ribbon production or raw material powder mixing and then heat treatment, etc. (phase).
  • spark Plasma Sintering spark Plasma Sintering
  • slicing is performed according to the desired thickness
  • lapping is performed according to the final thickness to increase the height of the material. Adjust within 1/100.
  • a thermoelectric leg is manufactured by dicing according to the size of the material.
  • thermoelectric legs For a specific example of the step of arranging and bonding a plurality of thermoelectric legs between the first electrode and the second electrode according to the present invention, a bonding material paste is applied to a pattern of the first electrode 20a to a certain thickness, and thereon The n-type and p-type thermoelectric legs are arranged. Then, in the case of the opposite electrode (second electrode) on the opposite side, the configuration of the thermoelectric element is completed by arranging the previously formed n-type and p-type thermoelectric legs in a state where only the bonding material is applied.
  • thermoelectric legs are disposed on one surface of the metal laminated plate to be used as the conductive first substrate (or the conductive second substrate).
  • the separation distance between a plurality of slits may be adjusted to be equal to or larger than a size corresponding to the plane of the first electrode or the second electrode.
  • the plurality of slits as shown in Figures 4 and 5 below, a pair of P-type and N-type thermoelectric legs are connected to a plurality of thermoelectric element units in which one thermoelectric element (eg, unit cell) can be completed.
  • a region may have a structure partitioned along the horizontal and vertical directions, and a sawing line may be formed at a boundary portion that partitions each unit region.
  • a method of forming a plurality of slits in one of the two metal laminated plates can use a method known in the art without limitation. As an example, laser cutting, mechanical punching, or a cutting wheel may be used.
  • thermoelectric element After heat treatment is performed at 300 to 500 ° C. to final bonding, and then electric wires are connected to complete manufacturing of the thermoelectric element.
  • thermoelectric element using a metal laminated plate a method of manufacturing a thermoelectric element using a metal laminated plate is described in detail.
  • the present invention is not limited to this, and after applying an insulating resin such as an epoxy resin on a metal plate known in the art, forming a predetermined electrode pattern on the applied insulating resin layer, and then heat-treating and fixing it as a conductive substrate. It belongs to the scope of the invention.
  • An epoxy resin (Tg: 250 ° C.) was coated on an Al substrate (thickness: 0.7 mm), and a 40.5 ⁇ 40.5 sized substrate on which a Cu electrode patterned in a predetermined shape was disposed was used as a conductive first substrate.
  • the conductive first substrate used was a metal laminated plate having an Al layer on one surface and a Cu layer on the other surface centered on an epoxy resin layer, and a Cu electrode was formed by etching a double Cu layer in a predetermined pattern.
  • a substrate having the same configuration as the conductive first substrate was used as a conductive second substrate (opposite substrate).
  • thermoelectric device After applying a bonding material on the Cu electrode (first electrode), after placing a Bi-Te thermoelectric leg thereon, a Cu electrode (second electrode) of a conductive second substrate was disposed as a counter electrode. Subsequently, after heat-treating and bonding at about 300 ° C using a heat treatment facility, a plurality of slits are formed on the other surface of the conductive second substrate (eg, the second electrode non-forming surface) to fabricate the thermoelectric device of Example 1 Did.
  • the slit is produced based on a substrate having a size of 40.5 ⁇ 40.5, 9 horizontal and 9 vertically formed at a predetermined interval to a depth of about 0.5 mm each.
  • the spacing (spacing distance) between the plurality of slits was about 3.5 mm in both horizontal and vertical, and the size was 0.3 mm, using a cutting wheel (see FIG. 4 (b) below).
  • Epoxy resin (Tg: 250 ° C) is applied on the Al substrate (thickness: 1.5 mm), and a 40.5 x 40.5 sized substrate on which Cu electrodes patterned in a predetermined shape is disposed is conductive first substrate and second conductive substrate, respectively. After using it as a substrate, the same method as in Example 1 was carried out to produce a thermoelectric element of Example 2.
  • the slit was manufactured on the basis of a substrate having a size of 40.5 ⁇ 40.5, and 9 horizontally and 9 vertically were formed to a depth of about 1.2 mm at regular intervals.
  • the spacing (spacing distance) between the plurality of slits was about 3.5 mm in both horizontal and vertical, and the size was 0.3 mm, using a cutting wheel (see FIG. 4 (b) below).
  • Epoxy resin (Tg: 250 ° C) is applied on the Al substrate (thickness: 0.7 mm), and a 40.5 x 140.5 sized substrate on which Cu electrodes patterned in a predetermined shape is disposed is conductive first substrate and second conductive substrate, respectively. After using as a substrate, the same method as in Example 1 was carried out to manufacture the thermoelectric element of Example 3.
  • the slit was manufactured on the basis of a substrate having a size of 40.5 ⁇ 140.5, and 9 horizontally and 39 vertically formed at a predetermined interval to a depth of about 0.5 mm, respectively.
  • the spacing (spacing distance) between the plurality of slits was about 3.5 mm in both horizontal and vertical, and the size was 0.3 mm, using a cutting wheel (see FIG. 5 below).
  • thermoelectric element of Comparative Example 1 was produced. At this time, except for the applied substrate and electrode, the remaining materials and processes were performed in the same manner as in Example 1, and a separate slit was not produced.
  • thermoelectric element of Comparative Example 2 was manufactured by performing the same method as in Example 3, except that a separate slit was not produced.
  • thermoelectric elements prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated as follows.
  • thermoelectric element manufactured using each substrate was measured using a 4 probe facility, respectively, and the results are shown in Table 1 below.
  • thermoelectric elements of Examples 1 to 2 composed of various materials exhibit a uniform resistance value of about 5% compared to the elements of Comparative Example 1, particularly Example 1
  • Example 3 which was manufactured using a thermoelectric leg 3 times higher than that of ⁇ 2
  • the resistance was approximately 3 times higher than that of the thermoelectric device of Comparative Example 1.
  • the output evaluation of the device was applied to the output evaluation facility by using each manufactured thermoelectric element, and then a load of about 60 kgf was applied, after which the temperature of the high temperature part was maintained at 300 ° C and the temperature of the low temperature cooling part was maintained at 30 ° C.
  • the data could be obtained by repeating it once.
  • thermoelectric element of Comparative Example 1 As a result of the experiment, it was found that the output characteristics of the thermoelectric elements of Comparative Example 1 deteriorated significantly before 10 times, while the output rate of change was maintained even when the thermoelectric elements of Examples 1 to 3 were repeated 100 times.
  • thermoelectric element of Comparative Example 2 which was manufactured in the same manner as in Example 3, but did not include a slit, was not measured at all in 20 evaluations. It is estimated that the thermoelectric leg is peeled off due to thermal expansion of the metal-based substrate due to high temperature, so that the output characteristics of the device do not occur.
  • thermoelectric element according to the present invention has enhanced thermal stability and durability according to a material change and a structure change of a substrate, and thus significantly improved thermoelectric properties.

Abstract

The present invention relates to a thermoelectric element and a manufacturing method therefor and, more specifically, provided is a thermoelectric element using a metal-based substrate having a plurality of slits so as to ensure thermal stability and high-temperature durability, and have an improved thermoelectric property.

Description

열전 소자 및 그 제조방법Thermoelectric element and its manufacturing method
본 발명은 복수의 슬릿(slit)이 구비된 금속계 기판을 사용함으로써, 열적 안정성, 고온 내구성 확보와 더불어 열전 특성이 개선된 열전 소자 및 그 제조방법에 관한 것이다.The present invention relates to a thermoelectric element and a method for manufacturing the thermoelectric element having improved thermal stability, high temperature durability, and improved thermoelectric properties by using a metal-based substrate provided with a plurality of slits.
열전 현상은 열과 전기 사이의 가역적인 직접적인 에너지 변환을 의미한다. 이는 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 외부로부터 인가된 전류에 의해 형성된 양단의 온도차를 이용하여 냉각분야에 응용하는 펠티어 효과(Peltier effect)와 재료 양단의 온도차로부터 발생하는 기전력을 이용하여 발전분야에 응용하는 제벡효과(seebeck effect)로 구분된다. Thermoelectric phenomenon refers to a reversible direct energy conversion between heat and electricity. This is a phenomenon caused by the movement of electrons and holes inside the material, and the Peltier effect and both ends of the material are applied to the cooling field by using the temperature difference between both ends formed by the current applied from the outside. It is divided into the Seebeck effect applied to the power generation field by using electromotive force generated from the temperature difference of.
최근 에너지 관련 자원의 원가가 급등하고 환경오염이 심해지는 등의 문제를 해결하기 위하여 열전 소자(thermoelectric element) 및 열전 모듈(thermoelectric module)에 대한 연구가 활발히 진행되고 있다. 이들은 폐열발전 등의 열전발전이나 능동 냉각에 적용되고 있다.Recently, researches on thermoelectric elements and thermoelectric modules have been actively conducted in order to solve problems such as a sudden increase in the cost of energy-related resources and environmental pollution. They are applied to thermoelectric power generation such as waste heat generation or active cooling.
일반적으로 열전 소자는 열전 레그, 전극, 및 기판으로 구성되며, 상기 열전 레그로서 N형 반도체와 P형 반도체가 사용된다. 복수의 쌍을 이루는 N형과 P형 반도체를 각각 평면에 배열한 후, 이들을 금속 전극을 이용해 직렬로 연결하여 열전 소자를 구성할 수 있다.In general, a thermoelectric element is composed of a thermoelectric leg, an electrode, and a substrate, and an N-type semiconductor and a P-type semiconductor are used as the thermoelectric leg. After arranging a plurality of pairs of N-type and P-type semiconductors on a plane, the thermoelectric elements can be configured by connecting them in series using a metal electrode.
한편 기판으로 널리 사용되고 있는 종래 세라믹 기판은 열전도도가 비교적 낮기 때문에, 열전 소자의 열저항 감소에 한계가 있다. 특히, 세라믹계 DBC(direct bonded cupper) 기판은 고온 영역 (≥ 300℃)에서 크랙 등이 발생하여 열전 소자의 특성 저하가 현저히 발생하게 되며, 전술한 DBC 기판 상에 금속 전극이 직접 배치되어 열전 소자를 구성하는 경우, 각 pair 간 높이를 균일하게 제작하는데 한계가 있다. 이에 따라, 전술한 세라믹계 기판을 구비하는 열전 소자의 특성 저하가 필수적으로 초래되는 문제점이 있다. 아울러 종래 세라믹계 DBC 기판은 고온 크랙 발생으로 인해 기판의 크기나 형상을 다양화하기에는 한계가 있었다.On the other hand, the conventional ceramic substrate, which is widely used as a substrate, has a relatively low thermal conductivity, and thus has a limitation in reducing the thermal resistance of the thermoelectric element. Particularly, in the ceramic-based direct bonded cupper (DBC) substrate, cracks and the like occur in a high temperature region (≥ 300 ° C), thereby significantly deteriorating the characteristics of the thermoelectric element, and the metal electrode is directly disposed on the DBC substrate described above, and the thermoelectric element In the case of constructing, there is a limit to uniformly manufacturing the height between each pair. Accordingly, there is a problem that the characteristic degradation of the thermoelectric element having the above-described ceramic-based substrate is essentially caused. In addition, the conventional ceramic DBC substrate has a limitation in diversifying the size or shape of the substrate due to the occurrence of high temperature cracks.
한편 본 발명자들은 종래 세라믹계 기판 대신 내열성 수지층이 형성된 금속계 기판을 채용함으로써, 우수한 열적 안정성, 고온 하중에 따른 내구성 강화 및 열전특성이 개선된 열전소자를 제공하고자 하였다. On the other hand, the present inventors have tried to provide a thermoelectric element having improved thermal stability, durability under high temperature load, and improved thermoelectric properties by employing a metal-based substrate having a heat-resistant resin layer instead of a conventional ceramic-based substrate.
그러나, 전술한 구성을 가진 2개의 금속계 기판(예, 금속적층판)을 사용하여 열전 소자를 구성시, 온도 상승에 따른 금속계 기판의 열팽창 발생 및 이로 인한 열전 레그의 박리가 초래되고, 결과적으로 열전 소자의 출력 특성이 제대로 발휘되지 않고, 최종 제품의 신뢰성 저하가 초래된다는 것을 착안하였다. However, when constructing a thermoelectric element using two metal-based substrates (for example, a metal laminated plate) having the above-described configuration, thermal expansion of the metal-based substrate is caused by temperature rise and peeling of the thermoelectric leg is caused, and consequently, the thermoelectric element. It was contemplated that the output characteristics of the product were not properly exhibited, and the reliability of the final product was lowered.
이에, 본 발명은 종래 세라믹계 기판을 내열성 수지층이 형성된 금속계 기판으로 변경하되, 열팽창시 유연성을 부여할 수 있도록 복수의 슬릿(slit)이 일면에 구비된 금속계 기판을 사용함으로써, 열팽창에 따른 고온에서의 열적 안정성, 내구성 강화 및 열전특성이 보다 상승된 열전 소자 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.Thus, the present invention changes the conventional ceramic-based substrate to a metal-based substrate on which a heat-resistant resin layer is formed, but by using a metal-based substrate having a plurality of slits on one surface so as to provide flexibility during thermal expansion, high temperature due to thermal expansion It is a technical problem to provide a thermoelectric element and a method for manufacturing the thermoelectric element having improved thermal stability, durability, and thermoelectric properties.
상기한 기술적 과제를 달성하기 위해, 본 발명은 일면에 제1절연성 수지층이 형성된 도전성 제1기판; 상기 제1기판과 대향 배치되며, 일면에 제2절연성 수지층이 형성된 도전성 제2기판; 상기 제1절연 수지층 상에 배치된 제1전극; 상기 제2절연 수지층 상에 배치된 제2전극; 및 상기 제1전극과 상기 제2전극 사이에 개재된 복수의 열전 레그를 포함하되, 상기 도전성 제1기판과 상기 도전성 제2기판 중 적어도 하나는 당해 기판의 길이방향에 따라 소정 간격으로 이격하여 형성된 복수의 슬릿(Slit)을 구비하는 열전 소자를 제공한다. In order to achieve the above technical problem, the present invention is a conductive first substrate having a first insulating resin layer formed on one surface; A conductive second substrate disposed opposite to the first substrate and having a second insulating resin layer formed on one surface; A first electrode disposed on the first insulating resin layer; A second electrode disposed on the second insulating resin layer; And a plurality of thermoelectric legs interposed between the first electrode and the second electrode, wherein at least one of the conductive first substrate and the conductive second substrate is formed to be spaced apart at predetermined intervals along the longitudinal direction of the substrate. Provided is a thermoelectric device having a plurality of slits.
본 발명의 일 구현예에 따르면, 상기 복수의 슬릿 간의 이격 거리는 상기 제1전극 또는 제2전극의 평면에 대응하는 크기와 같거나 또는 보다 클 수 있다. According to an embodiment of the present invention, the separation distance between the plurality of slits may be equal to or greater than a size corresponding to the plane of the first electrode or the second electrode.
본 발명의 일 구현예에 따르면, 상기 복수의 슬릿은, 상기 제1전극 또는 제2전극을 중심으로 상호 대칭을 이루도록 형성될 수 있다. According to an embodiment of the present invention, the plurality of slits may be formed to be symmetrical with respect to the first electrode or the second electrode.
본 발명의 일 구현예에 따르면, 상기 복수의 슬릿은, 제1 방향을 따라 형성되는 슬릿 너비; 상기 제1 방향과 교차되는 제2 방향을 따라 형성되는 슬릿 길이; 및 상기 제1 방향 및 상기 제2 방향에 직교하며, 상기 기판에 수직한 방향을 따라 형성되는 슬릿 깊이를 가지며, 상기 슬릿 깊이(depth)는 각각 당해 제1기판 또는 제2기판의 전체 두께를 기준으로 70 내지 90%일 수 있다. According to one embodiment of the invention, the plurality of slits, the slit width formed along the first direction; A slit length formed along a second direction intersecting the first direction; And orthogonal to the first direction and the second direction, and having a slit depth formed along a direction perpendicular to the substrate, wherein the slit depth is based on the total thickness of the first substrate or the second substrate, respectively. It may be 70 to 90%.
본 발명의 일 구현예에 따르면, 상기 슬릿의 수평 단면 형상은 사각형, 원형, 타원형, 스트라이프형, 마름모형 및 다각형 중 어느 하나일 수 있다. According to an embodiment of the present invention, the horizontal cross-sectional shape of the slit may be any one of a rectangle, a circle, an oval, a stripe, a rhombus and a polygon.
본 발명의 일 구현예에 따르면, 상기 제1절연 수지층과 제2절연 수지층은 서로 동일하거나 또는 상이하며, 각각 유리전이온도(Tg)가 250℃ 이상인 고내열성 수지를 포함할 수 있다. According to an embodiment of the present invention, the first insulating resin layer and the second insulating resin layer are the same as or different from each other, and may each include a high heat resistance resin having a glass transition temperature (Tg) of 250 ° C or higher.
본 발명의 일 구현예에 따르면, 상기 고내열성 수지는 페놀 노볼락 에폭시 수지 및 다가 페놀형 에폭시 수지 중에서 선택된 적어도 1종의 에폭시 수지를 포함할 수 있다. According to one embodiment of the present invention, the high heat resistance resin may include at least one epoxy resin selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins.
본 발명의 일 구현예에 따르면, 상기 제1절연 수지층과 제2절연 수지층은 각각 세라믹 필러를 포함할 수 있다. According to one embodiment of the present invention, the first insulating resin layer and the second insulating resin layer may each include a ceramic filler.
본 발명의 일 구현예에 따르면, 상기 제1절연 수지층과 제2절연 수지층의 두께는 각각 10 내지 150 ㎛일 수 있다. According to one embodiment of the present invention, the thickness of the first insulating resin layer and the second insulating resin layer may be 10 to 150 μm, respectively.
본 발명의 일 구현예에 따르면, 상기 제1~2 기판과 제1~2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 하나를 포함할 수 있다. According to one embodiment of the present invention, the first and second substrates and the first and second electrodes are the same as or different from each other, and aluminum (Al), zinc (Zn), copper (Cu), and nickel (Ni), respectively. And cobalt (Co).
본 발명의 일 구현예에 따르면, 상기 열전 레그는 Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 및 이들의 조합으로부터 선택되는 적어도 하나의 열전반도체 물질을 포함할 수 있다. According to one embodiment of the invention, the thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal It may include at least one thermoelectric semiconductor material selected from silicide-based, skuttrudite-based, silicide-based, half heusler, and combinations thereof.
본 발명의 일 구현예에 따르면, 상기 복수의 슬릿(Slit)을 구비하는 도전성 제1기판과 도전성 제2기판 중 하나는 발열부일 수 있다. According to an embodiment of the present invention, one of the conductive first substrate and the conductive second substrate having the plurality of slits may be a heating unit.
또한 본 발명은 전술한 열전 소자의 제조방법을 제공한다. In addition, the present invention provides a method of manufacturing the above-described thermoelectric element.
본 발명의 일 구현예에 따르면, 상기 제조방법은, 절연 수지층의 양면에 금속층이 구비된 금속적층판 2개를 준비하는 단계; 상기 2개의 금속적층판의 일면에 배치된 금속층을 각각 식각하여 제1전극과 제2전극을 형성하는 단계; 상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수의 열전 레그를 배치하는 단계; 및 상기 2개의 금속적층판 중 어느 하나의 금속적층판 타면 상에, 상기 제1전극 또는 제2전극의 평면에 대응되는 크기를 같거나 또는 보다 큰 간격으로 이격하여 복수의 슬릿(slit)을 형성하는 단계를 포함하여 구성될 수 있다.According to an embodiment of the present invention, the manufacturing method includes the steps of preparing two metal laminated plates having metal layers on both sides of an insulating resin layer; Forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates; Placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween; And forming a plurality of slits on the other surface of any one of the two metal-clad laminates, spaced apart at equal or greater intervals corresponding to the plane of the first electrode or the second electrode. It may be configured to include.
본 발명의 일 실시예에 따르면, 일면에 내열성 수지층이 형성되고, 타면에 복수의 슬릿이 형성된 금속계 기판을 사용하고, 상기 내열성 수지층 위에 소정의 패턴화된 전극을 배열하는 구성을 채용함으로써, 열적 안정성 및 내구성 면에서 종래 세라믹계 기판, 및 복수의 슬릿을 미포함하는 금속계 기판을 사용하는 열전 소자보다 우수한 성능을 나타낼 수 있다. According to an embodiment of the present invention, by adopting a configuration in which a heat-resistant resin layer is formed on one surface, a plurality of slits are formed on the other surface, and a predetermined patterned electrode is arranged on the heat-resistant resin layer, In terms of thermal stability and durability, it may exhibit better performance than a thermoelectric element using a conventional ceramic-based substrate and a metal-based substrate not including a plurality of slits.
또한 본 발명에서는 기존 사용하는 DBC나 순수 금속기판 대신 상대적으로 중량이 가볍고 가격이 낮은 소재를 기판으로 적용할 수 있으므로, 최종 제품의 신뢰성(내구성)을 향상시키고, 경제성을 도모할 수 있다. In addition, in the present invention, since a relatively light weight and low cost material can be applied as a substrate instead of a conventional DBC or a pure metal substrate, reliability (durability) of the final product can be improved and economical efficiency can be achieved.
아울러, 본 발명에서는 종래 세라믹 기판에 비해, 다양한 형태 및 대면적 크기를 갖는 금속계 기판을 제한 없이 사용할 수 있으므로, 열전 소자의 높은 설계 자유도를 확보할 수 있으며, 제 1기판과 제 2기판의 단면 또는 양면에 슬릿(slit)을 적용할 수 있으므로, 열팽창에 따른 제품 특성 저하를 근본적으로 억제할 수 있다.In addition, in the present invention, since a metal-based substrate having various shapes and large area sizes can be used without limitation, compared to a conventional ceramic substrate, high design freedom of thermoelectric elements can be secured, and cross-sections of the first and second substrates or Since slits can be applied to both sides, it is possible to fundamentally suppress degradation of product characteristics due to thermal expansion.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다.The effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 열전 소자를 나타낸 사시도이다. 1 is a perspective view showing a thermoelectric device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 열전 소자의 단면도이다. 2 is a cross-sectional view of a thermoelectric device according to an embodiment of the present invention.
도 3은 본 발명의 다른 일 실시예에 따른 열전 소자의 단면도이다. 3 is a cross-sectional view of a thermoelectric device according to another embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 패턴화된 제1전극과 제2전극, 및 복수의 슬릿이 구비된 도전성 제1기판 및 도전성 제2기판의 평면도이다. 4 is a plan view of a conductive first substrate and a conductive second substrate provided with a patterned first electrode, a second electrode, and a plurality of slits according to an embodiment of the present invention.
도 5는 본 발명의 다른 일 실시예에 따라 패턴화된 제1전극과 제2전극, 및 복수의 슬릿이 구비된 도전성 제1기판 및 도전성 제2기판의 평면도이다.5 is a plan view of a conductive first substrate and a conductive second substrate provided with a patterned first electrode, a second electrode, and a plurality of slits according to another embodiment of the present invention.
도 6은 실시예 1 내지 3 및 비교예 1 및 2의 열전 소자를 이용한 출력 변화율 평가 그래프이다.6 is an output change rate evaluation graph using the thermoelectric elements of Examples 1 to 3 and Comparative Examples 1 and 2.
<부호의 간단한 설명><Short description of the code>
100, 200: 열전 소자100, 200: thermoelectric element
10a: 제1 금속적층판10a: 1st metal laminated plate
11a: 도전성 제1 기판11a: Conductive first substrate
12a: 제1절연 수지층12a: 1st insulating resin layer
20a: 제1전극20a: first electrode
30: 열전 레그30: thermoelectric leg
30a: P형 열전 레그30a: P-type thermoelectric leg
30b: N형 열전 레그30b: N-type thermoelectric leg
20b: 제2전극20b: second electrode
10b: 제2 금속적층판10b: second metal laminated plate
11b: 도전성 제2기판11b: Conductive second substrate
12b: 제2절연 수지층12b: second insulating resin layer
40: 슬릿40: slit
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이때 본 명세서 전체 걸쳐 동일 참조 부호는 동일 구조를 지칭한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more fully describe the present invention to those of ordinary skill in the art, and the following embodiments can be modified in various other forms, and the scope of the present invention is as follows. It is not limited to the example. At this time, the same reference numerals refer to the same structure throughout the present specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings commonly understood by those skilled in the art to which the present invention pertains. In addition, terms defined in the commonly used dictionary are not ideally or excessively interpreted unless specifically defined.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to what is illustrated. In the drawings, thicknesses are enlarged to clearly represent various layers and regions. In the drawings, thicknesses of some layers and regions are exaggerated for convenience of description.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다.Also, in the specification, when a part “includes” a certain component, it means that other components may be further included instead of excluding other components, unless otherwise stated. In addition, throughout the specification, "above" or "on" means that not only is located above or below the target part, but also when there is another part in the middle, and the direction of gravity must be determined. It does not mean that it is located above the standard. In addition, in the present specification, terms such as “first” and “second” are not used to indicate any order or importance, but are used to distinguish elements from each other.
아울러, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.In addition, throughout the specification, when referred to as "planar", this means when the object part is viewed from above, and when it is referred to as "cross-sectional", it means when the cross section of the object part vertically cut is viewed from the side.
<열전 소자><Thermoelectric element>
본 발명은 열전소자를 구성하는 기판(substrate)의 재질과 구조 변경을 통해, 열적 안정성, 고온 하중에 따른 내구성과 제품 신뢰성을 확보함과 동시에 열전 특성을 개선할 수 있는 열전 소자를 제공한다. The present invention provides a thermoelectric element capable of improving thermoelectric properties while securing thermal stability, durability and product reliability according to a high temperature load, by changing the material and structure of a substrate constituting the thermoelectric element.
즉, 종래 전기절연성 세라믹계 기판(예, DBC)을 사용하거나 금속계 기판을 이용하여 열전 소자를 제작하는 경우, 소재 간의 열팽창계수의 차이에 의해 소자가 나타내는 출력 특성이 저하되는 현상이 일어나게 된다. 이와 달리, 본 발명에서는 일면에 절연 수지층이 형성되고, 타면에 복수의 슬릿(slit)이 구비된 도전성 기판을 채용함으로써, 전술한 열전 소자의 출력특성 저하를 개선할 수 있다. 이때, 상기 절연 수지층은 산화알루미늄 등의 당 분야에 공지된 세라믹 필러를 포함할 수 있다. That is, in the case of manufacturing a thermoelectric device using a conventional electrically insulating ceramic-based substrate (eg, DBC) or using a metal-based substrate, a phenomenon in which the output characteristics exhibited by the device deteriorates due to a difference in thermal expansion coefficient between materials. On the other hand, in the present invention, the reduction in output characteristics of the above-described thermoelectric element can be improved by employing a conductive substrate having an insulating resin layer formed on one surface and a plurality of slits on the other surface. At this time, the insulating resin layer may include a ceramic filler known in the art, such as aluminum oxide.
이하, 도 1 내지 도 2를 참조하여 본 발명의 일 실시예를 설명한다. Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 2.
도 1은 본 발명의 일 실시예에 따른 열전 소자(100)의 구조를 개략적으로 나타낸 사시도이며, 도 2는 상기 열전 소자(100)의 단면도이다. 1 is a perspective view schematically showing a structure of a thermoelectric element 100 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the thermoelectric element 100.
도 1 및 2를 참조하면, 본 발명의 일 실시예에 따른 열전 소자(100)는, 일면에 제1절연성 수지층(12a)이 형성된 도전성 제1기판(11a); 상기 도전성 제1기판(11a)과 대향 배치되고, 일면에 제2절연성 수지층(12b)이 형성된 도전성 제2기판(11b); 상기 제1절연 수지층(12a) 상에 배치된 제1전극(20a); 상기 제2절연 수지층(12b) 상에 배치된 제2전극(20b); 및 상기 제1전극(20a)과 상기 제2전극(20b) 사이에 개재(介在)된 복수의 열전 레그(30)를 포함하되, 상기 도전성 제1기판(11a)과 도전성 제2기판(11b) 중 적어도 하나는 제1 및 제2 절연성 수지층(12a, 12b)이 비형성된 기판의 타면에 형성된 복수의 슬릿(40)을 포함한다.1 and 2, the thermoelectric device 100 according to an embodiment of the present invention includes a conductive first substrate 11a having a first insulating resin layer 12a formed on one surface; A conductive second substrate 11b disposed opposite to the conductive first substrate 11a and having a second insulating resin layer 12b formed on one surface; A first electrode 20a disposed on the first insulating resin layer 12a; A second electrode 20b disposed on the second insulating resin layer 12b; And a plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b, wherein the conductive first substrate 11a and the conductive second substrate 11b are included. At least one of the first and second insulating resin layers 12a and 12b includes a plurality of slits 40 formed on the other surface of the non-formed substrate.
도전성 제1기판(11a)은 열전 소자(100)에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것으로, 당 분야에 공지된 통상의 도전성 금속 재질로 구성될 수 있다. 일례로, 상기 도전성 제1기판(11a)은 알루미늄(Al)을 주성분으로 하며, 철(Fe), 구리(Cu), 니켈(Ni) 중 적어도 하나를 포함할 수 있다. 도전성 제1기판(11a)은 평판 형상일 수 있으며, 그 크기나 두께 등에 특별히 제한되지 않는다. 일례로, 도전성 제1기판(11a)의 두께는 0.5 내지 2mm일 수 있으며, 바람직하게는 0.5 내지 1.5mm, 보다 바람직하게는 0.6 내지 0.8mm일 수 있다. The conductive first substrate 11a causes an exothermic or endothermic reaction when power is applied to the thermoelectric element 100, and may be made of a conventional conductive metal material known in the art. In one example, the conductive first substrate 11a has aluminum (Al) as a main component, and may include at least one of iron (Fe), copper (Cu), and nickel (Ni). The conductive first substrate 11a may have a flat plate shape, and is not particularly limited in size or thickness. As an example, the thickness of the conductive first substrate 11a may be 0.5 to 2 mm, preferably 0.5 to 1.5 mm, and more preferably 0.6 to 0.8 mm.
이때 기판의 흡열과 발열의 발생 위치는 전류의 방향에 따라 변경 가능하며, 도전성 제1기판(11a)에 흡열반응이 발생하는 경우 방열패드가 적용될 수도 있다. At this time, the location of the heat absorption and heat generation of the substrate can be changed according to the direction of the current, and a heat dissipation pad may be applied when an endothermic reaction occurs on the conductive first substrate 11a.
한편 도전성 제1기판(11a) 상에 제1전극(20a)이 직접적으로 배치될 경우 전기적으로 통하게 되므로, 이들 사이에는 전기절연성 물질이 개재(介在)되어야 한다. 또한 금속계 기판을 사용할 경우, 열전 소자의 온도 상승에 따른 금속 재질의 급속한 열팽창으로 인해 열전 레그의 박리 및 열전소자의 출력특성 소실 등의 문제가 초래될 수 있다. 이에, 본 발명에서는 제1전극(20a)이 배치되는 도전성 제1기판(11a)의 일면 상에 제1절연성 수지층(12a)이 형성되고, 타면 상에 소정 간격으로 이격된 복수의 슬릿(slit, 40)을 구비한다. On the other hand, when the first electrode 20a is directly disposed on the conductive first substrate 11a, it is electrically connected, and an electrically insulating material must be interposed therebetween. In addition, when a metal-based substrate is used, problems such as peeling of a thermoelectric leg and loss of output characteristics of a thermoelectric element may occur due to rapid thermal expansion of a metal material according to a temperature rise of the thermoelectric element. Accordingly, in the present invention, the first insulating resin layer 12a is formed on one surface of the conductive first substrate 11a on which the first electrode 20a is disposed, and a plurality of slits spaced apart at predetermined intervals on the other surface. , 40).
본 발명에서는 온도 상승에 따른 금속 재질 기판의 열팽창 특성을 고려하여, 슬릿(40)의 개수나 크기를 적절히 조절하여 형성할 수 있다. 상기 제1도전성 기판(11a) 상에 형성되는 슬릿(40)의 개수는 특별히 제한되지 않으며, 기판의 크기에 따라 적절히 조절할 수 있다. 일례로, 2개 이상의 복수 개일 수 있으며, 구체적으로 2 내지 수십 개, 보다 구체적으로 2 내지 10개 내외일 수 있다.In the present invention, considering the thermal expansion properties of the metal substrate according to the temperature rise, it can be formed by appropriately adjusting the number or size of the slit (40). The number of slits 40 formed on the first conductive substrate 11a is not particularly limited, and may be appropriately adjusted according to the size of the substrate. For example, it may be a plurality of two or more, specifically 2 To dozens, more specifically 2 to 10 may be around.
또한 복수의 슬릿(40) 중 어느 하나의 슬릿과, 이에 인접하는 다른 슬릿 사이에는 소정의 이격 거리가 형성된다. 이러한 복수의 슬릿(40) 간의 이격 거리는 특별히 제한되지 않으며, 금속 재질 기판의 열팽창 특성을 고려하여 적절히 조절할 수 있다. 일 구현예를 들면, 복수의 슬릿(40) 간의 이격거리는 후술되는 제1전극(20a) 또는 제2전극(20b)의 평면에 대응하는 크기와 같거나 또는 이보다 큰 것일 수 있으며, 바람직하게는 한쌍의 P형 열전 레그(30a)와 N형 열전 레그(30b)를 포함하여 단위 셀을 형성하는 크기에 대응될 수 있다. 일례로, 1.35 내지 1.45 mm일 수 있다. In addition, a predetermined separation distance is formed between one of the slits 40 and the other slits adjacent thereto. The separation distance between the plurality of slits 40 is not particularly limited, and may be appropriately adjusted in consideration of the thermal expansion characteristics of the metal substrate. For example, the separation distance between the plurality of slits 40 may be the same as or larger than the size corresponding to the plane of the first electrode 20a or the second electrode 20b, which will be described later, and preferably a pair It may correspond to the size to form a unit cell, including the P-type thermoelectric leg (30a) and the N-type thermoelectric leg (30b). In one example, it may be 1.35 to 1.45 mm.
구체적으로, 복수의 슬릿(40)은, 제1 방향(예, 기판의 길이방향)을 따라 형성되는 슬릿 너비; 상기 제1 방향과 교차되는 제2 방향을 따라 형성되는 슬릿 길이; 및 상기 제1 방향 및 상기 제2 방향에 직교하며, 상기 도전성 제1-2 기판(11a, 11b)에 수직한 방향(예, 기판의 두께 방향)을 따라 형성되는 슬릿 깊이를 갖는다. 특히, 복수의 슬릿(40)은 실질적으로 동일한 슬릿 깊이(depth)를 갖는다. 이러한 슬릿의 깊이는 특별히 제한되지 않으며, 일례로 각각 당해 도전성 제1기판(11a) 또는 도전성 제2기판(11b)의 전체 두께를 기준으로 70 내지 90%일 수 있다. 또한 상부에서 바라볼 때, 슬릿의 길이는 상기 도전성 제1기판(11a)의 길이방향(제1방향)과 수직한 방향(제2방향)의 길이와 동일할 수 있으며, 슬릿의 너비는 도전성 제1-2기판(11a, 11b)의 길이방향(제1방향)에 따른 전체 길이를 기준으로 대략 7 내지 10%일 수 있다. Specifically, the plurality of slits 40 includes: a slit width formed along a first direction (eg, a longitudinal direction of the substrate); A slit length formed along a second direction intersecting the first direction; And a slit depth orthogonal to the first direction and the second direction, and formed along a direction perpendicular to the conductive 1-2 substrates 11a and 11b (eg, a thickness direction of the substrate). In particular, the plurality of slits 40 have substantially the same slit depth. The depth of the slit is not particularly limited, and may be, for example, 70 to 90% based on the total thickness of the conductive first substrate 11a or the conductive second substrate 11b, respectively. In addition, when viewed from the top, the length of the slit may be the same as the length in the longitudinal direction (first direction) and the vertical direction (second direction) of the conductive first substrate 11a, and the width of the slit may be conductive. It may be approximately 7 to 10% based on the total length along the length direction (first direction) of the 1-2 substrates 11a and 11b.
일례로, 가로×세로×두께가 40.5 × 40.5 × 0.7 (mm)인 도전성 제1기판을 사용시, 슬릿의 깊이는 0.49 내지 0.63 mm이며, 슬릿 너비는 3.0 내지 4.0 mm이고, 슬릿 길이는 40.5 mm의 크기를 가질 수 있다. 다른 일례로, 가로×세로×두께가 40.5 × 40.5 × 1.5 (mm)인 도전성 제1기판을 사용시, 슬릿의 깊이는 1.05 내지 1.35 mm 이며, 슬릿 너비는 3.0 내지 4.0 mm 이고, 슬릿 길이는 40.5 mm의 크기를 가질 수 있다. 그러나 전술한 수치에 특별히 한정되지 않으며, 사용하고자 하는 기판의 크기에 따라 적절히 변형 및 조절 가능하다. As an example, when using a conductive first substrate having a width × length × thickness of 40.5 × 40.5 × 0.7 (mm), the depth of the slit is 0.49 to 0.63 mm, the slit width is 3.0 to 4.0 mm, and the slit length is 40.5 mm. It can have a size. As another example, when using a conductive first substrate having a width × length × thickness of 40.5 × 40.5 × 1.5 (mm), the depth of the slit is 1.05 to 1.35 mm, the slit width is 3.0 to 4.0 mm, and the slit length is 40.5 mm. Can have the size of However, it is not particularly limited to the above-described values, and can be appropriately modified and adjusted according to the size of the substrate to be used.
복수의 슬릿(40)은 수평 단면 형상을 볼 때, 복수의 음각 패턴이 규칙적으로 배치되는 구조를 갖는다. 이러한 음각 패턴의 수평 단면 형상은 특별히 제한되지 않으며, 일례로 사각형, 원형, 타원형, 스트라이프형, 마름모형 및 다각형 중 어느 하나일 수 있다. 그 외, 다양한 패턴 형상을 적용할 수 있다. When viewing a horizontal cross-sectional shape, the plurality of slits 40 have a structure in which a plurality of intaglio patterns are regularly arranged. The horizontal cross-sectional shape of the intaglio pattern is not particularly limited, and for example, it may be any one of a rectangle, a circle, an oval, a stripe, a rhombus, and a polygon. In addition, various pattern shapes can be applied.
상기 복수의 슬릿(40)은, 절연성 제1수지층(12a)이 비형성되는 도전성 제1기판(11a)의 일면 상에 형성되되, 바람직하게는 도전성 제1기판(11a)의 절연성 제1수지층(12a) 상에 배치되는 제1전극(20a)을 중심으로 상호 대칭을 이루도록 형성된다. 구체적으로, 제1전극(20a)의 중심을 지나는 제1방향선(예, 제1전극의 장축 길이방향)을 기준으로 좌우대칭 또는 중심대칭(centrosymmetrically) 구조를 갖도록 배치될 수 있다.The plurality of slits 40 are formed on one surface of the conductive first substrate 11a on which the insulating first resin layer 12a is not formed, and preferably, the insulating first number of the conductive first substrate 11a The first electrode 20a disposed on the base layer 12a is formed to be symmetric with each other. Specifically, it may be arranged to have a symmetrical or centrosymmetrically symmetrical structure based on a first direction line (eg, a long axis length direction of the first electrode) passing through the center of the first electrode 20a.
도전성 제1기판(11a)의 일면 상에 형성되는 제1절연 수지층(12a)은 성막이 용이한 전기절연성 물질을 사용할 수 있으며, 일례로 당 분야에 공지된 통상의 열경화성 수지(resin) 및 열가소성 수지 중 적어도 하나를 포함할 수 있다. 고온 영역(≥ 300℃)에서 지속적인 열전 성능을 발휘하기 위해서, 상기 제1절연 수지층(12a)은 유리전이온도(Tg)가 250℃ 이상, 바람직하게는 250 내지 300℃인 내열성 수지를 사용하는 것이 바람직하다. The first insulating resin layer 12a formed on one surface of the conductive first substrate 11a may use an electrically insulating material that is easy to form, and for example, conventional thermosetting resins and thermoplastics known in the art It may contain at least one of the resin. In order to exhibit continuous thermoelectric performance in a high temperature region (≥ 300 ° C), the first insulating resin layer 12a uses a heat resistant resin having a glass transition temperature (Tg) of 250 ° C or higher, preferably 250 to 300 ° C. It is preferred.
상기 제1절연 수지층(12a)으로 사용 가능한 열경화성 수지의 비제한적인 예로는, 에폭시 수지, 폴리우레탄 수지, 알키드 수지, 페놀 수지, 멜라민 수지, 실리콘 수지, 요소 수지, 식물성유 변성 페놀수지, 크실렌 수지, 구아나민 수지, 디알릴프탈레이트 수지, 비닐에스테르 수지, 불포화 폴리에스테르 수지, 푸란 수지, 폴리이미드 수지, 시아네이트 수지, 말레이미드 수지 및 벤조시클로부텐 수지로 이루어진 군에서 선택된 1종 이상일 수 있다. 구체적으로, 열경화성 수지는 에폭시 수지, 페놀 수지, 멜라민 수지, 실리콘 수지, 우레탄 수지 및 요소 수지로 구성된 군에서 선택된 1종 이상일 수 있다. Non-limiting examples of the thermosetting resin usable as the first insulating resin layer 12a include epoxy resin, polyurethane resin, alkyd resin, phenol resin, melamine resin, silicone resin, urea resin, vegetable oil modified phenol resin, xylene It may be one or more selected from the group consisting of resin, guanamine resin, diallyl phthalate resin, vinyl ester resin, unsaturated polyester resin, furan resin, polyimide resin, cyanate resin, maleimide resin and benzocyclobutene resin. Specifically, the thermosetting resin may be at least one selected from the group consisting of epoxy resin, phenol resin, melamine resin, silicone resin, urethane resin and urea resin.
에폭시 수지는 당 분야에 공지된 통상적인 에폭시 수지를 제한 없이 사용할 수 있으며, 1분자 내에 할로겐 원소를 비포함하면서, 에폭시기가 2개 이상 존재하는 것이 바람직하다. 사용 가능한 에폭시 수지의 비제한적인 예를 들면, 비스페놀A형/F형/S형 수지, 페놀 노볼락 에폭시 수지, 다가 페놀형 에폭시 수지, 노볼락형 에폭시 수지, 알킬페놀 노볼락형 에폭시, 바이페닐형, 아랄킬(Aralkyl)형, 나프톨(Naphthol)형, 디시클로펜타디엔형 또는 이들의 혼합 형태 등이 있다. 보다 구체적인 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 S 노볼락형 에폭시 수지, 비페닐 노볼락형 에폭시 수지, 나프톨 노볼락형 에폭시 수지, 나프톨 페놀 공축 노볼락형 에폭시 수지, 나프톨 코레졸 공축 노볼락형 에폭시 수지, 방향족 탄화수소 포름알데히드 수지 변성 페놀 수지형 에폭시 수지, 트리페닐 메탄형 에폭시 수지, 테트라 페닐에탄형 에폭시 수지, 디시클로펜타디엔 페놀 부가반응형 에폭시 수지, 페놀 아랄킬형 에폭시 수지, 다관능성 페놀 수지, 나프톨 아랄킬형 에폭시 수지 등이 있다. 이때 전술한 에폭시 수지를 단독 사용하거나 또는 2종 이상 혼용할 수도 있다. 바람직한 일례를 들면, 상기 고내열성 에폭시 수지는, 페놀 노볼락 에폭시 수지 및 다가 페놀형 에폭시 수지 중에서 선택된 적어도 1종을 포함하는 것이다. 여기서, 다가 페놀형 에폭시 수지는 분자 내 평균 에폭시기 수가 2개 이상, 바람직하게는 2~4개인 에폭시 수지를 지칭한다. Epoxy resins can be used without limitation, conventional epoxy resins known in the art, it is preferable that two or more epoxy groups are present, without containing a halogen element in one molecule. Non-limiting examples of usable epoxy resins include bisphenol A / F / S type resins, phenol novolac epoxy resins, polyhydric phenol type epoxy resins, novolac type epoxy resins, alkylphenol novolac type epoxy, biphenyls Type, aralkyl type, naphthol type, dicyclopentadiene type, or a mixed form thereof. More specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, anthracene epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, and phenol novolac Type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol S novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol phenol coaxial novolac type epoxy resin , Naphthol corsol coaxial novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, triphenyl methane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene phenol addition reaction epoxy resin, phenol aral Kill type epoxy resin, polyfunctional phenol resin, naphthol aralkyl type epoxy resin There is. At this time, the above-described epoxy resin may be used alone or in combination of two or more. For a preferred example, the high heat resistance epoxy resin is one containing at least one selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins. Here, the polyhydric phenol type epoxy resin refers to an epoxy resin having two or more average epoxy groups in the molecule, and preferably 2 to 4.
또한 사용 가능한 열가소성 수지의 비제한적인 예로는, 올레핀 수지, 아크릴 수지, 고무(rubber) 또는 이들의 혼합물 등이 있다. 구체적인 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리이미드, 테프론(PTFE), 아크릴로니트릴-부타디엔 러버(NBR), 스티렌 부타디엔 러버(SBR), 아크릴로니트릴-부타디엔-스티렌 러버(ABS), 카르복실-말단화된 부타디엔 아크릴로니트릴 러버(CTBN), 폴리부타디엔(polybutadiene), 스티렌(styrene)-부타디엔(butadiene)-에틸렌 수지(SEBS), 탄소수 1~8의 측쇄사슬을 함유하는 아크릴산(acrylic acid) 및/또는 메타크릴산 (methacrylic acid) 에스테르 수지(아크릴 고무), 또는 이들의 1종 이상의 혼합물 등이 있다. 전술한 열가소성 수지는, 열경화성 수지인 에폭시 수지와의 반응이 가능한 관능기를 함유하는 것이 바람직하다. 구체적으로는, 아미노기, 카르복실(carboxyl)기, 에폭시기, 수산기, 메톡시기, 및 이소사이아네이트기로 구성된 군에서 선택되는 1종 이상의 관능기이다. 이러한 관능기는 에폭시 수지와 강한 결합을 형성하므로, 경화 이후 내열성이 향상되어 바람직하다.Also, non-limiting examples of usable thermoplastic resins include olefin resins, acrylic resins, rubbers, or mixtures thereof. Specific examples include polyethylene, polypropylene, polystyrene, polyimide, teflon (PTFE), acrylonitrile-butadiene rubber (NBR), styrene butadiene rubber (SBR), acrylonitrile-butadiene-styrene rubber (ABS), carr Vxyl-terminated butadiene acrylonitrile rubber (CTBN), polybutadiene, styrene-butadiene-ethylene resin (SEBS), acrylic acid containing side chains of 1 to 8 carbon atoms ) And / or methacrylic acid ester resins (acrylic rubber), or mixtures of one or more thereof. It is preferable that the above-mentioned thermoplastic resin contains the functional group which can react with the epoxy resin which is a thermosetting resin. Specifically, it is at least one functional group selected from the group consisting of an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a methoxy group, and an isocyanate group. Since these functional groups form a strong bond with the epoxy resin, the heat resistance after curing is improved, which is preferable.
제1절연 수지층(12a)은 전술한 내열성 수지 이외에, 세라믹 필러(분말)를 더 포함할 수 있다. The first insulating resin layer 12a may further include a ceramic filler (powder) in addition to the heat-resistant resin described above.
세라믹 필러는 당 분야에 공지된 통상의 무기 필러를 제한 없이 사용할 수 있으며, 사용 가능한 세라믹 필러의 비제한적인 예로는, 천연 실리카(natural silica), 용융 실리카(Fused silica), 비결정질 실리카(amorphous silica), 결정 실리카(crystalline silica) 등과 같은 실리카류; 보에마이트(boehmite), 알루미나, 탈크(Talc), 구형 유리, 탄산칼슘, 탄산마그네슘, 마그네시아, 클레이, 규산칼슘, 산화티탄, 산화안티몬, 유리섬유, 붕산알루미늄, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 티탄산마그네슘, 티탄산비스무스, 지르콘산바륨, 지르콘산칼슘, 질화붕소, 질화규소, 또는 운모(mica) 등이 있다. 전술한 분말을 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 바람직하게는 알루미늄산화물 등의 금속산화물 형태의 필러를 사용하는 것이다. The ceramic filler can use any conventional inorganic filler known in the art without limitation, and non-limiting examples of the ceramic filler usable include natural silica, fused silica, and amorphous silica. , Silica such as crystalline silica; Boehmite, alumina, talc, spherical glass, calcium carbonate, magnesium carbonate, magnesia, clay, calcium silicate, titanium oxide, antimony, glass fiber, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, barium zirconate, calcium zirconate, boron nitride, silicon nitride, or mica. The above-mentioned powders may be used alone or in combination of two or more. Preferably, a filler in the form of a metal oxide such as aluminum oxide is used.
본 발명의 바람직한 일례를 들면, 제1절연 수지층(12a)은 세라믹 필러가 포함된 에폭시 수지층일 수 있으며, 보다 바람직하게는 알루미늄산화물과 에폭시 수지가 혼합된 수지층일 수 있다. For a preferred example of the present invention, the first insulating resin layer 12a may be an epoxy resin layer containing a ceramic filler, and more preferably a resin layer in which aluminum oxide and an epoxy resin are mixed.
세라믹 필러의 평균 입경(D50)은 특별히 한정되지 않으나, 분산성을 고려할 때, 평균 입경이 약 0.1 내지 20 ㎛, 구체적으로 0.5 내지 15 ㎛인 것이 바람직하다. 또한 평균 입경이 상이한 2종 이상의 세라믹 필러를 혼용할 수도 있다. 상기 세라믹 필러의 형상 역시 특별히 제한되지 않으며, 일례로 구형, 판상형, 침상형, 섬유형, 가지형, 원뿔형, 피라미드형 및 무정형(無定形)으로 구성된 군에서 선택된 어느 하나의 형상을 가질 수 있다. The average particle diameter (D 50 ) of the ceramic filler is not particularly limited, but in consideration of dispersibility, it is preferable that the average particle diameter is about 0.1 to 20 μm, specifically 0.5 to 15 μm. In addition, two or more types of ceramic fillers having different average particle diameters may be mixed. The shape of the ceramic filler is also not particularly limited, and may have any one shape selected from the group consisting of a spherical shape, a plate shape, a needle shape, a fiber shape, a branch shape, a conical shape, a pyramid shape, and an amorphous shape.
또한 세라믹 필러는 그대로 에폭시 수지와 혼합하여 사용할 수 있으며, 또는 유기물로 이미 표면처리된 세라믹 필러를 사용할 수도 있다. 이와 같이 유기물로 표면처리된 세라믹 필러를 사용할 경우, 수지와의 상용성이 우수하여 에폭시 수지의 유전특성, 내열성, 가공성 등을 보다 개선할 수 있기 때문이다. 상기 유기물은 특별히 제한되지 않으며, 당 분야의 레진, 또는 실란 커플링제 등을 사용할 수 있다. 또한 세라믹 필러를 유기물로 표면 처리하는 방법은 특별히 한정되지 않으며, 유기물, 예컨대 비닐기-함유 실란 커플링제가 포함된 용액에 세라믹 필러를 투입한 후 건조시키는 방법을 들 수 있다.In addition, the ceramic filler may be used as it is by mixing with an epoxy resin, or a ceramic filler already surface-treated with an organic material may be used. This is because when using a ceramic filler surface-treated with an organic material, compatibility with a resin is excellent, and thus dielectric properties, heat resistance, and workability of the epoxy resin can be further improved. The organic material is not particularly limited, and resins or silane coupling agents in the art may be used. In addition, the method of surface-treating the ceramic filler with an organic material is not particularly limited, and a method of drying after adding the ceramic filler to a solution containing an organic material, for example, a vinyl group-containing silane coupling agent, may be mentioned.
본 발명에서 세라믹 필러의 함량은, 제1절연 수지층(12a)의 기계적 물성이나 기타 물성 등을 고려하여 적절히 조절할 수 있다. 일례로, 세라믹 필러의 함량은 절연 수지층(12a)을 구성하는 에폭시 수지 100 중량부를 기준으로 0 내지 70 중량부, 구체적으로 5 내지 50 중량부, 보다 구체적으로 10 내지 30 중량부일 수 있다. In the present invention, the content of the ceramic filler may be appropriately adjusted in consideration of mechanical properties or other physical properties of the first insulating resin layer 12a. For example, the content of the ceramic filler may be 0 to 70 parts by weight, specifically 5 to 50 parts by weight, and more specifically 10 to 30 parts by weight based on 100 parts by weight of the epoxy resin constituting the insulating resin layer 12a.
전술한 제1절연 수지층(12a)의 두께는 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절될 수 있다. 일례로, 제1절연 수지층(12a)의 두께는 20 내지 150 ㎛일 수 있으며, 바람직하게는 80 내지 120 ㎛일 수 있다. The thickness of the above-described first insulating resin layer 12a is not particularly limited, and may be appropriately adjusted within a range known in the art. In one example, the thickness of the first insulating resin layer 12a may be 20 to 150 μm, and preferably 80 to 120 μm.
본 발명에서는 전술한 도전성 제1기판(11a)과 대향하는 위치에, 일면에 제2절연 수지층(12b)이 형성된 도전성 제2기판(11b)이 배치된다. 구체적으로, 도전성 제1기판(11a)의 일면에 형성된 제1절연 수지층(12a)과 도전성 제2기판(11b)의 일면에 형성된 제2절연 수지층(12b)은 서로 마주보도록 배치된다. 여기서, 도전성 제2기판(11b)과 제2절연 수지층(12b)은 각각 전술한 도전성 제1기판(11a) 및 제1절연 수지층(12a)의 구성이 그대로 적용될 수 있으므로, 이에 대한 구체적인 설명은 생략한다. In the present invention, the conductive second substrate 11b in which the second insulating resin layer 12b is formed on one surface is disposed at a position facing the aforementioned conductive first substrate 11a. Specifically, the first insulating resin layer 12a formed on one surface of the conductive first substrate 11a and the second insulating resin layer 12b formed on one surface of the conductive second substrate 11b are disposed to face each other. Here, since the structures of the conductive first substrate 11a and the first insulating resin layer 12a may be applied to the conductive second substrate 11b and the second insulating resin layer 12b, detailed descriptions thereof. Is omitted.
서로 마주보도록 배치된 제1절연 수지층(12a)과 제2절연 수지층(12b) 상에 각각 제1전극(20a)과 제2전극(20b)이 배치된다. The first electrode 20a and the second electrode 20b are disposed on the first insulating resin layer 12a and the second insulating resin layer 12b disposed to face each other.
제1전극(20a)과 제2전극(20b)의 재질은 특별히 제한되지 않으며, 당 분야에서 전극으로 사용되는 재질을 제한 없이 사용할 수 있다. 일례로, 상기 제1전극(20a)과 제2전극(20b)은 서로 동일하거나 또는 상이하며, 각각 독립적으로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni) 중 적어도 하나의 금속을 사용할 수 있다. 그 외, 니켈, 금, 은, 티타늄 등을 더 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. Materials of the first electrode 20a and the second electrode 20b are not particularly limited, and materials used as electrodes in the art may be used without limitation. For example, the first electrode 20a and the second electrode 20b are the same or different from each other, and each independently has at least one of aluminum (Al), zinc (Zn), copper (Cu), and nickel (Ni). Metal can be used. In addition, nickel, gold, silver, titanium, and the like may be further included. Its size can also be varied.
상기 제1전극(20a)과 제2전극(20b)은 소정의 형상으로 패턴화될 수 있으며, 그 형상은 특별히 제한되지 않는다. 일례로, 하기 도 4 및 도 5에 도시된 바와 같이 패턴화될 수 있다. The first electrode 20a and the second electrode 20b may be patterned in a predetermined shape, and the shape is not particularly limited. As an example, it may be patterned as shown in Figures 4 and 5 below.
도 1을 참조하여 설명하면, 열전 레그(30)는 복수의 P형 열전 레그(30a)와 N형 열전 레그(30b)를 각각 포함하며, 이러한 복수의 쌍을 이루는 N형과 P형의 열전 레그(30a, 30b)들이 일방향으로 교번하여 배치된다. 이와 같이 일방향으로 이웃하는 P형 열전 레그(30a) 및 N형 열전 레그(30b)는 그 상면 및 하면이 각각 제1전극(20a) 및 제2전극(20b)과 전기적으로 직렬 연결된다. 이때 전기적으로 연결되는 한쌍의 P형 열전 레그(30a)와 N형 열전 레그(30b)는 단위 셀을 형성할 수 있다. 이러한 각각의 열전 레그(30a, 30b)는 열전반도체 기재를 포함한다. Referring to FIG. 1, the thermoelectric leg 30 includes a plurality of P-type thermoelectric legs 30a and N-type thermoelectric legs 30b, respectively, and the N-type and P-type thermoelectric legs constituting a plurality of such pairs The 30a, 30b are alternately arranged in one direction. In this way, the upper and lower surfaces of the P-type thermoelectric legs 30a and N-type thermoelectric legs 30b adjacent in one direction are electrically connected in series with the first electrode 20a and the second electrode 20b, respectively. At this time, the pair of electrically connected P-type thermoelectric legs 30a and N-type thermoelectric legs 30b may form a unit cell. Each of these thermoelectric legs 30a, 30b includes a thermoelectric semiconductor substrate.
상기 열전 레그(30)에 포함되는 열전반도체는 전기가 인가되면 양단에 온도차가 발생하거나, 또는 그 양단에 온도차가 발생하면 전기가 발생하는 당 업계의 통상적인 재료로 형성될 수 있다. 일례로, 전이금속, 희토류 원소, 13족 원소, 14족 원소, 15족 원소 및 16족 원소로 이루어진 군으로부터 선택되는 적어도 하나의 원소를 포함하는 열전반도체를 하나 이상 사용할 수 있다. 여기서, 희토류 원소의 예로는 Y, Ce, La 등이 있으며, 상기 전이금속의 예로는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, 및 Re 중 하나 이상일 수 있으며, 상기 13족 원소의 예로는 B, Al, Ga, 및 In 중 하나 이상일 수 있으며, 상기 14족 원소의 예로는 C, Si, Ge, Sn, 및 Pb 중 하나 이상일 수 있으며, 상기 15족 원소의 예로는 P, As, Sb, 및 Bi 중 하나 이상일 수 있고, 상기 16족 원소의 예로는 S, Se, 및 Te 중 하나 이상을 사용할 수 있다. The thermoelectric semiconductor included in the thermoelectric leg 30 may be formed of a conventional material in the art where temperature difference occurs at both ends when electricity is applied or electricity is generated when temperature difference occurs at both ends. For example, one or more thermoelectric semiconductors including at least one element selected from the group consisting of transition metals, rare earth elements, group 13 elements, group 14 elements, group 15 elements, and group 16 elements may be used. Here, examples of rare earth elements include Y, Ce, La, etc., and examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, and Re may be one or more, and examples of the Group 13 element may be one or more of B, Al, Ga, and In, and examples of the Group 14 element may be C, Si, Ge, Sn, and Pb. It may be at least one, and examples of the group 15 element may be at least one of P, As, Sb, and Bi, and examples of the group 16 element may be at least one of S, Se, and Te.
사용 가능한 열전 반도체로는 비스무트(Bi), 텔레륨(Te), 코발트(Co), 사마륨(Sb), 인듐(In), 및 세륨(Ce) 중 적어도 2개 이상을 포함하는 조성으로 이루어진 질 수 있으며, 이의 비제한적인 예로는, Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Hafl heusler) 또는 이들의 조합 등이 있다. 구체적인 일례를 들면, Bi-Te계 열전반도체로는 Sb 및 Se가 도펀트로서 사용된 (Bi,Sb)2(Te,Se)3계 열전반도체를 예시할 수 있으며, Co-Sb계 열전반도체로서는 CoSb3계 열전반도체를 예시할 수 있으며, Sb-Te계 열전반도체로서는 AgSbTe2, CuSbTe2를 예시할 수 있고, Pb-Te계 열전반도체로서는 PbTe, (PbTe)mAgSbTe2 등을 예시할 수 있다. 상기 열전반도체는 소정 크기를 갖는 입자일 수 있으며, 예를 들어 평균 입경이 약 0.01 내지 약 100 ㎛의 범위일 수 있다.As a thermoelectric semiconductor that can be used, it can be made of a composition containing at least two or more of bismuth (Bi), telelium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce). Non-limiting examples thereof, Bi-Te, Co-Sb, Pb-Te, Ge-Tb, Si-Ge, Sb-Te, Sm-Co, transition metal silicides, scoo Tertite (Skuttrudite) -based, silicide (Silicide) -based, Half Whistler (Hafl heusler) or a combination thereof. As a specific example, Bi-Te-based thermoelectric semiconductors include (Bi, Sb) 2 (Te, Se) 3 thermoelectric semiconductors in which Sb and Se are used as dopants, and CoSb as the Co-Sb-based thermoelectric semiconductor. Three -type thermoelectric semiconductors can be exemplified, AgSbTe 2 and CuSbTe 2 can be exemplified as Sb-Te-based thermoelectric semiconductors, and PbTe, (PbTe) mAgSbTe 2 and the like can be exemplified as Pb-Te-based thermoelectric semiconductors. The thermoelectric semiconductor may be particles having a predetermined size, for example, may have an average particle diameter in the range of about 0.01 to about 100 μm.
이와 같은 열전 반도체는 다양한 방법으로 제조될 수 있으며, 특별히 제한되지 않는다. 일례로, 상기 열전 반도체는 용융방사 회전법(melt-spining)이나 기상원자화법(gas atomization) 등을 수행한 후 가압소결법을 순차적으로 진행하여 제조될 수 있다. 이러한 P형 열전 레그(30a) 및 N형 열전 레그(30b)를 포함하는 열전 레그(30)는 절단 가공 등의 방법으로 소정의 형상, 일례로 직육면체의 형상으로 형성하여 열전 소자에 적용될 수 있다. Such a thermoelectric semiconductor can be manufactured in various ways, and is not particularly limited. For example, the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method. The thermoelectric leg 30 including the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b may be formed into a predetermined shape, such as a rectangular parallelepiped, by a method such as cutting, and applied to the thermoelectric element.
선택적으로, 상기 열전 소자(100)는 상기 제1전극(20a)과 상기 열전 레그(30) 사이; 및 상기 열전 레그(30)와 제2전극(20b) 사이에 배치되는 접합재(미도시)를 더 포함할 수 있다. 이러한 접합재는 당 분야에 공지된 통상의 접합재 성분을 제한 없이 사용할 수 있다. 일례로, 상기 접합재는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 제1금속을 포함하는 조성; 또는 상기 제1금속;과 Ni, Co, 및 Ag 중 적어도 하나의 제2금속을 포함하는 조성으로 이루어질 수 있다. Optionally, the thermoelectric element 100 is between the first electrode 20a and the thermoelectric leg 30; And a bonding material (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b. Such a bonding material can be used without limitation, conventional bonding material components known in the art. In one example, the bonding material is Sn; A composition comprising a first metal of at least one of Pb, Al, and Zn; Or it may be made of a composition comprising the first metal; and at least one second metal of Ni, Co, and Ag.
선택적으로, 상기 열전 소자(100)는 상기 제1전극(20a)과 상기 열전 레그(30) 사이; 및 상기 열전 레그(30)와 제2전극(20b) 사이에 배치되는 확산방지층(미도시)을 더 포함할 수 있다. 이러한 확산방지층은 당 분야에 공지된 통상의 성분을 제한 없이 사용할 수 있으며, 일례로 탄탈늄(Ta), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.Optionally, the thermoelectric element 100 is between the first electrode 20a and the thermoelectric leg 30; And a diffusion barrier layer (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b. The diffusion barrier layer can be used without limitation, conventional components known in the art, for example, at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
도 1에 도시된 바와 같이, 열전 소자(100)의 일 구현예에서 제1전극(20a) 및 제2전극(20b)은 전력 공급원에 전기적으로 연결될 수 있다. 외부에서 DC 전압을 인가했을 때 p형 열전 레그(30a)의 정공과 n형 열전 레그(30b)의 전자가 이동함으로써 열전 레그 양단에서 발열과 흡열이 일어날 수 있다.As shown in FIG. 1, in one embodiment of the thermoelectric element 100, the first electrode 20a and the second electrode 20b may be electrically connected to a power supply. When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg 30a and the electrons of the n-type thermoelectric leg 30b move, so that heat and endothermic heat may occur at both ends of the thermoelectric leg.
또한 본 발명에 따른 열전 소자(100)의 일 구현예에서, 제1전극(20a) 및 제2 전극(20b) 중 적어도 하나는 열 공급원에 노출될 수 있다. 외부 열 공급원에 의하여 열을 공급받으면 전자와 정공이 이동하면서 열전소자에 전류의 흐름이 생겨 발전(發電)을 일으킬 수 있다.In addition, in one embodiment of the thermoelectric element 100 according to the present invention, at least one of the first electrode 20a and the second electrode 20b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move, and current flows in the thermoelectric element, thereby generating electricity.
전술한 열전 레그 및 이를 포함하는 열전 소자는, 일례로 열전냉각시스템 또는 열전발전시스템에 구비될 수 있다. 이러한 열전발전 시스템은 온도차를 이용하여 발전을 일으키는 통상의 시스템을 의미하며, 일례로 폐열로, 차량용 열전발전 시스템, 태양광 열전발전 시스템 등을 들 수 있다. 또한 열전냉각 시스템은 마이크로 냉각시스템, 범용냉각기기, 공조기, 폐열 발전 시스템 등을 들 수 있으며, 이에 한정되는 것은 아니다. 일례로, 본 발명에서 Bi-Te계 또는 Co-Sb계 열전 레그를 사용할 경우, 고온 사용 온도대를 갖기 때문에 발전 출력을 높일 수 있으며, 고온 하중에 따른 내구성 강화와 우수한 열적 안정성을 발휘하여 최종 제품의 높은 신뢰성을 가질 수 있다. 본 발명에서 복수의 슬릿(slit)이 구비되는 도전성 기판은 발열부이거나 또는 냉각부일 수 있으며, 특히 열팽창시 유연성 부여 효과를 발휘하기 위해서 발열부인 것이 바람직하다. The above-described thermoelectric leg and the thermoelectric element including the same may be provided in, for example, a thermoelectric cooling system or a thermoelectric power generation system. Such a thermoelectric power generation system means a normal system that generates power using a temperature difference, and examples thereof include a waste heat furnace, a vehicle thermoelectric power generation system, and a solar thermoelectric power generation system. In addition, the thermoelectric cooling system may include a micro cooling system, a general purpose cooling device, an air conditioner, and a waste heat power generation system, but is not limited thereto. For example, in the present invention, when a Bi-Te-based or Co-Sb-based thermoelectric leg is used, the power generation power can be increased because it has a high temperature use temperature range, and the final product is exhibited by enhancing durability and excellent thermal stability under high temperature load. It can have high reliability. In the present invention, the conductive substrate provided with a plurality of slits may be a heating unit or a cooling unit, and is particularly preferably a heating unit in order to exert the effect of providing flexibility during thermal expansion.
상기 열전발전 시스템 및 열전냉각 시스템의 각 구성 및 제조방법에 대해서는 당 분야에 공지되어 있는 바, 본 명세서에서는 구체적인 기재를 생략한다.Each configuration and manufacturing method of the thermoelectric power generation system and the thermoelectric cooling system are known in the art, and thus, detailed description is omitted.
한편 도 3은 본 발명의 다른 실시예에 따른 열전 소자(200)의 단면을 간략히 도시한 단면도이다. 도 3에서 도 1~2와 동일한 참조 부호는 동일한 부재를 나타낸다. Meanwhile, FIG. 3 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 200 according to another embodiment of the present invention. 3, the same reference numerals as those in FIGS. 1 to 2 denote the same members.
이하 도 3에 대한 설명에서는 도 1~2와 중복되는 내용은 다시 설명하지 않으며, 차이점에 대해서만 설명한다. 도 3을 참조하면, 본 실시예에 따른 열전 소자(200)는, 도전성 제1기판(11a)의 일면에 복수의 슬릿(40)이 형성된 도 2의 실시예와 달리, 복수의 슬릿(40)이 구비된 도전성 제2기판(11b)을 사용한다. 구체적으로, 상기 도전성 제2기판(11b)은 일면에 제2절연 수지층(12b)이 형성되고, 타면에 복수의 슬릿(40)이 구비된다.Hereinafter, in the description of FIG. 3, contents overlapping with FIGS. 1 to 2 will not be described again, and only differences will be described. Referring to FIG. 3, in the thermoelectric element 200 according to the present embodiment, unlike the embodiment of FIG. 2 in which a plurality of slits 40 are formed on one surface of the conductive first substrate 11a, the plurality of slits 40 The conductive second substrate 11b provided is used. Specifically, the second insulating resin layer 12b is formed on one surface of the conductive second substrate 11b, and a plurality of slits 40 are provided on the other surface.
그 외, 도 3의 실시예에서 각 구성 요소의 재료와 구조 등에 대한 설명은 도 1 및 2의 열전 소자(100)의 설명이 그대로 적용될 수 있다. In addition, in the embodiment of FIG. 3, descriptions of materials, structures, and the like of each component may be applied as described in the thermoelectric elements 100 of FIGS. 1 and 2.
한편 도 1 내지 3에서는 복수의 슬릿(40)이 각각 도전성 제1기판(11a)과 도전성 제2기판(11b) 중 어느 하나에 형성된 실시예를 구체적으로 예시하고 있다. 그러나 이에 한정되지 않으며, 도전성 기판(11a, 11b) 모두에 형성되거나, 상기 도전성 기판(11a, 11b)의 단면 및/또는 양면에 형성되는 실시예 역시 본 발명의 범주에 속한다. Meanwhile, FIGS. 1 to 3 specifically illustrate an embodiment in which a plurality of slits 40 are formed on one of the conductive first substrate 11a and the conductive second substrate 11b, respectively. However, the present invention is not limited thereto, and embodiments that are formed on both the conductive substrates 11a and 11b or are formed on the cross-section and / or both surfaces of the conductive substrates 11a and 11b also belong to the scope of the present invention.
아울러, 도 1 내지 3에서는 제1절연 수지층 (12a)과 제2절연 수지층 (12b)이 각각 단일층으로 형성된 실시예를 구체적으로 예시하고 있다. 그러나 이에 한정되지 않으며, 절연 수지층 (12a, 12b)의 개수, 형상, 크기는 특별히 제한되지 않는다. 즉, 절연 수지층 (12a, 12b)의 구성은 특별히 제한되지 않으며, 다양한 형태와 크기를 갖도록 자유롭게 변형 가능하다. 또한 상기 절연 수지층(12a, 12b), 구체적으로 알루미늄산화물과 에폭시 수지 혼합층 (12a, 12b)은 전기 절연성을 유지하는 범위 내에서, 당 분야에 공지된 통상의 무기계 필러 및/또는 유기계 필러를 더 포함할 수 있다.In addition, FIGS. 1 to 3 specifically illustrate an embodiment in which the first insulating resin layer 12a and the second insulating resin layer 12b are each formed of a single layer. However, the present invention is not limited thereto, and the number, shape, and size of the insulating resin layers 12a and 12b are not particularly limited. That is, the structure of the insulating resin layers 12a and 12b is not particularly limited, and can be freely deformed to have various shapes and sizes. In addition, the insulating resin layer (12a, 12b), specifically aluminum oxide and epoxy resin mixed layer (12a, 12b) is within the range of maintaining the electrical insulation, conventional inorganic fillers and / or organic fillers known in the art further It can contain.
<열전 소자의 제조방법><The manufacturing method of a thermoelectric element>
이하, 본 발명의 일 실시형태에 따라 전술한 열전 소자의 제조방법에 대해 설명한다. 그러나 하기 제조방법이나 순서에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.Hereinafter, a method of manufacturing the aforementioned thermoelectric element according to an embodiment of the present invention will be described. However, it is not limited only by the following manufacturing method or order, and the steps of each process may be modified or selectively mixed as necessary.
본 발명에 따른 열전 소자는, 당 분야에 공지된 수지 부착 금속박 및/또는 금속 적층판을 이용하여 제조될 수 있으며, 바람직하게는 동박적층판(CCL, copper clad laminate)일 수 있다. The thermoelectric device according to the present invention may be manufactured using a metal foil and / or metal laminate with a resin known in the art, and may preferably be a copper clad laminate (CCL).
상기 제조방법의 일 실시형태를 들면, (i) 절연 수지층의 양면에 금속층이 구비된 금속적층판 2개를 준비하는 단계('S10 단계'); (ii) 상기 2개의 금속적층판의 일면에 배치된 금속층을 각각 식각하여 제1전극과 제2전극을 형성하는 단계('S20 단계'); iii) 상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수의 열전 레그를 배치하는 단계('S30 단계'); 및 (iv) 상기 2개의 금속적층판 중 어느 하나의 금속적층판 타면 상에, 상기 제1전극 또는 제2전극의 평면에 대응되는 크기를 같거나 또는 보다 큰 간격으로 이격하여 복수의 슬릿(slit)을 형성하는 단계('S40 단계') (를 포함하여 구성될 수 있다. For one embodiment of the manufacturing method, (i) preparing two metal laminated plates having metal layers on both sides of the insulating resin layer ('S10 step'); (ii) forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates ('S20 step'); iii) placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween ('S30 step'); And (iv) a plurality of slits spaced apart at the same or larger intervals corresponding to the plane of the first electrode or the second electrode, on the other surface of any one of the two metal laminated plates. Forming step ('S40 step') (including may be configured.
이하, 상기 제조방법을 각 공정 단계별로 나누어 설명하면 다음과 같다.Hereinafter, the manufacturing method will be described by dividing each step by step as follows.
우선, 열전 소자의 기판으로 사용될 2개의 금속적층판을 준비한다. First, two metal laminated plates to be used as a substrate of a thermoelectric element are prepared.
금속적층판은 절연 수지층을 중심으로 하여 이의 양면에 금속층이 적층된 형태를 제한 없이 사용할 수 있다. 상기 금속층은 서로 동일하거나 또는 상이한 금속 성분으로 구성될 수 있으며, 일례로 알루미늄(Al), 구리(Cu), 니켈(Ni)중 적어도 하나를 포함할 수 있다. The metal laminated plate may be used without limitation, in which a metal layer is laminated on both sides of the insulating resin layer. The metal layers may be composed of the same or different metal components, and for example, may include at least one of aluminum (Al), copper (Cu), and nickel (Ni).
2개의 금속적층판 중에서 하나의 금속적층판 양면에 배치된 금속층(예, 제1금속층, 제2금속층) 중 하나는 도전성 제1기판으로 사용되며, 다른 하나는 식각을 통해 소정의 형태로 패턴화된 제1전극으로 형성된다. 마찬가지로, 2개의 금속적층판 중에서 다른 하나의 금속적층판 양면에 배치된 금속층 중 하나는 도전성 제2기판으로 사용되며, 다른 하나는 제2전극으로 형성된다. 이때 식각법은 당 분야에 공지된 에칭법을 제한 없이 사용할 수 있으며, 일례로 물리적 식각, 화학적 식각 또는 이들 모두를 조합하여 적용할 수 있다.One of the metal layers (for example, the first metal layer and the second metal layer) disposed on both sides of one of the two metal laminated plates is used as a conductive first substrate, and the other is patterned in a predetermined form through etching. It is formed of one electrode. Likewise, one of the metal layers disposed on both sides of the other metal laminated plate among the two metal laminated plates is used as a conductive second substrate, and the other is formed as a second electrode. At this time, an etching method known in the art may be used as an etching method without limitation, and for example, physical etching, chemical etching, or a combination of both may be applied.
패턴화된 제1전극과 제2전극 상에 복수의 열전 레그(30)를 배치 및 접합하는 방법은 특별히 제한되지 않으며, 당 분야에 공지된 방법을 사용할 수 있다. 이때 접합재로는 Sn 및 Pb, Al, Zn 중 하나 또는 그 이상의 제1금속; 또는 상기 제1금속과 Ni, Co, Ag 등의 제2금속을 혼합하여 적용될 수 있다. The method of arranging and bonding the plurality of thermoelectric legs 30 on the patterned first electrode and the second electrode is not particularly limited, and a method known in the art can be used. At this time, as the bonding material, one or more first metals of Sn and Pb, Al, and Zn; Or it may be applied by mixing the first metal and a second metal such as Ni, Co, Ag.
열전 레그는 당 분야에 공지된 열전반도체, 예컨대 Bi-Te 또는 Co-Sb계 열전 재료를 사용하여 제조될 수 있다. 이러한 열전 재료를 이용하여 열전레그를 제조하는 방법의 일례를 들면, Bi-Te 또는 CoSb계 열전재료를 RSP를 이용하여 용융시킨 후 리본 제작 또는 원료 분말 배합 후 열처리 등의 소성을 통해 1차적으로 상(phase)을 형성한다. 이후 핫 프레스(Hot press) 및 방전 플라즈마 소결(Spark Plasma Sintering) 등을 통해 소결하여 소결체를 형성한 후, 목적 두께에 맞게 슬라이싱을 진행하고, 최종 두께에 맞게 랩핑(lapping)을 진행하여 소재의 높이를 1/100 이내로 조절한다. 단차가 제어된 열전 소재의 표면에 Co, Ni, Cr, 및 W 등의 표면 코팅을 진행한 후, 최종적으로 재료의 크기에 맞게 다이싱(dicing)을 실시하여 열전 레그가 제조된다. Thermoelectric legs can be made using thermoelectric semiconductors known in the art, such as Bi-Te or Co-Sb based thermoelectric materials. As an example of a method for manufacturing a thermoelectric leg using such a thermoelectric material, the Bi-Te or CoSb-based thermoelectric material is melted using an RSP, and then primarily produced by ribbon production or raw material powder mixing and then heat treatment, etc. (phase). After sintering through hot press and discharge plasma sintering (Spark Plasma Sintering) to form a sintered body, slicing is performed according to the desired thickness, and lapping is performed according to the final thickness to increase the height of the material. Adjust within 1/100. After coating the surface of the step-controlled thermoelectric material such as Co, Ni, Cr, and W, a thermoelectric leg is manufactured by dicing according to the size of the material.
본 발명에 따라 제1전극과 제2전극 사이에 복수의 열전 레그를 배치 및 접합하는 단계의 구체적인 일례를 들면, 제1전극(20a)의 패턴에 맞게 접합재 페이스트를 일정 두께로 도포하고, 그 위에 n형 및 p형의 열전 레그를 배열한다. 이후 반대쪽인 대향전극(제2전극)의 경우 접합재만 도포한 상태에서 기존에 제작되어 있는 n형 및 p형 열전 레그가 배열된 부분에 배치하여 열전 소자의 구성을 완료한다. For a specific example of the step of arranging and bonding a plurality of thermoelectric legs between the first electrode and the second electrode according to the present invention, a bonding material paste is applied to a pattern of the first electrode 20a to a certain thickness, and thereon The n-type and p-type thermoelectric legs are arranged. Then, in the case of the opposite electrode (second electrode) on the opposite side, the configuration of the thermoelectric element is completed by arranging the previously formed n-type and p-type thermoelectric legs in a state where only the bonding material is applied.
열전 레그가 배치된 2개의 금속적층판 중에서, 도전성 제1기판(또는 도전성 제2기판)으로 사용하고자 하는 금속적층판의 일면 상에 복수의 슬릿(slit)을 형성한다. 일 구현예를 들면, 복수의 슬릿 간의 이격거리는, 상기 제1전극 또는 제2전극의 평면에 대응하는 크기와 같거나 보다 크게 조절할 수 있다. 구체적으로 복수의 슬릿은, 하기 도 4 및 도 5에 도시된 바와 같이 한쌍의 P형 및 N형 열전 레그가 접속되어 하나의 열전소자(예, 단위 셀)가 완성될 수 있는 다수의 열전소자 단위영역(미도시)이 가로 및 세로 방향을 따라 구획된 구조일 수 있고, 각 단위영역을 구획하는 경계부에는 소잉라인이 형성될 수 있다. 이와 같이, 2개의 금속적층판 중 하나에 복수의 슬릿을 형성하는 방법은 당 분야에 공지된 방법을 제한 없이 사용할 수 있다. 일례로, 레이저 커팅, 기계적 펀칭, 또는 절단 휠 등을 사용할 수 있다. Among the two metal laminated plates on which the thermoelectric legs are disposed, a plurality of slits are formed on one surface of the metal laminated plate to be used as the conductive first substrate (or the conductive second substrate). For example, the separation distance between a plurality of slits may be adjusted to be equal to or larger than a size corresponding to the plane of the first electrode or the second electrode. Specifically, the plurality of slits, as shown in Figures 4 and 5 below, a pair of P-type and N-type thermoelectric legs are connected to a plurality of thermoelectric element units in which one thermoelectric element (eg, unit cell) can be completed. A region (not shown) may have a structure partitioned along the horizontal and vertical directions, and a sawing line may be formed at a boundary portion that partitions each unit region. As described above, a method of forming a plurality of slits in one of the two metal laminated plates can use a method known in the art without limitation. As an example, laser cutting, mechanical punching, or a cutting wheel may be used.
이어서, 300 내지 500℃로 열처리하여 최종 접합한 후 전선을 연결하여 열전 소자의 제작을 완료한다.Subsequently, heat treatment is performed at 300 to 500 ° C. to final bonding, and then electric wires are connected to complete manufacturing of the thermoelectric element.
한편 본 발명에서는 금속적층판을 이용하여 열전 소자를 제조하는 방법을 구체적으로 설명하고 있다. 그러나 이에 한정되지 않으며, 당 분야의 공지된 금속판 위에 에폭시 수지 등의 절연 수지를 도포한 후, 도포된 절연수지층 상에 소정의 전극 패턴을 구성한 후 열처리하여 고착화된 것을 도전성 기판으로 사용하는 것도 본 발명의 범주에 속한다.Meanwhile, in the present invention, a method of manufacturing a thermoelectric element using a metal laminated plate is described in detail. However, the present invention is not limited to this, and after applying an insulating resin such as an epoxy resin on a metal plate known in the art, forming a predetermined electrode pattern on the applied insulating resin layer, and then heat-treating and fixing it as a conductive substrate. It belongs to the scope of the invention.
이하 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be specifically described through examples, but the following examples and experimental examples are only illustrative of one form of the present invention, and the scope of the present invention is not limited by the following examples and experimental examples.
[실시예 1] [Example 1]
Al 기판(두께: 0.7 mm) 위에 에폭시 수지(Tg: 250℃)가 도포되고 그 위에 소정의 형상으로 패턴화된 Cu 전극이 배치된 40.5×40.5 크기의 기판을 도전성 제1기판으로 이용하였다. 상기 도전성 제1기판은 에폭시 수지층을 중심으로 일면에 Al층과 타면에 Cu층이 배치된 금속적층판을 사용하였으며, 이중 Cu 층을 소정의 패턴으로 식각하여 Cu 전극을 형성한 것이다. 상기 도전성 제1기판과 동일한 구성을 갖는 기판을 도전성 제2기판(대향기판)으로 사용하였다. An epoxy resin (Tg: 250 ° C.) was coated on an Al substrate (thickness: 0.7 mm), and a 40.5 × 40.5 sized substrate on which a Cu electrode patterned in a predetermined shape was disposed was used as a conductive first substrate. The conductive first substrate used was a metal laminated plate having an Al layer on one surface and a Cu layer on the other surface centered on an epoxy resin layer, and a Cu electrode was formed by etching a double Cu layer in a predetermined pattern. A substrate having the same configuration as the conductive first substrate was used as a conductive second substrate (opposite substrate).
상기 Cu 전극(제1전극) 상에 접합재를 도포하고, 그 위에 Bi-Te계 열전 레그를 배치한 후, 대향전극으로 도전성 제2기판의 Cu 전극(제2전극)을 배치하였다. 이후 열처리 설비를 이용하여 약 300℃에서 열처리하여 접합한 후, 도전성 제2기판의 타면(예, 제2전극 비형성면)에 복수의 슬릿(silt)을 형성하여 실시예 1의 열전 소자를 제작하였다.After applying a bonding material on the Cu electrode (first electrode), after placing a Bi-Te thermoelectric leg thereon, a Cu electrode (second electrode) of a conductive second substrate was disposed as a counter electrode. Subsequently, after heat-treating and bonding at about 300 ° C using a heat treatment facility, a plurality of slits are formed on the other surface of the conductive second substrate (eg, the second electrode non-forming surface) to fabricate the thermoelectric device of Example 1 Did.
이때, 슬릿(Slit)은 40.5×40.5 크기를 갖는 기판을 기준으로 제작한 것으로서, 일정한 간격으로 가로 9개, 세로 9개를 각각 약 0.5 mm의 깊이로 형성하였다. 복수의 슬릿 간의 간격(이격 거리)은 가로와 세로 각각 3.5 mm 수준이며, 크기는 0.3 mm 수준으로 절단 휠을 이용하여 진행하였다(하기 도 4(b) 참조).At this time, the slit (Slit) is produced based on a substrate having a size of 40.5 × 40.5, 9 horizontal and 9 vertically formed at a predetermined interval to a depth of about 0.5 mm each. The spacing (spacing distance) between the plurality of slits was about 3.5 mm in both horizontal and vertical, and the size was 0.3 mm, using a cutting wheel (see FIG. 4 (b) below).
[실시예 2] [Example 2]
Al 기판(두께: 1.5 mm) 위에 에폭시 수지(Tg: 250℃)가 도포되고 그 위에 소정의 형상으로 패턴화된 Cu 전극이 배치된 40.5×40.5 크기의 기판을 각각 도전성 제1기판과 도전성 제2기판으로 이용한 후, 상기 실시예 1과 동일한 방법을 실시하여 실시예 2의 열전 소자를 제작하였다. Epoxy resin (Tg: 250 ° C) is applied on the Al substrate (thickness: 1.5 mm), and a 40.5 x 40.5 sized substrate on which Cu electrodes patterned in a predetermined shape is disposed is conductive first substrate and second conductive substrate, respectively. After using it as a substrate, the same method as in Example 1 was carried out to produce a thermoelectric element of Example 2.
이때 슬릿은 40.5×40.5 크기를 갖는 기판을 기준으로 제작한 것으로서, 일정한 간격으로 가로 9개, 세로 9개를 각각 약 1.2 mm의 깊이로 형성하였다. 복수의 슬릿 간의 간격(이격 거리)은 가로와 세로 각각 3.5 mm 수준이며, 크기는 0.3 mm 수준으로 절단 휠을 이용하여 진행하였다(하기 도 4(b) 참조).At this time, the slit was manufactured on the basis of a substrate having a size of 40.5 × 40.5, and 9 horizontally and 9 vertically were formed to a depth of about 1.2 mm at regular intervals. The spacing (spacing distance) between the plurality of slits was about 3.5 mm in both horizontal and vertical, and the size was 0.3 mm, using a cutting wheel (see FIG. 4 (b) below).
[실시예 3] [Example 3]
Al 기판(두께: 0.7 mm) 위에 에폭시 수지(Tg: 250℃)가 도포되고 그 위에 소정의 형상으로 패턴화된 Cu 전극이 배치된 40.5×140.5 크기의 기판을 각각 도전성 제1기판과 도전성 제2기판으로 이용한 후, 상기 실시예 1과 동일한 방법을 실시하여 실시예 3의 열전 소자를 제작하였다. Epoxy resin (Tg: 250 ° C) is applied on the Al substrate (thickness: 0.7 mm), and a 40.5 x 140.5 sized substrate on which Cu electrodes patterned in a predetermined shape is disposed is conductive first substrate and second conductive substrate, respectively. After using as a substrate, the same method as in Example 1 was carried out to manufacture the thermoelectric element of Example 3.
이때 슬릿은 40.5×140.5 크기를 갖는 기판을 기준으로 제작한 것으로서, 일정한 간격으로 가로 9개, 세로 39개를 각각 약 0.5 mm의 깊이로 형성하였다. 복수의 슬릿 간의 간격(이격 거리)은 가로와 세로 각각 3.5 mm 수준이며, 크기는 0.3 mm 수준으로 절단 휠을 이용하여 진행하였다(하기 도 5 참조).At this time, the slit was manufactured on the basis of a substrate having a size of 40.5 × 140.5, and 9 horizontally and 39 vertically formed at a predetermined interval to a depth of about 0.5 mm, respectively. The spacing (spacing distance) between the plurality of slits was about 3.5 mm in both horizontal and vertical, and the size was 0.3 mm, using a cutting wheel (see FIG. 5 below).
[비교예 1] [Comparative Example 1]
상용 DBC 기판 (Ferrotec社, 200 pair DBC)을 이용하여 접합재를 도포한 후, 그 위에 열전 소재를 올린 후, 반대쪽 전극을 동일한 DBC 전극을 이용하여 배열한 후에 열처리 설비를 이용하여 약 300℃에서 열처리하여 비교예 1의 열전 소자를 제작하였다. 이때 적용된 기판 및 전극을 제외하고, 나머지 재료와 공정은 실시예 1과 동일하게 진행하였으며, 별도의 슬릿(slit)은 제작하지 않았다.After applying the bonding material using a commercial DBC substrate (Ferrotec, 200 pair DBC), put a thermoelectric material on it, arrange the opposite electrode using the same DBC electrode, and heat-treat at about 300 ℃ using a heat treatment facility. By doing so, the thermoelectric element of Comparative Example 1 was produced. At this time, except for the applied substrate and electrode, the remaining materials and processes were performed in the same manner as in Example 1, and a separate slit was not produced.
[비교예 2] [Comparative Example 2]
별도의 슬릿(slit)을 제작하지 않은 것을 제외하고는, 상기 실시예 3과 동일한 방법을 실시하여 비교예 2의 열전 소자를 제작하였다.A thermoelectric element of Comparative Example 2 was manufactured by performing the same method as in Example 3, except that a separate slit was not produced.
[실험예 1] 열전 소자의 최초 저항 평가[Experimental Example 1] Initial resistance evaluation of thermoelectric elements
실시예 1 내지 3과 비교예 1 및 2에서 제조된 열전 소자의 특성을 하기와 같이 평가하였다. The properties of the thermoelectric elements prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated as follows.
구체적으로, 각 기판을 사용하여 제작된 열전 소자의 단위저항을 4probe 설비를 이용하여 고유 저항을 각각 측정하였으며, 그 결과를 하기 표 1에 나타내었다.Specifically, the unit resistance of the thermoelectric element manufactured using each substrate was measured using a 4 probe facility, respectively, and the results are shown in Table 1 below.
저항 (Ω)Resistance (Ω)
1One 22 33 평균값medium
실시예 1Example 1 2.0152.015 2.0252.025 1.9981.998 2.0132.013
실시예 2Example 2 2.0222.022 2.0232.023 2.0152.015 2.0202.020
실시예 3Example 3 6.1256.125 6.2056.205 6.1866.186 6.1726.172
비교예 1Comparative Example 1 1.9821.982 2.0512.051 1.9851.985 2.0062.006
비교예 2Comparative Example 2 6.1356.135 6.1856.185 6.1956.195 6.1716.171
상기 표 1에서 알 수 있는 바와 같이, 다양한 재질 별로 구성된 실시예 1~2의 열전 소자는 비교예 1의 소자에 비해 5% 내외로 균일한 저항값을 나타내고 있음을 알 수 있으며, 특히 실시예 1~2 대비 3배의 열전 레그(leg)를 이용하여 제작된 실시예 3의 경우 대략 3배 수준의 저항을 나타내어 비교예 1의 열전 소자 대비 균일하다는 것을 알 수 있었다. 또한 슬릿(slit)의 유무를 제외하고는, 동일하게 제작된 실시예 3과 비교예 2의 열전 소자는 동등 수준의 저항을 나타냈으며, 이후 출력 평가에서 문제가 없음을 예상할 수 있다. 이와 같이 균일한 저항값은 출력값 [출력 = (OCV)^2/4R]에 많은 영향을 주지 않을 것으로 추정된다.As can be seen from Table 1, it can be seen that the thermoelectric elements of Examples 1 to 2 composed of various materials exhibit a uniform resistance value of about 5% compared to the elements of Comparative Example 1, particularly Example 1 In the case of Example 3, which was manufactured using a thermoelectric leg 3 times higher than that of ~ 2, it was found that the resistance was approximately 3 times higher than that of the thermoelectric device of Comparative Example 1. In addition, except for the presence or absence of slits, the thermoelectric elements of Example 3 and Comparative Example 2 manufactured identically exhibited the same level of resistance, and it can be expected that there is no problem in the output evaluation afterwards. It is estimated that such a uniform resistance value will not significantly affect the output value [output = (OCV) ^ 2 / 4R].
[실험예 2] 출력 변화율 평가[Experimental Example 2] Evaluation of output change rate
실시예 1 내지 3과 비교예 1 및 2에서 제조된 각각의 소자(크기: 40.5×40.5×3t, 40.5×140.5)에 대하여, 출력평가 설비를 이용하여 반복에 따른 출력 변화 결과를 평가하였다. 이들의 결과는 도 6 에 각각 나타내었다.For each device manufactured in Examples 1 to 3 and Comparative Examples 1 and 2 (size: 40.5 × 40.5 × 3t, 40.5 × 140.5), the output change result according to iteration was evaluated using an output evaluation facility. The results of these are shown in Fig. 6, respectively.
여기서, 소자의 출력 평가는 제조된 각 열전소자를 이용하여 출력 평가 설비에 장착한 후 약 60 kgf의 하중을 인가하였으며, 이후 고온부 온도를 300℃, 저온 냉각부 온도를 30℃로 유지시킨 후 수 회 반복하여 데이터를 얻을 수 있었다. Here, the output evaluation of the device was applied to the output evaluation facility by using each manufactured thermoelectric element, and then a load of about 60 kgf was applied, after which the temperature of the high temperature part was maintained at 300 ° C and the temperature of the low temperature cooling part was maintained at 30 ° C. The data could be obtained by repeating it once.
실험 결과, 비교예 1의 열전소자는 10회 이전부터 출력 특성이 현저히 저하되는 반면, 실시예 1~3의 열전소자는 100회를 반복하더라도 출력 변화율이 유지되는 것을 알 수 있었다. 또한 실시예 3과 동일하게 제작하되, 슬릿(slit)을 비포함하는 비교예 2의 열전 소자는 20회 평가시 출력이 아예 측정되지 않는다는 것을 알 수 있었다. 이는 고온에 의한 금속계 기판의 열팽창에 의해 열전 레그가 박리되어 소자의 출력특성이 일어나지 않는 것으로 추정된다. As a result of the experiment, it was found that the output characteristics of the thermoelectric elements of Comparative Example 1 deteriorated significantly before 10 times, while the output rate of change was maintained even when the thermoelectric elements of Examples 1 to 3 were repeated 100 times. In addition, it was found that the thermoelectric element of Comparative Example 2, which was manufactured in the same manner as in Example 3, but did not include a slit, was not measured at all in 20 evaluations. It is estimated that the thermoelectric leg is peeled off due to thermal expansion of the metal-based substrate due to high temperature, so that the output characteristics of the device do not occur.
이에 따라, 본 발명에 따른 열전 소자는 기판의 재질 변경 및 구조 변경에 따라 열적 안정성 및 내구성이 강화되어, 열전 특성이 유의적으로 개선되었음을 확인할 수 있었다.Accordingly, it was confirmed that the thermoelectric element according to the present invention has enhanced thermal stability and durability according to a material change and a structure change of a substrate, and thus significantly improved thermoelectric properties.

Claims (13)

  1. 일면에 제1절연성 수지층이 형성된 도전성 제1기판;A conductive first substrate having a first insulating resin layer formed on one surface;
    상기 제1기판과 대향 배치되며, 일면에 제2절연성 수지층이 형성된 도전성 제2기판;A conductive second substrate disposed opposite to the first substrate and having a second insulating resin layer formed on one surface;
    상기 제1절연 수지층 상에 배치된 제1전극;A first electrode disposed on the first insulating resin layer;
    상기 제2절연 수지층 상에 배치된 제2전극; 및A second electrode disposed on the second insulating resin layer; And
    상기 제1전극과 상기 제2전극 사이에 개재된 복수의 열전 레그를 포함하되, It includes a plurality of thermoelectric legs interposed between the first electrode and the second electrode,
    상기 도전성 제1기판과 상기 도전성 제2기판 중 적어도 하나는 당해 기판의 길이방향에 따라 소정 간격으로 이격하여 형성된 복수의 슬릿(Slit)을 구비하는 열전 소자. At least one of the first conductive substrate and the second conductive substrate is a thermoelectric device having a plurality of slits formed spaced apart at predetermined intervals along the longitudinal direction of the substrate.
  2. 제1항에 있어서, According to claim 1,
    상기 복수의 슬릿 간의 이격 거리는 상기 제1전극 또는 제2전극의 평면에 대응하는 크기와 같거나 큰 것이 특징인 열전 소자. The thermoelectric element characterized in that the separation distance between the plurality of slits is equal to or larger than a size corresponding to the plane of the first electrode or the second electrode.
  3. 제1항에 있어서, According to claim 1,
    상기 복수의 슬릿은, 상기 제1전극 또는 제2전극을 중심으로 상호 대칭을 이루도록 형성되는 열전 소자. The plurality of slits are thermoelectric elements formed to be symmetrical with respect to the first electrode or the second electrode.
  4. 제1항에 있어서, According to claim 1,
    상기 복수의 슬릿은, The plurality of slits,
    제1 방향을 따라 형성되는 슬릿 너비;A slit width formed along the first direction;
    상기 제1 방향과 교차되는 제2 방향을 따라 형성되는 슬릿 길이; 및A slit length formed along a second direction intersecting the first direction; And
    상기 제1 방향 및 상기 제2 방향에 직교하며, 상기 기판에 수직한 방향을 따라 형성되는 슬릿 깊이를 가지며,Orthogonal to the first direction and the second direction, and having a slit depth formed along a direction perpendicular to the substrate,
    상기 슬릿 깊이(depth)는 각각 당해 제1기판 또는 제2기판의 전체 두께를 기준으로 70 내지 90%인 열전 소자. The slit depth is 70 to 90% based on the total thickness of the first substrate or the second substrate, respectively.
  5. 제1항에 있어서, According to claim 1,
    상기 슬릿의 수평 단면 형상은 사각형, 원형, 타원형, 스트라이프형, 마름모형 및 다각형 중 어느 하나인 열전 소자. The horizontal cross-sectional shape of the slit is any one of a rectangle, a circle, an oval, a stripe, a rhombus, and a polygon.
  6. 제1항에 있어서, According to claim 1,
    상기 제1절연 수지층과 제2절연 수지층은 서로 동일하거나 또는 상이하며, 각각 유리전이온도(Tg)가 250℃ 이상인 고내열성 수지를 포함하는, 열전 소자. The first insulating resin layer and the second insulating resin layer are the same as or different from each other, and each includes a high heat resistance resin having a glass transition temperature (Tg) of 250 ° C or higher.
  7. 제6항에 있어서, The method of claim 6,
    상기 고내열성 수지는 페놀 노볼락 에폭시 수지 및 다가 페놀형 에폭시 수지 중에서 선택된 적어도 1종의 에폭시 수지를 포함하는 열전 소자. The high heat resistance resin is a thermoelectric device including at least one epoxy resin selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins.
  8. 제1항에 있어서, According to claim 1,
    상기 제1절연 수지층과 제2절연 수지층은 각각 세라믹 필러를 포함하는 열전 소자. Each of the first insulating resin layer and the second insulating resin layer includes a thermoelectric element.
  9. 제1항에 있어서, According to claim 1,
    상기 제1절연 수지층과 제2절연 수지층의 두께는 각각 10 내지 150 ㎛인 열전 소자. The thickness of the first insulating resin layer and the second insulating resin layer are 10 to 150 μm, respectively.
  10. 제1항에 있어서, According to claim 1,
    상기 제1~2 기판과 제1~2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 하나를 포함하는 열전 소자. The first and second substrates and the first and second electrodes are the same or different from each other, and each of at least one of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co). Thermoelectric element comprising.
  11. 제1항에 있어서, According to claim 1,
    상기 열전 레그는 Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 및 이들의 조합으로부터 선택되는 적어도 하나의 열전반도체 물질을 포함하는 열전 소자. The thermoelectric legs are Bi-Te, Co-Sb, Pb-Te, Ge-Tb, Si-Ge, Sb-Te, Sm-Co, transition metal silicides, Scootite ), Thermoelectric element comprising at least one thermoelectric material selected from silicide-based, half heusler, and combinations thereof.
  12. 제1항에 있어서, According to claim 1,
    상기 복수의 슬릿(Slit)을 구비하는 도전성 제1기판과 도전성 제2기판 중 하나는 발열부인 열전 소자. One of the first conductive substrate and the second conductive substrate having the plurality of slits is a thermoelectric element.
  13. 절연 수지층의 양면에 금속층이 구비된 금속적층판 2개를 준비하는 단계;Preparing two metal laminated plates having metal layers on both sides of the insulating resin layer;
    상기 2개의 금속적층판의 일면에 배치된 금속층을 각각 식각하여 제1전극과 제2전극을 형성하는 단계; Forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates;
    상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수의 열전 레그를 배치하는 단계; 및 Placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween; And
    상기 2개의 금속적층판 중 하나의 금속적층판 타면 상에, 상기 제1전극 또는 제2전극의 평면에 대응되는 크기를 같거나 또는 보다 큰 간격으로 이격하여 복수의 슬릿(slit)을 형성하는 단계Forming a plurality of slits on the other surface of one of the two metal laminated plates, spaced apart at equal or greater intervals corresponding to the plane of the first electrode or the second electrode
    를 포함하는 제1항에 기재된 열전 소자의 제조방법.The method of manufacturing a thermoelectric element according to claim 1 comprising a.
PCT/KR2019/013176 2018-10-24 2019-10-08 Thermoelectric element and manufacturing method therefor WO2020085681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0127393 2018-10-24
KR1020180127393A KR102020155B1 (en) 2018-10-24 2018-10-24 Thermoelectric device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020085681A1 true WO2020085681A1 (en) 2020-04-30

Family

ID=67950957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013176 WO2020085681A1 (en) 2018-10-24 2019-10-08 Thermoelectric element and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102020155B1 (en)
WO (1) WO2020085681A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020155B1 (en) * 2018-10-24 2019-09-10 엘티메탈 주식회사 Thermoelectric device and manufacturing method thereof
KR102248813B1 (en) * 2019-12-02 2021-05-11 엘티메탈 주식회사 Method for manufacturing porous thermoelectric material and thermoelectric device comprising porous thermoelectric material
KR102463859B1 (en) * 2019-12-06 2022-11-07 엘티메탈 주식회사 Thermoelectric device and manufacturing method thereof
KR20210081617A (en) * 2019-12-24 2021-07-02 엘지이노텍 주식회사 Thermo electric element
KR20210088980A (en) 2020-01-07 2021-07-15 엘지이노텍 주식회사 Thermo electric element
CN112164746B (en) * 2020-09-01 2022-12-06 西安交通大学 Thermoelectric power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068564A (en) * 1998-08-18 2000-03-03 Dainippon Screen Mfg Co Ltd Peltier element
JP2004274072A (en) * 2004-04-26 2004-09-30 Yamaha Corp Substrate for thermoelectric module, manufacturing method therefor, and the thermoelectric module
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
JP2016029695A (en) * 2014-07-25 2016-03-03 日立化成株式会社 Thermoelectric conversion module and manufacturing method for the same
KR102020155B1 (en) * 2018-10-24 2019-09-10 엘티메탈 주식회사 Thermoelectric device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068564A (en) * 1998-08-18 2000-03-03 Dainippon Screen Mfg Co Ltd Peltier element
JP2004274072A (en) * 2004-04-26 2004-09-30 Yamaha Corp Substrate for thermoelectric module, manufacturing method therefor, and the thermoelectric module
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
JP2016029695A (en) * 2014-07-25 2016-03-03 日立化成株式会社 Thermoelectric conversion module and manufacturing method for the same
KR102020155B1 (en) * 2018-10-24 2019-09-10 엘티메탈 주식회사 Thermoelectric device and manufacturing method thereof

Also Published As

Publication number Publication date
KR102020155B1 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2020085681A1 (en) Thermoelectric element and manufacturing method therefor
KR101905158B1 (en) Locally heated multi-zone substrate support
CN102473683A (en) Semiconductor-on-insulator with backside heat dissipation
WO2015093903A1 (en) Metal packaging material having good heat resistance, method of manufacturing same, and flexible electronic device packaged in said metal packaging material
WO2018179544A1 (en) Thermoelectric conversion module and method for manufacturing same
US20110083712A1 (en) Thermoelectric Module
TWI816864B (en) Method for manufacturing a wafer of thermoelectric conversion material and method for manufacturing a thermoelectric conversion module using the wafer obtained by the manufacturing method
JP2012038980A (en) Thermoelectric conversion module and manufacturing method of the same
CA1232363A (en) Thermoelectric generator and method for the fabrication thereof
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
WO2014210432A1 (en) Support assembly for use in semiconductor manufacturing tools with a fusible bond
CN112823430A (en) Method for producing intermediate for thermoelectric conversion module
WO2021112566A1 (en) Thermoelectric element and manufacturing method therefor
WO2020130282A1 (en) Thermoelectric element and solder paste included therein
WO2019143140A1 (en) Thermoelectric element
WO2016159591A1 (en) Thermoelectric element, thermoelectric module and heat conversion apparatus comprising same
WO2018143780A1 (en) Thermoelectric element
WO2022092377A1 (en) Thermoelectric material comprising multi-layered diffusion barrier layer, and thermoelectric element comprising same
WO2017209549A1 (en) Thermoelectric leg and thermoelectric element comprising same
WO2020246749A1 (en) Thermoelectric device
WO2022025325A1 (en) Thermoelectric material comprising multi-layered diffusion barrier layer, and thermoelectric element provided with same
WO2022092737A1 (en) Thermoelectric element
KR20200074824A (en) Thermoelectric device and solder paste included therein
JPH0629581A (en) Thermoelectric element
KR102382321B1 (en) Thermo electric device and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875915

Country of ref document: EP

Kind code of ref document: A1