WO2020085170A1 - Method and apparatus for producing catalyst-adhered body, and method and apparatus for producing fibrous carbon nanostructure - Google Patents

Method and apparatus for producing catalyst-adhered body, and method and apparatus for producing fibrous carbon nanostructure Download PDF

Info

Publication number
WO2020085170A1
WO2020085170A1 PCT/JP2019/040739 JP2019040739W WO2020085170A1 WO 2020085170 A1 WO2020085170 A1 WO 2020085170A1 JP 2019040739 W JP2019040739 W JP 2019040739W WO 2020085170 A1 WO2020085170 A1 WO 2020085170A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
supply port
raw material
vertical container
producing
Prior art date
Application number
PCT/JP2019/040739
Other languages
French (fr)
Japanese (ja)
Inventor
墨宸 李
野田 優
里沙 前田
利男 大沢
明慶 渋谷
Original Assignee
学校法人早稲田大学
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 日本ゼオン株式会社 filed Critical 学校法人早稲田大学
Priority to JP2020553253A priority Critical patent/JPWO2020085170A1/en
Publication of WO2020085170A1 publication Critical patent/WO2020085170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Definitions

  • the present invention relates to a manufacturing method and a manufacturing apparatus for a catalyst-adhered body, and a manufacturing method and a manufacturing apparatus for a fibrous carbon nanostructure.
  • the present invention provides a method for producing a catalyst adhering body that can be suitably used for synthesizing a fibrous carbon nanostructure, and a catalyst adhering body producing apparatus that can suitably carry out the method for producing such a catalyst adhering body.
  • the present invention is capable of suitably carrying out the method for producing a fibrous carbon nanostructure using the above-mentioned catalyst-adhered body, and the method for producing such a fibrous carbon nanostructure.
  • the present invention relates to a body manufacturing device.
  • Patent Documents 1 and 2 describe a method for producing a catalyst for vapor phase oxidation.
  • Patent Documents 1 and 2 there is a method of producing a supported catalyst in which a catalyst component is attached to the surface of carrier particles by spraying a suspension containing a catalytically active material onto fluidized carrier particles.
  • CNT fibrous carbon materials
  • fibrous carbon nanostructures such as carbon nanotubes (hereinafter sometimes referred to as “CNT”)
  • CNT consists of a cylindrical graphene sheet composed of carbon atoms, and its diameter is on the order of nanometers.
  • Fibrous carbon nanostructures such as CNTs were generally more expensive than other materials due to higher manufacturing costs. Therefore, the use thereof is limited despite having the above-mentioned excellent characteristics.
  • a CVD (Chemical Vapor Deposition) method using a catalyst (hereinafter sometimes referred to as “catalytic CVD method”) has been used as a manufacturing method capable of manufacturing CNTs and the like with relatively high efficiency. It was However, even the catalytic CVD method could not sufficiently reduce the manufacturing cost.
  • Patent Document 3 a method of producing a supported catalyst by supplying a gas containing a catalyst raw material while flowing carrier particles has been studied (see, for example, Patent Document 3). Specifically, in Patent Document 3, a supported catalyst is efficiently and uniformly obtained by spraying a catalyst component-containing liquid from above while the carrier particles are flowing.
  • the fibrous carbon nanostructure has been required to have higher quality.
  • the supported catalyst used for the production thereof be homogeneous.
  • a method for producing a supported catalyst in which a catalyst component is attached to the surface of carrier particles by spraying a suspension containing a catalytically active material as described in Patent Documents 1 and 2, and Patent Document 3
  • the catalyst raw material is applied to the surface of the carrier particles (hereinafter, also referred to as “target particles”).
  • the fluidizing gas that fluidizes the carrier particles flows from the lower side to the upper side, whereas when the suspension is sprayed from the upper side to the lower side, the sprayed suspension is pushed back upward by the flowing gas. Therefore, there is a problem that the catalytically active material does not reach the bottom of the carrier particle layer sufficiently.
  • the present invention provides a method for producing a catalyst adhering material, which can efficiently and uniformly attach a catalyst raw material to the surface of target particles, and a fibrous material using the catalyst adhering material obtained according to such a manufacturing method.
  • An object is to provide a method for producing a carbon nanostructure.
  • Another object of the present invention is to provide an apparatus for producing a catalyst adhering body, which can suitably carry out the method for producing a catalytic adhering body of the present invention.
  • an object of the present invention is to provide an apparatus for producing fibrous carbon nanostructures, which can suitably carry out the method for producing fibrous carbon nanostructures of the present invention.
  • the inventors of the present invention have made extensive studies with the aim of solving the above problems. Then, the inventors of the present invention efficiently and uniformly supply the catalyst raw material solution in the form of mist from the bottom to the top with respect to the target particles contained in the vertical container and in the fluidized state. The inventors have newly found that the raw material can be attached to the surface of the target particles, and have completed the present invention. This is because when the fluidized gas is supplied to the target particles from below to fluidize the target particles, the mist-like catalyst raw material solution is also entrained in the fluidized gas and uniformly reaches from the bottom to the top of the target particle layer. is there.
  • the method for producing a catalyst deposit of the present invention is a catalyst for attaching a catalyst raw material to the target particles using a vertical container.
  • a method for manufacturing an adhered body wherein at least one gas is supplied from a first supply port arranged in a lower portion of the vertical container toward an upper portion of the vertical container, From the flow step of flowing the target particles and the second supply port arranged in the lower part of the vertical container toward the upper direction of the vertical container, a catalyst raw material solution mist is supplied to the target particles.
  • a catalyst adhering step of adhering the catalyst raw material to obtain a catalyst adhering body and the flowing step is continued while the catalyst adhering step is carried out.
  • the method for producing a catalyst-adhered body of the present invention includes a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of the vertical container for the target particles in a fluidized state, so that the method is efficient and The catalyst raw material can be uniformly attached to the surface of the target particles.
  • the first supply port and the second supply port are the same supply port, and the gas and the catalyst raw material solution mist are the same supply port through the same supply port. It is preferably introduced into a vertical container. Since the flowing gas and the catalyst raw material solution mist are introduced into the vertical container through the same supply port, the catalyst raw material can be more efficiently and uniformly attached to the surface of the target particles. .
  • the method for producing a catalyst-adhered body of the present invention includes heating the vertical container at 100 ° C. or more and 1000 ° C. or less in the catalyst adhering step.
  • the catalyst raw material can be attached to the surface of the target particles more efficiently.
  • the volume average particle diameter of the target particles is 0.1 mm or more and 1 mm or less, and the volume average particle diameter of the catalyst raw material solution mist is 1 of the volume average particle diameter of the target particles. / 10 or less, and the minimum width of the second supply port is preferably 100 times or more the volume average particle diameter of the catalyst raw material solution mist.
  • the catalyst raw material can be attached to the surface of the target particles more uniformly.
  • the second supply port for supplying the catalyst raw material solution mist when the minimum width of the second supply port for supplying the catalyst raw material solution mist is 100 times or more the volume average particle diameter of the catalyst raw material solution mist, the second supply port can be prevented from being blocked by the mist. it can.
  • the volume average particle diameter of the target particles and the volume average particle diameter of the catalyst raw material solution mist can be measured according to JIS Z8825: 2013, for example.
  • the present invention is intended to advantageously solve the above problems, the method for producing a fibrous carbon nanostructure of the present invention, the catalyst adhesion obtained according to the method for producing a catalyst adherent described above.
  • a fibrous carbon nanostructure for growing a fibrous carbon nanostructure on the catalyst adhering body obtained by passing the catalyst adhering step by supplying a carbon source gas into the vertical container. It is characterized by including a structure growing step. According to the method for producing a fibrous carbon nanostructure of the present invention, the fibrous carbon nanostructure can be efficiently produced.
  • the carbon source gas is supplied into the vertical container through a supply port different from the second supply port.
  • the fibrous carbon nanostructure grows due to the catalyst adhering material remaining near the second supply opening or the catalyst adhering near the second supply opening. It is possible to prevent the second supply port from being easily closed.
  • the catalyst attaching step and the fibrous carbon nanostructure growing step are not performed in parallel.
  • a catalyst adhering material producing apparatus of the present invention is a catalyst adhering material for adhering a catalyst raw material to target particles to obtain a catalyst adhering material.
  • a body manufacturing apparatus which has an exhaust port in an upper part and a first supply port and a second supply port in a lower part, and communicates with the vertical container through the first supply port. Through the gas supply device and the second supply port, which supply at least one gas for flowing the target particles toward the upper part of the vertical container.
  • a catalyst raw material solution mist supply device arranged so as to communicate with the catalyst raw material solution mist supply device.
  • the catalyst adhering material manufacturing apparatus for a catalyst adhering material of the present invention is a catalyst raw material for a target particle in a fluidized state by a gas supplied by at least one type of gas supply device from a lower direction to an upper direction of a vertical container. Since the catalyst raw material solution mist is supplied by the solution mist supply device, the catalyst raw material can be efficiently and uniformly attached to the surfaces of the target particles.
  • the first supply port and the second supply port are the same supply port. Since the flowing gas and the catalyst raw material solution mist are introduced into the vertical container through the same supply port, the catalyst raw material can be more efficiently and uniformly attached to the surface of the target particles. .
  • the minimum width of the second supply port is preferably 3 mm or more.
  • the minimum width of the second supply port is 3 mm or more, it is possible to prevent the second supply port from easily becoming blocked.
  • the fibrous carbon nanostructure production apparatus of the present invention includes any of the catalyst adhering body production apparatus described above, A carbon raw material gas supply device for supplying a carbon raw material gas is provided in the vertical container. According to such a manufacturing apparatus, the above-described method for manufacturing a fibrous carbon nanostructure of the present invention can be suitably implemented.
  • the carbon source gas supply device is connected to the vertical container via a supply port other than the second supply port. If the carbon raw material gas supply device is connected to the vertical container via a supply port other than the second supply port, it will adhere to the catalyst adhering material remaining near the second supply port or near the second supply port. It is possible to prevent the fibrous carbon nanostructure from growing due to the catalyst thus formed and easily blocking the second supply port.
  • the catalyst raw material which can adhere a catalyst raw material to the surface of object particle
  • a method for producing a carbon nanostructure can be provided.
  • a fibrous carbon nanostructure manufacturing apparatus capable of suitably carrying out the above-described fibrous carbon nanostructure manufacturing method of the present invention.
  • 3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-1.
  • 3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-2.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-3.
  • 3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-4.
  • 3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-1.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-2.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-3.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-4.
  • 3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 3-1.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 3-2.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 3-3.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 4-1.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 5-1.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 5-2.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 5-3.
  • 7 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-1.
  • 6 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-2.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-3.
  • 5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-4.
  • the catalyst adhering body produced by using the method for producing a catalyst adhering body and the apparatus for producing a catalyst adhering body of the present invention is suitable for producing, for example, carbon nanotubes and fibrous carbon nanostructures such as carbon nanofibers.
  • the catalyst adhering material manufacturing apparatus of the present invention and the fibrous carbon nanostructure manufacturing apparatus including the same will be described, and then the catalyst adhering material manufacturing method and the fibrous carbon nanostructure manufacturing method of the present invention will be described.
  • the catalyst adhering material manufacturing apparatus of the present invention is a catalyst adhering material manufacturing apparatus for adhering a catalyst raw material to target particles to obtain a catalyst adhering material. Then, according to the catalyst adhered body manufacturing apparatus of the present invention, the method for manufacturing a catalyst adhered body of the present invention can be suitably implemented.
  • FIG. 1 shows a schematic structure of an example of the apparatus for producing a catalyst-adhered body of the present invention.
  • the apparatus 100 for manufacturing a catalyst deposit shown in FIG. 1 includes a vertical container 10, a gas supply device 20 for supplying at least one gas for causing target particles to flow toward the upper part of the vertical container 10, and a vertical container.
  • a catalyst raw material solution mist supply device 30 for supplying the catalyst raw material solution mist toward the upper side of the mold container 10 is provided.
  • the catalyst raw material is formed from the lower side to the upper side of the fluidized bed while flowing the target particles to form the fluidized bed. Since the solution mist can be brought into contact with the target particles, the catalyst raw material solution mist can be uniformly and efficiently supplied to the particles forming the fluidized bed. Further, in the fluidized bed, the target particles adhered by contact with the catalyst raw material solution mist can be quickly dried. Therefore, according to the catalyst adhered body manufacturing apparatus of the present invention, the catalyst raw material can be efficiently and uniformly adhered to the surfaces of the target particles.
  • the target particles to which the catalyst raw material is attached may be carrier particles to which the catalyst material has already been attached, or carrier particles to which the catalyst material has not yet been attached.
  • the carrier particles to which the catalyst material is already adhered for example, (1) before being used as a catalyst adherent, it has been used for the purpose of synthesizing fibrous carbon nanostructures, Carrier particles having a deactivated catalyst material on the surface; and (2) carrier particles that have already undergone one or more catalyst deposition operations, and that require further catalyst component deposition. Is mentioned.
  • the method for producing a catalyst adhering material of the present invention can be used for adhering the catalyst material to the carrier particles in a state where the catalyst material is not yet adhered, or the catalyst material is already adhered. It can also be used to further attach a catalyst material to the carrier particles.
  • the particles of interest can be carrier particles, specifically ceramic particles such as alumina beads, zirconia beads, quartz beads, zircon beads, and mullite beads.
  • the volume average particle diameter of the target particles can be preferably 0.1 mm or more and 1 mm or less.
  • the “particle” means an object having an aspect ratio of less than 5.
  • the aspect ratio of the target particles may be calculated by, for example, calculating a value of (maximum major axis / width orthogonal to the maximum major axis) for 100 arbitrarily selected target particles on a microscope image, and calculating an average value thereof. You can check it.
  • the volume average particle diameter of the target particles represents a particle diameter (D50) at which the cumulative volume calculated from the small diameter side is 50% in the particle size distribution (volume basis) measured according to JIS Z8825: 2013.
  • the vertical container 10 has an exhaust port 11 in the upper part and a first supply port and a second supply port in the lower part.
  • the “lower part” of the vertical container 10 refers to the lower part with reference to the position of half the length of the vertical container 10 in the height direction.
  • the vertical container 10 has the exhaust port 11 above the first supply port and the second supply port.
  • the first supply port and the second supply port may each be configured with a single opening or a plurality of openings.
  • the first supply port and the second supply port are the same supply port, and in FIG. 1, as the supply port 12 provided in the lower bottom portion of the vertical container 10.
  • the gas supply device 20 is mounted by a mist carrier gas supply unit 21 and a flowing gas supply unit 22.
  • the mist carrier gas supply unit 21 passes through the carrier gas pipe 41, the mist-containing gas pipe 42, and a part of the main pipe 43, and vertically via the supply port 12 (in this case, the “first supply port”). It is connected to the mold container 10.
  • the fluidized gas supply unit 22 is connected to the vertical container 10 via the fluidized gas pipe 44 and a part of the main pipe 43, and via the supply port 12 (in this case, the “first supply port”).
  • the catalyst raw material solution mist supply device 30 is connected to the vertical container 10 via the mist-containing gas pipe 42 and the supply port 12 (corresponding to the “second supply port” in this case).
  • the various pipes 41 to 44 may optionally include valves 51 to 54, respectively. Note that instead of or in addition to the valves 51 to 54, any member and / or device having a function of adjusting the flow rate of the fluid or object flowing in the pipe may be mounted.
  • Such members and devices are not particularly limited, and may include a pump with an inverter, a shutter, a flow meter, and the like.
  • the valve 53 arranged in the main pipe 43 may be in a closed state while the catalyst adhering step is being performed in the vertical container 10, and may be in an open state after the catalyst adhering step is completed.
  • the vertical container 10 is not particularly limited as long as it can store the target particles therein, and is a container made of a material such as stainless steel or glass.
  • the shape of the vertical container 10 is particularly limited as long as it satisfies the condition of "vertical", that is, the height of the container is larger than the maximum width in the direction perpendicular to the height direction. Without any shape.
  • the shape of the cross section perpendicular to the height direction is circular, and the cross-sectional diameter gradually decreases toward the lower end near the lower end. It is a shape having a curved portion (hereinafter, also referred to as “tapered portion”).
  • the vertical container 10 can accommodate the target particles 60 in the tapered portion and the main body portion connected to the tapered portion.
  • the taper portion can accommodate the target particles 60 and can discharge the prepared catalyst adhering body from the supply port 12 arranged at the bottom of the taper portion.
  • the target particles 60 are contained in the vertical container 10 and include at least one of carrier particles and a catalyst adhering body.
  • the vertical container 10 has a particle input port 13 at the upper part, more specifically, above the exhaust port 11, and the target particles 60 are introduced into the vertical container 10 via the particle input port 13. Can be introduced.
  • the target particles 60 form a fluidized bed inside the vertical container 10. Specifically, the target particles 60 stay and flow inside the vertical container 10 while at least a part of the target particles 60 are blown up from below through the supply port 12. Due to this flow, the catalyst raw material solution mist comes into contact with the surface of the target particles 60.
  • the gas supply device 20 exemplifies a structure including two constituent parts, a mist carrier gas supply part 21 and a flowing gas supply part 22, but in another example, the gas supply device is a flowing gas.
  • the mist carrier gas supplied from the mist carrier gas supply unit which does not include a supply unit, causes the mist to reach the vertical container, and after being introduced into the vertical container, as a gas for flowing the target particles. It is also possible to work.
  • the mist carrier gas supply unit 21 can include, for example, a tank or a cylinder that can be a supply source of the mist carrier gas, a pump, and the like.
  • the mist carrier gas is not particularly limited as long as the mist can be transported, and any gas can be used.
  • a rare gas such as argon and an inert gas such as nitrogen can be preferably used.
  • the flowing gas supply unit 22 may include, for example, a tank or a cylinder that is a supply source of the flowing gas, a pump, and the like.
  • the flowing gas the same gases as the various gases listed as the mist carrier gas can be used. Above all, from the viewpoint of cost reduction, it is preferable to use nitrogen gas as the flowing gas. Further, during the production of the catalyst-adhered body, oxygen or water vapor can be contained in the fluidized gas when the catalyst is simultaneously calcined, and hydrogen can be contained when the catalyst is simultaneously reduced.
  • the gas supply device 20 forms a fluidized bed with the target particles 60 in the vertical container 10 at a speed equal to or higher than the speed at which all the target particles 60 fall by their own weight, and the target particles 60 are outside the vertical container 10. It is preferable to allow the gas to flow into the vertical container 10 at a speed less than the speed at which the gas can be blown off. This makes it possible to keep at least a part of the target particles 60 forming the fluidized bed in the vertical container 10 in a fluidized state.
  • the falling speed can be determined based on the size and density of the target particles 60.
  • the catalyst raw material solution mist supply device 30 is not particularly limited as long as it can generate a mist from the catalyst raw material solution, and can be embodied by any mechanism, for example, using vibration, static electricity, or two fluids. And a mechanism for generating mist.
  • the catalyst raw material solution mist supply device 30 is illustrated as being a device that employs a mechanism for generating mist using vibration of ultrasonic waves.
  • the catalyst raw material solution mist generation device 30 includes a mist generation chamber 31, a vibrator 32, and a vibration control unit 33.
  • the vibration control unit 33 controls the vibrator 32 to vibrate at a predetermined frequency.
  • the oscillator 32 vibrates in the catalyst raw material solution 34, so that the catalyst raw material solution mist 35 is generated.
  • the generated catalyst raw material solution mist 35 is carried from the mist carrier gas supply unit 21 by the mist carrier gas introduced into the mist generation chamber 31 via the carrier gas pipe 41 and introduced into the mist-containing gas pipe 42. It Then, the catalyst raw material solution mist 35 carried by the mist carrier gas is introduced into the vertical container 10.
  • the vibration control unit 33 can appropriately determine conditions such as the vibration frequency of the vibrator 32 in order to generate the catalyst raw material solution mist 35 having a desired size.
  • the volume average particle diameter of the catalyst raw material solution mist is preferably 1/10 or less of the volume average particle diameter of the target particles, and more preferably 1/30 or less. By making the volume average particle diameter of the catalyst raw material solution mist to be 1/10 or less, more preferably 1/30 or less of the volume average particle diameter of the target particles, the catalyst raw material can be more uniformly applied to the surface of the target particles. Can be attached. More specifically, the volume average particle diameter of the catalyst raw material solution mist is preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the catalyst raw material can be more uniformly attached to the surfaces of the target particles.
  • the time required for drying can be shortened, and because the mist is repelled on the surface of the target particles, so-called "stain", the adhesion of the catalyst raw material It is possible to effectively suppress the occurrence of a non-uniform portion.
  • the volume average particle diameter of the catalyst raw material solution mist can be usually 10 nm or more, or 100 nm or more.
  • volume average particle diameter of the mist represents a particle diameter (D50) at which the cumulative volume calculated from the smaller diameter side becomes 50% in the particle size distribution (volume basis) measured according to JIS Z8825: 2013. Furthermore, the volume average particle diameter of the catalyst raw material solution mist can be adjusted according to the setting of the generation device when generating the mist from the catalyst solution.
  • a solution obtained by dissolving it in a solvent such as toluene, hexane or the like can be preferably used.
  • Specific examples of such compounds include inorganic metal salts such as Al (NO 3 ) 3 , Mg (NO 3 ) 2 , Fe (NO 3 ) 3 , Co (NO 3 ) 2 and Ni (NO 3 ) 2 .
  • the present inventors have adopted a configuration in which, while fluidizing the target particles, a solution in which these compounds are dissolved is supplied as a mist, whereby the catalyst raw material is applied to the surface of the target particles. Succeeded in evenly adhering.
  • Al (NO) which is a compound containing Al as a solute is obtained.
  • the gas supply device 20 and the catalyst raw material solution mist supply device 30 are connected to the vertical container 10 via the supply port 12. Therefore, the mist containing the catalyst raw material tends to adhere to the supply port 12 and its vicinity. Then, when the target particles or the catalyst adhering material that has accidentally or somehow dropped from the fluidized bed comes into contact with the supply port 12 and its vicinity in which the mist is attached and has become wet, these target particles or The catalyst adhering material easily stays at and near the supply port 12. When such a phenomenon occurs and accumulates, the supply port 12 may finally be blocked. Therefore, in order to reduce the possibility of such blockage, it is preferable that the minimum width of the supply port 12 is 3 mm or more.
  • the minimum width of the supply port 12 is preferably 100 times or more, and more preferably 300 times or more of the volume average particle diameter of the catalyst raw material solution mist.
  • the volume average particle diameter of the catalyst raw material solution mist is preferably 1/100 or less of the minimum width of the supply port 12, and more preferably 1/300 or less.
  • “the minimum width of the supply port” specifically means (1) the diameter of the circle when the opening shape of the supply port is a circle; (2) the opening shape of the supply port is an ellipse. (3) When the opening shape of the supply port is rectangular, it means the length of the short side; (4) When the opening shape of the supply port is slit-shaped, it means the slit shape. Means minimum width.
  • the opening shape of the supply port 12 is preferable.
  • the features described above are shown as the features.
  • the gas supply unit and the catalyst raw material solution mist supply device are connected to the vertical container 10 via different supply ports, that is, the gas is supplied via the first supply port.
  • the opening shapes of the two supply ports satisfy various conditions as described above.
  • the catalyst adhered body manufacturing apparatus 100 further includes a heating device 70 configured to be able to heat the inside of the vertical container 10.
  • the heating device 70 is not particularly limited and may be configured by various heaters, for example. Further, the heating device 70 can heat the vertical container 10 to preferably 100 ° C. or higher, more preferably 200 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C. or lower.
  • the heating temperature can be optimized according to the type and properties of the catalyst raw material solution to be used, the flow rate at the time of supplying the flowing gas and the mist carrier gas, and the like. Further, the temperature inside the heated vertical container 10 can also be within the above-mentioned preferable range.
  • the catalyst adhering material manufacturing apparatus 100 includes a recovery device 80 configured to recover the catalyst adhering material prepared in the vertical container 10.
  • the recovery device 80 is preferably located below the vertical container 10. According to this configuration, the catalyst adhering material can be efficiently recovered by recovering the catalyst adhering material below the vertical container via the supply port 12.
  • a recovery chamber constituting a recovery device 80 is connected via a main pipe 43 connected to the supply port 12 located at the lower end of the vertical container 10.
  • the mist-containing gas pipe connection port 46 which is the connection port for connecting the mist-containing gas pipe 42 to the main pipe 43, and the flowing gas pipe 44 to the main pipe 43. It is preferable that it is arranged on the upper side (that is, on the side closer to the vertical container 10) than the fluidized gas pipe connection port 47 which is a connection port connected to it. Since the catalyst raw material solution mist passes through the upper portion of the main pipe 43, more specifically, the inner wall above the connection position of the mist-containing gas pipe connection port 46, the catalyst adhering step is performed during the catalyst adhering step. Easy to get wet.
  • the fluid gas pipe connection port 47 is located below the mist-containing gas pipe connection port 46, the fluid gas passing through the fluid gas pipe connection port 47 and the main pipe 43 causes the inner wall of the upper portion of the main pipe 43 to move, It is possible to dry prior to recovery.
  • the relative positional relationship between the mist-containing gas pipe connection port 46 and the flowing gas pipe connection port 47 as described above, it is possible to prevent the catalyst deposit from being trapped on the wet inner wall, and Collection can be facilitated.
  • the catalyst raw material can be efficiently and uniformly attached to the surfaces of the target particles.
  • the lower portion of the vertical container provided in the apparatus for producing a catalyst-adhered body be provided with the tapered portion as shown in FIG. That is, in a modification, the bottom of the vertical container is a plane orthogonal to the height direction, and a small space is left from the bottom so as to function as a dispersion plate that disperses the gas and the catalyst raw material solution mist. May be provided. Inside the vertical container having such a structure, at least a part of the target particles is supported by the porous plate.
  • the second supply port on the upper surface or above the perforated plate by using a pipe penetrating the perforated plate.
  • the configuration in which the recovery chamber configuring the recovery device 80 is connected via the main pipe 43 connected to the supply port 12 located at the lower end of the vertical container 10 is illustrated.
  • the connection mode of is not limited to this configuration.
  • the recovery chamber may be arranged so as to communicate with the vertical container through a recovery port provided at any one of the upper portion, the lower portion, and the side portion of the vertical container. In this case, by supplying a large amount of flowing gas to the vertical container, the catalyst adhering material can be carried to the recovery port.
  • the catalyst adhered body may be collected above the vertical container.
  • the catalyst adhered body manufacturing apparatus may be provided with a mechanism capable of inclining or rotating the vertical container, if necessary. According to the catalyst deposit manufacturing apparatus having such a configuration, the catalyst deposits are collected by opening the recovery ports provided at various positions and tilting or rotating the vertical container as necessary. You can
  • the first supply port (the supply port for the gas that causes the target particles to flow) and the second supply port (the supply port for the catalyst raw material solution mist) arranged at the bottom of the vertical container are the same supply port 12
  • the first supply port 14 and the second supply port 15 are mounted as different supply ports, as in a catalyst adhered body manufacturing apparatus 100 ′ whose schematic configuration is illustrated in FIG. May be.
  • each component corresponding to each component shown in FIG. 1 is denoted by the same reference numeral, and although the configuration and function shown in FIG. The different components are indicated by the same reference numerals with "'" added.
  • the fluidized gas supply unit 22 ′ communicates with the vertical container 10 ′ via the fluidized gas pipe 44 ′ having the valve 54 ′ and the first supply port 14.
  • the catalyst raw material solution mist supply device 30 is arranged so as to communicate with the vertical container 10 ′ via the second supply port 15. Therefore, the fluidized gas supplied from the fluidized gas supply unit 22 ′ and transferred through the fluidized gas pipe 44 ′ is supplied into the vertical container 10 ′ via the first supply port 14.
  • the first supply port 14 shown in FIG. 2 is mounted as a plurality of holes (or slits) provided in a tapered porous plate whose bottom is connected to the second supply port 15. The fluidized gas that has passed through the first supply port 14 functions to fluidize the target particles.
  • the first supply port 14 is illustrated as a plurality of holes provided in the porous plate, but the number of the first supply ports 14 may be one.
  • the shape of the tapered porous plate whose bottom is connected to the second supply port 15 is not limited to the tapered shape, and may be any shape.
  • FIG. 3 shows a schematic configuration of a fibrous carbon nanostructure manufacturing apparatus 200 of the present invention including the catalytic deposit manufacturing apparatus 100 of the present invention described above with reference to FIG.
  • the fibrous carbon nanostructure manufacturing apparatus 200 is an apparatus in which a carbon source gas supply device 90 is connected to the catalyst-adhered material manufacturing apparatus described with reference to FIG.
  • the carbon raw material gas supply device 90 is connected to the vertical container 10 via the carbon raw material supply pipe 45, a part of the flowing gas pipe 44, and a part of the main pipe 43.
  • the fibrous carbon nanostructure manufacturing apparatus 200 may include a control device (not shown).
  • the carbon raw material gas supply device 90 is not particularly shown in detail, but is not particularly limited as long as it can supply a gas containing a carbon raw material that can be a material for producing a fibrous carbon nanostructure, and a tank and It includes a carbon source gas supply source that can be mounted by a cylinder or the like, a pump, and the like.
  • Known carbon raw materials can be used, for example, carbon alkynes and alkenes (olefin hydrocarbons), alkanes (paraffin hydrocarbons), alcohols, ethers, aldehydes, ketones, aromatic hydrocarbons, and carbon monoxide.
  • the carbon raw material gas may contain a rare gas such as argon, an inert gas such as nitrogen, a reducing gas such as hydrogen, and / or an oxygen element-containing gas such as carbon dioxide.
  • the fibrous carbon nanostructure manufacturing apparatus 200 drives the carbon source gas supply device 90 in a state in which the activated catalyst adhering material is accommodated, so that the fibrous carbon adhering material is formed on the catalyst adhering material in the vertical container 10.
  • Carbon nanostructures can be synthesized.
  • the activated catalyst adhering material is, for example, brought into contact with a reducing gas such as hydrogen, ammonia, methane or the like while the catalyst adhering material prepared in the vertical container 10 is accommodated in the vertical container 10. Can be obtained.
  • the control device (not shown), which has an arbitrary configuration, includes a catalyst raw material solution mist supply device 30 for supplying the catalyst raw material solution mist into the vertical container 10 and a carbon raw material gas supply device 90 for inside the vertical container 10. It is possible to control the supply of the carbon raw material gas to the catalysts in parallel, that is, the supply of the catalyst raw material solution mist and the supply of the carbon raw material gas in terms of time.
  • the catalyst raw material solution mist and the carbon raw material gas are not simultaneously supplied into the vertical container 10, in other words, the catalyst raw material solution mist is supplied into the vertical container 10 during the synthesis of the fibrous carbon nanostructure. If it does not exist, it is possible to prevent the fibrous carbon nanostructures from being adsorbed and mixed with the catalyst raw material to reduce the purity of the fibrous carbon nanostructures.
  • the supply port 12 provided at the bottom (lower part) of the vertical container 10 can also function as a recovery port, that is, a gas for flowing target particles is introduced into the vertical container 10.
  • the first supply port for supplying the catalyst raw material solution mist and the second supply port for introducing the catalyst raw material solution mist into the vertical container 10 also serve as the recovery port.
  • the configuration of the recovery port is not limited to such an aspect, and in a modified example, the vertical container 10 may have a recovery port on the side portion or the upper part.
  • the carbon source gas supply device 90 is illustrated as being connected to the vertical container 10 via the carbon source supply pipe 45, a part of the flowing gas pipe 44, and a part of the main pipe 43. did.
  • the connection mode of the carbon source gas supply device 90 to the vertical container 10 is not limited to the illustrated mode.
  • the carbon source gas supply device 90 is preferably connected to the vertical container 10 in such a manner that the carbon source gas is circulated from the lower side to the upper side in the vertical container 10.
  • FIG. 4 shows a schematic configuration of a fibrous carbon nanostructure manufacturing apparatus 200 ′ according to another embodiment of the present invention, which includes the catalyst adhered material manufacturing apparatus 100 ′ shown in FIG. 2.
  • each component corresponding to each component shown in FIGS. 1 to 3 is denoted by the same reference numeral.
  • the carbon raw material gas supply device and the carbon raw material supply pipe which are different in arrangement from the fibrous carbon nanostructure manufacturing apparatus 200 according to FIG. 3, the same reference numerals are denoted by “′”.
  • the carbon raw material gas supply device 90 ′ includes a carbon raw material supply pipe 45 ′, a part of the flowing gas pipe 44 ′ having a valve 54 ′, and the first supply port 14. And is connected to the vertical container 10 '. Then, the carbon source gas supplied from the carbon gas supply device 90 ′ is mixed with the flowing gas at the confluence with the flowing gas pipe 44 ′, and then the vertical container 10 ′ via the first supply port 14. Will be introduced in. According to this structure, the carbon source gas is introduced into the vertical container 10 ′ via the first supply port 14, which is a supply port different from the second supply port 15 to which the catalyst raw material solution mist is supplied.
  • the carbon gas supply device is arranged so as to communicate with the vertical container via a supply port different from both the first supply port and the second supply port. It may be.
  • the method for producing a catalyst-adhered body comprises a flow step of supplying at least one kind of gas in an upward direction from a first supply port arranged at a lower portion of a vertical container to flow target particles, and a vertical container.
  • a catalyst adhering step of supplying a catalyst raw material solution mist from the second supply port arranged in the lower part of the catalyst toward the upper side to adhere the catalyst raw material to the target particles to obtain a catalyst adhering body, The flow process is continued while the process is performed.
  • the method for producing a catalyst-adhered body of the present invention includes a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of the vertical container for the target particles in a fluidized state, so that the method is efficient and The catalyst raw material can be uniformly attached to the surface of the target particles.
  • a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of the vertical container for the target particles in a fluidized state, so that the method is efficient and The catalyst raw material can be uniformly attached to the surface of the target particles.
  • each step will be described in detail.
  • the method for producing a catalyst deposit according to the present invention can be suitably carried out by the above-described apparatus for producing a catalyst deposit according to the present invention.
  • a case where the method for producing a catalyst-adhered body of the present invention is carried out using the apparatus for producing a catalyst-adhered body of the present invention will be described.
  • the target particles 60 are contained in the vertical container 10.
  • the target particles 60 particles such as those described in detail in the item (Catalyst Adhesion Body Manufacturing Apparatus) can be preferably used.
  • a specific method for accommodating the target particles 60 in the vertical container 10 in the preparation step for example, as shown in FIG. 1, from the particle inlet 13 provided in the upper portion of the vertical container 10, Including the target particles 60 in the vertical container 10.
  • the gas supply device 20 is driven to supply at least one kind of gas toward the upper part of the vertical container 10 from the supply port 12 arranged in the lower part to cause the target particles 60 to flow.
  • the “at least one gas” includes the mist carrier gas derived from the mist carrier gas supply unit 21 and the fluid gas derived from the fluid gas supply unit 22.
  • the mist carrier gas is the mist. It functions not only as a carrier but also as a gas for causing the target particles 60 to flow.
  • mist carrier gas is a mist carrier that conveys mist while the catalyst raw material solution mist supply device 30 is not driven. Instead, it may function purely as a gas for causing the target particles 60 to flow.
  • the gas described in detail in the section can be preferably used. Further, it is preferable that the inflow rates of these gases be the rates described in detail in the section of (Catalyst adherent manufacturing apparatus).
  • the catalyst raw material solution mist is supplied from the supply port 12 arranged at the lower portion of the vertical container 10 toward the upper portion of the vertical container 10 so that the catalyst raw material is supplied to the target particles 60 in a fluid state. Are attached to obtain a catalyst-adhered body. More specifically, in the catalyst adhering step, the catalyst raw material solution mist supply device 30 is driven to generate a catalyst raw material solution mist, which is entrained in the mist carrier gas supplied from the mist carrier gas supply unit 21, It is introduced into the vertical container 10 from below. Since the catalyst raw material solution mist flows together with the flowing gas from the lower side to the upper side in the vertical container 10, the catalyst raw material can be uniformly and uniformly attached to the surface of the target particles.
  • the volume average particle diameter of the catalyst raw material solution mist generated by the catalyst raw material solution mist supply device 30 is the same as that described in the preferred embodiment in the section of (Catalyst adhering body manufacturing device) It is preferably 1/10 or less of the particle diameter, more preferably 1/30 or less, and preferably 1/100 or less of the minimum width of the supply port 12, and 1/300 or less. Is more preferable.
  • the specific value of the volume average particle size of the catalyst raw material solution mist is also preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and usually 10 nm or more, or 100 nm or more. .
  • the target particles 60 may be in a fluid state.
  • the heating device 70 is activated to heat the vertical container 10 at preferably 100 ° C. or higher, more preferably 200 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C. or lower. Is more preferable.
  • the heating of the vertical container 10 may be continued at the timing before and after the catalyst adhering step.
  • the heating temperature can be optimized according to the type and properties of the catalyst raw material solution to be used, the flow rate at the time of supplying the flowing gas and the mist carrier gas, and the like.
  • the mist generated from the catalyst raw material solutions having different compositions may be switched for a predetermined time and supplied to the vertical container 10.
  • a plurality of layers having different compositions can be formed on the surface of the target particles according to the composition of the catalyst raw material solution mist.
  • the flow rate of the gas introduced into the vertical container 10 is reduced or set to zero so that the particles (catalyst adhering body) having the catalyst adhered thereto are flowed down and collected.
  • the gas supply device 20 is kept driven for a short period of time to continue the flowing step, and the mist adheres to a wet state. It is preferable to dry the upper part of the main pipe 43 and the vicinity of the supply port 12 where
  • a fibrous carbon nanostructure is produced using the catalyst adhering material obtained according to the above-mentioned method for producing a catalytic adhering material of the present invention. Then, the method for producing a fibrous carbon nanostructure of the present invention is to supply a carbon raw material gas into a vertical container to form a fibrous carbon nanostructure on the catalyst adhering body obtained through the catalyst adhering step. The step of growing fibrous carbon nanostructures is included.
  • a carbon source gas is supplied to the activated catalyst deposit to grow the fibrous carbon nanostructure on the catalyst deposit. It is preferable not to carry out the fibrous carbon nanostructure growing step in parallel with the catalyst attaching step. By carrying out the catalyst attachment step and the fibrous carbon nanostructure growing step separately in time, it is possible to prevent the catalyst raw material from adhering and mixing into the obtained fibrous carbon nanostructure. it can.
  • the method for obtaining the activated catalyst deposit used in this step and the carbon raw material that can be contained in the carbon raw material gas are as described in detail in the section of (Fibrous carbon nanostructure production apparatus). is there.
  • the supply port for introducing the catalyst raw material solution mist into the vertical container it is different from the supply port for supplying the catalyst raw material solution mist into the vertical container. It is preferable to supply the carbon raw material into the vertical container through the supply port.
  • the fibrous carbon nanostructure growth step can be performed in the vertical container 10.
  • the method for producing the fibrous carbon nanostructure according to the present invention is not limited to this, and it is of course possible to carry out the fibrous carbon nanostructure growth step in a separate reaction vessel. In such a case, for example, by accommodating the catalyst adhering material in an air flow bed synthesizer, a fixed bed synthesizer, a moving bed synthesizer, a fluidized bed synthesizer, or the like according to a known apparatus configuration, activation, carbon material gas Through the supply, the fibrous carbon nanostructure can be synthesized.
  • the catalyst-adhered material having the fibrous carbon nanostructures obtained on the surface in the fibrous carbon nanostructure growth step has a large amount of, for example, a rare gas such as argon or an inert gas such as nitrogen. It can be supplied at a flow rate and transferred to a separator, where it can be separated and recovered from an inert gas stream by gravity settling, centrifugation, filtration or the like. Alternatively, from the first supply port, the second supply port, and / or the recovery port installed below the vertical container 10, the catalyst adhering body having the obtained fibrous carbon nanostructure on the surface is gravity-fed. The sediment may be collected downward from the vertical container 10.
  • a rare gas such as argon
  • an inert gas such as nitrogen
  • the catalyst adhering material having the recovered fibrous carbon nanostructures is not particularly limited, and for example, the fibrous carbon nanostructures can be prepared by a relatively simple method such as shaking or being put into a liquid and stirred. It can be separated into a body and a catalyst-attached body.
  • the CNT yield was calculated as the ratio of the mass difference (mg CNTs ) of the catalyst adhering material before and after the CNT synthesis to the mass of the catalyst adhering material before CNT synthesis (g Beads ).
  • Example 1-1 ⁇ Production of catalyst adhering material> A catalyst adhering material manufacturing apparatus having a schematic structure as shown in FIG. 1 was used to manufacture a catalyst adhering material according to the following steps, and the obtained catalyst adhering material was used to synthesize CNT in a fixed bed.
  • ⁇ Preparation process >> Al (NO 3 ) 3 that is a compound containing Al and Fe (NO 3 ) 3 that is a compound containing Fe are dissolved in ion-exchanged water to obtain a mixed aqueous solution as a catalyst raw material solution.
  • the amount of each compound used was such that the Fe concentration was 30 mM and the Al concentration was 30 mM in the mixed aqueous solution. Further, 30 g of zirconia (ZrO 2 ) beads having a volume average particle diameter of 0.3 mm as target particles were accommodated in the vertical container from a particle inlet provided on the upper part of the vertical container. The preset temperature (heating temperature) of the heating device was set to 150 ° C., and heating of the vertical container was started. ⁇ Flow process >> The fluidized gas supply unit is driven to supply nitrogen gas as a fluidized gas from the lower part of the vertical container to the upper direction at a flow rate of 4.5 slm from the supply port to start the flow of the zirconia beads.
  • a fluidized bed was formed. Further, the gas flow rate of the argon gas was set to 0.5 slm, and the operation of the mist carrier gas supply unit was started.
  • the argon gas functions as a gas for causing the target particles to flow when the catalyst raw material solution mist supply device is not driven.
  • Catalyst attachment step >> The catalyst raw material solution mist supply device was set so that the volume average particle diameter D50 of the generated mist was in the range of 1 ⁇ m or more and 5 ⁇ m or less, and the operation was started.
  • the catalyst raw material solution mist was carried by the mist carrier gas supplied from the mist carrier gas supply unit, and the catalyst raw material solution mist was supplied from the lower part of the vertical container to the upper direction through the supply port.
  • the supply of the catalyst raw material solution mist, the mist carrier gas, and the flowing gas was continued for 10 minutes and then stopped, and the catalyst adhesion step was completed.
  • ⁇ Recovery process After the timing of completing the catalyst adhering process, the valve provided in the main pipe (corresponding to the main pipe 43 in FIG. 1) connected to the supply port is opened, and the recovery device (corresponding to the recovery device 80 in FIG. 1). The catalyst adhering material was allowed to flow down and was collected.
  • ⁇ Fibrous carbon nanostructure growth process >> The catalyst deposit collected in the collecting step was filled in a fixed bed apparatus for synthesizing carbon nanotubes equipped with a horizontal furnace, and the temperature inside the fixed bed apparatus for CNT synthesis was raised to 800 ° C.
  • Examples 1-2 to 1-4 Fe concentration and Al concentration in mixed aqueous solution as catalyst raw material solution, set temperature of heating device, nitrogen gas (fluid gas) flow rate, argon gas (mist carrier gas) flow rate, and / or continuation of ⁇ Catalyst adhesion step >>
  • a catalyst deposit was produced in the same manner as in Example 1-1, except that the times (supporting times) were changed as shown in Table 1, and CNT was synthesized using the obtained catalyst deposit. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 1.
  • Example 2-1 Using the apparatus having the same structure as the apparatus for producing a catalyst deposit used in Examples 1-1 to 1-4, a catalyst deposit was produced according to the following steps, and the obtained catalyst deposit was used to form a fixed bed. To synthesize CNT.
  • ⁇ Preparation process A mixed ethanol solution was prepared in which Al (Oi-Pr) 3 which is a compound containing Al and Fe (C 5 H 5 ) 2 which is a compound containing Fe were used in combination. The amount of each compound used was such that the Fe concentration in the mixed ethanol solution was 22.5 mM and the Al concentration was 27.5 mM.
  • zirconia (ZrO 2 ) beads having a volume average particle diameter of 0.3 mm as target particles were accommodated in the vertical container from a particle inlet provided on the upper part of the vertical container.
  • the preset temperature of the heating device was set to 550 ° C., and heating of the vertical container was started.
  • ⁇ Flow process By driving the fluidized gas supply unit, nitrogen gas as a fluidized gas is supplied from the supply port from the lower part of the vertical container to the upper direction at a flow rate of 1 slm to start the fluidization of zirconia beads to form a fluidized bed. Was formed. Further, the gas flow rate of the argon gas was set to 4 slm, and the operation of the mist carrier gas supply unit was started.
  • Catalyst attachment step The catalyst raw material solution mist supply device was set so that the volume average particle diameter D50 of the generated mist was in the range of 1 ⁇ m or more and 5 ⁇ m or less, and the operation was started.
  • the catalyst raw material solution mist was carried by the mist carrier gas supplied from the mist carrier gas supply unit, and the catalyst raw material solution mist was supplied from the lower part of the vertical container to the upper direction through the supply port.
  • the supply of the catalyst raw material solution mist, the mist carrier gas, and the flowing gas was continued for 30 minutes and then stopped, and the catalyst adhesion step was completed.
  • Example 2-2 to 2-4 A catalyst deposit was produced in the same manner as in Example 2-1 except that the set temperatures of the heating devices were changed as shown in Table 1, and CNT was synthesized using the obtained catalyst deposit. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 1.
  • Examples 3-1 to 3-3 Fe concentration and Al concentration in mixed aqueous solution as catalyst raw material solution, set temperature of heating device, nitrogen gas (fluid gas) flow rate, argon gas (mist carrier gas) flow rate, and / or continuation of ⁇ Catalyst adhesion step >>
  • a catalyst-adhered material was produced in the same manner as in Example 1-1, except that the time (supporting time) was changed as shown in Table 1. The obtained catalyst-adhered material was used to synthesize CNT in a fluidized bed.
  • Example 4-1 Other than changing the compounding amounts of the respective compounds so that the Fe concentration and the Al concentration in the mixed ethanol solution are as shown in Table 1, and further changing the set temperature of the heating device as shown in Table 1, In the same manner as in Example 2-1, a catalyst-adhered body was produced and CNT was synthesized. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 1.
  • Examples 5-1 to 5-3 Using the apparatus having the same structure as the apparatus for producing a catalyst adhering material used in Example 1-1 and the like, a catalyst adhering material was manufactured according to the following steps, and the obtained catalyst adhering material was used to produce CNT in a fluidized bed. Synthesized. More specifically, in ⁇ Catalyst Adhesion Step >>, two kinds of solutions having different compositions as shown in Table 2 are used as the catalyst raw material solution, and these solutions are formed at predetermined time intervals shown in Table 2. The mist was switched and supplied to a vertical container to obtain a catalyst adhering material. The obtained catalyst-adhered body had a layer containing Fe and Al and a layer containing Fe formed in this order on the surface of the target particle.
  • each layer was a thickness according to the supply time of the mist of each solution. Then, using the catalyst-adhered material, CNTs were synthesized under the same conditions as in Examples 3-1 to 3-3. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 2.
  • Example 6-1 to 6-3 In ⁇ Catalyst Adhesion Step >>, as the catalyst raw material solution, two kinds of solutions as shown in Table 2 were used except that Fe concentration and Al concentration were as shown in Table 2, respectively. A catalyst-adhered material was obtained according to the same conditions as in Example 5-2. Then, using the obtained catalyst-adhered material, CNT was synthesized under the same conditions as in Examples 3-1 to 3-3. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 2.
  • the method for producing a catalyst adhering material of the present invention which includes a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of a vertical container for target particles in a fluidized state.
  • a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of a vertical container for target particles in a fluidized state.
  • the timing at which the mist reaches the surface of the target particles and the drying speed of the mist can be well balanced.
  • the nitrogen gas and argon gas flow rate conditions are Then, it is understood that it is preferable to set the set temperature of the heating device to 600 ° C. or higher and 850 ° C. or lower.
  • the catalyst component is well adhered to the surface of the target particle. It is thought that this is because it can be done. Furthermore, for example, from Examples 3-1 to 3-3 and Example 4-1, the catalyst component can be favorably adhered to the surface of the target particle under various conditions, and the obtained catalyst adhering material It can be seen that CNT could be satisfactorily synthesized by using.
  • the catalyst raw material which can adhere a catalyst raw material to the surface of object particle
  • a method for producing a carbon nanostructure can be provided.
  • a fibrous carbon nanostructure manufacturing apparatus capable of suitably carrying out the above-described fibrous carbon nanostructure manufacturing method of the present invention.

Abstract

A method for producing a catalyst-adhered body, comprising a flow step of supplying gas upward from a supply port arranged at the lower part of a vertical container 10 to cause target particles 60 to flow, and a catalyst adhering step of supplying a catalyst raw material solution mist upward from the supply port to adhere the catalyst raw material to the target particles 60 and obtain a catalyst-adhered body, the two steps being implemented simultaneously.

Description

触媒付着体の製造方法及び製造装置、並びに、繊維状炭素ナノ構造体の製造方法及び製造装置Method and apparatus for manufacturing catalyst-attached body, and method and apparatus for manufacturing fibrous carbon nanostructure
 本発明は、触媒付着体の製造方法及び製造装置、並びに、繊維状炭素ナノ構造体の製造方法及び製造装置に関するものである。特に、本発明は、繊維状炭素ナノ構造体を合成するために好適に用いることができる触媒付着体の製造方法、かかる触媒付着体の製造方法を好適に実施することができる触媒付着体製造装置に関する。また、特に、本発明は、上記の触媒付着体を用いた繊維状炭素ナノ構造体の製造方法、及びかかる繊維状炭素ナノ構造体の製造方法を好適に実施することができる繊維状炭素ナノ構造体製造装置に関する。 The present invention relates to a manufacturing method and a manufacturing apparatus for a catalyst-adhered body, and a manufacturing method and a manufacturing apparatus for a fibrous carbon nanostructure. In particular, the present invention provides a method for producing a catalyst adhering body that can be suitably used for synthesizing a fibrous carbon nanostructure, and a catalyst adhering body producing apparatus that can suitably carry out the method for producing such a catalyst adhering body. Regarding Further, in particular, the present invention is capable of suitably carrying out the method for producing a fibrous carbon nanostructure using the above-mentioned catalyst-adhered body, and the method for producing such a fibrous carbon nanostructure. The present invention relates to a body manufacturing device.
 近年、触媒成分を担持させるための粒子である担体粒子表面に、触媒成分を効率的に付着させるための方途が、種々検討されてきた。例えば、特許文献1及び2では、気相酸化用の触媒の製造方法が記載されている。これらの特許文献1及び2では、流動させた担体粒子に対して、触媒活性材料を含む懸濁液を噴霧することで、担体粒子表面に触媒成分が付着されてなる担持触媒を製造する方法が記載されている。 In recent years, various methods for efficiently adhering the catalyst component to the surface of the carrier particles, which are particles for supporting the catalyst component, have been studied. For example, Patent Documents 1 and 2 describe a method for producing a catalyst for vapor phase oxidation. In these Patent Documents 1 and 2, there is a method of producing a supported catalyst in which a catalyst component is attached to the surface of carrier particles by spraying a suspension containing a catalytically active material onto fluidized carrier particles. Have been described.
 また、近年、導電性、熱伝導性および機械的特性に優れる材料として、繊維状炭素材料、特にはカーボンナノチューブ(以下、「CNT」と称することがある。)等の繊維状炭素ナノ構造体が注目されている。CNTは、炭素原子により構成される筒状グラフェンシートからなり、その直径はナノメートルオーダーである。CNT等の繊維状炭素ナノ構造体は、概して、製造コストが高いため他の材料よりも高価であった。このため、上述したような優れた特性を有するにもかかわらず、その用途は限られていた。さらに、近年、比較的高効率でCNT等を製造することができる製造方法として、触媒を用いたCVD(Chemical Vapor Deposition)法(以下、「触媒CVD法」と称することがある)が用いられてきた。しかし、触媒CVD法でも、製造コストを十分に低減することができなかった。 Further, in recent years, fibrous carbon materials, particularly fibrous carbon nanostructures such as carbon nanotubes (hereinafter sometimes referred to as “CNT”), have been used as materials having excellent electrical conductivity, thermal conductivity, and mechanical properties. Attention has been paid. CNT consists of a cylindrical graphene sheet composed of carbon atoms, and its diameter is on the order of nanometers. Fibrous carbon nanostructures such as CNTs were generally more expensive than other materials due to higher manufacturing costs. Therefore, the use thereof is limited despite having the above-mentioned excellent characteristics. Further, in recent years, a CVD (Chemical Vapor Deposition) method using a catalyst (hereinafter sometimes referred to as “catalytic CVD method”) has been used as a manufacturing method capable of manufacturing CNTs and the like with relatively high efficiency. It was However, even the catalytic CVD method could not sufficiently reduce the manufacturing cost.
 そこで、繊維状炭素ナノ構造体の製造に用いるための担持触媒を製造する際に、担体粒子を流動させつつ、触媒原料を含むガスを供給して担持触媒を製造する方途が検討されてきた(例えば、特許文献3参照)。具体的には、特許文献3では、担体粒子を流動させているところに、触媒成分含有液を上から噴霧することで、効率的且つ均一に担持触媒を得ている。 Therefore, when producing a supported catalyst for use in producing a fibrous carbon nanostructure, a method of producing a supported catalyst by supplying a gas containing a catalyst raw material while flowing carrier particles has been studied ( See, for example, Patent Document 3). Specifically, in Patent Document 3, a supported catalyst is efficiently and uniformly obtained by spraying a catalyst component-containing liquid from above while the carrier particles are flowing.
特許第4800948号明細書Patent No. 4800948 特開2007-506540号JP-A-2007-506540 特許第3913181号明細書Patent No. 3913181
 近年、繊維状炭素ナノ構造体には、より一層の高品質化が求められている。高品質な、即ち、質の揃った繊維状炭素ナノ構造体を合成するためには、その製造に用いる担持触媒が均質であることが求められている。また、上述したように、均質な担持触媒を効率的に製造することも求められている。
 しかしながら、特許文献1~2に記載されたような、触媒活性材料を含む懸濁液を噴霧することで、担体粒子表面に触媒成分が付着されてなる担持触媒を製造する方法、及び特許文献3に記載されたような、流動させた担体粒子に対して、触媒成分含有液を上から噴霧する方法によっては、担体粒子(以下、「対象粒子」とも称する。)表面に対して、触媒原料を充分に均一に付着させることができなかった。より具体的には、担体粒子を流動化させる流動ガスは下方から上方に流通させるのに対し、懸濁液を上方から下方に噴霧すると、噴霧された懸濁液が流動ガスにより上方へと押し戻されるため、担体粒子層の下方まで触媒活性材料が十分に届かない問題があった。
In recent years, the fibrous carbon nanostructure has been required to have higher quality. In order to synthesize high-quality, that is, uniform fibrous carbon nanostructures, it is required that the supported catalyst used for the production thereof be homogeneous. Further, as mentioned above, it is also required to efficiently produce a homogeneous supported catalyst.
However, a method for producing a supported catalyst in which a catalyst component is attached to the surface of carrier particles by spraying a suspension containing a catalytically active material, as described in Patent Documents 1 and 2, and Patent Document 3 Depending on the method of spraying the catalyst component-containing liquid onto the fluidized carrier particles as described above, the catalyst raw material is applied to the surface of the carrier particles (hereinafter, also referred to as “target particles”). It could not be applied sufficiently uniformly. More specifically, the fluidizing gas that fluidizes the carrier particles flows from the lower side to the upper side, whereas when the suspension is sprayed from the upper side to the lower side, the sprayed suspension is pushed back upward by the flowing gas. Therefore, there is a problem that the catalytically active material does not reach the bottom of the carrier particle layer sufficiently.
 そこで、本発明は、対象粒子の表面に対して、効率的且つ均一に触媒原料を付着させることができる、触媒付着体の製造方法及びかかる製造方法に従って得られた触媒付着体を用いた繊維状炭素ナノ構造体の製造方法を提供することを目的とする。
 また、本発明は、上記本発明の触媒付着体の製造方法を好適に実施することができる触媒付着体製造装置を提供することを目的とする。
 そして、本発明は、上記本発明の繊維状炭素ナノ構造体の製造方法を好適に実施することができる繊維状炭素ナノ構造体製造装置を提供することを目的とする。
Therefore, the present invention provides a method for producing a catalyst adhering material, which can efficiently and uniformly attach a catalyst raw material to the surface of target particles, and a fibrous material using the catalyst adhering material obtained according to such a manufacturing method. An object is to provide a method for producing a carbon nanostructure.
Another object of the present invention is to provide an apparatus for producing a catalyst adhering body, which can suitably carry out the method for producing a catalytic adhering body of the present invention.
And an object of the present invention is to provide an apparatus for producing fibrous carbon nanostructures, which can suitably carry out the method for producing fibrous carbon nanostructures of the present invention.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、縦型容器内に収容して流動状態とした対象粒子に対して、下から上方向に、ミスト状の触媒原料溶液を供給することにより、効率的且つ均一に触媒原料を対象粒子の表面に付着させうることを新たに見出し、本発明を完成させた。対象粒子に対して下方から上方に流動ガスを供給して対象粒子を流動化させる際に、ミスト状の触媒原料溶液も流動ガスに同伴されて対象粒子層の下方から上方まで均一に届くためである。 The inventors of the present invention have made extensive studies with the aim of solving the above problems. Then, the inventors of the present invention efficiently and uniformly supply the catalyst raw material solution in the form of mist from the bottom to the top with respect to the target particles contained in the vertical container and in the fluidized state. The inventors have newly found that the raw material can be attached to the surface of the target particles, and have completed the present invention. This is because when the fluidized gas is supplied to the target particles from below to fluidize the target particles, the mist-like catalyst raw material solution is also entrained in the fluidized gas and uniformly reaches from the bottom to the top of the target particle layer. is there.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の触媒付着体の製造方法は、縦型容器を用いて対象粒子に対して触媒原料を付着させる触媒付着体の製造方法であって、前記縦型容器の下部に配置された第1供給口から、前記縦型容器の上部方向に向かって少なくとも一種のガスを供給して、前記縦型容器内の対象粒子を流動させる流動工程と、前記縦型容器の下部に配置された第2供給口から、前記縦型容器の前記上部方向に向かって、触媒原料溶液ミストを供給して、前記対象粒子に対して前記触媒原料を付着させて触媒付着体を得る触媒付着工程と、を含み、前記触媒付着工程を実施している間は、前記流動工程を継続する、ことを特徴とする。本発明の触媒付着体の製造方法は、流動状態とした対象粒子に対して、縦型容器の下部方向から上部方向に向かって触媒原料溶液ミストを供給する触媒付着工程を含むため、効率的且つ均一に触媒原料を対象粒子の表面に付着させることができる。 That is, the present invention is intended to advantageously solve the above problems, the method for producing a catalyst deposit of the present invention is a catalyst for attaching a catalyst raw material to the target particles using a vertical container. A method for manufacturing an adhered body, wherein at least one gas is supplied from a first supply port arranged in a lower portion of the vertical container toward an upper portion of the vertical container, From the flow step of flowing the target particles and the second supply port arranged in the lower part of the vertical container toward the upper direction of the vertical container, a catalyst raw material solution mist is supplied to the target particles. On the other hand, a catalyst adhering step of adhering the catalyst raw material to obtain a catalyst adhering body, and the flowing step is continued while the catalyst adhering step is carried out. The method for producing a catalyst-adhered body of the present invention includes a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of the vertical container for the target particles in a fluidized state, so that the method is efficient and The catalyst raw material can be uniformly attached to the surface of the target particles.
 また、本発明の触媒付着体の製造方法は、前記第1供給口及び前記第2供給口が、同一の供給口であり、前記ガス及び前記触媒原料溶液ミストが、同一の供給口を通じて、前記縦型容器内に導入される、ことが好ましい。流動ガス及び前記触媒原料溶液ミストが、同一の供給口を通じて、縦型容器内に導入されるようにすることで、一層効率的且つ均一に、触媒原料を対象粒子の表面に付着させることができる。 Further, in the method for producing a catalyst-attached body of the present invention, the first supply port and the second supply port are the same supply port, and the gas and the catalyst raw material solution mist are the same supply port through the same supply port. It is preferably introduced into a vertical container. Since the flowing gas and the catalyst raw material solution mist are introduced into the vertical container through the same supply port, the catalyst raw material can be more efficiently and uniformly attached to the surface of the target particles. .
 また、本発明の触媒付着体の製造方法は、前記触媒付着工程にて、前記縦型容器を100℃以上1000℃以下で加熱することを含むことが好ましい。縦型容器を100℃以上1000℃以下で加熱しつつ、触媒付着工程を実施することで、一層効率的に触媒原料を対象粒子の表面に付着させることができる。 Further, it is preferable that the method for producing a catalyst-adhered body of the present invention includes heating the vertical container at 100 ° C. or more and 1000 ° C. or less in the catalyst adhering step. By carrying out the catalyst attachment step while heating the vertical container at 100 ° C. or higher and 1000 ° C. or lower, the catalyst raw material can be attached to the surface of the target particles more efficiently.
 また、本発明の触媒付着体の製造方法において、前記対象粒子の体積平均粒子径が0.1mm以上1mm以下、前記触媒原料溶液ミストの体積平均粒子径が前記対象粒子の体積平均粒子径の1/10以下、且つ、前記第2供給口の最小幅が、前記触媒原料溶液ミストの体積平均粒子径の100倍以上である、ことが好ましい。対象粒子の体積平均粒子径と触媒原料溶液ミストの体積平均粒子径との相互関係が上記条件を満たすようにすることで、一層均一に触媒原料を対象粒子の表面に付着させることができる。また、触媒原料溶液ミストを供給する第2供給口の最小幅が、触媒原料溶液ミストの体積平均粒子径の100倍以上であれば、第2供給口がミストにより閉塞することを抑制することができる。
 なお、対象粒子の体積平均粒子径、及び触媒原料溶液ミストの体積平均粒子径は、例えば、JIS Z8825:2013に従って測定することができる。
In the method for producing a catalyst-adhered body of the present invention, the volume average particle diameter of the target particles is 0.1 mm or more and 1 mm or less, and the volume average particle diameter of the catalyst raw material solution mist is 1 of the volume average particle diameter of the target particles. / 10 or less, and the minimum width of the second supply port is preferably 100 times or more the volume average particle diameter of the catalyst raw material solution mist. When the correlation between the volume average particle diameter of the target particles and the volume average particle diameter of the catalyst raw material solution mist satisfies the above condition, the catalyst raw material can be attached to the surface of the target particles more uniformly. Further, when the minimum width of the second supply port for supplying the catalyst raw material solution mist is 100 times or more the volume average particle diameter of the catalyst raw material solution mist, the second supply port can be prevented from being blocked by the mist. it can.
The volume average particle diameter of the target particles and the volume average particle diameter of the catalyst raw material solution mist can be measured according to JIS Z8825: 2013, for example.
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体の製造方法は、上述した触媒付着体の製造方法に従って得られた触媒付着体を用いるものであり、前記縦型容器内に炭素原料気体を供給して、前記触媒付着工程を経て得られた前記触媒付着体上にて繊維状炭素ナノ構造体を成長させる繊維状炭素ナノ構造体成長工程を含むことを特徴とする。本発明の繊維状炭素ナノ構造体の製造方法によれば、効率的に繊維状炭素ナノ構造体を製造することができる。 Further, the present invention is intended to advantageously solve the above problems, the method for producing a fibrous carbon nanostructure of the present invention, the catalyst adhesion obtained according to the method for producing a catalyst adherent described above. A fibrous carbon nanostructure for growing a fibrous carbon nanostructure on the catalyst adhering body obtained by passing the catalyst adhering step by supplying a carbon source gas into the vertical container. It is characterized by including a structure growing step. According to the method for producing a fibrous carbon nanostructure of the present invention, the fibrous carbon nanostructure can be efficiently produced.
 また、本発明の繊維状炭素ナノ構造体の製造方法において、前記炭素原料気体を、前記第2供給口とは異なる供給口を通じて、前記縦型容器内に供給することが好ましい。炭素原料気体を第2供給口以外の供給口から供給すれば、第2供給口付近に留まった触媒付着体や第2供給口付近に付着した触媒にて繊維状炭素ナノ構造体が成長してしまい、第2供給口を閉塞し易くなることを抑制することができる。 Further, in the method for producing a fibrous carbon nanostructure of the present invention, it is preferable that the carbon source gas is supplied into the vertical container through a supply port different from the second supply port. When the carbon source gas is supplied from a supply port other than the second supply port, the fibrous carbon nanostructure grows due to the catalyst adhering material remaining near the second supply opening or the catalyst adhering near the second supply opening. It is possible to prevent the second supply port from being easily closed.
 また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒付着工程と、前記繊維状炭素ナノ構造体成長工程とを並行実施しないことが好ましい。触媒付着工程と、繊維状炭素ナノ構造体成長工程とを、時間的に分けて実施することで、得られる繊維状炭素ナノ構造体に、触媒原料が付着して混入することを予防することができる。 Further, in the method for producing a fibrous carbon nanostructure of the present invention, it is preferable that the catalyst attaching step and the fibrous carbon nanostructure growing step are not performed in parallel. By carrying out the catalyst attachment step and the fibrous carbon nanostructure growing step separately in time, it is possible to prevent the catalyst raw material from adhering and mixing into the obtained fibrous carbon nanostructure. it can.
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の触媒付着体製造装置は、対象粒子に対して触媒原料を付着させて触媒付着体を得る触媒付着体製造装置であって、上部に排気口を有するとともに、下部に第1供給口及び第2供給口を有する、縦型容器と、前記第1供給口を介して、前記縦型容器と連通するように配置され、前記縦型容器の上部方向に向かって、前記対象粒子を流動させるための少なくとも一種のガスを供給する、ガス供給装置と、前記第2供給口を介して、前記縦型容器と連通するように配置された、触媒原料溶液ミスト供給装置と、を備える、ことを特徴とする。本発明の触媒付着体の触媒付着体製造装置は、少なくとも一種のガス供給装置により供給したガスにより流動状態とした対象粒子に対して、縦型容器の下部方向から上部方向に向かって、触媒原料溶液ミスト供給装置により触媒原料溶液ミストを供給するため、効率的且つ均一に触媒原料を対象粒子の表面に付着させることができる。 Further, the present invention has an object to advantageously solve the above problems, and a catalyst adhering material producing apparatus of the present invention is a catalyst adhering material for adhering a catalyst raw material to target particles to obtain a catalyst adhering material. A body manufacturing apparatus, which has an exhaust port in an upper part and a first supply port and a second supply port in a lower part, and communicates with the vertical container through the first supply port. Through the gas supply device and the second supply port, which supply at least one gas for flowing the target particles toward the upper part of the vertical container. And a catalyst raw material solution mist supply device arranged so as to communicate with the catalyst raw material solution mist supply device. The catalyst adhering material manufacturing apparatus for a catalyst adhering material of the present invention is a catalyst raw material for a target particle in a fluidized state by a gas supplied by at least one type of gas supply device from a lower direction to an upper direction of a vertical container. Since the catalyst raw material solution mist is supplied by the solution mist supply device, the catalyst raw material can be efficiently and uniformly attached to the surfaces of the target particles.
 また、本発明の触媒付着体製造装置において、前記第1供給口及び前記第2供給口が、同一の供給口であることが好ましい。流動ガス及び前記触媒原料溶液ミストが、同一の供給口を通じて、縦型容器内に導入されるようにすることで、一層効率的且つ均一に、触媒原料を対象粒子の表面に付着させることができる。 Further, in the catalyst adhered body manufacturing apparatus of the present invention, it is preferable that the first supply port and the second supply port are the same supply port. Since the flowing gas and the catalyst raw material solution mist are introduced into the vertical container through the same supply port, the catalyst raw material can be more efficiently and uniformly attached to the surface of the target particles. .
 さらにまた、本発明の触媒付着体製造装置は、前記第2供給口の最小幅が、3mm以上であることが好ましい。第2供給口の最小幅が、3mm以上であれば、第2供給口が閉塞し易くなることを抑制することができる。 Furthermore, in the catalyst adhered body manufacturing apparatus of the present invention, the minimum width of the second supply port is preferably 3 mm or more. When the minimum width of the second supply port is 3 mm or more, it is possible to prevent the second supply port from easily becoming blocked.
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体製造装置は、上述した何れかの触媒付着体製造装置を含み、さらに、前記縦型容器内に炭素原料気体を供給する炭素原料気体供給装置を備えることを特徴とする。かかる製造装置によれば、上述した本発明の繊維状炭素ナノ構造体の製造方法を好適に実施することができる。 Then, the present invention is intended to advantageously solve the above problems, the fibrous carbon nanostructure production apparatus of the present invention includes any of the catalyst adhering body production apparatus described above, A carbon raw material gas supply device for supplying a carbon raw material gas is provided in the vertical container. According to such a manufacturing apparatus, the above-described method for manufacturing a fibrous carbon nanostructure of the present invention can be suitably implemented.
 また、本発明の繊維状炭素ナノ構造体製造装置において、前記炭素原料気体供給装置は、前記縦型容器に対して、前記第2供給口以外の供給口を介して接続されることが好ましい。炭素原料気体供給装置が、第2供給口以外の供給口を介して、縦型容器に対して接続されていれば、第2供給口付近に留まった触媒付着体や第2供給口付近に付着した触媒にて繊維状炭素ナノ構造体が成長してしまい、第2供給口を閉塞し易くなることを抑制することができる。 Further, in the fibrous carbon nanostructure manufacturing apparatus of the present invention, it is preferable that the carbon source gas supply device is connected to the vertical container via a supply port other than the second supply port. If the carbon raw material gas supply device is connected to the vertical container via a supply port other than the second supply port, it will adhere to the catalyst adhering material remaining near the second supply port or near the second supply port. It is possible to prevent the fibrous carbon nanostructure from growing due to the catalyst thus formed and easily blocking the second supply port.
 本発明によれば、対象粒子の表面に対して、効率的且つ均一に触媒原料を付着させることができる、触媒付着体の製造方法及びかかる製造方法に従って得られた触媒付着体を用いた繊維状炭素ナノ構造体の製造方法を提供することができる。
 また、本発明によれば、上記本発明の触媒付着体の製造方法を好適に実施することができる触媒付着体製造装置を提供することができる。
 そして、本発明によれば、上記本発明の繊維状炭素ナノ構造体の製造方法を好適に実施することができる繊維状炭素ナノ構造体製造装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the catalyst raw material which can adhere a catalyst raw material to the surface of object particle | grains efficiently and uniformly, and the fibrous shape using the catalyst adhering body obtained according to such a manufacturing method. A method for producing a carbon nanostructure can be provided.
Further, according to the present invention, it is possible to provide a catalyst adhered body manufacturing apparatus capable of suitably carrying out the above-described catalyst adhered body manufacturing method of the present invention.
Further, according to the present invention, it is possible to provide a fibrous carbon nanostructure manufacturing apparatus capable of suitably carrying out the above-described fibrous carbon nanostructure manufacturing method of the present invention.
本発明の触媒付着体製造装置の構成の一例を示す概略図である。It is a schematic diagram showing an example of composition of a catalyst adhering object manufacturing device of the present invention. 本発明の触媒付着体製造装置の構成の他の一例を示す概略図である。It is the schematic which shows another example of a structure of the catalyst adhering body manufacturing apparatus of this invention. 本発明の繊維状炭素ナノ構造体製造装置の構成の一例を示す概略図である。It is a schematic diagram showing an example of composition of a fibrous carbon nanostructure manufacturing device of the present invention. 本発明の繊維状炭素ナノ構造体製造装置の構成の他の一例を示す概略図である。It is the schematic which shows another example of a structure of the fibrous carbon nanostructure manufacturing apparatus of this invention. 実施例1-1に従う、CNT合成後の触媒付着体のSEM画像である。3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-1. 実施例1-2に従う、CNT合成後の触媒付着体のSEM画像である。3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-2. 実施例1-3に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-3. 実施例1-4に従う、CNT合成後の触媒付着体のSEM画像である。3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 1-4. 実施例2-1に従う、CNT合成後の触媒付着体のSEM画像である。3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-1. 実施例2-2に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-2. 実施例2-3に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-3. 実施例2-4に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 2-4. 実施例3-1に従う、CNT合成後の触媒付着体のSEM画像である。3 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 3-1. 実施例3-2に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 3-2. 実施例3-3に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 3-3. 実施例4-1に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 4-1. 実施例5-1に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 5-1. 実施例5-2に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 5-2. 実施例5-3に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 5-3. 実施例6-1に従う、CNT合成後の触媒付着体のSEM画像である。7 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-1. 実施例6-2に従う、CNT合成後の触媒付着体のSEM画像である。6 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-2. 実施例6-3に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-3. 実施例6-4に従う、CNT合成後の触媒付着体のSEM画像である。5 is an SEM image of a catalyst adhering material after CNT synthesis according to Example 6-4.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の触媒付着体の製造方法、及び触媒付着体製造装置を用いて製造した触媒付着体は、例えば、カーボンナノチューブ、及びカーボンナノファイバー等の繊維状炭素ナノ構造体の製造に好適に使用することができる。以下、本発明の触媒付着体製造装置及びこれを含む繊維状炭素ナノ構造体製造装置について説明した後に、本発明の触媒付着体製造方法及び繊維状炭素ナノ構造体製造方法について説明する。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the catalyst adhering body produced by using the method for producing a catalyst adhering body and the apparatus for producing a catalyst adhering body of the present invention is suitable for producing, for example, carbon nanotubes and fibrous carbon nanostructures such as carbon nanofibers. Can be used for Hereinafter, the catalyst adhering material manufacturing apparatus of the present invention and the fibrous carbon nanostructure manufacturing apparatus including the same will be described, and then the catalyst adhering material manufacturing method and the fibrous carbon nanostructure manufacturing method of the present invention will be described.
(触媒付着体製造装置)
 本発明の触媒付着体製造装置は、対象粒子に対して触媒原料を付着させて触媒付着体を得る触媒付着体製造装置である。そして、本発明の触媒付着体製造装置によれば、本発明の触媒付着体の製造方法を好適に実施することができる。図1に、本発明の触媒付着体製造装置の一例に係る概略構造を示す。図1に示す触媒付着体製造装置100は、縦型容器10と、縦型容器10の上部方向に向かって、対象粒子を流動させるための少なくとも一種のガスを供給するガス供給装置20と、縦型容器10の上部方向に向かって触媒原料溶液ミストを供給する触媒原料溶液ミスト供給装置30とを備える。かかる装置構成を有する本発明の触媒付着体製造装置及び製造方法によれば、対象粒子を流動して流動床を形成しつつ、かかる流動床に対して下方向から上方向に向かって、触媒原料溶液ミストを対象粒子に対して接触させることができるため、流動床を構成する粒子に対して満遍なく、且つ効率的に触媒原料溶液ミストを供給することができる。更に、流動床では、触媒原料溶液ミストが接触し付着した対象粒子を迅速に乾燥させることができる。従って、本発明の触媒付着体製造装置等によれば、対象粒子の表面に対して、効率的且つ均一に触媒原料を付着させることができる。
(Catalyst adherent manufacturing device)
The catalyst adhering material manufacturing apparatus of the present invention is a catalyst adhering material manufacturing apparatus for adhering a catalyst raw material to target particles to obtain a catalyst adhering material. Then, according to the catalyst adhered body manufacturing apparatus of the present invention, the method for manufacturing a catalyst adhered body of the present invention can be suitably implemented. FIG. 1 shows a schematic structure of an example of the apparatus for producing a catalyst-adhered body of the present invention. The apparatus 100 for manufacturing a catalyst deposit shown in FIG. 1 includes a vertical container 10, a gas supply device 20 for supplying at least one gas for causing target particles to flow toward the upper part of the vertical container 10, and a vertical container. A catalyst raw material solution mist supply device 30 for supplying the catalyst raw material solution mist toward the upper side of the mold container 10 is provided. According to the catalyst adhered body manufacturing apparatus and manufacturing method of the present invention having such an apparatus configuration, the catalyst raw material is formed from the lower side to the upper side of the fluidized bed while flowing the target particles to form the fluidized bed. Since the solution mist can be brought into contact with the target particles, the catalyst raw material solution mist can be uniformly and efficiently supplied to the particles forming the fluidized bed. Further, in the fluidized bed, the target particles adhered by contact with the catalyst raw material solution mist can be quickly dried. Therefore, according to the catalyst adhered body manufacturing apparatus of the present invention, the catalyst raw material can be efficiently and uniformly adhered to the surfaces of the target particles.
<対象粒子>
 触媒原料の付着対象である対象粒子としては、既に触媒材料が付着している担体粒子、又は、未だ触媒材料を付着させていない担体粒子でありうる。既に触媒材料が付着している担体粒子としては、例えば、(1)以前に触媒付着体とされた上で、繊維状炭素ナノ構造体の合成等の目的の用途に使用されたことがあり、表面上に失活した触媒材料を有してなる担体粒子;及び、(2)既に1回又は複数回の触媒付着操作を経た担体粒子であって、さらに触媒成分を付着させる必要がある担体粒子が挙げられる。言い換えれば、本発明の触媒付着体の製造方法は、未だ触媒材料を付着させていない状態の担体粒子に対して触媒材料を付着させるために用いることもできるし、既に触媒材料が付着している担体粒子に対して、更に触媒材料を付着させるために用いることもできる。
<Target particles>
The target particles to which the catalyst raw material is attached may be carrier particles to which the catalyst material has already been attached, or carrier particles to which the catalyst material has not yet been attached. As the carrier particles to which the catalyst material is already adhered, for example, (1) before being used as a catalyst adherent, it has been used for the purpose of synthesizing fibrous carbon nanostructures, Carrier particles having a deactivated catalyst material on the surface; and (2) carrier particles that have already undergone one or more catalyst deposition operations, and that require further catalyst component deposition. Is mentioned. In other words, the method for producing a catalyst adhering material of the present invention can be used for adhering the catalyst material to the carrier particles in a state where the catalyst material is not yet adhered, or the catalyst material is already adhered. It can also be used to further attach a catalyst material to the carrier particles.
 一例において、対象粒子は、具体的には、アルミナビーズ、ジルコニアビーズ、石英ビーズ、ジルコンビーズ、及びムライトビーズのようなセラミック粒子よりなる担体粒子であり得る。また、対象粒子の体積平均粒子径は、好ましくは、0.1mm以上1mm以下でありうる。
 なお、本発明において、「粒子」とは、アスペクト比が5未満の物体をいう。なお、対象粒子のアスペクト比は、例えば、顕微鏡画像上で、任意に選択した100個の対象粒子について(最大長径/最大長径に直交する幅)の値を算出し、その平均値を算出することで、確認することができる。また、対象粒子の体積平均粒子径は、JIS Z8825:2013に準拠して測定した粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(D50)を表す。
In one example, the particles of interest can be carrier particles, specifically ceramic particles such as alumina beads, zirconia beads, quartz beads, zircon beads, and mullite beads. The volume average particle diameter of the target particles can be preferably 0.1 mm or more and 1 mm or less.
In the present invention, the “particle” means an object having an aspect ratio of less than 5. The aspect ratio of the target particles may be calculated by, for example, calculating a value of (maximum major axis / width orthogonal to the maximum major axis) for 100 arbitrarily selected target particles on a microscope image, and calculating an average value thereof. You can check it. The volume average particle diameter of the target particles represents a particle diameter (D50) at which the cumulative volume calculated from the small diameter side is 50% in the particle size distribution (volume basis) measured according to JIS Z8825: 2013.
<装置構成>
 縦型容器10は、上部に排気口11を有するとともに、下部に第1供給口及び第2供給口を有する。なお、縦型容器10の「下部」とは、縦型容器10の高さ方向の長さの半分の位置を基準として、下側の部分を指す。そして、縦型容器10は、第1供給口及び第2供給口よりも上側に、排気口11を有する。また、第1供給口及び第2供給口は、それぞれ、単一の開口部及び複数の開口部のいずれで構成されていても良い。
<Device configuration>
The vertical container 10 has an exhaust port 11 in the upper part and a first supply port and a second supply port in the lower part. The “lower part” of the vertical container 10 refers to the lower part with reference to the position of half the length of the vertical container 10 in the height direction. The vertical container 10 has the exhaust port 11 above the first supply port and the second supply port. In addition, the first supply port and the second supply port may each be configured with a single opening or a plurality of openings.
 ここで、本一例に係る触媒付着体製造装置では、第1供給口及び第2供給口が同一の供給口であり、図1では、縦型容器10の下底部に設けられた供給口12として示される。さらに、ガス供給装置20は、ミストキャリアガス供給部21及び流動ガス供給部22により実装される。ミストキャリアガス供給部21は、キャリアガス配管41、ミスト含有ガス配管42、及び、主配管43の一部を経て、供給口12(この場合、「第1供給口」に相当)を介して縦型容器10に接続されている。また、流動ガス供給部22は、流動ガス配管44及び主配管43の一部を経て、供給口12(この場合、「第1供給口」に相当)を介して縦型容器10に接続されている。また、触媒原料溶液ミスト供給装置30は、ミスト含有ガス配管42及び供給口12(この場合、「第2供給口」に相当)を介して、縦型容器10に接続されている。なお、各種配管41~44は、任意で、バルブ51~54をそれぞれ備えていても良い。なお、バルブ51~54に代えて、或いは追加して、配管内を流れる流体又は物体の流量を調節する機能を備えるあらゆる部材及び/又は装置が実装されていても良い。かかる部材及び装置には、特に限定されることなく、インバーターつきのポンプ、シャッター、及び流量計等が含まれていても良い。また、主配管43に配置されたバルブ53は、縦型容器10にて触媒付着工程が実施されている最中は閉塞状態とされ、触媒付着工程が終了した後に開放状態とされうる。 Here, in the catalyst adhered body manufacturing apparatus according to the present example, the first supply port and the second supply port are the same supply port, and in FIG. 1, as the supply port 12 provided in the lower bottom portion of the vertical container 10. Shown. Further, the gas supply device 20 is mounted by a mist carrier gas supply unit 21 and a flowing gas supply unit 22. The mist carrier gas supply unit 21 passes through the carrier gas pipe 41, the mist-containing gas pipe 42, and a part of the main pipe 43, and vertically via the supply port 12 (in this case, the “first supply port”). It is connected to the mold container 10. Further, the fluidized gas supply unit 22 is connected to the vertical container 10 via the fluidized gas pipe 44 and a part of the main pipe 43, and via the supply port 12 (in this case, the “first supply port”). There is. Further, the catalyst raw material solution mist supply device 30 is connected to the vertical container 10 via the mist-containing gas pipe 42 and the supply port 12 (corresponding to the “second supply port” in this case). The various pipes 41 to 44 may optionally include valves 51 to 54, respectively. Note that instead of or in addition to the valves 51 to 54, any member and / or device having a function of adjusting the flow rate of the fluid or object flowing in the pipe may be mounted. Such members and devices are not particularly limited, and may include a pump with an inverter, a shutter, a flow meter, and the like. Further, the valve 53 arranged in the main pipe 43 may be in a closed state while the catalyst adhering step is being performed in the vertical container 10, and may be in an open state after the catalyst adhering step is completed.
<縦型容器>
 縦型容器10は、内部に対象粒子を収容可能である限りにおいて特に限定されることなく、ステンレス及びガラス等の材料により構成される容器である。縦型容器10の形状は、「縦型」、即ち、容器の高さが当該高さの方向に対して垂直な方向の最大幅よりも大きいという条件を満たす形状であれば、特に限定されることなく、あらゆる形状であり得る。例えば、図1に示した縦型容器10の形状は、高さの方向に対して垂直な断面の形状が円形であり、下端付近にて、断面直径が下端に向かって漸次的に小さくなるテーパ状の部分(以下、「テーパ部」とも称する)を有する形状である。
<Vertical container>
The vertical container 10 is not particularly limited as long as it can store the target particles therein, and is a container made of a material such as stainless steel or glass. The shape of the vertical container 10 is particularly limited as long as it satisfies the condition of "vertical", that is, the height of the container is larger than the maximum width in the direction perpendicular to the height direction. Without any shape. For example, in the shape of the vertical container 10 shown in FIG. 1, the shape of the cross section perpendicular to the height direction is circular, and the cross-sectional diameter gradually decreases toward the lower end near the lower end. It is a shape having a curved portion (hereinafter, also referred to as “tapered portion”).
 縦型容器10は、テーパ部と、かかるテーパ部に連なる本体部分にて対象粒子60を収容可能である。テーパ部は、対象粒子60を収容可能であるともに、テーパ部の底部に配置された供給口12から、調製した触媒付着体を排出可能に構成されている。対象粒子60は、縦型容器10内に収容された収容物であり、担体粒子及び触媒付着体の少なくとも一方を含む。縦型容器10は、上部、より具体的には、排気口11よりも上側に粒子投入口13を有しており、対象粒子60は、かかる粒子投入口13を介して縦型容器10内に導入されうる。 The vertical container 10 can accommodate the target particles 60 in the tapered portion and the main body portion connected to the tapered portion. The taper portion can accommodate the target particles 60 and can discharge the prepared catalyst adhering body from the supply port 12 arranged at the bottom of the taper portion. The target particles 60 are contained in the vertical container 10 and include at least one of carrier particles and a catalyst adhering body. The vertical container 10 has a particle input port 13 at the upper part, more specifically, above the exhaust port 11, and the target particles 60 are introduced into the vertical container 10 via the particle input port 13. Can be introduced.
 そして、対象粒子60は、縦型容器10の内部において流動床を形成している。具体的には、対象粒子60は、少なくとも一部が供給口12を介して下方向から吹きあげられながら、縦型容器10の内部に留まり流動する。この流動により、対象粒子60の表面上に、触媒原料溶液ミストが接触する。 The target particles 60 form a fluidized bed inside the vertical container 10. Specifically, the target particles 60 stay and flow inside the vertical container 10 while at least a part of the target particles 60 are blown up from below through the supply port 12. Due to this flow, the catalyst raw material solution mist comes into contact with the surface of the target particles 60.
<ガス供給装置>
 ガス供給装置20を構成する、図1に示した、ミストキャリアガス供給部21及び流動ガス供給部22は、それぞれ、所定のガスを縦型容器10の下底部に設けられた供給口12から上方向に向かって供給する。なお、図1では、ガス供給装置20が、ミストキャリアガス供給部21及び流動ガス供給部22という二つの構成部を含んでなる構造を例示したが、他の例において、ガス供給装置が流動ガス供給部を含まず、ミストキャリアガス供給部から供給されるミストキャリアガスが、縦型容器にまでミストを到達させるとともに、縦型容器内に導入された後においては、対象粒子を流動させるガスとして機能することも可能である。
<Gas supply device>
The mist carrier gas supply unit 21 and the fluidized gas supply unit 22 shown in FIG. 1, which constitute the gas supply device 20, respectively supply a predetermined gas from the supply port 12 provided at the lower bottom of the vertical container 10 to the upper side. Supply in the direction. In FIG. 1, the gas supply device 20 exemplifies a structure including two constituent parts, a mist carrier gas supply part 21 and a flowing gas supply part 22, but in another example, the gas supply device is a flowing gas. The mist carrier gas supplied from the mist carrier gas supply unit, which does not include a supply unit, causes the mist to reach the vertical container, and after being introduced into the vertical container, as a gas for flowing the target particles. It is also possible to work.
 ミストキャリアガス供給部21は、例えば、ミストキャリアガスの供給源でありうるタンク又はボンベ、及びポンプ等を含んでなりうる。なお、ミストキャリアガスとしては、ミストを搬送可能な限りにおいて特に限定されることなく、あらゆるガスを用いることができる。例えば、ミストキャリアガスとしては、アルゴン等の希ガス及び窒素等の不活性ガスを好適に用いることができる。 The mist carrier gas supply unit 21 can include, for example, a tank or a cylinder that can be a supply source of the mist carrier gas, a pump, and the like. The mist carrier gas is not particularly limited as long as the mist can be transported, and any gas can be used. For example, as the mist carrier gas, a rare gas such as argon and an inert gas such as nitrogen can be preferably used.
 流動ガス供給部22は、例えば、流動ガスの供給源であるタンク又はボンベ、及びポンプ等を含んでなりうる。なお、流動ガスとしては、ミストキャリアガスとして列挙した各種ガスと同様のガスを用いることができる。中でも、コスト低減の観点から、流動ガスとしては窒素ガスを用いることが好ましい。また、触媒付着体の製造時に、触媒の焼成を同時に行う場合は酸素や水蒸気を、触媒の還元を同時に行う場合は水素を、流動ガスに含ませることができる。 The flowing gas supply unit 22 may include, for example, a tank or a cylinder that is a supply source of the flowing gas, a pump, and the like. As the flowing gas, the same gases as the various gases listed as the mist carrier gas can be used. Above all, from the viewpoint of cost reduction, it is preferable to use nitrogen gas as the flowing gas. Further, during the production of the catalyst-adhered body, oxygen or water vapor can be contained in the fluidized gas when the catalyst is simultaneously calcined, and hydrogen can be contained when the catalyst is simultaneously reduced.
 そして、ガス供給装置20は、縦型容器10内で対象粒子60により流動床を形成するにあたり、対象粒子60の全てが自重で落下する速度以上であって、対象粒子60が縦型容器10外に飛ばされうる速度未満の速度で、ガスを縦型容器10内に流入させることが好ましい。これにより、流動床を形成する対象粒子60の少なくとも一部を縦型容器10内にて流動状態を保つことが可能となる。なお、落下の速度は対象粒子60の大きさや密度に基づいて決定することができる。 Then, the gas supply device 20 forms a fluidized bed with the target particles 60 in the vertical container 10 at a speed equal to or higher than the speed at which all the target particles 60 fall by their own weight, and the target particles 60 are outside the vertical container 10. It is preferable to allow the gas to flow into the vertical container 10 at a speed less than the speed at which the gas can be blown off. This makes it possible to keep at least a part of the target particles 60 forming the fluidized bed in the vertical container 10 in a fluidized state. The falling speed can be determined based on the size and density of the target particles 60.
<触媒原料溶液ミスト供給装置>
 触媒原料溶液ミスト供給装置30は、触媒原料溶液からミストを生成することができる限りにおいて特に限定されることなく、あらゆる機構により具現化することでき、例えば、振動、静電気、又は、二流体を用いてミストを生成する機構が挙げられる。図1では、触媒原料溶液ミスト供給装置30が、超音波による振動を用いてミストを生成する機構を採用した装置であるものとして図示する。触媒原料溶液ミスト生成装置30は、ミスト生成室31、振動子32、及び振動制御部33を備えて成る。振動制御部33は、所定の周波数で振動子32を振動させるように制御する。そして、振動子32が触媒原料溶液34内で振動することにより、触媒原料溶液ミスト35が生成される。生成された触媒原料溶液ミスト35は、ミストキャリアガス供給部21から、キャリアガス配管41を経てミスト生成室31内に導入されたミストキャリアガスにより搬送されて、ミスト含有ガス配管42内に導入される。その後、ミストキャリアガスにより搬送された触媒原料溶液ミスト35が、縦型容器10内に導入される。
<Catalyst raw material solution mist supply device>
The catalyst raw material solution mist supply device 30 is not particularly limited as long as it can generate a mist from the catalyst raw material solution, and can be embodied by any mechanism, for example, using vibration, static electricity, or two fluids. And a mechanism for generating mist. In FIG. 1, the catalyst raw material solution mist supply device 30 is illustrated as being a device that employs a mechanism for generating mist using vibration of ultrasonic waves. The catalyst raw material solution mist generation device 30 includes a mist generation chamber 31, a vibrator 32, and a vibration control unit 33. The vibration control unit 33 controls the vibrator 32 to vibrate at a predetermined frequency. Then, the oscillator 32 vibrates in the catalyst raw material solution 34, so that the catalyst raw material solution mist 35 is generated. The generated catalyst raw material solution mist 35 is carried from the mist carrier gas supply unit 21 by the mist carrier gas introduced into the mist generation chamber 31 via the carrier gas pipe 41 and introduced into the mist-containing gas pipe 42. It Then, the catalyst raw material solution mist 35 carried by the mist carrier gas is introduced into the vertical container 10.
 振動制御部33は、所望のサイズの触媒原料溶液ミスト35を生成するために、適宜、振動子32の振動周波数等の条件を決定することができる。触媒原料溶液ミストの体積平均粒子径は、対象粒子の体積平均粒子径の1/10以下であることが好ましく、1/30以下であることがより好ましい。触媒原料溶液ミストの体積平均粒子径を、対象粒子の体積平均粒子径の1/10以下、より好ましくは1/30以下となるようにすることで、一層均一に触媒原料を対象粒子の表面に付着させることができる。より具体的には、触媒原料溶液ミストの体積平均粒子径は、30μm以下であることが好ましく、10μm以下であることがより好ましい。触媒原料溶液ミストの体積平均粒子径がかかる上限値以下であれば、一層均一に触媒原料を対象粒子の表面に付着させることができる。特に、ミストの体積平均粒子径を小径化することで、乾燥に要する時間を短縮せしめて、ミストが対象粒子表面にてはじかれることに起因して所謂「染み」のように、触媒原料の付着が不均一となる部分が生じることを効果的に抑制することができる。なお、触媒原料溶液ミストの体積平均粒子径は、通常、10nm以上、或いは、100nm以上であり得る。また、ミストの体積平均粒子径は、JIS Z8825:2013に準拠して測定した粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(D50)を表す。さらにまた、触媒原料溶液ミストの体積平均粒子径は、触媒溶液からミストを生成する際の生成装置の設定に応じて、調節することができる。 The vibration control unit 33 can appropriately determine conditions such as the vibration frequency of the vibrator 32 in order to generate the catalyst raw material solution mist 35 having a desired size. The volume average particle diameter of the catalyst raw material solution mist is preferably 1/10 or less of the volume average particle diameter of the target particles, and more preferably 1/30 or less. By making the volume average particle diameter of the catalyst raw material solution mist to be 1/10 or less, more preferably 1/30 or less of the volume average particle diameter of the target particles, the catalyst raw material can be more uniformly applied to the surface of the target particles. Can be attached. More specifically, the volume average particle diameter of the catalyst raw material solution mist is preferably 30 μm or less, and more preferably 10 μm or less. When the volume average particle diameter of the catalyst raw material solution mist is equal to or less than the upper limit value, the catalyst raw material can be more uniformly attached to the surfaces of the target particles. In particular, by reducing the volume average particle size of the mist, the time required for drying can be shortened, and because the mist is repelled on the surface of the target particles, so-called "stain", the adhesion of the catalyst raw material It is possible to effectively suppress the occurrence of a non-uniform portion. The volume average particle diameter of the catalyst raw material solution mist can be usually 10 nm or more, or 100 nm or more. Further, the volume average particle diameter of the mist represents a particle diameter (D50) at which the cumulative volume calculated from the smaller diameter side becomes 50% in the particle size distribution (volume basis) measured according to JIS Z8825: 2013. Furthermore, the volume average particle diameter of the catalyst raw material solution mist can be adjusted according to the setting of the generation device when generating the mist from the catalyst solution.
 触媒原料溶液34としては、Si、Al、Mg、Fe、Co、及びNiの中から選択される1種以上の元素を含有する化合物を、一種又は複数種含む溶質を、水、エタノール、イソプロピルアルコール、トルエン、ヘキサン等の溶媒に対して溶解して得た溶液を好適に用いることができる。かかる化合物としては、具体的には、Al(NO33、Mg(NO32、Fe(NO33、Co(NO32、Ni(NO32等の無機金属塩、Al(CH3COO)3、Mg(CH3COO)2、Fe(CH3COO)2、Co(CH3COO)2、Ni(CH3COO)2等の有機金属塩、Si(OC254、Al(OC373、等の非金属/金属アルコキシド、Fe(C552、Co(C552、Ni(C552等の有機金属化合物等を挙げることができる。以上列挙したような化合物のうち、特に安価な無機金属塩を溶媒に対して溶解して成る溶液は、概して、表面張力が高い傾向がある。そして、かかる溶液を、対象粒子と単に接触させても、その高い表面張力に起因して、対象粒子表面で液滴を形成してしまい、均一に付着させることが難しいことが想定された。そこで、本発明者らは、対象粒子を流動化させているところに、ミストとして、これらの化合物を溶解してなる溶液を供給するという構成を採用することで、触媒原料を対象粒子の表面に均一に付着させることに成功した。
 中でも、繊維状炭素ナノ構造体を合成する触媒として使用した場合に活性が高い触媒付着体を製造する観点から、触媒原料溶液34を得るにあたり、溶質として、Alを含有する化合物であるAl(NO33、及び、Feを含有する化合物であるFe(NO33を併用し、溶媒として水を採用して混合水溶液とすることが好ましい。また、上記と同様の観点から、触媒原料溶液34を得るにあたり、溶質として、Alを含有する化合物であるAl(O-i-Pr)3(即ち、アルミニウムイソプロポキシド)、及び、Feを含有する化合物であるFe(C552を併用し、溶媒としてエタノールを採用して混合エタノール溶液とすることも好ましい。なお、触媒原料溶液34中では、溶質が全て溶解状態にあるため、触媒原料溶液34は実質的に固形分を含有しない。また、触媒原料溶液34の底部に溶質が固形分として存在しても、溶液表面からミストを発生させることで、固形分を含まないミストを対象粒子に供給することも可能である。
As the catalyst raw material solution 34, a solute containing one or more kinds of compounds containing one or more elements selected from Si, Al, Mg, Fe, Co, and Ni, water, ethanol, isopropyl alcohol. A solution obtained by dissolving it in a solvent such as toluene, hexane or the like can be preferably used. Specific examples of such compounds include inorganic metal salts such as Al (NO 3 ) 3 , Mg (NO 3 ) 2 , Fe (NO 3 ) 3 , Co (NO 3 ) 2 and Ni (NO 3 ) 2 . al (CH 3 COO) 3, Mg (CH 3 COO) 2, Fe (CH 3 COO) 2, Co (CH 3 COO) 2, Ni (CH 3 COO) organometallic salt 2 such as, Si (OC 2 H 5 ) 4 , non-metal / metal alkoxides such as Al (OC 3 H 7 ) 3 , organics such as Fe (C 5 H 5 ) 2 , Co (C 5 H 5 ) 2 and Ni (C 5 H 5 ) 2. A metal compound etc. can be mentioned. Among the compounds listed above, a solution prepared by dissolving an inexpensive inorganic metal salt in a solvent generally tends to have a high surface tension. It was assumed that even if such a solution was simply brought into contact with the target particles, the high surface tension thereof would cause the formation of droplets on the surface of the target particles, making it difficult to uniformly attach the solution. Therefore, the present inventors have adopted a configuration in which, while fluidizing the target particles, a solution in which these compounds are dissolved is supplied as a mist, whereby the catalyst raw material is applied to the surface of the target particles. Succeeded in evenly adhering.
Among them, from the viewpoint of producing a catalyst adhering body having high activity when used as a catalyst for synthesizing a fibrous carbon nanostructure, in obtaining the catalyst raw material solution 34, Al (NO) which is a compound containing Al as a solute is obtained. 3 ) 3 and Fe (NO 3 ) 3 , which is a compound containing Fe, are preferably used together, and water is used as a solvent to form a mixed aqueous solution. From the same viewpoint as above, in obtaining the catalyst raw material solution 34, Al (Oi-Pr) 3 (that is, aluminum isopropoxide), which is a compound containing Al, and Fe are contained as solutes. It is also preferable to use Fe (C 5 H 5 ) 2 which is a compound to be used in combination with ethanol as a solvent to prepare a mixed ethanol solution. In the catalyst raw material solution 34, all the solutes are in a dissolved state, so the catalyst raw material solution 34 does not substantially contain a solid content. Further, even if the solute is present as a solid content at the bottom of the catalyst raw material solution 34, it is possible to supply mist containing no solid content to the target particles by generating mist from the solution surface.
 上述したように、ガス供給装置20及び触媒原料溶液ミスト供給装置30は、供給口12を介して縦型容器10に接続されている。従って、供給口12及びその近傍には、触媒原料を含有するミストが付着し易い。そして、偶発的又は何らかの事情により流動床から落下してきた対象粒子又は触媒付着体が、ミストが付着して湿った状態となった供給口12及びその近傍に接触した場合に、これらの対象粒子又は触媒付着体が、供給口12及びその近傍にて留まりやすい。このような現象が生じて蓄積することで、最終的に、供給口12が閉塞する虞がある。そこで、かかる閉塞が生じる可能性を低減するために、供給口12の最小幅が、3mm以上であることが好ましい。さらに、かかる効果を一層高める観点から、供給口12の最小幅が、触媒原料溶液ミストの体積平均粒子径の100倍以上であることが好ましく、300倍以上であることがより好ましい。裏返せば、触媒原料溶液ミストの体積平均粒子径が、供給口12の最小幅の1/100以下であることが好ましく、1/300以下であることがより好ましい。
 ここで、「供給口の最小幅」とは、具体的には、(1)供給口の開口形状が円の場合には当該円の直径を意味し;(2)供給口の開口形状が楕円状であるときは短径を意味し;(3)供給口の開口形状が長方形の場合は短辺の長さを意味し;(4)供給口の開口形状がスリット状であるときはスリットの最小幅を意味する。
As described above, the gas supply device 20 and the catalyst raw material solution mist supply device 30 are connected to the vertical container 10 via the supply port 12. Therefore, the mist containing the catalyst raw material tends to adhere to the supply port 12 and its vicinity. Then, when the target particles or the catalyst adhering material that has accidentally or somehow dropped from the fluidized bed comes into contact with the supply port 12 and its vicinity in which the mist is attached and has become wet, these target particles or The catalyst adhering material easily stays at and near the supply port 12. When such a phenomenon occurs and accumulates, the supply port 12 may finally be blocked. Therefore, in order to reduce the possibility of such blockage, it is preferable that the minimum width of the supply port 12 is 3 mm or more. Further, from the viewpoint of further enhancing such effects, the minimum width of the supply port 12 is preferably 100 times or more, and more preferably 300 times or more of the volume average particle diameter of the catalyst raw material solution mist. In other words, the volume average particle diameter of the catalyst raw material solution mist is preferably 1/100 or less of the minimum width of the supply port 12, and more preferably 1/300 or less.
Here, “the minimum width of the supply port” specifically means (1) the diameter of the circle when the opening shape of the supply port is a circle; (2) the opening shape of the supply port is an ellipse. (3) When the opening shape of the supply port is rectangular, it means the length of the short side; (4) When the opening shape of the supply port is slit-shaped, it means the slit shape. Means minimum width.
 なお、図1では、ガス供給装置20及び触媒原料溶液ミスト供給装置30が一つの供給口12を介して縦型容器10に対して接続する構成を採用したため、供給口12の開口形状の好適な特徴として、上述の特徴を示した。しかし、後述する図2に示すように、ガス供給部及び触媒原料溶液ミスト供給装置が互いに異なる供給口を介して縦型容器10に対して接続する場合、即ち、第1供給口を介してガス供給装置が縦型容器と連通するように配置され、第2供給口を介して触媒原料溶液ミスト供給装置が縦型容器と連通するように配置されたような態様の場合には、少なくとも、第2供給口の開口形状が、上述したような各種条件を満たすことが好ましい。 In addition, in FIG. 1, since the gas supply device 20 and the catalyst raw material solution mist supply device 30 are connected to the vertical container 10 through one supply port 12, the opening shape of the supply port 12 is preferable. The features described above are shown as the features. However, as shown in FIG. 2 described later, when the gas supply unit and the catalyst raw material solution mist supply device are connected to the vertical container 10 via different supply ports, that is, the gas is supplied via the first supply port. In the case where the supply device is arranged to communicate with the vertical container and the catalyst raw material solution mist supply device is arranged to communicate with the vertical container through the second supply port, at least It is preferable that the opening shapes of the two supply ports satisfy various conditions as described above.
<加熱装置>
 さらに、触媒付着体製造装置100は、縦型容器10内部を加熱することができるように構成された加熱装置70をさらに備えることが好ましい。加熱装置70は、特に限定されることなく、例えば各種ヒーターにより構成されうる。さらに、加熱装置70は縦型容器10を、好ましくは100℃以上、より好ましくは200℃以上、好ましくは1000℃以下、より好ましくは900℃以下に加熱することができる。縦型容器10を上記範囲内で加熱可能な加熱装置70を備えることで、対象粒子に対して付着したミストを効率的に乾燥することができ、一層効率的に触媒付着体を製造することができる。なお、加熱温度は、用いる触媒原料溶液の種類及び性状、並びに、流動ガス及びミストキャリアガスを供給する際の流量等に応じて、最適化することができる。また、加熱された縦型容器10の内部の温度も、上記好適範囲内となり得る。
<Heating device>
Furthermore, it is preferable that the catalyst adhered body manufacturing apparatus 100 further includes a heating device 70 configured to be able to heat the inside of the vertical container 10. The heating device 70 is not particularly limited and may be configured by various heaters, for example. Further, the heating device 70 can heat the vertical container 10 to preferably 100 ° C. or higher, more preferably 200 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C. or lower. By providing the heating device 70 capable of heating the vertical container 10 within the above range, the mist adhering to the target particles can be efficiently dried, and the catalyst adhering body can be manufactured more efficiently. it can. The heating temperature can be optimized according to the type and properties of the catalyst raw material solution to be used, the flow rate at the time of supplying the flowing gas and the mist carrier gas, and the like. Further, the temperature inside the heated vertical container 10 can also be within the above-mentioned preferable range.
<回収装置>
 さらに、触媒付着体製造装置100は、縦型容器10にて調製された触媒付着体を回収可能に構成された、回収装置80を備えることが好ましい。回収装置80は、図1に示すように、縦型容器10の下方に位置することが好ましい。かかる構成によれば、供給口12を介して、触媒付着体を縦型容器よりも下方にて回収することで、効率的に触媒付着体を回収することができる。図1では、縦型容器10の下端に位置する供給口12に連結された主配管43を介して、回収装置80を構成する回収室が接続されている。
<Recovery device>
Furthermore, it is preferable that the catalyst adhering material manufacturing apparatus 100 includes a recovery device 80 configured to recover the catalyst adhering material prepared in the vertical container 10. As shown in FIG. 1, the recovery device 80 is preferably located below the vertical container 10. According to this configuration, the catalyst adhering material can be efficiently recovered by recovering the catalyst adhering material below the vertical container via the supply port 12. In FIG. 1, a recovery chamber constituting a recovery device 80 is connected via a main pipe 43 connected to the supply port 12 located at the lower end of the vertical container 10.
 なお、触媒付着体の回収を容易にする観点から、ミスト含有ガス配管42が主配管43に対して接続する接続口であるミスト含有ガス配管接続口46が、流動ガス配管44が主配管43に対して接続する接続口である流動ガス配管接続口47よりも、上側(即ち、縦型容器10により近い側)に配置されていることが好ましい。主配管43の上部、より具体的には、ミスト含有ガス配管接続口46の接続位置から上側の内壁は、触媒原料溶液ミストが通過するために、触媒付着工程を実施している最中には湿りやすい。そこで、ミスト含有ガス配管接続口46よりも流動ガス配管接続口47が下部にあれば、流動ガス配管接続口47を経て主配管43を通過する流動ガスにより、主配管43の上部の内壁を、回収に先立って乾燥させることが可能となる。ミスト含有ガス配管接続口46及び流動ガス配管接続口47の相対的な位置関係を上記のようにすることで、触媒付着体が湿った内壁にトラップされることを抑制して、触媒付着体の回収を容易にすることができる。 From the viewpoint of facilitating the recovery of the catalyst deposit, the mist-containing gas pipe connection port 46, which is the connection port for connecting the mist-containing gas pipe 42 to the main pipe 43, and the flowing gas pipe 44 to the main pipe 43. It is preferable that it is arranged on the upper side (that is, on the side closer to the vertical container 10) than the fluidized gas pipe connection port 47 which is a connection port connected to it. Since the catalyst raw material solution mist passes through the upper portion of the main pipe 43, more specifically, the inner wall above the connection position of the mist-containing gas pipe connection port 46, the catalyst adhering step is performed during the catalyst adhering step. Easy to get wet. Therefore, if the fluid gas pipe connection port 47 is located below the mist-containing gas pipe connection port 46, the fluid gas passing through the fluid gas pipe connection port 47 and the main pipe 43 causes the inner wall of the upper portion of the main pipe 43 to move, It is possible to dry prior to recovery. By setting the relative positional relationship between the mist-containing gas pipe connection port 46 and the flowing gas pipe connection port 47 as described above, it is possible to prevent the catalyst deposit from being trapped on the wet inner wall, and Collection can be facilitated.
 以上説明したような構成を有する、一例に従う触媒付着体製造装置によれば、効率的且つ均一に触媒原料を対象粒子の表面に付着させることができる。
 なお、触媒付着体製造装置に備えられる縦型容器の下部が、図1に示したようなテーパ部を備えることは必須ではない。即ち、ある変形態様において、縦型容器の底部が高さ方向に対して直交する平面よりなり、かかる底部から少し空間を空けて、ガス及び触媒原料溶液ミストを分散する分散板として機能する多孔板を備えていてもよい。かかる構造を有する縦型容器内部では、多孔板により対象粒子の少なくとも一部が支持される。そして、かかる構成では、多孔板に目詰まりが生じることを抑制する観点から、多孔板を貫通する管を用いて、多孔板の上面又は上方に、第2供給口を配置することが好ましい。
According to the apparatus for producing a catalyst-adhered body according to an example, which has the configuration described above, the catalyst raw material can be efficiently and uniformly attached to the surfaces of the target particles.
Note that it is not essential that the lower portion of the vertical container provided in the apparatus for producing a catalyst-adhered body be provided with the tapered portion as shown in FIG. That is, in a modification, the bottom of the vertical container is a plane orthogonal to the height direction, and a small space is left from the bottom so as to function as a dispersion plate that disperses the gas and the catalyst raw material solution mist. May be provided. Inside the vertical container having such a structure, at least a part of the target particles is supported by the porous plate. Then, in such a configuration, from the viewpoint of suppressing the occurrence of clogging in the perforated plate, it is preferable to arrange the second supply port on the upper surface or above the perforated plate by using a pipe penetrating the perforated plate.
 また、図1では、縦型容器10の下端に位置する供給口12に連結された主配管43を介して、回収装置80を構成する回収室が接続されている構成を例示したが、回収室の接続態様は、かかる構成に限定されるものではない。例えば、回収室が、縦型容器の上部、下部、又は側部の何れかに設けられた回収口を通じて、縦型容器と連通するように配置されていても良い。この場合、大流量の流動ガスを縦型容器に供給することで、触媒付着体を回収口まで運ぶことができる。また、回収時に縦型容器の上部から、縦型容器より小さい内径を有する回収管を下すことで、回収管の下端の回収口を縦型容器の下方に設け、この回収口から回収管を通して触媒付着体を縦型容器の上方に回収しても良い。さらに、触媒付着体製造装置は、必要に応じて、縦型容器を傾斜又は回転可能な機構を備えていても良い。かかる構成を有する触媒付着体製造装置によれば、種々の位置に設けられた回収口を開放し、且つ、必要に応じて縦型容器を傾斜又は回転させることで、触媒付着体を回収することができる。 In addition, in FIG. 1, the configuration in which the recovery chamber configuring the recovery device 80 is connected via the main pipe 43 connected to the supply port 12 located at the lower end of the vertical container 10 is illustrated. The connection mode of is not limited to this configuration. For example, the recovery chamber may be arranged so as to communicate with the vertical container through a recovery port provided at any one of the upper portion, the lower portion, and the side portion of the vertical container. In this case, by supplying a large amount of flowing gas to the vertical container, the catalyst adhering material can be carried to the recovery port. Further, at the time of recovery, by lowering a recovery pipe having an inner diameter smaller than that of the vertical container from the upper part of the vertical container, a recovery port at the lower end of the recovery pipe is provided below the vertical container, and a catalyst is passed through the recovery pipe from this recovery port. The adhered body may be collected above the vertical container. Further, the catalyst adhered body manufacturing apparatus may be provided with a mechanism capable of inclining or rotating the vertical container, if necessary. According to the catalyst deposit manufacturing apparatus having such a configuration, the catalyst deposits are collected by opening the recovery ports provided at various positions and tilting or rotating the vertical container as necessary. You can
 また、図1では、縦型容器の下部に配置された第1供給口(対象粒子を流動させるガスの供給口)及び、第2供給口(触媒原料溶液ミストの供給口)が同じ供給口12として実装される態様を例示した。しかし、本発明の他の態様において、図2に概略構成を例示する触媒付着体製造装置100’のように、第1供給口14と第2供給口15とが、異なる供給口として実装されていても良い。図2において、図1に示した各構成部に対応する各構成部については、同じ参照符号を付して示し、図1に示した構成部と機能は対応するものの、配置及び/又は構造が異なる構成部については、同じ参照符号に「’」を付して示す。図2に示す触媒付着体製造装置100’では、流動ガス供給部22’が、バルブ54’を有する流動ガス配管44’、及び第1供給口14を介して、縦型容器10’と連通するように配置されており、第2供給口15を介して、触媒原料溶液ミスト供給装置30が縦型容器10’と連通するように配置されている。よって、流動ガス供給部22’から供給され、流動ガス配管44’を経て移送されてきた流動ガスが第1供給口14を介して縦型容器10’内に供給される。ここで、図2に示す第1供給口14は、第2供給口15に対して底部が接続されたテーパ状の多孔質板に設けられた複数の孔(又はスリット)として実装される。かかる第1供給口14を通過した流動ガスは、対象粒子を流動させるように機能する。なお、図2では、第1供給口14を、多孔質板に設けられた複数の孔として図示したが、第1供給口14の数は1つであっても良い。また、第2供給口15に対して底部が接続されたテーパ状の多孔質板の形状は、テーパ状に限定されることなく、あらゆる形状であり得る。 Further, in FIG. 1, the first supply port (the supply port for the gas that causes the target particles to flow) and the second supply port (the supply port for the catalyst raw material solution mist) arranged at the bottom of the vertical container are the same supply port 12 The mode implemented as is illustrated. However, in another embodiment of the present invention, the first supply port 14 and the second supply port 15 are mounted as different supply ports, as in a catalyst adhered body manufacturing apparatus 100 ′ whose schematic configuration is illustrated in FIG. May be. In FIG. 2, each component corresponding to each component shown in FIG. 1 is denoted by the same reference numeral, and although the configuration and function shown in FIG. The different components are indicated by the same reference numerals with "'" added. In the catalyst deposit manufacturing device 100 ′ shown in FIG. 2, the fluidized gas supply unit 22 ′ communicates with the vertical container 10 ′ via the fluidized gas pipe 44 ′ having the valve 54 ′ and the first supply port 14. The catalyst raw material solution mist supply device 30 is arranged so as to communicate with the vertical container 10 ′ via the second supply port 15. Therefore, the fluidized gas supplied from the fluidized gas supply unit 22 ′ and transferred through the fluidized gas pipe 44 ′ is supplied into the vertical container 10 ′ via the first supply port 14. Here, the first supply port 14 shown in FIG. 2 is mounted as a plurality of holes (or slits) provided in a tapered porous plate whose bottom is connected to the second supply port 15. The fluidized gas that has passed through the first supply port 14 functions to fluidize the target particles. In FIG. 2, the first supply port 14 is illustrated as a plurality of holes provided in the porous plate, but the number of the first supply ports 14 may be one. The shape of the tapered porous plate whose bottom is connected to the second supply port 15 is not limited to the tapered shape, and may be any shape.
(繊維状炭素ナノ構造体製造装置)
 図3に、図1を参照して上述した本発明の触媒付着体製造装置100を含む、本発明の繊維状炭素ナノ構造体製造装置200の概略構成を示す。図3において、機能及び構造が図1と同じ構成部については、同じ参照符号を付して示す。図3に示すように、繊維状炭素ナノ構造体製造装置200は、図1を参照して説明した触媒付着体製造装置に対して、炭素原料気体供給装置90を接続して成る装置である。炭素原料気体供給装置90は、炭素原料供給配管45、流動ガス配管44の一部、及び主配管43の一部を介して、縦型容器10に接続されている。さらに、繊維状炭素ナノ構造体製造装置200は、図示しない制御装置を備えていても良い。
(Fibrous carbon nanostructure manufacturing device)
FIG. 3 shows a schematic configuration of a fibrous carbon nanostructure manufacturing apparatus 200 of the present invention including the catalytic deposit manufacturing apparatus 100 of the present invention described above with reference to FIG. In FIG. 3, components having the same functions and structures as those in FIG. 1 are designated by the same reference numerals. As shown in FIG. 3, the fibrous carbon nanostructure manufacturing apparatus 200 is an apparatus in which a carbon source gas supply device 90 is connected to the catalyst-adhered material manufacturing apparatus described with reference to FIG. The carbon raw material gas supply device 90 is connected to the vertical container 10 via the carbon raw material supply pipe 45, a part of the flowing gas pipe 44, and a part of the main pipe 43. Furthermore, the fibrous carbon nanostructure manufacturing apparatus 200 may include a control device (not shown).
 炭素原料気体供給装置90は、詳細な構成を図示しないが、繊維状炭素ナノ構造体を製造するための材料となり得る炭素原料を含む気体を供給可能な限りにおいて特に限定されることなく、タンク及びボンベ等により実装されうる炭素原料気体供給源と、ポンプ等を含んでなる。炭素原料としては、既知のものを用いることができ、例えば、炭素アルキン及びアルケン(オレフィン炭化水素)、アルカン(パラフィン炭化水素)、アルコール、エーテル、アルデヒド、ケトン、芳香族炭化水素、及び一酸化炭素の中から選択される1種以上の炭素原料が挙げられる。なお、炭素原料気体は、これらの炭素原料に加えて、アルゴン等の希ガス及び窒素等の不活性ガス、水素等の還元性ガス及び/又は二酸化炭素等の酸素元素含有ガスを含んでも良い。 The carbon raw material gas supply device 90 is not particularly shown in detail, but is not particularly limited as long as it can supply a gas containing a carbon raw material that can be a material for producing a fibrous carbon nanostructure, and a tank and It includes a carbon source gas supply source that can be mounted by a cylinder or the like, a pump, and the like. Known carbon raw materials can be used, for example, carbon alkynes and alkenes (olefin hydrocarbons), alkanes (paraffin hydrocarbons), alcohols, ethers, aldehydes, ketones, aromatic hydrocarbons, and carbon monoxide. One or more carbon raw materials selected from the above. In addition to these carbon raw materials, the carbon raw material gas may contain a rare gas such as argon, an inert gas such as nitrogen, a reducing gas such as hydrogen, and / or an oxygen element-containing gas such as carbon dioxide.
 繊維状炭素ナノ構造体製造装置200は、賦活済みの触媒付着体を収容した状態で、炭素原料気体供給装置90を駆動することで、縦型容器10内にて、触媒付着体上に繊維状炭素ナノ構造体を合成することができる。尚、賦活済みの触媒付着体は、例えば、縦型容器10内にて調製した触媒付着体を縦型容器10内に収容したまま、これらと水素、アンモニア、メタン等の還元性ガスとを接触させることにより、得ることができる。 The fibrous carbon nanostructure manufacturing apparatus 200 drives the carbon source gas supply device 90 in a state in which the activated catalyst adhering material is accommodated, so that the fibrous carbon adhering material is formed on the catalyst adhering material in the vertical container 10. Carbon nanostructures can be synthesized. The activated catalyst adhering material is, for example, brought into contact with a reducing gas such as hydrogen, ammonia, methane or the like while the catalyst adhering material prepared in the vertical container 10 is accommodated in the vertical container 10. Can be obtained.
 ここで、任意の構成である、図示しない制御装置は、触媒原料溶液ミスト供給装置30による縦型容器10内への触媒原料溶液ミストの供給と、炭素原料気体供給装置90による縦型容器10内への炭素原料気体の供給とを並行実施しないように、即ち、触媒原料溶液ミストの供給と、炭素原料気体の供給とを時間的に制御することができる。縦型容器10内に、触媒原料溶液ミスト及び炭素原料気体を同時に供給しない、換言すれば、繊維状炭素ナノ構造体を合成する最中に、触媒原料溶液ミストを縦型容器10内に供給しなければ、得られる繊維状炭素ナノ構造体に、触媒原料が付着して混入して、繊維状炭素ナノ構造体の純度が低下することを抑制することができる。 Here, the control device (not shown), which has an arbitrary configuration, includes a catalyst raw material solution mist supply device 30 for supplying the catalyst raw material solution mist into the vertical container 10 and a carbon raw material gas supply device 90 for inside the vertical container 10. It is possible to control the supply of the carbon raw material gas to the catalysts in parallel, that is, the supply of the catalyst raw material solution mist and the supply of the carbon raw material gas in terms of time. The catalyst raw material solution mist and the carbon raw material gas are not simultaneously supplied into the vertical container 10, in other words, the catalyst raw material solution mist is supplied into the vertical container 10 during the synthesis of the fibrous carbon nanostructure. If it does not exist, it is possible to prevent the fibrous carbon nanostructures from being adsorbed and mixed with the catalyst raw material to reduce the purity of the fibrous carbon nanostructures.
 そして、縦型容器10内にて触媒付着体上に繊維状炭素ナノ構造体を成長させた後に、炭素原料気体供給装置90の駆動を停止して、表面に繊維状炭素ナノ構造体を有する触媒付着体を回収装置80にて回収する。なお、図3では、縦型容器10の底部(下部)に備えられた供給口12が回収口としても機能し得る構成、即ち、対象粒子を流動させるためのガスを縦型容器10内に導入するための第1供給口、及び、触媒原料溶液ミストを縦型容器10内に導入するための第2供給口が、回収口を兼ねる構成を示した。しかし、回収口の構成はかかる態様に限定されるものではなく、ある変形例において、縦型容器10は、側部又は上部に、回収口を有していても良い。 Then, after the fibrous carbon nanostructure is grown on the catalyst-adhered body in the vertical container 10, the driving of the carbon source gas supply device 90 is stopped, and the catalyst having the fibrous carbon nanostructure on the surface. The attached body is collected by the collection device 80. In FIG. 3, the supply port 12 provided at the bottom (lower part) of the vertical container 10 can also function as a recovery port, that is, a gas for flowing target particles is introduced into the vertical container 10. The first supply port for supplying the catalyst raw material solution mist and the second supply port for introducing the catalyst raw material solution mist into the vertical container 10 also serve as the recovery port. However, the configuration of the recovery port is not limited to such an aspect, and in a modified example, the vertical container 10 may have a recovery port on the side portion or the upper part.
 また、図3では、炭素原料気体供給装置90が、炭素原料供給配管45、流動ガス配管44の一部、及び主配管43の一部を介して縦型容器10に接続されてなる構造を例示した。しかし、炭素原料気体供給装置90の縦型容器10に対する接続態様は、図示の態様に限定されるものではない。ただし、炭素原料気体供給装置90は、縦型容器10に対して、縦型容器10内にて下方向から上方向に、炭素原料気体を流通させるような態様で、接続されることが好ましい。 Further, in FIG. 3, the carbon source gas supply device 90 is illustrated as being connected to the vertical container 10 via the carbon source supply pipe 45, a part of the flowing gas pipe 44, and a part of the main pipe 43. did. However, the connection mode of the carbon source gas supply device 90 to the vertical container 10 is not limited to the illustrated mode. However, the carbon source gas supply device 90 is preferably connected to the vertical container 10 in such a manner that the carbon source gas is circulated from the lower side to the upper side in the vertical container 10.
 また、図4では、図2に示す触媒付着体製造装置100’を含む、本発明の他の態様に係る繊維状炭素ナノ構造体製造装置200’の概略構成を示す。図4において、図1~3に示した各構成部に対応する各構成部については、同じ参照符号を付して示す。また、図3に係る、繊維状炭素ナノ構造体製造装置200とは配置の異なる、炭素原料気体供給装置及び炭素原料供給配管については、同じ参照符号に「’」を付して示す。 Further, FIG. 4 shows a schematic configuration of a fibrous carbon nanostructure manufacturing apparatus 200 ′ according to another embodiment of the present invention, which includes the catalyst adhered material manufacturing apparatus 100 ′ shown in FIG. 2. In FIG. 4, each component corresponding to each component shown in FIGS. 1 to 3 is denoted by the same reference numeral. Further, regarding the carbon raw material gas supply device and the carbon raw material supply pipe, which are different in arrangement from the fibrous carbon nanostructure manufacturing apparatus 200 according to FIG. 3, the same reference numerals are denoted by “′”.
 繊維状炭素ナノ構造体製造装置200’では、炭素原料気体供給装置90’は、炭素原料供給配管45’、バルブ54’を有する流動ガス配管44’の一部、及び第1供給口14を介して、縦型容器10’に対して接続されている。そして、炭素気体供給装置90’から供給された炭素原料気体は、流動ガス配管44'との合流部にて、流動ガスと混合されてから、第1供給口14を介して縦型容器10’内に導入される。かかる構成によれば、触媒原料溶液ミストが供給される第2供給口15とは異なる供給口である、第一供給口14を介して炭素原料気体が縦型容器10’内に導入される。このため、第2供給口15付近にとどまった触媒付着体や第2供給口15付近に付着した触媒にて、繊維状炭素ナノ構造体が成長することを抑制することができる。この結果、第2供給口15が詰まり易くなることを抑制することができる。なお、図4に示した態様とは異なる変形態様において、炭素気体供給装置が、第1供給口及び第2供給口の何れとも異なる供給口を介して、縦型容器と連通するように配置されていても良い。 In the fibrous carbon nanostructure manufacturing apparatus 200 ′, the carbon raw material gas supply device 90 ′ includes a carbon raw material supply pipe 45 ′, a part of the flowing gas pipe 44 ′ having a valve 54 ′, and the first supply port 14. And is connected to the vertical container 10 '. Then, the carbon source gas supplied from the carbon gas supply device 90 ′ is mixed with the flowing gas at the confluence with the flowing gas pipe 44 ′, and then the vertical container 10 ′ via the first supply port 14. Will be introduced in. According to this structure, the carbon source gas is introduced into the vertical container 10 ′ via the first supply port 14, which is a supply port different from the second supply port 15 to which the catalyst raw material solution mist is supplied. For this reason, it is possible to suppress the growth of the fibrous carbon nanostructures by the catalyst adhering material remaining near the second supply port 15 or the catalyst adhering near the second supply port 15. As a result, it is possible to prevent the second supply port 15 from being easily clogged. In a modification different from the embodiment shown in FIG. 4, the carbon gas supply device is arranged so as to communicate with the vertical container via a supply port different from both the first supply port and the second supply port. It may be.
(触媒付着体の製造方法)
 本発明の触媒付着体の製造方法は、縦型容器の下部に配置された第1供給口から上部方向に向かって少なくとも一種のガスを供給して対象粒子を流動させる流動工程と、縦型容器の下部に配置された第2供給口から上部方向に向かって触媒原料溶液ミストを供給して対象粒子に対して触媒原料を付着させて触媒付着体を得る触媒付着工程と、を含み、触媒付着工程を実施している間は、流動工程を継続する、ことを特徴とする。本発明の触媒付着体の製造方法は、流動状態とした対象粒子に対して、縦型容器の下部方向から上部方向に向かって触媒原料溶液ミストを供給する触媒付着工程を含むため、効率的且つ均一に触媒原料を対象粒子の表面に付着させることができる。以下、各工程について詳述する。本発明の触媒付着体の製造方法は、上述した本発明の触媒付着体製造装置により好適に実施することができる。以下、一例として、本発明の触媒付着体の製造方法を、本発明の触媒付着体製造装置を用いて実施する場合について説明する。
(Method for producing catalyst-attached body)
The method for producing a catalyst-adhered body according to the present invention comprises a flow step of supplying at least one kind of gas in an upward direction from a first supply port arranged at a lower portion of a vertical container to flow target particles, and a vertical container. A catalyst adhering step of supplying a catalyst raw material solution mist from the second supply port arranged in the lower part of the catalyst toward the upper side to adhere the catalyst raw material to the target particles to obtain a catalyst adhering body, The flow process is continued while the process is performed. The method for producing a catalyst-adhered body of the present invention includes a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of the vertical container for the target particles in a fluidized state, so that the method is efficient and The catalyst raw material can be uniformly attached to the surface of the target particles. Hereinafter, each step will be described in detail. The method for producing a catalyst deposit according to the present invention can be suitably carried out by the above-described apparatus for producing a catalyst deposit according to the present invention. Hereinafter, as an example, a case where the method for producing a catalyst-adhered body of the present invention is carried out using the apparatus for producing a catalyst-adhered body of the present invention will be described.
<準備工程>
 準備工程では、縦型容器10内に対象粒子60を収容する。対象粒子60としては、(触媒付着体製造装置)の項目にて詳述したような粒子を好適に用いることができる。なお、準備工程で縦型容器10内に対象粒子60を収容するための具体的な方途としては、例えば、図1に示すように、縦型容器10の上部に設けられた粒子投入口13から、縦型容器10内に対象粒子60を投入することが挙げられる。
<Preparation process>
In the preparation step, the target particles 60 are contained in the vertical container 10. As the target particles 60, particles such as those described in detail in the item (Catalyst Adhesion Body Manufacturing Apparatus) can be preferably used. In addition, as a specific method for accommodating the target particles 60 in the vertical container 10 in the preparation step, for example, as shown in FIG. 1, from the particle inlet 13 provided in the upper portion of the vertical container 10, Including the target particles 60 in the vertical container 10.
<流動工程>
 流動工程では、ガス供給装置20を駆動させて、下部に配置された供給口12から、縦型容器10の上部方向に向かって少なくとも一種のガスを供給して、対象粒子60を流動させる。ここで、「少なくとも一種のガス」には、本例においては、ミストキャリアガス供給部21由来のミストキャリアガスと、流動ガス供給部22由来の流動ガスとが含まれる。なお、図1に示した触媒付着体製造装置100の一例に従う変形態様であって、流動ガス供給部22を有さない構成の触媒付着体製造装置を用いる場合には、ミストキャリアガスが、ミストキャリアとして機能するだけでなく、対象粒子60を流動させるためのガスとして機能する。なお、ミストキャリアガス供給部21由来のガスについて、「ミストキャリアガス」と称しているが、触媒原料溶液ミスト供給装置30を駆動しない間は、「ミストキャリアガス」は、ミストを搬送するミストキャリアとしてではなく、純粋に、対象粒子60を流動させるためのガスとして機能し得る。
<Flow process>
In the flowing step, the gas supply device 20 is driven to supply at least one kind of gas toward the upper part of the vertical container 10 from the supply port 12 arranged in the lower part to cause the target particles 60 to flow. Here, in this example, the “at least one gas” includes the mist carrier gas derived from the mist carrier gas supply unit 21 and the fluid gas derived from the fluid gas supply unit 22. In addition, in a modified embodiment according to the example of the catalyst adhering material manufacturing apparatus 100 shown in FIG. 1, in the case of using the catalyst adhering material manufacturing apparatus having a configuration without the fluidized gas supply unit 22, the mist carrier gas is the mist. It functions not only as a carrier but also as a gas for causing the target particles 60 to flow. Although the gas derived from the mist carrier gas supply unit 21 is referred to as a “mist carrier gas”, the “mist carrier gas” is a mist carrier that conveys mist while the catalyst raw material solution mist supply device 30 is not driven. Instead, it may function purely as a gas for causing the target particles 60 to flow.
 ミストキャリアガス、及び流動ガスとしては、それぞれ、(触媒付着体製造装置)の項目にて詳述したガスを好適に用いることができる。また、これらのガスの流入速度は、(触媒付着体製造装置)の項目にて詳述したような速度とすることが好ましい。 As the mist carrier gas and the flowing gas, the gas described in detail in the section (Catalyst adhering body manufacturing device) can be preferably used. Further, it is preferable that the inflow rates of these gases be the rates described in detail in the section of (Catalyst adherent manufacturing apparatus).
<触媒付着工程>
 触媒付着工程では、縦型容器10の下部に配置された供給口12から、縦型容器10の上部方向に向かって触媒原料溶液ミストを供給して、流動状態の対象粒子60に対して触媒原料を付着させて触媒付着体を得る。より具体的には、触媒付着工程では、触媒原料溶液ミスト供給装置30を駆動させて、触媒原料溶液ミストを生成して、ミストキャリアガス供給部21から供給されるミストキャリアガスに同伴させて、縦型容器10内に下方向から導入する。縦型容器10内の下方向から上方向に向かって、流動ガスと共に触媒原料溶液ミストが流れることで、ムラ無く均一な対象粒子表面への触媒原料の付着が実現可能となる。
<Catalyst deposition step>
In the catalyst adhering step, the catalyst raw material solution mist is supplied from the supply port 12 arranged at the lower portion of the vertical container 10 toward the upper portion of the vertical container 10 so that the catalyst raw material is supplied to the target particles 60 in a fluid state. Are attached to obtain a catalyst-adhered body. More specifically, in the catalyst adhering step, the catalyst raw material solution mist supply device 30 is driven to generate a catalyst raw material solution mist, which is entrained in the mist carrier gas supplied from the mist carrier gas supply unit 21, It is introduced into the vertical container 10 from below. Since the catalyst raw material solution mist flows together with the flowing gas from the lower side to the upper side in the vertical container 10, the catalyst raw material can be uniformly and uniformly attached to the surface of the target particles.
 触媒原料溶液ミスト供給装置30にて生成される触媒原料溶液ミストの体積平均粒子径は、(触媒付着体製造装置)の項目にて好適な態様として説明した態様と同様に、対象粒子の体積平均粒子径の1/10以下であることが好ましく、1/30以下であることがより好ましく、且つ、供給口12の最小幅の1/100以下であることが好ましく、1/300以下であることがより好ましい。また、触媒原料溶液ミストの体積平均粒子径の具体的な値も、同様に、30μm以下であることが好ましく、10μm以下であることがより好ましく、通常、10nm以上、或いは、100nm以上であり得る。 The volume average particle diameter of the catalyst raw material solution mist generated by the catalyst raw material solution mist supply device 30 is the same as that described in the preferred embodiment in the section of (Catalyst adhering body manufacturing device) It is preferably 1/10 or less of the particle diameter, more preferably 1/30 or less, and preferably 1/100 or less of the minimum width of the supply port 12, and 1/300 or less. Is more preferable. Similarly, the specific value of the volume average particle size of the catalyst raw material solution mist is also preferably 30 μm or less, more preferably 10 μm or less, and usually 10 nm or more, or 100 nm or more. .
 ここで、均一且つ効率的な対象粒子表面への触媒原料の付着を実現する観点から、触媒付着工程を実施している間は、対象粒子60を流動状態としておくことが必要である。そして、触媒付着工程を完了した後、触媒原料溶液ミスト供給装置30の駆動を停止した後に、触媒付着済みの粒子(即ち、触媒付着体)を確実に乾燥させる観点から、必要に応じて、しばらくの間、対象粒子60を流動状態としておいても良い。 Here, from the viewpoint of realizing uniform and efficient adhesion of the catalyst raw material to the surface of the target particles, it is necessary to keep the target particles 60 in a fluid state during the catalyst adhesion step. Then, after the catalyst adhering step is completed, after driving of the catalyst raw material solution mist supply device 30 is stopped, from the viewpoint of surely drying the particles (that is, the catalyst adhering material) on which the catalyst has been adhering, for a while, if necessary. During this period, the target particles 60 may be in a fluid state.
 さらに、触媒付着工程の間、加熱装置70を起動して、縦型容器10を好ましくは100℃以上、より好ましくは200℃以上、好ましくは1000℃以下、より好ましくは900℃以下で加熱することがより好ましい。なお、縦型容器10の加熱は、触媒付着工程の前後のタイミングにおいても継続していても良い。また、加熱温度は、用いる触媒原料溶液の種類及び性状、並びに、流動ガス及びミストキャリアガスを供給する際の流量等に応じて、最適化することができる。 Furthermore, during the catalyst adhering step, the heating device 70 is activated to heat the vertical container 10 at preferably 100 ° C. or higher, more preferably 200 ° C. or higher, preferably 1000 ° C. or lower, more preferably 900 ° C. or lower. Is more preferable. The heating of the vertical container 10 may be continued at the timing before and after the catalyst adhering step. The heating temperature can be optimized according to the type and properties of the catalyst raw material solution to be used, the flow rate at the time of supplying the flowing gas and the mist carrier gas, and the like.
 さらにまた、触媒付着工程において、異なる組成の触媒原料溶液より生成したミストを所定時間ずつ、切り替えて縦型容器10に対して供給しても良い。これにより、触媒原料溶液ミストの組成に応じて、組成の相異なる複数の層を、対象粒子表面に形成することができる。かかる複数の層の組み合わせを最適化することで、得られる触媒付着体が呈し得る触媒活性を高めることができる。 Furthermore, in the catalyst adhering step, the mist generated from the catalyst raw material solutions having different compositions may be switched for a predetermined time and supplied to the vertical container 10. Thereby, a plurality of layers having different compositions can be formed on the surface of the target particles according to the composition of the catalyst raw material solution mist. By optimizing the combination of such a plurality of layers, it is possible to enhance the catalytic activity that the obtained catalyst adhering material can exhibit.
<回収工程>
 そして、触媒付着工程を完了した後に、縦型容器10に導入するガスの流量を低下させる、又はゼロとすることで、触媒付着済みの粒子(触媒付着体)を流下させて回収する。触媒付着体の回収を容易にする観点から、触媒付着工程の完了後にも、少しの間、ガス供給装置20を駆動させたままとして、流動工程を継続して、ミストが付着して湿った状態となった主配管43の上部及び供給口12の近傍を乾燥させることが好ましい。
<Recovery process>
Then, after the catalyst adhering step is completed, the flow rate of the gas introduced into the vertical container 10 is reduced or set to zero so that the particles (catalyst adhering body) having the catalyst adhered thereto are flowed down and collected. From the viewpoint of facilitating the recovery of the catalyst adhering material, even after the completion of the catalyst adhering step, the gas supply device 20 is kept driven for a short period of time to continue the flowing step, and the mist adheres to a wet state. It is preferable to dry the upper part of the main pipe 43 and the vicinity of the supply port 12 where
(繊維状炭素ナノ構造体の製造方法)
 本発明の繊維状炭素ナノ構造体の製造方法は、上述した本発明の触媒付着体の製造方法に従って得られた触媒付着体を用いて、繊維状炭素ナノ構造体を製造する。そして、本発明の繊維状炭素ナノ構造体の製造方法は、縦型容器内に炭素原料気体を供給して、触媒付着工程を経て得られた触媒付着体上にて繊維状炭素ナノ構造体を成長させる繊維状炭素ナノ構造体成長工程を含む。
(Method for producing fibrous carbon nanostructure)
In the method for producing a fibrous carbon nanostructure of the present invention, a fibrous carbon nanostructure is produced using the catalyst adhering material obtained according to the above-mentioned method for producing a catalytic adhering material of the present invention. Then, the method for producing a fibrous carbon nanostructure of the present invention is to supply a carbon raw material gas into a vertical container to form a fibrous carbon nanostructure on the catalyst adhering body obtained through the catalyst adhering step. The step of growing fibrous carbon nanostructures is included.
<繊維状炭素ナノ構造体成長工程>
 繊維状炭素ナノ構造体成長工程では、賦活済みの触媒付着体に対して、炭素原料気体を供給して、触媒付着体上にて繊維状炭素ナノ構造体を成長させる。かかる繊維状炭素ナノ構造体成長工程を、触媒付着工程と並行実施しないことが好ましい。触媒付着工程と、繊維状炭素ナノ構造体成長工程とを、時間的に分けて実施することで、得られる繊維状炭素ナノ構造体に、触媒原料が付着して混入することを予防することができる。なお、本工程で用いる賦活済みの触媒付着体を得るための方途、及び炭素原料気体に含まれうる炭素原料としては、(繊維状炭素ナノ構造体製造装置)の項目にて詳述した通りである。また、触媒原料溶液ミストを縦型容器内に導入する供給口に詰まりが生じることを効果的に抑制する観点からは、縦型容器内に触媒原料溶液ミストを供給するための供給口とは異なる供給口から、炭素原料を縦型容器内に供給することが好ましい。
<Fibrous carbon nanostructure growth process>
In the fibrous carbon nanostructure growing step, a carbon source gas is supplied to the activated catalyst deposit to grow the fibrous carbon nanostructure on the catalyst deposit. It is preferable not to carry out the fibrous carbon nanostructure growing step in parallel with the catalyst attaching step. By carrying out the catalyst attachment step and the fibrous carbon nanostructure growing step separately in time, it is possible to prevent the catalyst raw material from adhering and mixing into the obtained fibrous carbon nanostructure. it can. The method for obtaining the activated catalyst deposit used in this step and the carbon raw material that can be contained in the carbon raw material gas are as described in detail in the section of (Fibrous carbon nanostructure production apparatus). is there. Further, from the viewpoint of effectively suppressing clogging of the supply port for introducing the catalyst raw material solution mist into the vertical container, it is different from the supply port for supplying the catalyst raw material solution mist into the vertical container. It is preferable to supply the carbon raw material into the vertical container through the supply port.
 上述した繊維状炭素ナノ構造体製造装置200、200’を用いて、本工程を実施する場合には、縦型容器10内にて繊維状炭素ナノ構造体成長工程を実施することができる。しかしながら、本発明に従う繊維状炭素ナノ構造体の製造方法はこれに限定されるものではなく、別途の反応容器にて、繊維状炭素ナノ構造体成長工程を実施することも勿論可能である。かかる場合には、例えば、既知の装置構成に従う気流層合成器、固定層合成器、移動層合成器、及び流動層合成器等内に触媒付着体を収容して、賦活化、炭素材料気体の供給を経て、繊維状炭素ナノ構造体を合成することができる。 When this step is performed using the above-described fibrous carbon nanostructure manufacturing apparatus 200, 200 ′, the fibrous carbon nanostructure growth step can be performed in the vertical container 10. However, the method for producing the fibrous carbon nanostructure according to the present invention is not limited to this, and it is of course possible to carry out the fibrous carbon nanostructure growth step in a separate reaction vessel. In such a case, for example, by accommodating the catalyst adhering material in an air flow bed synthesizer, a fixed bed synthesizer, a moving bed synthesizer, a fluidized bed synthesizer, or the like according to a known apparatus configuration, activation, carbon material gas Through the supply, the fibrous carbon nanostructure can be synthesized.
 そして、繊維状炭素ナノ構造体成長工程にて得られた繊維状炭素ナノ構造体を表面に有する触媒付着体は、例えば、アルゴン等の希ガスや、窒素等の不活性ガスを一時的に大流量で供給して分離器に移送し、分離器で不活性ガス流から重力沈降、遠心分離、ろ過などにより分離して回収することができる。或いは、第1の供給口、第2の供給口、及び/又は、縦型容器10の下方に設置された回収口より、得られた繊維状炭素ナノ構造体を表面に有する触媒付着体を重力沈降によって縦型容器10から下方に回収しても良い。回収された繊維状炭素ナノ構造体を有する触媒付着体は、特に限定されることなく、例えば、振とうする、液中に投入して撹拌する等の比較的簡易な方法で繊維状炭素ナノ構造体と触媒付着体とに分離することができる。 Then, the catalyst-adhered material having the fibrous carbon nanostructures obtained on the surface in the fibrous carbon nanostructure growth step has a large amount of, for example, a rare gas such as argon or an inert gas such as nitrogen. It can be supplied at a flow rate and transferred to a separator, where it can be separated and recovered from an inert gas stream by gravity settling, centrifugation, filtration or the like. Alternatively, from the first supply port, the second supply port, and / or the recovery port installed below the vertical container 10, the catalyst adhering body having the obtained fibrous carbon nanostructure on the surface is gravity-fed. The sediment may be collected downward from the vertical container 10. The catalyst adhering material having the recovered fibrous carbon nanostructures is not particularly limited, and for example, the fibrous carbon nanostructures can be prepared by a relatively simple method such as shaking or being put into a liquid and stirred. It can be separated into a body and a catalyst-attached body.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples.
 実施例、比較例において、触媒付着の均一性、触媒付着の効率性、触媒付着体を用いてCNTを合成した場合のCNTの成長、及びCNTの収量は以下の方法により評価又は測定した。 In Examples and Comparative Examples, the uniformity of catalyst attachment, the efficiency of catalyst attachment, the growth of CNT when CNTs were synthesized using a catalyst-attached material, and the CNT yield were evaluated or measured by the following methods.
<触媒付着の均一性>
 実施例1-1~1-4、実施例3-1~3-3では、走査型電子顕微鏡(日立ハイテクノロジーズ社製S-4800)を用いて、ランダムに選択した10個の触媒付着体を観察した。これらの触媒付着体表面について触媒の塗り斑が無いことを確認した。このことを、表中、「A」と表記する。
 また、全ての実施例にて、各例で得られた触媒付着体を用いてCNTを合成した後に得られた、CNT付きの触媒付着体10個をランダムに選択し、走査型電子顕微鏡(日立ハイテクノロジーズ社製S-4800)を用いて観察した。観察の結果、触媒付着体表面からCNTが略一様に成長していることを確認し、触媒付着が均一であることを確認した。このことを、表中、「A」と表記する。
<Uniformity of catalyst adhesion>
In Examples 1-1 to 1-4 and Examples 3-1 to 3-3, 10 randomly selected catalyst adhering materials were selected using a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation). I observed. It was confirmed that the surface of these catalyst-adhered bodies had no coating spots of the catalyst. This is described as "A" in the table.
Further, in all of the examples, 10 catalyst adhering bodies with CNTs obtained after synthesizing CNTs using the catalyst adhering bodies obtained in each example were randomly selected, and a scanning electron microscope (Hitachi It was observed using High Technologies S-4800). As a result of the observation, it was confirmed that the CNTs grew substantially uniformly from the surface of the catalyst-adhered body, and it was confirmed that the catalyst adhered was uniform. This is described as "A" in the table.
<触媒付着の効率性>
 上記<触媒付着の均一性>の評価にて観察した、CNT付きの触媒付着体の全てにおいて、CNTが成長していたことをもって、本発明に従う触媒付着体の製造方法を採用した場合に、対象粒子を効率的に触媒付着処理し得た(即ち、縦型容器内の対象粒子に触媒付着処理漏れが無かった)ということを確認した。このことを、表中、「A」と表記する。
<Efficiency of catalyst attachment>
When the method for producing a catalyst adhering material according to the present invention was adopted, it was observed that the CNTs grew in all of the catalyst adhering materials with CNTs observed in the evaluation of <uniformity of catalyst adhesion> above. It was confirmed that the particles could be efficiently subjected to the catalyst adhesion treatment (that is, the target particles in the vertical container had no catalyst adhesion treatment leakage). This is described as "A" in the table.
<カーボンナノチューブの成長>
 全ての実施例にて、各例で得られた触媒付着体を用いてCNTを合成して得られたCNT付きの粒子を、走査型電子顕微鏡(日立ハイテクノロジーズ社製S-4800)を用いて観察した結果を図5~図23に示す。
<Growth of carbon nanotubes>
In all of the examples, the CNT-attached particles obtained by synthesizing CNTs using the catalyst-attached body obtained in each example were analyzed by using a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation). The observed results are shown in FIGS.
<カーボンナノチューブの収量>
 CNTの収量は、CNT合成前の触媒付着体の質量(gBeads)に対する、CNTの合成前後における触媒付着体の質量の差分(mgCNT)の比として算出した。
<Yield of carbon nanotubes>
The CNT yield was calculated as the ratio of the mass difference (mg CNTs ) of the catalyst adhering material before and after the CNT synthesis to the mass of the catalyst adhering material before CNT synthesis (g Beads ).
(実施例1-1)
<触媒付着体の製造>
 図1に示したような概略構成を有する触媒付着体製造装置を用いて、以下の工程に従って触媒付着体を製造し、得られた触媒付着体を用いて固定床にてCNTを合成した。触媒付着体製造装置の下部に設けられた供給口(図1で云うところの、供給口12に相当)は直径4mmの円形であった。
<<準備工程>>
 Alを含有する化合物であるAl(NO33、及び、Feを含有する化合物であるFe(NO33を、イオン交換水に対して溶解させて、触媒原料溶液としての混合水溶液を得た。各化合物の使用量は、それぞれ、混合水溶液中におけるFe濃度が30mM、Al濃度が30mMとなる量とした。
 また、縦型容器の上部に設けられた粒子投入口から、対象粒子としての、体積平均粒子径0.3mmのジルコニア(ZrO2)ビーズ30gを、縦型容器内に収容した。加熱装置の設定温度(加熱温度)を150℃として、縦型容器の加熱を開始した。
<<流動工程>>
 流動ガス供給部を駆動させて、供給口から、縦型容器の下部から上部方向に向かって、流量4.5slmで、流動ガスとしての窒素ガスを供給して、ジルコニアビーズの流動を開始して流動床を形成した。また、アルゴンガスのガス流量が0.5slmとなるように設定して、ミストキャリアガス供給部の運転を開始した。ここで、アルゴンガスは、触媒原料溶液ミスト供給装置を駆動しない状態では、対象粒子を流動させるためのガスとして機能する。
<<触媒付着工程>>
 触媒原料溶液ミスト供給装置を、生成されるミストの体積平均粒子径D50が、1μm以上5μm以下の範囲に入るように設定し、運転を開始した。ミストキャリアガス供給部から供給されてくるミストキャリアガスにより、触媒原料溶液ミストを搬送して、供給口を通じて縦型容器の下部から上部方向に向かって、触媒原料溶液ミストを供給した。10分間にわたり、触媒原料溶液ミスト、ミストキャリアガス、及び流動ガスの供給を継続してから停止し、触媒付着工程を完了した。
<<回収工程>>
 触媒付着工程を完了したタイミング以降に、供給口に接続された主配管(図1の主配管43に相当)に備えられたバルブを開放状態として、回収装置(図1の回収装置80に相当)に触媒付着体を流下させて回収した。
<<繊維状炭素ナノ構造体成長工程>>
 回収工程で回収した触媒付着体を、横型炉を備えたカーボンナノチューブ合成用固定床装置に充填し、CNT合成用固定床装置内を800℃に昇温した状態で、炭素原料としてのアセチレン(C22)を0.3体積%と、水素10体積%と、二酸化炭素0.5体積%と、窒素89.2体積%とを含むガスを1slmで10分間供給して、CNTを合成した。上記に従って各種評価及び測定を行った。結果を表1に示す。
(Example 1-1)
<Production of catalyst adhering material>
A catalyst adhering material manufacturing apparatus having a schematic structure as shown in FIG. 1 was used to manufacture a catalyst adhering material according to the following steps, and the obtained catalyst adhering material was used to synthesize CNT in a fixed bed. The supply port (corresponding to the supply port 12 in FIG. 1) provided in the lower part of the catalyst adhered body manufacturing apparatus was circular with a diameter of 4 mm.
<< Preparation process >>
Al (NO 3 ) 3 that is a compound containing Al and Fe (NO 3 ) 3 that is a compound containing Fe are dissolved in ion-exchanged water to obtain a mixed aqueous solution as a catalyst raw material solution. It was The amount of each compound used was such that the Fe concentration was 30 mM and the Al concentration was 30 mM in the mixed aqueous solution.
Further, 30 g of zirconia (ZrO 2 ) beads having a volume average particle diameter of 0.3 mm as target particles were accommodated in the vertical container from a particle inlet provided on the upper part of the vertical container. The preset temperature (heating temperature) of the heating device was set to 150 ° C., and heating of the vertical container was started.
<< Flow process >>
The fluidized gas supply unit is driven to supply nitrogen gas as a fluidized gas from the lower part of the vertical container to the upper direction at a flow rate of 4.5 slm from the supply port to start the flow of the zirconia beads. A fluidized bed was formed. Further, the gas flow rate of the argon gas was set to 0.5 slm, and the operation of the mist carrier gas supply unit was started. Here, the argon gas functions as a gas for causing the target particles to flow when the catalyst raw material solution mist supply device is not driven.
<< Catalyst attachment step >>
The catalyst raw material solution mist supply device was set so that the volume average particle diameter D50 of the generated mist was in the range of 1 μm or more and 5 μm or less, and the operation was started. The catalyst raw material solution mist was carried by the mist carrier gas supplied from the mist carrier gas supply unit, and the catalyst raw material solution mist was supplied from the lower part of the vertical container to the upper direction through the supply port. The supply of the catalyst raw material solution mist, the mist carrier gas, and the flowing gas was continued for 10 minutes and then stopped, and the catalyst adhesion step was completed.
<< Recovery process >>
After the timing of completing the catalyst adhering process, the valve provided in the main pipe (corresponding to the main pipe 43 in FIG. 1) connected to the supply port is opened, and the recovery device (corresponding to the recovery device 80 in FIG. 1). The catalyst adhering material was allowed to flow down and was collected.
<< Fibrous carbon nanostructure growth process >>
The catalyst deposit collected in the collecting step was filled in a fixed bed apparatus for synthesizing carbon nanotubes equipped with a horizontal furnace, and the temperature inside the fixed bed apparatus for CNT synthesis was raised to 800 ° C. to obtain acetylene (C) as a carbon raw material. 2 H 2 ), 0.3% by volume of hydrogen, 10% by volume of hydrogen, 0.5% by volume of carbon dioxide, and 89.2% by volume of nitrogen were supplied for 10 minutes at 1 slm to synthesize CNT. . Various evaluations and measurements were performed according to the above. The results are shown in Table 1.
(実施例1-2~1-4)
 触媒原料溶液としての混合水溶液におけるFe濃度及びAl濃度、加熱装置の設定温度、窒素ガス(流動ガス)流量、アルゴンガス(ミストキャリアガス)流量、及び/又は、<<触媒付着工程>>の継続時間(担持時間)を、それぞれ表1に示す通りに変更した以外は、実施例1-1と同様にして、触媒付着体を製造し、得られた触媒付着体を用いてCNTを合成した。また、上記に従って各種評価及び測定を行った。結果を表1に示す。
(Examples 1-2 to 1-4)
Fe concentration and Al concentration in mixed aqueous solution as catalyst raw material solution, set temperature of heating device, nitrogen gas (fluid gas) flow rate, argon gas (mist carrier gas) flow rate, and / or continuation of << Catalyst adhesion step >> A catalyst deposit was produced in the same manner as in Example 1-1, except that the times (supporting times) were changed as shown in Table 1, and CNT was synthesized using the obtained catalyst deposit. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 1.
(実施例2-1)
 実施例1-1~1-4で用いた触媒付着体製造装置と同じ構成を有する装置を用いて、以下の工程に従って触媒付着体を製造し、得られた触媒付着体を用いて固定床にてCNTを合成した。
<<準備工程>>
 Alを含有する化合物であるAl(O-i-Pr)3、及び、Feを含有する化合物であるFe(C552を併用した混合エタノール溶液を調製した。各化合物の使用量は、それぞれ、混合エタノール溶液中におけるFe濃度が22.5mM、Al濃度が27.5mMとなる量とした。
 また、縦型容器の上部に設けられた粒子投入口から、対象粒子としての、体積平均粒子径0.3mmのジルコニア(ZrO2)ビーズ30gを、縦型容器内に収容した。加熱装置の設定温度を550℃として、縦型容器の加熱を開始した。
<<流動工程>>
 流動ガス供給部を駆動させて、供給口から、縦型容器の下部から上部方向に向かって、流量1slmで、流動ガスとしての窒素ガスを供給して、ジルコニアビーズの流動を開始して流動床を形成した。また、アルゴンガスのガス流量が4slmとなるように設定して、ミストキャリアガス供給部の運転を開始した。
<<触媒付着工程>>
 触媒原料溶液ミスト供給装置を、生成されるミストの体積平均粒子径D50が、1μm以上5μm以下の範囲に入るように設定し、運転を開始した。ミストキャリアガス供給部から供給されてくるミストキャリアガスにより触媒原料溶液ミストを搬送して、供給口を通じて縦型容器の下部から上部方向に向かって、触媒原料溶液ミストを供給した。30分間にわたり、触媒原料溶液ミスト、ミストキャリアガス、及び流動ガスの供給を継続してから停止し、触媒付着工程を完了した。
<<回収工程>>
 触媒付着工程を完了したタイミング以降に、供給口に接続された主配管に備えられたバルブを開放状態として、回収装置に触媒付着体を流下させて回収した。
<<繊維状炭素ナノ構造体成長工程>>
 回収工程で回収した触媒付着体を、横型炉を備えたカーボンナノチューブ合成用固定床装置に充填し、賦活し、CNT合成用固定床装置内を800℃とした状態で、炭素原料としてのアセチレン(C22)を0.3体積%と、水素10体積%と、二酸化炭素0.5体積%と、窒素89.2体積%とを含むガスを1slmで10分間供給して、CNTを合成した。上記に従って各種評価及び測定を行った。結果を表1に示す。
(Example 2-1)
Using the apparatus having the same structure as the apparatus for producing a catalyst deposit used in Examples 1-1 to 1-4, a catalyst deposit was produced according to the following steps, and the obtained catalyst deposit was used to form a fixed bed. To synthesize CNT.
<< Preparation process >>
A mixed ethanol solution was prepared in which Al (Oi-Pr) 3 which is a compound containing Al and Fe (C 5 H 5 ) 2 which is a compound containing Fe were used in combination. The amount of each compound used was such that the Fe concentration in the mixed ethanol solution was 22.5 mM and the Al concentration was 27.5 mM.
Further, 30 g of zirconia (ZrO 2 ) beads having a volume average particle diameter of 0.3 mm as target particles were accommodated in the vertical container from a particle inlet provided on the upper part of the vertical container. The preset temperature of the heating device was set to 550 ° C., and heating of the vertical container was started.
<< Flow process >>
By driving the fluidized gas supply unit, nitrogen gas as a fluidized gas is supplied from the supply port from the lower part of the vertical container to the upper direction at a flow rate of 1 slm to start the fluidization of zirconia beads to form a fluidized bed. Was formed. Further, the gas flow rate of the argon gas was set to 4 slm, and the operation of the mist carrier gas supply unit was started.
<< Catalyst attachment step >>
The catalyst raw material solution mist supply device was set so that the volume average particle diameter D50 of the generated mist was in the range of 1 μm or more and 5 μm or less, and the operation was started. The catalyst raw material solution mist was carried by the mist carrier gas supplied from the mist carrier gas supply unit, and the catalyst raw material solution mist was supplied from the lower part of the vertical container to the upper direction through the supply port. The supply of the catalyst raw material solution mist, the mist carrier gas, and the flowing gas was continued for 30 minutes and then stopped, and the catalyst adhesion step was completed.
<< Recovery process >>
After the timing of completing the catalyst adhering step, the valve attached to the main pipe connected to the supply port was opened, and the catalyst adhering body was made to flow down to the collecting device to be collected.
<< Fibrous carbon nanostructure growth process >>
The catalyst deposit collected in the collecting step was charged into a fixed bed apparatus for synthesizing carbon nanotubes equipped with a horizontal furnace and activated, and acetylene as a carbon raw material ( A gas containing 0.3% by volume of C 2 H 2 ), 10% by volume of hydrogen, 0.5% by volume of carbon dioxide, and 89.2% by volume of nitrogen was supplied at 1 slm for 10 minutes to synthesize CNT. did. Various evaluations and measurements were performed according to the above. The results are shown in Table 1.
(実施例2-2~2-4)
 加熱装置の設定温度を、それぞれ表1に示す通りに変更した以外は、実施例2-1と同様にして、触媒付着体を製造し、得られた触媒付着体を用いてCNTを合成した。また、上記に従って各種評価及び測定を行った。結果を表1に示す。
(Examples 2-2 to 2-4)
A catalyst deposit was produced in the same manner as in Example 2-1 except that the set temperatures of the heating devices were changed as shown in Table 1, and CNT was synthesized using the obtained catalyst deposit. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 1.
(実施例3-1~3-3)
 触媒原料溶液としての混合水溶液におけるFe濃度及びAl濃度、加熱装置の設定温度、窒素ガス(流動ガス)流量、アルゴンガス(ミストキャリアガス)流量、及び/又は、<<触媒付着工程>>の継続時間(担持時間)を、それぞれ表1に示す通りに変更した以外は、実施例1-1と同様にして、触媒付着体を製造した。得られた触媒付着体を用いて、流動床にてCNTを合成した。流動床装置の縦型容器内に、触媒付着体を充填し、賦活し、縦型容器内を800℃とした状態で、炭素原料としてのアセチレン(C22)を1体積%と、水素10体積%と、二酸化炭素1体積%と、窒素88体積%とを含むガスを8.9slmで20分間供給して、CNTを合成した。上記に従って各種評価及び測定を行った。結果を表1に示す。
(Examples 3-1 to 3-3)
Fe concentration and Al concentration in mixed aqueous solution as catalyst raw material solution, set temperature of heating device, nitrogen gas (fluid gas) flow rate, argon gas (mist carrier gas) flow rate, and / or continuation of << Catalyst adhesion step >> A catalyst-adhered material was produced in the same manner as in Example 1-1, except that the time (supporting time) was changed as shown in Table 1. The obtained catalyst-adhered material was used to synthesize CNT in a fluidized bed. In a vertical vessel of a fluidized bed apparatus, a catalyst adhering material was filled and activated, and the interior of the vertical vessel was kept at 800 ° C., and 1% by volume of acetylene (C 2 H 2 ) as a carbon raw material and hydrogen were added. A gas containing 10% by volume, 1% by volume of carbon dioxide, and 88% by volume of nitrogen was supplied at 8.9 slm for 20 minutes to synthesize CNT. Various evaluations and measurements were performed according to the above. The results are shown in Table 1.
(実施例4-1)
 混合エタノール溶液におけるFe濃度、及び、Al濃度がそれぞれ表1に示す通りとなるように各化合物の配合量を変更し、さらに、加熱装置の設定温度を表1に示す通りに変更した以外は、実施例2-1と同様にして、触媒付着体を製造し、CNTを合成した。また、上記に従って各種評価及び測定を行った。結果を表1に示す。
(Example 4-1)
Other than changing the compounding amounts of the respective compounds so that the Fe concentration and the Al concentration in the mixed ethanol solution are as shown in Table 1, and further changing the set temperature of the heating device as shown in Table 1, In the same manner as in Example 2-1, a catalyst-adhered body was produced and CNT was synthesized. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 1.
(実施例5-1~5-3)
 実施例1-1等で用いた触媒付着体製造装置と同じ構成を有する装置を用いて、以下の工程に従って触媒付着体を製造し、得られた触媒付着体を用いて流動床にてCNTを合成した。より具体的には、<<触媒付着工程>>において、触媒原料溶液として、表2に示すような組成の相異なる2種類の溶液を用い、表2に示す所定時間ずつ、これらの溶液より成るミストを切り替えて縦型容器に対して供給して、触媒付着体を得た。得られた触媒付着体は、対象粒子表面上に、Fe及びAlを含む層、並びに、Feを含む層がこの順に形成されてなるものであった。なお、各層の厚みは、各溶液のミストの供給時間に応じた厚みであった。そして、かかる触媒付着体を用いて、実施例3-1~3-3と同様の条件に従ってCNTを合成した。また、上記に従って各種評価及び測定を行った。結果を表2に示す。
(Examples 5-1 to 5-3)
Using the apparatus having the same structure as the apparatus for producing a catalyst adhering material used in Example 1-1 and the like, a catalyst adhering material was manufactured according to the following steps, and the obtained catalyst adhering material was used to produce CNT in a fluidized bed. Synthesized. More specifically, in << Catalyst Adhesion Step >>, two kinds of solutions having different compositions as shown in Table 2 are used as the catalyst raw material solution, and these solutions are formed at predetermined time intervals shown in Table 2. The mist was switched and supplied to a vertical container to obtain a catalyst adhering material. The obtained catalyst-adhered body had a layer containing Fe and Al and a layer containing Fe formed in this order on the surface of the target particle. The thickness of each layer was a thickness according to the supply time of the mist of each solution. Then, using the catalyst-adhered material, CNTs were synthesized under the same conditions as in Examples 3-1 to 3-3. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 2.
(実施例6-1~6-3)
 <<触媒付着工程>>において、触媒原料溶液として、表2に示すような、2種類の溶液であって、Fe濃度、及び、Al濃度がそれぞれ表2に示す通りである溶液を用いた以外は、実施例5-2と同様の条件に従って触媒付着体を得た。そして、得られた触媒付着体を用いて、実施例3-1~3-3と同様の条件に従ってCNTを合成した。また、上記に従って各種評価及び測定を行った。結果を表2に示す。
(Examples 6-1 to 6-3)
In << Catalyst Adhesion Step >>, as the catalyst raw material solution, two kinds of solutions as shown in Table 2 were used except that Fe concentration and Al concentration were as shown in Table 2, respectively. A catalyst-adhered material was obtained according to the same conditions as in Example 5-2. Then, using the obtained catalyst-adhered material, CNT was synthesized under the same conditions as in Examples 3-1 to 3-3. Further, various evaluations and measurements were performed according to the above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、流動状態とした対象粒子に対して、縦型容器の下部方向から上部方向に向かって触媒原料溶液ミストを供給する触媒付着工程を含む本発明の触媒付着体の製造方法によれば、効率的且つ均一に触媒原料を対象粒子の表面に付着させることができたことが分かる。
 また、例えば、実施例1-1~1-4の結果(表及び図)より、触媒原料溶液として、無機金属塩の水溶液を用いた場合には、実施した窒素ガス及びアルゴンガスの流量の条件下では、加熱装置の設定温度を200℃以上400℃以下とすることが好ましいことが分かる。その理由は明らかではないが、かかる条件を採用することで、ミストが対象粒子の表面に到達するタイミングとミストの乾燥速度とを良好にバランスすることができることに起因すると考えられる。
 また、例えば、実施例2-1~2-4(表及び図)のように、触媒原料溶液として、有機金属エタノール溶液を用いた場合には、実施した窒素ガス及びアルゴンガスの流量の条件下では、加熱装置の設定温度を600℃以上850℃以下とすることが好ましいことが分かる。その理由は明らかではないが、比較的高温の雰囲気にて有機金属エタノール溶液に由来する触媒原料溶液ミストを乾燥させて有機金属を熱分解させることで、対象粒子の表面に触媒成分を良好に付着させることができるためであると考えられる。
 さらにまた、例えば、実施例3-1~3-3及び実施例4-1より、種々の条件で対象粒子の表面に触媒成分を良好に付着させることができ、更に、得られた触媒付着体を用いて、CNTを良好に合成できたことが分かる。
 そして、例えば実施例5-1~5-3、及び実施例6-1~6-4より、触媒付着工程において複数種類の触媒原料溶液ミストを用いることによっても対象粒子の表面に触媒成分を良好に付着させることができ、更に、得られた触媒付着体を用いて、CNTを良好に合成できたことが分かる。
As shown in Table 1, the method for producing a catalyst adhering material of the present invention, which includes a catalyst adhering step of supplying a catalyst raw material solution mist from the lower direction to the upper direction of a vertical container for target particles in a fluidized state. According to the results, it was found that the catalyst raw material could be efficiently and uniformly attached to the surface of the target particles.
Further, for example, from the results of Examples 1-1 to 1-4 (Tables and Figures), when the aqueous solution of the inorganic metal salt was used as the catalyst raw material solution, the conditions of the flow rates of the nitrogen gas and the argon gas were Below, it can be seen that it is preferable to set the set temperature of the heating device to 200 ° C. or higher and 400 ° C. or lower. Although the reason is not clear, it is considered that by adopting such a condition, the timing at which the mist reaches the surface of the target particles and the drying speed of the mist can be well balanced.
Further, for example, when an organometallic ethanol solution is used as the catalyst raw material solution as in Examples 2-1 to 2-4 (tables and figures), the nitrogen gas and argon gas flow rate conditions are Then, it is understood that it is preferable to set the set temperature of the heating device to 600 ° C. or higher and 850 ° C. or lower. Although the reason for this is not clear, by drying the catalyst raw material solution mist derived from the organometallic ethanol solution in a relatively high temperature atmosphere to thermally decompose the organometal, the catalyst component is well adhered to the surface of the target particle. It is thought that this is because it can be done.
Furthermore, for example, from Examples 3-1 to 3-3 and Example 4-1, the catalyst component can be favorably adhered to the surface of the target particle under various conditions, and the obtained catalyst adhering material It can be seen that CNT could be satisfactorily synthesized by using.
Further, for example, according to Examples 5-1 to 5-3 and Examples 6-1 to 6-4, by using a plurality of kinds of catalyst raw material solution mists in the catalyst adhering step, the catalyst component is satisfactorily provided on the surface of the target particles. It can be seen that CNT could be favorably synthesized by using the obtained catalyst-adhered body.
 本発明によれば、対象粒子の表面に対して、効率的且つ均一に触媒原料を付着させることができる、触媒付着体の製造方法及びかかる製造方法に従って得られた触媒付着体を用いた繊維状炭素ナノ構造体の製造方法を提供することができる。
 また、本発明によれば、上記本発明の触媒付着体の製造方法を好適に実施することができる触媒付着体製造装置を提供することができる。
 そして、本発明によれば、上記本発明の繊維状炭素ナノ構造体の製造方法を好適に実施することができる繊維状炭素ナノ構造体製造装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the catalyst raw material which can adhere a catalyst raw material to the surface of object particle | grains efficiently and uniformly, and the fibrous shape using the catalyst adhering body obtained according to such a manufacturing method. A method for producing a carbon nanostructure can be provided.
Further, according to the present invention, it is possible to provide a catalyst adhered body manufacturing apparatus capable of suitably carrying out the above-described catalyst adhered body manufacturing method of the present invention.
Further, according to the present invention, it is possible to provide a fibrous carbon nanostructure manufacturing apparatus capable of suitably carrying out the above-described fibrous carbon nanostructure manufacturing method of the present invention.
10、10’    縦型容器
11        排気口
12        供給口
13        粒子投入口
14        第1供給口
15        第2供給口
20        ガス供給装置
21        ミストキャリアガス供給部
22、22’    流動ガス供給部
30        触媒原料溶液ミスト供給装置
31        ミスト生成室
32        振動子
33        振動制御部
34        触媒原料溶液
35        触媒原料溶液ミスト
41        キャリアガス配管
42        ミスト含有ガス配管
43        主配管
44、44’    流動ガス配管
45        炭素原料供給配管
46        ミスト含有ガス配管接続口
47        流動ガス配管接続口
51~54、54’ バルブ
60        対象粒子
70        加熱装置
80        回収装置
90、90’    炭素原料気体供給装置
100、100’  触媒付着体製造装置
200、200’  繊維状炭素ナノ構造体製造装置
10, 10 'Vertical container 11 Exhaust port 12 Supply port 13 Particle input port 14 First supply port 15 Second supply port 20 Gas supply device 21 Mist carrier gas supply section 22, 22' Fluid gas supply section 30 Catalyst raw material solution mist Supply device 31 Mist generation chamber 32 Oscillator 33 Vibration control unit 34 Catalyst raw material solution 35 Catalyst raw material solution mist 41 Carrier gas pipe 42 Mist-containing gas pipe 43 Main pipes 44, 44 'Flowing gas pipe 45 Carbon raw material supply pipe 46 Mist-containing gas Pipe connection port 47 Flowing gas pipe connection ports 51 to 54, 54 'Valve 60 Target particle 70 Heating device 80 Recovery device 90, 90' Carbon raw material gas supply device 100, 100 'Catalyst adhering substance manufacturing device 200, 20 'Fibrous carbon nanostructure manufacturing apparatus

Claims (12)

  1.  縦型容器を用いて対象粒子に対して触媒原料を付着させる触媒付着体の製造方法であって、
     前記縦型容器の下部に配置された第1供給口から、前記縦型容器の上部方向に向かって少なくとも一種のガスを供給して、前記縦型容器内の対象粒子を流動させる流動工程と、
     前記縦型容器の下部に配置された第2供給口から、前記縦型容器の前記上部方向に向かって、触媒原料溶液ミストを供給して、前記対象粒子に対して前記触媒原料を付着させて触媒付着体を得る触媒付着工程と、
    を含み、
     前記触媒付着工程を実施している間は、前記流動工程を継続する、
     触媒付着体の製造方法。
    A method for producing a catalyst-adhered body, in which a catalyst raw material is adhered to target particles using a vertical container,
    From the first supply port arranged in the lower part of the vertical container, at least one kind of gas is supplied toward the upper part of the vertical container, and a flow step of flowing target particles in the vertical container,
    From the second supply port arranged in the lower part of the vertical container, toward the upper part of the vertical container, a catalyst raw material solution mist is supplied to attach the catalyst raw material to the target particles. A catalyst adhering step for obtaining a catalyst adhering body,
    Including,
    While performing the catalyst adhesion step, continue the flow step,
    A method for producing a catalyst-adhered body.
  2.  前記第1供給口及び前記第2供給口が、同一の供給口であり、前記ガス及び前記触媒原料溶液ミストが、同一の供給口を通じて、前記縦型容器内に導入される、
     請求項1に記載の触媒付着体の製造方法。
    The first supply port and the second supply port are the same supply port, and the gas and the catalyst raw material solution mist are introduced into the vertical container through the same supply port.
    The method for producing a catalyst-adhered body according to claim 1.
  3.  前記触媒付着工程にて、前記縦型容器を100℃以上1000℃以下で加熱することを含む、請求項1又は2に記載の触媒付着体の製造方法。 The method for producing a catalyst deposit according to claim 1 or 2, which comprises heating the vertical container at 100 ° C or higher and 1000 ° C or lower in the catalyst attachment step.
  4.  前記対象粒子の体積平均粒子径が0.1mm以上1mm以下、
     前記触媒原料溶液ミストの体積平均粒子径が前記対象粒子の体積平均粒子径の1/10以下、且つ、
     前記第2供給口の最小幅が、前記触媒原料溶液ミストの体積平均粒子径の100倍以上である、
     請求項1~3の何れかに記載の触媒付着体の製造方法。
    The volume average particle diameter of the target particles is 0.1 mm or more and 1 mm or less,
    The volume average particle diameter of the catalyst raw material solution mist is 1/10 or less of the volume average particle diameter of the target particles, and
    The minimum width of the second supply port is 100 times or more the volume average particle diameter of the catalyst raw material solution mist,
    The method for producing a catalyst-adhered body according to any one of claims 1 to 3.
  5.  請求項1~4の何れかに記載の触媒付着体の製造方法に従って得られた触媒付着体を用いた、繊維状炭素ナノ構造体の製造方法であって、
     前記縦型容器内に炭素原料気体を供給して、前記触媒付着工程を経て得られた前記触媒付着体上にて繊維状炭素ナノ構造体を成長させる繊維状炭素ナノ構造体成長工程を含む、
     繊維状炭素ナノ構造体の製造方法。
    A method for producing a fibrous carbon nanostructure, which uses the catalyst-adhesive body obtained according to the method for producing a catalyst-adhesive body according to any one of claims 1 to 4,
    Supplying a carbon source gas into the vertical container, including a fibrous carbon nanostructure growing step of growing a fibrous carbon nanostructure on the catalyst adhering body obtained through the catalyst adhering step,
    Method for producing fibrous carbon nanostructure.
  6.  前記炭素原料気体を、前記第2供給口とは異なる供給口を通じて、前記縦型容器内に供給する、請求項5に記載の、繊維状炭素ナノ構造体の製造方法。 The method for producing a fibrous carbon nanostructure according to claim 5, wherein the carbon raw material gas is supplied into the vertical container through a supply port different from the second supply port.
  7.  前記触媒付着工程と、前記繊維状炭素ナノ構造体成長工程とを並行実施しない、請求項6に記載の、繊維状炭素ナノ構造体の製造方法。 The method for producing a fibrous carbon nanostructure according to claim 6, wherein the catalyst attaching step and the fibrous carbon nanostructure growing step are not performed in parallel.
  8.  対象粒子に対して触媒原料を付着させて触媒付着体を得る触媒付着体製造装置であって、該触媒付着体製造装置は、
     上部に排気口を有するとともに、下部に第1供給口及び第2供給口を有する、縦型容器と、
     前記第1供給口を介して、前記縦型容器と連通するように配置され、前記縦型容器の上部方向に向かって、前記対象粒子を流動させるための少なくとも一種のガスを供給する、ガス供給装置と、
     前記第2供給口を介して、前記縦型容器と連通するように配置された、触媒原料溶液ミスト供給装置と、
    を備える、触媒付着体製造装置。
    A catalyst adhering body manufacturing apparatus for obtaining a catalyst adhering body by adhering a catalyst raw material to target particles, the catalyst adhering body manufacturing apparatus comprising:
    A vertical container having an exhaust port in the upper part and a first supply port and a second supply port in the lower part,
    Gas supply, which is arranged so as to communicate with the vertical container via the first supply port, and supplies at least one gas for flowing the target particles toward the upper direction of the vertical container. Device,
    A catalyst raw material solution mist supply device arranged so as to communicate with the vertical container via the second supply port;
    An apparatus for producing a catalyst deposit, comprising:
  9.  前記第1供給口及び前記第2供給口が、同一の供給口である、請求項8に記載の触媒付着体製造装置。 The apparatus for producing a catalyst-adhered body according to claim 8, wherein the first supply port and the second supply port are the same supply port.
  10.  前記第2供給口の最小幅が、3mm以上である、請求項8又は9に記載の触媒付着体製造装置。 The apparatus for producing a catalyst deposit according to claim 8 or 9, wherein the minimum width of the second supply port is 3 mm or more.
  11.  前記縦型容器内に炭素原料気体を供給する炭素原料気体供給装置を備える、
     請求項8~10の何れかに記載された触媒付着体製造装置を含む、繊維状炭素ナノ構造体製造装置。
    A carbon source gas supply device for supplying a carbon source gas into the vertical container,
    An apparatus for producing a fibrous carbon nanostructure, including the apparatus for producing a catalyst-adhered body according to any one of claims 8 to 10.
  12.  前記炭素原料気体供給装置は、前記縦型容器に対して、前記第2供給口以外の供給口を介して接続される、請求項11に記載の繊維状炭素ナノ構造体製造装置。 The fibrous carbon nanostructure manufacturing apparatus according to claim 11, wherein the carbon source gas supply device is connected to the vertical container via a supply port other than the second supply port.
PCT/JP2019/040739 2018-10-25 2019-10-16 Method and apparatus for producing catalyst-adhered body, and method and apparatus for producing fibrous carbon nanostructure WO2020085170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553253A JPWO2020085170A1 (en) 2018-10-25 2019-10-16 Manufacturing method and manufacturing equipment for catalyst adhering materials, and manufacturing method and manufacturing equipment for fibrous carbon nanostructures.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-201217 2018-10-25
JP2018201217 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020085170A1 true WO2020085170A1 (en) 2020-04-30

Family

ID=70331983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040739 WO2020085170A1 (en) 2018-10-25 2019-10-16 Method and apparatus for producing catalyst-adhered body, and method and apparatus for producing fibrous carbon nanostructure

Country Status (2)

Country Link
JP (1) JPWO2020085170A1 (en)
WO (1) WO2020085170A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502446A (en) * 2001-03-30 2005-01-27 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Novel catalyst formulations and their preparation
JP2007506540A (en) * 2003-09-26 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト Apparatus for mixing, drying and coating powdered, granular or shaped bulk material in a fluidized bed and method for producing a supported catalyst using said apparatus
JP2010527777A (en) * 2007-05-31 2010-08-19 ズード−ケミー アーゲー Method for producing shell catalyst and shell catalyst
JP2015151277A (en) * 2014-02-10 2015-08-24 保土谷化学工業株式会社 Production method of gas phase method fine carbon fiber
JP2017186228A (en) * 2016-03-15 2017-10-12 本田技研工業株式会社 System and method for manufacturing composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502446A (en) * 2001-03-30 2005-01-27 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Novel catalyst formulations and their preparation
JP2007506540A (en) * 2003-09-26 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト Apparatus for mixing, drying and coating powdered, granular or shaped bulk material in a fluidized bed and method for producing a supported catalyst using said apparatus
JP2010527777A (en) * 2007-05-31 2010-08-19 ズード−ケミー アーゲー Method for producing shell catalyst and shell catalyst
JP2015151277A (en) * 2014-02-10 2015-08-24 保土谷化学工業株式会社 Production method of gas phase method fine carbon fiber
JP2017186228A (en) * 2016-03-15 2017-10-12 本田技研工業株式会社 System and method for manufacturing composite

Also Published As

Publication number Publication date
JPWO2020085170A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
TWI640649B (en) Cvd system with particle separator
EP1390294B1 (en) Synthesis of nanoscaled carbon materials
JP5081453B2 (en) Method
JP2006136878A (en) Method and apparatus for producing filter medium of nano-filter
JPS58180615A (en) Preparation of carbon fiber by vapor phase method
JP2009161426A (en) Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP7109015B2 (en) Catalyst for hydrogen reduction of carbon dioxide, method for producing the same, method for hydrogen reduction of carbon dioxide, and apparatus for hydrogen reduction of carbon dioxide
JP2021175707A (en) System and method for manufacturing composite
JP2021175705A (en) System and method of producing composite product
WO2021172077A1 (en) Manufacturing method for carbon nanotube aggregates
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
US7670431B2 (en) Carbon nanotube manufacturing apparatus and method, and gas decomposer for use in the manufacturing apparatus and method
Wang et al. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization
WO2020085170A1 (en) Method and apparatus for producing catalyst-adhered body, and method and apparatus for producing fibrous carbon nanostructure
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JP7149524B2 (en) Catalyst-adhered body manufacturing method and catalyst-adhering device
JP2007153694A (en) Method and apparatus for producing carbon nanotube
JP6875705B2 (en) Particle processing device and method for producing catalyst carrier and / or fibrous carbon nanostructure
CN111094178B (en) Method for producing carbon nanotubes attached to substrate
WO2010035439A1 (en) Process and apparatus for producing carbon nanocoil
JP6755029B2 (en) Fibrous carbon nanostructure manufacturing equipment and fibrous carbon nanostructure manufacturing method
JP2004339029A (en) Method and apparatus for producing silicon carbide single crystal
WO2021060419A1 (en) Production method of catalyst support and production method of fibrous carbon nanostructure
JP2004244252A (en) Carbon nanotube assembly and method of manufacturing the same
WO2022190776A1 (en) Method and device for producing carbon nanotube aggregate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876444

Country of ref document: EP

Kind code of ref document: A1