WO2020079498A1 - 一种电机驱动裝置 - Google Patents

一种电机驱动裝置 Download PDF

Info

Publication number
WO2020079498A1
WO2020079498A1 PCT/IB2019/057032 IB2019057032W WO2020079498A1 WO 2020079498 A1 WO2020079498 A1 WO 2020079498A1 IB 2019057032 W IB2019057032 W IB 2019057032W WO 2020079498 A1 WO2020079498 A1 WO 2020079498A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
gear
cycloid gear
eccentric
outer periphery
Prior art date
Application number
PCT/IB2019/057032
Other languages
English (en)
French (fr)
Inventor
陈昱骏
Original Assignee
陈昱骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈昱骏 filed Critical 陈昱骏
Publication of WO2020079498A1 publication Critical patent/WO2020079498A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts

Definitions

  • the invention relates to a motor drive device, and in particular to a motor body device which can be installed at the position of the central axis of the existing bicycle frame.
  • E-MTB electric mountain bike sport
  • bicycles equipped with a built-in motor generally have a higher torque than other electric bicycles. They can drive on sections with complicated road conditions and enjoy mountain climbing and wading.
  • the bicycle equipped with a central motor system is also very suitable for urban commuting with complex road conditions. It is more attractive than motorcycles and automobiles in terms of flexibility, volume, and weight. It has become an important area for urban sustainable personal transportation.
  • an external motor is placed on the bicycle tripod, such as the design of the Bafang motor.
  • This design is mainly a central motor.
  • the central motor installed near the center axle of the bicycle can combine manpower to drive the bicycle. , Generally can provide higher efficiency.
  • the disadvantages of the above-mentioned designs are as follows:
  • any type of hub motor will have a negative impact on the balance of the overall frame, affecting the handling and safety of the bicycle.
  • the hub motor mounted on the front or rear wheel of the bicycle is a relatively common and traditional design. There are usually two types, including direct body movement and a reduction gear version.
  • the direct-moving hub motor can only provide lower torque and require higher current drive under the same weight.
  • In-wheel motors with gears use planetary deceleration systems for deceleration to increase output torque.
  • the hub motor using the planetary reduction system requires less weight and size.
  • any type of hub motor will have a negative effect on the balance of the overall frame, affecting the handling and safety of the bicycle.
  • the bottom bracket motor is usually installed under or in front of the bottom bracket of the bicycle frame. This design will greatly increase the size of the bottom bracket of the frame.
  • the bottom bracket motor also needs extra transmission parts to transfer the mechanical power of the motor to the chain plate of the bottom bracket of the bicycle.
  • This external mid-axis motor is more likely to be impacted and easily damaged.
  • a motor drive device provided by the present invention includes a housing, a bottom case and a crank rotatably installed in an open end of the housing, an installation cavity is formed between the housing and the bottom case, and a first end of the crank is rotatable It is installed in the end of the outer shell far away from the bottom shell, including a central axis along the axial direction of the bottom shell and penetrating on the bottom shell, and an eccentric motor and a cycloid gear provided in the installation cavity Speed reduction mechanism, first clutch mechanism and second clutch mechanism; the first end of the central shaft extends into the installation cavity and is installed into the first end of the crank, the second end of the central shaft is The exterior of the bottom shell extends away from the bottom shell The central shaft can rotate with the crank; the eccentric motor ring is provided on the outer periphery of the crank
  • the bottom case has an axial through hole for the central shaft to pass through, and the edge positions of both ends of the through hole form a first installation site and a second installation site, respectively, and the first installation site is located at
  • the installation cavity is disposed around the outer periphery of the first end of the central shaft, the second clutch mechanism is located between the first installation site and the first end of the crank, and the second installation site is located at
  • the outer part of the bottom shell is looped around the outer circumference of the second end of the bottom bracket, and a third mounting member is connected to the second mounting portion, and the third mounting member is looped around the outer circumference of the second end of the bottom bracket.
  • the second end is rotatably mounted to the second mounting part and the third mounting part, and the second end end of the central shaft protrudes from the third mounting part;
  • the bottom in the housing has a ring-shaped first connection site and a second connection site, and the second connection site is located inside the first connection site.
  • the eccentric motor includes a stator sleeved around the outer periphery of the first mounting portion, an eccentric rotor sleeved around the outer periphery of the stator, and an air gap between the eccentric rotor and the stator; the first connection portion The ring is provided on the outer periphery of the end of the eccentric rotor away from the bottom case, the second connection portion is located inside the end of the eccentric rotor away from the bottom case and close to the stator, both ends of the eccentric rotor They are rotatably mounted to the inner circumference of the first connection site and the inner circumference of the bottom case, respectively.
  • the eccentric rotor includes a rotor core sleeved on the outer periphery of the stator, a plurality of magnets disposed on the inner circumference of the rotor core along the circumferential direction of the rotor core, and disposed in an end of the rotor core close to the housing
  • the balance weight and the eccentric sleeve sleeve sleeved on the outer periphery of the rotor core, the air gap between the magnets and the stator; the outer peripheral surface of the eccentric sleeve is provided with two eccentrically arranged along its axial interval ring.
  • first bearing and a second bearing are sleeved on the outer circumferences of both ends of the eccentric sleeve, respectively, the first bearing is nested to the inner circumference of the bottom case, and the second bearing is nested to the first An inner circumference of the connection site.
  • the eccentric motor includes a stator sleeved around the outer periphery of the first mounting portion, an eccentric rotor sleeved around the outer periphery of the stator, and an air gap between the eccentric rotor and the stator; the first connection portion The ring is provided on the outer periphery of the end of the eccentric rotor away from the bottom case, the second connection portion is located inside the end of the eccentric rotor away from the bottom case and close to the stator, both ends of the eccentric rotor They are rotatably mounted to the outer periphery of the second connection site and the inner periphery of the bottom case, respectively.
  • the eccentric rotor includes a rotor magnetic core sleeved on the outer periphery of the stator, a plurality of magnets disposed along the inner circumference of the rotor magnetic core at intervals, and two eccentric rings formed on the outer circumferential surface of the rotor magnetic core And a balance weight formed on the outer circumferential surface of the rotor core, the plurality of magnets and the stator have the air gap; the two eccentric rings are arranged at intervals along the axial direction of the rotor core, and the balance weight is located on the two Between the sides of the eccentric ring that are biased toward the outer peripheral surface of the rotor core.
  • a first bearing is sleeved on the outer circumference of one end of the rotor core, and a second bearing is nested on the inner circumference of the other end of the rotor core, and the first bearing is nested on the inner circumference of the bottom case.
  • the second bearing is sleeved on the outer periphery of the second connection site.
  • the cycloid gear reduction mechanism is a two-stage cycloid gear reduction mechanism
  • the second cycloid gear reduction mechanism includes a first-stage cycloid gear and a second-stage cycloid gear stacked together in the axial direction
  • the first-stage cycloid gear and the second-stage cycloid gear are sleeved on the outer peripheries of the two eccentric rings, respectively;
  • the first-level cycloid gear and the second-level cycloid gear have several external teeth, respectively, and the number of external teeth of the first-level cycloid gear is different from that of the second-level cycloid gear.
  • the center of the secondary cycloid gear is on the same straight line.
  • first-stage cycloid gear and the second-stage cycloid gear are integrally formed or separately formed. Further, the first-stage cycloid gear and the second-stage cycloid gear are sleeved on the outer peripheries of the two eccentric rings via needle bearings or ball bearings, respectively.
  • an end protruding outward is formed at an end of the bottom case away from the second installation site, and the boss rests on a step on the inner circumferential surface of the housing;
  • the boss is provided with A plurality of first-stage pin-tooth pin bearings arranged at intervals along the circumferential direction thereof, the plurality of first-level pin-tooth pin bearings are respectively fixed to the boss through the first pin-tooth pins;
  • the plurality of first-level pin-tooth pin bearings Located on the outer periphery of the first-stage cycloid gear and meshing with the external teeth of the first-stage cycloid gear; the number of the first-stage pin gear pin bearings is one more than the external teeth of the first-stage cycloid gear .
  • an end protruding outward is formed at an end of the bottom case away from the second installation site, and the boss rests on a step on the inner circumferential surface of the housing;
  • the boss is provided with A first-level pinion shell, the first-level pinion shell is located on the outer periphery of the first-level cycloid gear and has a number of first-level pinion shell internal teeth, and the first-level pinion shell internal teeth are The external teeth of the first-stage cycloid gear mesh; the number of internal teeth of the first-stage pinion housing is one more than the external teeth of the first-stage cycloid gear.
  • an end protruding outward is formed at an end of the bottom case away from the second installation site, and the boss rests on a step on the inner periphery of the housing;
  • Three cycloidal gears the third cycloidal gear is located on the outer periphery of the first-stage cycloidal gear and has a number of internal teeth, the number of internal teeth of the third cycloidal gear is the same as the external teeth of the first-stage cycloidal gear;
  • a plurality of internal teeth of the three cycloidal gears and a plurality of external teeth of the first-stage cycloidal gears form a cycloid track, and a plurality of rolling elements are arranged in the cycloid track at intervals, the number of the rolling elements is higher than that of the first level
  • the cycloid gear has one more external tooth.
  • the rolling body is a roller or a sphere.
  • the first clutch mechanism is disposed between the first connection site and the inner peripheral surface of the housing, the first clutch mechanism includes a ring body, and a plurality of first engagement structures are arranged at intervals on the outer periphery of the ring body , The plurality of first engagement structures can engage with a plurality of first inner ratchet teeth provided on the inner circumferential surface of the casing when rotating with the ring body; the inner circumference of the ring body is nested with a third bearing, the third The bearing is sleeved on the outer periphery of the first connection part.
  • the first clutch mechanism is disposed between the first connection site and the inner circumferential surface of the housing.
  • the first clutch mechanism includes a ring body, and a one-way bearing is sleeved on the outer circumference of the ring body.
  • the one-way bearing is nested to the inner periphery of the housing; a third bearing is nested to the inner periphery of the ring body, and the third bearing is sleeved to the outer periphery of the first connection portion.
  • the ring body is provided with a plurality of second-stage pin gear pin bearings spaced along the circumferential direction thereof, and the second-stage pin gear pin bearings are fixed to the ring body through second pin gear pins, respectively;
  • the second-stage pin gear bearing is located on the outer periphery of the second-stage cycloid gear and meshes with the external teeth of the second-stage pin cycloid gear; the number of the second-stage pin gear pin bearings is higher than that of the second The number of external teeth of the grade cycloid gear is one more.
  • the ring body is provided with a second-stage pinion housing
  • the second-stage pinion housing is located on the outer periphery of the second-stage cycloid gear and has a number of second-stage pinion housing internal teeth, the A plurality of internal teeth of the second-stage pinion housing mesh with external teeth of the second-stage cycloid gear; the number of teeth of the internal teeth of the second-stage pinion housing is one more than the external teeth of the second-stage cycloid gear.
  • the reduction ratio of the first-stage cycloid gear is 1: the number of external teeth of the first-stage cycloid gear
  • the reduction ratio of the second-stage cycloid gear is 1: the number of external teeth of the second-stage cycloid gear
  • the reduction ratio of the two-stage cycloidal gear reduction mechanism is the absolute value of the reciprocal of the difference between the reciprocal of the reduction ratio of the first-stage cycloid gear and the reciprocal of the reduction ratio of the second-stage cycloid gear.
  • the plurality of first engaging structures are provided to the outer periphery of the ring body through the first spring ring;
  • the first bite structure includes a first jaw, the outer periphery of the ring body has a groove corresponding to the first jaw, the first jaw is disposed in the corresponding groove and the first jaw portion It protrudes out of the ring body for engaging with the corresponding first inner ratchet.
  • the second clutch mechanism is provided between the first end of the central shaft and the second connection site, the second clutch mechanism includes an inner ring and an outer ring sleeved on the inner ring, the inner ring sleeve is sleeved on The outer circumference of the first end of the central shaft, the outer ring nests to the inner circumference of the second connection site; the outer circumference of the inner ring is provided with a plurality of second engagement structures, the plurality of second engagement structures When rotating with the inner ring, it can be engaged with several second inner ratchet teeth provided on the inner circumference of the outer ring.
  • the plurality of second bite structures are provided to the outer periphery of the inner ring through a second spring ring; the second bite structure includes a second claw, and the outer periphery of the inner ring has the second claw In the corresponding mounting position, the second jaw is disposed in the corresponding mounting position and the second jaw partially protrudes from the inner ring for engaging with the corresponding second inner ratchet.
  • a torsion strain sleeve is provided on the outer periphery of the first end of the central shaft, one end of the torsion strain sleeve is close to the first end of the crank, and the other end extends into the first installation site.
  • the snare is provided to the outer periphery of the torsion strain sleeve.
  • a torque sensor is provided on the outer periphery of the first installation site, the torque sensor is located between the torsion strain sleeve and the stator of the eccentric motor, and the torque sensor is used to detect the torque of the torsion strain sleeve and output The corresponding electronic signal is sent to the controller.
  • controller located on the side of the second mounting part and the third mounting part, the controller is used to control the operation of the eccentric motor;
  • the controller includes a controller housing, the controller One end of the housing is mounted to the bottom case through a first detachable member, and the other end is mounted to the second mounting site and the third mounting member through a second detachable member.
  • the second mounting part and the third mounting part are respectively nested in the remote ends
  • a fourth bearing, two fourth bearings are sleeved on the outer periphery of the second end of the bottom bracket; the outer sleeve of the second end of the bottom bracket is provided with a magnetic ring and a Hall sensor, the magnetic ring and the Hall sensor are located Between the two fourth bearings, the Hall sensor is fixed to the end of the magnetic ring away from the bottom case for detecting the rotation direction and speed of the magnetic ring and outputting a corresponding electronic signal to the controller.
  • the sprocket or pulley sleeved on the outer periphery of the casing, and the sprocket or pulley can rotate with the casing. Further, there is a gap between the central shaft, the through hole, and the first mounting portion, and both ends of the gap are respectively sealed by the second clutch mechanism and a fourth bearing close to the bottom case.
  • the height of the balance weight is not greater than the height of the cycloid gear of the first stage or the cycloid gear of the second stage.
  • FIG. 1 is a schematic structural diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 2 is an exploded schematic view of the motor drive device shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of the motor drive device shown in FIG. 1;
  • FIG. 4 is a partial enlarged view of A shown in FIG. 3;
  • FIG. 6 is an explosion schematic diagram of the bottom case, boss, first-stage pin gear bearing, stator, PCB circuit board, and first fixing frame of the motor body device shown in FIG. 5;
  • FIG. 7 is an exploded schematic view of the eccentric rotor and cycloid gear reduction mechanism of one scheme of the motor drive device shown in FIG. 1;
  • FIG. 8 is a schematic cross-sectional view of the eccentric sleeve, cycloidal gear reduction mechanism and balls shown in FIG. 7;
  • FIG. 9 is a schematic structural view of the eccentric rotor and cycloidal gear reduction mechanism of another scheme of the motor drive device shown in FIG. 1;
  • FIG. 10 is an exploded schematic view of the eccentric rotor and cycloid gear reduction mechanism shown in FIG. 9;
  • FIG. 11 is a schematic diagram of the eccentric rotor and cycloid gear reduction mechanism shown in FIG. 9 after being cut away;
  • FIG. 12 is a schematic sectional view of a first alternative solution of the first-stage pin gear bearing of the motor driving device shown in FIG. 1 ;
  • FIG. 13 is a schematic cross-sectional view of a second alternative solution of the first-stage pin gear bearing of the motor drive device shown in FIG. 1;
  • FIG. 14 is a schematic structural view of the upper case, the middle shaft, the first clutch mechanism, and the second clutch mechanism of the motor drive device shown in FIG. 1;
  • Figure 15 is a schematic diagram of the explosion shown in Figure 14;
  • FIG. 16 is an exploded schematic view of the first clutch mechanism shown in FIG. 14 provided with a second fixing frame
  • FIG. 17 is a schematic structural view of the second clutch mechanism shown in FIG. 14;
  • FIG. 18 is a schematic diagram of the explosion of the second clutch mechanism shown in FIG. 14;
  • FIG. 19 is a schematic cross-sectional view of the first alternative solution of the second-stage pin gear bearing of the motor drive device shown in FIG. 1;
  • FIG. 20 is the cycloidal gear reduction mechanism shown in FIG. 1 and the first stage pin gear pin bearing, the second stage pin gear Schematic diagram of the pin bearing n- gear structure;
  • FIG. 21 is the movement principle diagram of the first-stage cycloid gear and the first-stage pin gear pin bearing of the cycloid gear reduction mechanism shown in FIG. 20;
  • FIG. 22 is the cycloid shown in FIG. 20 The movement principle diagram of the second-stage cycloid gear and the second-stage pin gear pin bearing of the gear reduction mechanism;
  • FIG. 23 is the relationship between the first clutch mechanism and the upper case when the motor drive device shown in FIG.
  • FIG. 1 has only the eccentric motor outputting power
  • FIG. 24 is the motor shown in FIG. 1
  • FIG. 25 is a state diagram between the first clutch mechanism and the upper case when the eccentric motor output power shown in FIG.
  • FIG. 26 is the state where the motor drive device shown in FIG. 1 is installed at the position of the central axis of the bicycle frame Schematic diagram;
  • FIG. 27 is a schematic structural view of the motor driving device shown in FIG. 1 after being installed at the position of the center axle of the bicycle frame.
  • a motor drive device provided by the present invention is used for mounting on a bicycle frame At the central axis position.
  • the motor body device includes a housing 10, an annular bottom case 20, a crank 30, a center shaft 40, an eccentric motor 50, a cycloid gear reduction mechanism 60, a first clutch mechanism 70, a second clutch mechanism 80, a controller 90 and 100. Chain disc or pulley 100.
  • the outer shell 10 and the bottom shell 20 are both open at one end.
  • the bottom case 20 is rotatably installed into the open end of the case 10.
  • the bottom shell bearing 23 is nested in the open end of the outer shell 10, and the bottom shell bearing 23 is sleeved on the outer periphery of the bottom shell 20, and the outer shell 10 and the bottom shell 20 can rotate relatively.
  • a mounting cavity is formed between the inner cavity of the outer shell 10 and the inner cavity of the bottom shell 20.
  • the eccentric motor 50, the cycloid gear reduction mechanism 60, the first clutch mechanism 70, and the second clutch mechanism 80 are provided in the installation cavity.
  • the first end of the crank 30 is rotatably installed in the end of the outer shell 10 away from the bottom shell 20 through a crank bearing 31.
  • the end of the outer shell 10 away from the bottom shell 20 has an axial mounting hole, a crank bearing 31 is nested in the mounting hole, and the first end of the crank 30 is nested in the crank bearing 31 so that the crank 30 can be opposite to the outer shell 10 Turn.
  • the second end of the crank 30 is used to connect a bicycle pedal.
  • the sprocket or pulley 100 is sleeved on the outer periphery of the casing 10, and the sprocket or pulley 100 can rotate with the casing 10 in the same direction.
  • the chain disc or pulley 100 is used to install a bicycle chain or belt.
  • the center shaft 40 is penetrated on the bottom case 20 along the axial direction of the bottom case 20.
  • the first end of the middle shaft 40 extends into the installation cavity and is installed into the first end of the crank 30 by means of splines, flat keys, etc.
  • the second end of the middle shaft 40 is located outside the bottom housing 20 and away from the bottom housing 20 Direction.
  • the bottom case 20 has an axial through hole for the central shaft 40 to penetrate, and the edge positions of the two ends of the through hole respectively form a first installation site 21 and a second installation site 22, and the first installation site 21 is located in the installation cavity
  • the second mounting portion 22 is located outside the bottom case 20 and is looped around the outer periphery of the second end of the center shaft 40.
  • the second mounting part 22 is screwed to the third mounting part 222, and the third mounting part 222 is looped on the outer periphery of the second end of the central shaft 40.
  • the second end of the central shaft 40 is rotatably mounted to the second mounting part 22 and the second ⁇ ⁇ ⁇ 222.
  • the second mounting portion 22 and the third mounting member 222 are used to be inserted into the central axis of the bicycle frame.
  • the second end of the bottom bracket 40 protrudes from the third mounting member 222 and is used to mount the bicycle by means of splines, flat keys, etc.
  • the crank is connected to the pedal, and the central shaft 40 can rotate in the same direction as the crank 30 synchronously.
  • the second end of the center shaft 40 and the third mounting member 222 are sealed by an oil seal 223.
  • the eccentric motor 50 is sleeved on the outer periphery of the first mounting portion 21, and the two axial ends of the eccentric motor 50 are rotatably mounted to the outer casing 10 and the bottom casing 20, respectively.
  • the cycloid gear reduction mechanism 60 is sleeved on the outer periphery of the eccentric motor 50 and can perform synchronous reverse eccentric rotation under the motion of the eccentric motor 50, and can move the first clutch mechanism 70 to make relative rotation.
  • the direction of rotation will vary depending on the number of cycloid gears 61 and 62 in the first stage.
  • the first clutch mechanism 70 and the rotor core 521 of the eccentric motor 50 rotate in the opposite direction.
  • the first clutch mechanism 70 rotates in the same direction as the rotor core 521 of the eccentric motor 50.
  • the first clutch mechanism 70 is provided around the outer periphery of the end of the eccentric motor 50 away from the bottom case 20.
  • the first clutch mechanism 70 is rotatably mounted to the housing 10 and can rotate the housing 10 synchronously and in the same direction.
  • the second clutch mechanism 80 is located on the inner side of the end of the eccentric motor 50 away from the bottom case 20 and is sleeved on the outer periphery of the first end of the central shaft 40 and is mounted to the housing 10.
  • the second clutch mechanism 80 can be synchronized with the central shaft 40 It can rotate and drive the housing 10 to rotate in the same direction at the same time.
  • the second clutch mechanism 80 is located between the first installation site 21 and the first end of the crank 30.
  • the controller 90 is located on one side of the second mounting portion 22 and the third mounting member 222, and is used to control the operation of the eccentric motor 50.
  • the controller 90 includes a controller housing 91. One end of the controller housing 91 is installed to the bottom shell 20 through the first detachable member 92, and the other end is installed to the second installation site 22 and the third installation member through the second detachable member 93. 222.
  • the housing 10 includes an upper shell 11 with one end open and connected into the open end of the upper shell 11 ⁇ ⁇ ⁇ ⁇ 12 ⁇ The cylindrical lower shell 12.
  • the upper shell 11 and the lower shell 12 are preferably threaded.
  • the end of the lower case 12 remote from the upper case 1 1 forms the open end of the case 10.
  • the sprocket or pulley 100 is sleeved on the outer periphery of the lower casing 12 and is mounted to the open end of the upper casing 11 by fasteners such as screws, etc., so that the sprocket or pulley 100 can rotate in the same direction as the casing 10 synchronously.
  • Both axial ends of the eccentric motor 50 are rotatably mounted to the upper case 11 and the bottom case 20, respectively.
  • the first clutch mechanism 70 is rotatably mounted to the upper casing 11 and can drive the upper casing 11 to rotate in the same direction in the same direction, so that the driving casing 10 can be synchronized to rotate in the same direction.
  • the second clutch mechanism 80 is mounted to the upper casing 11 and can rotate synchronously and in the same direction with the central shaft 40 and can drive the upper casing 11 to rotate synchronously and in the same direction, so that the drive casing 10 can be synchronized and rotated in the same direction.
  • the axial direction of the present invention refers to the axial direction of the motor body.
  • the motor body device of the present invention will be specifically described below.
  • the bottom inside the upper shell 11 of the outer shell 10 has a ring-shaped first connection portion 13 and a second connection portion 14.
  • the second connection site 14 is located inside the first connection site 13.
  • the eccentric motor 50 is a brushless DC motor.
  • the eccentric motor 50 includes a stator 51 sheathed on the outer periphery of the first mounting portion 21, an eccentric rotor 52 sheathed on the outer periphery of the stator 51, and a PCB circuit board 53. There is an air gap between the eccentric rotor 52 and the stator 51.
  • the first connection portion 13 is provided around the outer periphery of the end of the eccentric rotor 52 which is away from the bottom case 20.
  • the second connection portion 14 is located on the inner side of the end of the eccentric rotor 52 away from the bottom case 20 and close to the stator 51. Both ends of the eccentric rotor 52 are rotatably mounted to the inner circumference of the first connection portion 13 and the inner circumference of the bottom case 20.
  • the stator 51 includes a stator magnetic core 51 1 sleeved around the outer periphery of the first mounting portion 21 and a winding 512 wound around the stator magnetic core 51 1.
  • a first support table 513 is formed at the bottom of the bottom case 20, and the first support table 513 is looped around the outer periphery of the first mounting portion 21.
  • the stator core 511 rests on the first support table 513, thereby supporting the stator core 511.
  • the height of the first mounting portion 21 is The axial length of the core is equal.
  • the eccentric rotor 52 includes a rotor core 521 sleeved on the outer periphery of the stator 51, a plurality of magnets 522 disposed on the inner periphery of the rotor core 521 along the circumferential direction of the rotor core 521, and a magnet disposed on the rotor core 521 away from the bottom case 20
  • Several magnets 522 and stator 51 have the above-mentioned air gap.
  • the outer peripheral surface of the eccentric sleeve 524 is provided with two eccentric rings 524a '524b arranged at intervals along its axis.
  • the eccentric ring 524a '524b and the eccentric sleeve 524 are integrally formed, which is convenient for manufacturing. Understandably, the eccentric rings 524a and 524b and the eccentric sleeve 524 may also be formed separately, that is, the eccentric rings 524a and 524b are processed first, and then the eccentric rings 524a and 524b are assembled to the eccentric sleeve 524.
  • the cycloid gear reduction mechanism 60 is sleeved on the outer peripheries of the two eccentric rings 524a and 524b.
  • the magnet 522 is an electromagnet or permanent magnet.
  • the height of the balance weight 523 is not greater than the height of the first-level cycloid gear 61 or the second-level cycloid gear 62, that is, the balance weight 523 can be designed between the first-level cycloid gear 61 and the second-level Within the height range of the cycloid gear 62, axial balance is achieved.
  • the PCB circuit board 53 is sleeved on the outer periphery of the first support table 513 and supported by the second support table 54 formed at the bottom in the bottom case 20, and the second support table 54 is looped around the outer periphery of the first support table 513.
  • the PCB circuit board 53 is electrically connected to the winding 512 of the stator 51 and the controller 90, respectively.
  • the controller 90 outputs a control signal to the PCB circuit board 53, and the winding 512 receives a current through the PCB circuit board 53 to generate a magnetic field, and the rotor core 521 rotates under the action of the magnetic field of the magnet 522.
  • the rotation of the rotor core 521 drives the eccentric sleeve 524 to rotate synchronously and in the same direction. Since the outer peripheral surface of the eccentric sleeve 524 has two eccentric rings 524a and 524b, the eccentric sleeve 524 moves the cycloid gear reduction mechanism 60 to perform synchronous reverse eccentric rotation .
  • the setting of the balance weight 523 can offset the unbalanced rotation caused by the eccentricity of the eccentric sleeve 524.
  • the first bearing 525 and the second bearing 526 are sleeved on the outer circumferences of the two ends of the eccentric sleeve 524 respectively.
  • One The bearing 525 and the second bearing 526 provide rotational support for the rotation of the eccentric rotor 52.
  • the first bearing 525 and the second bearing 526 have the same structure.
  • the ball may also be other balls or spheres, including steel balls.
  • the material of the balls or balls or spheres is not limited to metal, but may also be ceramic or plastic or other materials.
  • both ends of the eccentric rotor 52 are rotatably mounted to the inner circumference of the first connection portion 13 and the inner circumference of the bottom case 20, respectively.
  • the eccentric rotor 52 includes a rotor core 521 sleeved on the outer circumference of the stator 51, a plurality of magnets 522 disposed at the inner circumference of the rotor core 521 along the circumferential direction of the rotor core 521, and two magnets formed on the outer circumferential surface of the rotor core 521
  • An eccentric ring 524a, 524b and a balance weight 523 formed on the outer peripheral surface of the rotor core 521.
  • a number of magnets 522 and stator 51 have the air gap.
  • the two eccentric rings 524a and 524b are arranged at intervals along the axial direction of the rotor core 521.
  • the weight 523 is located between the sides of the two eccentric rings 524a and 524b that are biased toward the outer peripheral surface of the rotor core 521.
  • the first end 525 of the rotor core 521 is sleeved with a first bearing 525, the other end of the rotor core 521 is nested with a second bearing 526, the first bearing 525 is nested with the inner circumference of the bottom shell 20, and the second bearing 526 is sleeved To the inner periphery of the first connection site 13.
  • the cycloidal gear reduction mechanism 60 is a two-stage cycloidal gear reduction mechanism, used to reduce the speed of the eccentric motor 50 output speed, and can provide a wide range of reduction ratios, the reduction ratio can reach 1: 5-1: 150.
  • the two-stage cycloid gear reduction mechanism includes a first-stage cycloid gear 61 and a second-stage cycloid gear 62 that are stacked together in the axial direction.
  • the first-stage cycloid gear 61 and the second-stage cycloid gear 62 are sleeved on the outer peripheries of the two eccentric rings 524a '524b, respectively. Therefore, the first-stage cycloid gear 61 and the second-stage cycloid gear 62 have the same eccentricity.
  • the first-stage cycloid gear 61 and the second-stage cycloid gear 62 are One-piece molding, easy to manufacture. Understandably, the first-stage cycloid gear 61 and the second-stage cycloid gear 62 may also be formed separately, and the two are stacked together by fasteners or the like.
  • the first-stage cycloid gear 61 and the second-stage cycloid gear 62 are formed separately.
  • the first-stage cycloid gear 61 and the second-stage cycloid gear 62 have several external teeth 61 1 and 621 respectively, and the external teeth 61 1 of the first-stage cycloid gear 61 are counted with the external teeth 621 of the second-stage cycloid gear 62
  • the numbers are different.
  • the center of the cycloid gear 61 of the first stage and the cycloid gear 62 of the second stage are on the same straight line, so that the eccentricity of the two is the same.
  • the number of external teeth 61 1 of the first-stage cycloid gear 61 is smaller than the number of external teeth 621 of the second-stage cycloid gear 62.
  • the cycloidal movement speed of the first-stage cycloidal gear 61 and the second-stage cycloidal gear 62 will be decelerated relative to the rotation speed of the rotor core 521, the value of the reduction ratio is the same as the number of teeth on the gear, and the external teeth of the two are different Therefore, the reduction ratio of the first-stage cycloid gear 61 is 1: the number of the external teeth 61 of the first-stage cycloid gear 61, and the reduction ratio of the second-stage cycloid gear 62 is 1: the external of the second-stage cycloid gear Number of teeth 621, the reduction ratio of the two-stage cycloidal gear reduction mechanism is the absolute value of the reciprocal of the difference between the reciprocal of the reduction ratio of the first-stage cycloidal gear 61 and the reciprocal of the reduction ratio of the second-stage cycloidal gear 62, for example Assuming that the reduction ratio of the first-stage cycloid gear 61 is X and the reduction ratio of the second-
  • the number of external teeth 61 1 of the first-stage cycloid gear 61 is 14 and the number of external teeth 621 of the second-stage cycloid gear 62 is 17. Therefore, the reduction ratio of the first-stage cycloid gear 61 is 1:14, the reduction ratio of the second-stage cycloid gear 62 is 1:17, and the reduction ratio of the second-stage cycloid gear reduction mechanism is 79. 3 times. Therefore, the rotational speed of the eccentric motor 50 can be reduced by 79.3 times after being decelerated by the two-stage cycloidal gear reduction mechanism.
  • the cycloid gear reduction mechanism 60 can move the first clutch mechanism 70 the same Step reverse rotation, so that the rotational speed of the eccentric motor 50 is 79.3 times greater than the rotational speed of the first clutch mechanism 70, and the rotational torque of the first clutch mechanism 70 is also amplified by 79.3 times.
  • the original rotational speed and torque of the eccentric motor 50 are 6000 rpm (revolutions per minute) and 1.5 N.m. (Newton meters)
  • the output of the first clutch mechanism 70 The rotation speed and torque are 75.7 rpm and 1 19 N.m. respectively, so as to achieve the power requirements suitable for the installation of a central motor for bicycles.
  • first-stage cycloid gear 61 and the second-stage cycloid gear 62 are sleeved on the outer peripheries of the two eccentric rings 524a and 524b through needle bearings or ball bearings 64 (see FIGS. 10 and 11), respectively.
  • the outer circumferences of the two eccentric rings 524a and 524b are sleeved with needle bearings or ball bearings 64, respectively, and the first-stage cycloid gear 61 and the second-stage cycloid gear 62 are sleeved with the needle bearings or ball bearings 64, respectively.
  • the two eccentric rings 524a and 524b When the two eccentric rings 524a and 524b rotate with the rotor core 521, the two eccentric rings 524a and 524b can drive the first-stage cycloid gear 61 and the second-stage pendulum through needle bearings or ball bearings 64, respectively The wire gear 62 simultaneously rotates in reverse eccentricity.
  • no needle bearing or ball bearing 64 is provided between the first-stage cycloid gear 61 and the second-stage cycloid gear 62 and the two eccentric rings 524a, 524b, And between the first-stage cycloid gear 61 and the second-stage cycloid gear 62 and the two eccentric rings 524a, 524b is provided with a number of rolling elements 63, such as balls, the first stage can also be driven by two eccentric rings 524a, 524b
  • the cycloid gear 61 and the second-stage cycloid gear 62 are synchronously reversed and eccentrically rotated.
  • a boss 24 protruding outward is formed, and the boss 24 rests on a step on the inner circumferential surface of the lower shell 12 of the housing 10.
  • the boss 24 is provided with a plurality of first-stage pin gear bearings 25 spaced along its circumferential direction.
  • a plurality of first-stage pin gear bearings 25 are fixed to the boss 24 through the first pin gear pins 251, respectively.
  • a plurality of first-stage pin gear pin bearings 25 are located on the outer periphery of the first-stage cycloid gear 61 and mesh with the external teeth 611 of the first-stage cycloid gear 61, as shown in FIG.
  • first-stage pin gear bearings 25 are fixed to the boss 24 through the first fixing frame 252 (see Figure 5 and Figure 6).
  • first fixing frame 252 is fixed to the side of the boss 24 by fasteners
  • first pin pin 251 is fixed to the boss 24 at one end
  • the other end is fixed to the first fixing frame 252
  • first-stage pin pin The bearing 25 is sleeved on the outer periphery of the corresponding first pin 251 and is located inside the first fixing frame 252.
  • the first The low-speed rotation of the first-stage cycloid gear 61 transmits the power transmitted to the first pin gear 251 without turning the boss 24, that is, the first-stage pin gear bearing 25 rotates around the center of the corresponding first pin gear 251 It will not revolve around the center of the cycloid gear 61 of the first stage.
  • the number of pin gear bearings 25 of the first stage is one more than the external teeth 611 of the cycloid gear 61 of the first stage. In this embodiment, the number of the external teeth 61 1 of the first-stage cycloid gear 61 is 14 and the number of the first-stage pin gear bearings 25 is 15.
  • the movement principle of the first-stage cycloid gear 61 and the first-stage pin gear pin bearing 25 is: for example, the number of external teeth 61 1 of the first-stage cycloid gear 61 is 14, assuming 21, a, b, and c are the starting time of the rotation of the eccentric rotor 52 of the eccentric motor 50, the time when the eccentric rotor 52 rotates 180 degrees clockwise, and the time when the eccentric rotor 52 rotates clockwise 360 degrees.
  • the four consecutive external teeth 611 on the first-stage cycloid gear 61 are named 1, 2, 3, 4, respectively, and the first-stage pin gear pin bearings 25 near the four external teeth 1, 2, 3, 4 are named. For 5, 6, 7, 8, from 8, 13 ,.
  • the boss 24 is provided with a first-stage pinion housing 26, which is located on the outer periphery of the first-stage cycloid gear 61 and has a number of first Grade needle tooth shell internal tooth 261.
  • a number of internal teeth 261 of the first-stage pin gear housing mesh with the external teeth 61 1 of the first-stage cycloid gear 61.
  • the number of internal teeth 261 of the first-stage pinion housing is one more than the number of external teeth 61 of the first-stage cycloid gear 61.
  • the first-stage pinion housing 26 can achieve the same technical effects as several first-stage pin-pin bearings 25.
  • the number of external teeth 61 1 of the first-stage cycloid gear 61 is 14 and the number of internal teeth 261 of the first-stage pinion housing is 15.
  • a third cycloid gear 27 is provided on the boss 24, and the third cycloid gear 27 is located on the outer periphery of the first-stage cycloid gear 61 and has a number of internal teeth 271,
  • the number of internal teeth 271 of the third cycloid gear 27 is the same as the number of external teeth 611 of the first-stage cycloid gear 61.
  • a plurality of internal teeth 271 of the third cycloid gear 27 and a plurality of external teeth 61 1 of the first-stage cycloid gear 61 form a cycloid track 272, and a plurality of rolling bodies 273 are arranged at intervals in the cycloid track 272.
  • the number is one more than the external teeth 61 of the first-stage cycloid gear 61.
  • Several rolling elements 273 can achieve the same technical effects as several first-stage pin gear bearings 25.
  • the number of external teeth 61 1 of the first-stage cycloid gear 61 is 14, and the number of rolling bodies 273 is 15.
  • the rolling element 273 is a roller. Understandably, the rolling body 273 may also be a sphere, for example, a steel ball, a ceramic ball, or the like.
  • the first clutch mechanism 70 is provided between the first connection portion 13 and the inner peripheral surface of the upper shell 11 of the outer shell 10.
  • the first clutch mechanism 70 includes a ring body 71.
  • the outer circumference of the ring body 71 is provided with a plurality of first engagement structures at intervals, and the first engagement structures can be engaged with the plurality of first inner ratchet teeth 15 provided on the inner circumferential surface of the upper shell 11 of the outer shell 10 when rotating with the ring body 71, thereby achieving
  • the upper casing 11 is driven to rotate synchronously in the same direction, so that the first casing mechanism 70 realizes the synchronized rotation of the casing 10 in the same direction.
  • a third bearing 72 is nested on the inner circumference of the ring body 71.
  • the third bearing 72 is sleeved on the outer circumference of the first connection portion 13.
  • the third bearing 72 provides rotational support for the ring body 71.
  • the ring body 71 is provided with a plurality of second-stage pin gear bearings 73 arranged at intervals along its circumferential direction.
  • a plurality of second-stage pin gear bearings 73 are fixed to the ring body 71 via second pin teeth 731, respectively.
  • the second-stage pin gear bearing 73 is located on the outer periphery of the second-stage cycloid gear 62 and meshes with the external teeth 621 of the second-stage cycloid gear 62, as shown in FIG.
  • a plurality of second-stage pin gear bearings 73 are fixed to the ring body 71 through a second fixing frame 732 (see FIG. 16).
  • the second fixing frame 732 is fixed to the side surface of the ring body 71 by fasteners
  • the second pin gear pin 731 is fixed to the ring body 71 at one end
  • the other end is fixed to the second fixing frame 732
  • the second stage pin gear pin The bearing 73 is sleeved on the outer periphery of the corresponding second pin pin 731 and is located inside the second fixing frame 732.
  • the low-speed rotation of the second-stage cycloid gear 62 is transmitted to The second pin gear pin 731, thereby driving a plurality of second-stage pin gear pin bearings 73 to rotate synchronously and reversely around the center of the second-stage cycloid gear 62, that is, the second-stage pin gear pin bearing 73 surrounds the corresponding second pin
  • the tooth pin 731 rotates and revolves around the central axis 40 along the circumferential direction of the second-stage cycloid gear 62.
  • the number of second-stage pin gear bearings 73 is one more than the number of external teeth 621 of the second-stage cycloid gear 62. In this embodiment, the number of external teeth 621 of the second-stage cycloid gear 62 is 17 and the number of second-stage pin gear bearings 73 is 18.
  • the movement principle of the second-stage cycloid gear 62 and the second-stage pin gear bearing 73 is as follows: for example, the number of external teeth 621 of the second-stage cycloid gear 62 is 17, assuming the diagram
  • the three figures d, e, and f in FIG. 22 are the starting time of the rotation of the eccentric rotor 52 of the eccentric motor 50, the time when the eccentric rotor 52 rotates 180 degrees clockwise, and the time when the eccentric rotor 52 rotates clockwise 360 degrees.
  • Secondary cycloid The four consecutive external teeth 621 on the gear 62 are named 1, 2, 3, 4, respectively, and the second-stage pin gear bearing 73 near the four external teeth 1, 2, 3, 4 is named 5, 6, respectively.
  • the first clutch mechanism drives the upper shell 11 to rotate synchronously in the same direction, that is, the body casing 10 rotates synchronously in the same direction.
  • the ring body 71 is provided with a second-stage pinion housing 74.
  • the second-stage pinion housing 74 is located on the outer periphery of the second-stage cycloid gear 62 and has a number of second Internal teeth
  • a number of second-stage pin gear shell internal teeth 741 mesh with the external teeth 621 of the second-stage cycloid gear 62.
  • Second The level pin gear shell 74 can achieve the same technical effect as a number of second level pin gear bearings 73.
  • the number of internal teeth 741 of the second-stage pinion housing is one more than the number of external teeth 621 of the second-stage cycloid gear 62. In this embodiment, the number of external teeth 621 of the second-stage cycloid gear 62 is 17, and the number of internal teeth 741 of the second-stage pinion housing is 18.
  • a fourth cycloid gear is provided on the ring body 71, the fourth cycloid gear is located on the outer periphery of the second-stage cycloid gear 62 and has a number of internal teeth 621, the number of internal teeth of the fourth cycloid gear The number of external teeth 621 is the same as the second-stage cycloid gear 62.
  • a plurality of internal teeth of the fourth cycloidal gear and a plurality of external teeth 621 of the second-level cycloidal gear 62 form a cycloidal track, and a plurality of rolling elements are arranged in the cycloidal track at intervals, the number of rolling elements is higher than that of the second-level cycloid
  • the number of external teeth 621 of the linear gear 62 is one more.
  • Several rolling elements can achieve the same technical effects as several second-stage pin gear bearings 73.
  • the number of external teeth 621 of the second-stage cycloid gear 62 is 17 and the number of rolling elements is 18.
  • the structure of this second alternative is similar to the structure of the second alternative of the first-stage pin gear bearing 25.
  • the rolling element is a roller.
  • the rolling body may also be a sphere, such as a steel ball, a ceramic ball, and so on.
  • the first engaging structure includes a first claw 76, and the outer circumference of the ring body 71 has a groove 71 1 corresponding to the first claw 76, the first claw 76 is disposed in the corresponding groove 71 1 and the first claw 76 Part of it protrudes from the ring body 71 for engaging with the corresponding first inner ratchet 15.
  • a number of first claws 76 are pressed by a number of first internal ratchet teeth 15 on the inner circumferential surface of the upper shell 11, and a first spring ring 75 is pressed by a number of first claws 76.
  • the number of the first claws 76 is seven.
  • the first jaw 76 is connected by two Is composed of the sub-jaws, and the first spring ring 75 is set between the two sub-jaws.
  • first engagement structures provided on the outer periphery of the ring body 71 can also be replaced by unidirectional bearings.
  • the outer periphery of the ring body 71 is provided with a one-way bearing, and the one-way bearing is nested into the inner periphery of the upper shell 1 1.
  • the first clutch mechanism 70 can also drive the housing 10 to rotate in the same direction in the same direction.
  • first engagement structures provided on the outer circumference of the ring body 71 can also be replaced by axial ratchets provided on the end of the ring body 71 close to the upper shell 11.
  • the bearing ratchets are used to inner ratchet 150 one tooth.
  • the bearing ratchet meshes with the first inner ratchet teeth 15 on the inner peripheral surface of the upper shell 1 1, so that the first clutch mechanism 70 can also drive the housing 10 to rotate in the same direction in the same direction.
  • the second clutch mechanism 80 is provided between the first end of the central shaft 40 and the second connecting portion 14.
  • the second clutch mechanism 80 includes an inner ring 81 and an outer ring 82 sleeved on the inner ring 81.
  • the inner ring 81 is sleeved on
  • the outer circumference of the first end of the middle shaft 40 and the outer ring 82 are nested to the inner circumference of the second connection portion 14.
  • the outer ring 82 is screwed to the second connection portion 14.
  • the outer circumference of the inner ring 81 is provided with a plurality of second engagement structures at intervals, and if the second engagement structure rotates with the inner ring 81, it can engage with the second inner ratchet teeth 821 provided on the inner circumference of the outer ring 82.
  • the central shaft 40 When the central shaft 40 rotates synchronously and in the same direction with the crank 30, the central shaft 40 can drive the inner ring 81 to rotate synchronously and in the same direction, and several second engaging structures engage with several second inner ratchet teeth 821, thereby driving the outer ring 82 to rotate synchronously and in the same direction
  • the outer ring 82 Since the outer ring 82 is nested into the inner periphery of the second connecting portion 14, under the action of the second connecting portion 14, the outer ring 82 drives the upper shell 1 1 of the outer shell 10 to rotate synchronously in the same direction, thereby finally achieving the second clutch mechanism 80 drives the housing 10 to rotate synchronously in the same direction. Since the inner circumference of the outer ring 82 is provided with an inner ratchet structure, the inner ring 81 can only drive the outer ring 82 to rotate in one direction.
  • the power output by the present invention to the upper casing 1 1 of the casing 10 includes motor output, human power output, and a combination of motor output and human power output.
  • the first clutch mechanism 70 drives the upper shell 11 to rotate synchronously in the same direction
  • the outer ring 82 will follow the upper shell 11 in the same direction.
  • crank 30 drives the central shaft 40 to rotate synchronously and in the same direction, and the central shaft 40 drives the inner ring 81 to rotate synchronously and in the same direction. It will engage with a number of second inner ratchet teeth 821 provided on the inner circumference of the outer ring 82 to drive the outer ring 82 to rotate in the same direction in the same direction, and the upper shell 11 will rotate in the same direction with the outer ring 82 in the same direction.
  • the first clutch mechanism 70 Since the first clutch mechanism 70 is in a stationary state, the rotation speed of the upper shell 11 is greater than the rotation speed of the first clutch mechanism 70, the first inner ratchet teeth 15 on the inner circumferential surface of the upper shell 11 will not be The engaging structure engages so that the first clutch mechanism 70 does not rotate, that is, the power output by the human power through the crank 30 is not transmitted to the first clutch mechanism 70 and the eccentric motor 50.
  • the upper case 11 can be driven simultaneously by the outer ring 82 of the first clutch mechanism 70 and the second clutch mechanism 80, thereby reducing the number of first The power output by the clutch mechanism 70 and the second clutch mechanism 80 respectively.
  • a plurality of second engagement structures are provided to the outer periphery of the inner ring 81 through the second spring ring 83.
  • the second engaging structure includes a second jaw 84, an outer periphery of the inner ring 81 has an installation position 81 1 corresponding to the second jaw 84, the second jaw 84 is disposed in the corresponding installation position 81 1 and the second jaw 84 Part of it protrudes from the inner ring 81 for engaging with the corresponding second inner ratchet 821.
  • the number of the second claws 84 is three.
  • the second jaw 84 is composed of two sub-jaws connected together, and the second spring ring 83 is placed between the two sub-jaws.
  • second engagement structures provided on the outer periphery of the inner ring 81 can also be replaced by unidirectional bearings.
  • the outer circumference of the inner ring 81 is provided with a one-way bearing.
  • the one-way bearing is nested in the inner circumference of the outer ring 82.
  • the second clutch mechanism 80 can also drive the housing 10 to rotate synchronously and in the same direction.
  • second engagement structures provided on the outer circumference of the inner ring 81 can also be replaced by axial ratchets provided on the end of the inner ring 81 close to the upper shell 1 1, and the bearing ratchets are used for the second The inner ratchet 821 meshes.
  • the bearing ratchet meshes with the second inner ratchet 821 on the inner circumference of the outer ring 82, so that the second clutch mechanism 80 can also drive the housing 10 to rotate synchronously in the same direction.
  • the second clutch mechanism 80 can be replaced with a one-way bearing.
  • the outer periphery of the first end of the central shaft 40 is provided with a torsion strain sleeve 41, one end of the torsion strain sleeve 41 is close to the first end of the crank 30, and the other end extends into the first mounting portion 21, the inner ring 81
  • the outer periphery of the torque strain sleeve 41 is sleeved.
  • a torque sensor is provided on the outer periphery of the first installation site 21, and the torque sensor is located between the torque strain sleeve 41 and the stator 51 of the eccentric motor 50. The torque sensor is used to detect the torque of the torque strain sleeve 41 and output a corresponding electronic signal to the controller 90 .
  • a second bearing 221 is nested in an end of the second mounting portion 22 and the third mounting member 222 that are away from each other.
  • Two fourth bearings 221 are sleeved on the outer periphery of the second end of the central shaft 40.
  • Two fourth bearings 221 are paired
  • the center shaft 40 provides rotational support so that the center shaft 40 can rotate relative to the second mounting portion 22 and the third mounting member 222.
  • the outer circumference of the second end of the central shaft 40 is provided with a magnetic ring 43 and a Hall sensor 44. The magnetic ring 43 and the Hall sensor 44 are located between the two fourth bearings 221.
  • the Hall sensor 44 is fixed to the bottom of the magnetic ring 43 away from the bottom
  • One end of the housing 20 is used to detect the rotation direction and speed of the magnetic ring 43 and output corresponding electronic signals to the controller 90.
  • the controller 90 may output a corresponding control signal to the eccentric motor 50 according to the torque magnitude of the torque strain sleeve 41 detected by the torque sensor and the rotation direction and speed of the magnetic ring 43 detected by the Hall sensor 44 to provide the rider with appropriate power.
  • a gap 45 is provided between the center shaft 40 and the through hole and the first mounting portion 21, and both ends of the gap 45 are sealed by the second clutch mechanism 80 and the fourth bearing 221 near the bottom case 20, respectively. Since the winding 512 of the stator 51 generates heat when the eccentric motor 50 is in operation, the heat conduction fluid can be filled between the gaps 45 to dissipate heat from the stator 51 and improve the working efficiency of the eccentric motor 50.
  • crank bearing 31, the bottom shell bearing 23, the first bearing 525, the second bearing 526, the third bearing 72, etc. of the present invention are preferably ball bearings, and understandably, other types of bearings are also possible.
  • the two fourth bearings 221 are preferably a combination of ball and needle bearings.
  • the assembly process of the present invention is as follows: first, the stator 51 of the eccentric motor 50 and the PCB circuit board 53 are installed in the bottom shell 20, so that the stator 51 is sleeved on the outer periphery of the first installation site 21, and the PCB circuit board 53 is sleeved on the first support The periphery of the table 513.
  • Several first-stage pin gear bearings 25 are mounted to the boss 24 through the corresponding first pin gear pins 251, and after installation, they can be defined as the first sub-assembly, as shown in FIGS. 2, 5, and 6.
  • the cycloid gear reduction mechanism 60 is sleeved on the outer periphery of the eccentric rotor 52 of the eccentric motor 50, and after installation, it can be defined as a second sub-assembly assembly, as shown in FIGS. 2 and 7, the second sub-assembly assembly Installed in the first sub-assembly, that is, the second sub-assembly is assembled to the outer periphery of the stator 51 and installed to the bottom shell 20 through the first bearing 525, so that the first-stage pin gear bearing 25 is located in the first-stage cycloid gear 61 Outer periphery.
  • the first clutch mechanism 70 is installed between the inner peripheral surface of the upper case 11 and the first connecting portion 13 through the third bearing 72 so that the second-stage pin gear bearing 73 is located on the outer periphery of the second-stage cycloid gear 62 ,
  • the torsion strain sleeve 41 is sleeved to the outer periphery of the first end of the central shaft 40, and the inner ring 81 of the second clutch mechanism 80 is sleeved to the torsion force
  • the outer circumference of the variable sleeve 41, the outer ring 82 of the second clutch mechanism 80 is sleeved on the outer circumference of the inner ring 81 and is mounted to the inner circumference of the second connecting portion 14, after installation, it can be defined as the third sub-assembly assembly, such as Figures 2, 9 and 10 are shown.
  • Figures 26 and 27 show schematic views of the motor drive device of the present invention installed at the position of the center axle of the bicycle frame 110.
  • first remove the original center axle of the bicycle frame 1 10 remove the second detachable member 93 of the motor driving device of the present invention, and insert the second installation site 22 and the third installation member 222 Installed at the position of the central axis of the bicycle frame 110, so that the controller housing 91 abuts the bicycle frame 110, and then install the second detachable member 93 back to the controller housing 91 and the third mounting member 222
  • the motor driving device of the present invention is installed at the position of the center axle of the bicycle frame 1 10.
  • the controller housing 91 of the present invention abuts against the bicycle frame 110 as a force arm, which can counteract the reaction torque generated when the eccentric rotor 52 of the eccentric motor 50 rotates and the casing 10 rotates to drive the chain or belt.
  • the working principle of the motor of the present invention to output power to the housing 10 is that the controller 90 generates a control signal according to the electronic signals output by the torque sensor, the Hall sensor 44 and other detection components and controls the operation of the eccentric motor 50, and the eccentric rotor 52 body of the eccentric motor 50
  • the movable cycloid gear reduction mechanism 60 synchronizes reverse eccentric rotation
  • the external teeth 61 1 of the first-stage cycloidal gear 61 of the cycloidal gear reduction mechanism 60 meshes with a number of first-stage pin gear bearings 25 to achieve the first-stage reduction.
  • the second-stage cycloidal gear of the cycloidal gear reduction mechanism 60 The external teeth 621 of 62 mesh with a plurality of second-stage pin gear bearings 73 of the first clutch mechanism 70 to achieve a second-stage deceleration.
  • Several second-stage pin gear bearings 73 are in contact with the external teeth of the second-stage cycloid gear 62 621 When engaged, it also makes a synchronous reverse circular movement around the center of the second-stage cycloid gear 62, and under the action of the corresponding second pin gear 731, the ring body 71 of the first clutch mechanism 70 is driven to rotate synchronously in the same direction.
  • the working principle of the manpower of the present invention to output power to the housing 10 through the crank 30 is as follows: the rider rotates the crank 30 by turning the pedal, and the central shaft 40 rotates in the same direction with the crank 30 synchronously.
  • the inner ring 81 of the second clutch mechanism 80 rotates synchronously and in the same direction with the central shaft 40.
  • the upper housing 11 When only the motor outputs power to the housing 10, the upper housing 11 will drive the outer ring 82 of the second clutch mechanism 80 to rotate synchronously in the same direction. Since the inner ring 81 of the second clutch mechanism 80 is at rest, the rotation of the outer ring 82 If the speed is greater than the rotation speed of the inner ring 81, the number of second engagement structures provided on the outer circumference of the inner ring 81 will not engage with the number of second inner ratchet teeth 821 on the inner circumference of the outer ring 82, that is, the outer ring 82 will not drive the inner ring 81 in the same direction Rotation, that is, the central shaft 40 and the crank 30 will not rotate, and the power output by the motor will not be transmitted to the central shaft 40 and the crank 30.
  • the outer ring 82 When only human power outputs power to the housing 10 through the crank 30, the outer ring 82 will drive the upper housing 1 1 to rotate synchronously in the same direction. Since the first clutch mechanism 70 is at a standstill, the rotation speed of the upper housing 1 1 is greater than that of the first clutch mechanism 70 The rotation speed of the ring body 71, the number of first engaging structures provided on the outer periphery of the ring body 71 will not engage with the number of first inner ratchet teeth 15 on the inner periphery of the upper shell 1 1, that is, the upper shell 11 will not drive the ring body 71 to rotate synchronously in the same direction That is, the first clutch mechanism 70 will not rotate, and the power output by human power will not be transmitted to the first clutch mechanism 70 and the eccentric motor 50.
  • the motor output and human power output through the crank 30 can simultaneously move the upper shell 1 1 that is, the housing rotates 10 times, this In this case, the power output by the motor and the power output by the manpower through the crank 30 can be simultaneously reduced.
  • the device of the present invention can be adapted to the current standard bicycle sprocket or belt driven bicycle.
  • the sprocket is not limited to 130 BCD 5 holes, 104 BCD 4 holes, 135 BCD 5 holes or pulleys.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种电机驱动装置,包括外壳(10)、可转动地安装到外壳(10)的开口端内的底壳(20)和曲柄(30),外壳(10)和底壳(20)之间形成安装腔,曲柄(30)的第一端可转动地安装到外壳(10)的远离所述底壳(20)的一端内,包括沿底壳(20)的轴向并穿设在底壳(20)上的中轴(40)以及设置在安装腔内的偏心电机(50)、摆线齿轮减速机构(60)、第一离合机构(70)和第二离合机构(80);中轴(40)的第一端伸入安装腔内并安装到曲柄(30)的第一端内;偏心电机(50)的两端分别可转动地安装到外壳(10)和底壳(20);摆线齿轮减速机构(60)套设到偏心电机(50)的外周;第一离合机构(70)可转动地安装到外壳(10)并可驱动外壳(10)转动;第二离合机构(80)套设到中轴(40)的第一端的外周,且安装到所述外壳(10);该装置可安装到现有自行车车架中轴位置。

Description

一种电机驱动裝置
【技术领域】
本发明涉及一种电机驱动装置, 尤其是涉及一种可安装于现有自行车车架 中轴位置处的电机躯动装置。
【背景技术】
在欧美国家,不少热衷山地自行车的玩家也添置了电动越野自行车 , 形成 一种新的运动热潮 ,祢为电动山地车的运动 (E-MTB)。其中 , 装置了中置电机 的自行车一般扭矩比其他电动自行车大, 可以在路况复杂的路段行驶,尽情攀 山涉水。 此外,装置了中置电机***的自行车也十分适用于路况复杂的城市通 勤,在灵活性,体积 , 重量等都比电单车和汽车更吸引 ,成为城市可持续发展 的个人交通工具的重要领域。
但主要现成的限制在于这种电动中置自行车普遍售价较高 , 需要特别设计 的车架安装, 不能随时还原成普通自行车。对于本来拥有高性能自行车的人, 他们比较倾向把电机***安装在他们的自行车上。 过去的解决方法主要有以下几种:
1. 重新设计自行车车架 ,该车架可装配一个中置电机以提供动力 ,如 Bosch, Yamaha ebike的设计。
2. 不重新设计车架 ,在自行车的前轮或后轮处安装一个电机,此设计统祢为 轮毂电机 ( Hub motor ) °
i 3. 不重新设计车架 ,外置一个电机置于自行车三角架处,如八方电机的设计, 此设计统祢为中置电机,安装在自行车中轴附近的中置电机能结合人力 , 带动自行车 , 一般能提供更高的效率。 以上所述的各设计缺点如下:
方法一 :
a. 此设计不能适用现成自行车车架 , 限制了使用范围 。
b. 成本高 , 重量和结构都比较大。 方法二:
a. 不论电机装在自行车前轮或后轮,任何形式的轮毂电机都会对整体车架的 平衡作用有不良影响,影响自行车操控性和安全性。
b. 装在自行车前或后轮的轮毂电机是比较常用和传统的设计,通常有两款类 型 , 包括直接躯动和带减速齿轮版本。直接躯动的轮毂电机在相同重量下 仅能提供较低的扭矩以及需要较高电流驱动。带齿轮的轮毂电机多使用行 星减速***进行减速,以提高输出扭矩。对于相同的扭矩输出 ,使用行星 减速***的轮毂电机所需的重量和尺寸较小。然而 ,不论装在自行车前轮 或后轮,任何形式的轮毂电机都会对整体车架的平衡作用有不良影响 ,影 响自行车操控性和安全性。 方法三 :
a. 中轴电机通常安装在自行车车架中轴的下方或前方,这种设计会很大程度 上增加了车架中轴部位的尺寸。
b. 中轴电机亦需要额外的传动件把电机的机械功率传递至自行车中轴的链 盘。 C. 这款外置的中轴电机受到撞击的机会增加,容易受损。 上述各设计方法的总体缺点是:
a. 以上所述的三种方法多使用渐开线齿轮或行星减速等传统的减速机械结 构 ,由于尺寸限制 ,每级减速比通常最高限制在 1 : 10,需要多级减速才能 达到所需的减速比,这样的机械结构增加了整体电机的尺寸、重量、成本 和复杂性,影响了结构稳定性及减低了整体传动效率。 b. 普遍的减速机设计通常放置在电机的轴向方向 , 亦增加了轴向空间的需 求。 因此, 我们的目标为设计一个高扭矩, 结构尺寸紧凑的自行车中置电机驱 动装置。可以随时安装在现有自行车车架上,在骑行时候提供动力 , 既可保留 原有的骑行乐趣,提供的动力亦可大大延长骑行旅程,去除普通自行车对于速 度,和体力的限制 ,提供新一种骑行体验, 亦作为一种可持续发展的个人交通 工具。
【发明内容】
本发明的目的在于克服上述技术的不足,提供一种高扭矩、体积小、 重量 轻、成本低、可安装在现有自行车车架中轴位置处的电机驱动装置。 本发明提供的一种电机驱动装置, 包括外壳、可转动地安装到外壳的开口 端内的底壳和曲柄 ,所述外壳和底壳之间形成安装腔,所述曲柄的第一端可转 动地安装到所述外壳的远离所述底壳的一端内 , 包括沿所述底壳的轴向并穿设 在底壳上的中轴以及设置在所述安装腔内的偏心电机、摆线齿轮减速机构、 第 一离合机构和第二离合机构 ;所述中轴的第一端伸入所述安装腔内并安装到所 述曲柄的第一端内 , 中轴的第二端 $于所述底壳的外部并朝远离底壳的方向延 伸 , 中轴可随曲柄转动;所述偏心电机环设在所述中轴的第一端的外周 ,且偏 心电机的两端分别可转动地安装到外壳和底壳 ;所述摆线齿轮减速机构套设到 所述偏心电机的外周且可在偏心电机的躯动下作偏心转动, 并可躯动所述第一 离合机构转动;所述第一离合机构环设在所述偏心电机的远离所述底壳的一端 的外周 , 第一离合机构可转动地安装到所述外壳并可驱动外壳转动;所述第二 离合机构位于所述偏心电机的远离所述底壳的一端的内侧并套设到所述中轴的 第一端的外周 ,且安装到所述外壳 , 第二离合机构可随中轴转动并可驱动外壳 转动。
进一步地,所述底壳具有供所述中轴穿设的轴向的通孔,所述通孔的两端 边缘位置分别形成第一安装部位和第二安装部位,所述第一安装部位位于所述 安装腔内并环设在所述中轴的第一端的外周 ,所述第二离合机构位于第一安装 部位与所述曲柄的第一端之间 ,所述第二安装部位位于所述底壳的外部并环设 在所述中轴的第二端的外周 , 第二安装部位连接有第三安装件 ,所述第三安装 件环设在中轴的第二端的外周 , 中轴的第二端可转动地安装到第二安装部位和 第三安装件且中轴的第二端端部凸出于第三安装件;所述偏心电机套设到所述 第一安装部位的外周 。
进一步地,所述外壳内的底部具有环状的第一连接部位和第二连接部位, 所述第二连接部位位于所述第一连接部位的内侧。
进一步地,所述偏心电机包括套设到所述第一安装部位外周的定子、套设 到定子外周的偏心转子,所述偏心转子和所述定子之间具有气隙 ;所述第一连 接部位环设在所述偏心转子的远离所述底壳的一端的外周 ,所述第二连接部位 位于所述偏心转子的远离所述底壳的一端的内侧并靠近所述定子 ,偏心转子的 两端分别可转动地安装到所述第一连接部位的内周和所述底壳的内周 。 进一步地,所述偏心转子包括套设到所述定子外周的转子磁芯、沿转子磁 芯的周向间隔设置在转子磁芯内周的若干磁体、设置在转子磁芯的靠近外壳的 一端内的平衡块以及套设到转子磁芯外周的偏心套,所述若干磁体与所述定子 之间具有所述气隙;所述偏心套的外周面设有两个沿其轴向间隔排列的偏心环。
进一步地,所述偏心套的两端外周分别套设有第一轴承、 第二轴承,所述 第一轴承嵌套到所述底壳的内周 ,所述第二轴承嵌套到所述第一连接部位的内 周 。
进一步地,所述偏心电机包括套设到所述第一安装部位外周的定子、套设 到定子外周的偏心转子,所述偏心转子和所述定子之间具有气隙 ;所述第一连 接部位环设在所述偏心转子的远离所述底壳的一端的外周 ,所述第二连接部位 位于所述偏心转子的远离所述底壳的一端的内侧并靠近所述定子 ,偏心转子的 两端分别可转动地安装到第二连接部位的外周和底壳的内周 。
进一步地,所述偏心转子包括套设到所述定子外周的转子磁芯、沿转子磁 芯的周向间隔设置转子磁芯内周的若干磁体、形成在转子磁芯外周面的两个偏 心环以及形成在转子磁芯外周面的平衡块,所述若干磁体与所述定子之间具有 所述气隙 ;所述两个偏心环沿转子磁芯的轴向间隔排列 ,所述平衡块位于两个 偏心环的偏向转子磁芯外周面的一侧之间。
进一步地,所述转子磁芯的一端外周套设有第一轴承,转子磁芯的另一端 内周嵌套有第二轴承,所述第一轴承嵌套到所述底壳的内周 ,所述第二轴承套 设到所述第二连接部位的外周 。
进一步地,所述摆线齿轮减速机构为二级摆线齿轮减速机构 ,所述二级摆 线齿轮减速机构包括沿轴向迭置在一起的第一级摆线齿轮和第二级摆线齿轮, 所述第一级摆线齿轮和第二级摆线齿轮分别套设到所述两个偏心环的外周 , 第 一级摆线齿轮和第二级摆线齿轮分别具有若干外齿且第一级摆线齿轮的外齿数 与第二级摆线齿轮的外齿数不相同 , 第一级摆线齿轮的中心和第二级摆线齿轮 的中心位于同一条直线上。
进一步地,所述第一级摆线齿轮和第二级摆线齿轮为一体成型或分体成型。 进一步地,所述第一级摆线齿轮和第二级摆线齿轮分别通过滚针轴承或滚 珠轴承套设到所述两个偏心环的外周 。
进一步地,所述底壳的远离所述第二安装部位的一端形成有向外伸出的凸 台 ,所述凸台搁置到所述外壳内周面的台阶上;所述凸台上设有沿其周向间隔 设置的若干第一级针齿销轴承,所述若干第一级针齿销轴承分别通过第一针齿 销固定到所述凸台 ;所述若干第一级针齿销轴承位于所述第一级摆线齿轮的外 周并与第一级摆线齿轮的外齿啮合;所述第一级针齿销轴承的个数比所述第一 级摆线齿轮的外齿数多一个。
进一步地,所述底壳的远离所述第二安装部位的一端形成有向外伸出的凸 台 ,所述凸台搁置到所述外壳内周面的台阶上;所述凸台上设有第一级针齿壳 , 所述第一级针齿壳位于所述第一级摆线齿轮的外周并具有若干第一级针齿壳内 齿 ,所述若干第一级针齿壳内齿与第一级摆线齿轮的外齿啮合;所述第一级针 齿壳内齿的齿数比所述第一级摆线齿轮的外齿数多一个。
进一步地,所述底壳的远离所述第二安装部位的一端形成有向外伸出的凸 台 ,所述凸台搁置到所述外壳内周的台阶上;所述凸台上设有第三摆线齿轮, 所述第三摆线齿轮位于第一级摆线齿轮的外周并具有若干内齿 , 第三摆线齿轮 的内齿数与第一级摆线齿轮的外齿数相同 ;所述第三摆线齿轮的若干内齿和第 一级摆线齿轮的若干外齿之间形成摆线轨道,所述摆线轨道内间隔设置有若干 滚动体,所述滚动体的个数比第一级摆线齿轮的外齿数多一个。 进一步地,所述滚动体为滚子或球体。
进一步地,所述第一离合机构设置在所述第一连接部位和所述外壳的内周 面之间 , 第一离合机构包括环体,所述环体的外周间隔设置有若干第一咬合结 构 ,所述若干第一咬合结构可在随环体转动时与所述外壳内周面设置的若干第 一内棘齿咬合;所述环体的内周嵌套有第三轴承,所述第三轴承套设到所述第 一连接部位的外周 。
进一步地,所述第一离合机构设置在所述第一连接部位和所述外壳的内周 面之间 , 第一离合机构包括环体,所述环体的外周套设有单向轴承,所述单向 轴承嵌套到所述外壳的内周 ;所述环体的内周嵌套有第三轴承,所述第三轴承 套设到所述第一连接部位的外周 。
进一步地,所述环体上设有沿其周向间隔设置的若干第二级针齿销轴承, 所述若干第二级针齿销轴承分别通过第二针齿销固定到所述环体;所述第二级 针齿销轴承位于所述第二级摆线齿轮的外周并与第二级摆线齿轮的外齿啮合; 所述第二级针齿销轴承的个数比所述第二级摆线齿轮的外齿数多一个。
进一步地,所述环体上设有第二级针齿壳 ,所述第二级针齿壳位于所述第 二级摆线齿轮的外周并具有若干第二级针齿壳内齿 ,所述若干第二级针齿壳内 齿与第二级摆线齿轮的外齿啮合;所述第二级针齿壳内齿的齿数比所述第二级 摆线齿轮的外齿数多一个。
进一步地,所述第一级摆线齿轮的减速比为 1 : 第一级摆线齿轮的外齿数, 所述第二级摆线齿轮的减速比为 1 :第二级摆线齿轮的外齿数,所述二级摆线齿 轮减速机构的减速比为第一级摆线齿轮的减速比的倒数与第二级摆线齿轮的减 速比的倒数的差值的倒数的绝对值。
进一步地,所述若干第一咬合结构通过第一弹簧环设置到所述环体的外周 ; 所述第一咬合结构包括第一卡爪,所述环体的外周具有与所述第一卡爪对应的 凹槽 ,所述第一卡爪设置在对应的凹槽内且第一卡爪部分凸出于环体以用于与 对应的所述第一内棘齿咬合。
进一步地,所述第二离合机构设置在所述中轴的第一端和第二连接部位之 间 , 第二离合机构包括内圈和套设到内圈的外圈 ,所述内圈套设到所述中轴的 第一端的外周 ,所述外圈嵌套到所述第二连接部位的内周 ;所述内圈的外周间 隔设置有若干第二咬合结构 ,所述若干第二咬合结构可在随内圈转动时与外圈 内周设置的若干第二内棘齿咬合。
进一步地,所述若干第二咬合结构通过第二弹簧环设置到所述内圈的外周 ; 所述第二咬合结构包括第二卡爪,所述内圈的外周具有与所述第二卡爪对应的 安装位,所述第二卡爪设置在对应的安装位内且第二卡爪部分凸出于内圈以用 于与对应的所述第二内棘齿咬合。
进一步地,所述中轴的第一端的外周套设有扭力应变套,所述扭力应变套 一端靠近所述曲柄的第一端 , 另一端伸入所述第一安装部位内 ,所述内圈套设 到所述扭力应变套的外周 。
进一步地,所述第一安装部位的外周设有力矩传感器 ,所述力矩传感器位 于所述扭力应变套和所述偏心电机的定子之间 , 力矩传感器用于检测所述扭力 应变套的扭矩并输出相应的电子信号至控制器 。
进一步地,还包括位于所述第二安装部位和第三安装件一侧的控制器 ,所 述控制器用于控制所述偏心电机的工作 ;所述控制器包括控制器壳体,所述控 制器壳体的一端通过第一可拆卸件安装到所述底壳 , 另一端通过第二可拆卸件 安装到所述第二安装部位和第三安装件。
进一步地,所述第二安装部位和第三安装件的相远离的一端内分别嵌套有 第四轴承, 两个第四轴承套设到所述中轴的第二端的外周 ;所述中轴的第二端 的外周套设有磁环和霍尔传感器 ,所述磁环、霍尔传感器位于两个第四轴承之 间 ,所述霍尔传感器固定到磁环的远离所述底壳的一端用于检测磁环的旋转方 向和速度并输出相应的电子信号至所述控制器 。
进一步地,还包括套设到所述外壳外周的链盘或皮带轮,所述链盘或皮带 轮可随外壳转动。 进一步地,所述中轴和所述通孔、 第一安装部位之间具有缝隙 ,所述缝隙 的两端分别被所述第二离合机构、靠近底壳的第四轴承密封。
进一步地,所述第一级针齿销轴承与所述第一级摆线齿轮之间为滚动摩擦。 进一步地,所述第二级针齿销轴承与所述第二级摆线齿轮之间为滚动摩擦。 进一步地,所述平衡块的高度不大于所述第一级摆线齿轮或所述第二级摆 线齿轮的高度。 实施本发明 , 易于组装,体积小、 重量轻 ,可安装在现有自行车车架中轴 位置处 , 并能提供大范围的减速比以及提供高扭矩, 既可保留自行车原有的骑 行乐趣, 亦可大大延长骑行旅程,去除普通自行车对于速度和体力的限制 , 满 足了使用需求。
【附图说明】
图 1为本发明一实施例提供的一种电机驱动装置的结构示意图 ;
图 2是图 1所示电机驱动装置的***示意图 ; 图 3是图 1所示电机驱动装置的剖视示意图 ; 图 4是图 3所示 A处的局部放大图 ; 图 5是图 1 所示电机驱动装置的底壳、 凸台 、第一级针齿销轴承、定子、 PCB电路板、第一固定架的结构示意图 ;
图 6是图 5所示电机躯动装置的底壳、 凸台 、第一级针齿销轴承、定子、 PCB电路板、第一固定架的***示意图 ;
图 7是图 1 所示电机驱动装置的一个方案的偏心转子、摆线齿轮减速机构 的***示意图 ;
图 8是图 7所示偏心套、摆线齿轮减速机构、滚珠的剖视示意图 ; 图 9是图 1 所示电机驱动装置的另一个方案的偏心转子、摆线齿轮减速机 构的结构示意图 ;
图 10是图 9所示偏心转子、摆线齿轮减速机构的***示意图 ;
图 1 1是图 9所示偏心转子、摆线齿轮减速机构剖开后的示意图 ; 图 12是图 1所示电机驱动装置的第一级针齿销轴承的第一种替换方案的剖 视示意图 ;
图 13是图 1所示电机驱动装置的第一级针齿销轴承的第二种替换方案的剖 视示意图 ;
图 14是图 1所示电机驱动装置的上壳、 中轴、第一离合机构、第二离合机 构的结构示意图 ;
图 15是图 14所示的***示意图 ;
图 16是图 14所示的第一离合机构设置有第二固定架的***示意图 ; 图 17是图 14所示的第二离合机构的结构示意图 ;
图 18是图 14所示的第二离合机构的***示意图 ;
图 19是图 1所示电机驱动装置的第二级针齿销轴承的第一种替换方案的剖 视示意图 ;
图 20是图 1所示摆线齿轮减速机构分别与第一级针齿销轴承、第二级针齿 销轴承 n齿合的结构示意图 ; 图 21 是图 20所示摆线齿轮减速机构的第一级摆线齿轮与第一级针齿销轴 承的运动原理图 ; 图 22是图 20所示摆线齿轮减速机构的第二级摆线齿轮与第二级针齿销轴 承的运动原理图 ; 图 23是图 1所示电机驱动装置在只有偏心电机输出动力时第一离合机构与 上壳之间的状态图以及第二离合机构的内圈与外圈之间的状态图 ,其中上面的 A-A视图和 B-B视图分别是下面的视图的 A处和 B处的放大图 ; 图 24是图 1所示电机驱动装置在只有人力通过曲柄输出动力时第一离合机 构与上壳之间的状态图以及第二离合机构的内圈与外圈之间的状态图 ,其中上 面的 C-C视图和 D-D视图分别是下面的视图的 C处和 D处的放大图 ; 图 25是图 1所示电机躯动装置在偏心电机输出动力和人力通过曲柄输出动 力时第一离合机构与上壳之间的状态图以及第二离合机构的内圈与外圈之间的 状态图 ,其中上面的 E-E视图和 F-F视图分别是下面的视图的 E处和 F处的放 大图 ; 图 26 是图 1 所示电机驱动装置安装到自行车车架中轴位置处的状态示意 图 ; 图 27 是图 1 所示电机驱动装置安装到自行车车架中轴位置后的结构示意 图 。
【具体实施方式】
下面结合附图和实施例对本发明作进一步的描述。 参考图 1至图 3,本发明提供的一种电机驱动装置,用于安装在自行车车架 的中轴位置处。该电机躯动装置包括外壳 10、环状的底壳 20、 曲柄 30、 中轴 40、偏心电机 50、摆线齿轮减速机构 60、第一离合机构 70、第二离合机构 80、 控制器 90和链盘或皮带轮 100。
外壳 10和底壳 20均为一端开口的结构。底壳 20可转动地安装到外壳 10 的开口端内 。具体的 , 外壳 10的开口端内嵌套有底壳轴承 23,底壳轴承 23套 设到底壳 20的外周 , 外壳 10和底壳 20可相对转动。外壳 10的内腔和底壳 20 的内腔之间形成安装腔。偏心电机 50、摆线齿轮减速机构 60、第一离合机构 70、 第二离合机构 80设置在安装腔内 。曲柄 30的第一端通过曲柄轴承 31可转动地 安装到外壳 10的远离底壳 20的一端内 。具体的 , 外壳 10的远离底壳 20的一 端具有轴向的安装孔,安装孔内嵌套有曲柄轴承 31 ,曲柄 30的第一端嵌套到曲 柄轴承 31 内 ,从而曲柄 30可相对外壳 10转动。 曲柄 30的第二端用于连接自 行车踏板。链盘或皮带轮 100套设到外壳 10的外周 ,且链盘或皮带轮 100可随 外壳 10同步同向转动。链盘或皮带轮 100用于安装自行车车链或皮带。
中轴 40沿底壳 20的轴向穿设在底壳 20上。 中轴 40的第一端伸入安装腔 内并通过花键、平键等方式安装到曲柄 30 的第一端内 , 中轴 40 的第二端位于 底壳 20 的外部并朝远离底壳 20 的方向延伸。具体的 ,底壳 20具有供中轴 40 穿设的轴向的通孔,通孔的两端边缘位置分别形成第一安装部位 21和第二安装 部位 22, 第一安装部位 21位于安装腔内并环设在中轴 40的第一端的外周 , 第 二安装部位 22位于底壳 20的外部并环设在中轴 40的第二端的外周 。第二安装 部位 22螺纹连接有第三安装件 222,第三安装件 222环设在中轴 40的第二端的 外周 ,中轴 40的第二端可转动地安装到第二安装部位 22和第三安装件 222。第 二安装部位 22和第三安装件 222用于插装到自行车车架的中轴位置处。中轴 40 的第二端端部凸出于第三安装件 222 并通过花键、平键等方式用于安装自行车 曲柄以连接踏板, 中轴 40可随曲柄 30同步同向转动。 中轴 40的第二端端部与 第三安装件 222之间通过油封 223密封。
偏心电机 50套设到第一安装部位 21的外周 ,且偏心电机 50的两轴向端分 别可转动地安装到外壳 10和底壳 20。摆线齿轮减速机构 60套设到偏心电机 50 的外周且可在偏心电机 50的躯动下作同步反向偏心转动,并可躯动第一离合机 构 70作出相对转动。转动方向会因第一级摆线齿轮 61 与第二级摆线齿轮 62的 数量而有所改变。 当第一级摆线齿轮 61 的齿数比第二级摆线齿轮 62 的齿数少 时, 第一离合机构 70会与偏心电机 50的转子磁芯 521作反向转动。 而当第一 级摆线齿轮 61的齿数比第二级摆线齿轮 62的齿数多时,第一离合机构 70则会 与偏心电机 50的转子磁芯 521作同向转动。通过该种结构 ,可减少电机驱动装 置的轴向尺寸以及偏心电机 50、摆线齿轮减速机构 60的轴向尺寸,从而减少了 整体的体积和重量。
第一离合机构 70环设在偏心电机 50的远离底壳 20的一端的外周 。第一离 合机构 70可转动地安装到外壳 10并可躯动外壳 10同步同向转动。
第二离合机构 80位于偏心电机 50的远离底壳 20的一端的内侧并套设到中 轴 40第一端的外周 ,且安装到外壳 10,第二离合机构 80可随中轴 40同步同向 转动并可驱动外壳 10同步同向转动。第二离合机构 80位于第一安装部位 21 与 曲柄 30的第一端之间。
控制器 90位于第二安装部位 22和第三安装件 222的一侧, 用于控制偏心 电机 50的工作。控制器 90包括控制器壳体 91 ,控制器壳体 91的一端通过第一 可拆卸件 92安装到底壳 20, 另一端通过第二可拆卸件 93安装到第二安装部位 22和第三安装件 222。
本实施例中 ,外壳 10包括一端开口的上壳 1 1以及连接到上壳 1 1 开口端内 的筒状的下壳 12。上壳 11和下壳 12之间优选为螺纹连接。下壳 12的远离上壳 1 1 的一端形成外壳 10的开口端。链盘或皮带轮 100套设到下壳 12的外周并通 过紧固件例如螺钉等安装到上壳 1 1的开口端 ,从而使链盘或皮带轮 100可随外 壳 10同步同向转动。偏心电机 50的两轴向端分别可转动地安装到上壳 1 1和底 壳 20。第一离合机构 70可转动地安装到上壳 1 1并可驱动上壳 1 1同步同向转动, 从而可实现驱动外壳 10同步同向转动。 第二离合机构 80安装到上壳 11 ,且可 随中轴 40 同步同向转动并可驱动上壳 1 1 同步同向转动,从而可实现驱动外壳 10同步同向转动。
本发明的轴向是指电机躯动装置的轴向 。下面对本发明的电机躯动装置作 具体的阐述。
参考图 2、 图 3、图 5、 图 6和图 7, 外壳 10的上壳 11 内的底部具有环状 的第一连接部位 13和第二连接部位 14。第二连接部位 14位于第一连接部位 13 的内侧。
偏心电机 50为无刷直流电机。偏心电机 50包括套设到第一安装部位 21外 周的定子 51 、套设到定子 51外周的偏心转子 52以及 PCB电路板 53。偏心转子 52和定子 51 之间具有气隙。 第一连接部位 13环设在偏心转子 52的远离底壳 20的一端的外周 。第二连接部位 14位于偏心转子 52的远离底壳 20的一端的内 侧并靠近定子 51。偏心转子 52的两端可转动地安装到第一连接部位 13的内周 和底壳 20的内周 。
具体的 , 定子 51 包括套设到第一安装部位 21 外周的定子磁芯 51 1 以及绕 设到定子磁芯 51 1 的绕组 512。底壳 20 内的底部形成有第一支撑台 513, 第一 支撑台 513环设在第一安装部位 21的外周 。定子磁芯 511搁置到第一支撑台 513, 从而对定子磁芯 51 1起到支撑作用 。优选地, 第一安装部位 21的高度与定子磁 芯的轴向长度相等。
偏心转子 52包括套设到定子 51外周的转子磁芯 521 、沿转子磁芯 521的周 向间隔设置在转子磁芯 521 内周的若干磁体 522、设置在转子磁芯 521的远离底 壳 20的一端内的平衡块 523以及套设到转子磁芯 521 外周的偏心套 524。若干 磁体 522与定子 51之间具有上述的气隙。偏心套 524的外周面设有两个沿其轴 向间隔排列的偏心环 524a '524b。偏心环 524a '524b与偏心套 524为一体成型 , 便于制造。可以理解地,偏心环 524a、 524b与偏心套 524也可以是分体成型 , 即先加工出偏心环 524a、 524b,再将偏心环 524a、 524b装配到偏心套 524上。 摆线齿轮减速机构 60套设到两个偏心环 524a、 524b的外周 。通过该种结构 , 可减小偏心电机 50的尺寸。本实施例中 ,磁体 522为电磁石或永磁体。优选地, 平衡块 523的高度不大于所述第一级摆线齿轮 61 或所述第二级摆线齿轮 62的 高度, 即平衡块 523可以设计在第一级摆线齿轮 61及第二级摆线齿轮 62的高 度范围内 , 以达至轴向的平衡。
PCB电路板 53套设到第一支撑台 513的外周并被底壳 20内的底部形成的第 二支撑台 54支撑, 第二支撑台 54环设在第一支撑台 513的外周 。 PCB 电路板 53分别与定子 51的绕组 512和控制器 90电连接。
控制器 90输出控制信号到 PCB电路板 53, 绕组 512经 PCB电路板 53输入 电流后产生磁场,在磁体 522 的磁场作用下转子磁芯 521 转动。转子磁芯 521 的转动带动偏心套 524作同步同向转动, 由于偏心套 524外周面的具有两个偏 心环 524a、 524b,从而偏心套 524躯动摆线齿轮减速机构 60作同步反向偏心转 动。平衡块 523的设置可抵消偏心套 524的偏心度造成的不平衡转动。
偏心套 524的两端外周分别套设有第一轴承 525、第二轴承 526, 第一轴承 525嵌套到底壳 20的内壁,第二轴承 526嵌套到第一连接部位 13的内周 ,第一 轴承 525和第二轴承 526对偏心转子 52的转动提供转动支撑。第一轴承 525和 第二轴承 526的结构相同 。
如图 7所示,为了使第一轴承 525和第二轴承 526对偏心转子 52的转动提 供更好的转动支撑, 第一轴承 525和第二轴承 526与偏心套 524之间设置若干 滚动体 63例如滚珠,也可以是其他滚球或球体, 包括钢球,滚珠或滚球或球体 材料不限于金属 ,也可以是陶竟或塑料或其他材料。
在偏心转子 52的一个替换方案中 ,参考图 9至图 1 1 ,偏心转子 52的两端 分别可转动地安装到第一连接部位 13 的内周和底壳 20 的内周 。具体的 ,偏心 转子 52包括套设到定子 51外周的转子磁芯 521 、沿转子磁芯 521的周向间隔设 置转子磁芯 521 内周的若干磁体 522、形成在转子磁芯 521外周面的两个偏心环 524a、 524b以及形成在转子磁芯 521 外周面的平衡块 523。若干磁体 522与定 子 51 之间具有所述气隙。 两个偏心环 524a、 524b沿转子磁芯 521 的轴向间隔 排列。平衡块 523位于两个偏心环 524a、 524b的偏向转子磁芯 521外周面的一 侧之间。
转子磁芯 521的一端外周套设有第一轴承 525,转子磁芯 521的另一端外周 嵌套有第二轴承 526 , 第一轴承 525嵌套到底壳 20的内周 , 第二轴承 526套设 到第一连接部位 13的内周 。
摆线齿轮减速机构 60 为二级摆线齿轮减速机构 , 用于对偏心电机 50输出 的转速进行减速,并可提供大范围的减速比,减速比可达 1 : 5 - 1 : 150。二级摆 线齿轮减速机构包括沿轴向迭置在一起的第一级摆线齿轮 61和第二级摆线齿轮 62。第一级摆线齿轮 61和第二级摆线齿轮 62分别套设到两个偏心环 524a '524b 的外周 , 因而第一级摆线齿轮 61和第二级摆线齿轮 62的偏心度相同 。
在偏心转子 52的一个方案中 ,第一级摆线齿轮 61和第二级摆线齿轮 62为 一体成型 ,便于制造。可以理解地, 第一级摆线齿轮 61 和第二级摆线齿轮 62 也可以是分体成型 , 两者之间通过紧固件等方式迭置在一起。
在偏心转子 52的一个替换方案中 , 第一级摆线齿轮 61 和第二级摆线齿轮 62为分体成型。
第一级摆线齿轮 61和第二级摆线齿轮 62分别具有若干外齿 61 1 、 621且第 一级摆线齿轮 61 的外齿 61 1数与第二级摆线齿轮 62的外齿 621数不相同 。 第 一级摆线齿轮 61 的中心和第二级摆线齿轮 62的中心位于同一条直线上,从而 两者的偏心度相同 。本实施例中 , 第一级摆线齿轮 61的外齿 61 1数小于第二级 摆线齿轮 62的外齿 621数。第一级摆线齿轮 61和第二级摆线齿轮 62的摆线运 动速度会与转子磁芯 521 的转速作相对减速,减速比的数值与齿轮上的齿数相 同 , 而两者的外齿数不同 , 因而第一级摆线齿轮 61 的减速比为 1 : 第一级摆线 齿轮 61的外齿 61 1数,第二级摆线齿轮 62的减速比为 1 :第二级摆线齿轮的外 齿 621数,二级摆线齿轮减速机构的减速比为第一级摆线齿轮 61的减速比的倒 数与第二级摆线齿轮 62的减速比的倒数的差值的倒数的绝对值,例如 ,假设第 一级摆线齿轮 61的减速比为 X, 第二级摆线齿轮 62的减速比为 Y,则二级摆线 齿轮减速机构的减速比为
Figure imgf000019_0001
。本发明可根据自行车安装中置电 机的实际动力要求来合理地设置第一级摆线齿轮 61的外齿 61 1数和第二级摆线 齿轮 62的外齿 621数。
本实施例中 , 第一级摆线齿轮 61 的外齿 61 1 数为 14个, 第二级摆线齿轮 62的外齿 621数为 17个。 因而第一级摆线齿轮 61 的减速比为 1 : 14, 第二级 摆线齿轮 62 的减速比为 1 : 17 , 二级摆线齿轮减速机构的减速比为
Figure imgf000019_0002
79. 3倍。 因而偏心电机 50的转速经二级摆线齿轮减速机 构减速后可减小 79. 3倍。由于摆线齿轮减速机构 60可躯动第一离合机构 70同 步反向转动,从而偏心电机 50的转速比第一离合机构 70的转速多 79. 3倍,第 一离合机构 70的转动扭矩也同时放大了 79. 3倍。例如 ,假设偏心电机 50的本 来的转速和扭矩分别为 6000rpm(转 /分钟) 和 1. 5N. m. (牛顿米) , 经过二级 摆线齿轮减速机构减速后 , 第一离合机构 70的输出转速和扭矩分别为 75. 7rpm 和 1 19N. m. ,从而达到适合自行车安装中置电机的动力要求。
进一步地, 第一级摆线齿轮 61和第二级摆线齿轮 62分别通过滚针轴承或 滚珠轴承 64(见图 10和图 1 1)套设到两个偏心环 524a、524b的外周 。具体的 , 两个偏心环 524a、 524b的外周分别套设有滚针轴承或滚珠轴承 64,第一级摆线 齿轮 61和第二级摆线齿轮 62分别套设到滚针轴承或滚珠轴承 64的外周 , 当两 个偏心环 524a、 524b随转子磁芯 521作转动时, 两个偏心环 524a、 524b可分 别通过滚针轴承或滚珠轴承 64驱动第一级摆线齿轮 61和第二级摆线齿轮 62同 时作同步反向偏心转动。
在一个替换方案中 ,如图 7和图 8所示, 第一级摆线齿轮 61和第二级摆线 齿轮 62与两个偏心环 524a、 524b之间不设置滚针轴承或滚珠轴承 64, 而在第 一级摆线齿轮 61和第二级摆线齿轮 62与两个偏心环 524a、 524b之间设置若干 滚动体 63例如滚珠, 同样可实现通过两个偏心环 524a、 524b驱动第一级摆线 齿轮 61和第二级摆线齿轮 62作同步反向偏心转动。
底壳 20的远离第二安装部位 22的一端形成有向外伸出的凸台 24,凸台 24 搁置到外壳 10的下壳 12内周面的台阶上。凸台 24上设有沿其周向间隔设置的 若干第一级针齿销轴承 25。若干第一级针齿销轴承 25分别通过第一针齿销 251 固定到凸台 24。若干第一级针齿销轴承 25位于第一级摆线齿轮 61 的外周并与 第一级摆线齿轮 61的外齿 611啮合,如图 20所示。
优选地,若干第一级针齿销轴承 25通过第一固定架 252固定到凸台 24(见 图 5和图 6)。具体的 ,第一固定架 252通过紧固件固定到凸台 24的侧面 ,第一 针齿销 251 —端固定到凸台 24, 另一端固定到第一固定架 252, 第一级针齿销 轴承 25套设到对应的第一针齿销 251的外周并位于第一固定架 252的内侧。
当转子磁芯 521带动两个偏心环 524a、 524b转动一圈时, 由于第一级摆线 齿轮 61 上齿廓曲线的特点及其受第一级针齿销轴承 25 限制 , 第一级摆线齿轮 61的运动成为既有公转又有自转的平面运动,第一级摆线齿轮 61于相反方向上 转过一个齿差从而得到第一级减速, 由于凸台 24是固定不动的 , 因而第一级摆 线齿轮 61 的低速自转传递给第一针齿销 251 的动力不会躯动凸台 24转动, 即 第一级针齿销轴承 25会围绕对应的第一针齿销 251的中心自转而不会围绕第一 级摆线齿轮 61 的中心公转。 第一级针齿销轴承 25的个数比第一级摆线齿轮 61 的外齿 611数多一个。本实施例中 , 第一级摆线齿轮 61的外齿 61 1数为 14个, 第一级针齿销轴承 25的个数为 15个。
结合图 20和图 21所示, 第一级摆线齿轮 61 与第一级针齿销轴承 25的运 动原理为 :例如 ,第一级摆线齿轮 61的外齿 61 1数为 14个,假设图 21 中 a、b、 c三图分别为偏心电机 50的偏心转子 52转动的起始时刻 、偏心转子 52顺时针 转动了 180度的时刻 、偏心转子 52顺时针转动了 360度的时刻 ,将第一级摆线 齿轮 61上的连续四个外齿 611分别命名为 1 、 2、 3、 4,将靠近四个外齿 1 、 2、 3、 4的第一级针齿销轴承 25分别命名为 5、 6、 7、 8,从 8、 13、。三图可以看 出 ,偏心转子 52顺时针转动了一圈即 360度时, 第一级摆线齿轮 61 的四个外 齿 1 、2、3、4逆时针转动了 1/14圈 ,即第一级摆线齿轮 61逆时针转动了 1/14 圈从而实现第一级减速, 四个第一级针齿销轴承 5、 6、 7、 8围绕对应的第一针 齿销 251的中心自转,而没有围绕第一级摆线齿轮 61的中心作同步反向圆周运 动,即若干第一级针齿销轴承 25只围绕对应的第一针齿销 251的中心自转而不 会围绕第一级摆线齿轮 61的中心作同步反向圆周运动。
如图 12所示,在第一个替换方案中 , 凸台 24上设有第一级针齿壳 26, 第 一级针齿壳 26 位于第一级摆线齿轮 61 的外周并具有若干第一级针齿壳内齿 261。若干第一级针齿壳内齿 261 与第一级摆线齿轮 61 的外齿 61 1 啮合。 第一 级针齿壳内齿 261的齿数比第一级摆线齿轮 61的外齿 61 1数多一个。第一级针 齿壳 26可达到与若干第一级针齿销轴承 25—样的技术效果。本实施例中 , 第 一级摆线齿轮 61的外齿 61 1数为 14个,第一级针齿壳内齿 261的个数为 15个。
如图 13所示,在第二个替换方案中 , 凸台 24上设有第三摆线齿轮 27, 第 三摆线齿轮 27位于第一级摆线齿轮 61的外周并具有若干内齿 271 ,第三摆线齿 轮 27的内齿 271数与第一级摆线齿轮 61的外齿 61 1数相同 。 第三摆线齿轮 27 的若干内齿 271和第一级摆线齿轮 61的若干外齿 61 1之间形成摆线轨道 272, 摆线轨道 272内间隔设置有若干滚动体 273,滚动体 273的个数比第一级摆线齿 轮 61的外齿 61 1数多一个。若干滚动体 273可达到与若干第一级针齿销轴承 25 一样的技术效果。本实施例中 , 第一级摆线齿轮 61 的外齿 61 1数为 14个, 滚 动体 273的个数为 15个。
本实施例中 ,滚动体 273为滚子。可以理解地,滚动体 273也可以是球体, 球体例如为钢球、陶瓷球等等。
参考图 2、图 3、 图 14、 图 15、图 16、图 17和图 20, 第一离合机构 70设 置在第一连接部位 13和外壳 10的上壳 1 1 的内周面之间。 第一离合机构 70 包 括环体 71。环体 71的外周间隔设置有若干第一咬合结构 ,若干第一咬合结构可 在随环体 71转动时与外壳 10的上壳 11 内周面设置的若干第一内棘齿 15咬合, 从而实现驱动上壳 1 1 同步同向转动,从而通过第一离合机构 70 实现驱动外壳 10同步同向转动。由于上壳 1 1的内周面设置的是内棘齿结构 ,因而第一离合机 构只能驱动上壳 1 1 沿一个方向转动。环体 71 的内周嵌套有第三轴承 72, 第三 轴承 72套设到第一连接部位 13的外周 ,第三轴承 72对环体 71提供转动支撑。
环体 71上设有沿其周向间隔设置的若干第二级针齿销轴承 73。若干第二级 针齿销轴承 73分别通过第二针齿销 731 固定到环体 71。 第二级针齿销轴承 73 位于第二级摆线齿轮 62的外周并与第二级摆线齿轮 62的外齿 621 啮合,如图 20所示。
优选地,若干第二级针齿销轴承 73通过第二固定架 732固定到环体 71(见 图 16)。具体的 , 第二固定架 732通过紧固件固定到环体 71 的侧面 , 第二针齿 销 731 —端固定到环体 71 , 另一端固定到第二固定架 732, 第二级针齿销轴承 73套设到对应的第二针齿销 731的外周并位于第二固定架 732的内侧。
当转子磁芯 521带动两个偏心环 524a、 524b转动一圈时, 由于第二级摆线 齿轮 62上齿廓曲线的特点及其受第二级针齿销轴承 73 限制 , 第二级摆线齿轮 62的运动成为既有公转又有自转的平面运动,第二级摆线齿轮 62于相反方向上 转过一个齿差从而得到第二级减速,第二级摆线齿轮 62的低速自转传递给第二 针齿销 731 ,从而实现驱动若干第二级针齿销轴承 73围绕第二级摆线齿轮 62的 中心作同步反向转动,即第二级针齿销轴承 73围绕对应的第二针齿销 731 自转 并沿着第二级摆线齿轮 62的周向围绕中轴 40公转。第二级针齿销轴承 73的个 数比第二级摆线齿轮 62的外齿 621数多一个。本实施例中 ,第二级摆线齿轮 62 的外齿 621数为 17个, 第二级针齿销轴承 73的个数为 18个。
结合图 20和图 22所示, 第二级摆线齿轮 62与第二级针齿销轴承 73的运 动原理为 :例如 ,第二级摆线齿轮 62的外齿 621数为 17个,假设图 22中 d、e、 f 三图分别为偏心电机 50的偏心转子 52转动的起始时刻 、偏心转子 52顺时针 转动了 180度的时刻 、偏心转子 52顺时针转动了 360度的时刻 ,将第二级摆线 齿轮 62上的连续四个外齿 621分别命名为 1 、 2、 3、 4,将靠近四个外齿 1 、 2、 3、 4的第二级针齿销轴承 73分别命名为 5、 6、 7、 8, W d、 e、 f 三图可以看 出 , 由于第二级摆线齿轮 62与第一级摆线齿轮 61 的转速相同 , 当偏心转子 52 顺时针转动了一圈即 360度时, 第一级摆线齿轮 61 逆时针转动 1/14圈 , 因此 第二级摆线齿轮 61也逆时针转动了 1/14圈 ,而由于第二级摆线齿轮 62的外齿 621数为 17个, 因而第二级摆线齿轮 62的四个外齿 1 、 2、 3、 4逆时针转动了 1/14-1 /17=1/79. 3圈 ,从而实现了第二级减速, 四个第二级针齿销轴承 5、 6、
7、8围绕对应的第二针齿销 731的中心自转且沿着第二级摆线齿轮 62周向围绕 中轴 40作同步顺时针圆周运动, 即若干第二级针齿销轴承 73 围绕对应的第二 针齿销 731 的中心自转且沿着第二级摆线齿轮 62的周向围绕中轴 40作同步反 向圆周运动。
若干第二级针齿销轴承 73 围绕第二级摆线齿轮 62的中心作同步反向圆周 运动时,环体 71 随着第二级针齿销轴承 73 同步同向转动,从而实现第二级摆 线齿轮 62驱动第一离合机构同步反向转动。在环体 71 随着若干第二级针齿销 轴承 73同步同向转动的同时,环体 71 外周设置的若干第一咬合结构与上壳 1 1 内周面的若干第一内棘齿 15咬合,从而实现第一离合机构驱动上壳 11 同步同 向转动, 即实现躯动外壳 10同步同向转动。
第一级针齿销轴承 25 与第一级摆线齿轮 61 之间为滚动摩擦, 第二级针齿 销轴承 73与第二级摆线齿轮 62之间也为滚动摩擦,滚动摩擦可减小摩擦损失, 提高工作效率。
如图 19所示,在第一个替换方案中 ,环体 71上设有第二级针齿壳 74, 第 二级针齿壳 74 位于第二级摆线齿轮 62 的外周并具有若干第二级针齿壳内齿
741 ,若干第二级针齿壳内齿 741 与第二级摆线齿轮 62的外齿 621 啮合。 第二 级针齿壳 74可达到与若干第二级针齿销轴承 73 同样的技术效果。 第二级针齿 壳内齿 741的齿数比第二级摆线齿轮 62的外齿 621数多一个。本实施例中 , 第 二级摆线齿轮 62的外齿 621数为 17个,第二级针齿壳内齿 741的个数为 18个。
在第二种替换方案中 ,环体 71上设有第四摆线齿轮, 第四摆线齿轮位于第 二级摆线齿轮 62的外周并具有若干内齿 621 , 第四摆线齿轮的内齿数与第二级 摆线齿轮 62的外齿 621数相同 。第四摆线齿轮的若干内齿和第二级摆线齿轮 62 的若干外齿 621 之间形成摆线轨道,摆线轨道内间隔设置有若干滚动体, 滚动 体的个数比第二级摆线齿轮 62的外齿 621数多一个。若干滚动体可达到与若干 第二级针齿销轴承 73 同样的技术效果。本实施例中 , 第二级摆线齿轮 62的外 齿 621 数为 17个, 滚动体的个数为 18个。该第二种替换方案的结构与第一级 针齿销轴承 25的第二种替换方案的结构类似。
本实施例中 , 滚动体为滚子。可以理解地, 滚动体也可以是球体,球体例 如为钢球、陶瓷球等等。
本实施例中 ,若干第一咬合结构通过第一弹簧环 75设置到环体 71的外周 。 第一咬合结构包括第一卡爪 76,环体 71 的外周具有与第一卡爪 76对应的凹槽 71 1 , 第一卡爪 76设置在对应的凹槽 71 1 内且第一卡爪 76部分凸出于环体 71 以用于与对应的第一内棘齿 15咬合。 当环体 71在静止状态时,若干第一卡爪 76被上壳 11 内周面的若干第一内棘齿 15挤压,第一弹簧环 75被若干第一卡爪 76挤压。而当环体 71转动时, 当若干第一卡爪 76分别位于两个第一内棘齿 15 之间时, 第一弹簧环 75 的弹力恢复从而将若干第一卡爪 76顶起,从而实现若 干第一卡爪 76与若干第一内棘齿 15咬合,在若干第一卡爪 76与若干第一内棘 齿 15咬合后即可躯动上壳 1 1 同步同向转动。
本实施例中 , 第一卡爪 76的个数为 7个。 第一卡爪 76由两个连接在一起 的子卡爪组成, 第一弹簧环 75箍设到两个子卡爪之间。
在一个替换方案中 ,环体 71外周设置的若干第一咬合结构也可以由单向轴 承代替。具体的 ,环体 71 的外周套设有单向轴承, 单向轴承嵌套到上壳 1 1 的 内周 ,在环体 71 转动时,上壳 11 在单向轴承的作用下同步同向转动,从而同 样可实现通过第一离合机构 70驱动外壳 10同步同向转动。
可以理解地,环体 71外周设置的若干第一咬合结构也可以由设置在环体 71 的靠近上壳 11 的一端的轴向棘轮代替 ,轴承棘轮用于与上壳 1 1 内周面的第一 内棘齿 15 0齿合。在环体 71转动时,轴承棘轮与上壳 1 1 内周面的第一内棘齿 15 啮合,从而同样可实现通过第一离合机构 70驱动外壳 10同步同向转动。
第二离合机构 80设置在中轴 40的第一端和第二连接部位 14之间 ,第二离 合机构 80包括内圈 81和套设到内圈 81的外圈 82,内圈 81套设到中轴 40第一 端的的外周 , 外圈 82嵌套到第二连接部位 14的内周 。优选地, 外圈 82与第二 连接部位 14之间螺纹连接。 内圈 81 的外周间隔设置有若干第二咬合结构 ,若 干第二咬合结构可在随内圈 81转动时与外圈 82内周设置的若干第二内棘齿 821 咬合。在中轴 40随曲柄 30 同步同向转动时, 中轴 40可带动内圈 81 同步同向 转动,若干第二咬合结构与若干第二内棘齿 821咬合,从而驱动外圈 82同步同 向转动, 由于外圈 82嵌套到第二连接部位 14的内周 ,在第二连接部位 14的作 用下外圈 82带动外壳 10的上壳 1 1 同步同向转动,从而最终实现通过第二离合 机构 80驱动外壳 10同步同向转动。由于外圈 82内周设置的为内棘齿结构 , 内 圈 81只能驱动外圈 82沿一个方向转动。
综上,本发明输出至外壳 10 的上壳 1 1 的动力包括电机输出 、人力输出以 及电机输出和人力输出的结合。结合图 23所示,在只有偏心电机 50输出动力 时, 第一离合机构 70驱动上壳 1 1 同步同向转动时, 外圈 82会随着上壳 11 同 步同向转动, 由于没有人力通过曲柄 30输出动力 ,此时内圈 81处于静止状态 , 外圈 82的转速大于内圈 81的转速,则内圈 81外周设置的若干第二咬合结构不 会与外圈 82 内周设置的若干第二内棘齿 821咬合,从而内圈 81 不会转动, 中 轴 40和曲柄 30不会转动, 即第一离合机构 70输出的动力不会传递至中轴 40 和曲柄 30。
结合图 24所示 ,在只有人力通过曲柄 30输出动力时,曲柄 30带动中轴 40 同步同向转动, 中轴 40带动内圈 81 同步同向转动, 内圈 81外周设置的若干第 二咬合结构会与外圈 82内周设置的若干第二内棘齿 821咬合,从而驱动外圈 82 同步同向转动,上壳 1 1随着外圈 82同步同向转动。由于第一离合机构 70处于 静止状态 ,上壳 11的转速大于第一离合机构 70的转速,上壳 11 内周面的若干 第一内棘齿 15不会与第一离合机构 70 的若干第一咬合结构咬合,从而第一离 合机构 70不会转动, 即人力通过曲柄 30输出的动力不会传递给第一离合机构 70、偏心电机 50。
结合图 25所示 ,在偏心电机 50和人力通过曲柄 30输出动力时,此时上壳 1 1可通过第一离合机构 70和第二离合机构 80的外圈 82同时驱动,从而可减少 第一离合机构 70和第二离合机构 80各自输出的动力 。
本实施例中 ,若干第二咬合结构通过第二弹簧环 83设置到内圈 81的外周 。 第二咬合结构包括第二卡爪 84, 内圈 81 的外周具有与第二卡爪 84对应的安装 位 81 1 ,第二卡爪 84设置在对应的安装位 81 1 内且第二卡爪 84部分凸出于内圈 81以用于与对应的第二内棘齿 821咬合。当内圈 82在静止状态时,若干第二卡 爪 84被外圈 82内壁的若干第二内棘齿 821挤压,第二弹簧环 83被若干第二卡 爪 84挤压。而当内圈 81转动时, 当若干第二卡爪 84分别位于两个第二内棘齿 821之间时,第二弹簧环 83的弹力恢复从而将若干第二卡爪 84顶起,从而实现 若干第二卡爪 84与若干第二内棘齿 821咬合,在若干第二卡爪 84与若干第二 内棘齿 821咬合后即可驱动外圈 82同步同向转动。
本实施例中 , 第二卡爪 84的个数为 3个。 第二卡爪 84由两个连接在一起 的子卡爪组成, 第二弹簧环 83箍设到两个子卡爪之间。
在一个替换方案中 , 内圈 81外周设置的若干第二咬合结构也可以由单向轴 承代替 。具体的 , 内圈 81 的外周套设有单向轴承, 单向轴承嵌套到外圈 82的 内周 ,在内圈 81 转动时, 外圈 82在单向轴承的作用下同步同向转动,从而同 样可实现通过第二离合机构 80驱动外壳 10 同步同向转动。可以理解地, 内圈 81 外周设置的若干第二咬合结构也可以由设置在内圈 81 的靠近上壳 1 1 的一端 的轴向棘轮代替 ,轴承棘轮用于与外圈 82内周的第二内棘齿 821啮合。在内圈 81转动时,轴承棘轮与外圈 82内周的第二内棘齿 821啮合,从而同样可实现通 过第二离合机构 80驱动外壳 10同步同向转动。
在其他实施方式中 , 第二离合机构 80可用单向轴承代替。
如图 3所示, 中轴 40 的第一端的外周套设有扭力应变套 41 ,扭力应变套 41一端靠近曲柄 30的第一端,另一端伸入第一安装部位 21 内 ,内圈 81套设到 扭力应变套 41 的外周 。 第一安装部位 21 的外周设有力矩传感器 , 力矩传感器 位于扭力应变套 41和偏心电机 50的定子 51之间 ,力矩传感器用于检测扭力应 变套 41的扭矩并输出相应的电子信号至控制器 90。
第二安装部位 22 和第三安装件 222 相远离的一端内分别嵌套有第四轴承 221 , 两个第四轴承 221 套设到中轴 40的第二端的外周 , 两个第四轴承 221 对 中轴 40提供转动支撑,从而中轴 40可相对第二安装部位 22和第三安装件 222 转动。 中轴 40的第二端的外周套设有磁环 43和霍尔传感器 44,磁环 43、霍尔 传感器 44位于两个第四轴承 221之间 ,霍尔传感器 44固定到磁环 43的远离底 壳 20 的一端用于检测磁环 43的旋转方向和速度并输出相应的电子信号至控制 器 90。在中轴 40随曲柄 30同步同向转动时,磁环 43随中轴 40同步同向转动。 控制器 90可根据力矩传感器检测的扭力应变套 41 的扭矩大小以及霍尔传感器 44检测的磁环 43的旋转方向和速度输出相应的控制信号给偏心电机 50,从而 给骑行者提供合适的动力 。
中轴 40和通孔、第一安装部位 21之间具有缝隙 45,缝隙 45的两端分别被 第二离合机构 80、靠近底壳 20的第四轴承 221 密封。 由于偏心电机 50在工作 时, 定子 51 的绕组 512会发热, 可通过在缝隙 45之间填充导热流体,从而可 对定子 51进行散热,提高了偏心电机 50的工作效率。
本发明的曲柄轴承 31 、底壳轴承 23、第一轴承 525、 第二轴承 526、第三 轴承 72等等优选为滚珠轴承,可以理解地,也可以是其他形式的轴承。两个第 四轴承 221优选为滚珠滚针轴承的组合。
本发明的装配过程为 : 先将偏心电机 50的定子 51 、 PCB电路板 53安装到 底壳 20内 ,使定子 51套设到第一安装部位 21的外周 , PCB电路板 53套设到第 一支撑台 513的外周 。将若干第一级针齿销轴承 25通过对应的第一针齿销 251 安装到凸台 24,安装好后可定义为第一子装配总成,如图 2、图 5和图 6所示。 然后将摆线齿轮减速机构 60套设到偏心电机 50的偏心转子 52的外周 ,安装好 后可定义为第二子装配总成,如图 2和图 7所示, 将第二子装配总成安装到第 一子装配总成, 即将第二子装配总成套设到定子 51 的外周并通过第一轴承 525 安装到底壳 20,使第一级针齿销轴承 25位于第一级摆线齿轮 61 的外周 。然后 将第一离合机构 70通过第三轴承 72安装到上壳 1 1的内周面与第一连接部位 13 之间 ,使第二级针齿销轴承 73位于第二级摆线齿轮 62的外周 , 将扭力应变套 41套设到中轴 40的第一端的外周 ,将第二离合机构 80的内圈 81套设到扭力应 变套 41 的外周 , 将第二离合机构 80的外圈 82套设到内圈 81 的外周并安装到 第二连接部位 14的内周 ,安装好后可定义为第三子装配总成,如图 2、 图 9和 图 10所示。将第三子装配总成的中轴 40安装磁环 43、霍尔传感器 44之后安装 到底壳 20的通孔、第一安装部位 21 以及第二安装部位 22、第三安装件 222, 在第一安装部位 21外周设置力矩传感器 ,将第二子装配总成的第二轴承 526嵌 套到第一连接部位 13的内周 。再将下壳 12安装到上壳 1 1以及通过底壳轴承 23 安装到底壳 20,将曲柄 30通过曲柄轴承 31安装到上壳 1 1 ,将链盘 100套设到 下壳 12的外周并安装到上壳 1 的开口端 , 最后将控制器 90通过第一可拆卸件 92、第二可拆卸件 93安装到底壳 20和第二安装部位 22和第三安装件 222, 至 此,本发明的组装即完成,安装方便, 易于组装。
图 26、27显示了将本发明的电机驱动装置安装到自行车车架 1 10的中轴位 置处的示意图 。在实际安装时, 先将自行车车架 1 10 原有的中轴拆下,将本发 明的电机驱动装置的第二可拆卸件 93拆下, 将第二安装部位 22和第三安装件 222插装到自行车车架 1 10的中轴位置处,使控制器壳体 91抵靠到自行车车架 1 10上,再将第二可拆卸件 93安装回控制器壳体 91和第三安装件 222上,本发 明的电机驱动装置即安装到自行车车架 1 10 的中轴位置处了 。再将自行车原有 的曲柄安装到中轴 40的伸出第三安装件 222的一端,再在曲柄 30上安装踏板 以及将自行车车链或皮带安装到链盘或皮带轮 100,此时自行车即可使用 。本发 明的控制器壳体 91抵靠到自行车车架 1 10上作为力臂使用 ,可抵消偏心电机 50 的偏心转子 52转动时以及外壳 10转动带动链条或皮带时产生的反作用扭力 。
本发明的电机输出动力至外壳 10 的工作原理为 :控制器 90根据力矩传感 器 、霍尔传感器 44等检测组件输出的电子信号产生控制信号并控制偏心电机 50 工作,偏心电机 50的偏心转子 52躯动摆线齿轮减速机构 60同步反向偏心转动, 摆线齿轮减速机构 60的第一级摆线齿轮 61 的外齿 61 1 与若干第一级针齿销轴 承 25啮合从而实现第一级减速,摆线齿轮减速机构 60的第二级摆线齿轮 62的 外齿 621 与第一离合机构 70的若干第二级针齿销轴承 73啮合从而实现第二级 减速,若干第二级针齿销轴承 73在与第二级摆线齿轮 62的外齿 621 啮合时还 围绕第二级摆线齿轮 62的中心作同步反向圆周运动,在对应的第二针齿销 731 的作用下从而带动第一离合机构 70的环体 71 同步同向转动,环体 71在转动的 同时,环体 71 外周设置的若干第一咬合结构与上壳 1 1 内壁的若干第一内棘齿 15咬合,从而躯动上壳 11 同步同向转动,从而实现躯动外壳 10同步同向转动, 链盘或皮带轮 100随着外壳 10同步同向转动,最终可通过安装到链盘或皮带轮 100上的自行车车链后皮带将偏心电机 50输出的动力传递至自行车的后轮。通 过摆线齿轮减速机构 60对偏心电机 50输出的转速进行减速, 可减少至适合自 行车中置电机的速度, 同时提高了扭矩。
本发明的人力通过曲柄 30输出动力至外壳 10 的工作原理为 :骑行者通过 转动踏板使曲柄 30转动, 中轴 40随曲柄 30 同步同向转动。 第二离合机构 80 的内圈 81随中轴 40 同步同向转动, 内圈 81在转动的同时, 内圈 81 外周设置 的若干第二咬合结构与外圈 82内周的若干第二内棘齿 821咬合,从而驱动外圈 82同步同向转动,外圈 82通过第二连接部位 14带动上壳 1 1 同步同向转动,从 而实现驱动上壳 1 1相对内圈 81 同步同向转动,从而实现驱动外壳 10相对内圈 81 同步同向转动,链盘或皮带轮 100随着外壳 10同步同向转动,最终可通过安 装到链盘或皮带轮 100 上的自行车车链后皮带将电机输出的动力传递至自行车 的后轮。
在只有电机输出动力至外壳 10时,上壳 1 1会带动第二离合机构 80的外圈 82同步同向转动,由于第二离合机构 80的内圈 81处于静止状态 ,外圈 82的转 速大于内圈 81的转速, 内圈 81外周设置的若干第二咬合结构不会与外圈 82内 周的若干第二内棘齿 821咬合, 即外圈 82不会驱动内圈 81 同步同向转动, 即 中轴 40和曲柄 30不会转动,电机输出的动力不会传递至中轴 40和曲柄 30。在 只有人力通过曲柄 30输出动力至外壳 10时, 外圈 82会带动上壳 1 1 同步同向 转动, 由于第一离合机构 70处于静止状态 ,上壳 1 1 的转速大于第一离合机构 70的环体 71的转速,环体 71外周设置的若干第一咬合结构不会与上壳 1 1 内周 的若干第一内棘齿 15咬合, 即上壳 11不会驱动环体 71 同步同向转动, 即第一 离合机构 70不会转动,人力输出的动力不会传递至第一离合机构 70、偏心电机 50。
当电机输出动力和人力通过曲柄输出动力同时作用且电机输出的动力和人 力通过曲柄输出的动力相同时,电机输出和人力通过曲柄 30输出可同时躯动上 壳 1 1 即外壳转 10动, 此种情况下可同时减少电机输出的动力和人力通过曲柄 30输出的动力 。
本发明的装置可以适配于现行标准自行车链盘或皮带驱动的自行車,链盘 不限于 130 BCD 5 孔, 104BCD 4 孔, 135BCD5 孔或皮带轮。
以上实施例仅表达了本发明的优选实施方式, 其描述较为具体和详细 ,但 并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的 普通技术人员来说,在不脱离本发明构思的前提下 ,还可以做出若干变形和改 进,如对各个实施例中的不同特征进行组合等 ,这些都属于本发明的保护范围 。

Claims

权 利 要 求 书
1.一种电机躯动装置, 包括外壳、可转动地安装到外壳的开口端内的底壳 和曲柄 ,所述外壳和底壳之间形成安装腔,所述曲柄的第一端可转动地安装到 所述外壳的远离所述底壳的一端内 , 其特征在于: 包括沿所述底壳的轴向并穿 设在底壳上的中轴以及设置在所述安装腔内的偏心电机、摆线齿轮减速机构、 第一离合机构和第二离合机构 ;所述中轴的第一端伸入所述安装腔内并安装到 所述曲柄的第一端内 , 中轴的第二端位于所述底壳的外部并朝远离底壳的方向 延伸 , 中轴可随曲柄转动;所述偏心电机环设在所述中轴的第一端的外周 ,且 偏心电机的两端分别可转动地安装到外壳和底壳 ;所述摆线齿轮减速机构套设 到所述偏心电机的外周且可在偏心电机的躯动下作偏心转动, 并可躯动所述第 一离合机构转动;所述第一离合机构环设在所述偏心电机的远离所述底壳的一 端的外周 , 第一离合机构可转动地安装到所述外壳并可驱动外壳转动;所述第 二离合机构位于所述偏心电机的远离所述底壳的一端的内侧并套设到所述中轴 的第一端的外周 ,且安装到所述外壳 , 第二离合机构可随中轴转动并可驱动外 壳转动。
2.根据权利要求 1 所述的电机驱动装置, 其特征在于:所述底壳具有供所 述中轴穿设的轴向的通孔,所述通孔的两端边缘位置分别形成第一安装部位和 第二安装部位,所述第一安装部位位于所述安装腔内并环设在所述中轴的第一 端的外周 ,所述第二离合机构位于第一安装部位与所述曲柄的第一端之间 ,所 述第二安装部位位于所述底壳的外部并环设在所述中轴的第二端的外周 , 第二 安装部位连接有第三安装件,所述第三安装件环设在中轴的第二端的外周 , 中 轴的第二端可转动地安装到第二安装部位和第三安装件且中轴的第二端端部凸 出于第三安装件;所述偏心电机套设到所述第一安装部位的外周 。
3.根据权利要求 2 所述的电机驱动装置, 其特征在于:所述外壳内的底部 具有环状的第一连接部位和第二连接部位,所述第二连接部位位于所述第一连 接部位的内侧。
4.根据权利要求 3 所述的电机驱动装置, 其特征在于:所述偏心电机包括 套设到所述第一安装部位外周的定子、套设到定子外周的偏心转子,所述偏心 转子和所述定子之间具有气隙 ;所述第一连接部位环设在所述偏心转子的远离 所述底壳的一端的外周 ,所述第二连接部位位于所述偏心转子的远离所述底壳 的一端的内侧并靠近所述定子,偏心转子的两端分别可转动地安装到所述第一 连接部位的内周和所述底壳的内周 。
5.根据权利要求 4 所述的电机躯动装置, 其特征在于:所述偏心转子包括 套设到所述定子外周的转子磁芯、沿转子磁芯的周向间隔设置在转子磁芯内周 的若干磁体、设置在转子磁芯的靠近外壳的一端内的平衡块以及套设到转子磁 芯外周的偏心套,所述若干磁体与所述定子之间具有所述气隙 ;所述偏心套的 外周面设有两个沿其轴向间隔排列的偏心环。
6.根据权利要求 5 所述的电机躯动装置, 其特征在于:所述偏心套的两端 外周分别套设有第一轴承、 第二轴承,所述第一轴承嵌套到所述底壳的内周 , 所述第二轴承嵌套到所述第一连接部位的内周 。
7.根据权利要求 3 所述的电机躯动装置, 其特征在于:所述偏心电机包括 套设到所述第一安装部位外周的定子、套设到定子外周的偏心转子,所述偏心 转子和所述定子之间具有气隙 ;所述第一连接部位环设在所述偏心转子的远离 所述底壳的一端的外周 ,所述第二连接部位位于所述偏心转子的远离所述底壳 的一端的内侧并靠近所述定子,偏心转子的两端分别可转动地安装到第二连接 部位的外周和底壳的内周 。
8.根据权利要求 7 所述的电机驱动装置, 其特征在于:所述偏心转子包括 套设到所述定子外周的转子磁芯、沿转子磁芯的周向间隔设置在转子磁芯内周 的若干磁体、形成在转子磁芯外周面的两个偏心环以及形成在转子磁芯外周面 的平衡块,所述若干磁体与所述定子之间具有所述气隙 ;所述两个偏心环沿转 子磁芯的轴向间隔排列 ,所述平衡块位于两个偏心环的偏向转子磁芯外周面的 一侧之间。
9.根据权利要求 8 所述的电机驱动装置, 其特征在于:所述转子磁芯的一 端外周套设有第一轴承,转子磁芯的另一端内周嵌套有第二轴承,所述第一轴 承嵌套到所述底壳的内周 ,所述第二轴承套设到所述第二连接部位的外周 。
10.根据权利要求 5或 8所述的电机驱动装置,其特征在于:所述摆线齿轮 减速机构为二级摆线齿轮减速机构 ,所述二级摆线齿轮减速机构包括沿轴向迭 置在一起的第一级摆线齿轮和第二级摆线齿轮,所述第一级摆线齿轮和第二级 摆线齿轮分别套设到所述两个偏心环的外周 , 第一级摆线齿轮和第二级摆线齿 轮分别具有若干外齿且第一级摆线齿轮的外齿数与第二级摆线齿轮的外齿数不 相同 , 第一级摆线齿轮的中心和第二级摆线齿轮的中心位于同一条直线上。
11.根据权利要求 10 所述的电机驱动装置,其特征在于:所述第一级摆线 齿轮和第二级摆线齿轮为一体成型或分体成型。
12.根据权利要求 5或 8所述的电机驱动装置,其特征在于:所述第一级摆 线齿轮和第二级摆线齿轮分别通过滚针轴承或滚珠轴承套设到所述两个偏心环 的外周 。
13.根据权利要求 10 所述的电机驱动装置,其特征在于:所述底壳的远离 所述第二安装部位的一端形成有向外伸出的凸台 ,所述凸台搁置到所述外壳内 周面的台阶上;所述凸台上设有沿其周向间隔设置的若干第一级针齿销轴承, 所述若干第一级针齿销轴承分别通过第一针齿销固定到所述凸台 ;所述若干第 一级针齿销轴承位于所述第一级摆线齿轮的外周并与第一级摆线齿轮的外齿啮 合;所述第一级针齿销轴承的个数比所述第一级摆线齿轮的外齿数多一个。
14.根据权利要求 10 所述的电机驱动装置,其特征在于:所述底壳的远离 所述第二安装部位的一端形成有向外伸出的凸台 ,所述凸台搁置到所述外壳内 周面的台阶上;所述凸台上设有第一级针齿壳 ,所述第一级针齿壳位于所述第 一级摆线齿轮的外周并具有若干第一级针齿壳内齿 ,所述若干第一级针齿壳内 齿与第一级摆线齿轮的外齿啮合;所述第一级针齿壳内齿的齿数比所述第一级 摆线齿轮的外齿数多一个。
15.根据权利要求 10 所述的电机躯动装置,其特征在于:所述底壳的远离 所述第二安装部位的一端形成有向外伸出的凸台 ,所述凸台搁置到所述外壳内 周的台阶上;所述凸台上设有第三摆线齿轮,所述第三摆线齿轮位于第一级摆 线齿轮的外周并具有若干内齿 , 第三摆线齿轮的内齿数与第一级摆线齿轮的外 齿数相同 ;所述第三摆线齿轮的若干内齿和第一级摆线齿轮的若干外齿之间形 成摆线轨道,所述摆线轨道内间隔设置有若干滚动体,所述滚动体的个数比第 一级摆线齿轮的外齿数多一个。
16.根据权利要求 15 所述的电机躯动装置,其特征在于:所述滚动体为滚 子或球体。
17.根据权利要求 10 所述的电机驱动装置,其特征在于:所述第一离合机 构设置在所述第一连接部位和所述外壳的内周面之间 ,第一离合机构包括环体, 所述环体的外周间隔设置有若干第一咬合结构 ,所述若干第一咬合结构可在随 环体转动时与所述外壳内周面设置的若干第一内棘齿咬合;所述环体的内周嵌 套有第三轴承,所述第三轴承套设到所述第一连接部位的外周 。
18.根据权利要求 10 所述的电机驱动装置,其特征在于:所述第一离合机 构设置在所述第一连接部位和所述外壳的内周面之间 ,第一离合机构包括环体, 所述环体的外周套设有单向轴承,所述单向轴承嵌套到所述外壳的内周 ;所述 环体的内周嵌套有第三轴承,所述第三轴承套设到所述第一连接部位的外周 。
19.根据权利要求 17或 18所述的电机驱动装置,其特征在于:所述环体上 设有沿其周向间隔设置的若干第二级针齿销轴承,所述若干第二级针齿销轴承 分别通过第二针齿销固定到所述环体;所述第二级针齿销轴承位于所述第二级 摆线齿轮的外周并与第二级摆线齿轮的外齿啮合;所述第二级针齿销轴承的个 数比所述第二级摆线齿轮的外齿数多一个。
20.根据权利要求 17或 18所述的电机驱动装置,其特征在于:所述环体上 设有第二级针齿壳 ,所述第二级针齿壳位于所述第二级摆线齿轮的外周并具有 若干第二级针齿壳内齿 ,所述若干第二级针齿壳内齿与第二级摆线齿轮的外齿 啮合;所述第二级针齿壳内齿的齿数比所述第二级摆线齿轮的外齿数多一个。
21.根据权利要求 10 所述电机驱动装置, 其特征在于:所述第一级摆线齿 轮的减速比为 1 :第一级摆线齿轮的外齿数,所述第二级摆线齿轮的减速比为 1 : 第二级摆线齿轮的外齿数,所述二级摆线齿轮减速机构的减速比为第一级摆线 齿轮的减速比的倒数与第二级摆线齿轮的减速比的倒数的差值的倒数的绝对 值。
22.根据权利要求 17 所述的电机驱动装置,其特征在于:所述若干第一咬 合结构通过第一弹簧环设置到所述环体的外周 ;所述第一咬合结构包括第一卡 爪,所述环体的外周具有与所述第一卡爪对应的凹槽,所述第一卡爪设置在对 应的凹槽内且第一卡爪部分凸出于环体以用于与对应的所述第一内棘齿咬合。
23.根据权利要求 3所述的电机驱动装置,其特征在于:所述第二离合机构 设置在所述中轴的第一端和第二连接部位之间 , 第二离合机构包括内圈和套设 到内圈的外圈 ,所述内圈套设到所述中轴的第一端的外周 ,所述外圈嵌套到所 述第二连接部位的内周 ;所述内圈的外周间隔设置有若干第二咬合结构 ,所述 若干第二咬合结构可在随内圈转动时与外圈内周设置的若干第二内棘齿咬合。
24.根据权利要求 23 所述的电机驱动装置,其特征在于:所述若干第二咬 合结构通过第二弹簧环设置到所述内圈的外周 ;所述第二咬合结构包括第二卡 爪,所述内圈的外周具有与所述第二卡爪对应的安装位,所述第二卡爪设置在 对应的安装位内且第二卡爪部分凸出于内圈以用于与对应的所述第二内棘齿咬 合。
25.根据权利要求 23 所述的电机驱动装置,其特征在于:所述中轴的第一 端的外周套设有扭力应变套,所述扭力应变套一端靠近所述曲柄的第一端 , 另 一端伸入所述第一安装部位内 ,所述内圈套设到所述扭力应变套的外周 。
26.根据权利要求 25 所述的电机驱动装置,其特征在于:所述第一安装部 位的外周设有力矩传感器 ,所述力矩传感器位于所述扭力应变套和所述偏心电 机的定子之间 , 力矩传感器用于检测所述扭力应变套的扭矩并输出相应的电子 信号至控制器 。
27.根据权利要求 2所述的电机驱动装置,其特征在于:还包括位于所述第 二安装部位和第三安装件一侧的控制器 ,所述控制器用于控制所述偏心电机的 工作 ;所述控制器包括控制器壳体,所述控制器壳体的一端通过第一可拆卸件 安装到所述底壳 , 另一端通过第二可拆卸件安装到所述第二安装部位和第三安 装件。
28.根据权利要求 27 所述的电机驱动装置,其特征在于:所述第二安装部 位和第三安装件的相远离的一端内分别嵌套有第四轴承, 两个第四轴承套设到 所述中轴的第二端的外周 ;所述中轴的第二端的外周套设有磁环和霍尔传感器 , 所述磁环、霍尔传感器位于两个第四轴承之间 ,所述霍尔传感器固定到所述磁 环的远离所述底壳的一端用于检测磁环的旋转方向和速度并输出相应的电子信 号至所述控制器 。
29.根据权利要求 1所述的电机驱动装置,其特征在于:还包括套设到所述 外壳外周的链盘或皮带轮,所述链盘或皮带轮可随外壳转动。
30.根据权利要求 28 所述的电机驱动装置,其特征在于:所述中轴和所述 通孔、第一安装部位之间具有缝隙 ,所述缝隙的两端分别被所述第二离合机构、 靠近底壳的第四轴承密封。
31.根据权利要求 13所述的电机驱动装置,其特征在于:所述第一级针齿 销轴承与所述第一级摆线齿轮之间为滚动摩擦。
32.根据权利要求 19 所述的电机驱动装置,其特征在于:所述第二级针齿 销轴承与所述第二级摆线齿轮之间为滚动摩擦。
33.根据权利要求 8所述的电机驱动装置,其特征在于:所述平衡块的高度 不大于所述第一级摆线齿轮或所述第二级摆线齿轮的高度。
PCT/IB2019/057032 2018-09-28 2019-08-21 一种电机驱动裝置 WO2020079498A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
HK18112535.7 2018-09-28
HK18112535 2018-09-28
HK19100665.3 2019-01-15
HK19100665A HK1256666A2 (zh) 2018-09-28 2019-01-15 一種電機驅動裝置

Publications (1)

Publication Number Publication Date
WO2020079498A1 true WO2020079498A1 (zh) 2020-04-23

Family

ID=68465642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/057032 WO2020079498A1 (zh) 2018-09-28 2019-08-21 一种电机驱动裝置

Country Status (2)

Country Link
HK (1) HK1256666A2 (zh)
WO (1) WO2020079498A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212908A1 (de) 2020-10-13 2022-04-14 KILLWATT GmbH Gleichzeitig aus menschlicher muskelkraft und elektromotorisch antreibbares fortbewegungsmittel

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301885A (en) * 1979-01-05 1981-11-24 Bombardier-Rotex Gesellschaft M.B.H. Motor-assisted bicycle
CN2067663U (zh) * 1989-08-06 1990-12-19 潘荣达 轴式直流驱动器
JPH1179060A (ja) * 1997-09-08 1999-03-23 Mitsubishi Heavy Ind Ltd 電動アシスト自転車の駆動ユニット
CA2433666A1 (en) * 2000-12-29 2002-07-11 Harold Spanski Power-assist system and method for bicycles
CN101353076A (zh) * 2008-09-18 2009-01-28 李平 小型电动车中置驱动器
CN102417009A (zh) * 2011-09-26 2012-04-18 李广齐 液压电动助力自行车暨液压前后驱动越野自行车
CN102745298A (zh) * 2012-07-11 2012-10-24 天津比沃科技有限公司 电动自行车的中置驱动***
CN103129689A (zh) * 2011-11-29 2013-06-05 天津金轮自行车集团有限公司 一种山地电动助力自行车及其电动助力的方法
CN103153772A (zh) * 2010-04-20 2013-06-12 B-莱博斯股份公司 马达传动装置单元
CN104163225A (zh) * 2014-08-27 2014-11-26 天津市弘塔科技有限公司 电动自行车模拟力矩助力传感控制***及实现方法
CN104210595A (zh) * 2013-06-02 2014-12-17 刘忠刚 高功率节能电动自行车

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301885A (en) * 1979-01-05 1981-11-24 Bombardier-Rotex Gesellschaft M.B.H. Motor-assisted bicycle
CN2067663U (zh) * 1989-08-06 1990-12-19 潘荣达 轴式直流驱动器
JPH1179060A (ja) * 1997-09-08 1999-03-23 Mitsubishi Heavy Ind Ltd 電動アシスト自転車の駆動ユニット
CA2433666A1 (en) * 2000-12-29 2002-07-11 Harold Spanski Power-assist system and method for bicycles
CN101353076A (zh) * 2008-09-18 2009-01-28 李平 小型电动车中置驱动器
CN103153772A (zh) * 2010-04-20 2013-06-12 B-莱博斯股份公司 马达传动装置单元
CN102417009A (zh) * 2011-09-26 2012-04-18 李广齐 液压电动助力自行车暨液压前后驱动越野自行车
CN103129689A (zh) * 2011-11-29 2013-06-05 天津金轮自行车集团有限公司 一种山地电动助力自行车及其电动助力的方法
CN102745298A (zh) * 2012-07-11 2012-10-24 天津比沃科技有限公司 电动自行车的中置驱动***
CN104210595A (zh) * 2013-06-02 2014-12-17 刘忠刚 高功率节能电动自行车
CN104163225A (zh) * 2014-08-27 2014-11-26 天津市弘塔科技有限公司 电动自行车模拟力矩助力传感控制***及实现方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212908A1 (de) 2020-10-13 2022-04-14 KILLWATT GmbH Gleichzeitig aus menschlicher muskelkraft und elektromotorisch antreibbares fortbewegungsmittel

Also Published As

Publication number Publication date
HK1256666A2 (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
US8985254B2 (en) Pedal driven apparatus having a motor
US6278216B1 (en) Vehicle motor
TWI597204B (zh) 自行車驅動單元
US20130068549A1 (en) Bicycle with electrical drive system
US20130162112A1 (en) Motor-Gear Unit
JP3383133B2 (ja) 動力付き自転車の駆動装置
TW201808718A (zh) 輪轂式馬達減速機
JP2001140996A (ja) サイクロイド減速型電動車輪モータ
US10150534B2 (en) Motorized gear reducer
EP2735501A1 (en) Centrally-positioned power output mechanism of power-assisted bicycle
WO2020079498A1 (zh) 一种电机驱动裝置
EP2549137A2 (en) Traction motor
KR102116349B1 (ko) 유성기어장치와 자석의 자력을 이용한 자전거
CN116707221A (zh) 一种矢量矩阵摆线电机减速器
TWI648491B (zh) 同軸式電動助力之無段變速器
TWI568626B (zh) 電動自行車動力模組
JP6006137B2 (ja) 駆動装置
WO2017101088A1 (zh) 电动自行车轮毂
EP2900547B1 (en) A pedal driven apparatus having a motor
TWI308892B (zh)
TWM448447U (zh) 中軸無段變速輸出機構
GB2421989A (en) A differential gear with a casing that is a rotor of an electric motor
CN114087331A (zh) 差速电机、具有该差速电机的后桥、助力三轮车及助力四轮车
CN103001389A (zh) 电动自行车用中置电机
RU179351U1 (ru) Устройство для моторизации велосипеда

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873819

Country of ref document: EP

Kind code of ref document: A1