WO2020066910A1 - 積層体の製造方法、光学部材の製造方法 - Google Patents

積層体の製造方法、光学部材の製造方法 Download PDF

Info

Publication number
WO2020066910A1
WO2020066910A1 PCT/JP2019/037015 JP2019037015W WO2020066910A1 WO 2020066910 A1 WO2020066910 A1 WO 2020066910A1 JP 2019037015 W JP2019037015 W JP 2019037015W WO 2020066910 A1 WO2020066910 A1 WO 2020066910A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
cholesteric liquid
group
temporary support
Prior art date
Application number
PCT/JP2019/037015
Other languages
English (en)
French (fr)
Inventor
昌 山本
信彦 一原
誠 石黒
永井 道夫
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020549135A priority Critical patent/JP7053870B2/ja
Publication of WO2020066910A1 publication Critical patent/WO2020066910A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing a laminate and a method for manufacturing an optical member.
  • a layer having a fixed cholesteric liquid crystal phase (hereinafter, also referred to as a “cholesteric liquid crystal layer”) is a layer having a property of selectively reflecting either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength range. It is known and has been developed for various uses.
  • Patent Document 1 discloses an embodiment in which a cholesteric liquid crystal layer is obtained by polymerizing a liquid crystal compound having a polymerizable group on a substrate.
  • the present inventors examined the transferability of the cholesteric liquid crystal layer disclosed in Patent Document 1, and found that the transferability of the cholesteric liquid crystal layer was poor due to poor adhesion to other substrates.
  • a retardation layer having a retardation there has been a similar demand for improvement in transferability of a retardation layer having a retardation.
  • the retardation layer is a layer other than the cholesteric liquid crystal layer, and means a layer having a retardation in an in-plane direction or a thickness direction.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a laminate, which is excellent in transferability of an optical layer including a functional layer selected from the group consisting of a cholesteric liquid crystal layer and a retardation layer to another substrate. That is the task.
  • Another object of the present invention is to provide a method for manufacturing an optical member.
  • the present inventors have conducted intensive studies on the above problems and found that the following structure can solve the above problems.
  • the optical layer includes a functional layer selected from the group consisting of a cholesteric liquid crystal layer and a retardation layer,
  • a functional layer is disposed at a position farthest from the temporary support, a method for manufacturing a laminate, Forming a precursor layer containing a liquid crystal compound having a polymerizable group directly or through another layer on the temporary support, After aligning the liquid crystal compound in the precursor layer, a step of irradiating the precursor layer with light from the surface of the precursor layer opposite to the temporary support side and performing a curing treatment to obtain a functional layer Has,
  • the precursor layer includes a partial structure represented by Formula (1) described below,
  • the light at the time of light irradiation includes light having a wavelength of 265 nm, A method for producing a laminate, wherein the irradiation amount of light having a wavelength of 265 nm is 5 mJ / cm 2 or more.
  • the precursor layer further contains a surfactant
  • the functional layer is a cholesteric liquid crystal layer.
  • the precursor layer contains a chiral agent whose helical induction force changes by light irradiation, The method according to (3), wherein the cholesteric liquid crystal layer has a pitch gradient structure in which a helical pitch changes in a thickness direction.
  • any one of (1) to (5) in a cross section of the cholesteric liquid crystal layer observed by a scanning electron microscope, at least a part of a bright portion and a dark portion derived from the cholesteric liquid crystal phase has a wavy structure.
  • a method for manufacturing a laminate (7) the precursor layer is disposed on the temporary support via another layer, The method for producing a laminate according to any one of (1) to (6), wherein the other layer is a cholesteric liquid crystal layer.
  • the manufacturing method of the laminated body excellent in the transferability of the optical layer containing the functional layer selected from the group which consists of a cholesteric liquid crystal layer and a phase difference layer to another base material can be provided. Further, according to the present invention, a method for manufacturing an optical member can be provided.
  • FIG. 3 is a schematic diagram for explaining a step 1-1.
  • FIG. 9 is a schematic diagram for explaining a light irradiation method in a step 2.
  • FIG. 4 is a schematic diagram for explaining a laminate obtained in a step 2.
  • FIG. 3 is a schematic diagram for explaining a structure of a cholesteric liquid crystal layer.
  • FIG. 3 is a schematic diagram for explaining a process 1-2.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • visible light is light having a wavelength visible to the human eye among electromagnetic waves, and is light in a wavelength range of 380 to 780 nm.
  • Ultraviolet light is light in a wavelength region of 10 nm or more and less than 380 nm.
  • a feature of the manufacturing method of the present invention is that light including light having a wavelength of 265 nm is irradiated during the curing treatment of a precursor layer including a partial structure represented by the following formula (1).
  • photo-fleece dislocation proceeds along with curing of the precursor layer.
  • Examples of the optical Fries dislocation include dislocations represented by the following scheme.
  • a partial structure having a phenolic hydroxyl group is formed by the occurrence of the optical fleece rearrangement. Therefore, a large number of partial structures having a phenolic hydroxyl group are generated on the surface of the functional layer on the light irradiation side, and as a result, the adhesion to other substrates is improved.
  • the first embodiment of the production method of the present invention represents an embodiment in which a precursor layer is formed directly on a temporary support
  • the second embodiment of the production method of the present invention comprises another layer formed on a temporary support. Through which a precursor layer is formed.
  • first the first embodiment will be described in detail.
  • the first embodiment of the production method of the present invention includes Step 1-1 and Step 2 described below. Hereinafter, the procedure of each step will be described in detail.
  • Step 1-1 is a step of forming a precursor layer containing a liquid crystal compound having a polymerizable group directly on the temporary support.
  • a precursor layer that is a layer to be subjected to a curing treatment is formed. More specifically, by performing this step, the precursor layer 12 is formed directly on the temporary support 10 as shown in FIG.
  • first, members and materials used in this step will be described in detail.
  • the temporary support is a substrate that supports the precursor layer, and adheres releasably to an optical layer described later.
  • the temporary support is a peelable support. As described below, when the optical layer is transferred, it is separated into a temporary support and an optical layer.
  • the material constituting the temporary support is not particularly limited, and examples thereof include a polyester resin, a cellulose resin, a (meth) acrylic resin, a polycarbonate resin, a styrene resin, a polyolefin resin, a vinyl chloride resin, and an amide.
  • Base resin In addition, (meth) acrylic resin is a general term for acrylic resin and methacrylic resin.
  • the temporary support may have a single-layer structure or a multilayer structure.
  • the temporary support may include a substrate and a base layer including a resin disposed on the substrate.
  • an underlayer especially, an underlayer that has not been subjected to rubbing treatment
  • a wavy structure which will be described later, is easily formed in a cholesteric liquid crystal layer disposed on the surface of the underlayer.
  • the underlayer is described as an example of the layer constituting the temporary support. However, as described later, the underlayer may be a part of the optical layer depending on the components constituting the underlayer.
  • the material constituting the substrate is not particularly limited, and examples thereof include the material constituting the support described above.
  • the thickness of the substrate is preferably from 20 to 1000 ⁇ m, more preferably from 40 to 500 ⁇ m.
  • the type of the resin contained in the underlayer is not particularly limited, and examples thereof include the materials constituting the temporary support described above. Above all, a (meth) acrylic resin is preferable as the resin contained in the underlayer.
  • the thickness of the underlayer is preferably 0.01 to 5.0 ⁇ m, more preferably 0.05 to 3.0 ⁇ m.
  • the functional layer is a retardation layer
  • a temporary support having a rubbed surface may be used as the temporary support.
  • the base layer may be an alignment layer (for example, a resin layer subjected to a rubbing treatment).
  • the precursor layer is a layer disposed directly on the temporary support. As described later, in the second embodiment, the precursor layer is disposed on the temporary support via another layer.
  • the precursor layer contains a liquid crystal compound having a polymerizable group (hereinafter, also referred to as “polymerizable liquid crystal compound”).
  • the type of the polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group and a cationic polymerizable group, and include a (meth) acryloyloxy group, a vinyl group, a maleimide group, an acetyl group, a styryl group, an allyl group, an epoxy group, and Oxetane group.
  • the (meth) acryloyloxy group is a general term for an acryloyloxy group and a methacryloyloxy group.
  • the number of polymerizable groups contained in the polymerizable liquid crystal compound is not particularly limited, and is preferably 1 to 6, more preferably 1 to 3.
  • the polymerizable liquid crystal compound may be a rod-shaped liquid crystal compound or a disc-shaped liquid crystal compound, but is preferably a rod-shaped liquid crystal compound.
  • the rod-shaped liquid crystal compound azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxane, tolan or alkenylcyclohexylbenzonitrile are preferred.
  • the liquid crystal compound not only a low-molecular liquid crystal compound but also a high-molecular liquid crystal compound can be used.
  • the precursor layer includes a partial structure (phenyl ester structure) represented by the formula (1).
  • the partial structure represented by the formula (1) may be included in the polymerizable liquid crystal compound described above, or may be included in another compound.
  • Other compounds include surfactants described below.
  • R represents a substituent.
  • the type of the substituent is not particularly limited, and may be a halogen atom (such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, or a hetero group.
  • Ring group cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, amino group (including alkylamino group and anilino group), acylamino Group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group , Killed or arylsulfinyl group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl or heterocyclic azo
  • n1 represents an integer of 0 to 4
  • n2 represents an integer of 0 to 4.
  • n1 is preferably from 0 to 2, and more preferably from 0 to 1.
  • n2 is preferably 0 to 2, and more preferably 1.
  • n1 + n2 represents 4 or less. That is, the sum of n1 and n2 is 4 or less.
  • 1-2 is preferable, and 1 is preferable. * Represents a bonding position.
  • n2 represents the number of bonding hands connected to the benzene ring.
  • n2 is 1, and the partial structure represented by the formula (2) (the divalent group represented by the formula (2)) ) May be contained in the compound.
  • a broken line portion is a portion described above. Corresponds to the structure.
  • a compound represented by the formula (A) is preferable.
  • P 1 and P 2 each independently represent a hydrogen atom or a polymerizable group, and at least one of P 1 and P 2 represents a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • RA represents a hydrogen atom or an alkyl group.
  • the alkylene group may be linear, branched, or cyclic.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and still more preferably 1 to 4.
  • M represents a divalent mesogen group having a partial structure represented by the formula (2).
  • the mesogen group is a rigid and orientable functional group.
  • the mesogen group may be a rod-shaped mesogen group or a disk-shaped mesogen group. Note that a rod-shaped mesogen group is intended to mean a mesogen group having a main skeleton portion that is linear, and a disc-shaped mesogen group is intended to mean a mesogen group having a structure in which the main skeleton portion is radially spread.
  • the mesogen group a plurality of groups selected from the group consisting of an aromatic ring group (an aromatic hydrocarbon ring group and an aromatic heterocyclic group) and an alicyclic group, Valent linking group (for example, -CO-, -O-, -NR A- (R A represents a hydrogen atom or an alkyl group) or a combination thereof (-CO-O-)) Through the structure.
  • the mesogen group includes a group represented by the formula (B).
  • Formula (B) — (L 3 ⁇ L 4 ) m ⁇ L 3 represents a divalent aromatic ring group which may have a substituent or a divalent alicyclic group which may have a substituent.
  • L 4 represents a single bond, —CO—, —O—, —NR A —, or a combination thereof (eg, —CO—O—).
  • RA represents a hydrogen atom or an alkyl group.
  • m represents an integer of 2 or more. However, at least one of the m units represented by (L 3 -L 4 ) represents a partial structure represented by the formula (2).
  • the divalent aromatic ring group includes a divalent aromatic hydrocarbon ring group (for example, a phenylene group) and a divalent aromatic heterocyclic group.
  • Examples of the divalent alicyclic group include a cyclohexylene group.
  • the divalent aromatic ring group or the divalent alicyclic group may further have a substituent.
  • the definition of the substituent is the same as the definition of the substituent represented by R in the formula (1).
  • m is preferably an integer of 2 to 5, more preferably an integer of 2 to 3.
  • the precursor layer may contain a compound other than the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound may contain a surfactant.
  • a surfactant containing a fluorine atom (fluorine surfactant) or a surfactant containing a silicon atom (silicon surfactant) is preferable, and a surfactant containing a fluorine atom is more preferable.
  • the surfactant is preferably a compound having at least two substituents containing a perfluoroalkyl group. As the substituent containing a perfluoroalkyl group, a group represented by the formula (C) is preferable.
  • L 5 represents a divalent linking group.
  • the definition of the divalent linking group is the same as the definition of the divalent linking group represented by L 1 and L 2 .
  • L 5 includes —CH 2 —, —O—, —CO—, and a combination thereof (eg, —CO—O—, —O-2 divalent hydrocarbon group—, —O-2 divalent hydrocarbon).
  • Hydrogen group —O—, — (O-2 valent hydrocarbon group) n3 — (n3 represents an integer of 2 to 10), — (O—CO-2 valent hydrocarbon group) n4 — (n4 Represents an integer of 1 to 10.)) is preferable.
  • p represents an integer of 1 or more. p is preferably an integer of 1 to 20, more preferably an integer of 1 to 10.
  • the surfactant preferably contains a benzene ring or a triazine ring.
  • the molecular weight of the surfactant is preferably 3000 or less, more preferably 2000 or less.
  • the lower limit is not particularly limited, but is preferably 300 or more.
  • the surfactant preferably has a partial structure represented by the above formula (1).
  • a compound represented by the formula (D) is preferable.
  • Formula (D) (C p F 2p + 1 -L 5) q1 -Ar 1 - (L 6 -L 7) r -Ar 2 - (L 5 -C p F 2p + 1) q2 Definition in the formula (D), p and L 5 is as described above.
  • Ar 1 represents a q1 + 1 valent benzene ring.
  • the benzene ring may have a substituent other than the group represented by (C p F 2p + 1 -L 5 ).
  • Ar 2 represents a q2 + 1-valent benzene ring.
  • the benzene ring may have a substituent other than the group represented by (C p F 2p + 1 -L 5 ).
  • L 6 represents a divalent aromatic ring group which may have a substituent or a divalent alicyclic group which may have a substituent.
  • the divalent aromatic ring group include a divalent aromatic hydrocarbon ring group (for example, a phenylene group) and a divalent aromatic heterocyclic group.
  • the divalent aromatic ring group or the divalent alicyclic group may further have a substituent.
  • the definition of the substituent is the same as the definition of the substituent represented by R in the formula (1).
  • L 7 represents a single bond, —CO—, —O—, —NR A —, or a combination thereof (eg, —CO—O—).
  • RA represents a hydrogen atom or an alkyl group.
  • n represents an integer of 2 or more.
  • at least one of the r units represented by (L 6 -L 7 ) represents a partial structure represented by the formula (2).
  • r represents an integer of 1 to 3.
  • 1 or 2 is preferable.
  • q1 and q2 each independently represent an integer of 1 to 5. Of these, an integer of 1 to 3 is preferred.
  • the content of the surfactant in the precursor layer is not particularly limited, but is preferably 0.01 to 5% by mass relative to the total mass of the polymerizable liquid crystal compound. It is more preferably from 1 to 3% by mass.
  • One surfactant may be used alone, or two or more surfactants may be used.
  • the precursor layer may include a polymerization initiator.
  • a polymerization initiator a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation is preferable.
  • the photopolymerization initiator include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, phenazine compounds, oxadiazole compounds, and compounds having an oxime ester structure.
  • the content of the polymerization initiator in the precursor layer is not particularly limited, but is preferably 0.1 to 20% by mass relative to the total mass of the polymerizable liquid crystal compound. -8% by mass is more preferred.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the precursor layer may include a chiral agent.
  • a cholesteric phase can be formed.
  • the type of chiral agent is not particularly limited.
  • the chiral agent may be liquid crystalline or non-liquid crystalline.
  • Chiral agents generally contain an asymmetric carbon atom.
  • an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as a chiral agent. Examples of the axially asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • a chiral agent whose helix inducing force changes by light irradiation (hereinafter, also referred to as a “photosensitive chiral agent”) is preferable.
  • a chiral agent whose helix inducing force is reduced by light irradiation and a chiral agent whose helix inducing force is increased by light irradiation.
  • the spiral inducing force (HTP) of the chiral agent is a factor indicating the spiral orientation ability represented by the following formula (X).
  • Formula (X) HTP 1 / (length of helical pitch (unit: ⁇ m) ⁇ concentration of chiral agent in precursor layer (% by mass)) [ ⁇ m ⁇ 1 ]
  • the photosensitive chiral agent examples include a so-called photoreactive chiral agent.
  • the photoreactive chiral agent is a compound that has a chiral site and a photoreactive site that changes its structure by light irradiation, and that, for example, greatly changes the torsional force of the liquid crystal compound according to the amount of irradiation.
  • Examples of photoreactive sites whose structure is changed by light irradiation include photochromic compounds (Kingo Uchida, Masahiro Irie, Chemical Industries, vol. 64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemical, vol. 28 (9), 15p) , 1999).
  • the above-mentioned structural change means a decomposition, an addition reaction, an isomerization, a dimerization reaction or the like caused by light irradiation to a photoreactive site, and the above-mentioned structural change may be irreversible.
  • the chiral moiety include, for example, Hiroyuki Nohira, Chemical Review, No. The asymmetric carbon described in 22 Chemistry of Liquid Crystals, 73p: 1994, and the like correspond thereto.
  • the photosensitive chiral agent a compound having at least one photoisomerization site is preferable.
  • the photoisomerization site the absorption of visible light is small, photoisomerization is likely to occur, and the helical induction force difference before and after light irradiation is large, so that a cinnamoyl site, a chalcone site, an azobenzene site, a stilbene site, Alternatively, a coumarin site is preferred, and a cinnamoyl site or chalcone site is more preferred.
  • the photoisomerization site corresponds to a photoreaction site that changes its structure by light irradiation.
  • the precursor layer contains, in addition to the components described above, an antioxidant, an ultraviolet absorber, a sensitizer, a stabilizer, a plasticizer, a chain transfer agent, a polymerization inhibitor, an antifoaming agent, a thickener, a flame retardant, and a dispersant. And other additives such as coloring materials such as dyes and pigments.
  • the method for forming the precursor layer is not particularly limited, but from the viewpoint that the thickness of the precursor layer can be easily controlled, a composition for forming a precursor layer containing a predetermined component is coated on a temporary support, and A method of forming a precursor layer on a support is preferred.
  • the components contained in the precursor layer forming composition include the components that can be contained in the above-described precursor layer.
  • the composition for forming a precursor layer may include a solvent. Solvents include water and organic solvents.
  • organic solvent examples include amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as pyridine; hydrocarbons such as benzene and hexane; alkyl halides such as chloroform and dichloromethane; Esters such as butyl acetate and propylene glycol monoethyl ether acetate; ketones such as acetone, methyl ethyl ketone, cyclohexanone and cyclopentanone; and ethers such as tetrahydrofuran and 1,2-dimethoxyethane.
  • amides such as N, N-dimethylformamide
  • sulfoxides such as dimethyl sulfoxide
  • heterocyclic compounds such as pyridine
  • hydrocarbons such as benzene and hexane
  • alkyl halides such as chloroform and dichloromethane
  • Esters such as butyl a
  • Examples of the method of applying the precursor layer forming composition include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • a treatment for drying the precursor layer formed on the temporary support may be performed after the application of the composition for forming a precursor layer.
  • the solvent can be removed from the precursor layer.
  • the thickness of the precursor layer is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m.
  • step 2 after aligning the liquid crystal compound in the precursor layer, the precursor layer is cured by irradiating light from the surface of the precursor layer opposite to the temporary support side to perform curing.
  • step 2 After aligning the liquid crystal compound in the precursor layer, as shown in FIG. 2, from the surface 12a of the precursor layer 12 on the side opposite to the temporary support 10 side, indicated by white arrows.
  • the precursor layer 12 is subjected to a curing treatment by irradiating light.
  • the functional layer 14 is formed on the temporary support 10, and the laminate 18A is obtained.
  • the method of aligning the liquid crystal compound in the precursor layer is not particularly limited, and a method of performing a heat treatment on the precursor layer can be used.
  • the conditions for the heat treatment vary depending on the type of the polymerizable liquid crystal compound and the components used, but the heating temperature is preferably from 10 to 250 ° C, more preferably from 50 to 150 ° C.
  • the heating time is preferably 0.5 to 5 minutes, more preferably 0.5 to 2 minutes. Note that the alignment state of the liquid crystal compound differs depending on the components used.
  • the precursor layer contains a chiral agent
  • the liquid crystal compound is cholesterically aligned.
  • a temporary support including an alignment layer is used as the temporary support and the precursor layer does not contain a chiral agent, the liquid crystal compound is homogeneously aligned.
  • the precursor layer in which the liquid crystal compound is aligned is irradiated with light from the surface of the precursor layer on the side opposite to the temporary support side to perform a curing treatment.
  • Light applied to the precursor layer includes light having a wavelength of 265 nm.
  • the above-mentioned optical Fries dislocation proceeds. Irradiation amount of light of wavelength 265nm is at 5 mJ / cm 2 or more, the optical Fries rearrangement proceeds better, in terms of further improving the transferability of the optical layer, 10 mJ / cm 2 or more is preferable, 20 mJ / cm Two or more are more preferable.
  • the upper limit is not particularly limited in terms of productivity, preferably 500 mJ / cm 2 or less, 150 mJ / cm 2 or less being more preferred.
  • the light applied to the precursor layer may include light having a wavelength of 265 nm, but ultraviolet light is preferable because curing of the precursor layer proceeds more favorably, and light (ultraviolet light) including light having a wavelength of 365 nm is preferable. More preferred.
  • the irradiation amount of light having a wavelength of 365 nm is preferably 20 mJ / cm 2 or more, and more preferably 50 mJ / cm 2 or more, from the viewpoint that curing of the precursor layer proceeds more favorably.
  • the upper limit is not particularly limited, but is preferably 1500 mJ / cm 2 or less from the viewpoint of productivity.
  • the temperature of the precursor layer during light irradiation is not particularly limited, and is preferably a temperature at which the alignment state of the liquid crystal compound is maintained, for example, preferably 10 to 250 ° C, and more preferably 20 to 150 ° C.
  • a temporary support and a functional layer selected from the group consisting of a cholesteric liquid crystal layer and a retardation layer are provided adjacent to the temporary support.
  • a laminate is formed.
  • the functional layer itself corresponds to the optical layer to be transferred. That is, the functional layer is transferred from the temporary support to another substrate.
  • the surface of the functional layer on the side opposite to the temporary support has many phenolic hydroxyl groups derived from photo-fleece rearrangement. Therefore, after the surface of the functional layer on the side opposite to the temporary support is brought into contact with the base material, the functional layer can be transferred onto the base material by peeling off the temporary support.
  • the cholesteric liquid crystal layer formed through the above steps has a pitch gradient structure (hereinafter, also referred to as a “PG structure”) in which the helical pitch changes in the thickness direction. )
  • PG structure pitch gradient structure
  • the helical pitch gradually increases in the cholesteric liquid crystal layer formed from the temporary support side toward the opposite side.
  • the reason why such a structure is obtained will be described below.
  • light applied to the precursor layer is absorbed by the material forming the precursor layer. Therefore, when the precursor layer is irradiated with light, the irradiation amount of light gradually decreases from the precursor layer side to the temporary support side. That is, the decrease in HTP of the chiral agent gradually decreases from the precursor layer side to the temporary support side. Therefore, in the region on the side opposite to the temporary support where the HTP has greatly decreased, the spiral pitch is long because the induction of the spiral is small, and in the region on the temporary support side where the decrease in HTP is small, the HTP originally contained in the chiral agent has , The spiral pitch is shortened.
  • the cholesteric liquid crystal layer selectively reflects long-wavelength light on the side opposite to the temporary support, and selectively reflects short-wavelength light on the temporary support side as compared to the upper side. I do. Therefore, by using a cholesteric liquid crystal layer having a PG structure in which the helical pitch changes in the thickness direction, light in a wide wavelength band can be selectively reflected.
  • the cholesteric liquid crystal layer formed through the above steps has a selective reflection wavelength, and a half-value width in a selective reflection wavelength band is patterned in a plane.
  • a chiral agent having a lower helical induction force than light irradiation is used as a photosensitive chiral agent
  • an exposure mask or the like is used to pattern the amount of light irradiation at a wavelength that reduces the helical induction force of the photosensitive chiral agent.
  • a spiral pitch can be patterned in the plane.
  • a cholesteric liquid crystal layer that selectively reflects long-wavelength light in a place where the light irradiation amount is large and selectively reflects short-wavelength light in a place where the light irradiation amount is small. Further, it is preferable to perform a curing treatment by irradiating light having a wavelength for curing the precursor layer.
  • the selective reflection wavelength of the cholesteric liquid crystal layer formed as the functional layer and the half width in a selective reflection wavelength band may be obtained by the following method. That is, when the integrated reflectance is measured by a method described later, a peak-shaped (upwardly convex) integrated reflectance spectrum waveform with the wavelength on the horizontal axis is obtained. At this time, the average reflectance (arithmetic average) of the maximum value and the minimum value of the integrated reflectance is obtained, and of the two wavelengths at the two intersections of the waveform and the average reflectance, the value of the wavelength on the short wave side is ⁇ (nm). , And the value of the wavelength on the long wave side is ⁇ (nm), and is calculated by the following equation.
  • the waveform of the integrated reflectance spectrum of the integrated reflectance may be distorted in a sawtooth shape.
  • the average reflectance (arithmetic average) of the maximum value and the minimum value of the specular reflectance is obtained from the spectrum waveform of the specular reflectance described above, and two wavelengths at two intersections of the waveform and the average reflectance are obtained.
  • the selective reflection wavelength may be calculated by the above equation, where the wavelength value on the short wave side is ⁇ (nm) and the wavelength value on the long wave side is ⁇ (nm).
  • a method of measuring a selective reflection wavelength and a half width by measuring a transmission spectrum of a sample with Axoscan of Axometrix or the like is exemplified.
  • a valley-shaped (convex downward) transmission spectrum waveform having the wavelength on the horizontal axis is obtained.
  • the average reflectance (arithmetic average) of the maximum value and the minimum value of the transmittance is obtained, and of the two wavelengths at the two intersections of the waveform and the average transmittance, the value of the wavelength on the short wave side is ⁇ (nm),
  • the selective reflection wavelength and the half-value width are calculated by the above-described equations.
  • the integrated reflectance at the wavelength ⁇ is measured by using a large integrating sphere device (manufactured by JASCO Corporation, ILV-471) with a spectrophotometer (manufactured by JASCO Corporation) so that light is incident on the cholesteric liquid crystal layer surface. What is necessary is just to measure with an optical trap using what was attached.
  • the FWHM of the integrated reflection spectrum of the cholesteric liquid crystal layer is not particularly limited, but is preferably 50 nm or more, more preferably 80 nm or more, and even more preferably 100 nm or more.
  • the upper limit is not particularly limited, but is often 500 nm or less.
  • the cholesteric liquid crystal layer which is a functional layer, has a cholesteric liquid crystal phase in a cross section observed with a scanning electron microscope (SEM), and has a bright portion B (bright line) and a dark portion D (dark line) in the thickness direction. Are observed alternately.
  • SEM scanning electron microscope
  • the cholesteric liquid crystal layer is preferably a layer having a cholesteric liquid crystal structure and a structure in which an angle between a helical axis and the surface of the cholesteric liquid crystal layer changes periodically.
  • the cholesteric liquid crystal layer has a cholesteric liquid crystal structure, and the cholesteric liquid crystal structure gives a stripe pattern of a light portion B and a dark portion D in a cross-sectional view of the cholesteric liquid crystal layer observed by SEM, and a line formed by the dark portion. It is preferable that the angle formed between the normal line and the surface of the cholesteric liquid crystal layer changes periodically.
  • the wavy structure includes at least one region M in which the absolute value of the inclination angle with respect to the plane of the cholesteric liquid crystal layer is 5 ° or more in a continuous line of the light portion B or the dark portion D forming a stripe pattern, and , which has a peak or a valley having an inclination angle of 0 °, which is located closest to the region M in the plane direction.
  • the peak or the valley having an inclination angle of 0 ° includes a convex shape and a concave shape, but the inclination angle of 0 ° also includes a step-like and a shelf-like point.
  • a plurality of regions M having an absolute value of the inclination angle of 5 ° or more and a plurality of peaks or valleys sandwiching the regions M are repeated in a continuous line of the light portion B or the dark portion D having a stripe pattern.
  • FIG. 4 conceptually shows a cross section of a cholesteric liquid crystal layer having a wavy structure and a PG structure.
  • a stripe pattern of a bright portion B and a dark portion D is observed. That is, in the cross section of the cholesteric liquid crystal layer 14A, a layered structure in which light portions B and dark portions D are alternately stacked in the thickness direction is observed.
  • two repetitions of the bright portion B and the dark portion D correspond to a helical pitch.
  • the helical pitch of the cholesteric liquid crystal layer that is, the reflection layer
  • the two repetitions of the light part B and the dark part D are two light parts and two dark parts.
  • the helical axis of the liquid crystal compound is inclined. Due to the region, a part of the incident light is reflected in an oblique direction. That is, in the cholesteric liquid crystal layer 14A, since the bright portion B and the dark portion D have a wavy structure, a reflection layer having high diffuse reflection can be realized.
  • the cholesteric liquid crystal layer having a wavy structure can be formed by forming a cholesteric liquid crystal layer on a formation surface that is not subjected to an alignment treatment such as rubbing.
  • a cholesteric liquid crystal layer having a wavy structure can be formed by forming a cholesteric liquid crystal layer using a temporary support including a base layer that has not been subjected to rubbing.
  • the alignment direction of the liquid crystal compound varies in various directions on the surface of the underlayer according to the properties of the underlayer because there is no alignment control force for the liquid crystal compound. become.
  • the helical axes of the liquid crystal compound constituting the cholesteric liquid crystal phase are oriented in various directions, and as a result, the stripes of the bright portion B and the dark portion D have a wavy structure.
  • the in-plane retardation of the retardation layer is not particularly limited.
  • the retardation layer functions as a so-called ⁇ / 4 plate
  • the in-plane retardation at a wavelength of 550 nm is 100 to 160 nm. Is preferred.
  • the retardation layer functions as a so-called ⁇ / 2 plate
  • the in-plane retardation at a wavelength of 550 nm is preferably from 200 to 320 nm.
  • the second embodiment of the production method of the present invention represents an embodiment in which a precursor layer is formed on a temporary support via another layer, as described above.
  • the second embodiment of the production method of the present invention includes the following steps 1-2 and 2.
  • Step 1-2 Forming a precursor layer containing a liquid crystal compound having a polymerizable group on the temporary support via another layer
  • Step 2 After aligning the liquid crystal compound in the precursor layer, Step of irradiating the body layer with light from the surface of the precursor layer opposite to the side of the temporary support to perform a curing treatment to obtain a functional layer. Since it is the same as the first embodiment except that a layer is formed, the description is omitted below, and the difference between the two is mainly described below.
  • a precursor layer is formed on the temporary support via another layer.
  • the type of the other layers is not particularly limited, and examples thereof include a cholesteric liquid crystal layer and a retardation layer.
  • other layers include the above-described underlayer, adhesive layer, and pressure-sensitive adhesive layer.
  • the other layer disposed on the temporary support is peeled off from the temporary support as a part of the optical layer and is transferred to the substrate.
  • the cholesteric liquid crystal layer may have the PG structure described above.
  • the helical twist direction of the cholesteric liquid crystal layer, which is another layer, and the helical twist of the cholesteric liquid crystal layer, which is a functional layer are different.
  • the direction may be the opposite direction or the same direction, but the opposite direction is preferable in terms of excellent reflection characteristics.
  • the selective reflection wavelength of the cholesteric liquid crystal layer as the other layer and the selective reflection wavelength of the cholesteric liquid crystal layer as the functional layer are different. Is preferably 400 nm or less.
  • the other layer may be a single layer or a multilayer.
  • the layers constituting the multilayer may be the same type of layers (for example, cholesteric liquid crystal layers) or different types of layers (for example, a combination of a cholesteric liquid crystal layer and a retardation layer). You may.
  • the method for forming the other layers is not particularly limited, and a known method is employed.
  • a laminate 18B having the temporary support 10 and the other layers 16 and the functional layers 14 arranged on the temporary support 10 is obtained.
  • two layers of the other layer 14 and the functional layer 16 correspond to the optical layer 20 as a transfer object. That is, the optical layer is transferred from the temporary support to another substrate.
  • a laminate having a temporary support and an optical layer disposed adjacent to the temporary support is obtained.
  • the functional layer is arranged at a position farthest from the temporary support.
  • the surface of the functional layer opposite to the temporary support has many phenolic hydroxyl groups derived from photo-fleece rearrangement. Therefore, by bringing the surface of the optical layer (specifically, the surface of the functional layer opposite to the temporary support side) into contact with the base material directly or through another layer, the temporary support is peeled off.
  • an optical member including the substrate and the optical layer can be obtained. More specifically, in the laminate 18A shown in FIG.
  • the temporary support 10 By peeling off, an optical member including the substrate and the optical layer can be obtained.
  • the optical layer 20 By peeling off the temporary support 10 at the interface between the temporary support 10 and the temporary support 10, an optical member including the base material and the optical layer can be obtained. Note that, in the embodiment of FIG. 5, the embodiment in which the number of the optical layers is two has been described. However, the number of the optical layers may be three or more. Corresponds to multiple layers.
  • the other layers include a cholesteric liquid crystal layer, a retardation layer, a base layer, an adhesive layer, and a pressure-sensitive adhesive layer.
  • the other layer is transferred onto the base material as a part of the optical layer.
  • the functional layer can be applied to various uses.
  • various uses such as a decorative sheet, a light reflecting member, a light diffusing plate, a half mirror, a transparent screen, an imaging device, a sensor, an optical device, and other optical devices.
  • the functional layer in the laminate manufactured by the manufacturing method of the present invention can be used for an optical device having a functional layer and an element using light transmitted through the functional layer.
  • an element utilizing light transmitted through the functional layer there is no particular limitation on an element utilizing light transmitted through the functional layer, and various elements such as an imaging element and a sensor can be used.
  • the laminated body produced by the production method of the present invention is bonded to an optical filter such as an SC filter (manufactured by FUJIFILM Corporation) and an IR filter (manufactured by FUJIFILM Corporation), and the temporary support is peeled off.
  • an optical filter such as an SC filter (manufactured by FUJIFILM Corporation) and an IR filter (manufactured by FUJIFILM Corporation)
  • the temporary support is peeled off.
  • the functional layer may be used as a decorative sheet. This makes it possible to decorate the device such as an image sensor and a sensor according to the light receiving wavelength.
  • an image display device may be formed by using a functional layer in the laminate manufactured by the manufacturing method of the present invention and an image display element.
  • Various known image display elements can be used as the image display element.
  • a liquid crystal display element and an organic electroluminescence display element are exemplified.
  • the functional layer in the laminate produced by the production method of the present invention can also be used as an optical element.
  • it can be used for a general use as a half mirror and for a use described in paragraph 0017 of JP-A-2017-092021.
  • ⁇ Comparative Example 1> (Preparation of Underlayer 1) As a substrate having a thickness of 50 ⁇ m, PET (polyethylene terephthalate) (Cosmoshine A4100, manufactured by Toyobo Co., Ltd.) was prepared and used as the transparent support 1. In addition, the transparent support 1 corresponds to a so-called temporary support. The underlayer coating solution 1 having the following composition was applied to the surface of the transparent support 1 on which the easy-adhesion layer was not provided by a # 3.6 wire bar coater. Thereafter, the transparent support 1 on which the underlayer coating solution 1 has been applied is dried at 45 ° C. for 60 seconds, and the transparent support 1 subjected to the above-mentioned drying treatment is applied at 25 ° C. using an ultraviolet irradiation device at 500 mJ / cm. by irradiating the second ultraviolet, to prepare a base layer with the transparent support 1.
  • PET polyethylene terephthalate
  • Cosmoshine A4100 manufactured by Toy
  • Surfactant F1 (hereinafter, structural formula)
  • R is a group bonded by an oxygen atom.
  • Chiral agent B is a chiral agent that forms a right-handed spiral.
  • Chiral agent B is a chiral agent having a cinnamate group.
  • the cholesteric liquid crystal layer coating liquid Ch1 prepared above was applied to the upper surface of the underlayer of the transparent support 1 with an underlayer using a # 12 wire bar coater. Thereafter, the transparent support 1 with an underlayer coated with the cholesteric liquid crystal layer coating solution Ch1 is dried at 105 ° C. for 60 seconds, and at a oxygen concentration of 200 ppm or less and a short wavelength cut filter (TEMPAX, manufactured by SCHOTT) at 85 ° C.
  • TEMPAX short wavelength cut filter
  • the cholesteric liquid crystal layer Ch1 was produced by irradiating an ultraviolet ray from a high-pressure mercury lamp having an irradiation amount of 365 nm at a wavelength of 459 mJ / cm 2 and an irradiation amount of a wavelength of 265 nm at 2.4 mJ / cm 2 .
  • Chiral agent C is a chiral agent that forms a left-handed spiral.
  • the chiral agent C is a chiral agent having a cinnamate group.
  • the cholesteric liquid crystal layer coating solution Ch2 prepared above was applied onto the cholesteric liquid crystal layer Ch1 with a # 5 wire bar coater. Thereafter, the transparent support 1 with the underlayer coated with the cholesteric liquid crystal layer coating solution Ch2 is dried at 105 ° C.
  • a short wavelength cut filter (TEMPAX, shot Cholesteric liquid crystal layer Ch2 was produced by irradiating an ultraviolet ray from a high-pressure mercury lamp having an irradiation amount of 365 nm at a wavelength of 459 mJ / cm 2 and an irradiation amount of a wavelength of 265 nm at 2.4 mJ / cm 2.
  • the laminate of Example 1 was produced.
  • Example 1 Ultraviolet irradiation of the cholesteric liquid crystal layer Ch2, without passing through the filter, except that dose of wavelength 365nm is an ultraviolet radiation of a high-pressure mercury lamp 100 mJ / cm 2, irradiation amount of wavelength 265nm is 7.7mJ / cm 2 is A cholesteric liquid crystal layer Ch2 was produced in the same manner as in Comparative Example 1, and a laminate of Example 1 was produced.
  • Example 2 Ultraviolet irradiation of the cholesteric liquid crystal layer Ch2, without passing through the filter, except that dose of wavelength 365nm is 500 mJ / cm 2, irradiation amount of wavelength 265nm is an ultraviolet radiation of a high-pressure mercury lamp is 38.3mJ / cm 2 is A cholesteric liquid crystal layer Ch2 was produced in the same manner as in Comparative Example 1, and a laminate of Example 2 was produced.
  • the optical layer to be transferred includes an underlayer, a cholesteric liquid crystal layer Ch1, and a cholesteric liquid crystal layer Ch2.
  • PET Cosmoshine A4100, manufactured by Toyobo Co., Ltd.
  • cholesteric liquid crystal layer Ch2 of the laminate is applied with an adhesive (SK-2057, manufactured by Soken Chemical Co., Ltd.).
  • the number of defects when the transparent support 1 was peeled off at a speed of 5 m per minute in a direction of 180 degrees was evaluated from the following viewpoint.
  • Table 1 shows the results. A: 0 to 1 defect per square meter due to defective peeling. B: 2 to 5 defects per square meter due to defective peeling. C: 6 or more defects per square meter due to defective peeling.
  • the defect due to the peeling defect means that the optical layer to be transferred is not separated at the interface between the transparent support 1 and the underlayer but at another interface (for example, the interface between the adhesive and the cholesteric liquid crystal layer Ch2). It refers to the portion left on the transparent support 1 side.
  • the column “irradiation amount 365 nm (mJ / cm 2 )” indicates the irradiation amount of light having a wavelength of 365 nm.
  • the “irradiation amount 265 nm (mJ / cm 2 )” column indicates the irradiation amount of light having a wavelength of 265 nm.
  • the “PG structure” column indicates the presence or absence of a PG structure in the obtained cholesteric liquid crystal layer, and indicates “A” when the cholesteric liquid crystal layer has a PG structure and “B” when the cholesteric liquid crystal layer does not.
  • the “wavy structure” column indicates the presence or absence of a wavy structure of the obtained cholesteric liquid crystal layer, where “A” indicates that the cholesteric liquid crystal layer has a wavy structure, and “B” indicates that the cholesteric liquid crystal layer does not.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、コレステリック液晶層および位相差層からなる群から選択される機能層を含む光学層の他の基材への転写性に優れる、積層体の製造方法、および、光学部材の製造方法を提供する。本発明の積層体の製造方法は、仮支持体と、仮支持体上に隣接して配置された、光学層と、を含み、光学層は機能層を含み、仮支持体上に直接または他の層を介して、重合性基を有する液晶化合物を含む前駆体層を形成する工程と、前駆体層中の液晶化合物を配向させた後、前駆体層に対して、前駆体層の仮支持体側とは反対側の表面から光を照射して硬化処理を実施し、機能層を得る工程を有し、前駆体層が、式(1)で表される部分構造を含み、光照射の際の光が、波長265nmの光を含み、波長265nmの光の照射量が、5mJ/cm以上である。

Description

積層体の製造方法、光学部材の製造方法
 本発明は、積層体の製造方法、および、光学部材の製造方法に関する。
 コレステリック液晶相を固定してなる層(以後、「コレステリック液晶層」ともいう。)は、特定の波長域において右円偏光および左円偏光のいずれか一方を選択的に反射させる性質を有する層として知られており、種々の用途への展開がなされている。
 例えば、特許文献1では、基板上に、重合性基を有する液晶化合物を重合させてコレステリック液晶層を得る態様が開示されている。
特開2013-200515号公報
 近年、コレステリック液晶層を用いた製品の薄膜化が用いられている。そのため、支持体上でコレステリック液晶層を形成した後に、基材上にコレステリック液晶層のみを転写できることが望ましい。
 本発明者らは、特許文献1に開示されているコレステリック液晶層の転写性について検討したところ、他の基材との密着性が劣り、転写性が劣っていた。
 なお、コレステリック液晶層以外にも、位相差を有する位相差層に関しても、同様の転写性の向上の要望があった。なお、位相差層とは、コレステリック液晶層以外の層であって、面内方向または厚み方向に位相差を有する層を意味する。
 本発明は、上記実情に鑑みて、コレステリック液晶層および位相差層からなる群から選択される機能層を含む光学層の他の基材への転写性に優れる、積層体の製造方法を提供することを課題とする。
 また、本発明は、光学部材の製造方法を提供することも課題とする。
 本発明者らは、上記課題に対して鋭意検討を行ったところ、下記構成により、上記課題が解決できることを見出した。
(1) 仮支持体と、
 仮支持体上に隣接して配置された、光学層と、を含み、
 光学層は、コレステリック液晶層および位相差層からなる群から選択される機能層を含み、
 光学層中において、機能層が仮支持体から最も離れた位置に配置される、積層体の製造方法であって、
 仮支持体上に直接または他の層を介して、重合性基を有する液晶化合物を含む前駆体層を形成する工程と、
 前駆体層中の液晶化合物を配向させた後、前駆体層に対して、前駆体層の仮支持体側とは反対側の表面から光を照射して硬化処理を実施し、機能層を得る工程を有し、
 前駆体層が、後述する式(1)で表される部分構造を含み、
 光照射の際の光が、波長265nmの光を含み、
 波長265nmの光の照射量が、5mJ/cm以上である、積層体の製造方法。
(2) 前駆体層が、さらに界面活性剤を含み、
 液晶化合物および界面活性剤の少なくとも一方が、部分構造を有する、(1)に記載の積層体の製造方法。
(3) 機能層がコレステリック液晶層である、(1)または(2)に記載の積層体の製造方法。
(4) 前駆体層が、光照射により螺旋誘起力が変化するキラル剤を含み、
 コレステリック液晶層が、厚さ方向で螺旋ピッチが変化している、ピッチグラジエント構造を有する、(3)に記載の積層体の製造方法。
(5) コレステリック液晶層の積分反射スペクトルの半値幅が80nm以上である、(4)に記載の積層体の製造方法。
(6) コレステリック液晶層の走査型電子顕微鏡によって観察される断面において、コレステリック液晶相に由来する明部および暗部の少なくとも一部が波打ち構造を有する、(1)~(5)のいずれかに記載の積層体の製造方法。
(7) 前駆体層が、他の層を介して仮支持体上に配置されており、
 他の層が、コレステリック液晶層である、(1)~(6)のいずれかに記載の積層体の製造方法。
(8) 機能層であるコレステリック液晶層の螺旋の捩れ方向と、他の層であるコレステリック液晶層の螺旋の捩れ方向とが逆方向である、(7)に記載の積層体の製造方法。
(9) 他の層であるコレステリック液晶層が、厚さ方向で螺旋ピッチが変化している、ピッチグラジエント構造を有する、(7)または(8)に記載の積層体の製造方法。
(10) (1)~(9)のいずれかに記載の製造方法で得られた積層体中の光学層を直接または他の層を介して基材と接触させて、仮支持体を剥離して、基材と光学層とを含む光学部材を得る工程を有する、光学部材の製造方法。
 本発明によれば、コレステリック液晶層および位相差層からなる群から選択される機能層を含む光学層の他の基材への転写性に優れる、積層体の製造方法を提供できる。
 また、本発明によれば、光学部材の製造方法を提供できる。
工程1-1を説明するための概略図である。 工程2における光照射の方法を説明するための概略図である。 工程2によって得られる積層体を説明するための概略図である。 コレステリック液晶層の構造を説明するための概略図である。 工程1-2を説明するための概略図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、380~780nmの波長領域の光である。紫外線は10nm以上380nm未満の波長領域の光である。
 本発明の製造方法の特徴点としては、後述する式(1)で表される部分構造を含む前駆体層の硬化処理の際に、波長265nmの光を含む光を照射する点が挙げられる。波長265nmの光を前駆体層に照射することにより、前駆体層の硬化と共に、光フリース転位が進行する。光フリース転位としては、以下のスキームで表される転位が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 光フリース転位が生じることにより、フェノール性水酸基を有する部分構造が形成される。そのため、機能層の光照射面側の表面において、フェノール性水酸基を有する部分構造が多く生成され、結果として、他の基材との密着性が向上する。
 以下に、本発明の製造方法を実施態様毎に説明する。
 本発明の製造方法の第1実施態様は、仮支持体上に直接、前駆体層を形成する態様を表し、本発明の製造方法の第2実施態様は、仮支持体上に他の層を介して、前駆体層を形成する態様を表す。
 以下では、まず、第1実施態様について詳述する。
<<第1実施態様>>
 本発明の製造方法の第1実施態様は、後述する工程1-1~工程2を含む。
 以下、各工程の手順について詳述する。
<工程1-1>
 工程1-1は、仮支持体上に直接、重合性基を有する液晶化合物を含む前駆体層を形成する工程である。本工程を実施することにより、硬化処理が施される層である前駆体層が形成される。より具体的には、本工程を実施することにより、図1に示すように、仮支持体10上に直接、前駆体層12が形成される。
 以下では、まず、本工程で用いられる部材・材料について詳述する。
(仮支持体)
 仮支持体は、前駆体層を支持する基材であり、後述する光学層と剥離可能に密着する。言い換えれば、仮支持体は、剥離性の支持体である。後述するように、光学層が転写される際には、仮支持体と光学層とに分離される。
 仮支持体を構成する材料は特に制限されず、例えば、ポリエステル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、および、アミド系樹脂が挙げられる。
 なお、(メタ)アクリル系樹脂は、アクリル系樹脂およびメタクリル系樹脂の総称である。
 仮支持体は、単層構造であってもよく、複層構造であってもよい。
 仮支持体が複層構造である場合、仮支持体は、基板と、基板上に配置された樹脂を含む下地層とを含んでいてもよい。下地層(特に、ラビング処理が施されていない下地層)を設けることにより、下地層の表面上に配置されるコレステリック液晶層において後述する波打ち構造が形成されやすくなる。
 なお、上記では下地層が仮支持体を構成する層の一例として記載したが、後述するように、下地層を構成する成分によっては、下地層は光学層の一部であってもよい。
 基板を構成する材料は特に制限されず、上述した支持体を構成する材料が挙げられる。
 基板の厚さは、20~1000μmが好ましく、40~500μmがより好ましい。
 下地層に含まれる樹脂の種類は特に制限されず、上述した仮支持体を構成する材料が挙げられる。なかでも、下地層に含まれる樹脂としては、(メタ)アクリル系樹脂が好ましい。
 下地層の厚さは、0.01~5.0μmが好ましく、0.05~3.0μmがより好ましい。
 なお、機能層が位相差層である場合、仮支持体として、表面にラビング処理が施された仮支持体を用いてもよい。または、下地層が配向層(例えば、ラビング処理が施された樹脂層)であってもよい。
(前駆体層)
 前駆体層は、仮支持体上に直接配置される層である。なお、後述するように、第2実施態様においては、前駆体層は、仮支持体上に他の層を介して配置される。
 前駆体層は、重合性基を有する液晶化合物(以下、「重合性液晶化合物」ともいう。)を含む。
 重合性基の種類は特に制限されず、ラジカル重合性基およびカチオン重合性基が挙げられ、(メタ)アクリロイルオキシ基、ビニル基、マレイミド基、アセチル基、スチリル基、アリル基、エポキシ基、および、オキセタン基が挙げられる。
 (メタ)アクリロイルオキシ基は、アクリロイルオキシ基およびメタクリロイルオキシ基の総称である。
 重合性液晶化合物に含まれる重合性基の数は特に制限されず、1~6個が好ましく、1~3個がより好ましい。
 重合性液晶化合物としては、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物が好ましい。棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、または、アルケニルシクロヘキシルベンゾニトリル類が好ましい。
 液晶化合物は、低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 前駆体層は、式(1)で表される部分構造(フェニルエステル構造)を含む。
 式(1)で表される部分構造は上述した重合性液晶化合物に含まれていてもよいし、他の化合物に含まれていてもよい。他の化合物としては、後述する界面活性剤が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは、置換基を表す。置換基の種類は特に制限されず、ハロゲン原子(フッ素原子、塩素原子、臭素原子、および、ヨウ素原子等)、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、水酸基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アミノ基(アルキルアミノ基およびアニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、および、シリル基が挙げられる。
 n1は0~4の整数を表し、n2は0~4の整数を表す。
 なかでも、n1は、0~2が好ましく、0~1がより好ましい。n2は、0~2が好ましく、1がより好ましい。
 n1+n2は、4以下を表す。つまり、n1とn2との合計は、4以下である。なかでも、1~2が好ましく、1が好ましい。
 *は、結合位置を表す。
 式(1)中、n2はベンゼン環に連結する結合手の数を表す。例えば、式(1)で表される部分構造が2価の基である場合、n2は1であり、式(2)で表される部分構造(式(2)で表される2価の基)として、化合物中に含まれていてもよい。
Figure JPOXMLDOC01-appb-C000004
 なお、上記式(1)で表される部分構造(または、式(2)で表される部分構造)が化合物に含まれる一例としては、例えば、以下の化合物においては、破線部分が上述した部分構造に該当する。
Figure JPOXMLDOC01-appb-C000005
 式(1)で表される部分構造を有する重合性液晶化合物としては、式(A)で表される化合物が好ましい。
 式(A)  P-L-M-L-P
 式(A)中、PおよびPは、それぞれ独立に、水素原子または重合性基を表し、PおよびPの少なくとも一方は重合性基を表す。重合性基の定義は、上述した通りである。
 LおよびLは、それぞれ独立に、単結合または2価の連結基を表す。2価の連結基としては特に制限されないが、例えば、-O-、-CO-、-NR-、-N=CH-、および、2価の炭化水素基からなる群より選ばれるいずれか1種または2種以上を組み合わせた基(例えば、-CO-O-、-O-2価の炭化水素基-、-O-2価の炭化水素基-O-、-(O-2価の炭化水素基)n3-(n3は、2~10の整数を表す。))が挙げられる。Rは、水素原子またはアルキル基を表す。
 上記2価の炭化水素基としては、例えば、アルキレン基、アルケニレン基(例:-CH=CH-)、アルキニレン基(例:-C≡C-)、および、アリーレン基(例:フェニレン基)が挙げられる。上記アルキレン基としては、直鎖状、分岐鎖状、および、環状のいずれであってもよい。また、その炭素数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。
 Mは、式(2)で表される部分構造を有する、2価のメソゲン基を表す。
 メソゲン基とは、剛直かつ配向性を有する官能基である。メソゲン基としては、棒状のメソゲン基であっても、円盤状のメソゲン基であってもよい。なお、棒状のメソゲン基とは主骨格部が直線的である構造のメソゲン基を意図し、円盤状のメソゲン基とは主骨格部が放射状に広がった構造のメソゲン基を意図する。
 メソゲン基の構造としては、より具体的には、芳香環基(芳香族炭化水素環基および芳香族複素環基)および脂環基からなる群から選択される基が、複数個、直接または2価の連結基(例えば、-CO-、-O-、-NR-(Rは、水素原子、または、アルキル基を表す)、または、これらを組み合わせた基(-CO-O-))を介して連なった構造が挙げられる。
 より具体的には、メソゲン基としては、式(B)で表される基が挙げられる。
 式(B)   -(L-L
 Lは、置換基を有していてもよい2価の芳香環基、または、置換基を有していてもよい2価の脂環基を表す。
 Lは、単結合、-CO-、-O-、-NR-、または、これらを組み合わせた基(例えば、-CO-O-)を表す。Rは、水素原子またはアルキル基を表す。mは、2以上の整数を表す。
 ただし、m個の(L-L)で表される単位の少なくとも1つは、式(2)で表される部分構造を表す。
 なお、2価の芳香環基としては、2価の芳香族炭化水素環基(例えば、フェニレン基)、および、2価の芳香族複素環基が挙げられる。
 2価の脂環基としては、シクロへキシレン基が挙げられる。
 2価の芳香環基、または、2価の脂環基は、さらに置換基を有していてもよい。置換基の定義は、式(1)中のRで表される置換基の定義と同じである。
 mは、2~5の整数が好ましく、2~3の整数がより好ましい。
 前駆体層は、重合性液晶化合物以外の他の化合物を含んでいてもよい。
 重合性液晶化合物は、界面活性剤を含んでいてもよい。
 界面活性剤としては、フッ素原子を含む界面活性剤(フッ素系界面活性剤)またはケイ素原子を含む界面活性剤(ケイ素系界面活性剤)が好ましく、フッ素原子を含む界面活性剤がより好ましい。
 界面活性剤は、パーフルオロアルキル基を含む置換基を少なくとも2つ有する化合物が好ましい。
 パーフルオロアルキル基を含む置換基としては、式(C)で表される基が好ましい。
 式(C)  C2p+1-L-*
 Lは、2価の連結基を表す。2価の連結基の定義は、LおよびLで表される2価の連結基の定義と同じである。Lとしては、-CH-、-O-、-CO-、および、それらの組み合わせ(例えば、-CO-O-、-O-2価の炭化水素基-、-O-2価の炭化水素基-O-、-(O-2価の炭化水素基)n3-(n3は、2~10の整数を表す。)、-(O-CO-2価の炭化水素基)n4-(n4は、1~10の整数を表す。))が好ましい。
 pは、1以上の整数を表す。pは、1~20の整数が好ましく、1~10の整数がより好ましい。
 界面活性剤は、ベンゼン環またはトリアジン環を含むことが好ましい。
 界面活性剤の分子量は、3000以下が好ましく、2000以下がより好ましい。下限は特に制限されないが、300以上が好ましい。
 界面活性剤は、上述した式(1)で表される部分構造を有することが好ましい。
 界面活性剤としては、式(D)で表される化合物が好ましい。
 式(D)  (C2p+1-Lq1-Ar-(L-L-Ar-(L-C2p+1q2
 式(D)中、pおよびLの定義は、上述した通りである。
 Arは、q1+1価のベンゼン環を表す。上記ベンゼン環は、(C2p+1-L)で表される基以外の置換基を有していてもよい。
 Arは、q2+1価のベンゼン環を表す。上記ベンゼン環は、(C2p+1-L)で表される基以外の置換基を有していてもよい。
 Lは、置換基を有していてもよい2価の芳香環基、または、置換基を有していてもよい2価の脂環基を表す。2価の芳香環基としては、2価の芳香族炭化水素環基(例えば、フェニレン基)、または、2価の芳香族複素環基が挙げられる。なお、2価の芳香環基、または、2価の脂環基は、さらに置換基を有していてもよい。置換基の定義は、式(1)中のRで表される置換基の定義と同じである。
 Lは、単結合、-CO-、-O-、-NR-、または、これらを組み合わせた基(例えば、-CO-O-)を表す。Rは、水素原子またはアルキル基を表す。nは、2以上の整数を表す。
 ただし、r個の(L-L)で表される単位の少なくとも1つは、式(2)で表される部分構造を表す。
 rは、1~3の整数を表す。なかでも、1または2が好ましい。
 q1およびq2は、それぞれ独立に、1~5の整数を表す。なかでも、1~3の整数が好ましい。
 前駆体層が界面活性剤を含む場合、前駆体層中での界面活性剤の含有量は特に制限されないが、重合性液晶化合物全質量に対して、0.01~5質量%が好ましく、0.1~3質量%がより好ましい。
 界面活性剤は、1種単独で使用してもよく、2種以上使用してもよい。
 前駆体層は、重合開始剤を含んでいてもよい。
 重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。光重合開始剤としては、例えば、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、フェナジン化合物、オキサジアゾール化合物、および、オキシムエステル構造を有する化合物が挙げられる。
 前駆体層が重合開始剤を含む場合、前駆体層中での重合開始剤の含有量は特に制限されないが、重合性液晶化合物全質量に対して、0.1~20質量%が好ましく、1~8質量%がより好ましい。
 重合開始剤は、1種単独で使用してもよく、2種以上使用してもよい。
 前駆体層は、キラル剤を含んでいてもよい。前駆体層がキラル剤を含む場合、コレステリック相を形成できる。
 キラル剤の種類は、特に制限されない。キラル剤は液晶性であっても、非液晶性であってもよい。キラル剤は、一般に不斉炭素原子を含む。ただし、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物を、キラル剤として用いることもできる。軸性不斉化合物または面性不斉化合物としては、例えば、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が挙げられる。キラル剤は、重合性基を有していてもよい。
 キラル剤としては、光照射により螺旋誘起力が変化するキラル剤(以下、「感光性キラル剤」ともいう。)が好ましい。例えば、光照射により螺旋誘起力が低下するキラル剤、および、光照射により螺旋誘起力が増加するキラル剤が挙げられる。
 キラル剤の螺旋誘起力(HTP)は、下記式(X)で表される螺旋配向能力を示すファクターである。
 式(X) HTP=1/(螺旋ピッチの長さ(単位:μm)×前駆体層中におけるキラル剤濃度(質量%))[μm-1
 螺旋ピッチの長さとは、コレステリック液晶相の螺旋構造のピッチP(=螺旋の周期)の長さをいい、液晶便覧(丸善株式会社出版)の196ページに記載の方法で測定できる。
 感光性キラル剤としては、いわゆる光反応型キラル剤が挙げられる。光反応型キラル剤とは、キラル部位と光照射によって構造変化する光反応部位を有し、例えば、照射光量に応じて液晶化合物の捩れ力を大きく変化させる化合物である。
 光照射によって構造変化する光反応部位の例としては、フォトクロミック化合物(内田欣吾、入江正浩、化学工業、vol.64、640p,1999、内田欣吾、入江正浩、ファインケミカル、vol.28(9)、15p,1999)等が挙げられる。また、上記構造変化とは、光反応部位への光照射により生ずる、分解、付加反応、異性化、および2量化反応等を意味し、上記構造変化は不可逆的であってもよい。また、キラル部位としては、例えば、野平博之、化学総説、No.22液晶の化学、73p:1994に記載の不斉炭素等が相当する。
 感光性キラル剤としては、なかでも、光異性化部位を少なくとも一つ有する化合物が好ましい。上記光異性化部位としては、可視光の吸収が小さく、光異性化が起こりやすく、且つ、光照射前後の螺旋誘起力差が大きいという点で、シンナモイル部位、カルコン部位、アゾベンゼン部位、スチルベン部位、または、クマリン部位が好ましく、シンナモイル部位、または、カルコン部位がより好ましい。
 なお、光異性化部位は、光照射によって構造変化する光反応部位に該当する。
 前駆体層は、上述した成分以外に、酸化防止剤、紫外線吸収剤、増感剤、安定剤、可塑剤、連鎖移動剤、重合禁止剤、消泡剤、増粘剤、難燃剤、分散剤、ならびに、染料および顔料等の色材、等の他の添加剤を含んでいてもよい。
(工程1-1の手順)
 前駆体層の形成方法は特に制限されないが、前駆体層の膜厚の制御が容易である点から、所定の成分を含む前駆体層形成用組成物を仮支持体上に塗布して、仮支持体上に前駆体層を形成する方法が好ましい。
 前駆体層形成用組成物に含まれる成分としては、上述した前駆体層に含まれ得る成分が挙げられる。
 なお、前駆体層形成用組成物は、溶媒を含んでいてもよい。溶媒としては、水および有機溶媒が挙げられる。有機溶媒としては、N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;ピリジン等のヘテロ環化合物;ベンゼンおよびヘキサン等の炭化水素;クロロホルムおよびジクロロメタン等のアルキルハライド類;酢酸メチル、酢酸ブチルおよびプロピレングリコールモノエチルエーテルアセテート等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノンおよびシクロペンタノン等のケトン類;テトラヒドロフランおよび1,2-ジメトキシエタン等のエーテル類が挙げられる。
 前駆体層形成用組成物を塗布する方法としては、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法が挙げられる。
 なお、必要に応じて、前駆体層形成用組成物の塗布後に、仮支持体上に形成された前駆体層を乾燥する処理を実施してもよい。乾燥処理を実施することにより、前駆体層から溶媒を除去できる。
 前駆体層の膜厚は特に制限されないが、0.1~20μmが好ましく、0.2~15μmがより好ましい。
<工程2>
 工程2は、前駆体層中の液晶化合物を配向させた後、前駆体層に対して、前駆体層の仮支持体側とは反対側の表面から光を照射して硬化処理を実施し、機能層を得る工程である。より具体的には、前駆体層中の液晶化合物を配向させた後、図2に示すように、前駆体層12の仮支持体10側とは反対側の表面12aから、白抜き矢印で示すように、光を照射して、前駆体層12に対して硬化処理を施す。その結果、図3に示すように、仮支持体10上に、機能層14が形成され、積層体18Aが得られる。なお、上述したように、機能層14の仮支持体10側とは反対側の表面14a付近においては、光フリース転位によりフェノール性水酸基が多く存在し、機能層14の表面14a側の他の基材に対する密着が向上している。
 以下、本工程の手順について詳述する。
 前駆体層中の液晶化合物を配向させる方法は特に制限されず、前駆体層に対して加熱処理を施す方法が挙げられる。加熱処理の条件は重合性液晶化合物の種類および使用される成分によって異なるが、加熱温度としては、10~250℃が好ましく、50~150℃がより好ましい。加熱時間としては、0.5~5分間が好ましく、0.5~2分間がより好ましい。
 なお、液晶化合物の配向状態は使用される成分によって異なり、前駆体層がキラル剤を含む場合、液晶化合物はコレステリック配向する。また、仮支持体として配向層を含む仮支持体を用い、かつ、前駆体層にキラル剤が含まれない場合、液晶化合物はホモジニアス配向する。
 次に、液晶化合物が配向している前駆体層に対して、前駆体層の仮支持体側とは反対側の表面から光を照射して、硬化処理を実施する。
 前駆体層に照射される光は、波長265nmの光を含む。波長265nmの光を前駆体層に照射することにより、上述した光フリース転位が進行する。
 波長265nmの光の照射量は、5mJ/cm以上であり、光フリース転位がより良好に進行し、光学層の転写性がより向上する点で、10mJ/cm以上が好ましく、20mJ/cm以上がより好ましい。上限は特に制限されないが、生産性の点で、500mJ/cm以下が好ましく、150mJ/cm以下がより好ましい。
 前駆体層に照射される光は波長265nmの光を含んでいればよいが、前駆体層の硬化がより良好に進行する点から、紫外線が好ましく、波長365nmの光を含む光(紫外線)がより好ましい。
 波長365nmの光の照射量は、前駆体層の硬化がより良好に進行する点から、20mJ/cm以上が好ましく、50mJ/cm以上がより好ましい。上限は特に制限されないが、生産性の点で、1500mJ/cm以下が好ましい。
 なお、光照射時における前駆体層の温度は特に制限されず、液晶化合物の配向状態が保たれる温度であることが好ましく、例えば、10~250℃が好ましく、20~150℃がより好ましい。
 上述した工程1-1および工程2を経ることによって、仮支持体と、仮支持体上に隣接して配置された、コレステリック液晶層および位相差層からなる群から選択される機能層とを含む積層体が形成される。この態様においては、機能層自体が被転写物である光学層に該当する。つまり、機能層が仮支持体上から他の基材上に転写される。
 後述するように、機能層の仮支持体側とは反対側の表面には光フリース転位に由来するフェノール性水酸基が多く存在する。よって、機能層の仮支持体側とは反対側の表面を基材と接触させた後、仮支持体を剥離することによって、機能層を基材上に転写できる。
 前駆体層が感光性キラル剤を含む場合、上記工程を経ることによって形成されるコレステリック液晶層は、厚さ方向で螺旋ピッチが変化している、ピッチグラジエント構造(以下、「PG構造」ともいう。)を有することが好ましい。
 例えば、感光性キラル剤として光照射より螺旋誘起力が低下するキラル剤を用いた場合、形成されるコレステリック液晶層においては仮支持体側から反対側に向かって、螺旋ピッチが、漸次、大きくなっている。すなわち、コレステリック液晶層においては、仮支持体側から反対側に向かって、選択反射波長(すなわち選択的に反射する光の波長帯域)が、漸次、長波長になる。
 上記のような構造が得られる理由を以下に述べる。
 通常、前駆体層に照射される光は、前駆体層の形成材料によって吸収される。従って、前駆体層に光を照射した場合には、光の照射量は、前駆体層側から仮支持体側に向かって、漸次、少なくなる。すなわち、キラル剤のHTPの低下量は、前駆体層側から仮支持体側に向かって、漸次、小さくなる。そのため、HTPが大きく低下した仮支持体側とは反対側の領域では、螺旋の誘起が小さいので螺旋ピッチが長くなり、HTPの低下が小さい仮支持体側の領域では、キラル剤が、本来、有するHTPで螺旋が誘起されるので、螺旋ピッチが短くなる。
 すなわち、この場合には、コレステリック液晶層は、仮支持体側とは反対側では長波長の光を選択的に反射し、仮支持体側では、上方に比して短波長の光を選択的に反射する。従って、厚さ方向で螺旋ピッチが変化するPG構造のコレステリック液晶層を用いることにより、広い波長帯域の光を選択的に反射できる。
 また、前駆体層が感光性キラル剤を含む場合、上記工程を経ることによって形成されるコレステリック液晶層は、選択反射波長、および、選択的な反射波長帯域における半値幅が面内でパターニングされていてもよい。
 例えば、感光性キラル剤として光照射より螺旋誘起力が低下するキラル剤を用いた場合、露光マスクなどを用い、感光性キラル剤の螺旋誘起力を低下させる波長の光照射量をパターニングすることで、面内に螺旋ピッチのパターニングを施すことができる。この場合、光照射量の多い場所では、長波長の光を選択的に反射し、光照射量の少ない場所では、短波長の光を選択的に反射する、コレステリック液晶層を形成できる。さらに、前駆体層を硬化する波長の光を照射することで、硬化処理を実施することが好ましい。
 機能層として形成されるコレステリック液晶層の選択反射波長、および、選択的な反射波長帯域における半値幅は、以下の方法で求めればよい。
 すなわち、後述する方法によって積分反射率を測定すると、波長を横軸にした山型(上に凸型)である積分反射率のスペクトル波形が得られる。このときの積分反射率の最大値と最小値の平均反射率(算術平均)を求め、波形と平均反射率との2交点の2つの波長のうち、短波側の波長の値をλα(nm)、長波側の波長の値をλβ(nm)とし、下記式により算出する。
 選択反射波長=(λα+λβ)/2
 半値幅=(λβ-λα)
 ここで、拡散反射性が低く、鏡面反射性(正反射性)の強い試料の場合は、積分反射率の積分反射スペクトルの波形が鋸歯状に乱れる場合がある。このような場合は、上述した鏡面反射率のスペクトル波形にて、鏡面反射率の最大値と最小値の平均反射率(算術平均)を求め、波形と平均反射率との2交点の2つの波長のうち、短波側の波長の値をλα(nm)、長波側の波長の値をλβ(nm)として、上述の式により選択反射波長を算出すればよい。
 別の方法として、Axometrix社のAxoscan等で、試料の透過スペクトルを測定することで、選択反射波長および半値幅を測定する方法が例示される。透過スペクトルを測定すると、波長を横軸にした谷型(下に凸型)である透過スペクトル波形が得られる。このときの透過率の最大値と最小値の平均反射率(算術平均)を求め、波形と平均透過率の2交点の2つの波長のうち、短波側の波長の値をλα(nm)、長波側の波長の値をλβ(nm)とすることで、上述した式により、選択反射波長および半値幅を算出する。
 なお、波長λにおける積分反射率は、コレステリック液晶層面に光が入射するように、分光光度計(日本分光社製、V-550)に大型積分球装置(日本分光社製、ILV-471)を取り付けたものを用いて、光トラップによって測定すればよい。
 コレステリック液晶層の積分反射スペクトルの半値幅は特に制限されないが、50nm以上が好ましく、80nm以上がより好ましく、100nm以上がさらに好ましい。上限は特に制限されないが、500nm以下の場合が多い。
 また、機能層であるコレステリック液晶層は、走査型電子顕微鏡(SEM)で観察した断面において、コレステリック液晶相に由来して、厚さ方向に、明部B(明線)および暗部D(暗線)を交互に積層した縞模様が観察される。
 コレステリック液晶層は、SEMで観察した断面において、コレステリック液晶相に由来する明部および暗部の少なくとも一部が波打ち構造を有することが好ましい。
 すなわち、コレステリック液晶層は、コレステリック液晶構造を有し、螺旋軸とコレステリック液晶層の表面とのなす角が周期的に変化する構造を有する層であることが好ましい。言い換えれば、コレステリック液晶層は、コレステリック液晶構造を有し、コレステリック液晶構造はSEMにて観測されるコレステリック液晶層の断面図において、明部Bと暗部Dとの縞模様を与え、暗部がなす線の法線とコレステリック液晶層の表面となす角が周期的に変化する層であることが好ましい。
 好ましくは、波打ち構造とは、縞模様を成す明部Bまたは暗部Dの連続線において、コレステリック液晶層の平面に対する傾斜角度の絶対値が5°以上である領域Mが少なくとも1つ存在し、かつ、領域Mを面方向に挟んで最も近い位置にある、傾斜角度が0°の山または谷が特定される構造である。
 傾斜角度0°の山または谷とは、凸状、凹状を含むが、傾斜角度0°であれば、階段状および棚状の点も含む。波打ち構造は、縞模様の明部Bまたは暗部Dの連続線において、傾斜角度の絶対値が5°以上である領域Mと、それを挟む山または谷とが、複数、繰り返すのが好ましい。
 図4に、波打ち構造を有し、かつ、PG構造を有するコレステリック液晶層の断面を概念的に示す。
 先にも述べたが、図4に示すように、コレステリック液晶層14Aの断面をSEMで観察すると、明部Bと暗部Dとの縞模様が観察される。すなわち、コレステリック液晶層14Aの断面では、厚さ方向に明部Bと暗部Dとを交互に積層した層状構造が観察される。
 コレステリック液晶層14Aでは、明部Bと暗部Dの繰り返し2回分が、螺旋ピッチに相当する。このことから、コレステリック液晶層すなわち反射層の螺旋ピッチは、SEM断面図から測定できる。明部Bと暗部Dの繰り返し2回分とは、すなわち、明部2つ分、および、暗部2つ分である。
 コレステリック液晶層14Aにおいては、明部Bおよび暗部Dが波打ち構造(アンジュレーション構造)を有するため、コレステリック液晶層14Aの法線方向から光が入射されると、液晶化合物の螺旋軸が傾いている領域があるため、入射光の一部が斜め方向に反射される。
 つまり、コレステリック液晶層14Aにおいて、明部Bと暗部Dとが波打ち構造を有することにより、拡散反射性の高い反射層が実現できる。
 なお、波打ち構造を有するコレステリック液晶層は、ラビング等の配向処理を施さない形成面にコレステリック液晶層を形成することで、形成できる。例えば、ラビング処理が施されていない下地層を含む仮支持体を用いてコレステリック液晶層を形成することで、波打ち構造を有するコレステリック液晶層を形成できる。
 配向処理を施さない下地層にコレステリック液晶層を形成すると、液晶化合物に対する配向規制力が全くないために、下地層の物性に応じて、下地層の表面において、液晶化合物の配向方向が様々な方向になる。このような状態でコレステリック液晶層を形成すると、コレステリック液晶相を構成する液晶化合物の螺旋軸が様々な方向を向き、その結果、明部Bと暗部Dの縞模様が、波打ち構造となる。
 機能層が位相差層である場合、位相差層の面内レタデーションは特に制限されないが、位相差層がいわゆるλ/4板として機能する場合、波長550nmにおける面内レタデーションが100~160nmであることが好ましい。位相差層がいわゆるλ/2板として機能する場合、波長550nmにおける面内レタデーションが200~320nmであることが好ましい。
<<第2実施態様>>
 本発明の製造方法の第2実施態様は、上述したように、仮支持体上に他の層を介して、前駆体層を形成する態様を表す。
 本発明の製造方法の第2実施態様は、以下の工程1-2および工程2を含む。
工程1-2:仮支持体上に他の層を介して、重合性基を有する液晶化合物を含む前駆体層を形成する工程
工程2:前駆体層中の液晶化合物を配向させた後、前駆体層に対して、前駆体層の仮支持体側とは反対側の表面から光を照射して硬化処理を実施し、機能層を得る工程
 第2実施態様は、他の層を介して前駆体層を形成している点以外は、第1実施態様と同じであるため、以下ではその説明を省略し、以下では主に両者の相違点について説明する。
 第2実施態様の工程1-2においては、仮支持体上に他の層を介して、前駆体層を形成する。
 他の層の種類は特に制限されず、例えば、コレステリック液晶層および位相差層が挙げられる。上記層以外にも、他の層としては、上述した下地層、接着剤層、および、粘着剤層が挙げられる。なお、後述するように、仮支持体上に配置される他の層は、光学層の一部として仮支持体上から剥離され、基材に転写される。
 他の層がコレステリック液晶層である場合は、コレステリック液晶層は上述したPG構造を有していてもよい。また、コレステリック液晶層の走査型電子顕微鏡によって観察される断面において、コレステリック液晶相に由来する明部および暗部の少なくとも一部が波打ち構造を有していてもよい。
 また、他の層がコレステリック液晶層であり、かつ、機能層がコレステリック液晶層である場合、他の層であるコレステリック液晶層の螺旋の捩れ方向と、機能層であるコレステリック液晶層の螺旋の捩れ方向とは、逆方向であってもよいし、同じ方向であってもよいが、反射特性に優れる点で、逆方向が好ましい。
 さらに、他の層がコレステリック液晶層であり、かつ、機能層がコレステリック液晶層である場合、他の層であるコレステリック液晶層の選択反射波長と、機能層であるコレステリック液晶層の選択反射波長との間の差は、400nm以下であることが好ましい。
 他の層は、単層であってもよいし、多層であってもよい。多層の場合、多層を構成する層は、同じ種類の層(例えば、コレステリック液晶層同士)であってもよいし、異なる種類の層(例えば、コレステリック液晶層と位相差層との組み合わせ)であってもよい。
 他の層の形成方法は特に制限されず、公知の方法が採用される。
 上記手順によって、図5に示すように、仮支持体10と、仮支持体10上に配置された、他の層16および機能層14とを有する積層体18Bが得られる。積層体18B中、他の層14および機能層16の2層が被転写物である光学層20に該当する。つまり、光学層が仮支持体上から他の基材上に転写される。
 上述した第1実施態様および第2実施態様の手順によって、仮支持体と、仮支持体上に隣接して配置された光学層とを有する積層体が得られる。
 第1実施態様および第2実施態様のいずれにおいても、光学層中において、機能層が仮支持体から最も離れた位置に配置される。
 また、上述したように、機能層の仮支持体側とは反対側の表面には光フリース転位に由来するフェノール性水酸基が多く存在する。
 従って、光学層の表面(具体的には、機能層の仮支持体側とは反対側の表面)を直接または他の層を介して基材と接触させた後、仮支持体を剥離することによって、基材と光学層とを含む光学部材を得ることができる。より具体的には、図3に示す積層体18Aにおいては、光学層にも該当する機能層14の表面14aを直接または他の層を介して基材と接触させた後、仮支持体10を剥離することによって、基材と光学層とを含む光学部材を得ることができる。また、図5に示す積層体18Bにおいては、機能層14と他の層16とからなる光学層20の表面20aを直接または他の層を介して基材と接触させた後、光学層20と仮支持体10との間の界面において、仮支持体10を剥離することによって、基材と光学層とを含む光学部材を得ることができる。なお、図5の形態では、光学層が2層である態様について述べたが、光学層は3層以上であってもよく、光学層は仮支持体上に隣接して配置される単層または複層の層に該当する。光学層を3層以上にする方法としては、仮支持体上に2層の他の層を介して前駆体層を形成する方法が挙げられる。
 上記他の層としては、上述したように、コレステリック液晶層、位相差層、下地層、接着剤層、および、粘着剤層が挙げられる。なお、仮支持体上に他の層が配置される場合、他の層は光学層の一部として、基材上に転写される。
 上記機能層は種々の用途に適用できる。例えば、機能層がコレステリック液晶層である場合は、加飾シート、光反射部材、光拡散板、ハーフミラー、透明スクリーン、撮像素子、センサー、光学デバイス、および、その他の光学素子等の各種の用途に利用可能である。例えば、本発明の製造方法で作製した積層体中の機能層を、機能層と、機能層を透過する光を利用する素子とを有する光学デバイスに利用できる。
 機能層を透過する光を利用する素子は特に制限されず、撮像素子およびセンサー等、様々な素子が挙げられる。この際、例えば、本発明の製造方法で作製した積層体を、SCフィルタ(富士フイルム社製)およびIRフィルタ(富士フイルム社製)等の光学フィルタに貼合して、仮支持体を剥離して、機能層を加飾シートとして利用してもよい。これにより、撮像素子およびセンサー等の素子の受光波長に合わせた加飾が可能となる。
 また、本発明の製造方法で作製した積層体中の機能層と、画像表示素子とを用いて、画像表示装置としてもよい。
 画像表示素子は、公知の画像表示素子が、各種、利用可能である。一例として、液晶表示素子および有機エレクトロルミネッセンス表示素子等が例示される。
 また、本発明の製造方法で作製した積層体中の機能層は、光学素子用途としても利用可能である。例えば、一般的なハーフミラーとしての用途、および、特開2017-092021号公報の段落0017に記載される用途にも使用できる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により制限的に解釈されるべきものではない。
<比較例1>
(下地層1の作製)
 厚さ50μmの基材として、PET(ポリエチレンテレフタレート)(コスモシャインA4100、東洋紡(株)製)を用意し、透明支持体1として使用した。なお、透明支持体1は、いわゆる仮支持体に該当する。
 透明支持体1の易接着層のない面上に、下記の組成の下地層塗布液1を#3.6のワイヤーバーコーターで塗布した。その後、下地層塗布液1が塗布された透明支持体1を45℃で60秒間乾燥し、25℃にて紫外線照射装置を用いて、上記乾燥処理が施された透明支持体1に500mJ/cmの紫外線を照射して、下地層付き透明支持体1を作製した。
(下地層塗布液1)
 KAYARAD PET30(日本化薬(株)製)   100質量部
 IRGACURE 907 (チバガイギー社製)   3.0質量部
 カヤキュアーDETX(日本化薬(株)製)      1.0質量部
 下記構造の界面活性剤F1             0.01質量部
 メチルイソブチルケトン               243質量部
 界面活性剤F1(以下、構造式)
Figure JPOXMLDOC01-appb-C000006
(コレステリック液晶層Ch1の作製)
 25℃に保温された容器中にて、下記に示す成分を攪拌して、コレステリック液晶層用塗布液Ch1を調製した。
(コレステリック液晶層用塗布液Ch1)
 メチルエチルケトン                125.0質量部
 シクロヘキサノン                  18.7質量部
 下記の棒状液晶化合物の混合物           100.0質量部
 IRGACURE 907 (チバガイギー社製) 0.0375質量部
 カヤキュアーDETX(日本化薬(株)製)    0.0125質量部
 下記構造のカイラル剤B               6.06質量部
 上記構造の界面活性剤F1             0.027質量部
 下記構造の界面活性剤F2             0.067質量部
 棒状液晶化合物(以下、構造式)
Figure JPOXMLDOC01-appb-C000007
 数値は質量%である。また、Rは酸素原子で結合する基である。
 カイラル剤B(以下、構造式)
Figure JPOXMLDOC01-appb-C000008
 カイラル剤Bは、右巻きの螺旋を形成するカイラル剤である。カイラル剤Bは、シンナメート基を有するカイラル剤である。
 界面活性剤F2
Figure JPOXMLDOC01-appb-C000009
 下地層付き透明支持体1の下地層上表面に、上記で調製したコレステリック液晶層用塗布液Ch1を#12のワイヤーバーコーターで塗布した。その後、コレステリック液晶層用塗布液Ch1が塗布された下地層付き透明支持体1を105℃で60秒間乾燥し、酸素濃度200ppm以下、85℃にて、短波長カットフィルタ(TEMPAX、ショット社製)越しに、波長365nmの照射量が459mJ/cm、波長265nmの照射量が2.4mJ/cmである高圧水銀ランプの紫外線を照射することで、コレステリック液晶層Ch1を作製した。
(コレステリック液晶層Ch2の作製)
 25℃に保温された容器中にて、下記に示す成分を攪拌して、コレステリック液晶層用塗布液Ch2を調製した。
(コレステリック液晶層用塗布液Ch2)
 メチルエチルケトン               132.4質量部
 シクロヘキサノン                 19.8質量部
 上記棒状液晶化合物の混合物           100.0質量部
 カヤキュアーDETX(日本化薬(株)製)      0.5質量部
 以下構造のカイラル剤C             11.87質量部
 上記構造の界面活性剤F1            0.027質量部
 上記構造の界面活性剤F2            0.067質量部
 カイラル剤C(以下、構造式)
Figure JPOXMLDOC01-appb-C000010
 カイラル剤Cは、左巻きの螺旋を形成するカイラル剤である。また、カイラル剤Cは、シンナメート基を有するカイラル剤である。
 上記コレステリック液晶層Ch1上に、上記で調製したコレステリック液晶層用塗布液Ch2を#5のワイヤーバーコーターで塗布した。その後、コレステリック液晶層用塗布液Ch2が塗布された下地層付き透明支持体1を105℃で60秒間乾燥し、酸素濃度200ppm以下、かつ、85℃にて、短波長カットフィルタ(TEMPAX、ショット社製)越しに、波長365nmの照射量が459mJ/cm、波長265nmの照射量が2.4mJ/cmである高圧水銀ランプの紫外線を照射することで、コレステリック液晶層Ch2を作製し、比較例1の積層体を作製した。
<比較例2>
 コレステリック液晶層Ch2の紫外線照射を、フィルタを介さずに、波長365nmの照射量が50mJ/cm、波長265nmの照射量が3.8mJ/cmである高圧水銀ランプの紫外線照射とする以外は比較例1と同様にして、コレステリック液晶層Ch2を作製し、比較例2の積層体を作製した。
<実施例1>
 コレステリック液晶層Ch2の紫外線照射を、フィルタを介さずに、波長365nmの照射量が100mJ/cm、波長265nmの照射量が7.7mJ/cmである高圧水銀ランプの紫外線照射とする以外は比較例1と同様にして、コレステリック液晶層Ch2を作製し、実施例1の積層体を作製した。
<実施例2>
 コレステリック液晶層Ch2の紫外線照射を、フィルタを介さずに、波長365nmの照射量が500mJ/cm、波長265nmの照射量が38.3mJ/cmである高圧水銀ランプの紫外線照射とする以外は比較例1と同様にして、コレステリック液晶層Ch2を作製し、実施例2の積層体を作製した。
<評価>
 実施例、比較例で作製した各積層体を用いて、評価を行った結果を下記表に示す。
 なお、実施例1および2においては、転写されるべき光学層としては、下地層、コレステリック液晶層Ch1およびコレステリック液晶層Ch2を含む。
(剥離性)
 転写用基材として、PET(コスモシャインA4100、東洋紡(株)製)を用意し、粘着剤(SK-2057、綜研化学(株)製)を介して、積層体のコレステリック液晶層Ch2が粘着剤に接するように貼合し、毎分5mのスピードで180度の方向に透明支持体1を剥離したときの欠陥数を、下記観点で評価した。結果を表1に示す。
 A:剥離不良による欠陥が平米あたり0~1個。
 B:剥離不良による欠陥が平米あたり2~5個。
 C:剥離不良による欠陥が平米あたり6個以上。
 ここで、透明支持体1と下地層との界面で剥がれ残りなく剥離するものを剥離不良による欠陥が平米あたり0個とする。剥離不良による欠陥とは、透明支持体1と下地層との界面ではなく、他の界面(例えば、粘着剤とコレステリック液晶層Ch2との界面)で剥離してしまい、転写されるべき光学層が透明支持体1側に残ってしまった部分のことを指す。
 表1中、「照射量365nm(mJ/cm)」欄は、波長365nmの光の照射量を表す。
 「照射量265nm(mJ/cm)」欄は、波長265nmの光の照射量を表す。
 「PG構造」欄は、得られたコレステリック液晶層のPG構造の有無を表し、コレステリック液晶層がPG構造を有する場合を「A」、有さない場合を「B」として表す。
 「波打ち構造」欄は、得られたコレステリック液晶層の波打ち構造の有無を表し、コレステリック液晶層が波打ち構造を有する場合を「A」、有さない場合を「B」として表す。
Figure JPOXMLDOC01-appb-T000011
 上記表に示すように、本発明の製造方法によれば、所望の効果を示す積層体が得られた。
 なかでも、波長265nmの光の照射量が10mJ/cm以上である場合、より効果が優れることが確認された。
  10  仮支持体
  12  前駆体層
  14  機能層
  14A  コレステリック液晶層
  16  他の層
  18A,18B  積層体
  20  光学層

Claims (10)

  1.  仮支持体と、
     前記仮支持体上に隣接して配置された、光学層と、を含み、
     前記光学層は、コレステリック液晶層および位相差層からなる群から選択される機能層を含み、
     前記光学層中において、前記機能層が前記仮支持体から最も離れた位置に配置される、積層体の製造方法であって、
     前記仮支持体上に直接または他の層を介して、重合性基を有する液晶化合物を含む前駆体層を形成する工程と、
     前記前駆体層中の前記液晶化合物を配向させた後、前記前駆体層に対して、前記前駆体層の仮支持体側とは反対側の表面から光を照射して硬化処理を実施し、前記機能層を得る工程を有し、
     前記前駆体層が、式(1)で表される部分構造を含み、
     前記光照射の際の光が、波長265nmの光を含み、
     前記波長265nmの光の照射量が、5mJ/cm以上である、積層体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは、置換基を表す。n1は0~4の整数を表し、n2は0~4の整数を表し、n1+n2は4以下を表す。*は、結合位置を表す。
  2.  前記前駆体層が、さらに界面活性剤を含み、
     前記液晶化合物および前記界面活性剤の少なくとも一方が、前記部分構造を有する、請求項1に記載の積層体の製造方法。
  3.  前記機能層がコレステリック液晶層である、請求項1または2に記載の積層体の製造方法。
  4.  前記前駆体層が、前記光照射により螺旋誘起力が変化するキラル剤を含み、
     前記コレステリック液晶層が、厚さ方向で螺旋ピッチが変化している、ピッチグラジエント構造を有する、請求項3に記載の積層体の製造方法。
  5.  前記コレステリック液晶層の積分反射スペクトルの半値幅が80nm以上である、請求項4に記載の積層体の製造方法。
  6.  前記コレステリック液晶層の走査型電子顕微鏡によって観察される断面において、コレステリック液晶相に由来する明部および暗部の少なくとも一部が波打ち構造を有する、請求項1~5のいずれか1項に記載の積層体の製造方法。
  7.  前記前駆体層が、前記他の層を介して前記仮支持体上に配置されており、
     前記他の層が、コレステリック液晶層である、請求項1~6のいずれか1項に記載の積層体の製造方法。
  8.  前記機能層である前記コレステリック液晶層の螺旋の捩れ方向と、前記他の層であるコレステリック液晶層の螺旋の捩れ方向とが逆方向である、請求項7に記載の積層体の製造方法。
  9.  前記他の層であるコレステリック液晶層が、厚さ方向で螺旋ピッチが変化している、ピッチグラジエント構造を有する、請求項7または8に記載の積層体の製造方法。
  10.  請求項1~9のいずれか1項に記載の製造方法で得られた積層体中の前記光学層を直接または他の層を介して基材と接触させて、仮支持体を剥離して、前記基材と前記光学層とを含む光学部材を得る工程を有する、光学部材の製造方法。
PCT/JP2019/037015 2018-09-28 2019-09-20 積層体の製造方法、光学部材の製造方法 WO2020066910A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549135A JP7053870B2 (ja) 2018-09-28 2019-09-20 積層体の製造方法、光学部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184558 2018-09-28
JP2018184558 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066910A1 true WO2020066910A1 (ja) 2020-04-02

Family

ID=69952368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037015 WO2020066910A1 (ja) 2018-09-28 2019-09-20 積層体の製造方法、光学部材の製造方法

Country Status (2)

Country Link
JP (1) JP7053870B2 (ja)
WO (1) WO2020066910A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030218A1 (ja) * 2020-08-04 2022-02-10 富士フイルム株式会社 光学異方性層
WO2022030308A1 (ja) * 2020-08-04 2022-02-10 富士フイルム株式会社 光学異方性層

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012990A1 (en) * 2003-08-02 2005-02-10 Advue Co., Ltd. Patterned optical retarder and method for manufacturing the same
JP2007504484A (ja) * 2003-08-26 2007-03-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ねじれパターンを有するポリマーフィルム
JP2012145660A (ja) * 2011-01-07 2012-08-02 Osaka Organic Chem Ind Ltd 光配向膜用及び光学異方性フィルム用組成物
JP2012198523A (ja) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd 長尺パターン配向膜およびそれを用いた長尺パターン位相差フィルム
JP2013238717A (ja) * 2012-05-15 2013-11-28 Osaka Organic Chem Ind Ltd 光配向膜用及び光学異方性フィルム用組成物
JP2014098892A (ja) * 2012-11-13 2014-05-29 Far Eastern New Century Corp 位相差板の製造方法およびこれにより得られる位相差板
JP2015143786A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 液晶硬化膜
JP2016501387A (ja) * 2012-12-31 2016-01-18 エルジー・ケム・リミテッド 光学素子
WO2017199948A1 (ja) * 2016-05-20 2017-11-23 シャープ株式会社 液晶表示パネル、及び、液晶表示装置
JP2018159902A (ja) * 2017-03-22 2018-10-11 岩崎電気株式会社 光処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511699A (zh) 2019-09-10 2019-11-29 皇冠(太仓)胶粘制品有限公司 Ir孔保护用粘合片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012990A1 (en) * 2003-08-02 2005-02-10 Advue Co., Ltd. Patterned optical retarder and method for manufacturing the same
JP2007504484A (ja) * 2003-08-26 2007-03-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ねじれパターンを有するポリマーフィルム
JP2012145660A (ja) * 2011-01-07 2012-08-02 Osaka Organic Chem Ind Ltd 光配向膜用及び光学異方性フィルム用組成物
JP2012198523A (ja) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd 長尺パターン配向膜およびそれを用いた長尺パターン位相差フィルム
JP2013238717A (ja) * 2012-05-15 2013-11-28 Osaka Organic Chem Ind Ltd 光配向膜用及び光学異方性フィルム用組成物
JP2014098892A (ja) * 2012-11-13 2014-05-29 Far Eastern New Century Corp 位相差板の製造方法およびこれにより得られる位相差板
JP2016501387A (ja) * 2012-12-31 2016-01-18 エルジー・ケム・リミテッド 光学素子
JP2015143786A (ja) * 2014-01-31 2015-08-06 住友化学株式会社 液晶硬化膜
WO2017199948A1 (ja) * 2016-05-20 2017-11-23 シャープ株式会社 液晶表示パネル、及び、液晶表示装置
JP2018159902A (ja) * 2017-03-22 2018-10-11 岩崎電気株式会社 光処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030218A1 (ja) * 2020-08-04 2022-02-10 富士フイルム株式会社 光学異方性層
JPWO2022030218A1 (ja) * 2020-08-04 2022-02-10
WO2022030308A1 (ja) * 2020-08-04 2022-02-10 富士フイルム株式会社 光学異方性層
US11860339B2 (en) 2020-08-04 2024-01-02 Fujifilm Corporation Optically anisotropic layer
JP7434573B2 (ja) 2020-08-04 2024-02-20 富士フイルム株式会社 光学異方性層

Also Published As

Publication number Publication date
JP7053870B2 (ja) 2022-04-12
JPWO2020066910A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
KR20230008679A (ko) 적층체
WO2015030176A1 (ja) 応力表示部材および応力表示部材を用いたひずみ測定方法
JP5562158B2 (ja) 光反射性フィルムの製造方法、及び光反射性フィルム
WO2014097895A1 (ja) コレステリック液晶積層体およびその製造方法ならびにコレステリック液晶積層体の組合せ体
KR100739420B1 (ko) 액정성 조성물, 컬러필터, 및 광학필름
CN112805622B (zh) 显示器
US10852459B2 (en) Reflective sheet, decorative sheet, and method of manufacturing reflective sheet
JP2010286643A (ja) 赤外光反射板、及び赤外光反射性合わせガラス
WO2018146995A1 (ja) 加飾フィルム
WO2015125856A1 (ja) 遮熱用途に使用可能な反射部材および反射部材を含むプロジェクター
JP6479699B2 (ja) 車両用画像表示機能付きミラーおよびその製造方法
WO2015050202A1 (ja) 投映像表示用ハーフミラーおよび投映像表示システム
WO2020066910A1 (ja) 積層体の製造方法、光学部材の製造方法
WO2019142707A1 (ja) フィルム、積層体、撮影装置、センサーおよびヘッドアップディスプレイ
WO2020022504A1 (ja) 光学素子の製造方法および光学素子
WO2021060485A1 (ja) 光学素子の製造方法
JPWO2020166691A1 (ja) 光学素子、導光素子および画像表示素子
US10746906B2 (en) Half mirror and mirror with image display function
JP6815491B2 (ja) 透明スクリーンおよび映像投影システム
JP7175994B2 (ja) 反射シート
JP2020060627A (ja) 光学フィルム、液晶表示装置、自動車社内用内装および光学フィルムの製造方法
WO2018062026A1 (ja) 光学積層体
US20130107193A1 (en) Electromagnetic wave reflective film and method for producing same
WO2020203318A1 (ja) 転写型加飾シート、転写型加飾シートの製造方法
JP2018116308A (ja) 遮熱用途に使用可能な反射部材および反射部材を含むプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867780

Country of ref document: EP

Kind code of ref document: A1