WO2020083261A1 - 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法 - Google Patents

一种用革兰氏阴性细菌感染快速检测脓毒病的新方法 Download PDF

Info

Publication number
WO2020083261A1
WO2020083261A1 PCT/CN2019/112374 CN2019112374W WO2020083261A1 WO 2020083261 A1 WO2020083261 A1 WO 2020083261A1 CN 2019112374 W CN2019112374 W CN 2019112374W WO 2020083261 A1 WO2020083261 A1 WO 2020083261A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic
lps
blood
gnb
limulus
Prior art date
Application number
PCT/CN2019/112374
Other languages
English (en)
French (fr)
Inventor
吴海苹
吴尚毅
周燕英
Original Assignee
厦门鲎试剂生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门鲎试剂生物科技股份有限公司 filed Critical 厦门鲎试剂生物科技股份有限公司
Priority to CN201980069612.7A priority Critical patent/CN113302494B/zh
Publication of WO2020083261A1 publication Critical patent/WO2020083261A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/50Lipopolysaccharides; LPS

Definitions

  • the present invention relates to the medical field, and more specifically to a method for quickly detecting sepsis with Gram-negative bacterial infection.
  • Sepsis is the most dangerous situation and requires dedicated treatment immediately, because every hour delay will increase the mortality rate by 5-10%, resulting in up to -30% deaths.
  • the high incidence of sepsis is mainly related to the end stages of trauma, infection, dysfunction of major organs and many diseases such as cancer and aging. Rapid detection of pathogens invaded by the system is essential for saving lives.
  • blood culture is still the gold standard for the diagnosis of sepsis. It uses the metabolites accumulated to a certain level to trigger a positive reporter gene with the BD BACTEC system. For ⁇ 50% of sepsis patients, this takes about 16-24 hours, and for the remaining patients, it takes about> 24 hours, which is too long for rapid treatment decisions. In addition, not all GNB in the blood can be detected by the BD BACTEC system.
  • the object of the present invention is to provide a new method for sensitive LPS detection that not only helps early diagnosis of GNB sepsis but also helps to monitor the therapeutic effect.
  • a method for detecting endotoxin produced by gram-negative bacteria (GNB) in the blood of sepsis patients comprising: blood culture, dynamic sampling, dilution, heating, spin (spin ), Further diluted, and measured with the dynamic turbidity TAL measurement (KT-TALA) system and the limulus deformed cell lysate (TAL or LAL), the dynamic turbidity TAL measurement (KT-TALA) system includes:
  • the method includes blood culture, dynamic sampling, dilution, heating, rotation or spin, further dilution, and using a dynamic endotoxin determination system (K-LPS-A) and limulus amoeba lysate (TAL or LAL), the dynamic endotoxin measurement system (K-LPS-A) includes:
  • the lysate of horseshoe crab deformed cells includes the horseshoe crab reagent TAL or the horseshoe crab reagent LAL.
  • component (C) is a dynamic incubation reader for dynamic turbidity, dynamic color development, or endpoint color development.
  • the subjects are humans and animals.
  • test target is endotoxin lipopolysaccharide (LPS) produced in the blood by Gram-negative bacteria (GNB).
  • LPS endotoxin lipopolysaccharide
  • test reagent is lysate of horseshoe crab deformable cells, TAL.
  • test reagent is Limulus ammophilus lysate, LAL.
  • the method includes dynamic sampling and dynamic reading.
  • the dynamic sampling is every 1-2 hours.
  • the dynamic turbidity reading is used in the gelation process of LPS-targeted TAL.
  • the dynamic reading is a dynamic turbidity method based on the gelation process of LPS-targeted limulus deformed cell lysate (TAL or LAL).
  • the dynamic reading is a dynamic color development method based on the color reaction of the color development substrate added during the gelation of the LPS-targeted limulus deformed cell lysate (TAL or LAL).
  • the dynamic reading is based on the end-point color development method of the color development reaction of the color development substrate added during the gelation process of the LPS-targeted limulus deformed cell lysate (TAL or LAL).
  • the entire process for blood culture, sampling and testing is fully automated by the device.
  • it can be used in all fields related to LPS detection.
  • a detection system including:
  • the detection system includes:
  • a use of the detection system according to the second aspect of the present invention for preparing a reagent for detecting endotoxin (LPS) produced by Gram-negative bacteria (GNB) in the blood of sepsis patients Or kit.
  • LPS endotoxin
  • GNB Gram-negative bacteria
  • the reagent or kit is also used to detect endotoxin lipopolysaccharide produced by Gram-negative bacteria (GNB) in the blood of sepsis patients.
  • GNB Gram-negative bacteria
  • the measurement includes a qualitative measurement (that is, determining whether Gram-negative bacteria (GNB) in the blood produce endotoxin), or a quantitative measurement (giving Gram in the blood Quantification of endotoxin production by negative bacteria (GNB)).
  • a qualitative measurement that is, determining whether Gram-negative bacteria (GNB) in the blood produce endotoxin
  • a quantitative measurement giving Gram in the blood Quantification of endotoxin production by negative bacteria (GNB)
  • step (b) n times of dynamic sampling are performed, n is a positive integer of 4-50, preferably n is 5-30, more preferably n is 6-20.
  • the time interval between every two dynamic samples is 0.25-3 hours, preferably 0.5-2 hours, such as every 20 minutes, 30 minutes, 45 minutes, or 1 hour.
  • step (b) the dynamic sampling includes: diluting, heating, spinning, and further diluting the culture taken out.
  • step (b) in the dynamic reading, the endotoxin dynamic detection method is used for detection and reading.
  • the dynamic detection is selected from the group consisting of dynamic turbidity method, dynamic color development method, end color development method, or a combination thereof.
  • the dilution is 2-50 times dilution, preferably 5-20 times dilution.
  • the heating is from 50 ° C to boiling temperature, preferably 60-100 ° C, more preferably 70-100 ° C.
  • the heating treatment time is 1-25 minutes, preferably 2-20 minutes, more preferably 3-15 minutes.
  • centrifugation is to centrifuge to take out the precipitate (including solid matter generated by heat treatment), and take the supernatant.
  • the further dilution is a 2-10 fold dilution, preferably a 3-8 fold dilution.
  • the method is non-diagnostic and non-therapeutic.
  • the method is an in vitro method.
  • Figure 1 shows the new steps of LPS detection in blood suspected of having GNB infection.
  • Figure 2 shows the comparison of the results with the LPS standard curve to determine whether LPS GGN in suspected blood increases over time.
  • the present invention uses a dynamic detection system based on the Limulus reagent (such as the K-LPS-A system) to detect GNB in vitro.
  • the method and system of the present invention can greatly shorten the detection time.
  • the method of the present invention it only takes 9 hours to detect GNB, which is several hours earlier than the traditional BD BACTEC system to more than ten hours.
  • the method of the present invention has very high sensitivity. On this basis, the inventor has completed the present invention.
  • spin spin and centrifugation are used interchangeably, and refer to centrifugal operation by rotation of the centrifuge.
  • the terms "special limulus amebocyte lysate reagent”, “limulus amebocyte lysate”, “limulus reagent” are used interchangeably, and refer to a reagent for detecting endotoxin from limulus, and representative examples include ( But not limited to): Limulus reagent TAL or Limulus reagent LAL.
  • a limulus reagent with a sensitivity of 0.2-1.0 Eu / ml, preferably 0.25-0.5 Eu / ml can be used.
  • Limulus reagent is the preferred reagent for detecting endotoxin.
  • TAL Tachypleus Amoebocyte Lysate
  • LAL Limulus Amebocyte Lysate
  • GNB Gram-negative bacteria
  • blood samples from GNB sepsis are cultured in nutrient-rich substances for a short period of time (a few hours) at an appropriate temperature (such as 37 ⁇ 2 ° C), at intervals (such as about 20 minutes)
  • an appropriate temperature such as 37 ⁇ 2 ° C
  • the amount of GNB is rapidly doubling, thereby producing / releasing a large amount of endotoxin (such as LPS).
  • the endotoxin produced can be easily detected by the K-LPS-A method, and is much earlier than the BD BACTEC system blood culture report as LPS + GNB + sepsis.
  • the Limulus reagent prepared from the amoebic cells of Limulus polyphemus is the most sensitive reagent for detecting LPS of GNB.
  • the mechanism of action of the Limulus reagent is that endotoxin activates serine protease C, then activates serine protease B, and triggers the coagulation cascade and forms a gel, which can be dynamically recorded with a dynamic incubation reader.
  • this sensitive detection method has been widely used to detect endotoxins in different biological samples, such as blood, urine, ascites, pleural effusion, cerebrospinal fluid, bronchoalveolar lavage fluid, air, and water.
  • biological samples such as blood, urine, ascites, pleural effusion, cerebrospinal fluid, bronchoalveolar lavage fluid, air, and water.
  • the detection based on the Limulus test of the present invention is more sensitive and reliable.
  • representative limulus reagent-based dynamic endotoxin determination methods include (but are not limited to): dynamic turbidity method, dynamic color development method, endpoint color development method, or a combination thereof.
  • Dynamic turbidity method, dynamic color development method, and endpoint color development method are all methods for quantitative detection of LPS.
  • the dynamic turbidity method is a method for determining the content of LPS by detecting the change in turbidity during the reaction between the Limulus reagent and LPS.
  • Both the dynamic color development method and the end color development method belong to the color development matrix method.
  • the chromogenic matrix method is a method for determining the content of LPS by using the chromophore released by the coagulase produced during the reaction of the Limulus reagent with LPS to develop a specific substrate.
  • K-LPS-A dynamic endotoxin determination system
  • the detection method based on the dynamic turbidity method may use a dynamic turbidity TAL measurement system (KT-TALA).
  • KT-TALA dynamic turbidity TAL measurement system
  • the detected value can be compared with a standard value or a standard curve.
  • a preferred method is to compare with a standard curve.
  • the formula of the standard curve may be the formula Q1:
  • reaction time starting time, such as s, min or hr
  • X endotoxin concentration (eg EU / ml)
  • A is -0.279
  • B is 5.95
  • R 2 correlation efficiency
  • the method of the present invention can greatly shorten the time for diagnosing GNB and facilitate early diagnosis of GNB sepsis.
  • the method of the present invention has very high sensitivity to prevent missed detection.
  • the detection system adopted by the present invention can greatly shorten the detection time, that is, the detection of GNB only takes 9 hours, and the detection of GNB sepsis is about 20 hours earlier than the traditional BD BACTEC system, so as to treat as soon as possible Win precious time.
  • a new procedure is used to detect LPS in blood suspected of having GNB infection. Briefly, 3-5ml of blood is added to the culture flask. After 2 hours, 0.5ml samples were taken every hour for LPS dynamic testing. Prior to the quantitative measurement of LPS using a dynamic turbidity (KT-TALA) system or other dynamic endotoxin measurement system (K-LPS-A), the sample is diluted, heated, rotated (centrifuged) and diluted again.
  • KT-TALA dynamic turbidity
  • K-LPS-A dynamic endotoxin measurement system
  • the lyophilized endotoxin standard stock solution was reconstituted with endotoxin-free water, diluted to a final concentration of 50, 10, 1, 0.1, 0.01, and 0 EU / ml, and three independent experiments were performed on a microplate. After adding 100 ⁇ l of TAL reagent to each well, the plate was placed in a dynamic incubation reader (BioTek TM ELx808IULALXH), and the reader immediately began measuring endotoxin levels using the kinetic assay procedure. The gel formation was recorded every 30 seconds at a wavelength of 630 nm for 30-60 minutes.
  • LPS has two forms, free LPS and LPS associated with intact cell walls (Jorgensen et al., 1973); and (2) heat can not only promote the release of LPS, but also denature / precipitate interfering substances , And contribute to more sensitive quantitative LPS, using heat as a necessary step in sample preparation.
  • the heated sample reached> 14.125, which is equivalent to the unheated sample at the 9th hour, which indicates that the heating step can significantly increase the LPS from the undetectable form to the detectable form and reduce the interference factors of the measurement , Thereby significantly promoting the detection of LPS in early GNB infection.
  • LPS When measuring gel formation, LPS reacts with the Limulus reagent, so the sample needs to be clean and transparent. However, after heating and denaturation, the blood sample becomes turbid, and the turbid material needs to be removed by spin centrifugation.
  • Table 2 shows that the speed and time of centrifugation may affect the recovery rate of LPS.
  • BD BACTEC flasks with 3-10ml of whole blood contain a large number of components that may bind to the Limulus reagent and prevent it from gelling with LPS. Even if there is a large amount of LPS, it may produce a negative result.
  • the heating / centrifugation process can remove some interfering substances with large molecular weight, the optimized dilution before the measurement will help reduce the interfering substances with small molecular weight.
  • each sample was divided into two tubes: one As a background, another LPS that joins the standard 1EU.
  • the paired samples were heated, rotated at 3000 rpm for 3 minutes and diluted in different ratios (1:10, 1:20, 1:40 or 1: 100) before KT-TALA determination.
  • the limulus reagent TAL reagent can start to react with LPS and form a gel.
  • the optimal dilution factor is 1:40 to 1: 100.
  • M1 * The medium supplemented with 3ml of blood was used as a background control.
  • M1-S * Standard LPS (1EU / ml) was added to M1 * for LPS recovery (%) at different dilutions.
  • CN1 * , CN2 * , CN3 * clinical blood culture negative samples from BD bottles without LPS added were used as background controls.
  • CN1-S * , CN2-S * , CN3-S * At different dilutions, add standard LPS (1EU / ml) to CN1 * , CN2 * , CN3 * to calculate LPS at different dilutions Recovery rate(%).
  • the purpose of this example is to combine blood culture with KT-TALA assay, and detect GNB much earlier than the traditional BD BACTEC system.
  • 0.5McF of Escherichia coli, Klebsiella pneumoniae (as a test) and Staphylococcus aureus (as a negative control) were used at 1:10 -8 , 1:10 -9 , Dilute the serial ratio of 1:10 -11 and 1:10 -12 , inject the same amount of bacteria into two BD BACTEC bottles, one for the BD BACTEC detector to report the positive detection time, and the other for the 37 ° C bacterial shaking culture Box (function similar to the BD BACTEC detector), sampling is performed every hour, starting every hour 3 hours after incubation to determine the first time point when the LPS test is positive.
  • GNB is 1:10 -9 , 1:10 -11 , 1:10 -12 (starting from 0.5McF)
  • the positive report time of LPS was 13h, 16h or 17h earlier than the positive report time of bacteria, respectively. This may mean that in the early stages of sepsis with low-load bacterial infection, the BD BACTEC system needs 22-26 hours to detect GNB, while the KT-TALA system (as one of the K-LPS-A systems) only needs to detect GNB's LPS. 9 hours, which will help doctors make appropriate treatment decisions at an earlier time.
  • Example 7 The new method to detect GNB sepsis is much earlier than the traditional BD BACTEC system
  • the method of the present invention can detect GNB-infected sepsis earlier than the traditional BD BACTEC system
  • 10 ml of blood from patients with suspected sepsis were injected into two BD BACTEC bottles, each with 5 ml, One of them is used in the BD BACTEC system to report pathogens, and the other is used in the K-LPS-A system for sampling at different times after cultivation.
  • the BD BACTEC system reported a positive GNB pathogen at 28.5 hours, while the K-LPS-A system detected that LPS was positive 12 hours after cultivation, indicating that the new method of the present invention detected GNB 16.5 hours earlier than the traditional BD BACTEC system.
  • the infected pathogen was identified as Acinetobacter baumannii.
  • Example 8 Effect of the source of the horseshoe crab deformed cell lysate on the K-LPS-A system
  • Limulus reagent is a sterile freeze-dried product made from the lysate of blood deformed cells of the marine arthropod Limulus. It contains coagulogen and coagulogen that can be activated by trace amounts of LPS. It is a biological reagent obtained by freeze-drying at low temperature. It is currently used.
  • the Limulus reagent is derived from the Oriental Limulus reagent (TAL) or the American Limulus reagent (LAL).
  • an international standard (CSE) was selected and diluted into multiple concentrations (10EU / ml, 5EU / ml, 1EU / ml, 0.5EU / ml ),
  • GMB Gram-negative bacteria
  • LPS endotoxin
  • the inventor first developed a new rapid and sensitive in vitro detection method.
  • the LPS is first increased by GNB culture, and then the LPS of the culture medium is detected by a dynamic endotoxin assay system (K-LPS-A) using the limulus amebocyte lysate (such as TAL or LAL).
  • K-LPS-A dynamic endotoxin assay system
  • BD BACTEC positive reports are 9.5-10.5 hours, compared to 6.5-7.5 hours earlier; at low GNB concentrations, the BD BACTEC system needs to detect GNB 22-26 hours, but the K-LPS-A system only needs 9 hours to detect LPS of GNB, 13-17 hours in advance.
  • the new method for detecting GNB infection of the present invention is much faster than the traditional BD BACTEC system, and is particularly suitable for detecting the early stage of sepsis with a lower bacterial load, which will help in the earlier Make appropriate treatment decisions within time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种用革兰氏阴性细菌感染快速检测脓毒病的方法,包括:血液培养、动态取样、稀释、加热、旋转、进一步稀释,并用动态内毒素测定***(K-LPS-A)和鲎变形细胞溶解物(TAL或LAL)进行测定。检测GNB感染的新方法比传统的BD BACTEC***快得多(提前数小时至十几小时),特别适用于检测细菌负荷较低的脓毒病的早期阶段,有助于在更早的时间内做出适当的治疗决策。

Description

一种用革兰氏阴性细菌感染快速检测脓毒病的新方法 技术领域
本发明涉及医学领域,更具体地涉及用革兰氏阴性细菌感染快速检测脓毒病的方法。
背景技术
脓毒病是最危险的情况,需要立即进行专用治疗,因为每小时延迟会使死亡率增加5-10%,导致高达~30%的死亡。脓毒病的高发病率主要与创伤、感染、主要器官功能障碍和许多疾病,如癌症、衰老等的末期有关。快速检测***侵入的病原体对于挽救生命至关重要。
目前,血培养仍是脓毒病诊断的金标准,其利用累积到一定水平的代谢产物,用BD BACTEC***触发阳性报告基因。对于~50%的脓毒病患者,这需要大约16-24小时,对于其余的患者,大约需要>24小时,这对于快速制定治疗决策来说所需的时间太长了。此外,并非BD BACTEC***都能检测到血液中的所有GNB。
Thomas等人报道,在培养物中发现12个样品是内毒素阳性而没有相应的GNB。在这12种阳性内毒素检测中的7种中,可以提供这些阳性检测的实验室或临床解释。这组数据表明,非常需要一种新的测定来补偿GNB感染中BD BACTEC***的“盲点”。
然而,在许多脓毒病病例中,特别是在脓毒病发作期间,即使使用最灵敏的鲎试剂也难以检测出血液内毒素。有人提出,只有当血浆LPS>0.5EU/ml时,才能确定GNB引起的内毒素。然而这仅发生在患有感染性休克或严重脓毒病的患者中,这对于有效治疗来说为时已晚。
因此,本领域迫切需要开发灵敏、快速的LPS检测的方法,从而协助早期诊断GNB脓毒症并有助于监测治疗效果。
发明内容
本发明的目的在于提供一种不仅有助于早期诊断GNB脓毒症,还有助于监测治疗效果的灵敏LPS检测的新方法。
本发明第一方面,提供了一种检测脓毒病患者血液中革兰氏阴性菌(GNB)产生的内毒素的方法,所述方法包括:血液培养、动态取样、稀释、加热、旋转(spin)、进一步稀释,并用动态浊度TAL测定(KT-TALA)***和鲎变形细胞溶解物(TAL或LAL)进行测定,所述动态浊度TAL测定(KT-TALA)***包括:
(A)用于血液培养、取样、稀释、加热、旋转(spin),进一步稀释和以最佳条件进行测试的技术和装置;
(B)特殊鲎变形细胞溶解物试剂;
(C)用于动态浊度TAL测定的读数器(KT-TALA)。
在另一优选例中,所述方法包括血液培养、动态取样、稀释、加热、旋转或离心(spin)、进一步稀释,并用动态内毒素测定***(K-LPS-A)和鲎变形细胞溶解物(TAL或LAL)进行测定,所述动态内毒素测定***(K-LPS-A)包括:
(A)用于血液培养、取样、稀释、加热、离心,进一步稀释和以最佳条件进行测试的技术和装置;
(B)特殊鲎变形细胞溶解物(TAL或LAL)试剂;
(C)用于动态浊度法、动态显色法或终点显色法的动态孵育读数器。
在另一优选例中,所述的鲎变形细胞溶解物包括鲎试剂TAL或鲎试剂LAL。
在另一优选例中,所述的***中,组件(C)为用于动态浊度法、动态显色法或终点显色法的动态孵育读数器。
在另一优选例中,所述受试者是人和动物。
在另一优选例中,所述测试目标是由革兰氏阴性细菌(GNB)在血液中产生的内毒素脂多糖(LPS)。
在另一优选例中,所述测试试剂是东方鲎变形细胞溶解物,TAL。
在另一优选例中,所述测试试剂是美洲鲎变形细胞溶解物,LAL。
在另一优选例中,所述方法包括动态取样和动态读数。
在另一优选例中,所述动态取样是每1-2小时。
在另一优选例中,所述动态浊度读数用于LPS靶向TAL的凝胶化过程。
在另一优选例中,所述动态读数为基于LPS靶向鲎变形细胞溶解物(TAL或LAL)的凝胶化过程的动态浊度法。
在另一优选例中,所述动态读数为基于LPS靶向鲎变形细胞溶解物(TAL或LAL)的凝胶化过程中加入的显色底物的显色反应的动态显色法。
在另一优选例中,所述动态读数为基于LPS靶向鲎变形细胞溶解物(TAL或LAL)的凝胶化过程中加入的显色底物的显色反应的终点显色法。
在另一优选例中,用于血液培养、取样和测试的整个过程由装置完全自动化。
在另一优选例中,可以用于与LPS检测有关的所有领域。
本发明第二方面,提供了一种检测体系,包括:
(a)用于血液培养、取样、稀释、加热、旋转,进一步稀释和以最佳条件进行测试的技术和装置;
(b)特殊鲎变形细胞溶解物(TAL或LAL)试剂;
(c)用于动态浊度TAL测定的读数器(KT-TALA);和
(d)鲎变形细胞溶解物(TAL)。
在另一优选例中,所述检测体系包括:
(a)用于血液培养、取样、稀释、加热、旋转(或离心),进一步稀释和以最佳条件进行测试的技术和装置;
(b)特殊鲎变形细胞溶解物试剂;和
(c)动态内毒素测定***(K-LPS-A)。
本发明第三方面,提供了一种本发明第二方面所述的检测体系的用途,用于制备检测脓毒病患者血液中革兰氏阴性菌(GNB)产生的内毒素(LPS)的试剂或试剂盒。
在另一优选例中,所述试剂或试剂盒还用于检测脓毒病患者血液中革兰氏阴性菌(GNB)产生的内毒素脂多糖。
在本发明的第四方面,提供了一种体外检测脓毒病患者(或疑似脓毒病患者)血液中革兰氏阴性菌(GNB)产生的内毒素的方法,所述方法包括:
(a)提供一血液样本,所述血液样本来自脓毒病患者或疑似脓毒病患者;
(b)对所述血液样本进行血液培养,并在培养过程中,进行动态取样和动态读数;和
(c)基于动态读数,测定所述血液中革兰氏阴性菌(GNB)是否产生内毒素。
在另一优选例中,在步骤(c)中,所述测定包括定性测定(即判断血液中革兰氏阴性菌(GNB)是否产生内毒素)、或定量测定(给出血液中革兰氏阴性菌(GNB)产生内毒素的量化结果)。
在另一优选例中,在步骤(b)中,进行n次动态取样,n为4-50的正整数,较佳地n为5-30,更佳地n为6-20。
在另一优选例中,每两个动态取样之间的时间间隔为0.25-3小时,较佳地0.5-2小时,如每隔20分钟,30分钟,45分钟,或1小时。
在另一优选例中,在步骤(b)中,在动态取样中,包括:对取出的培养物进行稀释、加热、旋转离心(spin)、和进一步稀释。
在另一优选例中,在步骤(b)中,在动态读数中,用内毒素的动态检测法进行检测和读数。
在另一优选例中,所述的动态检测选自下组:动态浊度法、动态显色法、终点显色法、或其组合。
在另一优选例中,所述的稀释为2-50倍稀释,较佳地5-20倍稀释。
在另一优选例中,加热是加热到50℃至沸腾温度,较佳地60-100℃,更佳地70-100℃。
在另一优选例中,所述加热的处理时间为1-25分钟,较佳地2-20分钟,更佳地3-15分钟。
在另一优选例中,离心是离心取出沉淀(包括加热处理所产生固态物质),并取上清液。
在另一优选例中,进一步稀释为2-10倍稀释,较佳地3-8倍稀释。
在另一优选例中,所述的方法是非诊断和非治疗性的。
在另一优选例中,所述的方法是体外方法。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示了疑似患有GNB感染的血液中LPS检测的新步骤。
图2显示了将结果与LPS标准曲线进行比较,以确定LPS在疑似血液中的GNB随时间增长时是否增加。
具体实施方式
经过广泛而深入的研究,本发明人首次意外地发现了一种在GNB感染的血液中检测LPS的新方法。具体地,本发明采用基于鲎试剂的动态检测***(如K-LPS-A***),在体外检测GNB。与BD BACTEC***相比,本发明的方法和系 统(如K-LPS-A***)可极大缩短检测时间。实验表明,在本发明中,检测GNB仅需9小时,这比传统BD BACTEC***提早数小时至十几小时以上。此外,本发明的方法具有非常高的灵敏度。在此基础上,本发明人完成了本发明。
术语
如本文所用,术语“旋转(spin)”、“离心”可互换使用,指通过离心机的旋转进行离心操作。
鲎变形细胞溶解物
如本文所用,术语“特殊鲎变形细胞溶解物试剂”、“鲎变形细胞溶解物”、“鲎试剂”可互换使用,指来自鲎的用于检测内毒素的试剂,代表性的例子包括(但并不限于):鲎试剂TAL或鲎试剂LAL。在本发明中,优选地,可使用灵敏度为0.2-1.0Eu/ml,较佳地0.25-0.5Eu/ml的鲎试剂。鲎试剂是检测内毒素优选试剂。
如本文所用,术语“鲎试剂TAL”或“TAL”可互换使用,指Tachypleus Amoebocyte Lysate(TAL),它是从东方鲎(Chinese horseshoe crab,Tachypleus tridentatus Leach)的血液中提取的鲎试剂。
如本文所用,术语“鲎试剂LAL”或“LAL”可互换使用,指Limulus Amebocyte Lysate(LAL),它是从北美鲎(North American horseshoe crab,Limulus polyphemus)的蓝血中提取的鲎试剂。
检测方法
在本发明中,对于疑似脓毒病的血液样本,先进行培养,并使用动态内毒素测定***(K-LPS-A)动态测定由革兰氏阴性细菌(GNB)在血液中产生的内毒素(LPS),从而对GNB脓毒病进行快速而灵敏的早期诊断。
在本发明中,来自GNB脓毒病的血液样本在合适温度(如37±2℃)下,在富含营养物中进行短时间(几小时)的培养,每隔一段时间(如约20分钟)GNB的数量快速加倍,从而大量产生/释放内毒素(如LPS)。产生的内毒素可通过K-LPS-A方法容易地检测到,并且比BD BACTEC***血培养报告为LPS+GNB+脓毒病要早得多。
众所周知,由鲎(Limulus polyphemus)的阿米巴样细胞制备的鲎试剂是检测GNB的LPS的最敏感的试剂。鲎试剂的作用机制是内毒素激活丝氨酸蛋白酶 C,然后激活丝氨酸蛋白酶B,并触发凝结酶的级联并形成凝胶,其可以用动态孵育读数器进行动力学记录。
在本发明中,可将这种灵敏的检测方法已广泛用于检测不同生物样本中的内毒素,如血液,尿液,腹水,胸腔积液,脑脊液,支气管肺泡灌洗液,空气和水。与传统的GNB培养试验相比,本发明基于鲎试验的检测更灵敏,更可靠。
在本发明中,代表性的基于鲎试剂的动态内毒素测定方法包括(但并不限于):动态浊度法、动态显色法、终点显色法、或其组合。
动态浊度法、动态显色法、终点显色法,都是定量检测LPS的方法。按检测原理区分,动态浊度法是利用检测鲎试剂与LPS反应过程中的浊度变化而测定LPS含量的方法。动态显色法和终点显色法都是属于显色基质法。显色基质法是利用鲎试剂与LPS反应过程中产生的凝固酶使特定底物显色释放出的呈色团的多少而测定LPS含量的方法。
典型地,在本发明中,可采用动态内毒素测定***(K-LPS-A)来进行基于鲎试剂的动态内毒素测定。
优选地,基于动态浊度法的检测方法可采用动态浊度TAL测定***(KT-TALA)。
在本发明中,可以将检测值与标准值或标准曲线进行比较。例如,一种优选的方法是与标准曲线进行比较。
例如,当采用动态浊度法时,标准曲线的公式可以是公式Q1:
Log(Y)=A*Log(X)+B        (Q1)
其中,
Y=反应时间(起始时间,如s、min或hr),
A=Y截距,
X=内毒素浓度(如EU/ml)
B=回归曲线的斜率。
例如,在一个实施例中,A为-0.279,B为5.95,R 2(相关效率)为0.994。
如果使用相同的批次试剂和相同的程序完成标准曲线,则可以将其存储在读数器或数据库中,作为以下分析的参考。但是,如果试剂发生变化或程序发生变化,则需要重新创建新标准作为新参考。将未知样品的结果与LPS标准曲线进行比较,以确定疑似血液中的GNB随时间而增加时,LPS是否会随其一同增加。
本发明的主要优点包括:
(1)本发明的方法可极大缩短诊断GNB的时间,便于早期诊断GNB脓毒症。
(2)本发明的方法具有非常高的灵敏度,防止漏检。
(3)与BD BACTEC***相比,本发明采用的检测***可极大缩短检测时间,即检测GNB仅需9小时,检测GNB脓毒病比传统BD BACTEC***提早约20小时,从而为尽早治疗赢得宝贵的时机。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
实施例中用到的材料和试剂如无特殊说明,均为市售产品。
实施例1快速检测疑似脓毒病患者培养血液中LPS的方法
在本实施例中,对疑似患有GNB感染的血液中LPS检测,采用新步骤进行。简言之,将3-5ml血液加入培养瓶中。2小时后,每隔一小时取0.5ml样品用于LPS的动态测试。在用动态浊度(KT-TALA)***或其他动态内毒素测定***(K-LPS-A)进行LPS定量测定之前,将样品稀释、加热、旋转(离心)并再次稀释。
实施例2参考标准的制定
用无内毒素的水重构冻干的内毒素标准储备液,稀释至50、10、1、0.1、0.01和0EU/ml的终浓度,在微量培养板上进行三次独立实验。向每个孔中加入100μl TAL试剂后,将板置于动态孵育读数器(BioTek TM ELx808IULALXH)中,并且该读数器立即开始用动力学测定程序测定内毒素水平。在波长630nm下每30秒记录凝胶形成30-60分钟。
对于这组研究,产生的公式是Log(Y)=A*Log(X)+B,其中Y=反应时间(起始时间),A=Y截距,X=内毒素浓度,B=回归曲线的斜率。在这组研究中,A为-0.279,B为5.95,R 2(相关效率)为0.994。
实施例3加热对GNB样品释放的LPS和测定特异性的影响
基于以下知识:(1)LPS具有两种形式,游离LPS和与完整细胞壁相关的 LPS(Jorgensen等人,1973);和(2)热不仅可以促进LPS的释放,而且还可以变性/沉淀干扰物质,并有助于更灵敏的定量LPS,采用热量作为样品制备的必要步骤。
如表1所示,在4、5、6、7、8和9小时收集一系列培养的大肠杆菌样品,并进行加热或不加热,对同时制备的成对样品比较检测的LPS水平。在第4小时,未加热样品的LPS为0.144EU/ml,而加热样品的LPS为6.689EU/ml。类似地,在第5、6、7、8小时,未加热的样品相对缓慢地从0.326、0.999、4.237升至10.706EU/ml,并且在第9小时>14.125EU/ml时,而在第5小时,加热时间达到10.854,相当于第8小时未加热的样品。后来,在第6小时,加热的样品达到>14.125,相当于第9小时未加热的样品,这表明加热步骤可以将LPS从不可检测的形式显著增加到可检测的形式,并减少测定的干扰因素,从而显著促进早期GNB感染中的LPS的检测。
表1加热对GNB样品释放的LPS和测定特异性的影响 #
Figure PCTCN2019112374-appb-000001
#用不含LPS的水以1:4的比例稀释样品,在100℃加热10分钟,在450g下旋转3分钟,然后将上清液以1:10的比例进一步稀释,用KT-TAL***进行LPS测定。以相同的趋势重复实验三次,即在GNB大肠杆菌组中,加热的样品 的LPS远高于未加热的样品( *P<0.05),而在革兰氏阳性金黄色葡萄球菌组中,加热和未加热样品之间的LPS没有差异。
实施例4离心对LPS回收率的影响
在测定凝胶的形成时,LPS与鲎试剂反应,因此需要样品清洁和透明。然而,在加热和变性后,血液样本变得混浊,需要通过旋转(spin)离心去除混浊的物质。
表2显示离心的速度和时间可能影响LPS的回收率。在Allegra 21R离心机中使用1.5ml管旋转混浊物质,发现当以10,000rpm旋转3min时,LPS丢失率为14.97%,而在3,000rpm下3min时,LPS损失8.75%,类似于不旋转的6.55%。该数据表明LPS可在旋转过程中共沉淀。高速旋转比低速旋转下拉更多的LPS。优化的旋转速度为3,000rpm,持续3分钟。如果样品清洁且透明,则可能不需要旋转。旋转的速度和时间很大程度上取决于样品的透明度。
表2离心对LPS损失的影响 *
Figure PCTCN2019112374-appb-000002
*将来自同一BD BACTEC瓶的培养5天的阴性培养基分成几管,每管加入标准的1EU/ml LPS,以不同速度离心,测定LPS并以(1-测定的LPS/1.045)×100%计算LPS损失率。
实施例5样品稀释对LPS测定结果的影响
具有3-10ml全血的BD BACTEC培养瓶含有大量可能与鲎试剂结合并阻止其与LPS凝胶化的组分,即使存在大量LPS也可能产生阴性结果。虽然加热/离心过程可去除一些具有大分子量的干扰物质,但在测定之前优化的稀释将有助于减少具有小分子量的干扰物质。
为了确定优化的稀释因子,在BD BACTEC瓶中培养了4个样品(1个正常血液,命名为M1;3个患者血液,命名为CN1,2,3),每个样品分成两个管:一个作为背景,另一个加入标准的1EU的LPS。加热成对样品,以3000rpm旋转3 分钟并在KT-TALA测定之前以不同的比例(1:10,1:20,1:40或1:100)稀释。
结果(表3)显示,在1:10稀释组,所有4对成对样品未检测到LPS(<0.007EU/ml),这表明高水平的干扰因子阻断LPS-TAL凝胶化。在1:20稀释组中,4个加标液也显示出非常低水平的LPS(0.01~0.025EU/ml)。在1:40和1:100稀释组中,加入样品中的所有加标液显示其LPS水平接近1EU,高回收率为97.66%-118.99%。数据支持只有在干扰物质被稀释到一定的低水平后,鲎试剂TAL试剂才能开始与LPS反应并形成凝胶。采用这种新方法,最佳稀释倍数为1:40至1:100。
表3加标样品回收试验的样品稀释的优化 #
Figure PCTCN2019112374-appb-000003
#:在标有-S的所有试管中加入1EU/ml LPS,检测到的LPS应为~1,<1EU/ml,这表明存在一些抑制试验***的强因子。
M1 *:将加3ml血液的培养基作为背景对照。
M1-S *:向M1 *中加入标准的LPS(1EU/ml)以进行不同稀释度下的LPS回收(%)。
CN1 *,CN2 *,CN3 *:将不添加LPS的来自BD瓶的临床血培养阴性样品作为背景对照。
CN1-S *,CN2-S *,CN3-S *:在不同稀释度下,向CN1 *,CN2 *,CN3 *中加入标准的LPS(1EU/ml),用于计算不同稀释度下的LPS回收率(%)。
实施例6 KT-TALA***与BD BACTEC***之间GNB检测时间的比较
本实施例的目的是将血培养与KT-TALA测定相结合,检测GNB比传统的BD BACTEC***早得多。为了验证,将0.5McF的大肠杆菌、肺炎克雷伯菌(Klebsiella pneumoniae)(作为测试)和金黄色葡萄球菌(Staphylococcus aureus)(作为阴性对照)以1:10 -8、1:10 -9、1:10 -11、1:10 -12的系列比例进行稀释,将同样数量的细菌注入两个BD BACTEC瓶,一个用于BD BACTEC检测器报告阳性检测时间,另一个用于37℃细菌振荡培养箱(功能类似于BD BACTEC检测器),每小时进行采样,每小时在培养后3小时开始,以确定LPS检测为阳性的第一个时间点。
独立实验的结果(表4)显示,在实验1中,当以1:10 -8接种GNB(从0.5McF开始)时,K-LPS-A***的LPS阳性报告时间为3小时,比BD BACTEC***的细菌阳性报告时间早(6.5至7.5小时)。在实验2中进一步证实了这种LPS早期检测和对GNB的特异性,这表明LPS报告时间比细菌阳性报告时间早6.5至8.5小时,并且在革兰氏阳性金黄色葡萄球菌培养基中未检测到LPS。当培养瓶中的细菌数量较少时,LPS早期报告时间的优势更为明显,实验3证明,GNB在1:10 -9,1:10 -11,1:10 -12(从0.5McF开始)的浓度下,LPS阳性报告时间分别比细菌阳性报告时间早13h,16h或17h。这可能意味着在低负荷细菌感染的脓毒病的早期阶段,BD BACTEC***检测GNB需要22-26小时,而KT-TALA***(作为K-LPS-A***之一)检测GNB的LPS仅需9小时,这将有助于医生在更早的时间做出适当的治疗决定。
表4 KT-TAL比BD BACTEC***更快地检测培养瓶中的GNB *
Figure PCTCN2019112374-appb-000004
*将大肠杆菌、肺炎克雷伯氏菌(测试)和金黄色葡萄球菌(阴性对照)调节至0.5McF,并以1:10 8,1:10 9,1:10 11或1:10 12的系列比例进一步稀释。
将两个等量的细菌注入两个BD BACTEC瓶中,一个瓶置于BD BACTEC检测器中用于GNB阳性检测报告的时间,另一个置于实验室37℃细菌振荡器用于每小时LPS取样,在培养后3小时开始。进行KT-TAL测定以在不同时间点检测GNB的LPS。通过减去两个报告时间来确定两次测定之间的阳性检测时间的差异。
实施例7新方法检测GNB脓毒病比传统BD BACTEC***早得多
为了证明本发明方法可以比传统的BD BACTEC***更早地检测到GNB感染的脓毒病,将来自疑似脓毒病的患者的10ml血液分别注射到两个BD BACTEC瓶中,每个注射5ml,其中一个用于BD BACTEC***以报告病原体,另一个用于K-LPS-A***测定,作为培养后不同时间的取样。BD BACTEC***在28.5小时报告GNB病原阳性,而K-LPS-A***检测到LPS在培养后12小时呈阳性,这表明本发明的新方法比传统BD BACTEC***早16.5小时检测到GNB。感染的病原体被鉴定为鲍氏不动杆菌(acinetobacter baumannii)。
表5鲍氏不动杆菌脓毒病患者培养样品中LPS的动态测试 *
Figure PCTCN2019112374-appb-000005
*将疑似脓毒病的患者的10ml血液分别注入2个BD BACTEC瓶中,各5ml,一个用于BD BACTEC***报告病原体,另一个用于在指定时间点进行LPS的测定取样。在28.5小时,BD BACTEC***报告病原体阳性,并且在培养后12小时检测到LPS,差异为16.5小时。感染的病原体被鉴定为鲍氏不动杆菌(acinetobacter baumannii)。
实施例8鲎变形细胞溶解物的来源对K-LPS-A***的影响
鲎试剂是由海洋节肢动物鲎的血液变形细胞溶解物制成的无菌冷冻干燥品,含有能被微量LPS激活的凝固酶原,凝固蛋白原,经低温冷冻干燥而成的生物试剂,目前使用的鲎试剂来源于东方鲎试剂(TAL)或美洲鲎试剂(LAL)。
为确定鲎变形细胞溶解物的来源对K-LPS-A***的影响,在本实施例中,选取了1、2、3、4、5和9小时收集一系列培养的大肠杆菌培养液,分别用东方鲎试剂(TAL)和美洲鲎试剂(LAL)检测,结果如下:
表6鲎变形细胞溶解物的来源对K-LPS-A***的影响 #
Figure PCTCN2019112374-appb-000006
#分别用东方鲎试剂(TAL)和美洲鲎试剂(LAL)检测不同培养时间的大肠杆菌培养液。
以相同的条件重复实验三次,变异系数均小于5%,表明东方鲎试剂(TAL)和美洲鲎试剂(LAL)检测LPS没有差异。
实施例9不同的动态检测方法对K-LPS-A***的影响
在本实施例中,为了确定检测方法对K-LPS-A***的影响,选取了国际标准品(CSE)稀释成多个浓度(10EU/ml、5EU/ml、1EU/ml、0.5EU/ml),分别用动态浊度法、动态显色法、终点显色法稀释后的国际标准品(CSE),结果如下:
表7检测方法对K-LPS-A***的影响 #
Figure PCTCN2019112374-appb-000007
#分别用动态浊度法、动态显色法、终点显色法检测检测不同培养时间的大肠杆菌培养液。
以相同的条件重复实验三次,变异系数均小于5%,这表明动态浊度法、动态显色法、终点显色法检测LPS没有差异。
讨论
脓毒病是一种危害生命的全身性感染,需要在快速测定病原体的基础上进行适当和快速的治疗。革兰氏阴性菌(GNB)是内毒素(LPS)作为其特征性替代生物标志物的主要致病病原体。
在本发明中,本发明人首先开发了一种新的快速而灵敏的体外检测方法。
在本发明中,首先通过GNB培养增加LPS,然后使用鲎变形细胞溶解物(如TAL或LAL),通过动态内毒素测定***(K-LPS-A)检测培养基的LPS。结果表明,在高GNB浓度下,LPS可在培养后3小时检测到,而BD BACTEC阳性报告在9.5-10.5小时,相比提前6.5-7.5小时;在低GNB浓度下,BD BACTEC***检测GNB需要22-26小时,但K-LPS-A***仅需9小时来检测GNB的LPS,提前13-17小时。
综上所述,本发明的检测GNB感染的新方法比传统的BD BACTEC***快得多,特别是适用于检测细菌负荷较低的脓毒病的早期阶段,这将有助于在更早的时间内做出适当的治疗决策。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (20)

  1. 一种检测脓毒病患者血液中革兰氏阴性菌(GNB)产生的内毒素的方法,其特征在于,所述方法包括:血液培养、动态取样、稀释、加热、旋转、进一步稀释,并用动态浊度读数器和鲎变形细胞溶解物进行测定,所述动态浊度TAL测定(KT-TALA)***包括:
    (A)用于血液培养、取样、稀释、加热、旋转,进一步稀释和以最佳条件进行测试的技术和装置;
    (B)特殊鲎变形细胞溶解物试剂;
    (C)用于动态浊度TAL测定的读数器。
  2. 如权利要求1所述的方法,其特征在于,所述受试者是人和动物。
  3. 如权利要求1所述的方法,其特征在于,所述测试目标是由革兰氏阴性细菌(GNB)在血液中产生的内毒素脂多糖(LPS)。
  4. 如权利要求1所述的方法,其特征在于,所述测试试剂是变形细胞溶解物包括TAL或LAL。
  5. 如权利要求1所述的方法,其特征在于,所述动态取样是每1-2小时。
  6. 如权利要求1所述的方法,其特征在于,所述动态浊度读数用于LPS靶向TAL的凝胶化过程。
  7. 如权利要求1所述的方法,其特征在于,用于血液培养、取样和测试的整个过程由装置完全自动化。
  8. 一种检测脓毒病患者血液中革兰氏阴性菌(GNB)产生的内毒素的方法,其特征在于,所述方法包括:血液培养、动态取样、稀释、加热、旋转或离心(spin)、进一步稀释,并用动态内毒素测定***和鲎变形细胞溶解物进行测定,所述动态内毒素测定***包括:
    (A)用于血液培养、取样、稀释、加热、离心,进一步稀释和以最佳条件进行测试的技术和装置;
    (B)特殊鲎变形细胞溶解物试剂;
    (C)用于动态浊度法、动态显色法或终点显色法的动态孵育读数器。
  9. 如权利要求8所述的方法,其特征在于,所述的鲎变形细胞溶解物包括鲎试剂TAL或鲎试剂LAL。
  10. 如权利要求8所述的方法,其特征在于,所述方法包括动态取样和动态读数。
  11. 如权利要求10所述的方法,其特征在于,所述动态读数为基于LPS靶向鲎变形细胞溶解物的凝胶化过程的动态浊度法;
  12. 如权利要求10所述的方法,其特征在于,所述动态读数为基于LPS靶向鲎变形细胞溶解物的凝胶化过程中加入的显色底物的显色反应的动态显色法;
  13. 如权利要求10所述的方法,其特征在于,所述动态读数为基于LPS靶向鲎变形细胞溶解物的凝胶化过程中加入的显色底物的显色反应的终点显色法。
  14. 一种检测体系,其特征在于,包括:
    (a)用于血液培养、取样、稀释、加热、旋转,进一步稀释和以最佳条件进行测试的技术和装置;
    (b)特殊鲎变形细胞溶解物(TAL)试剂;
    (c)用于动态浊度TAL测定的读数器(KT-TALA);和
    (d)鲎变形细胞溶解物(TAL)。
  15. 一种检测体系,其特征在于,包括:
    (a)用于血液培养、取样、稀释、加热、旋转(或离心),进一步稀释和以最佳条件进行测试的技术和装置;
    (b)特殊鲎变形细胞溶解物试剂;和
    (c)动态内毒素测定***。
  16. 一种权利要求14或15所述的检测体系的用途,其特征在于,用于制备检测脓毒病患者血液中革兰氏阴性菌(GNB)产生的内毒素的试剂或试剂盒。
  17. 一种体外检测血液中革兰氏阴性菌(GNB)产生的内毒素的方法,其特征在于,所述方法包括:
    (a)提供一血液样本;
    (b)对所述血液样本进行血液培养,并在培养过程中,进行动态取样和动态读数;和
    (c)基于动态读数,测定所述血液中革兰氏阴性菌(GNB)是否产生内毒素。
  18. 如权利要求17所述的方法,其特征在于,在步骤(b)中,进行n次动态取样,n为4-50的正整数,较佳地n为5-30,更佳地n为6-20。
  19. 如权利要求17所述的方法,其特征在于,在步骤(b)中,在动态取样中,包括:对取出的培养物进行稀释、加热、旋转离心(spin)、和进一步稀释。
  20. 如权利要求17所述的方法,其特征在于,在步骤(b)中,在动态读数中,用内毒素的动态检测法进行检测和读数;并且,所述的动态检测选自下组:动态浊度法、动态显色法、终点显色法、或其组合。
PCT/CN2019/112374 2018-10-21 2019-10-21 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法 WO2020083261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980069612.7A CN113302494B (zh) 2018-10-21 2019-10-21 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811328316.8A CN111077307B (zh) 2018-10-21 2018-10-21 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法
CN201811328316.8 2018-10-21

Publications (1)

Publication Number Publication Date
WO2020083261A1 true WO2020083261A1 (zh) 2020-04-30

Family

ID=70310032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112374 WO2020083261A1 (zh) 2018-10-21 2019-10-21 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法

Country Status (2)

Country Link
CN (2) CN111077307B (zh)
WO (1) WO2020083261A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607903A (zh) * 2021-07-30 2021-11-05 振德医疗用品股份有限公司 一种检测含有正电荷聚合物细菌内毒素的方法
CN113670914A (zh) * 2021-08-19 2021-11-19 青岛易邦生物工程有限公司 一种油乳剂灭活疫苗的细菌内毒素检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077307B (zh) * 2018-10-21 2022-08-23 厦门鲎试剂生物科技股份有限公司 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121868A1 (en) * 1983-04-01 1984-10-17 Mitsubishi Rayon Co., Ltd. Endotoxin-detecting device
CN1529711A (zh) * 2001-06-28 2004-09-15 ά 检测内毒素的方法和试剂
US20100178206A1 (en) * 2007-09-25 2010-07-15 Toru Obata Gelation measuring apparatus and sample cell
CN202119709U (zh) * 2011-06-23 2012-01-18 厦门市鲎试剂实验厂有限公司 革兰氏阴性菌感染内毒素检测鲎试剂盒
CN102692494A (zh) * 2012-06-14 2012-09-26 南京中医药大学 纳米粒径分析仪用于内毒素检测的方法
CN107636464A (zh) * 2015-05-06 2018-01-26 宝洁公司 口腔中微生物毒力因子的解毒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038147A (en) * 1976-06-15 1977-07-26 Becton, Dickinson And Company Method for detecting endotoxins
DK0426395T3 (zh) * 1989-10-30 1997-03-03 Biowhittaker Inc
US5198339A (en) * 1990-07-13 1993-03-30 Board Of Regents, The University Of Texas System Method for detection of gram-negative bacterial lipopolysaccharides in biological fluids
KR100888788B1 (ko) * 2007-07-02 2009-03-16 다이아텍코리아 주식회사 엔도톡신의 정량적 측정 방법
CA2766288C (en) * 2009-06-26 2020-05-05 Charles River Laboratories, Inc. Heat-treated limulus amebocyte lysates
CN102901726B (zh) * 2012-09-14 2014-08-13 莫水晶 血液细菌内毒素检测试剂盒的制备和应用
CN103454235B (zh) * 2013-09-13 2016-04-20 广州康盛生物科技有限公司 一种超声辅助测定血浆中细菌内毒素含量的方法
WO2015115926A1 (ru) * 2014-01-31 2015-08-06 Общество С Ограниченной Ответственностью Научно-Производственная Фирма "Рохат" (Ооо Нпф "Рохат") Способ экспресс-анализа in vitro чувствительности грамотрицательных бактерий к антибиотикам и его применение для контроля эффективности антибактериальной терапии
CN203965445U (zh) * 2014-07-09 2014-11-26 厦门市鲎试剂实验厂有限公司 一种动态显色法内毒素检测鲎试剂盒
CN111077307B (zh) * 2018-10-21 2022-08-23 厦门鲎试剂生物科技股份有限公司 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121868A1 (en) * 1983-04-01 1984-10-17 Mitsubishi Rayon Co., Ltd. Endotoxin-detecting device
CN1529711A (zh) * 2001-06-28 2004-09-15 ά 检测内毒素的方法和试剂
US20100178206A1 (en) * 2007-09-25 2010-07-15 Toru Obata Gelation measuring apparatus and sample cell
CN202119709U (zh) * 2011-06-23 2012-01-18 厦门市鲎试剂实验厂有限公司 革兰氏阴性菌感染内毒素检测鲎试剂盒
CN102692494A (zh) * 2012-06-14 2012-09-26 南京中医药大学 纳米粒径分析仪用于内毒素检测的方法
CN107636464A (zh) * 2015-05-06 2018-01-26 宝洁公司 口腔中微生物毒力因子的解毒

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607903A (zh) * 2021-07-30 2021-11-05 振德医疗用品股份有限公司 一种检测含有正电荷聚合物细菌内毒素的方法
CN113607903B (zh) * 2021-07-30 2024-03-15 振德医疗用品股份有限公司 一种检测含有正电荷聚合物细菌内毒素的方法
CN113670914A (zh) * 2021-08-19 2021-11-19 青岛易邦生物工程有限公司 一种油乳剂灭活疫苗的细菌内毒素检测方法
CN113670914B (zh) * 2021-08-19 2024-03-08 青岛易邦生物工程有限公司 一种油乳剂灭活疫苗的细菌内毒素检测方法

Also Published As

Publication number Publication date
CN111077307A (zh) 2020-04-28
CN111077307B (zh) 2022-08-23
CN113302494A (zh) 2021-08-24
CN113302494B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2020083261A1 (zh) 一种用革兰氏阴性细菌感染快速检测脓毒病的新方法
Chen et al. A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples
CN102749454B (zh) 一种全量程c反应蛋白胶体金免疫比浊检测试剂盒
JP7044222B2 (ja) 実質的にコアギュローゲンを含まないリムルスアメボサイトライセートを使用してエンドトキシンを検出する方法
CN101699287B (zh) 匀相溶胶颗粒型胱抑素c测定试剂盒及其制备方法
CN110736837B (zh) 神经元特异性烯醇化酶的胶乳免疫比浊检测试剂盒
CN112394180A (zh) 一种SARS-CoV-2中和抗体的检测方法、检测试剂盒
JPH0782021B2 (ja) リポ多糖類の非免疫化学的結合およびそのサンドイッチ法による分析方法
WO2023216612A1 (zh) 一种无扩增时间分辨荧光侧向层析检测方法检测沙门氏菌及耐药菌
Genné et al. Enhancing the etiologic diagnosis of community-acquired pneumonia in adults using the urinary antigen assay (Binax NOW)
Wang et al. Bridge-DNA synthesis triggered by an allosteric aptamer for the colorimetric detection of pathogenic bacteria
Hu et al. Gold (III) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae
Thomas et al. Comparative investigation of a quantitative chromogenic endotoxin assay and blood cultures
JP6358942B2 (ja) エンドトキシンの測定用試薬及びエンドトキシンの測定方法
Choi et al. Rapid detection of 6×-histidine-labeled recombinant proteins by immunochromatography using dye-labeled cellulose nanobeads
WO2024001044A1 (zh) 一种与肺癌相关的生物标志物组合、含其的试剂盒及其用途
CN111856039A (zh) 一种测定全血降钙素原的免疫比浊方法学试剂盒
US20030027176A1 (en) Innate immunity markers for rapid diagnosis of infectious diseases
Sobanski et al. Measurement of serum antigen concentration by ultrasound-enhanced immunoassay and correlation with clinical outcome in meningococcal disease
Inada et al. A silkworm larvae plasma test for detecting peptidoglycan in cerebrospinal fluid is useful for the diagnosis of bacterial meningitis
CN111830264A (zh) 一种d-二聚体检测试剂盒
JPH10339731A (ja) 腸管出血性大腸菌感染の検出方法
JP2688773B2 (ja) エンドトキシンの不活化方法
Sturk et al. Endotoxin testing revisited
CN202119709U (zh) 革兰氏阴性菌感染内毒素检测鲎试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875103

Country of ref document: EP

Kind code of ref document: A1