WO2020130282A1 - Thermoelectric element and solder paste included therein - Google Patents

Thermoelectric element and solder paste included therein Download PDF

Info

Publication number
WO2020130282A1
WO2020130282A1 PCT/KR2019/011071 KR2019011071W WO2020130282A1 WO 2020130282 A1 WO2020130282 A1 WO 2020130282A1 KR 2019011071 W KR2019011071 W KR 2019011071W WO 2020130282 A1 WO2020130282 A1 WO 2020130282A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thermoelectric
electrode
metal
thermoelectric element
Prior art date
Application number
PCT/KR2019/011071
Other languages
French (fr)
Korean (ko)
Inventor
박주현
양승호
양승진
황병진
연병훈
손경현
박정구
장봉중
이태희
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190034437A external-priority patent/KR102149098B1/en
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Publication of WO2020130282A1 publication Critical patent/WO2020130282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Definitions

  • the present invention relates to a thermoelectric element and a solder paste included in the thermoelectric element, and more particularly, to a thermoelectric element having improved thermoelectric properties, such as output improvement and high temperature reliability, according to a material change of a bonding material.
  • thermoelectric elements and thermoelectric modules have been actively conducted in order to solve problems such as a sudden increase in the cost of energy-related resources and environmental pollution. These are applied to thermoelectric power generation such as waste heat generation or active cooling.
  • thermoelectric element is composed of a thermoelectric leg, an electrode, and a substrate, and an N-type semiconductor and a P-type semiconductor are used as the thermoelectric leg. After arranging a plurality of pairs of N-type and P-type semiconductors on a flat surface, they are connected in series using a metal electrode to form a thermoelectric element, which is then joined using a solder paste for bonding.
  • solder pastes containing lead (Pb) cannot be used due to RoHS harmful substances. Accordingly, SnAg alloy-based, SnAgCu-based, and SnAgBi-based solder pastes are mainly used.
  • SAC305 and SAC405 which are mainly used as solder pastes, are applied, a Cu 3 Sn phase is supersaturated on the surface of a copper (Cu) electrode, and a Cu 6 Sn 3 phase is deposited thereon.
  • electrical characteristics are deteriorated and the output of the thermoelectric element is lowered, and thermal mismatching causes cracks at the interface, resulting in high-temperature reliability of the element. Can adversely affect
  • the present invention has been devised to solve the above-mentioned problems, and it is a technical problem to provide a thermoelectric element having improved thermoelectric properties such as output improvement and high temperature reliability through a material change of a conventional Sn-based bonding material and a solder paste contained therein. do.
  • the present invention is a first substrate; A second substrate facing the first substrate; A first electrode and a second electrode respectively disposed between the first substrate and the second substrate; And a plurality of thermoelectric legs interposed between the first electrode and the second electrode. And a bonding material disposed between at least one of the first electrode and the thermoelectric leg and between the thermoelectric leg and the second electrode, wherein the bonding material includes Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 ⁇ m.
  • the metal dendrites have one main axis, and a plurality of branched branches diverge from the main axis, but may satisfy at least two of the following conditions (i) to (iv).
  • the major axis has a long diameter of 5 to 50 ⁇ m
  • the longest branch of the plurality of branches has a length of 5 to 30 ⁇ m
  • the number of branches (number of branches/long diameter) with respect to the major diameter of the main shaft is 0.5 to 10/ ⁇ m
  • the average particle diameter (D 50 ) is 5 to 50 ⁇ m.
  • the metal dendrite may have a specific surface area measured by a BET measurement method of 0.4 to 3.0 m 2 /g, an apparent density of 0.5 to 1.5 g/cm 3, and an oxygen content of 0.35%. It may be:
  • the metal dendrites may be copper (Cu) dendrites, silver (Ag) coated copper dendrites, or mixtures thereof.
  • the copper dendrite has an average branched length of 5 to 20 ⁇ m, and may be included in 1 to 40% by weight based on the total weight of the bonding material.
  • the silver (Ag) coated copper dendrite has an average branch length of 5 to 20 ⁇ m, and may be included in an amount of 10 to 30% by weight based on the total weight of the bonding material.
  • the Sn-based solder is Sn; And metals of at least one of Pb, Al, and Zn.
  • the first substrate and the second substrate are the same as or different from each other, and each may be a ceramic substrate or a conductive substrate independently.
  • the conductive substrate a metal substrate; And an insulating layer formed on one surface thereof.
  • the insulating layer may include an insulating resin, or the insulating resin and a ceramic filler.
  • the first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, aluminum (Al), zinc (Zn), copper (Cu), It may include at least one metal of nickel (Ni) and cobalt (Co).
  • the first substrate and the second substrate are each conductive substrates
  • at least one of the conductive substrates is formed with a plurality of slits formed by being spaced apart at predetermined intervals along the longitudinal direction of the substrate ( Slit).
  • the conductive substrate provided with the plurality of slits may be a heating part.
  • thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal It may include at least one thermoelectric material selected from silicide-based, skuttrudite-based, silicide-based, half heusler, and combinations thereof.
  • the present invention is Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 ⁇ m, wherein the metal dendrite provides a solder paste containing 1 to 40% by weight based on the total weight of the composition.
  • the solder paste may be for bonding a metal and a dissimilar material in a temperature range of 250 to 400°C.
  • reliability of a product may be improved by using a solder paste in which metal dendrite is mixed in a predetermined blending ratio in Sn-based solder.
  • thermoelectric leg when a conventional Sn-based solder paste is used, a problem of a local alloy layer generated at an interface portion of an electrode (eg, a Cu electrode) is solved, and the electrical conductivity between the electrode and the thermoelectric leg is improved to improve thermoelectric properties. It can contribute to improvement and high temperature reliability.
  • an electrode eg, a Cu electrode
  • thermoelectric device 1 is a perspective view showing a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 2 is a cross-sectional view of a thermoelectric device according to a first embodiment of the present invention.
  • thermoelectric device 3 is a cross-sectional view of a thermoelectric device according to a second embodiment of the present invention.
  • FIG. 4 is a plan view of a conductive first substrate and a conductive second substrate, each of which is provided with a patterned first electrode and a second electrode according to an embodiment of the present invention.
  • thermoelectric device 5 is a cross-sectional view of a thermoelectric device according to a third embodiment of the present invention.
  • thermoelectric device 6 is a cross-sectional view of a thermoelectric device according to a fourth embodiment of the present invention.
  • FIG. 7 is a plan view of a conductive first substrate and a conductive second substrate provided with a patterned first electrode, a second electrode, and a plurality of slits according to another embodiment of the present invention.
  • FIG. 8 is a schematic view showing the structure of a metal dendrite according to the present invention.
  • FIG 11 is an image of a bonding layer formed by applying a solder paste (SAC305) according to an embodiment of the present invention.
  • SAC305 solder paste
  • thermoelectric device 12 is an interface image (magnification of 5,000) between an electrode and a bonding layer in a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric element 100, 200, 300, 400: thermoelectric element
  • planar this means when the target portion is viewed from above, and when it is referred to as “cross-sectional”, it means when the cross section of the target portion vertically cut is viewed from the side.
  • the Sn-based solder used in the existing thermoelectric element generates a local alloy layer at the interface portion of the electrode (eg, Cu electrode), and the electrical characteristics are reduced due to the difference in electrical conductivity between these alloy layers and the output of the thermoelectric element is lowered. Is effected as a necessity.
  • thermoelectric properties such as improving the output of the thermoelectric element and high temperature reliability
  • it is characterized by changing the material of the solder paste constituting the thermoelectric element.
  • Sn-based solder solder
  • a dendrite-shaped metal powder eg, Cu dendrite
  • a solder paste in which they are mixed at a predetermined mixing ratio is applied as a bonding material.
  • the metal dendrite powder is located inside the bonding material, the Cu 3 Sn phase supersaturated at the interface of the electrode (for example, the Cu electrode) is suppressed, and Sn is reacted on the surface of the metal dendrite having a large specific surface area. It can be consumed and the portion generated in the Cu electrode can be suppressed as much as possible. That is, the metal dendrites act to prevent supersaturation in the Sn-based solder.
  • the metal dendrites are located between an electrode (for example, a Cu electrode) and a thermoelectric leg, and thus serve as a path for improving electrical conductivity, thereby lowering the electrical resistance of the thermoelectric element and increasing the output value.
  • the metal dendrites containing a plurality of branched shapes have a larger number of contact points between the particles than the spherical copper particles, the conductive properties are improved even when the amount of the conductive metal component is reduced, which is advantageous in terms of conductivity.
  • the bonding material (Sn-based solder paste) according to the present invention significantly improves the electrical conductivity between the thermoelectric leg and the electrode (e.g., Cu electrode) compared to the conventionally used Sn-based solder, and is applied to the interface portion of the Cu electrode.
  • thermoelectric element of the present invention includes both thermoelectric power generation and/or cooling elements.
  • thermoelectric element includes: two substrates facing each other; Conductive electrodes and thermoelectric materials (thermoelectric legs) disposed on upper and lower portions of the two substrates, respectively; And a bonding layer disposed between the thermoelectric material and the conductive electrode.
  • the bonding layer a bonding material in which Sn-based solder and metal dendrites are mixed at a predetermined mixing ratio is applied, and heat-treated at a high temperature to form a final thermoelectric element.
  • thermoelectric device according to the present invention.
  • the embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
  • FIG. 1 is a perspective view schematically showing a structure of a thermoelectric element 100 according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the thermoelectric element 100.
  • the thermoelectric element 100 includes: a first substrate 11; A second substrate 11 disposed opposite to the first substrate 11; A first electrode 20a and a second electrode 20b respectively disposed between the first substrate 11 and the second substrate 11; A plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; And a bonding material 40 disposed between at least one of the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
  • thermoelectric element As in this specification, each configuration of the thermoelectric element will be described in detail as follows.
  • first substrate 11 and the second substrate 11 causes an exothermic or endothermic reaction when power is applied to the thermoelectric element 100, and may be made of a conventional electrical insulating material known in the art.
  • the first substrate 11 and the second substrate 11 may be ceramic substrates composed of one or more of Al 2 O 3 , AlN, SiC, and ZrO 2 , respectively. Or it may be composed of a high heat-resistant insulating resin or engineering plastic.
  • Each of the first substrate 11 and the second substrate 11 may have a flat plate shape, and is not particularly limited in size or thickness.
  • the thickness of each of the first substrate 11 and the second substrate 11 may be 0.5 to 2 mm, preferably 0.5 to 1.5 mm, and more preferably 0.6 to 0.8 mm.
  • One of the two substrates is a cold side substrate in which an endothermic reaction occurs, and a heat pad may be applied to the substrate.
  • the heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and may have a thermal conductivity in the range of 0.5 to 5.0 W/mk to maximize heat transfer efficiency. It can also act as an insulator.
  • the other of the two substrates may be a hot side substrate.
  • the first electrode 20a and the second electrode 20b are disposed on the first substrate 11 and the second substrate 11, which are disposed to face each other. That is, the second electrode 20b is disposed at a position facing the first electrode 20a.
  • first electrode 20a and the second electrode 20b are not particularly limited, and materials used as electrodes in the art may be used without limitation.
  • the first electrode 20a and the second electrode 20b are the same or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt At least one metal of (Co) can be used.
  • Al aluminum
  • Zn zinc
  • Cu copper
  • Ni nickel
  • Co cobalt
  • At least one metal of (Co) can be used.
  • nickel, gold, silver, titanium, and the like may be further included. Its size can also be varied.
  • it may be a copper (Cu) electrode.
  • the first electrode 20a and the second electrode 20b may be patterned into a predetermined shape, and the shape is not particularly limited. For example, it may have a pattern shape as shown in Figure 4 (a) and Figure 4 (b).
  • a method of patterning the first electrode 20a and the second electrode 20b a conventionally known patterning method can be used without limitation. For example, a lift-off semiconductor process, a deposition method, a photolithography method, or the like can be used.
  • thermoelectric legs 30 are interposed between the first electrode 20a and the second electrode 20b.
  • thermoelectric legs 30 include a plurality of P-type thermoelectric legs 30a and N-type thermoelectric legs 30b, which are alternately arranged in one direction. In this way, the upper and lower surfaces of the P-type thermoelectric legs 30a and N-type thermoelectric legs 30b neighboring in one direction are electrically connected in series with the first electrode 20a and the second electrode 20b, respectively.
  • Each of these thermoelectric legs 30a, 30b includes a thermoelectric semiconductor substrate.
  • thermoelectric semiconductor included in the thermoelectric leg 30 may be formed of a conventional material in the art where temperature is generated at both ends when electricity is applied or electricity is generated when the temperature difference is generated at both ends.
  • thermoelectric semiconductors including at least one element selected from the group consisting of transition metals, rare earth elements, group 13 elements, group 14 elements, group 15 elements, and group 16 elements may be used.
  • examples of rare earth elements include Y, Ce, La, etc.
  • examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, and Re may be one or more
  • examples of the Group 13 element may be one or more of B, Al, Ga, and In
  • examples of the Group 14 element may be C, Si, Ge, Sn, and Pb. It may be one or more, and examples of the group 15 element may be one or more of P, As, Sb, and Bi
  • examples of the group 16 element may use one or more of S, Se, and Te.
  • thermoelectric semiconductor As a thermoelectric semiconductor that can be used, it can be made of a composition containing at least two or more of bismuth (Bi), telelium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce).
  • Bi-Te-based thermoelectric semiconductors may include (Bi,Sb) 2 (Te,Se) 3 thermoelectric semiconductors in which Sb and Se are used as a dopant, and CoSb as a Co-Sb thermoelectric semiconductor.
  • Three -type thermoelectric semiconductors can be exemplified, AgSbTe 2 and CuSbTe 2 can be exemplified as Sb-Te-based thermoelectric semiconductors, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as Pb-Te-based thermoelectric semiconductors.
  • it may be composed of a Bi-Te-based or CoSb-based thermoelectric material.
  • thermoelectric semiconductor may be particles having a predetermined size, for example, may have an average particle diameter in the range of about 0.01 to about 100 ⁇ m.
  • thermoelectric semiconductor can be manufactured in various ways, and is not particularly limited.
  • the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method.
  • the thermoelectric leg 30 including the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b may be formed into a predetermined shape, such as a rectangular parallelepiped, by a method such as cutting, and applied to the thermoelectric element.
  • thermoelectric element 100 includes: between the first electrode 20a and the thermoelectric leg 30; And at least one of the thermoelectric leg 30 and the second electrode 20b, preferably a bonding material 40 disposed between all of them.
  • the bonding material is characterized in that it contains a metal powder in the form of a dendrite (dendrite) in a common Sn-based solder known in the art.
  • the metal dendrites have one main axis when observed with an electron microscope (100 to 20,000 magnification), and a plurality of branched branches from the main axis vertically or obliquely branch, or two-dimensional or It is a conductive metal particle having a three-dimensionally grown shape.
  • the main axis indicates a rod-like portion on which a plurality of branches are branched.
  • the average branch length of the metal dendrites is not particularly limited, and is, for example, 5 to 50 ⁇ m, and preferably 5 to 30 ⁇ m.
  • the metal dendrites of the present invention preferably exhibit a dendrite phase that satisfies at least two of the following conditions (i) to (iv) when observed with an electron microscope (500 to 20,000 magnification).
  • the long axis length of the main shaft means the total length of the main shaft, and may be 5 to 50 ⁇ m, and specifically 5 to 30 ⁇ m.
  • the longest branch length among the plurality of branch shapes means the length of the longest branch among the branches extending from the main axis, and indicates the growth degree of dendrites. In one example, it may be 5 to 30 ⁇ m, specifically 10 to 25 ⁇ m.
  • the number of branches (number of branches/longer diameter) with respect to the major diameter of the main shaft indicates the number of branches of dendrites, and may be 0.5 to 10/ ⁇ m, and specifically 1 to 8/ ⁇ m.
  • the average particle diameter (D 50 ) refers to a two-dimensional size including the long diameter of the dendrites, and may be 5 to 50 ⁇ m, and specifically 5 to 30 ⁇ m.
  • the main shaft thickness of the dendrites may be 0.3 to 5.0 ⁇ m.
  • the metal dendrites of the present invention have a higher specific surface area than spherical metal particles as they have the aforementioned structural characteristics.
  • the metal dendrite may have a specific surface area measured by a BET measurement method of 0.4 to 3.0 m 2 /g, and specifically 0.5 to 2.0 m 2 /g. If the specific surface area of the metal dendrites is significantly small, the branches do not develop, and since they are close to a pine cone to a spherical shape, it is difficult to obtain the effect of the dendrites copper powder.
  • the metal dendrite may have an apparent density of 0.5 to 1.5 g/cm 3, and an oxygen content of 0.35% or less is suitable.
  • the metal dendrite according to the present invention is not particularly limited to the metal material to be used if it has electrical conductivity and satisfies the structural characteristics and physical properties described above.
  • copper dendrite (Cu dendrite), silver (Ag) coated copper dendrite (Ag coated Cu dendrite), or a mixture thereof may be used.
  • copper (Cu) is preferable because it is not only similar in electrical conductivity to silver (Ag) but also economical.
  • the content of the metal dendrites is not particularly limited, and for example, may be included in 1 to 40% by weight based on the total weight of the bonding material, preferably 5 to 30% by weight.
  • the content of such copper dendrites is 1 to 40 weight compared to the total weight of the bonding material %, preferably 5 to 30% by weight.
  • metal dendrites use silver (Ag) coated copper dendrites having an average branch length of 5 to 20 ⁇ m, preferably 10 to 30 ⁇ m, compared to the total weight of the bonding material It is preferably included in the range of 10 to 30% by weight.
  • the metal dendrites can be used alone as the bonding material component, and it is also included in the scope of the present invention to mix the metal powder having various materials, particle sizes, and/or shapes as a bonding material component.
  • the above-mentioned metal dendrites and one or more metal powders such as spherical, acicular, flake, and amorphous may be mixed.
  • the Sn-based solder mixed with the above-mentioned metal dendrites may use a common Sn-based solder component known in the art.
  • the Sn-based solder is Sn; It may have a composition including at least one metal of Pb, Al, and Zn. .
  • thermoelectric element 100 of the present invention is between the first electrode 20a and the thermoelectric leg 30; And a diffusion barrier layer (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b.
  • the diffusion barrier layer can be used without limitation, conventional components known in the art, for example, at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
  • the first electrode 20a and the second electrode 20b may be electrically connected to a power supply.
  • a DC voltage When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg 30a and the electrons of the n-type thermoelectric leg 30b move, so that heat and endothermic heat may occur at both ends of the thermoelectric leg.
  • thermoelectric device 100 In the thermoelectric device 100 according to another embodiment of the present invention, at least one of the first electrode 20a and the second electrode 20b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move, and current flows in the thermoelectric element, thereby generating electricity.
  • thermoelectric element according to the first embodiment described above may be manufactured according to a method known in the art.
  • a manufacturing method For an example of such a manufacturing method, (a) preparing two insulating substrates; (b) forming a first electrode and a second electrode on one surface of the two insulating substrates, respectively; And (c) placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween and bonding using the bonding material.
  • the manufacturing method is not limited only by the following method or order, and the steps of each process may be modified or selectively mixed as necessary.
  • thermoelectric leg As an example of a method of manufacturing a thermoelectric leg using a thermoelectric material in the above manufacturing method, Bi-Te or CoSb-based thermoelectric material is melted using an RSP and then manufactured by ribbon or after mixing raw material powders and then firing such as heat treatment 1 It forms a phase. After sintering through hot press and discharge plasma sintering (Spark Plasma Sintering) to form a sintered body, slicing is performed according to the desired thickness, and lapping is performed according to the final thickness to increase the height of the material. Adjust within 1/100.
  • a thermoelectric leg is manufactured by subjecting the surface of the thermoelectric material having stepped control to surface coatings such as Co, Ni, Cr, and W, and finally dicing according to the size of the material.
  • a ceramic substrate such as Al 2 O 3 , AlN, SiC, and ZrO 2 is used, and a Cu electrode pattern is formed on one surface of the substrate, followed by heat treatment to fix it.
  • thermoelectric legs are disposed and bonded between the first electrode and the second electrode using the thermoelectric legs and substrate prepared as described above.
  • a bonding material include Sn-based solders; And a Sn-based solder paste in which metal dendrite is included at a predetermined mixing ratio.
  • a bonding material paste is applied to a pattern of the first electrode 20a with a predetermined thickness, and n-type and p-type thermoelectric legs are arranged thereon.
  • the final configuration is completed by arranging the previously formed n-type and p-type thermoelectric legs in a portion where only the bonding material is applied.
  • heat treatment is performed at 300 to 500° C. to final bonding, and then electric wires are connected to complete manufacturing of the thermoelectric element.
  • thermoelectric leg and the thermoelectric element including the same may be provided in, for example, a thermoelectric cooling system or a thermoelectric power generation system.
  • the thermoelectric power generation system means a normal system that generates power by using a temperature difference, and examples thereof include a waste heat furnace, a vehicle thermoelectric power generation system, and a solar thermoelectric power generation system.
  • the thermoelectric cooling system may include, but is not limited to, a micro cooling system, a general purpose cooling device, an air conditioner, and a waste heat power generation system.
  • the thermoelectric element using Sn-based solder at 250 to 400°C is not particularly limited.
  • thermoelectric power generation system and the thermoelectric cooling system are known in the art, and thus, detailed description is omitted. Also, in the present invention, even though they are denoted by the same reference numerals, they may have different configurations from each other.
  • thermoelectric element 200 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 200 according to a second embodiment of the present invention. 3, the same reference numerals as those in FIGS. 1 to 2 denote the same members.
  • thermoelectric element 200 is insulated on one surface of the metal substrates 11a and 11b compared to FIGS. 1 to 2 using the insulating ceramic substrate 11
  • the conductive substrates 10a, 10b on which the layers 12a, 12b are formed are used.
  • thermoelectric element 200 includes: a conductive first substrate 11a; A first insulating layer 12a formed on one surface of the conductive first substrate 11a; A first electrode 20a disposed on the first insulating layer 12a; A second electrode 20b disposed opposite to the first electrode 20a; A plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; And a bonding material 40 disposed between at least one of the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
  • the conductive first substrate 11a and the conductive second substrate 11b cause an exothermic or endothermic reaction when power is applied to the thermoelectric element 100. These may be the same as or different from each other, and each may be made of a conventional conductive metal material known in the art.
  • the conductive first substrate 11a may include at least one metal among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co).
  • the electrodes 20a and 20b are directly disposed on the conductive substrates 11a and 11b, they are electrically conductive, and an electrically insulating material must be interposed therebetween. Accordingly, the first insulating layer 12a is formed on one surface of the conductive first substrate 11a on which the first electrode 20a is disposed, and the conductive second substrate 11b on which the second electrode 20b is disposed. The second insulating layer 12b is formed on one surface.
  • the first insulating layer 12a and the second insulating layer 12b are disposed to face each other.
  • the first insulating layer 12a and the second insulating layer 12b may be the same or different from each other, and an easily insulating electrical insulating material may be used.
  • an insulating resin may be used alone, or a mixture of the insulating resin and a ceramic filler (powder) may be included.
  • the insulating resin may include at least one of a conventional thermosetting resin and a thermoplastic resin known in the art.
  • a heat-resistant resin having a glass transition temperature (Tg) of 250°C or higher, preferably 250 to 300°C. desirable.
  • thermosetting resin usable as the first insulating layer 12a and the second insulating layer 12b include epoxy resin, polyurethane resin, alkyd resin, phenol resin, melamine resin, silicone resin, urea resin, In the group consisting of vegetable oil modified phenolic resin, xylene resin, guanamine resin, diallyl phthalate resin, vinyl ester resin, unsaturated polyester resin, furan resin, polyimide resin, cyanate resin, maleimide resin and benzocyclobutene resin It may be one or more selected. Specifically, the thermosetting resin may be at least one selected from the group consisting of epoxy resin, phenol resin, melamine resin, silicone resin, urethane resin and urea resin.
  • Epoxy resins can be used without limitation, conventional epoxy resins known in the art, it is preferable that two or more epoxy groups are present, without containing a halogen element in one molecule.
  • Non-limiting examples of usable epoxy resins include bisphenol A/F/S resin, phenol novolac epoxy resin, polyhydric phenol epoxy resin, novolac epoxy resin, alkylphenol novolac epoxy, biphenyl Type, aralkyl type, naphthol type, dicyclopentadiene type, or a mixed form thereof.
  • More specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, anthracene epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, and phenol novolac Type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol S novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol phenol coaxial novolac type epoxy resin , Naphthol corresol coaxial novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, triphenyl methane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene phenol addition reaction epoxy resin, phenol aral Kill type epoxy resin, polyfunctional phenol resin, naphthol aralkyl type epoxy resin, and the like.
  • the above-described epoxy resin may be used alone or in combination of two or more.
  • the high heat resistance epoxy resin is one containing at least one selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins.
  • the polyhydric phenol type epoxy resin refers to an epoxy resin having two or more average epoxy groups in the molecule, preferably 2 to 4.
  • thermoplastic resins include olefin resins, acrylic resins, rubbers, or mixtures thereof.
  • Specific examples include polyethylene, polypropylene, polystyrene, polyimide, teflon (PTFE), acrylonitrile-butadiene rubber (NBR), styrene butadiene rubber (SBR), acrylonitrile-butadiene-styrene rubber (ABS), carr Vxyl-terminated butadiene acrylonitrile rubber (CTBN), polybutadiene, styrene-butadiene-ethylene resin (SEBS), acrylic acid containing side chains having 1 to 8 carbon atoms ) And/or methacrylic acid ester resins (acrylic rubber), or mixtures of one or more thereof.
  • PTFE teflon
  • NBR acrylonitrile-butadiene rubber
  • SBR styrene butadiene rubber
  • ABS acrylonitrile-butadiene-
  • the above-mentioned thermoplastic resin contains the functional group which can react with the epoxy resin which is a thermosetting resin. Specifically, it is at least one functional group selected from the group consisting of an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a methoxy group, and an isocyanate group. Since these functional groups form a strong bond with the epoxy resin, the heat resistance after curing is improved, which is preferable.
  • the first insulating layer 12a and the second insulating layer 12b may be epoxy resin layers each containing a ceramic filler.
  • the ceramic filler may use any conventional inorganic filler known in the art without limitation, and non-limiting examples of the ceramic filler usable include natural silica, fused silica, and amorphous silica.
  • Silica such as crystalline silica; Boehmite, alumina, talc, spherical glass, calcium carbonate, magnesium carbonate, magnesia, clay, calcium silicate, titanium oxide, antimony, glass fiber, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, barium zirconate, calcium zirconate, boron nitride, silicon nitride, or mica.
  • the above-mentioned powders may be used alone or in combination of two or more.
  • a filler in the form of a metal oxide such as aluminum oxide is used.
  • the average particle diameter (D 50 ) of the ceramic filler is not particularly limited, but in consideration of dispersibility, it is preferable that the average particle diameter is about 0.1 to 20 ⁇ m, specifically 0.5 to 15 ⁇ m. In addition, two or more types of ceramic fillers having different average particle diameters may be mixed.
  • the shape of the ceramic filler is also not particularly limited, and for example, it may have any shape selected from the group consisting of a spherical shape, a plate shape, a needle shape, a fiber shape, a branch shape, a conical shape, a pyramid shape, and an amorphous shape.
  • the ceramic filler may be used as it is by mixing with an epoxy resin, or a ceramic filler already surface-treated with an organic material may be used. This is because when using a ceramic filler surface-treated with an organic material, compatibility with a resin is excellent, and thus dielectric properties, heat resistance, and workability of the epoxy resin can be further improved.
  • the organic material is not particularly limited, and resins or silane coupling agents in the art may be used.
  • the method of surface-treating the ceramic filler with an organic material is not particularly limited, and a method of drying after adding the ceramic filler to a solution containing an organic material, for example, a vinyl group-containing silane coupling agent, may be mentioned.
  • the content of the ceramic filler may be appropriately adjusted in consideration of mechanical properties or other physical properties of the first insulating layer 12a and the second insulating layer 12b.
  • the content of the ceramic filler is 0 to 70 parts by weight, specifically 5 to 50 parts by weight, more specifically, based on 100 parts by weight of the epoxy resin constituting the first insulating layer 12a or the second insulating layer 12b Specifically, it may be 10 to 30 parts by weight.
  • the thickness of the above-described first insulating layer 12a and the second insulating layer 12b is not particularly limited, and can be appropriately adjusted within a range known in the art. These may be the same or different from each other.
  • the thickness of the first insulating layer 12a and the second insulating layer 12b may be 10 to 150 ⁇ m, respectively, and preferably 30 to 120 ⁇ m.
  • the first electrode 20a is disposed on the first insulating layer 12a formed as described above, and the second electrode 20b is positioned on a predetermined position of the second insulating layer 12b facing the first electrode 20a. ) Is placed.
  • the first electrode 20a and the second electrode 20b may be patterned in a predetermined shape, and the shape is not particularly limited. For example, it may have a pattern shape as shown in Figure 4 (a) and Figure 4 (b).
  • descriptions of materials, structures, and the like of each component may be applied as described in the thermoelectric element 100 according to the first embodiment of FIGS. 1 to 2.
  • thermoelectric device according to the second embodiment of the present invention may be manufactured according to a method known in the art, and for example, may be manufactured using a conventional metal foil and/or metal laminate with resin.
  • thermoelectric element In one embodiment of the method for manufacturing the thermoelectric element according to the second embodiment, (a) preparing two metal laminated plates having metal layers on both sides of an insulating layer; (b) forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates; And (c) placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween and bonding using the bonding material.
  • a metal laminate plate to be used as a substrate for a thermoelectric element is prepared.
  • a form in which metal layers are stacked on both sides of the insulating layer as a center can be used without limitation.
  • the two metal layers may be composed of the same or different metal components from each other.
  • the two metal layer materials may be at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co).
  • One of the metal layers (for example, the first metal layer and the second metal layer) disposed on both sides of the metal laminated plate is used as a conductive first substrate, and the other forms a first electrode patterned in a predetermined shape through etching. Is done.
  • an etching method known in the art may be used as the etching method without limitation, and for example, physical etching, chemical etching, or a combination of both may be applied.
  • thermoelectric legs 30 are disposed on the patterned first electrode and the second electrode, and the bonding method is performed using a bonding material, the method of manufacturing the final thermoelectric element is the same as that of the first embodiment described above. Individual description of this is omitted.
  • thermoelectric element 300 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 300 according to a third embodiment of the present invention.
  • the same reference numerals as in Figs. 1 to 3 denote the same members.
  • thermoelectric element 300 in the thermoelectric element 300 according to the third embodiment of the present invention, as compared with FIG. 3 using two conductive metal substrates, an insulating layer is formed on one surface as one of the conductive substrates, A conductive metal substrate having a plurality of slits on the other surface is used.
  • thermoelectric device when using a conventional electrically insulating ceramic-based substrate (eg, DBC) or manufacturing a thermoelectric device using a metal-based substrate, a phenomenon in which the output characteristics of the device deteriorates due to a difference in thermal expansion coefficient between materials.
  • a metal-based substrate when used, problems such as peeling of a thermoelectric leg and loss of output characteristics of a thermoelectric element may occur due to rapid thermal expansion of a metal material according to an increase in temperature of the thermoelectric element.
  • an insulating layer is formed on one surface as one of the two conductive substrates, and the temperature of the thermoelectric element is adopted by employing a conductive metal substrate provided with a plurality of slits on the other surface.
  • thermoelectric element 300 includes a conductive first substrate 11a having a first insulating layer 12a formed on one surface; A conductive second substrate 11b disposed opposite to the conductive first substrate 11a, a second insulating layer 12b formed on one surface, and provided with a plurality of slits 50 on the other surface; A first electrode 20a disposed on the first insulating layer 12a; A second electrode 20b disposed on the second insulating layer 12b; A plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; And a bonding material 40 disposed between at least one of the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
  • the second insulating layer 12b Use a conductive substrate provided with a plurality of slits (50) spaced apart at predetermined intervals on the non-formed other surface.
  • the power generation power can be increased because it has a high temperature use temperature range, and the durability of the high temperature load is enhanced and excellent thermal stability is exhibited, resulting in a high final product. It can have reliability.
  • the conductive substrate provided with a plurality of slits is a substrate disposed on a hot side in order to exert the effect of providing flexibility during thermal expansion.
  • the metal substrate considering the thermal expansion characteristics of the metal substrate, it can be formed by appropriately adjusting the number or size of the slits 50.
  • the number of slits 50 formed on the second conductive substrate 11b is not particularly limited and may be appropriately adjusted according to the size of the substrate. For example, it may be a plurality of two or more, specifically 2 To dozens, more specifically 2 to 10 may be around.
  • a predetermined separation distance is formed between one of the slits 50 and the other slits adjacent thereto.
  • the separation distance between the plurality of slits 50 is not particularly limited, and may be appropriately adjusted in consideration of the thermal expansion characteristics of the metal substrate.
  • the separation distance between the plurality of slits 50 may be the same as or larger than the size corresponding to the plane of the first electrode 20a or the second electrode 20b, which will be described later, preferably a pair It may correspond to the size to form a unit cell, including the P-type thermoelectric leg (30a) and the N-type thermoelectric leg (30b). In one example, it may be 1.35 to 1.45 mm.
  • the plurality of slits 50 includes: a slit width formed along a first direction (eg, a longitudinal direction of the substrate); A slit length formed along a second direction intersecting the first direction; And a slit depth orthogonal to the first direction and the second direction and formed along a direction perpendicular to the conductive 1-2 substrates 11a and 11b (eg, a thickness direction of the substrate).
  • the plurality of slits 50 have substantially the same slit depth.
  • the depth of the slit is not particularly limited, and may be, for example, 70 to 90% based on the total thickness of the conductive first substrate 11a or the conductive second substrate 11b, respectively.
  • the length of the slit may be the same as the length in the longitudinal direction (first direction) and the vertical direction (second direction) of the conductive second substrate 11b, and the width of the slit may be conductive. It may be approximately 7 to 10% based on the total length along the length direction (first direction) of the 1-2 substrates 11a and 11b.
  • the depth of the slit is 0.49 to 0.63 mm
  • the slit width is 3.0 to 4.0 mm
  • the slit length is 40.5 mm.
  • the depth of the slit is 1.05 to 1.35 mm
  • the slit width is 3.0 to 4.0 mm
  • the slit length is 40.5 mm.
  • the plurality of slits 50 When viewing a horizontal cross-sectional shape, the plurality of slits 50 have a structure in which a plurality of intaglio patterns are regularly arranged.
  • the horizontal cross-sectional shape of the intaglio pattern is not particularly limited, and may be any one of a rectangle, a circle, an oval, a stripe, a rhombus, and a polygon, for example. In addition, various pattern shapes can be applied.
  • the plurality of slits 50 are formed on one surface of the conductive second substrate 11b on which the second insulating layer 12b is not formed, and preferably, the second insulating layer of the conductive second substrate 11b ( It is formed to be symmetrical with respect to the second electrode 20b disposed on 12b). Specifically, it may be arranged to have a horizontally symmetrical or centrosymmetrically structured structure based on a first direction line (eg, a long axis lengthwise direction of the second electrode) passing through the center of the second electrode 20b.
  • a first direction line eg, a long axis lengthwise direction of the second electrode
  • thermoelectric elements 100 and 200 are described in the thermoelectric elements 100 and 200 according to the first and second embodiments of FIGS. 1 to 3. It can be applied as is.
  • FIG. 6 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 400 according to a fourth embodiment of the present invention.
  • the same reference numerals as in Figs. 1 to 5 denote the same members.
  • thermoelectric element 400 according to the fourth embodiment of the present invention and the embodiment of FIG. 5 using a conductive second substrate 11b provided with a plurality of slits 50 as an upper substrate
  • the conductive first substrate 11a provided with a plurality of slits 50 is used as the lower substrate.
  • the first insulating layer 12b is formed on one surface of the conductive first substrate 11a, and a plurality of slits 50 spaced apart at predetermined intervals on the other surface where the first electrode 20a is not disposed. It is provided. It is preferable that the conductive first substrate 11a is a hot side substrate in order to exert a softening effect during thermal expansion.
  • thermoelectric element 300 in the embodiment of FIG. 6, description of the material, structure, and the like of each component may be applied as it is to the description of the thermoelectric element 300 according to the third embodiment of FIG. 5, so a detailed description thereof will be omitted.
  • FIGS. 5 and 6 specifically illustrate an embodiment in which a plurality of slits 50 are formed on one of the conductive first substrate 11a and the conductive second substrate 11b, respectively.
  • the present invention is not limited thereto, and embodiments that are formed on both the conductive substrates 11a and 11b or are formed on the cross-section and/or both surfaces of the conductive substrates 11a and 11b also belong to the scope of the present invention.
  • FIGS. 3 to 6 employing a conductive metal substrate specifically illustrate an embodiment in which the first insulating layer 12a and the second insulating layer 12b are each formed of a single layer.
  • the present invention is not limited thereto, and the number, shape, and size of the insulating layers 12a and 12b are not particularly limited. That is, the configuration of the insulating layers 12a and 12b is not particularly limited, and can be freely deformed to have various shapes and sizes.
  • the insulating layers 12a and 12b may further include a conventional inorganic-based filler and/or organic-based filler known in the art within a range maintaining electrical insulation.
  • thermoelectric elements according to the third to fourth embodiments of the present invention may be manufactured according to a method known in the art, for example, using a conventional metal foil and/or metal laminate with a resin, preferably May be a copper clad laminate (CCL).
  • a conventional metal foil and/or metal laminate with a resin preferably May be a copper clad laminate (CCL).
  • thermoelectric device For an embodiment of the method for manufacturing the thermoelectric device according to the 3-4 embodiment, (a) preparing two metal laminated plates having metal layers on both sides of the insulating layer; (b) forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates; (c) arranging the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween and bonding using the bonding material; And (d) a plurality of slits spaced apart at the same or greater intervals than the size corresponding to the plane of the first electrode or the second electrode, on the other surface of any one of the two metal laminated plates. It may be configured to include the step of forming.
  • a plurality of slits are formed on one surface of one of the two metal laminated plates.
  • a method of forming a plurality of slits is not particularly limited, and methods known in the art can be used without limitation. As an example, laser cutting, mechanical punching, or a cutting wheel may be used.
  • the separation distance between the plurality of slits can be adjusted to be equal to or larger than the size corresponding to the plane of the first electrode (or the second electrode) described above.
  • a plurality of slits, a plurality of thermoelectric elements that can be completed by a pair of P-type and N-type thermoelectric legs are connected to one thermoelectric element (eg, unit cell) as shown in FIG. 7 below
  • a unit region (not shown) may have a structure divided along the horizontal and vertical directions, and a sawing line may be formed at a boundary portion that partitions each unit region.
  • thermoelectric element after arranging a plurality of thermoelectric legs on a patterned first electrode and a second electrode and bonding using a bonding material is the same as the first to second embodiments described above. Individual description of this is omitted.
  • thermoelectric element using a metal laminated plate a method of manufacturing a thermoelectric element using a metal laminated plate is specifically described.
  • the present invention is not limited to this, and after applying an insulating resin such as an epoxy resin on a metal plate known in the art, forming a predetermined electrode pattern on the applied insulating layer, and then heat-treating and fixing it as a conductive substrate. Belongs to the category of
  • the present invention is Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 ⁇ m, and the metal dendrite provides a solder paste containing 1 to 40% by weight based on the total weight of the composition.
  • the solder paste is a solder paste for joining metals and dissimilar materials in a temperature range of 250 to 400°C.
  • the heterogeneous material to be bonded to the metal is not particularly limited, and may be, for example, a conventional metal material known in the art, or a ceramic material or a thermoelectric semiconductor material. Since the detailed configuration of the above-described solder paste is the same as that of the bonding material of the thermoelectric element, individual descriptions thereof are omitted.
  • the device containing the Sn-based solder paste according to the present invention is not particularly limited, and includes all the electrochemical devices constructed using Sn-based solder paste at 250 to 400°C in the art.
  • Such an electrochemical device refers to all devices that undergo an electrochemical reaction, and specific examples include all types of primary, secondary cells, fuel cells, solar cells, capacitors, or thermoelectric devices. have. Preferably it may be a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 99 wt% of Cu dendrite 1 wt% with a branching length of 10 to 20 ⁇ m onto a Cu electrode, and after placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode with 95 wt% of Cu dendrite 5 wt% with a branching length of 10 to 20 ⁇ m added on a Cu electrode, and was constructed after raising a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 10 wt% of Cu dendrite having a branching length of 10 to 20 ⁇ m to 90 wt%, and then constructing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 20 wt% of Cu dendrite having a branching length of 10 to 20 ⁇ m to 80 wt%, and then constructing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 30 wt% of Cu dendrite having a branching length of 10 to 20 ⁇ m to 70 wt%, and then constructing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 60 wt% of Cu dendrite 40 wt% with a branching length of 10 to 20 ⁇ m onto a Cu electrode, and placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 50 wt% of Cu dendrite having a branching length of 10 to 20 ⁇ m on a Cu electrode, and placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 40 wt% of Cu dendrite 60 wt% having a branching length of 10 to 20 ⁇ m onto a Cu electrode, and placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 90 wt% of Ag coated Cu dendrite 10 wt% Ag coated 10% to 20 ⁇ m in length in the branch direction on the Cu electrode. It was constructed after the thermoelectric material was placed on top.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 80 wt% Ag coated Cu dendrite 20 wt% Ag coated 10% to 20 ⁇ m in length in the branch direction on the Cu electrode. It was constructed after the thermoelectric material was placed on top.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding a 30% by weight Ag coated Cu dendrite coated with 10% Ag coated with 10 ⁇ 20 ⁇ m branch length to 70wt%. It was constructed after the thermoelectric material was placed on top.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 10 wt% of Cu dendrite having a branching length of 20 to 30 ⁇ m to 90 wt%, and then constructing after placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 20 wt% of Cu dendrite having a branching length of 20 to 30 ⁇ m to 80 wt%, and then constructing after placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding a material with 30 wt% of Cu dendrite having a branching length of 20 to 30 ⁇ m to 70 wt%, and constructing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was applied after applying a 100 wt% bonding material on a Cu electrode and placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • SAC305 (Sn-3.0Ag-0.5Cu) was coated with a bonding material composed of 80 wt% and 20 wt% of spherical Cu powder on a Cu electrode, and was constructed after placing a thermoelectric material thereon.
  • thermoelectric element was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
  • Cu copper
  • the copper dendrite has a main shaft, has a dendritic shape in which a plurality of branched branches are branched from the main shaft, and the main shaft length (long axis size) is in the range of 10 to 20 ⁇ m.
  • FIG. 10 is an electron microscope image of copper (Cu) dendrites included in the bonding materials of Examples 12 to 14, and it can be seen that the major axis length (long axis size) of the copper dendrites is 20 to 30 ⁇ m.
  • FIG 11 is an image of a bonding layer formed by applying and drying a solder paste (SAC305) according to an embodiment of the present invention.
  • SAC305 solder paste
  • thermoelectric element manufactured using the bonding material of the present invention containing metal dendrites was evaluated as follows.
  • the bonding conditions were performed under a reflow of 370°C, a speed of 10 cm/min, and a nitrogen (N 2 ) gas atmosphere, and then using an electron microscope (SEM) to connect the bonding interface between the electrode-bonding layer-thermoelectric leg. Confirmed.
  • CuSn alloys size: about 6 to 8 ⁇ m
  • a plurality of metal dendrites included in the bonding layer firmly fix the thermoelectric leg and the Cu electrode. It was confirmed that the bridge (bridge) acting as a faithful connection (see FIG. 12 below).
  • thermoelectric device manufactured according to each substrate was measured using a 4 probe facility, and the device resistivity ( ⁇ ) was measured. Table 2 shows each.
  • Example 1 1st Cu dendrite 2.00 2.03 2.02 2.02
  • Example 2 1.98 1.98 1.99 1.98
  • Example 3 1.93 1.94 1.95 1.94
  • Example 4 1.84 1.85 1.86 1.85
  • Example 5 1.82 1.81 1.82 1.81
  • Example 6 1.88 1.87 1.88 1.88
  • Example 7 2.01 2.00 2.02 2.01
  • Example 8 2.12 2.10 2.08 2.10
  • Example 9 Ag coated Cu dendrite 1.88 1.87 1.86 1.87
  • Example 10 1.83 1.83 1.83
  • Example 11 1.80 1.80 1.80 1.80
  • Example 12 2nd Cu dendrite 2.13 2.14 2.15 2.14
  • Example 13 2.19 2.20 2.20 2.20
  • the resistance value decreased when 10 to 20 ⁇ m class copper dendrite was added, compared to Comparative Example 1, and 10% silver (Ag) coated copper dendrite
  • the effect of reducing the resistance value was large.
  • Comparative Example 2 using a spherical Cu powder the effect of reducing the resistance value of the device was more excellent when 10 to 20 ⁇ m class copper dendrites were added. It is believed that the surface contact of copper dendrites has a larger contact area than the point contact of copper spherical powder, thereby improving conductivity.
  • the addition amount of Cu dendrite is suitable within the range of 1 to 40 wt%, especially when 5 to 30 wt% is added, the effect of reducing the resistance of the thermoelectric element is large.
  • the effect of reducing the resistance was not relatively large when the length of 20 ⁇ 30 ⁇ m Cu dendrite was added, which shows that the melting effect of Sn-based solder is hindered and the effect of reducing resistance is lower than that of 10 ⁇ 20 ⁇ m Cu dendrite. there was.
  • thermoelectric element size: 40 ⁇ 40 ⁇ 3t
  • Comparative Examples 1 to 2 the output change result according to repetition was measured using an output evaluation facility, and the results are shown in the following table. It is shown in 3.
  • thermoelectric output data [Pmax(W)] of the device was obtained.
  • Example 1 Metal dendrites One 2 3 Average Example 1 1st Cu dendrite 9.71 9.78 9.82 9.77 Example 2 9.98 10.02 9.90 9.97 Example 3 10.21 10.11 10.10 10.14 Example 4 10.75 10.72 10.70 10.72 Example 5 11.06 11.11 11.03 11.07 Example 6 10.52 10.56 10.45 10.51 Example 7 9.77 9.81 9.76 9.78 Example 8 9.37 9.45 9.47 9.43 Example 9 Ag coated Cu dendrite 10.60 10.59 10.63 10.61 Example 10 10.90 10.85 10.79 10.85 Example 11 11.02 11.12 11.10 11.08 Example 12 2nd Cu dendrite 9.42 9.36 9.38 9.39 Example 13 9.19 9.15 9.10 9.15 Example 14 9.04 9.09 9.11 9.08 Comparative Example 1 - 9.57 9.64 9.55 9.59 Comparative Example 2 Cu spherical 10.04 10.02 9.97 10.01
  • the output value increased when 10 ⁇ 20 ⁇ m class Cu dendrite was added as compared to Comparative Example 1, and in the case of 10% Ag coated Cu dendrite, the output value increased compared to the effect of reducing the resistance value. Insufficient.
  • the output value of the device increased when 10 to 20 ⁇ m-class copper dendrites were added.
  • the output value of the device did not improve when a Cu dendrite with a length of 20 to 30 ⁇ m was added (see Table 3 above).
  • the output evaluation was mounted on an output evaluation facility using each manufactured thermoelectric element, and a load of about 60 kgf was applied. After that, the temperature of the high-temperature portion was maintained at 300 degrees, and the temperature of the low-temperature cooling portion was maintained at 30 degrees, and then maintained for 100 hours to obtain data.

Abstract

The present invention relates to a thermoelectric element and a solder paste included in the thermoelectric element and, more specifically, provides a thermoelectric element with improved output and improved high-temperature reliability according to a change in the material of a bonding material.

Description

열전 소자 및 이에 포함되는 솔더 페이스트Thermoelectric element and solder paste contained therein
본 발명은 열전 소자 및 상기 열전 소자에 포함되는 솔더 페이스트에 관한 것으로, 보다 상세하게는 접합 소재의 재질 변경에 따라 출력 향상, 고온 신뢰성 등의 열전 특성이 개선된 열전 소자에 관한 것이다.The present invention relates to a thermoelectric element and a solder paste included in the thermoelectric element, and more particularly, to a thermoelectric element having improved thermoelectric properties, such as output improvement and high temperature reliability, according to a material change of a bonding material.
최근 에너지 관련 자원의 원가가 급등하고 환경오염이 심해지는 등의 문제를 해결하기 위하여 열전 소자(thermoelectric element) 및 열전 모듈(thermoelectric module)에 대한 연구가 활발히 진행되고 있다. 이들은 폐열발전 등의 열전발전이나 능동 냉각에 적용되고 있다.Recently, research on thermoelectric elements and thermoelectric modules has been actively conducted in order to solve problems such as a sudden increase in the cost of energy-related resources and environmental pollution. These are applied to thermoelectric power generation such as waste heat generation or active cooling.
일반적으로 열전 소자는 열전 레그, 전극, 및 기판으로 구성되며, 상기 열전 레그로서 N형 반도체와 P형 반도체가 사용된다. 복수의 쌍을 이루는 N형과 P형 반도체를 각각 평면에 배열한 후, 이들을 금속 전극을 이용해 직렬로 연결하여 열전 소자를 구성하게 되며, 이때 접합용 솔더 페이스트를 사용하여 접합하게 된다.In general, a thermoelectric element is composed of a thermoelectric leg, an electrode, and a substrate, and an N-type semiconductor and a P-type semiconductor are used as the thermoelectric leg. After arranging a plurality of pairs of N-type and P-type semiconductors on a flat surface, they are connected in series using a metal electrode to form a thermoelectric element, which is then joined using a solder paste for bonding.
종래 솔더 페이스트(solder paste) 중에서 납(Pb)이 함유된 솔더 페이스트는 RoHS 유해물질로 인하여 사용이 불가하다. 이에 따라, SnAg 합금계, SnAgCu계, SnAgBi계 솔더 페이스트가 주로 사용되고 있다. 일례로, 솔더 페이스트로 주로 사용되는 SAC305 및 SAC405를 적용할 경우, 구리(Cu) 전극 표면에 Cu3Sn상이 과포화되고 그 위에 Cu6Sn3상이 석출하게 된다. 이 경우, 서로 상이한 상(phase) 간의 전기전도도 차이로 인하여 전기적 특성 저하가 발생하여 열전 소자의 출력이 저하되고, 열적 미스매칭 (mismatching)으로 인하여 계면의 크랙(crack)이 발생하여 소자의 고온 신뢰성에 악영향을 줄 수 있다.Among solder pastes, solder pastes containing lead (Pb) cannot be used due to RoHS harmful substances. Accordingly, SnAg alloy-based, SnAgCu-based, and SnAgBi-based solder pastes are mainly used. For example, when SAC305 and SAC405, which are mainly used as solder pastes, are applied, a Cu 3 Sn phase is supersaturated on the surface of a copper (Cu) electrode, and a Cu 6 Sn 3 phase is deposited thereon. In this case, due to a difference in electrical conductivity between different phases, electrical characteristics are deteriorated and the output of the thermoelectric element is lowered, and thermal mismatching causes cracks at the interface, resulting in high-temperature reliability of the element. Can adversely affect
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 종래 Sn계 접합재의 소재 변경을 통해 출력 향상, 고온 신뢰성 등의 열전 특성이 개선된 열전 소자 및 이에 포함되는 솔더 페이스트를 제공하는 것을 기술적 과제로 한다. The present invention has been devised to solve the above-mentioned problems, and it is a technical problem to provide a thermoelectric element having improved thermoelectric properties such as output improvement and high temperature reliability through a material change of a conventional Sn-based bonding material and a solder paste contained therein. do.
상기한 기술적 과제를 달성하기 위해, 본 발명은 제1 기판; 상기 제1 기판과 대향 배치된 제2 기판; 상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그; 상기 제1 전극과 상기 열전 레그 사이, 및 상기 열전 레그와 상기 제2 전극 사이 중 적어도 하나에 배치되는 접합재를 포함하되, 상기 접합재는 Sn계 솔더; 및 평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하는 열전 소자를 제공한다.In order to achieve the above technical problem, the present invention is a first substrate; A second substrate facing the first substrate; A first electrode and a second electrode respectively disposed between the first substrate and the second substrate; And a plurality of thermoelectric legs interposed between the first electrode and the second electrode. And a bonding material disposed between at least one of the first electrode and the thermoelectric leg and between the thermoelectric leg and the second electrode, wherein the bonding material includes Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 μm.
본 발명의 일 구현예에 따르면, 상기 금속 덴드라이트는 1개의 주축을 구비하고, 당해 주축으로부터 복수의 가지상이 분기하되, 하기 (i) 내지 (iv) 조건 중 적어도 2개를 만족할 수 있다. According to one embodiment of the present invention, the metal dendrites have one main axis, and a plurality of branched branches diverge from the main axis, but may satisfy at least two of the following conditions (i) to (iv).
(i) 주축의 장경(長徑) 길이가 5 내지 50 ㎛이며, (i) the major axis has a long diameter of 5 to 50 μm,
(ii) 복수의 가지상 중 최장 가지상 길이가 5 내지 30 ㎛이며,(ii) the longest branch of the plurality of branches has a length of 5 to 30 μm,
(iii) 주축의 장경에 대한 가지의 개수(가지 개수/장경)가 0.5 내지 10 개/㎛이며,(iii) the number of branches (number of branches/long diameter) with respect to the major diameter of the main shaft is 0.5 to 10/µm,
(iv) 평균 입경(D50)은 5 내지 50 ㎛임. (iv) The average particle diameter (D 50 ) is 5 to 50 μm.
본 발명의 일 구현예에 따르면, 상기 금속 덴드라이트는 BET 측정법에 의해 측정된 비표면적이 0.4 내지 3.0 m2/g 일 수 있으며, 겉보기 밀도는 0.5 내지 1.5 g/㎤이고, 산소 함량은 0.35 % 이하일 수 있다.According to an embodiment of the present invention, the metal dendrite may have a specific surface area measured by a BET measurement method of 0.4 to 3.0 m 2 /g, an apparent density of 0.5 to 1.5 g/cm 3, and an oxygen content of 0.35%. It may be:
본 발명의 일 구현예에 따르면, 상기 금속 덴드라이트는 구리(Cu) 덴드라이트, 은(Ag) 코팅된 구리 덴드라이트, 또는 이들의 혼합물일 수 있다. According to one embodiment of the invention, the metal dendrites may be copper (Cu) dendrites, silver (Ag) coated copper dendrites, or mixtures thereof.
본 발명의 일 구현예에 따르면, 상기 구리 덴드라이트는 평균 가지상 길이가 5 내지 20 ㎛이며, 당해 접합재의 총 중량 대비 1 내지 40 중량%로 포함될 수 있다. According to one embodiment of the present invention, the copper dendrite has an average branched length of 5 to 20 μm, and may be included in 1 to 40% by weight based on the total weight of the bonding material.
본 발명의 일 구현예에 따르면, 상기 은(Ag) 코팅된 구리 덴드라이트는 평균 가지상 길이가 5 내지 20㎛ 이며, 당해 접합재의 총 중량 대비 10 내지 30 중량%로 포함될 수 있다. According to one embodiment of the present invention, the silver (Ag) coated copper dendrite has an average branch length of 5 to 20 μm, and may be included in an amount of 10 to 30% by weight based on the total weight of the bonding material.
본 발명의 일 구현예에 따르면, 상기 Sn계 솔더는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 금속을 포함할 수 있다. According to one embodiment of the invention, the Sn-based solder is Sn; And metals of at least one of Pb, Al, and Zn.
본 발명의 일 구현예에 따르면, 제1 기판과 제2 기판은 서로 동일하거나 또는 상이하며, 각각 독립적으로 세라믹 기판 또는 도전성 기판일 수 있다. According to an embodiment of the present invention, the first substrate and the second substrate are the same as or different from each other, and each may be a ceramic substrate or a conductive substrate independently.
본 발명의 일 구현예에 따르면, 상기 도전성 기판은, 금속 기판; 및 이의 일면에 형성된 절연층을 포함할 수 있다. According to one embodiment of the invention, the conductive substrate, a metal substrate; And an insulating layer formed on one surface thereof.
본 발명의 일 구현예에 따르면, 상기 절연층은 절연성 수지, 또는 상기 절연성 수지와 세라믹 필러를 포함할 수 있다. According to one embodiment of the present invention, the insulating layer may include an insulating resin, or the insulating resin and a ceramic filler.
본 발명의 일 구현예에 따르면, 상기 제1 기판, 제2 기판, 제1 전극, 또는 제2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. According to one embodiment of the invention, the first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, aluminum (Al), zinc (Zn), copper (Cu), It may include at least one metal of nickel (Ni) and cobalt (Co).
본 발명의 일 구현예에 따르면, 상기 제1 기판과 제2 기판이 각각 도전성 기판인 경우, 상기 도전성 기판 중 적어도 하나는 일면에 당해 기판의 길이방향에 따라 소정 간격으로 이격하여 형성된 복수의 슬릿(Slit)을 구비할 수 있다. According to an embodiment of the present invention, when the first substrate and the second substrate are each conductive substrates, at least one of the conductive substrates is formed with a plurality of slits formed by being spaced apart at predetermined intervals along the longitudinal direction of the substrate ( Slit).
본 발명의 일 구현예에 따르면, 상기 복수의 슬릿(Slit)을 구비하는 도전성 기판은 발열부일 수 있다. According to the exemplary embodiment of the present invention, the conductive substrate provided with the plurality of slits may be a heating part.
본 발명의 일 구현예에 따르면, 상기 열전 레그는 Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 및 이들의 조합으로부터 선택되는 적어도 하나의 열전반도체 물질을 포함할 수 있다. According to one embodiment of the invention, the thermoelectric leg is Bi-Te-based, Co-Sb-based, Pb-Te-based, Ge-Tb-based, Si-Ge-based, Sb-Te-based, Sm-Co-based, transition metal It may include at least one thermoelectric material selected from silicide-based, skuttrudite-based, silicide-based, half heusler, and combinations thereof.
또한 본 발명은 Sn계 솔더; 및 평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하며, 상기 금속 덴드라이트는 당해 조성물의 총 중량 대비 1 내지 40 중량%로 포함되는 솔더 페이스트를 제공한다In addition, the present invention is Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 μm, wherein the metal dendrite provides a solder paste containing 1 to 40% by weight based on the total weight of the composition.
본 발명의 일 구현예에 따르면, 상기 솔더 페이스트는 250 내지 400℃의 온도 영역대에서 금속과 이종(異種) 소재를 접합하기 위한 것일 수 있다.According to one embodiment of the present invention, the solder paste may be for bonding a metal and a dissimilar material in a temperature range of 250 to 400°C.
본 발명의 일 실시예에 따르면, Sn계 솔더에 금속 덴드라이트(dendrite)가 소정 배합비로 혼합된 솔더 페이스트를 사용함에 따라 제품의 신뢰성을 향상시킬 수 있다.According to an embodiment of the present invention, reliability of a product may be improved by using a solder paste in which metal dendrite is mixed in a predetermined blending ratio in Sn-based solder.
또한, 본 발명에서는 종래 통상의 Sn계 솔더 페이스트 사용시, 전극(예, Cu 전극)의 계면부에 발생되는 국부적인 합금층 문제를 해결하고, 전극과 열전 레그 사이의 전기전도성을 향상시켜 열전특성의 개선 및 고온 신뢰성에 기여할 수 있다. In addition, in the present invention, when a conventional Sn-based solder paste is used, a problem of a local alloy layer generated at an interface portion of an electrode (eg, a Cu electrode) is solved, and the electrical conductivity between the electrode and the thermoelectric leg is improved to improve thermoelectric properties. It can contribute to improvement and high temperature reliability.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다.The effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 열전 소자를 나타낸 사시도이다.1 is a perspective view showing a thermoelectric device according to an embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 열전 소자의 단면도이다. 2 is a cross-sectional view of a thermoelectric device according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 열전 소자의 단면도이다. 3 is a cross-sectional view of a thermoelectric device according to a second embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 패턴화된 제1전극과 제2전극이 각각 구비된 도전성 제1기판 및 도전성 제2기판의 평면도이다. 4 is a plan view of a conductive first substrate and a conductive second substrate, each of which is provided with a patterned first electrode and a second electrode according to an embodiment of the present invention.
도 5는 본 발명의 제3 실시예에 따른 열전 소자의 단면도이다. 5 is a cross-sectional view of a thermoelectric device according to a third embodiment of the present invention.
도 6은 본 발명의 제4 실시예에 따른 열전 소자의 단면도이다. 6 is a cross-sectional view of a thermoelectric device according to a fourth embodiment of the present invention.
도 7은 본 발명의 다른 일 실시예에 따라 패턴화된 제1전극과 제2전극, 및 복수의 슬릿이 구비된 도전성 제1기판 및 도전성 제2기판의 평면도이다. 7 is a plan view of a conductive first substrate and a conductive second substrate provided with a patterned first electrode, a second electrode, and a plurality of slits according to another embodiment of the present invention.
도 8은 본 발명에 따른 금속 덴드라이트(dendrite)의 구조를 나타내는 모식도이다. 8 is a schematic view showing the structure of a metal dendrite according to the present invention.
도 9는 구리(Cu) 덴드라이트(장축 크기: 10~20 ㎛)의 전자현미경 이미지이다.9 is an electron microscope image of a copper (Cu) dendrite (long axis size: 10-20 μm).
도 10은 구리(Cu) 덴드라이트(장축 크기: 20~30 ㎛)의 전자현미경 이미지이다.10 is an electron microscope image of copper (Cu) dendrites (long axis size: 20-30 μm).
도 11은 본 발명의 일 실시예에 따라 솔더 페이스트(SAC305)를 도포하여 형성된 접합층의 이미지이다. 11 is an image of a bonding layer formed by applying a solder paste (SAC305) according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 열전소자에서 전극과 접합층 간의 계면 이미지(5,000 배율)이다. 12 is an interface image (magnification of 5,000) between an electrode and a bonding layer in a thermoelectric device according to an embodiment of the present invention.
도 13은 실시예 1 내지 8의 열전 소자를 이용한 출력 변화율 평가 그래프이다.13 is an output change rate evaluation graph using the thermoelectric elements of Examples 1 to 8.
도 14는 실시예 9 내지 11, 및 비교예 1 내지 2의 열전 소자를 이용한 출력 변화율 평가 그래프이다.14 is an output change rate evaluation graph using the thermoelectric elements of Examples 9 to 11 and Comparative Examples 1 to 2.
도 15는 실시예 12 내지 14, 및 비교예 1 내지 2의 열전 소자를 이용한 출력 변화율 평가 그래프이다.15 is an output change rate evaluation graph using the thermoelectric elements of Examples 12 to 14 and Comparative Examples 1 to 2.
[부호의 설명][Description of codes]
100, 200, 300, 400: 열전 소자100, 200, 300, 400: thermoelectric element
11: 절연성 기판11: insulating substrate
10a: 제1 금속적층판10a: 1st metal laminated plate
11a: 도전성 제1 기판11a: Conductive first substrate
12a: 제1 절연층12a: first insulating layer
20a: 제1전극20a: first electrode
30: 열전 레그30: thermoelectric leg
30a: P형 열전 레그30a: P-type thermoelectric leg
30b: N형 열전 레그30b: N-type thermoelectric leg
20b: 제2전극20b: second electrode
10b: 제2 금속적층판10b: second metal laminated plate
11b: 도전성 제2기판11b: Conductive second substrate
12b: 제2 절연층12b: second insulating layer
40: 접합재40: bonding material
50: 슬릿50: slit
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 이때 본 명세서 전체 걸쳐 동일 참조 부호는 동일 구조를 지칭한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention It is not limited to the example. At this time, the same reference numerals refer to the same structure throughout the present specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings commonly understood by those skilled in the art to which the present invention pertains. In addition, terms that are defined in a commonly used dictionary are not ideally or excessively interpreted unless specifically defined.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to what is illustrated. In the drawings, the thickness is enlarged to clearly express various layers and regions. In the drawings, thicknesses of some layers and regions are exaggerated for convenience of description.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다.Also, in the specification, when a part “includes” a certain component, this means that other components may be further included instead of excluding other components, unless otherwise specified. In addition, throughout the specification, "above" or "above" means that not only is positioned above or below the target portion, but also when there is another portion in the middle, it is necessary to determine the direction of gravity. It does not mean that it is located above the standard. In addition, in the present specification, terms such as “first” and “second” do not indicate any order or importance, but are used to distinguish components from each other.
아울러, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.In addition, throughout the specification, when referred to as "planar", this means when the target portion is viewed from above, and when it is referred to as "cross-sectional", it means when the cross section of the target portion vertically cut is viewed from the side.
기존 열전소자에 사용되는 Sn계 솔더는, 전극(예, Cu 전극)의 계면 부분에 국부적인 합금층을 발생시키고, 이러한 합금층들 간의 전기전도성 차이로 인한 전기적 특성 저하 및 열전 소자의 출력 저하가 필수로 초래된다. The Sn-based solder used in the existing thermoelectric element generates a local alloy layer at the interface portion of the electrode (eg, Cu electrode), and the electrical characteristics are reduced due to the difference in electrical conductivity between these alloy layers and the output of the thermoelectric element is lowered. Is effected as a necessity.
본 발명에서는 열전소자의 출력 향상 및 고온 신뢰성 등의 열전 특성을 개선하고자, 상기 열전소자를 구성하는 접합재(Solder paste)의 소재를 변경하는 것을 특징으로 한다.In the present invention, in order to improve the thermoelectric properties, such as improving the output of the thermoelectric element and high temperature reliability, it is characterized by changing the material of the solder paste constituting the thermoelectric element.
구체적으로, 본 발명에서는 Sn계 솔더(solder); 및 덴드라이트(dendrite) 형상의 금속 분말(예, Cu dendrite)을 포함하고, 이들이 소정의 배합비로 혼합된 솔더 페이스트를 접합재로 적용한다. 이때 금속 덴드라이트 분말은 접합재의 내부에 위치하게 되므로, 전극(예, Cu 전극)의 계면에서 과포화되는 Cu3Sn 상을 억제하고 비표면적이 큰 금속 덴드라이트(Cu dendrite) 표면에서 반응하여 Sn을 소모시키고, Cu 전극에서 발생하는 부분을 최대한 억제시킬 수 있다. 즉, 금속 덴드라이트는 Sn계 솔더 내에서 과포화 상태를 막는 역할을 하게 된다. Specifically, in the present invention, Sn-based solder (solder); And a dendrite-shaped metal powder (eg, Cu dendrite), and a solder paste in which they are mixed at a predetermined mixing ratio is applied as a bonding material. At this time, since the metal dendrite powder is located inside the bonding material, the Cu 3 Sn phase supersaturated at the interface of the electrode (for example, the Cu electrode) is suppressed, and Sn is reacted on the surface of the metal dendrite having a large specific surface area. It can be consumed and the portion generated in the Cu electrode can be suppressed as much as possible. That is, the metal dendrites act to prevent supersaturation in the Sn-based solder.
또한 상기 금속 덴드라이트는 전극(예, Cu 전극)과 열전 레그 사이에 위치하여 전기전도성을 향상시키는 경로(path) 역할을 하게 되므로, 열전 소자의 전기저항을 낮추고 출력값을 높이는 결과를 얻을 수 있다. In addition, the metal dendrites are located between an electrode (for example, a Cu electrode) and a thermoelectric leg, and thus serve as a path for improving electrical conductivity, thereby lowering the electrical resistance of the thermoelectric element and increasing the output value.
아울러, 복수의 가지상을 포함하는 금속 덴드라이트는, 구 형상의 구리 입자에 비해 입자끼리의 접점의 수가 많아지기 때문에, 도전성 금속 성분의 양을 감소시켜도 도전 특성을 높여 도통성 면에서 유리하다.In addition, since the metal dendrites containing a plurality of branched shapes have a larger number of contact points between the particles than the spherical copper particles, the conductive properties are improved even when the amount of the conductive metal component is reduced, which is advantageous in terms of conductivity.
결과적으로, 본 발명에 따른 접합재(Sn계 솔더 페이스트)는 기존 사용되는 Sn계 솔더와 비교하여 열전 레그와 전극(예, Cu 전극) 간의 전기 전도성을 유의적으로 향상시키고, Cu 전극의 계면 부분에 국부적인 합금층이 형성되는 문제점을 해결하여, 전기전도도 향상으로 인한 열전소자 출력값 향상과, 열적 mismatching을 줄여 고온 신뢰성 개선효과를 확보할 수 있다. As a result, the bonding material (Sn-based solder paste) according to the present invention significantly improves the electrical conductivity between the thermoelectric leg and the electrode (e.g., Cu electrode) compared to the conventionally used Sn-based solder, and is applied to the interface portion of the Cu electrode. By solving the problem of forming a local alloy layer, it is possible to secure an effect of improving high temperature reliability by improving the output value of a thermoelectric element due to an improvement in electrical conductivity and reducing thermal mismatching.
<열전 소자><Thermoelectric element>
본 발명의 열전 소자는 열전 발전 및/또는 냉각용 소자를 모두 포함한다. The thermoelectric element of the present invention includes both thermoelectric power generation and/or cooling elements.
본 발명의 일 실시형태에 따른 열전 소자는, 서로 대향하는 2개의 기판; 상기 2개의 기판의 상부 및 하부에 각각 배치된 도전성 전극 및 열전 재료(열전 레그); 및 상기 열전재료와 도전성 전극 사이에 배치된 접합층을 포함한다. 여기서, 접합층은 Sn계 솔더와 금속 덴드라이트가 소정의 배합비로 혼합된 접합재를 적용하고, 고온에서 열처리하여 최종 열전소자를 구성하게 된다.A thermoelectric element according to an embodiment of the present invention includes: two substrates facing each other; Conductive electrodes and thermoelectric materials (thermoelectric legs) disposed on upper and lower portions of the two substrates, respectively; And a bonding layer disposed between the thermoelectric material and the conductive electrode. Here, as the bonding layer, a bonding material in which Sn-based solder and metal dendrites are mixed at a predetermined mixing ratio is applied, and heat-treated at a high temperature to form a final thermoelectric element.
이하, 첨부된 도면을 참조하여 본 발명에 따른 열전 소자의 바람직한 실시형태를 설명한다. 그러나 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 설명되는 실시형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the thermoelectric device according to the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
도 1은 본 발명의 제1 실시예에 따른 열전 소자(100)의 구조를 개략적으로 나타낸 사시도이며, 도 2는 상기 열전 소자(100)의 단면도이다. 1 is a perspective view schematically showing a structure of a thermoelectric element 100 according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the thermoelectric element 100.
도 1 및 2를 참조하면, 상기 열전 소자(100)는, 제1기판(11); 상기 제1기판(11)과 대향 배치된 제2기판(11); 상기 제1기판(11)과 제2기판(11) 사이에 각각 배치된 제1전극(20a)과 제2전극(20b); 상기 제1전극(20a)과 상기 제2전극(20b) 사이에 개재된 복수의 열전 레그(30); 및 상기 제1전극(20a)과 상기 열전 레그(30) 사이와, 상기 열전 레그(30)와 제2전극(20b) 사이 중 적어도 하나에 배치되는 접합재(40)를 포함한다. 1 and 2, the thermoelectric element 100 includes: a first substrate 11; A second substrate 11 disposed opposite to the first substrate 11; A first electrode 20a and a second electrode 20b respectively disposed between the first substrate 11 and the second substrate 11; A plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; And a bonding material 40 disposed between at least one of the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
이하, 열전 소자의 각 구성에 대하여 구체적으로 살펴보면 다음과 같다.Hereinafter, each configuration of the thermoelectric element will be described in detail as follows.
제1기판(11)과 제2기판(11)은 각각 열전 소자(100)에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것으로, 당 분야에 공지된 통상의 전기 절연성 재질로 구성될 수 있다. 일례를 들면, 제1기판(11)과 제2기판(11)은 각각 Al2O3, AlN, SiC 및 ZrO2 중 하나 또는 그 이상의 조성으로 구성되는 세라믹 기판일 수 있다. 또는 고내열성 절연성 수지나 엔지니어링 플라스틱 등으로 구성될 수도 있다. Each of the first substrate 11 and the second substrate 11 causes an exothermic or endothermic reaction when power is applied to the thermoelectric element 100, and may be made of a conventional electrical insulating material known in the art. For example, the first substrate 11 and the second substrate 11 may be ceramic substrates composed of one or more of Al 2 O 3 , AlN, SiC, and ZrO 2 , respectively. Or it may be composed of a high heat-resistant insulating resin or engineering plastic.
제1 기판(11)과 제2 기판(11)은 각각 평판 형상일 수 있으며, 그 크기나 두께 등에 특별히 제한되지 않는다. 일례로, 제1 기판(11)과 제2 기판(11) 각각의 두께는 0.5 내지 2mm일 수 있으며, 바람직하게는 0.5 내지 1.5mm, 보다 바람직하게는 0.6 내지 0.8mm일 수 있다. Each of the first substrate 11 and the second substrate 11 may have a flat plate shape, and is not particularly limited in size or thickness. For example, the thickness of each of the first substrate 11 and the second substrate 11 may be 0.5 to 2 mm, preferably 0.5 to 1.5 mm, and more preferably 0.6 to 0.8 mm.
이때 기판의 흡열과 발열의 발생 위치는 전류의 방향에 따라 변경 가능하다. 2개의 기판 중 하나는 흡열반응이 발생하는 흡열부(cold side) 기판이며, 이러한 기판에 방열패드가 적용될 수도 있다. 방열 패드는 실리콘 고분자 또는 아크릴 고분자로 형성될 수 있으며, 0.5 내지 5.0 W/mk 범위의 열 전도도를 가짐으로써 열 전달 효율을 극대화시킬 수 있다. 또한 절연체 역할을 할 수 있다. 또한 2개의 기판 중 다른 하나는 발열부 기판(hot side)일 수 있다. At this time, the positions of heat absorption and heat generation of the substrate can be changed according to the direction of the current. One of the two substrates is a cold side substrate in which an endothermic reaction occurs, and a heat pad may be applied to the substrate. The heat dissipation pad may be formed of a silicone polymer or an acrylic polymer, and may have a thermal conductivity in the range of 0.5 to 5.0 W/mk to maximize heat transfer efficiency. It can also act as an insulator. Also, the other of the two substrates may be a hot side substrate.
서로 마주보도록 대향 배치된 제1 기판(11)과 제2 기판(11) 상에 각각 제1 전극(20a)과 제2 전극(20b)이 배치된다. 즉, 제1 전극(20a)과 대향하는 위치에 제2 전극(20b)이 배치된다.The first electrode 20a and the second electrode 20b are disposed on the first substrate 11 and the second substrate 11, which are disposed to face each other. That is, the second electrode 20b is disposed at a position facing the first electrode 20a.
제1 전극(20a)과 제2 전극(20b)의 재질은 특별히 제한되지 않으며, 당 분야에서 전극으로 사용되는 재질을 제한 없이 사용할 수 있다. 일례로, 상기 제1전극(20a)과 제2전극(20b)은 서로 동일하거나 또는 상이하며, 각각 독립적으로 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 사용할 수 있다. 그 외 니켈, 금, 은, 티타늄 등을 더 포함할 수 있다. 그 크기 또한 다양하게 조절할 수 있다. 바람직하게는 구리(Cu) 전극일 수 있다. Materials of the first electrode 20a and the second electrode 20b are not particularly limited, and materials used as electrodes in the art may be used without limitation. In one example, the first electrode 20a and the second electrode 20b are the same or different from each other, and each independently aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt At least one metal of (Co) can be used. In addition, nickel, gold, silver, titanium, and the like may be further included. Its size can also be varied. Preferably it may be a copper (Cu) electrode.
상기 제1 전극(20a)과 제2 전극(20b)은 소정의 형상으로 패턴화될 수 있으며, 그 형상은 특별히 제한되지 않는다. 일례로 도 4(a)와 도 4(b)와 같은 패턴 형상을 가질 수 있다. 제1 전극(20a)과 제2 전극(20b)이 패터닝되는 방법은 종래 알려져 있는 패터닝 방법을 제한 없이 사용할 수 있다. 예를 들어 리프트 오프 반도체 공정, 증착 방법, 포토리소그래피법 등을 사용할 수 있다.The first electrode 20a and the second electrode 20b may be patterned into a predetermined shape, and the shape is not particularly limited. For example, it may have a pattern shape as shown in Figure 4 (a) and Figure 4 (b). As a method of patterning the first electrode 20a and the second electrode 20b, a conventionally known patterning method can be used without limitation. For example, a lift-off semiconductor process, a deposition method, a photolithography method, or the like can be used.
상기 제1 전극(20a)과 제2 전극(20b) 사이에 복수의 열전 레그(30)가 개재된다.A plurality of thermoelectric legs 30 are interposed between the first electrode 20a and the second electrode 20b.
도 1을 참조하여 설명하면, 열전 레그(30)는 복수의 P형 열전 레그(30a)와 N형 열전 레그(30b)를 각각 포함하며, 이들이 일방향으로 교번하여 배치된다. 이와 같이 일방향으로 이웃하는 P형 열전 레그(30a) 및 N형 열전 레그(30b)는 그 상면 및 하면이 각각 제1전극(20a) 및 제2전극(20b)과 전기적으로 직렬 연결된다. 이러한 각각의 열전 레그(30a, 30b)는 열전반도체 기재를 포함한다.Referring to FIG. 1, the thermoelectric legs 30 include a plurality of P-type thermoelectric legs 30a and N-type thermoelectric legs 30b, which are alternately arranged in one direction. In this way, the upper and lower surfaces of the P-type thermoelectric legs 30a and N-type thermoelectric legs 30b neighboring in one direction are electrically connected in series with the first electrode 20a and the second electrode 20b, respectively. Each of these thermoelectric legs 30a, 30b includes a thermoelectric semiconductor substrate.
상기 열전 레그(30)에 포함되는 열전반도체는 전기가 인가되면 양단에 온도차가 발생하거나, 또는 그 양단에 온도차가 발생하면 전기가 발생하는 당 업계의 통상적인 재료로 형성될 수 있다. 일례로, 전이금속, 희토류 원소, 13족 원소, 14족 원소, 15족 원소 및 16족 원소로 이루어진 군으로부터 선택되는 적어도 하나의 원소를 포함하는 열전반도체를 하나 이상 사용할 수 있다. 여기서, 희토류 원소의 예로는 Y, Ce, La 등이 있으며, 상기 전이금속의 예로는 Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, 및 Re 중 하나 이상일 수 있으며, 상기 13족 원소의 예로는 B, Al, Ga, 및 In 중 하나 이상일 수 있으며, 상기 14족 원소의 예로는 C, Si, Ge, Sn, 및 Pb 중 하나 이상일 수 있으며, 상기 15족 원소의 예로는 P, As, Sb, 및 Bi 중 하나 이상일 수 있고, 상기 16족 원소의 예로는 S, Se, 및 Te 중 하나 이상을 사용할 수 있다. The thermoelectric semiconductor included in the thermoelectric leg 30 may be formed of a conventional material in the art where temperature is generated at both ends when electricity is applied or electricity is generated when the temperature difference is generated at both ends. For example, one or more thermoelectric semiconductors including at least one element selected from the group consisting of transition metals, rare earth elements, group 13 elements, group 14 elements, group 15 elements, and group 16 elements may be used. Here, examples of rare earth elements include Y, Ce, La, etc., and examples of the transition metal include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Ag, and Re may be one or more, and examples of the Group 13 element may be one or more of B, Al, Ga, and In, and examples of the Group 14 element may be C, Si, Ge, Sn, and Pb. It may be one or more, and examples of the group 15 element may be one or more of P, As, Sb, and Bi, and examples of the group 16 element may use one or more of S, Se, and Te.
사용 가능한 열전 반도체로는 비스무트(Bi), 텔레륨(Te), 코발트(Co), 사마륨(Sb), 인듐(In), 및 세륨(Ce) 중 적어도 2개 이상을 포함하는 조성으로 이루어진 질 수 있으며, 이의 비제한적인 예로는, Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 또는 이들의 조합 등이 있다. 구체적인 일례를 들면, Bi-Te계 열전반도체로는 Sb 및 Se가 도펀트로서 사용된 (Bi,Sb)2(Te,Se)3계 열전반도체를 예시할 수 있으며, Co-Sb계 열전반도체로서는 CoSb3계 열전반도체를 예시할 수 있으며, Sb-Te계 열전반도체로서는 AgSbTe2, CuSbTe2를 예시할 수 있고, Pb-Te계 열전반도체로서는 PbTe, (PbTe)mAgSbTe2 등을 예시할 수 있다. 바람직하게는 Bi-Te계 또는 CoSb계 열전 재료로 구성될 수 있다.As a thermoelectric semiconductor that can be used, it can be made of a composition containing at least two or more of bismuth (Bi), telelium (Te), cobalt (Co), samarium (Sb), indium (In), and cerium (Ce). Non-limiting examples thereof, Bi-Te, Co-Sb, Pb-Te, Ge-Tb, Si-Ge, Sb-Te, Sm-Co, transition metal silicides, scoo Tertite (Skuttrudite), silicide (Silicide), half whistler (Half heusler) or a combination thereof. As a specific example, Bi-Te-based thermoelectric semiconductors may include (Bi,Sb) 2 (Te,Se) 3 thermoelectric semiconductors in which Sb and Se are used as a dopant, and CoSb as a Co-Sb thermoelectric semiconductor. Three -type thermoelectric semiconductors can be exemplified, AgSbTe 2 and CuSbTe 2 can be exemplified as Sb-Te-based thermoelectric semiconductors, and PbTe, (PbTe)mAgSbTe 2 and the like can be exemplified as Pb-Te-based thermoelectric semiconductors. Preferably it may be composed of a Bi-Te-based or CoSb-based thermoelectric material.
상기 열전 반도체는 소정 크기를 갖는 입자일 수 있으며, 예를 들어 평균 입경이 약 0.01 내지 약 100 ㎛의 범위일 수 있다.The thermoelectric semiconductor may be particles having a predetermined size, for example, may have an average particle diameter in the range of about 0.01 to about 100 μm.
이와 같은 열전 반도체는 다양한 방법으로 제조될 수 있으며, 특별히 제한되지 않는다. 일례로, 열전 반도체는 용융방사 회전법(melt-spining)이나 기상원자화법(gas atomization) 등을 수행한 후 가압소결법을 순차적으로 진행하여 제조될 수 있다. 이러한 P형 열전 레그(30a) 및 N형 열전 레그(30b)를 포함하는 열전 레그(30)는 절단 가공 등의 방법으로 소정의 형상, 일례로 직육면체의 형상으로 형성하여 열전 소자에 적용될 수 있다. Such a thermoelectric semiconductor can be manufactured in various ways, and is not particularly limited. For example, the thermoelectric semiconductor may be manufactured by sequentially performing a pressure sintering method after performing a melt-spining method or a gas atomization method. The thermoelectric leg 30 including the P-type thermoelectric leg 30a and the N-type thermoelectric leg 30b may be formed into a predetermined shape, such as a rectangular parallelepiped, by a method such as cutting, and applied to the thermoelectric element.
본 발명에 따른 열전 소자(100)는, 제1전극(20a)과 열전 레그(30) 사이; 및 상기 열전 레그(30)와 제2전극(20b) 사이 중 적어도 하나, 바람직하게는 이들 모두의 사이에 배치되는 접합재(40)를 포함한다.The thermoelectric element 100 according to the present invention includes: between the first electrode 20a and the thermoelectric leg 30; And at least one of the thermoelectric leg 30 and the second electrode 20b, preferably a bonding material 40 disposed between all of them.
상기 접합재는 당 분야에 공지된 통상의 Sn계 솔더에, 덴드라이트(dendrite) 형상의 금속 분말을 포함하는 것을 특징으로 한다. The bonding material is characterized in that it contains a metal powder in the form of a dendrite (dendrite) in a common Sn-based solder known in the art.
하기 도 8 내지 10에 나타난 바와 같이, 금속 덴드라이트는 전자현미경 (100~20,000 배율)으로 관찰했을 때, 1개의 주축을 구비하고 있으며 당해 주축으로부터 복수의 가지상이 수직 또는 비스듬히 분기해서, 이차원적 또는 삼차원적으로 성장한 형상을 갖는 도전성 금속 입자이다. 이때, 주축이란 복수의 가지가 분기해 있는 기초가 되는 봉상 부분을 나타낸다. 이러한 금속 덴드라이트의 평균 가지상 길이는 특별히 제한되지 않으며, 일례로 5 내지 50 ㎛이며, 바람직하게는 5 내지 30 ㎛일 수 있다.As shown in FIGS. 8 to 10 below, the metal dendrites have one main axis when observed with an electron microscope (100 to 20,000 magnification), and a plurality of branched branches from the main axis vertically or obliquely branch, or two-dimensional or It is a conductive metal particle having a three-dimensionally grown shape. At this time, the main axis indicates a rod-like portion on which a plurality of branches are branched. The average branch length of the metal dendrites is not particularly limited, and is, for example, 5 to 50 μm, and preferably 5 to 30 μm.
그 중에서도, 본 발명의 금속 덴드라이트는 전자현미경(500 ~ 20,000 배율)으로 관찰했을 때, 하기 (i) 내지 (iv)의 소정 조건 중 적어도 2개를 만족하는 덴드라이트상을 나타내는 것이 바람직하다. Among them, the metal dendrites of the present invention preferably exhibit a dendrite phase that satisfies at least two of the following conditions (i) to (iv) when observed with an electron microscope (500 to 20,000 magnification).
구체적으로, (i) 금속 덴드라이트에서 주축의 장경(長徑) 길이는, 주축의 총 길이를 의미하는 것으로, 5 내지 50 ㎛일 수 있으며, 구체적으로 5 내지 30 ㎛ 일 수 있다. (ii) 복수의 가지상 중 최장 가지상 길이는, 주축으로부터 뻗은 가지 중에서 가장 긴 가지의 길이를 의미하며, 덴드라이트의 성장 정도를 나타낸다. 일례로, 5 내지 30 ㎛일 수 있으며, 구체적으로 10 내지 25 ㎛일 수 있다. (iii) 주축의 장경에 대한 가지의 개수(가지 개수/장경)는 덴드라이트의 가지의 많음을 나타내는 것으로, 0.5 내지 10 개/㎛일 수 있으며, 구체적으로 1 내지 8 개/㎛일 수 있다. (iv) 평균 입경(D50)은 덴드라이트의 장경 길이를 포함하는 2차원적 크기를 의미하는 것으로, 5 내지 50 ㎛일 수 있으며, 구체적으로 5 내지 30㎛ 일 수 있다. 그 외, 덴드라이트의 주축 굵기는 0.3 내지 5.0 ㎛일 수 있다. 덴드라이트에 있어서의 주축의 굵기가 너무 얇을 경우 주축이 견고하지 않기 때문에 가지가 성장하기 어려워질 가능성이 있는 한편, 너무 굵을 경우 입자가 응집하기 쉬워져, 솔방울 형상으로 되기 쉬워질 가능성이 있다.Specifically, (i) in the metal dendrites, the long axis length of the main shaft means the total length of the main shaft, and may be 5 to 50 μm, and specifically 5 to 30 μm. (ii) The longest branch length among the plurality of branch shapes means the length of the longest branch among the branches extending from the main axis, and indicates the growth degree of dendrites. In one example, it may be 5 to 30 ㎛, specifically 10 to 25 ㎛. (iii) The number of branches (number of branches/longer diameter) with respect to the major diameter of the main shaft indicates the number of branches of dendrites, and may be 0.5 to 10/µm, and specifically 1 to 8/µm. (iv) The average particle diameter (D 50 ) refers to a two-dimensional size including the long diameter of the dendrites, and may be 5 to 50 μm, and specifically 5 to 30 μm. In addition, the main shaft thickness of the dendrites may be 0.3 to 5.0 μm. When the thickness of the main shaft in dendrites is too thin, the main shaft is not strong, so there is a possibility that the branches are difficult to grow, whereas if it is too thick, the particles tend to aggregate and tend to become conical.
본 발명의 금속 덴드라이트는 전술한 구조적 특징을 가짐에 따라 구형의 금속 입자보다 높은 비표면적을 갖게 된다. 본 발명의 다른 일 구체예를 들면, 상기 금속 덴드라이트는 BET 측정법에 의해 측정된 비표면적이 0.4 내지 3.0 m2/g일 수 있으며, 구체적으로 0.5 내지 2.0 m2/g일 수 있다. 상기 금속 덴드라이트의 비표면적이 현저히 작으면 가지가 발달해 있지 않고, 솔방울 내지 구상에 가깝기 때문에, 덴드라이트상 구리분이 나타내는 효과를 얻기 어려워진다. 또한 비표면적이 너무 클 경우 덴드라이트의 가지가 지나치게 가늘어져, 페이스트 가공 공정에서 가지가 부러지는 등의 문제가 발생해서, 오히려 도전성을 저해할 가능성이 있다. 또한 금속 덴드라이트의 겉보기 밀도는 0.5 내지 1.5 g/㎤ 일 수 있으며, 산소 함량은 0.35 % 이하가 적합하다.The metal dendrites of the present invention have a higher specific surface area than spherical metal particles as they have the aforementioned structural characteristics. For another embodiment of the present invention, the metal dendrite may have a specific surface area measured by a BET measurement method of 0.4 to 3.0 m 2 /g, and specifically 0.5 to 2.0 m 2 /g. If the specific surface area of the metal dendrites is significantly small, the branches do not develop, and since they are close to a pine cone to a spherical shape, it is difficult to obtain the effect of the dendrites copper powder. In addition, when the specific surface area is too large, dendrite branches become too thin, and problems such as broken branches occur in the paste processing step, and there is a possibility that the conductivity is rather impaired. In addition, the metal dendrite may have an apparent density of 0.5 to 1.5 g/cm 3, and an oxygen content of 0.35% or less is suitable.
본 발명에 따른 금속 덴드라이트는, 전기 전도성을 가지면서 전술한 구조적 특징과 물성을 만족한다면, 사용하고자 하는 금속 재질에 특별히 제한되지 않는다. 바람직한 일례를 들면, 구리 덴드라이트(Cu dendrite), 은(Ag) 코팅된 구리 덴드라이트(Ag coated Cu dendrite), 또는 이들의 혼합물을 사용할 수 있다. 특히 구리(Cu)는 은(Ag)과 전기 전도도가 유사할 뿐만 아니라 경제적이므로 바람직하다. The metal dendrite according to the present invention is not particularly limited to the metal material to be used if it has electrical conductivity and satisfies the structural characteristics and physical properties described above. As a preferred example, copper dendrite (Cu dendrite), silver (Ag) coated copper dendrite (Ag coated Cu dendrite), or a mixture thereof may be used. In particular, copper (Cu) is preferable because it is not only similar in electrical conductivity to silver (Ag) but also economical.
본 발명에서, 금속 덴드라이트의 함량은 특별히 제한되지 않으며, 일례로 당해 접합재의 총 중량 대비 1 내지 40 중량%로 포함될 수 있으며, 바람직하게는 5 내지 30 중량%일 수 있다. In the present invention, the content of the metal dendrites is not particularly limited, and for example, may be included in 1 to 40% by weight based on the total weight of the bonding material, preferably 5 to 30% by weight.
일 구체예를 들면, 상기 금속 덴드라이트로서 평균 가지상 길이가 5 내지 20 ㎛인 구리 덴드라이트(Cu dendrite)를 사용하는 경우, 이러한 구리 덴드라이트의 함량은 당해 접합재의 총 중량 대비 1 내지 40 중량%, 바람직하게는 5 내지 30 중량%로 포함되는 것이 바람직하다. In one embodiment, when using a copper dendrite (Cu dendrite) having an average branch length of 5 to 20 μm as the metal dendrites, the content of such copper dendrites is 1 to 40 weight compared to the total weight of the bonding material %, preferably 5 to 30% by weight.
다른 일 구체예를 들면, 상기 금속 덴드라이트로서 평균 가지상 길이가 5 내지 20㎛, 바람직하게는 10 내지 30 ㎛의 은(Ag) 코팅된 구리 덴드라이트를 사용하는 경우, 당해 접합재의 총 중량 대비 10 내지 30 중량% 범위로 포함되는 것이 바람직하다. In another embodiment, when the metal dendrites use silver (Ag) coated copper dendrites having an average branch length of 5 to 20 µm, preferably 10 to 30 µm, compared to the total weight of the bonding material It is preferably included in the range of 10 to 30% by weight.
본 발명에서는 접합재 성분으로 금속 덴드라이트를 단독 사용할 수 있으며, 그 외에 다양한 재질, 입경, 및/또는 형상을 갖는 금속 분말을 더 포함하여 접합재 성분으로 혼용하는 것도 본 발명의 범주에 속한다. 일례로, 전술한 금속 덴드라이트와, 구형, 침상형, 플레이크상, 무정형 등의 금속 분말을 1종 이상 혼용할 수 있다. In the present invention, the metal dendrites can be used alone as the bonding material component, and it is also included in the scope of the present invention to mix the metal powder having various materials, particle sizes, and/or shapes as a bonding material component. For example, the above-mentioned metal dendrites and one or more metal powders such as spherical, acicular, flake, and amorphous may be mixed.
전술한 금속 덴드라이트와 혼용되는 Sn계 솔더는 당 분야에 공지된 통상의 Sn계 솔더 성분을 사용할 수 있다. 바람직한 일례를 들면, 상기 Sn계 솔더는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 금속을 포함하는 조성을 가질 수 있다. . The Sn-based solder mixed with the above-mentioned metal dendrites may use a common Sn-based solder component known in the art. For a preferred example, the Sn-based solder is Sn; It may have a composition including at least one metal of Pb, Al, and Zn. .
선택적으로, 본 발명의 열전 소자(100)는 상기 제1 전극(20a)과 열전 레그(30) 사이; 및 상기 열전 레그(30)와 제2 전극(20b) 사이에 배치되는 확산방지층(미도시)을 더 포함할 수 있다. 이러한 확산방지층은 당 분야에 공지된 통상의 성분을 제한 없이 사용할 수 있으며, 일례로 탄탈늄(Ta), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군에서 선택된 적어도 하나를 포함할 수 있다.Optionally, the thermoelectric element 100 of the present invention is between the first electrode 20a and the thermoelectric leg 30; And a diffusion barrier layer (not shown) disposed between the thermoelectric leg 30 and the second electrode 20b. The diffusion barrier layer can be used without limitation, conventional components known in the art, for example, at least one selected from the group consisting of tantalum (Ta), tungsten (W), molybdenum (Mo) and titanium (Ti) can do.
본 발명에 일 실시예에 따른 열전 소자(100)에서, 제1 전극(20a) 및 제2 전극(20b)은 전력 공급원에 전기적으로 연결될 수 있다. 외부에서 DC 전압을 인가했을 때 p형 열전 레그(30a)의 정공과 n형 열전 레그(30b)의 전자가 이동함으로써 열전 레그 양단에서 발열과 흡열이 일어날 수 있다.In the thermoelectric element 100 according to an embodiment of the present invention, the first electrode 20a and the second electrode 20b may be electrically connected to a power supply. When a DC voltage is applied from the outside, the holes of the p-type thermoelectric leg 30a and the electrons of the n-type thermoelectric leg 30b move, so that heat and endothermic heat may occur at both ends of the thermoelectric leg.
본 발명의 다른 일 실시예에 따른 열전 소자(100)에서, 제1전극(20a) 및 제2 전극(20b) 중 적어도 하나는 열 공급원에 노출될 수 있다. 외부 열 공급원에 의하여 열을 공급받으면 전자와 정공이 이동하면서 열전소자에 전류의 흐름이 생겨 발전(發電)을 일으킬 수 있다.In the thermoelectric device 100 according to another embodiment of the present invention, at least one of the first electrode 20a and the second electrode 20b may be exposed to a heat source. When heat is supplied by an external heat source, electrons and holes move, and current flows in the thermoelectric element, thereby generating electricity.
전술한 제1 실시예에 따른 열전소자는 당 분야에 공지된 방법에 따라 제조될 수 있다. 이러한 제조방법의 일 실시예를 들면, (a) 2개의 절연성 기판을 준비하는 단계; (b) 상기 2개의 절연성 기판의 일면 상에 각각 제1전극과 제2전극을 형성하는 단계; 및 (c) 상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수의 열전 레그를 배치하고 상기 접합재를 이용하여 접합하는 단계를 포함하여 구성될 수 있다. 이때, 상기 제조방법은 하기 방법이나 순서에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.The thermoelectric element according to the first embodiment described above may be manufactured according to a method known in the art. For an example of such a manufacturing method, (a) preparing two insulating substrates; (b) forming a first electrode and a second electrode on one surface of the two insulating substrates, respectively; And (c) placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween and bonding using the bonding material. At this time, the manufacturing method is not limited only by the following method or order, and the steps of each process may be modified or selectively mixed as necessary.
상기 제조방법에서 열전 재료를 이용하여 열전레그를 제조하는 방법의 일례를 들면, Bi-Te 또는 CoSb계 열전재료를 RSP를 이용하여 용융시킨 후 리본 제작 또는 원료 분말 배합 후 열처리 등의 소성을 통해 1차적으로 상(phase)을 형성한다. 이후 핫 프레스(Hot press) 및 방전 플라즈마 소결(Spark Plasma Sintering) 등을 통해 소결하여 소결체를 형성한 후, 목적 두께에 맞게 슬라이싱을 진행하고, 최종 두께에 맞게 랩핑(lapping)을 진행하여 소재의 높이를 1/100 이내로 조절한다. 단차가 제어된 열전 소재의 표면에 Co, Ni, Cr, 및 W 등의 표면 코팅을 진행한 후, 최종적으로 재료의 크기에 맞게 다이싱(dicing)을 실시하여 열전 레그가 제조된다. As an example of a method of manufacturing a thermoelectric leg using a thermoelectric material in the above manufacturing method, Bi-Te or CoSb-based thermoelectric material is melted using an RSP and then manufactured by ribbon or after mixing raw material powders and then firing such as heat treatment 1 It forms a phase. After sintering through hot press and discharge plasma sintering (Spark Plasma Sintering) to form a sintered body, slicing is performed according to the desired thickness, and lapping is performed according to the final thickness to increase the height of the material. Adjust within 1/100. A thermoelectric leg is manufactured by subjecting the surface of the thermoelectric material having stepped control to surface coatings such as Co, Ni, Cr, and W, and finally dicing according to the size of the material.
또한 기판으로는 Al2O3, AlN, SiC 및 ZrO2 등의 세라믹 기판을 사용하고, 상기 기판의 일면 상에 Cu 전극 패턴을 구성한 후, 열처리하여 고착화시킨다. In addition, a ceramic substrate such as Al 2 O 3 , AlN, SiC, and ZrO 2 is used, and a Cu electrode pattern is formed on one surface of the substrate, followed by heat treatment to fix it.
상기와 같이 준비된 열전 레그와 기판을 이용하여 제1전극과 제2전극 사이에 복수의 열전 레그를 배치 및 접합한다. 이러한 접합재로는, Sn계 솔더; 및 금속 덴드라이트(dendrite)가 소정의 혼합비로 포함된 Sn계 솔더 페이스트를 적용한다. 상기 접합 단계의 구체적인 일례를 들면, 제1전극(20a)의 패턴에 맞게 접합재 페이스트를 일정 두께로 도포하고, 그 위에 n형 및 p형의 열전 레그를 배열한다. 이후 반대쪽인 대향전극(제2전극)의 경우 접합재만 도포한 상태에서 기존에 제작되어 있는 n형 및 p형 열전 레그가 배열된 부분에 배치하여 최종 구성을 완료한다. 이어서, 300 내지 500℃로 열처리하여 최종 접합한 후 전선을 연결하여 열전 소자의 제작을 완료한다.A plurality of thermoelectric legs are disposed and bonded between the first electrode and the second electrode using the thermoelectric legs and substrate prepared as described above. Examples of such a bonding material include Sn-based solders; And a Sn-based solder paste in which metal dendrite is included at a predetermined mixing ratio. For a specific example of the bonding step, a bonding material paste is applied to a pattern of the first electrode 20a with a predetermined thickness, and n-type and p-type thermoelectric legs are arranged thereon. Subsequently, in the case of the opposite electrode (second electrode) on the opposite side, the final configuration is completed by arranging the previously formed n-type and p-type thermoelectric legs in a portion where only the bonding material is applied. Subsequently, heat treatment is performed at 300 to 500° C. to final bonding, and then electric wires are connected to complete manufacturing of the thermoelectric element.
전술한 열전 레그 및 이를 포함하는 열전 소자는, 일례로 열전냉각시스템 또는 열전발전시스템에 구비될 수 있다. 이러한 열전발전 시스템은 온도차를 이용하여 발전을 일으키는 통상의 시스템을 의미하며, 일례로 폐열로, 차량용 열전발전 시스템, 태양광 열전발전 시스템 등을 들 수 있다. 또한 열전냉각 시스템은 마이크로 냉각시스템, 범용냉각기기, 공조기, 폐열 발전 시스템 등을 들 수 있으며, 이에 한정되는 것은 아니다. 일례로, 250 내지 400℃에서 Sn계 솔더를 사용하는 열전 소자라면 특별히 제한되지 않는다. The above-described thermoelectric leg and the thermoelectric element including the same may be provided in, for example, a thermoelectric cooling system or a thermoelectric power generation system. The thermoelectric power generation system means a normal system that generates power by using a temperature difference, and examples thereof include a waste heat furnace, a vehicle thermoelectric power generation system, and a solar thermoelectric power generation system. In addition, the thermoelectric cooling system may include, but is not limited to, a micro cooling system, a general purpose cooling device, an air conditioner, and a waste heat power generation system. For example, the thermoelectric element using Sn-based solder at 250 to 400°C is not particularly limited.
상기 열전발전 시스템 및 열전냉각 시스템의 각 구성 및 제조방법에 대해서는 당 분야에 공지되어 있는 바, 본 명세서에서는 구체적인 기재를 생략한다. 또한 본 발명에서는 동일한 도면 부호로 표시되더라도, 이들은 서로 상이한 구성을 가질 수 있다. Each configuration and manufacturing method of the thermoelectric power generation system and the thermoelectric cooling system are known in the art, and thus, detailed description is omitted. Also, in the present invention, even though they are denoted by the same reference numerals, they may have different configurations from each other.
도 3은 본 발명의 제2 실시예에 따른 열전 소자(200)의 단면을 개략적으로 나타낸 단면도이다. 도 3에서 도 1~2와 동일한 참조 부호는 동일한 부재를 나타낸다. 3 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 200 according to a second embodiment of the present invention. 3, the same reference numerals as those in FIGS. 1 to 2 denote the same members.
이하 도 3에 대한 설명에서는 도 1~2와 중복되는 내용은 다시 설명하지 않으며, 차이점에 대해서만 설명한다. 도 3를 참조하면, 본 발명의 제2 실시예에 따른 열전 소자(200)는, 절연성 세라믹 기판(11)을 사용하는 도 1~2와 비교하여, 금속 기판(11a, 11b)의 일면에 절연층(12a, 12b)이 형성된 도전성 기판(10a, 10b)을 사용한다. Hereinafter, in the description of FIG. 3, contents overlapping with FIGS. 1 to 2 will not be described again, and only differences will be described. Referring to FIG. 3, the thermoelectric element 200 according to the second embodiment of the present invention is insulated on one surface of the metal substrates 11a and 11b compared to FIGS. 1 to 2 using the insulating ceramic substrate 11 The conductive substrates 10a, 10b on which the layers 12a, 12b are formed are used.
구체적으로 도 3의 제2 실시예에 따른 열전 소자(200)는, 도전성 제1 기판(11a); 상기 도전성 제1 기판(11a)의 일면에 형성된 제1 절연층(12a); 상기 제1 절연층(12a) 상에 배치된 제1 전극(20a); 상기 제1 전극(20a)과 대향하여 배치되는 제2 전극(20b); 상기 제1 전극(20a)과 상기 제2 전극(20b) 사이에 개재(介在)된 복수의 열전 레그(30); 및 상기 제1 전극(20a)과 상기 열전 레그(30) 사이, 및 상기 열전 레그(30)와 상기 제2 전극(20b) 사이 중 적어도 하나에 배치되는 접합재(40)를 포함한다. Specifically, the thermoelectric element 200 according to the second embodiment of FIG. 3 includes: a conductive first substrate 11a; A first insulating layer 12a formed on one surface of the conductive first substrate 11a; A first electrode 20a disposed on the first insulating layer 12a; A second electrode 20b disposed opposite to the first electrode 20a; A plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; And a bonding material 40 disposed between at least one of the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
도전성 제1기판(11a)과 도전성 제2 기판(11b)은 열전 소자(100)에 전원이 인가될 때 발열 또는 흡열 반응을 일으키는 것이다. 이들은 서로 동일하거나 또는 상이할 수 있으며, 각각 당 분야에 공지된 통상의 도전성 금속 재질로 구성될 수 있다. 일례로, 도전성 제1기판(11a)은 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함할 수 있다. The conductive first substrate 11a and the conductive second substrate 11b cause an exothermic or endothermic reaction when power is applied to the thermoelectric element 100. These may be the same as or different from each other, and each may be made of a conventional conductive metal material known in the art. For example, the conductive first substrate 11a may include at least one metal among aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co).
한편 도전성 기판(11a, 11b) 상에 전극(20a, 20b)이 직접적으로 배치될 경우 전기적으로 도통하게 되므로, 이들 사이에는 전기절연성 물질이 개재(介在)되어야 한다. 이에 따라, 제1 전극(20a)이 배치되는 도전성 제1기판(11a)의 일면 상에 제1절연층(12a)이 형성되며, 제2 전극(20b)이 배치되는 도전성 제2기판(11b)의 일면 상에 제2절연층(12b)이 형성된다. 여기서, 제1절연층(12a)과 제2절연층(12b)은 서로 마주보도록 대향 배치된다.On the other hand, when the electrodes 20a and 20b are directly disposed on the conductive substrates 11a and 11b, they are electrically conductive, and an electrically insulating material must be interposed therebetween. Accordingly, the first insulating layer 12a is formed on one surface of the conductive first substrate 11a on which the first electrode 20a is disposed, and the conductive second substrate 11b on which the second electrode 20b is disposed. The second insulating layer 12b is formed on one surface. Here, the first insulating layer 12a and the second insulating layer 12b are disposed to face each other.
제1절연층(12a)과 제2절연층(12b)는 서로 동일하거나 또는 상이하며, 성막이 용이한 전기절연성 물질을 사용할 수 있다. 일례로, 절연성 수지를 단독 사용하거나 또는 상기 절연성 수지와 세라믹 필러(분말)의 혼합물을 포함할 수 있다.The first insulating layer 12a and the second insulating layer 12b may be the same or different from each other, and an easily insulating electrical insulating material may be used. As an example, an insulating resin may be used alone, or a mixture of the insulating resin and a ceramic filler (powder) may be included.
절연성 수지로는, 당 분야에 공지된 통상의 열경화성 수지(resin) 및 열가소성 수지 중 적어도 하나를 포함할 수 있다. 고온 영역(≥ 300℃)에서 지속적인 열전 성능을 발휘하기 위해서, 상기 제1절연층(12a)은 유리전이온도(Tg)가 250℃ 이상, 바람직하게는 250 내지 300℃인 내열성 수지를 사용하는 것이 바람직하다. The insulating resin may include at least one of a conventional thermosetting resin and a thermoplastic resin known in the art. In order to exhibit continuous thermoelectric performance in a high temperature region (≥ 300°C), it is recommended that the first insulating layer 12a use a heat-resistant resin having a glass transition temperature (Tg) of 250°C or higher, preferably 250 to 300°C. desirable.
상기 제1절연층(12a)과 제2절연층(12b)으로 사용 가능한 열경화성 수지의 비제한적인 예로는, 에폭시 수지, 폴리우레탄 수지, 알키드 수지, 페놀 수지, 멜라민 수지, 실리콘 수지, 요소 수지, 식물성유 변성 페놀수지, 크실렌 수지, 구아나민 수지, 디알릴프탈레이트 수지, 비닐에스테르 수지, 불포화 폴리에스테르 수지, 푸란 수지, 폴리이미드 수지, 시아네이트 수지, 말레이미드 수지 및 벤조시클로부텐 수지로 이루어진 군에서 선택된 1종 이상일 수 있다. 구체적으로, 열경화성 수지는 에폭시 수지, 페놀 수지, 멜라민 수지, 실리콘 수지, 우레탄 수지 및 요소 수지로 구성된 군에서 선택된 1종 이상일 수 있다. Non-limiting examples of the thermosetting resin usable as the first insulating layer 12a and the second insulating layer 12b include epoxy resin, polyurethane resin, alkyd resin, phenol resin, melamine resin, silicone resin, urea resin, In the group consisting of vegetable oil modified phenolic resin, xylene resin, guanamine resin, diallyl phthalate resin, vinyl ester resin, unsaturated polyester resin, furan resin, polyimide resin, cyanate resin, maleimide resin and benzocyclobutene resin It may be one or more selected. Specifically, the thermosetting resin may be at least one selected from the group consisting of epoxy resin, phenol resin, melamine resin, silicone resin, urethane resin and urea resin.
에폭시 수지는 당 분야에 공지된 통상적인 에폭시 수지를 제한 없이 사용할 수 있으며, 1분자 내에 할로겐 원소를 비포함하면서, 에폭시기가 2개 이상 존재하는 것이 바람직하다. 사용 가능한 에폭시 수지의 비제한적인 예를 들면, 비스페놀A형/F형/S형 수지, 페놀 노볼락 에폭시 수지, 다가 페놀형 에폭시 수지, 노볼락형 에폭시 수지, 알킬페놀 노볼락형 에폭시, 바이페닐형, 아랄킬(Aralkyl)형, 나프톨(Naphthol)형, 디시클로펜타디엔형 또는 이들의 혼합 형태 등이 있다. 보다 구체적인 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 S 노볼락형 에폭시 수지, 비페닐 노볼락형 에폭시 수지, 나프톨 노볼락형 에폭시 수지, 나프톨 페놀 공축 노볼락형 에폭시 수지, 나프톨 코레졸 공축 노볼락형 에폭시 수지, 방향족 탄화수소 포름알데히드 수지 변성 페놀 수지형 에폭시 수지, 트리페닐 메탄형 에폭시 수지, 테트라 페닐에탄형 에폭시 수지, 디시클로펜타디엔 페놀 부가반응형 에폭시 수지, 페놀 아랄킬형 에폭시 수지, 다관능성 페놀 수지, 나프톨 아랄킬형 에폭시 수지 등이 있다. 이때 전술한 에폭시 수지를 단독 사용하거나 또는 2종 이상 혼용할 수도 있다. 바람직한 일례를 들면, 상기 고내열성 에폭시 수지는, 페놀 노볼락 에폭시 수지 및 다가 페놀형 에폭시 수지 중에서 선택된 적어도 1종을 포함하는 것이다. 여기서, 다가 페놀형 에폭시 수지는 분자 내 평균 에폭시기 수가 2개 이상, 바람직하게는 2~4개인 에폭시 수지를 지칭한다. Epoxy resins can be used without limitation, conventional epoxy resins known in the art, it is preferable that two or more epoxy groups are present, without containing a halogen element in one molecule. Non-limiting examples of usable epoxy resins include bisphenol A/F/S resin, phenol novolac epoxy resin, polyhydric phenol epoxy resin, novolac epoxy resin, alkylphenol novolac epoxy, biphenyl Type, aralkyl type, naphthol type, dicyclopentadiene type, or a mixed form thereof. More specific examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, anthracene epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, and phenol novolac Type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol S novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol phenol coaxial novolac type epoxy resin , Naphthol corresol coaxial novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, triphenyl methane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene phenol addition reaction epoxy resin, phenol aral Kill type epoxy resin, polyfunctional phenol resin, naphthol aralkyl type epoxy resin, and the like. At this time, the above-described epoxy resin may be used alone or in combination of two or more. For a preferred example, the high heat resistance epoxy resin is one containing at least one selected from phenol novolac epoxy resins and polyhydric phenol type epoxy resins. Here, the polyhydric phenol type epoxy resin refers to an epoxy resin having two or more average epoxy groups in the molecule, preferably 2 to 4.
또한 사용 가능한 열가소성 수지의 비제한적인 예로는, 올레핀 수지, 아크릴 수지, 고무(rubber) 또는 이들의 혼합물 등이 있다. 구체적인 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리이미드, 테프론(PTFE), 아크릴로니트릴-부타디엔 러버(NBR), 스티렌 부타디엔 러버(SBR), 아크릴로니트릴-부타디엔-스티렌 러버(ABS), 카르복실-말단화된 부타디엔 아크릴로니트릴 러버(CTBN), 폴리부타디엔(polybutadiene), 스티렌(styrene)-부타디엔(butadiene)-에틸렌 수지(SEBS), 탄소수 1~8의 측쇄사슬을 함유하는 아크릴산(acrylic acid) 및/또는 메타크릴산 (methacrylic acid) 에스테르 수지(아크릴 고무), 또는 이들의 1종 이상의 혼합물 등이 있다. 전술한 열가소성 수지는, 열경화성 수지인 에폭시 수지와의 반응이 가능한 관능기를 함유하는 것이 바람직하다. 구체적으로는, 아미노기, 카르복실(carboxyl)기, 에폭시기, 수산기, 메톡시기, 및 이소사이아네이트기로 구성된 군에서 선택되는 1종 이상의 관능기이다. 이러한 관능기는 에폭시 수지와 강한 결합을 형성하므로, 경화 이후 내열성이 향상되어 바람직하다.Also, non-limiting examples of usable thermoplastic resins include olefin resins, acrylic resins, rubbers, or mixtures thereof. Specific examples include polyethylene, polypropylene, polystyrene, polyimide, teflon (PTFE), acrylonitrile-butadiene rubber (NBR), styrene butadiene rubber (SBR), acrylonitrile-butadiene-styrene rubber (ABS), carr Vxyl-terminated butadiene acrylonitrile rubber (CTBN), polybutadiene, styrene-butadiene-ethylene resin (SEBS), acrylic acid containing side chains having 1 to 8 carbon atoms ) And/or methacrylic acid ester resins (acrylic rubber), or mixtures of one or more thereof. It is preferable that the above-mentioned thermoplastic resin contains the functional group which can react with the epoxy resin which is a thermosetting resin. Specifically, it is at least one functional group selected from the group consisting of an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a methoxy group, and an isocyanate group. Since these functional groups form a strong bond with the epoxy resin, the heat resistance after curing is improved, which is preferable.
본 발명의 바람직한 일례를 들면, 제1절연층(12a)과 제2절연층(12b)은 각각 세라믹 필러가 포함된 에폭시 수지층일 수 있다. For a preferred example of the present invention, the first insulating layer 12a and the second insulating layer 12b may be epoxy resin layers each containing a ceramic filler.
세라믹 필러는 당 분야에 공지된 통상의 무기 필러를 제한 없이 사용할 수 있으며, 사용 가능한 세라믹 필러의 비제한적인 예로는, 천연 실리카(natural silica), 용융 실리카(Fused silica), 비결정질 실리카(amorphous silica), 결정 실리카(crystalline silica) 등과 같은 실리카류; 보에마이트(boehmite), 알루미나, 탈크(Talc), 구형 유리, 탄산칼슘, 탄산마그네슘, 마그네시아, 클레이, 규산칼슘, 산화티탄, 산화안티몬, 유리섬유, 붕산알루미늄, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 티탄산마그네슘, 티탄산비스무스, 지르콘산바륨, 지르콘산칼슘, 질화붕소, 질화규소, 또는 운모(mica) 등이 있다. 전술한 분말을 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 바람직하게는 알루미늄산화물 등의 금속산화물 형태의 필러를 사용하는 것이다. The ceramic filler may use any conventional inorganic filler known in the art without limitation, and non-limiting examples of the ceramic filler usable include natural silica, fused silica, and amorphous silica. , Silica such as crystalline silica; Boehmite, alumina, talc, spherical glass, calcium carbonate, magnesium carbonate, magnesia, clay, calcium silicate, titanium oxide, antimony, glass fiber, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, barium zirconate, calcium zirconate, boron nitride, silicon nitride, or mica. The above-mentioned powders may be used alone or in combination of two or more. Preferably, a filler in the form of a metal oxide such as aluminum oxide is used.
세라믹 필러의 평균 입경(D50)은 특별히 한정되지 않으나, 분산성을 고려할 때, 평균 입경이 약 0.1 내지 20 ㎛, 구체적으로 0.5 내지 15 ㎛인 것이 바람직하다. 또한 평균 입경이 상이한 2종 이상의 세라믹 필러를 혼용할 수도 있다. 상기 세라믹 필러의 형상 역시 특별히 제한되지 않으며, 일례로 구형, 판상형, 침상형, 섬유형, 가지형, 원뿔형, 피라미드형 및 무정형(無定形)으로 구성된 군에서 선택된 어느 하나의 형상을 가질 수 있다. The average particle diameter (D 50 ) of the ceramic filler is not particularly limited, but in consideration of dispersibility, it is preferable that the average particle diameter is about 0.1 to 20 μm, specifically 0.5 to 15 μm. In addition, two or more types of ceramic fillers having different average particle diameters may be mixed. The shape of the ceramic filler is also not particularly limited, and for example, it may have any shape selected from the group consisting of a spherical shape, a plate shape, a needle shape, a fiber shape, a branch shape, a conical shape, a pyramid shape, and an amorphous shape.
또한 세라믹 필러는 그대로 에폭시 수지와 혼합하여 사용할 수 있으며, 또는 유기물로 이미 표면처리된 세라믹 필러를 사용할 수도 있다. 이와 같이 유기물로 표면처리된 세라믹 필러를 사용할 경우, 수지와의 상용성이 우수하여 에폭시 수지의 유전특성, 내열성, 가공성 등을 보다 개선할 수 있기 때문이다. 상기 유기물은 특별히 제한되지 않으며, 당 분야의 레진, 또는 실란 커플링제 등을 사용할 수 있다. 또한 세라믹 필러를 유기물로 표면 처리하는 방법은 특별히 한정되지 않으며, 유기물, 예컨대 비닐기-함유 실란 커플링제가 포함된 용액에 세라믹 필러를 투입한 후 건조시키는 방법을 들 수 있다.In addition, the ceramic filler may be used as it is by mixing with an epoxy resin, or a ceramic filler already surface-treated with an organic material may be used. This is because when using a ceramic filler surface-treated with an organic material, compatibility with a resin is excellent, and thus dielectric properties, heat resistance, and workability of the epoxy resin can be further improved. The organic material is not particularly limited, and resins or silane coupling agents in the art may be used. In addition, the method of surface-treating the ceramic filler with an organic material is not particularly limited, and a method of drying after adding the ceramic filler to a solution containing an organic material, for example, a vinyl group-containing silane coupling agent, may be mentioned.
본 발명에서 세라믹 필러의 함량은, 제1절연층(12a)과 제2절연층(12b)의 기계적 물성이나 기타 물성 등을 고려하여 적절히 조절할 수 있다. 일례로, 세라믹 필러의 함량은, 당해 제1절연층(12a) 또는 제2절연층(12b)을 구성하는 에폭시 수지 100 중량부를 기준으로 0 내지 70 중량부, 구체적으로 5 내지 50 중량부, 보다 구체적으로 10 내지 30 중량부일 수 있다. In the present invention, the content of the ceramic filler may be appropriately adjusted in consideration of mechanical properties or other physical properties of the first insulating layer 12a and the second insulating layer 12b. In one example, the content of the ceramic filler is 0 to 70 parts by weight, specifically 5 to 50 parts by weight, more specifically, based on 100 parts by weight of the epoxy resin constituting the first insulating layer 12a or the second insulating layer 12b Specifically, it may be 10 to 30 parts by weight.
전술한 제1절연층(12a)과 제2절연층(12b)의 두께는 특별히 제한되지 않으며, 당 분야에 공지된 범위 내에서 적절히 조절할 수 있다. 이들은 서로 동일하거나 상이할 수 있다. 일례로, 상기 제1절연층(12a)과 제2절연층(12b)의 두께는 각각 10 내지 150 ㎛일 수 있으며, 바람직하게는 30 내지 120 ㎛일 수 있다. The thickness of the above-described first insulating layer 12a and the second insulating layer 12b is not particularly limited, and can be appropriately adjusted within a range known in the art. These may be the same or different from each other. For example, the thickness of the first insulating layer 12a and the second insulating layer 12b may be 10 to 150 μm, respectively, and preferably 30 to 120 μm.
상기와 같이 형성된 제1절연층(12a) 상에 제1전극 (20a)이 배치되며, 상기 제1전극(20a)과 대향하는 제2절연층(12b)의 소정 위치 상에 제2전극(20b)이 배치된다. 이러한 제1전극(20a)과 제2전극(20b)은 소정의 형상으로 패턴화될 수 있으며, 그 형상은 특별히 제한되지 않는다. 일례로 도 4(a)와 도 4(b)와 같은 패턴 형상을 가질 수 있다. 그 외, 도 3의 제2 실시예에 따른 열전소자에서 각 구성 요소의 재료와 구조 등에 대한 설명은 도 1~2의 제1 실시예에 따른 열전 소자(100)의 설명이 그대로 적용될 수 있다.The first electrode 20a is disposed on the first insulating layer 12a formed as described above, and the second electrode 20b is positioned on a predetermined position of the second insulating layer 12b facing the first electrode 20a. ) Is placed. The first electrode 20a and the second electrode 20b may be patterned in a predetermined shape, and the shape is not particularly limited. For example, it may have a pattern shape as shown in Figure 4 (a) and Figure 4 (b). In addition, in the thermoelectric element according to the second embodiment of FIG. 3, descriptions of materials, structures, and the like of each component may be applied as described in the thermoelectric element 100 according to the first embodiment of FIGS. 1 to 2.
본 발명의 제2 실시예에 따른 열전소자는 당 분야에 공지된 방법에 따라 제조될 수 있으며, 일례로 통상의 수지 부착 금속박 및/또는 금속 적층판을 이용하여 제조될 수 있다. The thermoelectric device according to the second embodiment of the present invention may be manufactured according to a method known in the art, and for example, may be manufactured using a conventional metal foil and/or metal laminate with resin.
상기 제2 실시예에 따른 열전 소자를 제조하는 방법의 일 실시예를 들면, (a) 절연층의 양면에 금속층이 구비된 금속적층판 2개를 준비하는 단계; (b) 상기 2개의 금속적층판의 일면에 배치된 금속층을 각각 식각하여 제1전극과 제2전극을 형성하는 단계; 및 (c) 상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수의 열전 레그를 배치하고 상기 접합재를 이용하여 접합하는 단계를 포함하여 구성될 수 있다. In one embodiment of the method for manufacturing the thermoelectric element according to the second embodiment, (a) preparing two metal laminated plates having metal layers on both sides of an insulating layer; (b) forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates; And (c) placing the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween and bonding using the bonding material.
열전 소자의 기판으로 사용될 금속 적층판을 준비한다. 이러한 금속적층판으로는, 절연층을 중심으로 하여 이의 양면에 금속층이 각각 적층된 형태를 제한 없이 사용할 수 있다. 여기서, 2개의 금속층은 서로 동일하거나 또는 상이한 금속 성분으로 구성될 수 있다. 일례로, 2개의 금속층 재질로는 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종 이상의 금속일 수 있다. A metal laminate plate to be used as a substrate for a thermoelectric element is prepared. As such a metal laminated plate, a form in which metal layers are stacked on both sides of the insulating layer as a center can be used without limitation. Here, the two metal layers may be composed of the same or different metal components from each other. For example, the two metal layer materials may be at least one metal of aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co).
상기 금속적층판의 양면에 배치된 금속층(예, 제1금속층, 제2금속층) 중 어느 하나는 도전성 제1기판으로 사용되며, 다른 하나는 식각을 통해 소정의 형태로 패턴화된 제1전극을 형성하게 된다. 이때 식각법은 당 분야에 공지된 에칭법을 제한 없이 사용할 수 있으며, 일례로 물리적 식각, 화학적 식각 또는 이들 모두를 조합하여 적용할 수 있다.One of the metal layers (for example, the first metal layer and the second metal layer) disposed on both sides of the metal laminated plate is used as a conductive first substrate, and the other forms a first electrode patterned in a predetermined shape through etching. Is done. At this time, an etching method known in the art may be used as the etching method without limitation, and for example, physical etching, chemical etching, or a combination of both may be applied.
이어서, 패턴화된 제1전극과 제2전극 상에 복수의 열전 레그(30)를 배치하고, 접합재를 이용하여 접합한 후 최종 열전소자의 제조하는 방법은 전술한 제1 실시예와 동일하므로, 이에 대한 개별적인 설명은 생략한다.Subsequently, since a plurality of thermoelectric legs 30 are disposed on the patterned first electrode and the second electrode, and the bonding method is performed using a bonding material, the method of manufacturing the final thermoelectric element is the same as that of the first embodiment described above. Individual description of this is omitted.
도 5는 본 발명의 제3 실시예에 따른 열전 소자(300)의 단면을 간략히 도시한 단면도이다. 도 5에서 도 1~3와 동일한 참조 부호는 동일한 부재를 나타낸다. 5 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 300 according to a third embodiment of the present invention. In Fig. 5, the same reference numerals as in Figs. 1 to 3 denote the same members.
이하 도 5에 대한 설명에서는 도 1~3과 중복되는 내용은 다시 설명하지 않으며, 차이점에 대해서만 설명한다. 도 5를 참조하면, 본 발명의 제3 실시예에 따른 열전 소자(300)는, 2개의 도전성 금속 기판을 사용하는 도 3과 비교하여, 이중 하나의 도전성 기판으로서 일면에 절연층이 형성되고, 타면에 복수의 슬릿(slit)이 구비된 도전성 금속 기판을 사용한다. Hereinafter, in the description of FIG. 5, contents overlapping with FIGS. 1 to 3 will not be described again, and only differences will be described. Referring to FIG. 5, in the thermoelectric element 300 according to the third embodiment of the present invention, as compared with FIG. 3 using two conductive metal substrates, an insulating layer is formed on one surface as one of the conductive substrates, A conductive metal substrate having a plurality of slits on the other surface is used.
즉, 종래 전기절연성 세라믹계 기판(예, DBC)을 사용하거나 금속계 기판을 이용하여 열전 소자를 제작하는 경우, 소재 간의 열팽창계수의 차이에 의해 소자가 나타내는 출력 특성이 저하되는 현상이 일어나게 된다. 특히 금속계 기판을 사용할 경우, 열전 소자의 온도 상승에 따른 금속 재질의 급속한 열팽창으로 인해 열전 레그의 박리 및 열전소자의 출력특성 소실 등의 문제가 초래될 수 있다.That is, when using a conventional electrically insulating ceramic-based substrate (eg, DBC) or manufacturing a thermoelectric device using a metal-based substrate, a phenomenon in which the output characteristics of the device deteriorates due to a difference in thermal expansion coefficient between materials. In particular, when a metal-based substrate is used, problems such as peeling of a thermoelectric leg and loss of output characteristics of a thermoelectric element may occur due to rapid thermal expansion of a metal material according to an increase in temperature of the thermoelectric element.
이에 비해, 본 발명의 제3 실시예에서는 2개의 도전성 기판 중 하나의 기판으로서 일면에 절연층이 형성되고, 타면에 복수의 슬릿(slit)이 구비된 도전성 금속 기판을 채용함으로써, 열전 소자의 온도 상승에 따른 금속 재질의 급속한 열팽창, 열전 레그의 박리, 및 열전소자의 출력특성 소실 등을 해결하고, 열전 소자의 출력특성 저하를 개선할 수 있다. On the other hand, in the third embodiment of the present invention, an insulating layer is formed on one surface as one of the two conductive substrates, and the temperature of the thermoelectric element is adopted by employing a conductive metal substrate provided with a plurality of slits on the other surface. The rapid thermal expansion of the metal material due to the rise, peeling of the thermoelectric leg, and loss of the output characteristics of the thermoelectric element can be solved, and the degradation of the output characteristic of the thermoelectric element can be improved.
구체적으로 도 5의 제 3 실시예에 따른 열전 소자(300)는, 일면에 제1절연층(12a)이 형성된 도전성 제1기판(11a); 상기 도전성 제1기판(11a)과 대향 배치되고, 일면에 제2절연층(12b)이 형성되고, 타면에 복수의 슬릿(50)이 구비된 도전성 제2기판(11b); 상기 제1절연층(12a) 상에 배치된 제1전극(20a); 상기 제2절연층(12b) 상에 배치된 제2전극(20b); 상기 제1전극(20a)과 상기 제2전극(20b) 사이에 개재(介在)된 복수의 열전 레그(30); 및 상기 제1 전극(20a)과 상기 열전 레그(30) 사이와, 상기 열전 레그(30)와 상기 제2 전극(20b) 사이 중 적어도 하나에 배치되는 접합재(40)를 포함한다.Specifically, the thermoelectric element 300 according to the third embodiment of FIG. 5 includes a conductive first substrate 11a having a first insulating layer 12a formed on one surface; A conductive second substrate 11b disposed opposite to the conductive first substrate 11a, a second insulating layer 12b formed on one surface, and provided with a plurality of slits 50 on the other surface; A first electrode 20a disposed on the first insulating layer 12a; A second electrode 20b disposed on the second insulating layer 12b; A plurality of thermoelectric legs 30 interposed between the first electrode 20a and the second electrode 20b; And a bonding material 40 disposed between at least one of the first electrode 20a and the thermoelectric leg 30 and between the thermoelectric leg 30 and the second electrode 20b.
본 발명에서는 금속계 기판을 사용함에 따른 열전 소자의 온도 상승, 금속 재질의 급속한 열팽창, 열전 레그의 박리 및 열전소자의 출력특성 소실을 해결하고자, 2개의 도전성 기판 중 하나로서, 제2절연층(12b)이 비(非)형성된 타면 상에 소정 간격으로 이격된 복수의 슬릿(slit, 50)이 구비된 도전성 기판을 사용한다. 특히 본 발명에서 Bi-Te계 또는 Co-Sb계 열전 레그를 사용할 경우, 고온 사용 온도대를 갖기 때문에 발전 출력을 높일 수 있으며, 고온 하중에 따른 내구성 강화와 우수한 열적 안정성을 발휘하여 최종 제품의 높은 신뢰성을 가질 수 있다. 이에 따라, 복수의 슬릿(slit)이 구비되는 도전성 기판은, 열팽창시 유연성 부여 효과를 발휘하기 위해서 발열부(hot side)에 배치되는 기판인 것이 바람직하다.In the present invention, in order to solve the temperature rise of the thermoelectric element by using a metal-based substrate, rapid thermal expansion of the metal material, peeling of the thermoelectric leg, and loss of output characteristics of the thermoelectric element, as one of the two conductive substrates, the second insulating layer 12b Use a conductive substrate provided with a plurality of slits (50) spaced apart at predetermined intervals on the non-formed other surface. In particular, in the present invention, when using a Bi-Te-based or Co-Sb-based thermoelectric leg, the power generation power can be increased because it has a high temperature use temperature range, and the durability of the high temperature load is enhanced and excellent thermal stability is exhibited, resulting in a high final product. It can have reliability. Accordingly, it is preferable that the conductive substrate provided with a plurality of slits is a substrate disposed on a hot side in order to exert the effect of providing flexibility during thermal expansion.
본 발명에서는 금속 재질 기판의 열팽창 특성을 고려하여, 슬릿(50)의 개수나 크기를 적절히 조절하여 형성할 수 있다. 상기 제2도전성 기판(11b) 상에 형성되는 슬릿(50)의 개수는 특별히 제한되지 않으며, 기판의 크기에 따라 적절히 조절할 수 있다. 일례로, 2개 이상의 복수 개일 수 있으며, 구체적으로 2 내지 수십 개, 보다 구체적으로 2 내지 10개 내외일 수 있다.In the present invention, considering the thermal expansion characteristics of the metal substrate, it can be formed by appropriately adjusting the number or size of the slits 50. The number of slits 50 formed on the second conductive substrate 11b is not particularly limited and may be appropriately adjusted according to the size of the substrate. For example, it may be a plurality of two or more, specifically 2 To dozens, more specifically 2 to 10 may be around.
또한 복수의 슬릿(50) 중 어느 하나의 슬릿과, 이에 인접하는 다른 슬릿 사이에는 소정의 이격 거리가 형성된다. 이러한 복수의 슬릿(50) 간의 이격 거리는 특별히 제한되지 않으며, 금속 재질 기판의 열팽창 특성을 고려하여 적절히 조절할 수 있다. 일 구현예를 들면, 복수의 슬릿(50) 간의 이격거리는 후술되는 제1전극(20a) 또는 제2전극(20b)의 평면에 대응하는 크기와 같거나 또는 이보다 큰 것일 수 있으며, 바람직하게는 한쌍의 P형 열전 레그(30a)와 N형 열전 레그(30b)를 포함하여 단위 셀을 형성하는 크기에 대응될 수 있다. 일례로, 1.35 내지 1.45 mm일 수 있다. In addition, a predetermined separation distance is formed between one of the slits 50 and the other slits adjacent thereto. The separation distance between the plurality of slits 50 is not particularly limited, and may be appropriately adjusted in consideration of the thermal expansion characteristics of the metal substrate. In one embodiment, the separation distance between the plurality of slits 50 may be the same as or larger than the size corresponding to the plane of the first electrode 20a or the second electrode 20b, which will be described later, preferably a pair It may correspond to the size to form a unit cell, including the P-type thermoelectric leg (30a) and the N-type thermoelectric leg (30b). In one example, it may be 1.35 to 1.45 mm.
구체적으로, 복수의 슬릿(50)은, 제1 방향(예, 기판의 길이방향)을 따라 형성되는 슬릿 너비; 상기 제1 방향과 교차되는 제2 방향을 따라 형성되는 슬릿 길이; 및 상기 제1 방향 및 상기 제2 방향에 직교하며, 상기 도전성 제1-2 기판(11a, 11b)에 수직한 방향(예, 기판의 두께 방향)을 따라 형성되는 슬릿 깊이를 갖는다. 특히, 복수의 슬릿(50)은 실질적으로 동일한 슬릿 깊이(depth)를 갖는다. 이러한 슬릿의 깊이는 특별히 제한되지 않으며, 일례로 각각 당해 도전성 제1기판(11a) 또는 도전성 제2기판(11b)의 전체 두께를 기준으로 70 내지 90%일 수 있다. 또한 상부에서 바라볼 때, 슬릿의 길이는 상기 도전성 제2기판 (11b)의 길이방향(제1방향)과 수직한 방향(제2방향)의 길이와 동일할 수 있으며, 슬릿의 너비는 도전성 제1-2기판(11a, 11b)의 길이방향(제1방향)에 따른 전체 길이를 기준으로 대략 7 내지 10%일 수 있다. Specifically, the plurality of slits 50 includes: a slit width formed along a first direction (eg, a longitudinal direction of the substrate); A slit length formed along a second direction intersecting the first direction; And a slit depth orthogonal to the first direction and the second direction and formed along a direction perpendicular to the conductive 1-2 substrates 11a and 11b (eg, a thickness direction of the substrate). In particular, the plurality of slits 50 have substantially the same slit depth. The depth of the slit is not particularly limited, and may be, for example, 70 to 90% based on the total thickness of the conductive first substrate 11a or the conductive second substrate 11b, respectively. In addition, when viewed from the top, the length of the slit may be the same as the length in the longitudinal direction (first direction) and the vertical direction (second direction) of the conductive second substrate 11b, and the width of the slit may be conductive. It may be approximately 7 to 10% based on the total length along the length direction (first direction) of the 1-2 substrates 11a and 11b.
일례로, 가로×세로×두께가 40.5 × 40.5 × 0.7 (mm)인 도전성 제1기판을 사용시, 슬릿의 깊이는 0.49 내지 0.63 mm이며, 슬릿 너비는 3.0 내지 4.0 mm이고, 슬릿 길이는 40.5 mm의 크기를 가질 수 있다. 다른 일례로, 가로×세로×두께가 40.5 × 40.5 × 1.5 (mm)인 도전성 제1기판을 사용시, 슬릿의 깊이는 1.05 내지 1.35 mm 이며, 슬릿 너비는 3.0 내지 4.0 mm 이고, 슬릿 길이는 40.5 mm의 크기를 가질 수 있다. 그러나 전술한 수치에 특별히 한정되지 않으며, 사용하고자 하는 기판의 크기에 따라 적절히 변형 및 조절 가능하다. As an example, when using a conductive first substrate having a width×length×thickness of 40.5×40.5×0.7 (mm), the depth of the slit is 0.49 to 0.63 mm, the slit width is 3.0 to 4.0 mm, and the slit length is 40.5 mm. Can have a size As another example, when using a conductive first substrate having a width × length × thickness of 40.5 × 40.5 × 1.5 (mm), the depth of the slit is 1.05 to 1.35 mm, the slit width is 3.0 to 4.0 mm, and the slit length is 40.5 mm. Can have the size of However, it is not particularly limited to the above-described values, and can be appropriately modified and adjusted according to the size of the substrate to be used.
복수의 슬릿(50)은 수평 단면 형상을 볼 때, 복수의 음각 패턴이 규칙적으로 배치되는 구조를 갖는다. 이러한 음각 패턴의 수평 단면 형상은 특별히 제한되지 않으며, 일례로 사각형, 원형, 타원형, 스트라이프형, 마름모형 및 다각형 중 어느 하나일 수 있다. 그 외, 다양한 패턴 형상을 적용할 수 있다. When viewing a horizontal cross-sectional shape, the plurality of slits 50 have a structure in which a plurality of intaglio patterns are regularly arranged. The horizontal cross-sectional shape of the intaglio pattern is not particularly limited, and may be any one of a rectangle, a circle, an oval, a stripe, a rhombus, and a polygon, for example. In addition, various pattern shapes can be applied.
상기 복수의 슬릿(50)은, 제2 절연층(12b)이 비형성되는 도전성 제2기판(11b)의 일면 상에 형성되되, 바람직하게는 도전성 제2기판(11b)의 제2 절연층(12b) 상에 배치되는 제2전극(20b)을 중심으로 상호 대칭을 이루도록 형성된다. 구체적으로, 제2전극(20b)의 중심을 지나는 제1방향선(예, 제2전극의 장축 길이방향)을 기준으로 좌우대칭 또는 중심대칭(centrosymmetrically) 구조를 갖도록 배치될 수 있다.The plurality of slits 50 are formed on one surface of the conductive second substrate 11b on which the second insulating layer 12b is not formed, and preferably, the second insulating layer of the conductive second substrate 11b ( It is formed to be symmetrical with respect to the second electrode 20b disposed on 12b). Specifically, it may be arranged to have a horizontally symmetrical or centrosymmetrically structured structure based on a first direction line (eg, a long axis lengthwise direction of the second electrode) passing through the center of the second electrode 20b.
그 외, 도 5의 제3 실시예에 따른 열전소자에서 각 구성 요소의 재료와 구조 등에 대한 설명은 도 1~3의 제1 및 제2 실시예에 따른 열전 소자(100, 200)의 설명이 그대로 적용될 수 있다. In addition, descriptions of materials, structures, and the like of each component in the thermoelectric elements according to the third embodiment of FIG. 5 are described in the thermoelectric elements 100 and 200 according to the first and second embodiments of FIGS. 1 to 3. It can be applied as is.
한편 도 6은 본 발명의 제4 실시예에 따른 열전 소자(400)의 단면을 간략히 도시한 단면도이다. 도 6에서 도 1~5와 동일한 참조 부호는 동일한 부재를 나타낸다. Meanwhile, FIG. 6 is a cross-sectional view schematically showing a cross-section of a thermoelectric element 400 according to a fourth embodiment of the present invention. In Fig. 6, the same reference numerals as in Figs. 1 to 5 denote the same members.
이하 도 6에 대한 설명에서는 도 1~5와 중복되는 내용은 다시 설명하지 않으며, 차이점에 대해서만 설명한다. 도 6을 참조하면, 본 발명의 제4 실시예에 따른 열전 소자(400)는, 복수의 슬릿(50)이 구비된 도전성 제2기판(11b)을 상부기판으로 사용하는 도 5의 실시예와 달리, 복수의 슬릿(50)이 구비된 도전성 제1기판(11a)을 하부 기판으로 사용한다. Hereinafter, in the description of FIG. 6, contents overlapping with FIGS. 1 to 5 will not be described again, and only differences will be described. Referring to FIG. 6, the thermoelectric element 400 according to the fourth embodiment of the present invention and the embodiment of FIG. 5 using a conductive second substrate 11b provided with a plurality of slits 50 as an upper substrate Alternatively, the conductive first substrate 11a provided with a plurality of slits 50 is used as the lower substrate.
구체적으로, 도전성 제1기판(11a)은 일면에 제1절연층(12b)이 형성되고, 제1전극(20a)이 배치되지 않는 타면 상에 소정의 간격으로 이격된 복수의 슬릿(50)이 구비된다. 이러한 도전성 제1기판(11a)은 열팽창시 유연성 부여 효과를 발휘하기 위해서 발열부(hot side) 기판인 것이 바람직하다.Specifically, the first insulating layer 12b is formed on one surface of the conductive first substrate 11a, and a plurality of slits 50 spaced apart at predetermined intervals on the other surface where the first electrode 20a is not disposed. It is provided. It is preferable that the conductive first substrate 11a is a hot side substrate in order to exert a softening effect during thermal expansion.
그 외, 도 6의 실시예에서 각 구성 요소의 재료와 구조 등에 대한 설명은 도 5의 제3 실시예에 따른 열전 소자(300)의 설명이 그대로 적용될 수 있으므로, 이에 대한 개별적인 설명은 생략한다. In addition, in the embodiment of FIG. 6, description of the material, structure, and the like of each component may be applied as it is to the description of the thermoelectric element 300 according to the third embodiment of FIG. 5, so a detailed description thereof will be omitted.
한편 도 5 및 6에서는 복수의 슬릿(50)이 각각 도전성 제1기판(11a)과 도전성 제2기판(11b) 중 어느 하나에 형성된 실시예를 구체적으로 예시하고 있다. 그러나 이에 한정되지 않으며, 도전성 기판(11a, 11b) 모두에 형성되거나, 상기 도전성 기판(11a, 11b)의 단면 및/또는 양면에 형성되는 실시예 역시 본 발명의 범주에 속한다. Meanwhile, FIGS. 5 and 6 specifically illustrate an embodiment in which a plurality of slits 50 are formed on one of the conductive first substrate 11a and the conductive second substrate 11b, respectively. However, the present invention is not limited thereto, and embodiments that are formed on both the conductive substrates 11a and 11b or are formed on the cross-section and/or both surfaces of the conductive substrates 11a and 11b also belong to the scope of the present invention.
또한 도전성 금속 기판을 채용하는 도 3 내지 6에서는 제1절연층(12a)과 제2절연층(12b)이 각각 단일층으로 형성된 실시예를 구체적으로 예시하고 있다. 그러나 이에 한정되지 않으며, 절연층(12a, 12b)의 개수, 형상, 크기는 특별히 제한되지 않는다. 즉, 절연층(12a, 12b)의 구성은 특별히 제한되지 않으며, 다양한 형태와 크기를 갖도록 자유롭게 변형 가능하다. 또한 상기 절연층(12a, 12b)은 전기 절연성을 유지하는 범위 내에서, 당 분야에 공지된 통상의 무기계 필러 및/또는 유기계 필러를 더 포함할 수 있다. In addition, FIGS. 3 to 6 employing a conductive metal substrate specifically illustrate an embodiment in which the first insulating layer 12a and the second insulating layer 12b are each formed of a single layer. However, the present invention is not limited thereto, and the number, shape, and size of the insulating layers 12a and 12b are not particularly limited. That is, the configuration of the insulating layers 12a and 12b is not particularly limited, and can be freely deformed to have various shapes and sizes. In addition, the insulating layers 12a and 12b may further include a conventional inorganic-based filler and/or organic-based filler known in the art within a range maintaining electrical insulation.
본 발명의 제3 내지 제4 실시예에 따른 열전소자는 당 분야에 공지된 방법에 따라 제조될 수 있으며, 일례로 통상의 수지 부착 금속박 및/또는 금속 적층판을 이용하여 제조될 수 있으며, 바람직하게는 동박적층판(CCL, copper clad laminate)일 수 있다. The thermoelectric elements according to the third to fourth embodiments of the present invention may be manufactured according to a method known in the art, for example, using a conventional metal foil and/or metal laminate with a resin, preferably May be a copper clad laminate (CCL).
상기 제3-4 실시예에 따른 열전 소자를 제조하는 방법의 일 실시예를 들면, (a) 절연층의 양면에 금속층이 구비된 금속적층판 2개를 준비하는 단계; (b) 상기 2개의 금속적층판의 일면에 배치된 금속층을 각각 식각하여 제1전극과 제2전극을 형성하는 단계; (c) 상기 제1전극과 제2전극이 서로 대향하도록 배치한 후, 이들 사이에 복수의 열전 레그를 배치하고 상기 접합재를 이용하여 접합하는 단계; 및 (d) 상기 2개의 금속적층판 중 어느 하나의 금속적층판 타면 상에, 상기 제1전극 또는 제2전극의 평면에 대응되는 크기를 같거나 또는 보다 큰 간격으로 이격하여 복수의 슬릿(slit)을 형성하는 단계를 포함하여 구성될 수 있다. For an embodiment of the method for manufacturing the thermoelectric device according to the 3-4 embodiment, (a) preparing two metal laminated plates having metal layers on both sides of the insulating layer; (b) forming a first electrode and a second electrode by etching each metal layer disposed on one surface of the two metal laminated plates; (c) arranging the first electrode and the second electrode so as to face each other, and then placing a plurality of thermoelectric legs therebetween and bonding using the bonding material; And (d) a plurality of slits spaced apart at the same or greater intervals than the size corresponding to the plane of the first electrode or the second electrode, on the other surface of any one of the two metal laminated plates. It may be configured to include the step of forming.
전술한 제조방법에서, 2개의 금속적층판 중 하나의 금속적층판의 일면 상에 복수의 슬릿(slit)을 형성한다. 이때 복수의 슬릿(slit)을 형성하는 방법은 특별히 제한되지 않으며, 당 분야에 공지된 방법을 제한 없이 사용할 수 있다. 일례로, 레이저 커팅, 기계적 펀칭, 또는 절단 휠 등을 사용할 수 있다. In the above-described manufacturing method, a plurality of slits are formed on one surface of one of the two metal laminated plates. At this time, a method of forming a plurality of slits is not particularly limited, and methods known in the art can be used without limitation. As an example, laser cutting, mechanical punching, or a cutting wheel may be used.
여기서, 복수의 슬릿 간의 이격거리는, 전술한 제1전극(또는 제2전극)의 평면에 대응하는 크기와 같거나 보다 크게 조절할 수 있다. 구체적인 일례를 들면, 복수의 슬릿은, 하기 도 7에 도시된 바와 같이 한 쌍의 P형 및 N형 열전 레그가 접속되어 하나의 열전소자(예, 단위 셀)가 완성될 수 있는 다수의 열전소자 단위영역(미도시)이 가로 및 세로 방향을 따라 구획된 구조일 수 있고, 각 단위영역을 구획하는 경계부에는 소잉라인이 형성될 수 있다 Here, the separation distance between the plurality of slits can be adjusted to be equal to or larger than the size corresponding to the plane of the first electrode (or the second electrode) described above. For a specific example, a plurality of slits, a plurality of thermoelectric elements that can be completed by a pair of P-type and N-type thermoelectric legs are connected to one thermoelectric element (eg, unit cell) as shown in FIG. 7 below A unit region (not shown) may have a structure divided along the horizontal and vertical directions, and a sawing line may be formed at a boundary portion that partitions each unit region.
이어서, 패턴화된 제1전극과 제2전극 상에 복수의 열전 레그를 배치하고, 접합재를 이용하여 접합한 후 최종 열전소자의 제조하는 방법은, 전술한 제1 내지 2 실시예와 동일하므로, 이에 대한 개별적인 설명은 생략한다.Subsequently, a method of manufacturing a final thermoelectric element after arranging a plurality of thermoelectric legs on a patterned first electrode and a second electrode and bonding using a bonding material is the same as the first to second embodiments described above. Individual description of this is omitted.
한편 본 발명의 제2 내지 제4 실시예에서는, 금속적층판을 이용하여 열전 소자를 제조하는 방법을 구체적으로 설명하고 있다. 그러나 이에 한정되지 않으며, 당 분야의 공지된 금속판 위에 에폭시 수지 등의 절연 수지를 도포한 후, 도포된 절연층 상에 소정의 전극 패턴을 구성한 후 열처리하여 고착화된 것을 도전성 기판으로 사용하는 것도 본 발명의 범주에 속한다.Meanwhile, in the second to fourth embodiments of the present invention, a method of manufacturing a thermoelectric element using a metal laminated plate is specifically described. However, the present invention is not limited to this, and after applying an insulating resin such as an epoxy resin on a metal plate known in the art, forming a predetermined electrode pattern on the applied insulating layer, and then heat-treating and fixing it as a conductive substrate. Belongs to the category of
<솔더 페이스트><solder paste>
또한, 본 발명은 Sn계 솔더; 및 평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하며, 상기 금속 덴드라이트가 당해 조성물의 총 중량 대비 1 내지 40 중량%로 포함되는 솔더 페이스트(solder paste)를 제공한다.In addition, the present invention is Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 μm, and the metal dendrite provides a solder paste containing 1 to 40% by weight based on the total weight of the composition.
상기 솔더 페이스트는, 250 내지 400℃의 온도 영역대에서 금속과 이종(異種) 소재를 접합하는 접합용 솔더 페이스트이다. 이때, 금속과 접합되는 이종(異種) 소재는 특별히 제한되지 않으며, 일례로 당 분야에 공지된 통상의 금속 재질이거나 세라믹 소재, 열전 반도체 재질일 수 있다. 전술한 솔더 페이스트의 상세한 구성은 열전소자의 접합재 구성과 동일하므로, 이에 대한 개별적인 설명은 생략한다. The solder paste is a solder paste for joining metals and dissimilar materials in a temperature range of 250 to 400°C. In this case, the heterogeneous material to be bonded to the metal is not particularly limited, and may be, for example, a conventional metal material known in the art, or a ceramic material or a thermoelectric semiconductor material. Since the detailed configuration of the above-described solder paste is the same as that of the bonding material of the thermoelectric element, individual descriptions thereof are omitted.
본 발명에 따른 Sn계 솔더 페이스트를 포함하는 소자는 특별히 제한되지 않으며, 당 분야에서 250~400℃에서 Sn계 솔더 페이스트를 이용하여 구성되는 전기 화학 소자를 모두 포함한다. 이러한 전기 화학 소자(electrochemical device)는 전기 화학 반응을 하는 모든 소자를 지칭하며, 구체적인 일례를 들면, 모든 종류의 1차, 2차 전지, 연료 전지, 태양 전지, 캐퍼시터(capacitor) 또는 열전 소자 등이 있다. 바람직하게는 열전 소자일 수 있다.The device containing the Sn-based solder paste according to the present invention is not particularly limited, and includes all the electrochemical devices constructed using Sn-based solder paste at 250 to 400°C in the art. Such an electrochemical device refers to all devices that undergo an electrochemical reaction, and specific examples include all types of primary, secondary cells, fuel cells, solar cells, capacitors, or thermoelectric devices. have. Preferably it may be a thermoelectric element.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples as follows. However, the following examples are only to illustrate the present invention, the present invention is not limited by the following examples.
[실시예 1] 열전소자의 제조[Example 1] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 99 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 1wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다. SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 99 wt% of Cu dendrite 1 wt% with a branching length of 10 to 20 µm onto a Cu electrode, and after placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 2] 열전소자의 제조[Example 2] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 95 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 5wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode with 95 wt% of Cu dendrite 5 wt% with a branching length of 10 to 20 µm added on a Cu electrode, and was constructed after raising a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 3] 열전소자의 제조[Example 3] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 90 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 10 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 10 wt% of Cu dendrite having a branching length of 10 to 20 μm to 90 wt%, and then constructing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 4] 열전소자의 제조[Example 4] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 80 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 20 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 20 wt% of Cu dendrite having a branching length of 10 to 20 μm to 80 wt%, and then constructing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 5] 열전소자의 제조[Example 5] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 70 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 30 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 30 wt% of Cu dendrite having a branching length of 10 to 20 μm to 70 wt%, and then constructing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 6] 열전소자의 제조[Example 6] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 60 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 40 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 60 wt% of Cu dendrite 40 wt% with a branching length of 10 to 20 µm onto a Cu electrode, and placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 7] 열전소자의 제조[Example 7] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 50 wt%에, 가지방향 길이가 10~20㎛인 Cu dendrite 50 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 50 wt% of Cu dendrite having a branching length of 10 to 20 µm on a Cu electrode, and placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 8] 열전소자의 제조[Example 8] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 40 wt%에, 가지방향 길이가 10~20 ㎛인 Cu dendrite 60 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 40 wt% of Cu dendrite 60 wt% having a branching length of 10 to 20 µm onto a Cu electrode, and placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 9] 열전소자의 제조[Example 9] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 90 wt%에, 가지방향 길이가 10~20 ㎛인 Ag가 10% 표면 코팅된 Ag coated Cu dendrite 10 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 90 wt% of Ag coated Cu dendrite 10 wt% Ag coated 10% to 20㎛ in length in the branch direction on the Cu electrode. It was constructed after the thermoelectric material was placed on top.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 10] 열전소자의 제조[Example 10] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 80 wt%에, 가지방향 길이가 10~20 ㎛인 Ag가 10% 표면 코팅된 Ag coated Cu dendrite 20 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 80 wt% Ag coated Cu dendrite 20 wt% Ag coated 10% to 20㎛ in length in the branch direction on the Cu electrode. It was constructed after the thermoelectric material was placed on top.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 11] 열전소자의 제조[Example 11] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 70 wt%에, 가지방향 길이가 10~20 ㎛인 Ag가 10% 표면 코팅된 Ag coated Cu dendrite 30 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding a 30% by weight Ag coated Cu dendrite coated with 10% Ag coated with 10~20㎛ branch length to 70wt%. It was constructed after the thermoelectric material was placed on top.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 12] 열전소자의 제조[Example 12] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 90 wt%에, 가지방향 길이가 20~30 ㎛인 Cu dendrite 10 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 10 wt% of Cu dendrite having a branching length of 20 to 30 μm to 90 wt%, and then constructing after placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 13] 열전소자의 제조[Example 13] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 80 wt%에 가지방향 길이가 20~30 ㎛인 Cu dendrite 20 wt%를 첨가한 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding 20 wt% of Cu dendrite having a branching length of 20 to 30 μm to 80 wt%, and then constructing after placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[실시예 14] 열전소자의 제조[Example 14] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 70 wt%에, 가지방향 길이가 20~30 ㎛인 Cu dendrite 30 wt%를 첨가한 소재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated on a Cu electrode by adding a material with 30 wt% of Cu dendrite having a branching length of 20 to 30 µm to 70 wt%, and constructing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[비교예 1] 열전소자의 제조[Comparative Example 1] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 100 wt% 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was applied after applying a 100 wt% bonding material on a Cu electrode and placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
[비교예 2] 열전소자의 제조[Comparative Example 2] Preparation of thermoelectric element
SAC305 (Sn-3.0Ag-0.5Cu) 80 wt%와 구형(Sphere) Cu 분말 20 wt%로 구성된 접합재를 Cu 전극 위에 도포하고, 그 위에 열전 소재를 올린 후 구성하였다.SAC305 (Sn-3.0Ag-0.5Cu) was coated with a bonding material composed of 80 wt% and 20 wt% of spherical Cu powder on a Cu electrode, and was constructed after placing a thermoelectric material thereon.
이후 열처리 설비를 이용하여 약 300도에서 열처리하고 반대편도 동일하게 접합재를 도포하고 열전소자를 제작하였다.Subsequently, the heat treatment equipment was used to heat-treat at about 300 degrees, and the other side was coated with the same bonding material to produce a thermoelectric element.
참고로, 본원 실시예 1 내지 14 및 비교예 1 내지 2의 접합재 상세 구성은 하기 표 1과 같다. 이때 단위는 중량%를 기준으로 한다. For reference, the detailed configurations of the bonding materials of Examples 1 to 14 and Comparative Examples 1 to 2 herein are shown in Table 1 below. At this time, the unit is based on the weight percent.
Sn계 솔더Sn-based solder 금속 덴드라이트Metal dendrites Cu 구형Cu spherical
SAC305SAC305 제1 Cu dendrite (가지상 길이: 10~20㎛)1st Cu dendrite (branch length: 10~20㎛) 제2 Cu dendrite (가지상 길이: 20~30㎛)2nd Cu dendrite (branch length: 20~30㎛) Ag coated Cu dendrite(가지상 길이: 10~20㎛)Ag coated Cu dendrite (branch length: 10~20㎛) Cu (직경: 20~30 ㎛)Cu (diameter: 20~30㎛)
실시예 1Example 1 9999 1One -- -- --
실시예 2Example 2 9595 55 -- -- --
실시예 3Example 3 9090 1010 -- -- --
실시예 4Example 4 8080 2020 -- -- --
실시예 5Example 5 7070 3030 -- -- --
실시예 6Example 6 6060 4040 -- -- --
실시예 7Example 7 5050 5050 -- -- --
실시예 8Example 8 4040 6060 -- -- --
실시예 9Example 9 9090 -- -- 1010 --
실시예 10Example 10 8080 -- -- 2020 --
실시예 11Example 11 7070 -- -- 3030 --
실시예 12Example 12 9090 -- 1010 -- --
실시예 13Example 13 8080 -- 2020 -- --
실시예 14Example 14 7070 -- 3030 -- --
비교예 1Comparative Example 1 100100 -- -- -- --
비교예 2Comparative Example 2 8080 -- -- -- 2020
[실험예 1] 접합재의 SEM 이미지 평가[Experimental Example 1] SEM image evaluation of the bonding material
본 발명에서 사용된 금속 덴드라이트; 및 상기 금속 덴드라이트가 포함된 접합재를 전자현미경(SEM)을 이용하여 확인하였다.Metal dendrites used in the present invention; And the bonding material containing the metal dendrites was confirmed using an electron microscope (SEM).
도 9는 실시예 1 내지 8의 접합재에 포함된 구리(Cu) 덴드라이트의 전자 현미경 이미지다. 여기서, 구리 덴드라이트는 주축을 구비하며, 당해 주축으로부터 복수의 가지상이 분기된 수지상 형상을 가지고 있으며, 상기 주축 장경길이(장축 크기)는 10~20 ㎛ 범위라는 것을 알 수 있다. 9 is an electron microscope image of copper (Cu) dendrites included in the bonding materials of Examples 1 to 8. Here, it can be seen that the copper dendrite has a main shaft, has a dendritic shape in which a plurality of branched branches are branched from the main shaft, and the main shaft length (long axis size) is in the range of 10 to 20 μm.
또한 도 10은 실시예 12 내지 14의 접합재에 포함된 구리(Cu) 덴드라이트의 전자현미경 이미지로서, 구리 덴드라이트의 주축 장경길이(장축 크기)는 20~30 ㎛임을 알 수 있었다. In addition, FIG. 10 is an electron microscope image of copper (Cu) dendrites included in the bonding materials of Examples 12 to 14, and it can be seen that the major axis length (long axis size) of the copper dendrites is 20 to 30 μm.
도 11은 본 발명의 일 실시예에 따른 솔더 페이스트(SAC305)를 도포 및 건조하여 형성된 접합층의 이미지이다. 11 is an image of a bonding layer formed by applying and drying a solder paste (SAC305) according to an embodiment of the present invention.
[실험예 2] 접합재의 접합 계면특성 평가[Experimental Example 2] Evaluation of bonding interface properties of bonding materials
금속 덴드라이트가 포함된 본 발명의 접합재를 이용하여 제조된 열전소자의 단면을 하기와 같이 평가하였다. The cross section of the thermoelectric element manufactured using the bonding material of the present invention containing metal dendrites was evaluated as follows.
구체적으로, 실시예 5의 접합재[SAC305 : Cu dendrite (가지상 길이: 20~30㎛) = 70 : 30 wt%]를 이용하여 열전소자를 제조하였다. 이때 접합조건은 리플로우(Reflow) 370℃, 속도 10 cm/min, 질소(N2) 가스 분위기 하에서 실시되었으며, 이후 전자 현미경(SEM)을 이용하여 전극 - 접합층 - 열전 레그 사이의 접합 계면을 확인하였다. Specifically, a thermoelectric element was manufactured using the bonding material of Example 5 [SAC305: Cu dendrite (branch length: 20 to 30 µm) = 70: 30 wt%]. At this time, the bonding conditions were performed under a reflow of 370°C, a speed of 10 cm/min, and a nitrogen (N 2 ) gas atmosphere, and then using an electron microscope (SEM) to connect the bonding interface between the electrode-bonding layer-thermoelectric leg. Confirmed.
하기 도 12에 나타난 바와 같이, 접합층 전체에 CuSn 합금 (크기: 6~8 ㎛ 정도)이 균일하게 분포되어 있으며, 특히 접합층에 포함된 복수 개의 금속 덴드라이트가 열전 레그와 Cu 전극을 견고하게 연결하는 브릿지(bridge) 역할을 충실히 하고 있음을 확인할 수 있었다(하기 도 12 참조). As shown in FIG. 12, CuSn alloys (size: about 6 to 8 μm) are uniformly distributed throughout the bonding layer. In particular, a plurality of metal dendrites included in the bonding layer firmly fix the thermoelectric leg and the Cu electrode. It was confirmed that the bridge (bridge) acting as a faithful connection (see FIG. 12 below).
[실험예 3] 열전소자의 최초 저항평가[Experimental Example 3] Initial resistance evaluation of thermoelectric elements
실시예 1 내지 14 및 비교예 1 내지 2에서 제조된 각각의 소자에 대하여, 각 기판에 따른 제작된 열전 소자의 단위 저항을 4probe 설비를 이용하여 소자 고유 저항(Ω) 을 측정하였으며, 그 결과를 표 2에 각각 나타내었다.For each device manufactured in Examples 1 to 14 and Comparative Examples 1 to 2, the unit resistance of the thermoelectric device manufactured according to each substrate was measured using a 4 probe facility, and the device resistivity (Ω) was measured. Table 2 shows each.
금속 분말Metal powder 1One 22 33 평균Average
실시예 1Example 1 제1 Cu 덴드라이트1st Cu dendrite 2.002.00 2.032.03 2.022.02 2.022.02
실시예 2Example 2 1.981.98 1.981.98 1.991.99 1.981.98
실시예 3Example 3 1.931.93 1.941.94 1.951.95 1.941.94
실시예 4Example 4 1.841.84 1.851.85 1.861.86 1.851.85
실시예 5Example 5 1.821.82 1.811.81 1.821.82 1.811.81
실시예 6Example 6 1.881.88 1.871.87 1.881.88 1.881.88
실시예 7Example 7 2.012.01 2.002.00 2.022.02 2.012.01
실시예 8Example 8 2.122.12 2.102.10 2.082.08 2.102.10
실시예 9Example 9 Ag coated Cu dendriteAg coated Cu dendrite 1.881.88 1.871.87 1.861.86 1.871.87
실시예 10Example 10 1.831.83 1.831.83 1.831.83 1.831.83
실시예 11Example 11 1.801.80 1.801.80 1.801.80 1.801.80
실시예 12Example 12 제2 Cu 덴드라이트2nd Cu dendrite 2.132.13 2.142.14 2.152.15 2.142.14
실시예 13Example 13 2.192.19 2.202.20 2.202.20 2.202.20
실시예 14Example 14 2.252.25 2.242.24 2.242.24 2.242.24
비교예 1Comparative Example 1 -- 2.072.07 2.052.05 2.062.06 2.062.06
비교예 2Comparative Example 2 Cu 구형Cu spherical 1.911.91 1.921.92 1.911.91 1.911.91
상기 표 2에 나타난 바와 같이, 본원 실시예에서는 비교예 1 대비 가지상 길이가 10~20 ㎛급 구리 덴드라이트(Cu dendrite) 첨가시 저항값이 감소하였으며, 10% 은(Ag) 코팅 구리 덴드라이트(Ag coated Cu dendrite)의 경우 저항값 감소효과가 크게 나타났다. 또한 구형의 Cu 분말을 사용하는 비교예 2와 비교하여, 가지상 길이가 10~20 ㎛급 구리 덴드라이트 첨가할 경우 소자의 저항값 감소효과가 보다 우수하였다. 이는 구리 덴드라이트의 면 접촉이 구리 구형 분말의 점 접촉보다 접촉면적이 넓게 되어 전도성을 향상시키는 것으로 판단된다. 또한 Cu dendrite의 첨가량은 1 내지 40 wt% 범위 내에서 적합하며, 특히 5 내지 30 wt% 첨가시 열전 소자의 저항 감소 효과가 크게 나타났다. As shown in Table 2 above, in the example of the present application, the resistance value decreased when 10 to 20 µm class copper dendrite was added, compared to Comparative Example 1, and 10% silver (Ag) coated copper dendrite In the case of (Ag coated Cu dendrite), the effect of reducing the resistance value was large. In addition, compared with Comparative Example 2 using a spherical Cu powder, the effect of reducing the resistance value of the device was more excellent when 10 to 20 µm class copper dendrites were added. It is believed that the surface contact of copper dendrites has a larger contact area than the point contact of copper spherical powder, thereby improving conductivity. In addition, the addition amount of Cu dendrite is suitable within the range of 1 to 40 wt%, especially when 5 to 30 wt% is added, the effect of reducing the resistance of the thermoelectric element is large.
아울러, 가지상 길이가 20~30 ㎛급 Cu dendrite 첨가시 저항의 감소효과가 상대적으로 크지 않았는데, 이는 Sn계 솔더의 용융이 방해되어 저항 감소효과가 10~20㎛급 Cu dendrite보다 떨어지는 것을 알 수 있었다.In addition, the effect of reducing the resistance was not relatively large when the length of 20~30㎛ Cu dendrite was added, which shows that the melting effect of Sn-based solder is hindered and the effect of reducing resistance is lower than that of 10~20㎛ Cu dendrite. there was.
[실험예 4] 출력 평가[Experimental Example 4] Output evaluation
실시예 1 내지 14와 비교예 1 내지 2에서 제조된 각각의 열전소자(크기: 40×40×3t)에 대하여 출력 평가설비를 이용하여 반복에 따른 출력 변화 결과를 측정하였으며, 이의 결과를 하기 표 3에 나타내었다.For each thermoelectric element (size: 40×40×3t) manufactured in Examples 1 to 14 and Comparative Examples 1 to 2, the output change result according to repetition was measured using an output evaluation facility, and the results are shown in the following table. It is shown in 3.
출력 평가는 제조된 각 열전소자를 이용하여 출력 평가 설비에 장착하고 약 60kgf의 하중을 인가하였다. 이후 고온부 온도를 300도, 저온 냉각부 온도를 30도로 유지한 후 소자의 열전 출력 데이터[Pmax(W)]를 얻을 수 있었다. The output evaluation was mounted on an output evaluation facility using each manufactured thermoelectric element and a load of about 60 kgf was applied. Thereafter, after maintaining the temperature of the high-temperature portion at 300 degrees and the temperature at the low-temperature cooling portion at 30 degrees, thermoelectric output data [Pmax(W)] of the device was obtained.
금속 덴드라이트Metal dendrites 1One 22 33 평균Average
실시예 1Example 1 제1 Cu 덴드라이트1st Cu dendrite 9.719.71 9.789.78 9.829.82 9.779.77
실시예 2Example 2 9.989.98 10.0210.02 9.909.90 9.979.97
실시예 3Example 3 10.2110.21 10.1110.11 10.1010.10 10.1410.14
실시예 4Example 4 10.7510.75 10.7210.72 10.7010.70 10.7210.72
실시예 5Example 5 11.0611.06 11.1111.11 11.0311.03 11.0711.07
실시예 6Example 6 10.5210.52 10.5610.56 10.4510.45 10.5110.51
실시예 7Example 7 9.779.77 9.819.81 9.769.76 9.789.78
실시예 8Example 8 9.379.37 9.459.45 9.479.47 9.439.43
실시예 9Example 9 Ag coated Cu dendriteAg coated Cu dendrite 10.6010.60 10.5910.59 10.6310.63 10.6110.61
실시예 10Example 10 10.9010.90 10.8510.85 10.7910.79 10.8510.85
실시예 11Example 11 11.0211.02 11.1211.12 11.1011.10 11.0811.08
실시예 12Example 12 제2 Cu 덴드라이트2nd Cu dendrite 9.429.42 9.369.36 9.389.38 9.399.39
실시예 13Example 13 9.199.19 9.159.15 9.109.10 9.159.15
실시예 14Example 14 9.049.04 9.099.09 9.119.11 9.089.08
비교예 1Comparative Example 1 -- 9.579.57 9.649.64 9.559.55 9.599.59
비교예 2Comparative Example 2 Cu 구형Cu spherical 10.0410.04 10.0210.02 9.979.97 10.0110.01
소자의 출력 특성을 확인한 결과, 본원 실시예에서는 비교예 1 대비 가지상 길이가 10~20 ㎛급 Cu dendrite 첨가시 출력값이 상승하였으며, 10% Ag coated Cu dendrite의 경우 저항값 감소효과 대비 출력값 상승이 미흡하였다. 또한 구형의 Cu 분말을 사용하는 비교예 2와 비교하여, 가지상 길이가 10~20 ㎛급 구리 덴드라이트를 첨가하는 경우 소자의 출력값이 상승하였다. 또한 가지상 길이가 20~30㎛급 Cu dendrite 첨가시 소자의 출력값이 개선되지 않음을 확인할 수 있었다(상기 표 3 참조). As a result of confirming the output characteristics of the device, in this example, the output value increased when 10~20㎛ class Cu dendrite was added as compared to Comparative Example 1, and in the case of 10% Ag coated Cu dendrite, the output value increased compared to the effect of reducing the resistance value. Insufficient. In addition, compared to Comparative Example 2 using a spherical Cu powder, the output value of the device increased when 10 to 20 µm-class copper dendrites were added. In addition, it was confirmed that the output value of the device did not improve when a Cu dendrite with a length of 20 to 30 μm was added (see Table 3 above).
[실험예 5] 열전 소자의 출력 고온 안정성 평가[Experimental Example 5] Evaluation of output high temperature stability of thermoelectric elements
실시예 1 내지 14와 비교예 1 내지 2에서 제조된 각각의 소자(크기: 40×40×3t)에 대하여 출력 평가 설비를 이용하여 100 시간(hrs) 유지에 따른 소자의 출력 변화 결과를 측정하였으며, 이의 결과를 하기 도 13 내지 15에 각각 나타내었다.For each device manufactured in Examples 1 to 14 and Comparative Examples 1 to 2 (size: 40×40×3t), the output change result of the device according to 100 hours (hrs) was measured using an output evaluation facility. , The results are shown in Figs. 13 to 15, respectively.
이때, 출력 평가는 제조된 각 열전소자를 이용하여 출력 평가 설비에 장착하고 약 60 kgf의 하중을 인가하였다. 이후 고온부 온도를 300도, 저온 냉각부 온도를 30도로 유지한 후 100 시간 동안 유지하여 데이터를 얻을 수 있었다. At this time, the output evaluation was mounted on an output evaluation facility using each manufactured thermoelectric element, and a load of about 60 kgf was applied. After that, the temperature of the high-temperature portion was maintained at 300 degrees, and the temperature of the low-temperature cooling portion was maintained at 30 degrees, and then maintained for 100 hours to obtain data.
실험 결과, 본원 실시예에서는 비교예 1~2 대비 우수한 고온 출력 안정성을 가짐을 알 수 있었으며, 특히 가지상 길이가 10~20 ㎛급 Cu dendrite 첨가시 고온 안정성 효과가 있음을 확인할 수 있었다(하기 도 13 ~ 15 참조). As a result of the experiment, it was found that the Examples of the present application had excellent high-temperature output stability compared to Comparative Examples 1 and 2, and in particular, it was confirmed that the high-temperature stability effect was obtained when 10 to 20 μm-class Cu dendrite was added. 13-15).

Claims (16)

  1. 제1 기판; A first substrate;
    상기 제1 기판과 대향 배치된 제2 기판;A second substrate facing the first substrate;
    상기 제1 기판과 제2 기판 사이에 각각 배치된 제1 전극과 제2 전극; 및A first electrode and a second electrode respectively disposed between the first substrate and the second substrate; And
    상기 제1 전극과 상기 제2 전극 사이에 개재된 복수의 열전 레그; A plurality of thermoelectric legs interposed between the first electrode and the second electrode;
    상기 제1 전극과 상기 열전 레그 사이, 및 상기 열전 레그와 상기 제2 전극 사이 중 적어도 하나에 배치되는 접합재를 포함하되, And a bonding material disposed between at least one of the first electrode and the thermoelectric leg, and between the thermoelectric leg and the second electrode,
    상기 접합재는 Sn계 솔더; 및 평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하는 열전 소자.The bonding material is Sn-based solder; And a metal dendrite having an average branch length of 5 to 50 μm.
  2. 제1항에 있어서,According to claim 1,
    상기 금속 덴드라이트는 1개의 주축을 구비하고, 당해 주축으로부터 복수의 가지상이 분기하되, 하기 조건 중 적어도 2개를 만족하는 열전 소자. The metal dendrites have one main shaft, and a plurality of branched branches branch from the main shaft, but satisfy at least two of the following conditions.
    (i) 주축의 장경(長徑) 길이(L)가 5 내지 50 ㎛이며, (i) the major axis has a long length L of 5 to 50 μm,
    (ii) 복수의 가지상 중 최장 가지상 길이가 5 내지 30 ㎛이며,(ii) the longest branch of the plurality of branches has a length of 5 to 30 μm,
    (iii) 주축의 장경에 대한 가지의 개수(가지 개수/장경)가 0.5 내지 10 개/㎛이며,(iii) the number of branches (number of branches/long diameter) with respect to the major diameter of the main shaft is 0.5 to 10/µm,
    (iv) 평균 입경(D50)은 5 내지 50 ㎛임. (iv) The average particle diameter (D 50 ) is 5 to 50 μm.
  3. 제1항에 있어서,According to claim 1,
    상기 금속 덴드라이트는, BET 측정법에 의해 측정된 비표면적이 0.4 내지 3.0 m2/g이며, 겉보기 밀도는 0.5 내지 1.5 g/㎤이고, 산소 함량은 0.35 % 이하인, 열전 소자.The metal dendrite has a specific surface area of 0.4 to 3.0 m 2 /g measured by a BET measurement method, an apparent density of 0.5 to 1.5 g/cm 3, and an oxygen content of 0.35% or less.
  4. 제1항에 있어서,According to claim 1,
    상기 금속 덴드라이트는 구리(Cu) 덴드라이트, 은(Ag) 코팅된 구리 덴드라이트, 또는 이들의 혼합물인 열전 소자. The metal dendrites are copper (Cu) dendrites, silver (Ag) coated copper dendrites, or mixtures thereof.
  5. 제4항에 있어서,According to claim 4,
    상기 구리 덴드라이트는 평균 가지상 길이가 5 내지 20 ㎛이며, The copper dendrite has an average branched length of 5 to 20 μm,
    당해 접합재의 총 중량 대비 1 내지 40 중량%로 포함되는 열전 소자. Thermoelectric device included in 1 to 40% by weight relative to the total weight of the bonding material.
  6. 제4항에 있어서,According to claim 4,
    상기 은(Ag) 코팅된 구리 덴드라이트는 평균 가지상 길이가 5 내지 20㎛ 이며, 당해 접합재의 총 중량 대비 10 내지 30 중량%로 포함되는 열전 소자. The silver (Ag) coated copper dendrite has an average branch length of 5 to 20 µm, and a thermoelectric device comprising 10 to 30% by weight based on the total weight of the bonding material.
  7. 제1항에 있어서, According to claim 1,
    상기 Sn계 솔더는 Sn과; Pb, Al, 및 Zn 중 적어도 하나의 금속을 포함하는 열전 소자. The Sn-based solder is Sn; A thermoelectric element comprising at least one metal of Pb, Al, and Zn.
  8. 제1항에 있어서, According to claim 1,
    제1 기판과 제2 기판은 서로 동일하거나 또는 상이하며, 각각 독립적으로 세라믹 기판 또는 도전성 기판인 열전 소자. The first substrate and the second substrate are the same as or different from each other, and each independently a ceramic substrate or a conductive substrate as a thermoelectric element.
  9. 제8항에 있어서, The method of claim 8,
    상기 도전성 기판은, 금속 기판; 및 이의 일면에 형성된 절연층을 포함하는 열전 소자. The conductive substrate may include a metal substrate; And an insulating layer formed on one surface thereof.
  10. 제9항에 있어서, The method of claim 9,
    상기 절연층은 절연성 수지 또는 상기 절연성 수지와 세라믹 필러의 혼합물을 포함하는 열전 소자. The insulating layer is a thermoelectric element comprising an insulating resin or a mixture of the insulating resin and a ceramic filler.
  11. 제1항에 있어서, According to claim 1,
    상기 제1 기판, 제2 기판, 제1 전극, 또는 제2 전극은 서로 동일하거나 또는 상이하며, 각각 알루미늄(Al), 아연(Zn), 구리(Cu), 니켈(Ni), 및 코발트(Co) 중 적어도 1종의 금속을 포함하는 열전 소자. The first substrate, the second substrate, the first electrode, or the second electrode is the same as or different from each other, and aluminum (Al), zinc (Zn), copper (Cu), nickel (Ni), and cobalt (Co), respectively. ) Of at least one metal.
  12. 제8항에 있어서, The method of claim 8,
    상기 제1 기판과 제2 기판이 각각 도전성 기판인 경우, 상기 도전성 기판 중 적어도 하나는 일면에 당해 기판의 길이방향에 따라 소정 간격으로 이격하여 형성된 복수의 슬릿(Slit)을 구비하는 열전 소자.When the first substrate and the second substrate are each conductive substrates, at least one of the conductive substrates includes a plurality of slits formed at a predetermined interval along a longitudinal direction of the substrate.
  13. 제12항에 있어서, The method of claim 12,
    상기 복수의 슬릿(Slit)을 구비하는 도전성 기판은 발열부인 열전 소자. The conductive substrate provided with the plurality of slits is a thermoelectric element that is a heating part.
  14. 제1항에 있어서, According to claim 1,
    상기 열전 레그는 Bi-Te계, Co-Sb계, Pb-Te계, Ge-Tb계, Si-Ge계, Sb-Te계, Sm-Co계, 전이금속 규화물계, 스쿠테르다이트(Skuttrudite)계, 규화물(Silicide)계, 하프휘슬러(Half heusler) 및 이들의 조합으로부터 선택되는 적어도 하나의 열전반도체 물질을 포함하는 열전 소자. The thermoelectric legs are Bi-Te, Co-Sb, Pb-Te, Ge-Tb, Si-Ge, Sb-Te, Sm-Co, transition metal silicides, Scootite ), thermoelectric element comprising at least one thermoelectric material selected from silicide-based, half heusler, and combinations thereof.
  15. Sn계 솔더; 및 Sn-based solder; And
    평균 가지상 길이가 5 내지 50 ㎛인 금속 덴드라이트(dendrite)를 포함하며,It contains a metal dendrite having an average branch length of 5 to 50 μm,
    상기 금속 덴드라이트는 당해 조성물의 총 중량 대비 1 내지 40 중량%로 포함되는 솔더 페이스트.The metal dendrite is a solder paste contained in 1 to 40% by weight based on the total weight of the composition.
  16. 제15항에 있어서,The method of claim 15,
    250 내지 400℃의 온도 영역대에서 금속과 이종(異種) 소재를 접합하기 위한 솔더 페이스트.Solder paste for bonding metal and dissimilar materials in a temperature range of 250 to 400°C.
PCT/KR2019/011071 2018-12-17 2019-08-29 Thermoelectric element and solder paste included therein WO2020130282A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180163573 2018-12-17
KR10-2018-0163573 2018-12-17
KR10-2019-0034437 2019-03-26
KR1020190034437A KR102149098B1 (en) 2018-12-17 2019-03-26 Thermoelectric device and solder paste included therein

Publications (1)

Publication Number Publication Date
WO2020130282A1 true WO2020130282A1 (en) 2020-06-25

Family

ID=71101480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011071 WO2020130282A1 (en) 2018-12-17 2019-08-29 Thermoelectric element and solder paste included therein

Country Status (1)

Country Link
WO (1) WO2020130282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113369623A (en) * 2021-06-30 2021-09-10 哈尔滨工业大学(深圳) Brazing connection method of half-heusler thermoelectric material with high service temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314241A (en) * 2001-04-18 2002-10-25 Hitachi Ltd Electronic device
KR20130009592A (en) * 2011-07-13 2013-01-23 미쓰이 긴조꾸 고교 가부시키가이샤 Dendritic copper powder
KR20130073995A (en) * 2006-03-09 2013-07-03 신닛테츠스미킹 마테리알즈 가부시키가이샤 Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
KR20170071354A (en) * 2015-12-15 2017-06-23 주식회사 엘지화학 Metal paste and thermoelectric module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314241A (en) * 2001-04-18 2002-10-25 Hitachi Ltd Electronic device
KR20130073995A (en) * 2006-03-09 2013-07-03 신닛테츠스미킹 마테리알즈 가부시키가이샤 Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
KR20130009592A (en) * 2011-07-13 2013-01-23 미쓰이 긴조꾸 고교 가부시키가이샤 Dendritic copper powder
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
KR20170071354A (en) * 2015-12-15 2017-06-23 주식회사 엘지화학 Metal paste and thermoelectric module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113369623A (en) * 2021-06-30 2021-09-10 哈尔滨工业大学(深圳) Brazing connection method of half-heusler thermoelectric material with high service temperature
CN113369623B (en) * 2021-06-30 2022-06-03 哈尔滨工业大学(深圳) Brazing connection method of half-heusler thermoelectric material with high service temperature

Similar Documents

Publication Publication Date Title
WO2020085681A1 (en) Thermoelectric element and manufacturing method therefor
WO2012023669A1 (en) Solar cell module
WO2021187724A1 (en) Conductive liquid metal microparticles comprising hydrogen-doped liquid metal oxide, conductive ink comprising same, and preparation method therefor
WO2015005655A1 (en) Ultra-small led electrode assembly and method for manufacturing same
WO2015093903A1 (en) Metal packaging material having good heat resistance, method of manufacturing same, and flexible electronic device packaged in said metal packaging material
WO2009134052A2 (en) Defrosting heater using strip type plane heating element, manufacturing method thereof and defrosting device using the same
WO2021201376A1 (en) Flexible electrode circuit capable of being 3d circuit printed strain sensor using same, and manufacturing method therefor
EP3437144A2 (en) Solar cell panel
WO2017171287A2 (en) Solar cell panel
WO2020130282A1 (en) Thermoelectric element and solder paste included therein
KR101904538B1 (en) Ceramic circuit board and manufacturing method thereof
WO2019194595A1 (en) Heat converter
WO2022005099A1 (en) Power module, and method for manufacturing same
WO2020180149A1 (en) Packaging substrate and semiconductor apparatus comprising same
WO2021112566A1 (en) Thermoelectric element and manufacturing method therefor
WO2019143140A1 (en) Thermoelectric element
WO2022005183A1 (en) Power module
WO2018143780A1 (en) Thermoelectric element
WO2018139822A1 (en) Semiconductor donor substrate, method for manufacturing semiconductor donor substrate, method for manufacturing organic light emitting device, and donor substrate module
WO2021145677A1 (en) Power generation device
WO2021221460A1 (en) Adhesive transfer film and method for manufacturing power module substrate by using same
WO2017057927A1 (en) Light emitting device, method for producing light emitting device, and light emitting module
WO2020185021A1 (en) Packaging substrate, and semiconductor device comprising same
WO2021045516A1 (en) Thermoelectric module
WO2022025325A1 (en) Thermoelectric material comprising multi-layered diffusion barrier layer, and thermoelectric element provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900851

Country of ref document: EP

Kind code of ref document: A1