WO2020066547A1 - Electromagnetic valve and high-pressure fuel supply pump - Google Patents

Electromagnetic valve and high-pressure fuel supply pump Download PDF

Info

Publication number
WO2020066547A1
WO2020066547A1 PCT/JP2019/035136 JP2019035136W WO2020066547A1 WO 2020066547 A1 WO2020066547 A1 WO 2020066547A1 JP 2019035136 W JP2019035136 W JP 2019035136W WO 2020066547 A1 WO2020066547 A1 WO 2020066547A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
anchor
curved surface
contact
surface portion
Prior art date
Application number
PCT/JP2019/035136
Other languages
French (fr)
Japanese (ja)
Inventor
徳尾 健一郎
将通 谷貝
壮嗣 秋山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020548326A priority Critical patent/JP6978610B2/en
Priority to CN201980038245.4A priority patent/CN112243474B/en
Publication of WO2020066547A1 publication Critical patent/WO2020066547A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Definitions

  • the present invention relates to a high-pressure fuel supply pump that supplies fuel to an electromagnetic valve and an engine at a high pressure.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-142143
  • Patent Document 1 A high-pressure fuel supply pump disclosed in Japanese Patent Application Laid-Open No. 2016-142143 (Patent Document 1) is known as a background art for reducing the collision sound of an electromagnetic valve.
  • an anchor portion and a rod, which are movable portions of an electromagnetic suction valve, are formed as separate members, and the inner peripheral side of the anchor portion is slidably held with respect to the outer peripheral side of the rod. I have.
  • the rod and the anchor portion are configured to be slidable in the axial direction within a geometrically restricted range (paragraph 0051).
  • abnormal noise increases as the energy at the time of collision increases, but the high-pressure fuel supply pump of Patent Document 1 is configured so that the anchor and the rod can be separated as separate members, so that the energy at the time of collision is limited only by the mass of the anchor. In this way, abnormal noise is reduced (paragraph 0092).
  • a through hole is provided in the anchor portion to hydraulically connect the front and rear of the anchor portion. The through-hole functions as a breathing hole for releasing an excluded volume generated when the anchor moves in the liquid, and enables the anchor to smoothly operate (paragraph 0105).
  • An object of the present invention is to improve abrasion resistance in a limited engagement area of an anchor in a structure in which an anchor and a rod are relatively displaceable, and to improve cavitation erosion performance.
  • An object of the present invention is to provide an electromagnetic valve and a high-pressure fuel supply pump.
  • an electromagnetic valve or an electromagnetic suction valve mechanism of a high-pressure fuel supply pump includes: A rod formed with a convex portion that is convex on the outer diameter side, A rod biasing spring that contacts one end surface of the protrusion in the axial direction of the rod and biases the rod;
  • An electromagnetic valve comprising: an anchor configured to be relatively displaceable in the axial direction with respect to the rod, and having a contact surface that is in contact with the other end surface of the protrusion in the axial direction.
  • the other end surface of the convex portion has a flat portion formed radially inward, and a curved portion formed radially outward of the flat portion,
  • the curved surface portion is formed from the inner diameter side to the outer diameter side of the outermost diameter portion of the rod urging spring,
  • the rod is configured such that the flat portion and the curved surface portion can contact the contact surface of the anchor.
  • FIG. 1 is a diagram showing a configuration of an engine system to which a high-pressure fuel supply pump according to the present invention is applied. It is a longitudinal section of the high pressure fuel supply pump concerning the present invention.
  • FIG. 3 is a horizontal sectional view (transverse sectional view) of the high-pressure fuel supply pump shown in FIG. 2 as viewed from above in FIG. 2.
  • FIG. 3 is a longitudinal sectional view different from FIG. 2 of the high-pressure fuel supply pump according to the present invention. It is an enlarged view near an anchor. It is a figure which shows the streamline of an anchor communication path. It is a figure which shows the state in case an anchor and a rod collide inclining.
  • FIG. 1 is a diagram showing a configuration of an engine system to which a high-pressure fuel supply pump according to the present invention is applied.
  • a portion surrounded by a broken line shows a main body of a high-pressure fuel supply pump (hereinafter, referred to as a fuel pump) 100, and a mechanism and components shown in the broken line are integrated with a body 1 (which may be called a pump body).
  • a fuel pump a high-pressure fuel supply pump
  • the fuel in the fuel tank 102 is pumped from the fuel tank 103 by the feed pump 102 based on a signal from the engine control unit 101 (hereinafter, referred to as ECU). This fuel is pressurized to an appropriate feed pressure and sent to the low-pressure fuel inlet 10a of the fuel pump through the fuel pipe 104.
  • ECU engine control unit 101
  • the fuel flowing into the electromagnetic suction valve mechanism 3 passes through the suction valve 3b, flows through the suction passage 1a formed in the body 1, and then flows into the pressurizing chamber 11.
  • the reciprocating power is given to the plunger 2 by a cam mechanism 91 (see FIG. 2) of the engine. Due to the reciprocating motion of the plunger 2, fuel is sucked from the suction valve 3b during the downward stroke of the plunger 2, and the fuel is pressurized during the upward stroke.
  • the discharge valve mechanism 8 opens, and high-pressure fuel is pressure-fed to the common rail 106 on which the pressure sensor 105 is mounted. Then, based on a signal from ECU 101, injector 107 injects fuel to the engine.
  • the fuel pump of this embodiment is a fuel pump applied to a so-called direct injection engine system in which an injector 107 directly injects fuel into a cylinder of an engine.
  • the fuel pump discharges a desired fuel flow according to a signal from the ECU 101 to the electromagnetic suction valve mechanism 3.
  • FIG. 2 is a longitudinal sectional view of the high-pressure fuel supply pump according to the present invention.
  • FIG. 3 is a horizontal sectional view (transverse sectional view) of the high-pressure fuel supply pump shown in FIG. 2 as viewed from above in FIG.
  • FIG. 4 is a vertical sectional view different from FIG. 2 of the high-pressure fuel supply pump according to the present invention.
  • the fuel pump of the present embodiment is not shown so as to be in close contact with a fuel pump mounting portion 90 (FIGS. 2 and 4) of an engine (internal combustion engine) using a mounting flange 1e (FIG. 3) provided on the body 1. Fixed with multiple bolts.
  • An O-ring 93 is fitted into the body 1 for sealing between the fuel pump mounting portion 90 and the body 1 to prevent the engine oil from leaking to the outside.
  • a cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressurizing chamber 11 together with the body 1 is attached to the body 1.
  • An electromagnetic suction valve mechanism 3 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to a discharge passage are provided.
  • the cylinder 6 is pressed into the body 1 on the outer peripheral side. Further, by deforming the body 1 to the inner peripheral side (radially inward) of the insertion hole of the cylinder 6, the fixing portion 6 a of the cylinder 6 is pressed upward in the figure, and the upper end surface of the cylinder 6 presses the pressurizing chamber 11. Is sealed so that the fuel pressurized at does not leak to the low pressure side.
  • the pressurizing chamber 11 includes a body 1, an electromagnetic suction valve mechanism 3, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
  • a tappet 92 is provided at the lower end of the plunger 2 for converting the rotational movement of the cam 91 attached to the engine camshaft into a vertical movement and transmitting the vertical movement to the plunger 2.
  • the plunger 2 is pressed against the tappet 92 by the spring 18 via the retainer 15. This allows the plunger 2 to reciprocate up and down with the rotational movement of the cam 91.
  • the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed so as to slidably contact the outer periphery of the plunger 2 at the lower part of the cylinder 6 in the drawing.
  • the plunger seal 13 prevents lubricating oil (including engine oil) for lubricating the sliding portion in the engine from flowing into the body 1.
  • the relief valve mechanism 4 includes a seat member 4e, a relief valve 4d, a relief valve holder 4c, a relief spring 4b, and a spring support member 4a.
  • the spring support member 4a also functions as a relief body including the relief spring 4b and forming a relief valve chamber.
  • the spring support member 4a (relief body) is pressed into a lateral hole formed in the body 1 and fixed.
  • One end of the relief spring 4b is in contact with the spring support member 4a, and the other end is in contact with the relief valve holder 4c.
  • the relief valve 4d shuts off fuel when the urging force of the relief spring 4b acts via the relief valve holder 4c and is pressed against the relief valve seat (seat member 4e).
  • the valve opening pressure of the relief valve 4d is determined by the urging force of the relief spring 4b.
  • the relief valve mechanism 4 communicates with the pressurizing chamber 11 via a relief passage, but is not limited to this, and communicates with a low-pressure passage (such as the low-pressure fuel chamber 10 or the suction passage 10d). You may do it.
  • the relief valve mechanism 4 is a valve configured to operate when the common rail 106 or a member therebecomes has some problem and the common rail 106 is abnormally high in pressure.
  • the relief valve mechanism 4 is configured to open the relief valve 4d against the urging force of the relief spring 4b when the differential pressure between the upstream side and the downstream side of the relief valve 4d exceeds the set pressure.
  • the valve is opened when the pressure in the common rail 106 or a member therebecomes high, and returns the fuel to the pressurizing chamber 11 or the low-pressure passage (the low-pressure fuel chamber 10 or the suction passage 10d). Therefore, the relief valve mechanism 4 needs to maintain the valve closed state at a predetermined pressure or less, and has a very strong relief spring 4b to oppose a high pressure.
  • a suction pipe 5 is attached to a side surface of the body 1 of the fuel pump.
  • the suction pipe 5 is connected to a low-pressure pipe 104 for supplying fuel from a fuel tank 103 of the vehicle, and the fuel is supplied from here to the inside of the fuel pump.
  • the suction filter 17 in the suction flow path 5a ahead of the suction pipe 5 has a function of preventing foreign substances existing between the fuel tank 103 and the low-pressure fuel suction port 10a from being absorbed into the fuel pump by the flow of the fuel. .
  • the plunger 2 After the plunger 2 completes the suction stroke, the plunger 2 starts to move upward and moves to the rising stroke.
  • the electromagnetic coil 3g is kept in the non-energized state, and no magnetic urging force acts.
  • the rod urging spring 3m is set so as to have a necessary and sufficient urging force to keep the suction valve 3b open in the non-energized state.
  • the volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2, in this state, the fuel once sucked into the pressurizing chamber 11 is sucked again through the opening 3f of the suction valve 3b in the valve-open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
  • the suction valve 3b is closed by the urging force of the suction valve urging spring 31 and the fluid force caused by the fuel flowing into the suction passage 10d.
  • the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure becomes equal to or higher than the pressure of the fuel discharge port 12 a, high-pressure fuel is discharged through the discharge valve mechanism 8 to the common rail 106. Supplied.
  • This process is called a discharge process.
  • the anchor 3h collides with the magnetic core 3e on the magnetic attraction surface
  • the rod 3i engaged with the anchor 3h is separated from the anchor 3h by inertia force.
  • the rod 3i is pushed back by the force of the rod urging spring 3m, and comes into contact with the anchor 3h.
  • the rod flange 3j of the rod 3i may collide with the anchor 3h.
  • the rising stroke between the bottom dead center and the top dead center of the plunger 2 includes a return stroke and a discharge stroke.
  • the timing of energizing the electromagnetic coil 3g By controlling the timing of energizing the electromagnetic coil 3g, the amount of high-pressure fuel to be discharged can be controlled. If the timing for energizing the electromagnetic coil 3g is advanced, the ratio of the return stroke during the ascent stroke is small, and the ratio of the discharge stroke is large. That is, less fuel is returned to the suction passage 10d, and more fuel is discharged at high pressure. On the other hand, if the energization timing is delayed, the ratio of the return stroke during the ascent stroke is large and the ratio of the discharge stroke is small.
  • the timing of energizing the electromagnetic coil 3g is controlled by a command from the ECU 101 in order to switch between the suction stroke, the return stroke, and the discharge stroke.
  • the discharge valve mechanism 8 on the outlet side of the pressurizing chamber 11 of the body 1 includes a discharge valve seat 8a, a discharge valve 8b that comes into contact with and separates from the discharge valve seat 8a, and a discharge valve spring that urges the discharge valve 8b toward the discharge valve seat 8a. 8c and a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b.
  • the discharge valve stopper 8d is press-fitted into a plug 8e that blocks leakage of fuel to the outside.
  • the plug 8e is joined to the body 1 by welding at a welding portion 8f.
  • a discharge valve chamber 8g is formed on the secondary side of the discharge valve 8b.
  • the discharge valve chamber 8g communicates with the fuel discharge port 12a through a horizontal hole formed in the body 1 in a horizontal direction.
  • the discharge valve 8b When there is no fuel pressure difference between the pressurizing chamber 11 and the discharge valve chamber 8g, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 8g, the discharge valve 8b opens against the urging force of the discharge valve spring 8c. When the discharge valve 8b is opened, the high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 8g and the fuel discharge port 12a. With the above configuration, the discharge valve mechanism 8 functions as a check valve that restricts the direction of fuel flow.
  • the fuel outlet 12a is formed in the discharge joint 12 fixed to the body 1 by a weld 12b.
  • the supplied current is stopped by the end of the discharge stroke. Then, the magnetic attraction force disappears, and the rod urging spring 3m urges the rod 3i, the anchor 3h and the suction valve 3b so that the suction valve 3b is opened.
  • the suction valve 3b moves to the valve opening position together with the rod 3i and the anchor 3h, collides with the valve stopper 3o, and stops. At this time, the anchor 3h overshoots due to the inertial force and collides with the rod flange 3j when returning.
  • the low-pressure fuel chamber 10 is formed inside the cover 14.
  • the low-pressure fuel chamber 10 is provided with a pressure pulsation reducing mechanism 9 for reducing the pressure pulsation generated in the fuel pump from spreading to the fuel pipe 104.
  • the pressure pulsation reducing mechanism 9 is arranged so as to form an upper low-pressure fuel chamber 10b and a lower low-pressure fuel chamber 10c within the low-pressure fuel chamber 10.
  • the pressure pulsation reducing mechanism 9 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are adhered to each other at an outer periphery thereof, and an inert gas such as argon is injected therein.
  • the plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub-chamber 7a increases or decreases due to the reciprocating motion of the plunger.
  • the sub-chamber 7a communicates with the low-pressure fuel chamber 10 through a fuel passage 10e. When the plunger 2 descends, fuel flows from the sub-chamber 7a to the low-pressure fuel chamber 10, and when it rises, fuel flows from the low-pressure fuel chamber 10 to the sub-chamber 7a.
  • FIG. 5 is an enlarged view near the anchor.
  • the anchor 3h is provided with a plurality of breath holes 3n, and forms a fuel passage that moves when the anchor 3h moves back and forth.
  • the anchor 3h is provided with a flat portion (flat portion) 3p.
  • the flat portion 3p is formed as a bottom surface of a concave portion that is recessed from the end surface of the anchor 3h on the magnetic core 3e side toward the suction valve seat portion 3a (antimagnetic core 3e side).
  • a through hole 3q penetrating in the axial direction of the rod 3i is formed at the radial center of the anchor 3h, and the through hole 3q opens at the center of the plane portion 3p. That is, the flat portion 3p is formed around the opening of the through hole 3q on the magnetic core 3e side. In the plane portion 3p, a part of the opening of the breathing hole 3n is formed in addition to the through hole 3q.
  • Rod 3i has rod flange 3j.
  • the rod flange portion 3j is configured as a convex portion that protrudes radially outward with respect to the outer peripheral surface of the sliding portion with the through hole 3q of the rod 3i. That is, the rod flange 3j is configured as an enlarged diameter portion.
  • the rod flange 3j is engaged with the anchor 3h at the flat surface 3p of the anchor 3h. That is, the anchor 3h is configured to be relatively displaceable in the axial direction of the rod 3i with respect to the rod 3i, and has a flat portion (contact surface) 3p that comes into contact with the end surface 3jb of the rod flange 3j.
  • the rod flange 3j has a flat surface (flat portion) 3s and a curved surface portion 3r formed on an end surface on a side (antimagnetic core 3e side) facing the flat surface portion 3p, and the flat surface portion 3s and the curved surface portion 3r. Are in a positional relationship where they can contact the flat portion 3p of the anchor.
  • the curved surface portion 3r is tangent to the flat surface portion 3s.
  • the curved surface portion 3r is not tangent to the outermost periphery (outer peripheral surface) 3t of the rod flange portion 3j, but is chamfered or a curved surface portion 3u having a curvature radius smaller than the curvature radius R of the curved surface portion 3r, and is connected to the outermost periphery 3t. .
  • the end face of the rod flange 3j on the magnetic core 3e side constitutes a spring seat with which the end of the rod urging spring 3m contacts.
  • the rod biasing spring 3m contacts one end surface 3ja of the rod flange (projection) 3j in the axial direction of the rod 3i to bias the rod 3i.
  • the other end surface 3jb of the rod flange (projection) 3j in the axial direction of the rod 3i is configured to be in contact with the flat portion (contact surface) 3p of the anchor 3h.
  • FIG. 6 is a diagram showing streamlines of the anchor communication passage.
  • FIG. 7 is a diagram illustrating a state in which the anchor and the rod collide with each other while tilting.
  • FIG. 7 schematically shows a state in which the anchor 3h and the rod 3i are inclined and collided.
  • the anchor 3h and the rod 3i have a chance to collide with each other when the electromagnetic coil 3g is energized and after the energization is completed.
  • the flat portion 3s of the rod flange 3j collides with the flat portion (contact surface) 3p of the anchor 3h.
  • the flat portion 3s comes into contact with the contact surface 3p of the anchor 3h and the curved surface portion 3r comes out of contact with the contact surface 3p.
  • Equation 1 Pmax is the maximum surface pressure, R is the radius of curvature, and P is the applied load.
  • the maximum surface pressure Pmax expressed by the equation 1 is inversely proportional to the square root of the radius of curvature R. In three dimensions, it is inversely proportional to the cube root. In any case, it is necessary to increase the radius of curvature R to reduce the maximum surface pressure Pmax.
  • a range where the anchor 3h and the rod 3i can contact each other when the relative inclination is the maximum is formed with a uniform large radius of curvature.
  • a chamfer 3u is provided on the side.
  • the curved surface portion 3r is connected to the flat surface portion 3s by a tangent.
  • the anchor 3h and the rod 3i can uniformly contact with a large radius of curvature R within the range of the inclination generated between the anchor 3h and the rod 3i.
  • the sliding portion of an injector or a solenoid valve for a gasoline pump is guided with high precision, so that the maximum inclination angle is small. Therefore, the radius of curvature of the curved surface portion 3r can be made large.
  • be the maximum inclination angle between the anchor 3h and the rod 3i. Assuming that the curved surface portion 3r is approximately an inclined surface, the angle formed between the curved surface portion 3r and the flat surface portion 3s is represented by ⁇ . Even when the anchor 3h and the rod 3i are tilted to the maximum, ⁇ needs to be larger than ⁇ in order to receive the collision load on the curved surface portion 3r.
  • the flat portion 3p of the anchor 3h comes into surface contact with the flat portion 3s of the rod.
  • the surface pressure generated in that case is inversely proportional to the area where the flat portion 3s contacts.
  • the radius R of the above-described curved surface portion 3r decreases, and the stress when the curved surface portion 3r comes into contact increases. Therefore, a design that balances the two is required in a limited space.
  • FIG. 8A is a diagram showing a relationship between a radial width L1 of a flat portion of the rod flange portion and a radial width L2 of the curved surface portion.
  • FIG. 8B is a diagram illustrating a relationship between a radial width L2 of the curved surface portion of the rod flange portion and a radius of curvature R.
  • FIG. 8C is a conceptual diagram of the contact pressure at the time of collision between the anchor and the rod.
  • FIG. 8A shows a graph of the relationship between L1 and L2.
  • the values of L1 and L2 displayed on the graph are not absolute values but relative values.
  • the maximum inclination between the anchor and the rod is at most several deg. Assuming that the assumed maximum inclination angle is ⁇ , the radial contact length L2 of the curved surface portion 3r, and the radius of curvature R, L2 and R have the relationship of equation (2).
  • FIG. 8B shows the relationship between L2 and R.
  • FIG. 8C shows an example of the calculation of the surface pressure acting on the rod flange 3j and the anchor flat portion 3p.
  • the contact in the case where the flat portion 3s of the rod contacts the flat portion 3p of the anchor 3h is referred to as flat contact.
  • the contact when the curved surface portion 3r of the rod contacts the flat surface portion 3p of the anchor 3h is called a curved surface contact. Since the surface pressure changes depending on the assumed collision load, the value on the vertical axis is not an absolute value but a comparison value for comparing the surface pressure at the time of plane contact with the surface pressure at the time of curved surface contact.
  • the solid pressure when the flat portion 3s comes into contact with the flat portion 3p without tilting the rod 3i and the anchor 3h (at the time of flat contact) is indicated by a solid line. Since the surface pressure in this case is inversely proportional to the area of the flat portion 3s, the surface pressure rapidly increases as L2 increases.
  • the dotted line indicates the surface pressure when the curved surface portion 3r contacts the flat surface portion 3p (at the time of curved surface contact). In this case, the surface pressure is in inverse proportion to the square root (up to the third root) of the radius of curvature R. It is necessary to select the ratio between L1 and L2 so that the contact pressure between the curved surface and the flat surface does not become too high.
  • the ratio of L1 is larger than L2.
  • the recommended radius of curvature is practically about 3 to 10 mm.
  • the ratio of L2 / L1 corresponding to this radius of curvature is practically about 0.37 to 6.5.
  • L2 corresponding to a radius of curvature of 3 to 10 mm is 0.27 to 0.87.
  • FIG. 8C in VA, the surface pressure generated in the constituent material of the flat portion 3s or the curved surface portion 3r when the flat surface portion 3s or the curved surface portion 3r of the rod 3i comes into contact with the flat surface portion 3p of the anchor 3h becomes equal to or less than the allowable surface pressure.
  • the range (permissible range) of L2 is shown.
  • L2 corresponding to the radius of curvature of 3 to 10 mm is 0.27 to 0.87, and is included in the allowable range of L2.
  • a rod urging spring 3m is in contact with the end face of the rod flange 3j on the opposite side of the flat part 3s.
  • the flat portion 3s is located on the inner peripheral side of the outermost periphery of the rod urging spring 3m. That is, the outer diameter of the flat portion 3s is smaller than the outer diameter of the rod biasing spring 3m.
  • the curved surface portion 3r is formed from the inner diameter side (radially inside) to the outer diameter side (radially outside) of the outermost diameter portion 3t of the rod urging spring 3m.
  • the point of force at which the rod flange portion 3j transmits a force to the anchor flat portion 3p is on the inner peripheral side of the rod urging spring 3m, and the rod urging spring 3m is inclined to urge the rod flange portion 3j.
  • the force transmitted to the rod 3i is aligned.
  • the urging force of the rod urging spring 3m is efficiently transmitted to the rod 3i during the return stroke, and can act as a force for opening the suction valve.
  • there is also an effect that only the portion of the rod flange 3j where the moment does not act is made thinner and lighter.
  • FIG. 9 is a view in which the dimensional relationship between the radial width L1 of the flat portion of the rod flange portion and the radial width L2 of the curved surface portion is changed.
  • a rod 3i formed with a convex portion 3j that is convex on the outer diameter side, A rod biasing spring 3m that contacts one end surface 3ja of the projection 3j in the axial direction of the rod 3i and biases the rod 3i;
  • An electromagnetic valve 3 comprising: an anchor 3h configured to be relatively displaceable in the axial direction with respect to the rod 3i and having a contact surface 3p that comes into contact with the other end surface 3jb of the convex portion 3j in the axial direction.
  • the other end surface 3jb of the convex portion 3j has a flat portion 3s formed radially inward and a curved surface portion 3r formed radially outward of the flat portion 3s,
  • the curved surface portion 3r is formed from the inner diameter side to the outer diameter side of the outermost diameter portion of the rod urging spring 3m,
  • the rod 3i is configured such that the flat surface portion 3s and the curved surface portion 3r can contact the contact surface 3p of the anchor 3h.
  • the curved surface portion 3r is configured so as not to contact the contact surface 3p in a state where the anchor 3h is urged by the rod urging spring 3m and stopped.
  • the curved surface portion 3r is configured to contact the contact surface 3p when the rod 3i or the anchor 3h is inclined to the outer diameter side with respect to the axial direction.
  • the flat portion 3s and the curved portion 3r are configured such that L2 / L1 obtained by dividing the radial length L2 of the curved portion 3r by the radial length L1 of the flat portion 3s is 0.37 to 6.5.
  • the surface pressure generated when the flat portion 3s or the curved surface portion 3r collides with the contact surface 3p is not more than the allowable surface pressure of the material constituting the flat portion 3s or the curved surface portion 3r within the range of L2 / L1.
  • L2 is set so that
  • the curved surface portion 3r is configured such that the maximum radius of curvature of the curved surface portion 3r is in the range of 3.0 mm to 10.0 mm.
  • the anchor 3h has a through hole 3q through which the rod 3i is inserted, and the convex portion 3j is configured as an enlarged diameter portion with respect to the outer peripheral surface of the sliding portion with the through hole 3q of the rod 3i.
  • One end face 3ja of the projection 3j is provided on the side where the magnetic core 3e is arranged, and the other end face 3jb is provided on the diamagnetic core side.
  • the curved surface portion 3r is a curved surface portion having a radius of curvature, and the curved surface portion 3r is tangent to the flat surface portion 3s.
  • the convex portion 3j has a chamfer or a curved surface portion 3u having a radius of curvature smaller than the radius of curvature R of the curved surface portion 3r on the radially outer side of the curved surface portion 3r.
  • the high-pressure fuel supply pump 100 includes the above-described electromagnetic valve as the electromagnetic suction valve mechanism 3.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, for a part of the configuration of the embodiment, it is possible to add / delete / replace another configuration.

Abstract

The purpose of the present invention is to provide an electromagnetic valve and a high-pressure fuel supply pump having a structure in which an anchor and a rod can be relatively displaced, wherein wear resistance can be improved in a limited engagement area of the anchor and the cavitation-erosion-resisting performance can be improved. To achieve this purpose, the electromagnetic valve comprises a rod 3i in which a protrusion 3j is formed, a rod-urging spring 3m that comes into contact with one end surface 3ja of the protrusion 3j, and an anchor 3h configured to be capable of being displaced relative to the rod 3i and having a contact surface 3p that comes into contact with an other end surface 3jb of the protrusion 3j, wherein the other end surface 3jb of the protrusion 3j has a flat surface part 3s formed on the diametrally inner side and a curved surface part 3r formed on the diametrally outer side of the flat surface part 3s, the curved surface part 3r is formed extending from diametrally inward to diametrally outward of the diametrally outermost part of the rod-urging spring 3m, and the rod 3i is configured so that the flat surface part 3s and the curved surface part 3r are able to come into contact with the contact surface 3p.

Description

電磁弁及び高圧燃料供給ポンプSolenoid valve and high pressure fuel supply pump
 本発明は、電磁弁及びエンジンに燃料を高圧で供給する高圧燃料供給ポンプに関する。 The present invention relates to a high-pressure fuel supply pump that supplies fuel to an electromagnetic valve and an engine at a high pressure.
 近年、内燃機関の静粛性向上及び高出力・低排気化が進められている。直噴エンジンに燃料を供給する高圧燃料供給ポンプにおいては、電磁弁が主要な騒音源となる場合が多く、その静粛性向上が重要な課題の1つである。電磁弁の衝突音を低減する背景技術として、特開2016-142143号公報(特許文献1)に開示される高圧燃料供給ポンプが知られている。特許文献1の高圧燃料供給ポンプでは、電磁吸入弁の可動部であるアンカー部及びロッドを別部材に構成し、アンカー部はその内周側がロッドの外周側に対して摺動自在に保持されている。すなわち、ロッド及びアンカー部は幾何学的に規制される範囲で軸方向に摺動可能に構成されている(段落0051)。アンカー部が固定コアに衝突する際には異音が発生する。異音は衝突時のエネルギが大きいほど大きくなるが、特許文献1の高圧燃料供給ポンプはアンカー部及びロッドを別部材として分離可能に構成することで、衝突時のエネルギがアンカー部の質量のみで発生するようにして、異音を低減している(段落0092)。また、特許文献1の高圧燃料供給ポンプでは、アンカー部に、アンカー部の前後を液圧的に接続する貫通孔が設けられる。この貫通孔は、液体中をアンカー部が移動する際に発生する排除体積を逃がすための呼吸穴として機能し、アンカー部の円滑な動作を可能にする(段落0105)。 In recent years, the quietness of internal combustion engines has been improved, and high output and low emissions have been promoted. In a high-pressure fuel supply pump that supplies fuel to a direct injection engine, an electromagnetic valve is often a major noise source, and improving quietness is one of the important issues. A high-pressure fuel supply pump disclosed in Japanese Patent Application Laid-Open No. 2016-142143 (Patent Document 1) is known as a background art for reducing the collision sound of an electromagnetic valve. In the high-pressure fuel supply pump of Patent Document 1, an anchor portion and a rod, which are movable portions of an electromagnetic suction valve, are formed as separate members, and the inner peripheral side of the anchor portion is slidably held with respect to the outer peripheral side of the rod. I have. That is, the rod and the anchor portion are configured to be slidable in the axial direction within a geometrically restricted range (paragraph 0051). When the anchor collides with the fixed core, abnormal noise is generated. The abnormal noise increases as the energy at the time of collision increases, but the high-pressure fuel supply pump of Patent Document 1 is configured so that the anchor and the rod can be separated as separate members, so that the energy at the time of collision is limited only by the mass of the anchor. In this way, abnormal noise is reduced (paragraph 0092). Further, in the high-pressure fuel supply pump disclosed in Patent Document 1, a through hole is provided in the anchor portion to hydraulically connect the front and rear of the anchor portion. The through-hole functions as a breathing hole for releasing an excluded volume generated when the anchor moves in the liquid, and enables the anchor to smoothly operate (paragraph 0105).
特開2016-142143号公報JP 2016-142143 A
 特許文献1の高圧燃料供給ポンプでは、アンカーはコアとの磁気吸引面積を確保しつつ、ロッドと係合する面積も確保する必要がある。磁気性能を出すために磁気吸引面積を大きくとると、ロッドと係合する面積(係合面積)が小さくなる。その結果、係合部の面圧が高くなり、係合部の耐磨耗性の悪化が心配される。更に、特許文献1の高圧燃料供給ポンプでは、アンカーの前後を移動する燃料の流路を貫通孔として設けている。この流路面積(貫通孔の断面積)は磁気吸引面積及び係合面積との取り合いとなるが、この流路面積を小さくすると、この部位を通る流速が大きくなり、剥離によるキャビテーションエロージョンが発生するおそれも出てくる。 で は In the high-pressure fuel supply pump of Patent Document 1, it is necessary to secure an area for engaging the rod with the anchor while securing a magnetic attraction area with the core. If the magnetic attraction area is increased to provide magnetic performance, the area (engagement area) that engages with the rod decreases. As a result, the surface pressure of the engaging portion is increased, and there is a concern that the wear resistance of the engaging portion is deteriorated. Further, in the high-pressure fuel supply pump disclosed in Patent Document 1, a flow path of fuel that moves before and after the anchor is provided as a through hole. The area of the flow path (the cross-sectional area of the through hole) is a trade-off between the magnetic attraction area and the engagement area. However, if the flow area is reduced, the flow velocity through this portion increases, and cavitation erosion due to separation occurs. There is fear.
 本発明の目的は、アンカーとロッドとが相対変位可能な構造において、アンカーの限られた係合面積の中で耐摩耗性を向上することができ、耐キャビテーションエロージョンの性能を向上することができる電磁弁及び高圧燃料供給ポンプを提供することにある。 An object of the present invention is to improve abrasion resistance in a limited engagement area of an anchor in a structure in which an anchor and a rod are relatively displaceable, and to improve cavitation erosion performance. An object of the present invention is to provide an electromagnetic valve and a high-pressure fuel supply pump.
 上記目的を達成するために、本発明の電磁弁或いは高圧燃料供給ポンプの電磁吸入弁機構は、
 外径側に凸となる凸部が形成されたロッドと、
 前記ロッドの軸方向における前記凸部の一端面に接触し、前記ロッドを付勢するロッド付勢ばねと、
 前記ロッドに対して前記軸方向に相対変位可能に構成され、前記軸方向における前記凸部の他端面と接触する接触面を有するアンカーと、を備えた電磁弁において、
 前記凸部の前記他端面は、径方向内側に形成された平面部と、前記平面部の径方向外側に形成された曲面部と、を有し、
 前記曲面部は、前記ロッド付勢ばねの最外径部よりも内径側から外径側に亘って形成され、
 前記ロッドは前記平面部及び前記曲面部が前記アンカーの前記接触面と接触可能に構成される。
In order to achieve the above object, an electromagnetic valve or an electromagnetic suction valve mechanism of a high-pressure fuel supply pump according to the present invention includes:
A rod formed with a convex portion that is convex on the outer diameter side,
A rod biasing spring that contacts one end surface of the protrusion in the axial direction of the rod and biases the rod;
An electromagnetic valve comprising: an anchor configured to be relatively displaceable in the axial direction with respect to the rod, and having a contact surface that is in contact with the other end surface of the protrusion in the axial direction.
The other end surface of the convex portion has a flat portion formed radially inward, and a curved portion formed radially outward of the flat portion,
The curved surface portion is formed from the inner diameter side to the outer diameter side of the outermost diameter portion of the rod urging spring,
The rod is configured such that the flat portion and the curved surface portion can contact the contact surface of the anchor.
 本発明によれば、ロッドがアンカーに対して傾いて衝突した場合、及び傾かずに衝突した場合においても衝突応力を低減できると共に、ロッド鍔部での流体剥離を抑制することができ、キャビテーションエロージョンを抑制することができる。 Advantageous Effects of Invention According to the present invention, it is possible to reduce the collision stress even when the rod collides with the anchor with inclination and when the rod collides without inclining, and it is possible to suppress fluid separation at the rod flange portion, and to achieve cavitation erosion. Can be suppressed.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明に係る高圧燃料供給ポンプが適用されたエンジンシステムの構成を示す図である。1 is a diagram showing a configuration of an engine system to which a high-pressure fuel supply pump according to the present invention is applied. 本発明に係る高圧燃料供給ポンプの縦断面図である。It is a longitudinal section of the high pressure fuel supply pump concerning the present invention. 図2に示す高圧燃料供給ポンプを図2の上方から見た水平方向断面図(横断面図)である。FIG. 3 is a horizontal sectional view (transverse sectional view) of the high-pressure fuel supply pump shown in FIG. 2 as viewed from above in FIG. 2. 本発明に係る高圧燃料供給ポンプの図2と異なる縦断面図である。FIG. 3 is a longitudinal sectional view different from FIG. 2 of the high-pressure fuel supply pump according to the present invention. アンカー近傍の拡大図である。It is an enlarged view near an anchor. アンカー連通路の流線を示す図である。It is a figure which shows the streamline of an anchor communication path. アンカーとロッドとが傾いて衝突する場合の状態を示す図である。It is a figure which shows the state in case an anchor and a rod collide inclining. ロッド鍔部の平面部の径方向幅L1と曲面部の径方向幅L2との関係を示す図である。It is a figure which shows the relationship between the radial width L1 of the flat part of the rod flange part, and the radial width L2 of a curved surface part. ロッド鍔部の曲面部の径方向幅L2と曲率半径Rとの関係を示す図である。It is a figure which shows the relationship between the radial width L2 of the curved surface part of the rod flange part, and the curvature radius R. アンカーとロッドとの衝突時の面圧の概念図である。It is a conceptual diagram of the surface pressure at the time of collision of an anchor and a rod. ロッド鍔部の平面部の径方向幅L1と曲面部の径方向幅L2との寸法関係を変更した図である。It is the figure which changed the dimensional relationship of the radial width L1 of the flat part of the rod flange part, and the radial width L2 of the curved surface part.
 以下、本発明の実施形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1を用いて、システムの構成と動作を説明する。図1は、本発明に係る高圧燃料供給ポンプが適用されたエンジンシステムの構成を示す図である。破線で囲まれた部分が高圧燃料供給ポンプ(以下、燃料ポンプと呼ぶ)100の本体を示し、この破線の中に示されている機構及び部品はボディ1(ポンプボディと呼んでも良い)に一体に組み込まれていることを示す。 構成 The configuration and operation of the system will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of an engine system to which a high-pressure fuel supply pump according to the present invention is applied. A portion surrounded by a broken line shows a main body of a high-pressure fuel supply pump (hereinafter, referred to as a fuel pump) 100, and a mechanism and components shown in the broken line are integrated with a body 1 (which may be called a pump body). Indicates that it is incorporated into
 燃料タンク102の燃料は、エンジンコントロールユニット101(以下ECUと称す)からの信号に基づきフィードポンプ102によって燃料タンク103から汲み上げられる。この燃料は適切なフィード圧力に加圧されて燃料配管104を通して燃料ポンプの低圧燃料吸入口10aに送られる。 (4) The fuel in the fuel tank 102 is pumped from the fuel tank 103 by the feed pump 102 based on a signal from the engine control unit 101 (hereinafter, referred to as ECU). This fuel is pressurized to an appropriate feed pressure and sent to the low-pressure fuel inlet 10a of the fuel pump through the fuel pipe 104.
 吸入配管5(図3参照)の低圧燃料吸入口10aから流入した燃料は圧力脈動低減機構9、吸入通路10dを介して、容量可変機構である電磁吸入弁機構3の吸入ポート3kに至る。 (4) The fuel flowing from the low-pressure fuel suction port 10a of the suction pipe 5 (see FIG. 3) reaches the suction port 3k of the electromagnetic suction valve mechanism 3, which is a variable capacity mechanism, via the pressure pulsation reduction mechanism 9 and the suction passage 10d.
 電磁吸入弁機構3に流入した燃料は、吸入弁3bを通過し、ボディ1に形成された吸入通路1aを流れた後に加圧室11に流入する。エンジンのカム機構91(図2参照)によりプランジャ2に往復運動する動力が与えられる。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁3bから燃料を吸入し、上昇行程には燃料が加圧される。加圧室11の圧力が設定値を超えると、吐出弁機構8が開弁し、圧力センサ105が装着されているコモンレール106へ高圧燃料が圧送される。そしてECU101からの信号に基づきインジェクタ107がエンジンへ燃料を噴射する。本実施例の燃料ポンプは、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムに適用される燃料ポンプである。燃料ポンプは、ECU101から電磁吸入弁機構3への信号により、所望の燃料流量を吐出する。 (4) The fuel flowing into the electromagnetic suction valve mechanism 3 passes through the suction valve 3b, flows through the suction passage 1a formed in the body 1, and then flows into the pressurizing chamber 11. The reciprocating power is given to the plunger 2 by a cam mechanism 91 (see FIG. 2) of the engine. Due to the reciprocating motion of the plunger 2, fuel is sucked from the suction valve 3b during the downward stroke of the plunger 2, and the fuel is pressurized during the upward stroke. When the pressure in the pressurizing chamber 11 exceeds the set value, the discharge valve mechanism 8 opens, and high-pressure fuel is pressure-fed to the common rail 106 on which the pressure sensor 105 is mounted. Then, based on a signal from ECU 101, injector 107 injects fuel to the engine. The fuel pump of this embodiment is a fuel pump applied to a so-called direct injection engine system in which an injector 107 directly injects fuel into a cylinder of an engine. The fuel pump discharges a desired fuel flow according to a signal from the ECU 101 to the electromagnetic suction valve mechanism 3.
 図2乃至図4を参照して説明する。図2は、本発明に係る高圧燃料供給ポンプの縦断面図である。図3は、図2に示す高圧燃料供給ポンプを図2の上方から見た水平方向断面図(横断面図)である。図4は、本発明に係る高圧燃料供給ポンプの図2と異なる縦断面図である。 説明 Description will be given with reference to FIGS. FIG. 2 is a longitudinal sectional view of the high-pressure fuel supply pump according to the present invention. FIG. 3 is a horizontal sectional view (transverse sectional view) of the high-pressure fuel supply pump shown in FIG. 2 as viewed from above in FIG. FIG. 4 is a vertical sectional view different from FIG. 2 of the high-pressure fuel supply pump according to the present invention.
 本実施例の燃料ポンプは、ボディ1に設けられた取付けフランジ1e(図3)を用いて、エンジン(内燃機関)の燃料ポンプ取付け部90(図2、4)に密着するように、図示しない複数のボルトで固定される。 The fuel pump of the present embodiment is not shown so as to be in close contact with a fuel pump mounting portion 90 (FIGS. 2 and 4) of an engine (internal combustion engine) using a mounting flange 1e (FIG. 3) provided on the body 1. Fixed with multiple bolts.
 燃料ポンプ取付け部90とボディ1との間のシールのためにOリング93がボディ1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。 O An O-ring 93 is fitted into the body 1 for sealing between the fuel pump mounting portion 90 and the body 1 to prevent the engine oil from leaking to the outside.
 ボディ1にはプランジャ2の往復運動をガイドし、ボディ1と共に加圧室11を形成するシリンダ6が取り付けられている。また燃料を加圧室11に供給するための電磁吸入弁機構3と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8が設けられている。 シ リ ン ダ A cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressurizing chamber 11 together with the body 1 is attached to the body 1. An electromagnetic suction valve mechanism 3 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to a discharge passage are provided.
 シリンダ6はその外周側においてボディ1に圧入される。またボディ1を、シリンダ6の挿入孔の内周側(径方向内側)へ変形させることで、シリンダ6の固定部6aは図中上方向へ押圧され、シリンダ6の上端面で加圧室11にて加圧された燃料が低圧側に漏れないようシールされる。加圧室11は、ボディ1、電磁吸入弁機構3、プランジャ2、シリンダ6、吐出弁機構8にて構成される。 The cylinder 6 is pressed into the body 1 on the outer peripheral side. Further, by deforming the body 1 to the inner peripheral side (radially inward) of the insertion hole of the cylinder 6, the fixing portion 6 a of the cylinder 6 is pressed upward in the figure, and the upper end surface of the cylinder 6 presses the pressurizing chamber 11. Is sealed so that the fuel pressurized at does not leak to the low pressure side. The pressurizing chamber 11 includes a body 1, an electromagnetic suction valve mechanism 3, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
 プランジャ2の下端には、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね18にてタペット92に圧着されている。これによりカム91の回転運動に伴い、プランジャ2を上下に往復運動させることができる。 A tappet 92 is provided at the lower end of the plunger 2 for converting the rotational movement of the cam 91 attached to the engine camshaft into a vertical movement and transmitting the vertical movement to the plunger 2. The plunger 2 is pressed against the tappet 92 by the spring 18 via the retainer 15. This allows the plunger 2 to reciprocate up and down with the rotational movement of the cam 91.
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されている。これにより、プランジャ2が摺動したとき、副室7aの燃料をシールしエンジン内部へ流入するのを防ぐ。同時に、プランジャシール13はエンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がボディ1の内部に流入するのを防止する。 プ ラ ン Further, the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed so as to slidably contact the outer periphery of the plunger 2 at the lower part of the cylinder 6 in the drawing. As a result, when the plunger 2 slides, the fuel in the sub chamber 7a is sealed to prevent the fuel from flowing into the engine. At the same time, the plunger seal 13 prevents lubricating oil (including engine oil) for lubricating the sliding portion in the engine from flowing into the body 1.
 リリーフ弁機構4は、シート部材4e、リリーフ弁4d、リリーフ弁ホルダ4c、リリーフばね4b、及びばね支持部材4aで構成される。ばね支持部材4aはリリーフばね4bを内包しリリーフ弁室を形成するリリーフボディとしても機能する。ばね支持部材4a(リリーフボディ)はボディ1に形成された横孔に圧入されて固定される。リリーフばね4bは、一端側がばね支持部材4aに当接し、他端側がリリーフ弁ホルダ4cに当接している。リリーフ弁4dは、リリーフばね4bの付勢力がリリーフ弁ホルダ4cを介して作用してリリーフ弁シート(シート部材4e)に押圧されることで燃料を遮断する。リリーフ弁4dの開弁圧力は、リリーフばね4bの付勢力によって決定される。本実施例ではリリーフ弁機構4は、リリーフ通路を介して加圧室11に連通しているが、これに限定されるわけではなく、低圧通路(低圧燃料室10又は吸入通路10d等)に連通するようにしても良い。リリーフ弁機構4は、コモンレール106やその先の部材に何らかの問題が生じ、コモンレール106が異常に高圧になった場合に作動するよう構成された弁である。 The relief valve mechanism 4 includes a seat member 4e, a relief valve 4d, a relief valve holder 4c, a relief spring 4b, and a spring support member 4a. The spring support member 4a also functions as a relief body including the relief spring 4b and forming a relief valve chamber. The spring support member 4a (relief body) is pressed into a lateral hole formed in the body 1 and fixed. One end of the relief spring 4b is in contact with the spring support member 4a, and the other end is in contact with the relief valve holder 4c. The relief valve 4d shuts off fuel when the urging force of the relief spring 4b acts via the relief valve holder 4c and is pressed against the relief valve seat (seat member 4e). The valve opening pressure of the relief valve 4d is determined by the urging force of the relief spring 4b. In this embodiment, the relief valve mechanism 4 communicates with the pressurizing chamber 11 via a relief passage, but is not limited to this, and communicates with a low-pressure passage (such as the low-pressure fuel chamber 10 or the suction passage 10d). You may do it. The relief valve mechanism 4 is a valve configured to operate when the common rail 106 or a member therebecomes has some problem and the common rail 106 is abnormally high in pressure.
 つまりリリーフ弁機構4は、リリーフ弁4dの上流側と下流側との差圧が設定圧力を超えた場合に、リリーフばね4bの付勢力に抗してリリーフ弁4dが開弁するように構成される。コモンレール106やその先の部材内の圧力が高くなった場合に開弁し、燃料を加圧室11または低圧通路(低圧燃料室10又は吸入通路10d等)に戻すという役割を有する。そのため、リリーフ弁機構4は、所定の圧力以下では閉弁状態を維持する必要があり、高圧に対抗するために非常に強力なリリーフばね4bを有している。 That is, the relief valve mechanism 4 is configured to open the relief valve 4d against the urging force of the relief spring 4b when the differential pressure between the upstream side and the downstream side of the relief valve 4d exceeds the set pressure. You. The valve is opened when the pressure in the common rail 106 or a member therebecomes high, and returns the fuel to the pressurizing chamber 11 or the low-pressure passage (the low-pressure fuel chamber 10 or the suction passage 10d). Therefore, the relief valve mechanism 4 needs to maintain the valve closed state at a predetermined pressure or less, and has a very strong relief spring 4b to oppose a high pressure.
 燃料ポンプのボディ1の側面部には吸入配管5が取り付けられている。吸入配管5は、車両の燃料タンク103からの燃料を供給する低圧配管104に接続されており、燃料はここから燃料ポンプ内部に供給される。吸入配管5の先の吸入流路5a内の吸入フィルタ17は、燃料タンク103から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって燃料ポンプ内に吸収することを防ぐ役目がある。 吸入 A suction pipe 5 is attached to a side surface of the body 1 of the fuel pump. The suction pipe 5 is connected to a low-pressure pipe 104 for supplying fuel from a fuel tank 103 of the vehicle, and the fuel is supplied from here to the inside of the fuel pump. The suction filter 17 in the suction flow path 5a ahead of the suction pipe 5 has a function of preventing foreign substances existing between the fuel tank 103 and the low-pressure fuel suction port 10a from being absorbed into the fuel pump by the flow of the fuel. .
 低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9、低圧燃料流路10dを介して電磁吸入弁機構3の吸入ポート3kに至る。 (4) The fuel that has passed through the low-pressure fuel suction port 10a reaches the suction port 3k of the electromagnetic suction valve mechanism 3 via the pressure pulsation reduction mechanism 9 and the low-pressure fuel flow path 10d.
 カム91の回転により、プランジャ2がカム91の方向に移動して吸入行程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入ポート3kの圧力よりも低くなると、吸入弁3bは吸入弁シート部3aから離れ開口状態になる。燃料は吸入弁3bの開口部3fを通り、加圧室11に流入する。 (4) When the plunger 2 moves in the direction of the cam 91 due to the rotation of the cam 91 and is in the suction stroke state, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. When the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure of the suction port 3k during this process, the suction valve 3b is separated from the suction valve seat 3a and is opened. The fuel flows into the pressurizing chamber 11 through the opening 3f of the suction valve 3b.
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ上昇行程に移る。ここで電磁コイル3gは無通電状態を維持したままであり磁気付勢力は作用しない。ロッド付勢ばね3mは、無通電状態において吸入弁3bを開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の吸入弁3bの開口部3fを通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。 後 After the plunger 2 completes the suction stroke, the plunger 2 starts to move upward and moves to the rising stroke. Here, the electromagnetic coil 3g is kept in the non-energized state, and no magnetic urging force acts. The rod urging spring 3m is set so as to have a necessary and sufficient urging force to keep the suction valve 3b open in the non-energized state. Although the volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2, in this state, the fuel once sucked into the pressurizing chamber 11 is sucked again through the opening 3f of the suction valve 3b in the valve-open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
 この状態で、エンジンコントロールユニット101(以下ECUと呼ぶ)からの制御信号が電磁吸入弁機構3に印加されると、電磁コイル3gには端子16を介して電流が流れる。電磁コイル3gに電流が流れると磁気コア(固定コア)3eとアンカー(可動コア)3hとの間に磁気吸引力が作用し、磁気コア3e及びアンカー3hが磁気吸引面で衝突する。磁気吸引力がロッド付勢ばね3mの付勢力(実際にはその他の力を含む合力)よりも強ければ、アンカー3hはロッド鍔部3jを介して、ロッド3iを吸入弁3bから離れる方向に移動させる。 In this state, when a control signal from the engine control unit 101 (hereinafter referred to as ECU) is applied to the electromagnetic suction valve mechanism 3, a current flows through the terminal 16 to the electromagnetic coil 3g. When a current flows through the electromagnetic coil 3g, a magnetic attractive force acts between the magnetic core (fixed core) 3e and the anchor (movable core) 3h, and the magnetic core 3e and the anchor 3h collide on the magnetic attractive surface. If the magnetic attraction force is greater than the urging force of the rod urging spring 3m (actually, the resultant force including other forces), the anchor 3h moves the rod 3i away from the suction valve 3b via the rod flange 3j. Let it.
 その後、吸入弁付勢ばね3lによる付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁3bが閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12aの圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、コモンレール106へと供給される。この行程を吐出行程と称する。アンカー3hが磁気コア3eに磁気吸引面で衝突する際、アンカー3hに係合していたロッド3iは慣性力でアンカー3hから離間する。その後、ロッド3iはロッド付勢ばね3mの力によって押し戻され、アンカー3hに当接する。このとき、ロッド3iのロッド鍔部3jはアンカー3hに衝突することがある。 Then, the suction valve 3b is closed by the urging force of the suction valve urging spring 31 and the fluid force caused by the fuel flowing into the suction passage 10d. After the valve is closed, the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure becomes equal to or higher than the pressure of the fuel discharge port 12 a, high-pressure fuel is discharged through the discharge valve mechanism 8 to the common rail 106. Supplied. This process is called a discharge process. When the anchor 3h collides with the magnetic core 3e on the magnetic attraction surface, the rod 3i engaged with the anchor 3h is separated from the anchor 3h by inertia force. Thereafter, the rod 3i is pushed back by the force of the rod urging spring 3m, and comes into contact with the anchor 3h. At this time, the rod flange 3j of the rod 3i may collide with the anchor 3h.
 プランジャ2の下死点から上死点までの間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁コイル3gへの通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル3gへ通電するタイミングを早くすれば、上昇行程中における、戻し行程の割合が小さく、吐出行程の割合が大きくなる。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば、上昇行程中における、戻し行程の割合が大きく吐出行程の割合が小さくなる。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁吸入弁機構3は、吸入行程、戻し行程及び吐出行程を切替えるために、電磁コイル3gへの通電タイミングがECU101からの指令によって制御される。 (4) The rising stroke between the bottom dead center and the top dead center of the plunger 2 includes a return stroke and a discharge stroke. By controlling the timing of energizing the electromagnetic coil 3g, the amount of high-pressure fuel to be discharged can be controlled. If the timing for energizing the electromagnetic coil 3g is advanced, the ratio of the return stroke during the ascent stroke is small, and the ratio of the discharge stroke is large. That is, less fuel is returned to the suction passage 10d, and more fuel is discharged at high pressure. On the other hand, if the energization timing is delayed, the ratio of the return stroke during the ascent stroke is large and the ratio of the discharge stroke is small. That is, more fuel is returned to the suction passage 10d, and less fuel is discharged under high pressure. In the electromagnetic suction valve mechanism 3, the timing of energizing the electromagnetic coil 3g is controlled by a command from the ECU 101 in order to switch between the suction stroke, the return stroke, and the discharge stroke.
 以上のように電磁コイル3gへの通電タイミングを制御することで、高圧吐出される燃料の量をエンジンが必要とする量に制御することが出来る。ボディ1の加圧室11出口側の吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、及び吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dから構成されている。吐出弁ストッパ8dは燃料の外部への漏洩を遮断するプラグ8eに圧入されている。プラグ8eは溶接部8fで溶接によりボディ1に接合される。吐出弁8bの二次側には、吐出弁室8gが形成され、この吐出弁室8gは、ボディ1に水平方向に形成される横穴を介して、燃料吐出口12aと連通する。 By controlling the timing of energizing the electromagnetic coil 3g as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine. The discharge valve mechanism 8 on the outlet side of the pressurizing chamber 11 of the body 1 includes a discharge valve seat 8a, a discharge valve 8b that comes into contact with and separates from the discharge valve seat 8a, and a discharge valve spring that urges the discharge valve 8b toward the discharge valve seat 8a. 8c and a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b. The discharge valve stopper 8d is press-fitted into a plug 8e that blocks leakage of fuel to the outside. The plug 8e is joined to the body 1 by welding at a welding portion 8f. A discharge valve chamber 8g is formed on the secondary side of the discharge valve 8b. The discharge valve chamber 8g communicates with the fuel discharge port 12a through a horizontal hole formed in the body 1 in a horizontal direction.
 加圧室11と吐出弁室8gとの間に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cの付勢力により吐出弁シート8aに圧接され閉弁状態となっている。加圧室11の燃料圧力が吐出弁室8gの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cの付勢力に逆らって開弁する。吐出弁8bが開弁すると、加圧室11内の高圧の燃料は、吐出弁室8g、燃料吐出口12aを経てコモンレール106(図1参照)へ吐出される。以上のような構成により、吐出弁機構8は、燃料の流通方向を制限する逆止弁として機能する。 (4) When there is no fuel pressure difference between the pressurizing chamber 11 and the discharge valve chamber 8g, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 8g, the discharge valve 8b opens against the urging force of the discharge valve spring 8c. When the discharge valve 8b is opened, the high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 8g and the fuel discharge port 12a. With the above configuration, the discharge valve mechanism 8 functions as a check valve that restricts the direction of fuel flow.
 なお、燃料吐出口12aは、ボディ1に溶接部12bにより固定された吐出ジョイント12に形成されている。 The fuel outlet 12a is formed in the discharge joint 12 fixed to the body 1 by a weld 12b.
 通電された電流は、吐出行程が終了するまでに停止される。そうすると、磁気吸引力が消滅し、ロッド付勢ばね3mはロッド3i、アンカー3h及び吸入弁3bを吸入弁3bが開弁状態となるように付勢した状態となる。吐出行程が終了し、吸入行程に入ると、吸入弁3bはロッド3i及びアンカー3hとともに開弁位置まで移動し、バルブストッパ3oに衝突して停止する。その際、アンカー3hは慣性力でオーバーシュートし、戻ってきたときにロッド鍔部3jに衝突する。 The supplied current is stopped by the end of the discharge stroke. Then, the magnetic attraction force disappears, and the rod urging spring 3m urges the rod 3i, the anchor 3h and the suction valve 3b so that the suction valve 3b is opened. When the discharge stroke is completed and the suction stroke is started, the suction valve 3b moves to the valve opening position together with the rod 3i and the anchor 3h, collides with the valve stopper 3o, and stops. At this time, the anchor 3h overshoots due to the inertial force and collides with the rod flange 3j when returning.
 カバー14の内側に低圧燃料室10が構成されている。低圧燃料室10には燃料ポンプ内で発生した圧力脈動が燃料配管104へ波及するのを低減させる圧力脈動低減機構9が設置されている。圧力脈動低減機構9は低圧燃料室10内で上側低圧燃料室10bと下側低圧燃料室10cとを構成するように配置される。圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されている。一度、加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁体3bを通して吸入通路10dへと戻される場合、吸入通路10dへ戻された燃料により低圧燃料室10には圧力脈動が発生する。この圧力脈動は金属ダンパが膨張・収縮することで吸収低減される。 低 The low-pressure fuel chamber 10 is formed inside the cover 14. The low-pressure fuel chamber 10 is provided with a pressure pulsation reducing mechanism 9 for reducing the pressure pulsation generated in the fuel pump from spreading to the fuel pipe 104. The pressure pulsation reducing mechanism 9 is arranged so as to form an upper low-pressure fuel chamber 10b and a lower low-pressure fuel chamber 10c within the low-pressure fuel chamber 10. The pressure pulsation reducing mechanism 9 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are adhered to each other at an outer periphery thereof, and an inert gas such as argon is injected therein. Once the fuel that has flowed into the pressurizing chamber 11 returns to the suction passage 10d through the suction valve body 3b that is in the open state again for capacity control, the fuel returned to the suction passage 10d causes the low-pressure fuel chamber 10 to enter the low-pressure fuel chamber 10. Pressure pulsation occurs. This pressure pulsation is absorbed and reduced by the expansion and contraction of the metal damper.
 プランジャ2は、大径部2aと小径部2bとを有し、プランジャの往復運動によって副室7aの体積は増減する。副室7aは燃料通路10eにより低圧燃料室10と連通している。プランジャ2の下降時は、副室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から副室7aへと、燃料の流れが発生する。 The plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub-chamber 7a increases or decreases due to the reciprocating motion of the plunger. The sub-chamber 7a communicates with the low-pressure fuel chamber 10 through a fuel passage 10e. When the plunger 2 descends, fuel flows from the sub-chamber 7a to the low-pressure fuel chamber 10, and when it rises, fuel flows from the low-pressure fuel chamber 10 to the sub-chamber 7a.
 このことにより、ポンプの吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、燃料ポンプ内部で発生する圧力脈動を低減する機能を有している。 こ と This makes it possible to reduce the flow rate of fuel into and out of the pump during the suction stroke or the return stroke of the pump, and has a function of reducing pressure pulsation generated inside the fuel pump.
 図5を用いて電磁吸入弁機構のアンカー3h、ロッド3i周辺の詳細構造について説明する。図5は、アンカー近傍の拡大図である。 (5) The detailed structure around the anchor 3h and the rod 3i of the electromagnetic suction valve mechanism will be described with reference to FIG. FIG. 5 is an enlarged view near the anchor.
 アンカー3hには複数の息抜き穴3nが設けられており、アンカー3hが前後に移動した際に移動する燃料の通路を形成する。アンカー3hには平面部(平坦部)3pが設けられている。平面部3pはアンカー3hの磁気コア3e側の端面から吸入弁シート部3a側(反磁気コア3e側)に窪んだ凹部の底面として構成される。アンカー3hの径方向中心部にはロッド3iの軸方向に貫通する貫通孔3qが形成され、貫通孔3qは平面部3pの中心部に開口する。すなわち、平面部3pは貫通孔3qの磁気コア3e側の開口の周囲に形成されている。平面部3pには、貫通孔3qの他、息抜き穴3nの開口の一部も形成されている。 (4) The anchor 3h is provided with a plurality of breath holes 3n, and forms a fuel passage that moves when the anchor 3h moves back and forth. The anchor 3h is provided with a flat portion (flat portion) 3p. The flat portion 3p is formed as a bottom surface of a concave portion that is recessed from the end surface of the anchor 3h on the magnetic core 3e side toward the suction valve seat portion 3a (antimagnetic core 3e side). A through hole 3q penetrating in the axial direction of the rod 3i is formed at the radial center of the anchor 3h, and the through hole 3q opens at the center of the plane portion 3p. That is, the flat portion 3p is formed around the opening of the through hole 3q on the magnetic core 3e side. In the plane portion 3p, a part of the opening of the breathing hole 3n is formed in addition to the through hole 3q.
 ロッド3iはロッド鍔部3jを有する。ロッド鍔部3jは、ロッド3iの貫通孔3qとの摺動部外周面に対して径方向外側に凸となる凸部として構成されている。すなわち、ロッド鍔部3jは拡径部として構成される。ロッド鍔部3jは、アンカー3hの平面部3pでアンカー3hと係合する。すなわち、アンカー3hは、ロッド3iに対してロッド3iの軸方向に相対変位可能に構成されており、ロッド鍔部3jの端面3jbと接触する平面部(接触面)3pを有する。 Rod 3i has rod flange 3j. The rod flange portion 3j is configured as a convex portion that protrudes radially outward with respect to the outer peripheral surface of the sliding portion with the through hole 3q of the rod 3i. That is, the rod flange 3j is configured as an enlarged diameter portion. The rod flange 3j is engaged with the anchor 3h at the flat surface 3p of the anchor 3h. That is, the anchor 3h is configured to be relatively displaceable in the axial direction of the rod 3i with respect to the rod 3i, and has a flat portion (contact surface) 3p that comes into contact with the end surface 3jb of the rod flange 3j.
 ロッド鍔部3jには、平面部3pと対向する側(反磁気コア3e側)の端面に、平面部(平坦部)3sと曲面部3rとが構成されており、平面部3s及び曲面部3rはアンカーの平面部3pと接触できる位置関係にある。曲面部3rは平面部3sに正接する。曲面部3rは、ロッド鍔部3jの最外周(外周面)3tには正接せずに、面取り、または曲面部3rの曲率半径Rより小さい曲率半径を有する曲面部3uで、最外周3tに繋がる。 The rod flange 3j has a flat surface (flat portion) 3s and a curved surface portion 3r formed on an end surface on a side (antimagnetic core 3e side) facing the flat surface portion 3p, and the flat surface portion 3s and the curved surface portion 3r. Are in a positional relationship where they can contact the flat portion 3p of the anchor. The curved surface portion 3r is tangent to the flat surface portion 3s. The curved surface portion 3r is not tangent to the outermost periphery (outer peripheral surface) 3t of the rod flange portion 3j, but is chamfered or a curved surface portion 3u having a curvature radius smaller than the curvature radius R of the curved surface portion 3r, and is connected to the outermost periphery 3t. .
 ロッド鍔部3jの磁気コア3e側の端面は、ロッド付勢ばね3mの端部が当接するばね座を構成する。ロッド付勢ばね3mは、ロッド3iの軸方向におけるロッド鍔部(凸部)3jの一端面3jaに接触し、ロッド3iを付勢する。また、ロッド3iの軸方向におけるロッド鍔部(凸部)3jの他端面3jbはアンカー3hの平面部(接触面)3pと接触するように構成されている。 端 The end face of the rod flange 3j on the magnetic core 3e side constitutes a spring seat with which the end of the rod urging spring 3m contacts. The rod biasing spring 3m contacts one end surface 3ja of the rod flange (projection) 3j in the axial direction of the rod 3i to bias the rod 3i. Further, the other end surface 3jb of the rod flange (projection) 3j in the axial direction of the rod 3i is configured to be in contact with the flat portion (contact surface) 3p of the anchor 3h.
 図6を用いてキャビテーションエロージョンについて説明する。図6は、アンカー連通路の流線を示す図である。 キ ャ Cavitation erosion will be described with reference to FIG. FIG. 6 is a diagram showing streamlines of the anchor communication passage.
 アンカー3hは高速で移動するため、アンカー3hの移動に伴って息抜き穴3nを通る燃料の流速は速い。ロッド鍔部3jは息抜き穴3nに被さる位置にあるため、鋭角なエッジがあると、流体剥離を発生し、キャビテーションエロージョンの起点となる場合がある。本実施例の場合、曲面部3rから平坦部3sに向かってなだらかに接続することにより、係合部近傍における流体剥離を抑制し、キャビテーションエロージョンを防止できる。 (4) Since the anchor 3h moves at a high speed, the flow velocity of the fuel passing through the breathing hole 3n is high with the movement of the anchor 3h. Since the rod flange portion 3j is located at a position covering the breathing hole 3n, if there is an acute edge, fluid separation may occur and may become a starting point of cavitation erosion. In the case of the present embodiment, fluid connection in the vicinity of the engagement portion can be suppressed and cavitation erosion can be prevented by making a gentle connection from the curved surface portion 3r to the flat portion 3s.
 図7を用いて耐摩耗性について説明する。図7は、アンカーとロッドとが傾いて衝突する場合の状態を示す図である。図7は、アンカー3hとロッド3iが傾いて衝突した状態を模式的に表している。 摩 耗 Wear resistance will be described with reference to FIG. FIG. 7 is a diagram illustrating a state in which the anchor and the rod collide with each other while tilting. FIG. 7 schematically shows a state in which the anchor 3h and the rod 3i are inclined and collided.
 アンカー3h及びロッド3iとアンカー3h及びロッド3iをガイドする実際の摺動ガイドとの隙間はμmオーダーであるため、ガイド部における隙間やアンカー3h及びロッド3iの傾きは図示困難であるが、図7では説明のためアンカー3hに対してロッド3iが傾いた状態をデフォルメして描いている。 Since the gap between the anchor 3h and the rod 3i and the actual sliding guide that guides the anchor 3h and the rod 3i is on the order of μm, the gap in the guide portion and the inclination of the anchor 3h and the rod 3i are difficult to illustrate, but FIG. For the sake of explanation, the state where the rod 3i is inclined with respect to the anchor 3h is deformed and drawn.
 先述の通り、アンカー3h及びロッド3iは、電磁コイル3gへ通電したとき、および通電終了した後で、相互に衝突する機会がある。アンカー3hとロッド3iとの間に相対的な傾きが無い場合は、ロッド鍔部3jの平面部3sがアンカー3hの平面部(接触面)3pに衝突する。また、アンカー3hがロッド付勢ばね3mにより付勢されて静止した状態においては、平面部3sがアンカー3hの接触面3pに接触し、曲面部3rは接触面3pに対し非接触となるように構成される。すなわち、ロッド3iは平面部3s及び曲面部3rがアンカー3hの平面部(接触面)3pと接触可能に構成されている。 の 通 り As described above, the anchor 3h and the rod 3i have a chance to collide with each other when the electromagnetic coil 3g is energized and after the energization is completed. When there is no relative inclination between the anchor 3h and the rod 3i, the flat portion 3s of the rod flange 3j collides with the flat portion (contact surface) 3p of the anchor 3h. Also, in a state where the anchor 3h is urged by the rod urging spring 3m and stopped, the flat portion 3s comes into contact with the contact surface 3p of the anchor 3h and the curved surface portion 3r comes out of contact with the contact surface 3p. Be composed. That is, the rod 3i is configured such that the plane portion 3s and the curved surface portion 3r can come into contact with the plane portion (contact surface) 3p of the anchor 3h.
 アンカー3hとロッド3iとは摺動ガイドによりガイドされているものの、ガイド部には隙間が存在するため、傾いて衝突する場合がある。そして、曲面部3rは、ロッド3i又はアンカー3hがロッド3iの軸方向に対し外径側に傾いた場合において、平面部(接触面)3pに対し接触する。その場合は、アンカー3hの平面部3pとロッド鍔部3jの曲面部3rとの衝突部に応力集中が発生する。曲面と平面との応力集中は、ヘルツ応力などで知られているように、接触部の曲率半径に大きく影響される。代表的な例として、2次元のヘルツ応力の式を式(1)に示す。 Although the anchor 3h and the rod 3i are guided by the sliding guide, there is a gap in the guide portion, so that there is a case where the collision occurs while tilting. When the rod 3i or the anchor 3h is inclined to the outer diameter side with respect to the axial direction of the rod 3i, the curved surface portion 3r contacts the flat portion (contact surface) 3p. In that case, stress concentration occurs at a collision portion between the flat surface portion 3p of the anchor 3h and the curved surface portion 3r of the rod flange 3j. The stress concentration between the curved surface and the flat surface is greatly affected by the radius of curvature of the contact portion, as is known as Hertz stress or the like. As a typical example, a two-dimensional Hertz stress equation is shown in equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
  式1において、Pmaxは最大面圧であり、Rは曲率半径であり、Pは負荷荷重である。 In Equation 1, Pmax is the maximum surface pressure, R is the radius of curvature, and P is the applied load.
 式1で示される最大面圧Pmaxは、曲率半径Rの2乗根に反比例する。3次元では3乗根に反比例する。いずれにせよ、最大面圧Pmaxを下げるためには曲率半径Rを大きくとる必要がある。本実施例では曲面部3rの曲率半径を確保するために、アンカー3hとロッド3iとの相対的な傾きが最大傾きのときに接触可能な範囲までを一律大きな曲率半径で形成し、それより外周側に面取り3uを設ける。また、曲面部3rは平面部3sに正接で繋がるようにする。このようにして、アンカー3hとロッド3iとの間に生じる傾きの範囲内で、アンカー3hとロッド3iとは一律に大きな曲率半径Rで接触できる。一般的にインジェクタやガソリンポンプ用の電磁弁の摺動部は高精度にガイドされているため最大傾き角度は小さい。そのため、曲面部3rの曲率半径は大きくとることが出来る。アンカー3hとロッド3iとの最大傾き角度をφとする。曲面部3rを近似的に傾斜面とみなして曲面部3rと平面部3sの成す角度をθとする。アンカー3hとロッド3iとが最大に傾いた場合にも、衝突荷重を曲面部3rで受けるためには、θはφよりも大きい必要がある。 最大 The maximum surface pressure Pmax expressed by the equation 1 is inversely proportional to the square root of the radius of curvature R. In three dimensions, it is inversely proportional to the cube root. In any case, it is necessary to increase the radius of curvature R to reduce the maximum surface pressure Pmax. In the present embodiment, in order to secure the radius of curvature of the curved surface portion 3r, a range where the anchor 3h and the rod 3i can contact each other when the relative inclination is the maximum is formed with a uniform large radius of curvature. A chamfer 3u is provided on the side. The curved surface portion 3r is connected to the flat surface portion 3s by a tangent. In this manner, the anchor 3h and the rod 3i can uniformly contact with a large radius of curvature R within the range of the inclination generated between the anchor 3h and the rod 3i. In general, the sliding portion of an injector or a solenoid valve for a gasoline pump is guided with high precision, so that the maximum inclination angle is small. Therefore, the radius of curvature of the curved surface portion 3r can be made large. Let φ be the maximum inclination angle between the anchor 3h and the rod 3i. Assuming that the curved surface portion 3r is approximately an inclined surface, the angle formed between the curved surface portion 3r and the flat surface portion 3s is represented by θ. Even when the anchor 3h and the rod 3i are tilted to the maximum, θ needs to be larger than φ in order to receive the collision load on the curved surface portion 3r.
 アンカー3hとロッド鍔部3jとが傾かずに衝突した場合は、アンカー3hの平面部3pはロッドの平面部3sと面接触する。その場合に発生する面圧は平面部3sが接触する面積に反比例する。ここの面積を大きくすると、前述の曲面部3rのRは小さくなり、曲面3rが接触する時の応力が大きくなる。そのため、限られたスペースの中で、両者のバランスをとる設計が必要となる。 When the anchor 3h collides with the rod flange 3j without tilting, the flat portion 3p of the anchor 3h comes into surface contact with the flat portion 3s of the rod. The surface pressure generated in that case is inversely proportional to the area where the flat portion 3s contacts. When the area is increased, the radius R of the above-described curved surface portion 3r decreases, and the stress when the curved surface portion 3r comes into contact increases. Therefore, a design that balances the two is required in a limited space.
 図7及び図8A~8Cを用いて、具体例を示す。図8Aは、ロッド鍔部の平面部の径方向幅L1と曲面部の径方向幅L2との関係を示す図である。図8Bは、ロッド鍔部の曲面部の径方向幅L2と曲率半径Rとの関係を示す図である。図8Cは、アンカーとロッドとの衝突時の面圧の概念図である。 具体 A specific example will be described with reference to FIGS. 7 and 8A to 8C. FIG. 8A is a diagram showing a relationship between a radial width L1 of a flat portion of the rod flange portion and a radial width L2 of the curved surface portion. FIG. 8B is a diagram illustrating a relationship between a radial width L2 of the curved surface portion of the rod flange portion and a radius of curvature R. FIG. 8C is a conceptual diagram of the contact pressure at the time of collision between the anchor and the rod.
 平面部3sの径方向の幅をL1、曲面部3rの径方向の幅をL2とすると、L1とL2との間にはL1が増えた分だけL2が減る関係がある。L1とL2との関係をグラフにすると図8Aのようになる。グラフに表示したL1,L2の値は絶対値ではなく、相対値である。上述の電磁弁の相場では、アンカーとロッドとの間の最大傾きはせいぜい数deg程度である。想定する最大傾き角度をθ、曲面部3rの径方向接触長さL2、曲率半径Rとすると、L2とRとは式(2)の関係にある。 If the radial width of the flat portion 3s is L1 and the radial width of the curved surface portion 3r is L2, there is a relationship between L1 and L2 that L2 decreases by an increase in L1. FIG. 8A shows a graph of the relationship between L1 and L2. The values of L1 and L2 displayed on the graph are not absolute values but relative values. In the above-mentioned solenoid valve market, the maximum inclination between the anchor and the rod is at most several deg. Assuming that the assumed maximum inclination angle is θ, the radial contact length L2 of the curved surface portion 3r, and the radius of curvature R, L2 and R have the relationship of equation (2).
  L=R・sinθ        (式2)
 L2とRとの関係は図8Bのようになる。
L 2 = R · sin θ (Equation 2)
FIG. 8B shows the relationship between L2 and R.
 ロッド鍔部3jとアンカー平面部3pとに作用する面圧計算の例を示すと、図8Cのようになる。ロッドの平面部3sがアンカー3hの平面部3pに接触する場合の接触を、平面接触と呼ぶ。ロッドの曲面部3rがアンカー3hの平面部3pに接触する場合の接触を、曲面接触と呼ぶ。想定する衝突荷重によって面圧は変わるため、縦軸の値は絶対値ではなく、平面接触時の面圧と曲面接触時の面圧とを比較するための比較値である。 FIG. 8C shows an example of the calculation of the surface pressure acting on the rod flange 3j and the anchor flat portion 3p. The contact in the case where the flat portion 3s of the rod contacts the flat portion 3p of the anchor 3h is referred to as flat contact. The contact when the curved surface portion 3r of the rod contacts the flat surface portion 3p of the anchor 3h is called a curved surface contact. Since the surface pressure changes depending on the assumed collision load, the value on the vertical axis is not an absolute value but a comparison value for comparing the surface pressure at the time of plane contact with the surface pressure at the time of curved surface contact.
 ロッド3iとアンカー3hとが傾かずに平面部3sが平面部3pに接触した場合(平面接触時)の面圧を実線で示す。この場合の面圧は平面部3sの面積に反比例するため、L2が大きくなると面圧は急増する。曲面部3rが平面部3pに接触した場合(曲面接触時)の面圧を点線で示す。この場合の面圧は曲率半径Rの2乗根(~3乗根)に反比例する形となる。曲面接触時と平面接触時とで双方の面圧が高くなりすぎないようにL1とL2との比率を選定する必要がある。傾き有りの方が面圧の変化率が緩やかなので(2乗根に反比例のため)、必然的にL1の割合の方がL2より大きいことが望ましくなる。一般的に市場に普及しているソレノイドのアンカー径を鑑みると、推奨する曲率半径は3~10mm程度が現実的である。また、この曲率半径に対応するL2/L1の比率は0.37~6.5程度が現実的である。 面 The solid pressure when the flat portion 3s comes into contact with the flat portion 3p without tilting the rod 3i and the anchor 3h (at the time of flat contact) is indicated by a solid line. Since the surface pressure in this case is inversely proportional to the area of the flat portion 3s, the surface pressure rapidly increases as L2 increases. The dotted line indicates the surface pressure when the curved surface portion 3r contacts the flat surface portion 3p (at the time of curved surface contact). In this case, the surface pressure is in inverse proportion to the square root (up to the third root) of the radius of curvature R. It is necessary to select the ratio between L1 and L2 so that the contact pressure between the curved surface and the flat surface does not become too high. Since the rate of change of the surface pressure is gentler when there is an inclination (because it is inversely proportional to the square root), it is naturally desirable that the ratio of L1 is larger than L2. In view of the anchor diameter of a solenoid that is generally popular in the market, the recommended radius of curvature is practically about 3 to 10 mm. Further, the ratio of L2 / L1 corresponding to this radius of curvature is practically about 0.37 to 6.5.
 図8Bから、曲率半径3~10mmに対応するL2は0.27~0.87となる。図8Cにおいて、VAはロッド3iの平面部3s又は曲面部3rがアンカー3hの平面部3pに当接することにより平面部3s又は曲面部3rの構成材料に発生する面圧が許容面圧以下となるL2の範囲(許容範囲)を示している。曲率半径3~10mmに対応するL2は0.27~0.87であり、L2の範囲許容範囲内に含まれる。 BFrom FIG. 8B, L2 corresponding to a radius of curvature of 3 to 10 mm is 0.27 to 0.87. In FIG. 8C, in VA, the surface pressure generated in the constituent material of the flat portion 3s or the curved surface portion 3r when the flat surface portion 3s or the curved surface portion 3r of the rod 3i comes into contact with the flat surface portion 3p of the anchor 3h becomes equal to or less than the allowable surface pressure. The range (permissible range) of L2 is shown. L2 corresponding to the radius of curvature of 3 to 10 mm is 0.27 to 0.87, and is included in the allowable range of L2.
 平面部3sの反対側のロッド鍔部3jの端面にはロッド付勢ばね3mが接触している。ロッド付勢ばね3mをロッド3iと同芯に配置した場合に、平面部3sはロッド付勢ばね3mの最外周より内周側にある。すなわち、平面部3sの外径はロッド付勢ばね3mの外径よりも小さい。言い換えると、曲面部3rはロッド付勢ばね3mの最外径部3tよりも内径側(径方向内側)から外径側(径方向外側)に亘って形成される。 ロ ッ ド A rod urging spring 3m is in contact with the end face of the rod flange 3j on the opposite side of the flat part 3s. When the rod urging spring 3m is arranged concentrically with the rod 3i, the flat portion 3s is located on the inner peripheral side of the outermost periphery of the rod urging spring 3m. That is, the outer diameter of the flat portion 3s is smaller than the outer diameter of the rod biasing spring 3m. In other words, the curved surface portion 3r is formed from the inner diameter side (radially inside) to the outer diameter side (radially outside) of the outermost diameter portion 3t of the rod urging spring 3m.
 こうすることにより、ロッド鍔部3jがアンカー平坦部3pに力を伝達する力点がロッド付勢ばね3mより内周側になるため、ロッド付勢ばね3mが傾いてロッド鍔部3jを付勢したとしても、ロッド3iに伝わる力は調芯される。その結果、戻し行程中にロッド付勢ばね3mの付勢力は効率的にロッド3iに伝わり、吸入弁を開弁する力として働くことができる。一方で、ロッド鍔部3jのモーメントが作用しない部分だけ薄肉・軽量にする効果もある。 By doing so, the point of force at which the rod flange portion 3j transmits a force to the anchor flat portion 3p is on the inner peripheral side of the rod urging spring 3m, and the rod urging spring 3m is inclined to urge the rod flange portion 3j. However, the force transmitted to the rod 3i is aligned. As a result, the urging force of the rod urging spring 3m is efficiently transmitted to the rod 3i during the return stroke, and can act as a force for opening the suction valve. On the other hand, there is also an effect that only the portion of the rod flange 3j where the moment does not act is made thinner and lighter.
 図9は、ロッド鍔部の平面部の径方向幅L1と曲面部の径方向幅L2との寸法関係を変更した図である。 FIG. 9 is a view in which the dimensional relationship between the radial width L1 of the flat portion of the rod flange portion and the radial width L2 of the curved surface portion is changed.
 図7の実施例と比べてL2/L1の比率を小さくした構成である。この場合も、平面部3sはロッド付勢ばね3mの最外周より内周側にある。曲率半径Rはほとんどないように見えるが、実際は図7と同じだけ確保しており、上述した効果を得ることができる。 構成 This is a configuration in which the ratio of L2 / L1 is smaller than that of the embodiment of FIG. Also in this case, the flat portion 3s is located on the inner peripheral side of the outermost periphery of the rod urging spring 3m. Although it appears that the radius of curvature R is almost nil, the same effect as in FIG. 7 is ensured in practice, and the above-described effects can be obtained.
 本実施例における電磁弁或いは高圧燃料供給ポンプの構成を整理すると、以下のようになる。 構成 The arrangement of the solenoid valve or the high-pressure fuel supply pump in this embodiment is as follows.
 外径側に凸となる凸部3jが形成されたロッド3iと、
 ロッド3iの軸方向における凸部3jの一端面3jaに接触し、ロッド3iを付勢するロッド付勢ばね3mと、
 ロッド3iに対して前記軸方向に相対変位可能に構成され、前記軸方向における凸部3jの他端面3jbと接触する接触面3pを有するアンカー3hと、を備えた電磁弁3において、
 凸部3jの他端面3jbは、径方向内側に形成された平面部3sと、平面部3sの径方向外側に形成された曲面部3rと、を有し、
 曲面部3rは、ロッド付勢ばね3mの最外径部よりも内径側から外径側に亘って形成され、
 ロッド3iは平面部3s及び曲面部3rがアンカー3hの接触面3pと接触可能に構成される。
A rod 3i formed with a convex portion 3j that is convex on the outer diameter side,
A rod biasing spring 3m that contacts one end surface 3ja of the projection 3j in the axial direction of the rod 3i and biases the rod 3i;
An electromagnetic valve 3 comprising: an anchor 3h configured to be relatively displaceable in the axial direction with respect to the rod 3i and having a contact surface 3p that comes into contact with the other end surface 3jb of the convex portion 3j in the axial direction.
The other end surface 3jb of the convex portion 3j has a flat portion 3s formed radially inward and a curved surface portion 3r formed radially outward of the flat portion 3s,
The curved surface portion 3r is formed from the inner diameter side to the outer diameter side of the outermost diameter portion of the rod urging spring 3m,
The rod 3i is configured such that the flat surface portion 3s and the curved surface portion 3r can contact the contact surface 3p of the anchor 3h.
 曲面部3rは、アンカー3hがロッド付勢ばね3mにより付勢されて静止した状態において、接触面3pに対し非接触となるように構成される。 The curved surface portion 3r is configured so as not to contact the contact surface 3p in a state where the anchor 3h is urged by the rod urging spring 3m and stopped.
 曲面部3rは、ロッド3i又はアンカー3hが前記軸方向に対し外径側に傾いた場合において、接触面3pに対し接触するように構成される。 The curved surface portion 3r is configured to contact the contact surface 3p when the rod 3i or the anchor 3h is inclined to the outer diameter side with respect to the axial direction.
 曲面部3rの径方向長さL2を平面部3sの径方向長さL1で割ったL2/L1が0.37~6.5となるように平面部3s及び曲面部3rが構成される。このとき、平面部3s又は曲面部3rは、接触面3pと衝突する際に発生する面圧が、L2/L1の範囲内で、平面部3s又は曲面部3rを構成する材料の許容面圧以下となるように、L2が設定される。 平面 The flat portion 3s and the curved portion 3r are configured such that L2 / L1 obtained by dividing the radial length L2 of the curved portion 3r by the radial length L1 of the flat portion 3s is 0.37 to 6.5. At this time, the surface pressure generated when the flat portion 3s or the curved surface portion 3r collides with the contact surface 3p is not more than the allowable surface pressure of the material constituting the flat portion 3s or the curved surface portion 3r within the range of L2 / L1. L2 is set so that
 曲面部3rにおける最大の曲率半径が3.0mm~10.0mmの範囲となるように曲面部3rが構成される。 曲 The curved surface portion 3r is configured such that the maximum radius of curvature of the curved surface portion 3r is in the range of 3.0 mm to 10.0 mm.
 アンカー3hはロッド3iが挿通する貫通孔3qを有し、凸部3jはロッド3iの貫通孔3qとの摺動部外周面に対して拡径部として構成される。 The anchor 3h has a through hole 3q through which the rod 3i is inserted, and the convex portion 3j is configured as an enlarged diameter portion with respect to the outer peripheral surface of the sliding portion with the through hole 3q of the rod 3i.
 アンカー3hとの間で磁気吸引力を発生する磁気コア3eを備え、
 凸部3jの一端面3jaは磁気コア3eが配置される側に設けられ、他端面3jbは反磁気コア側に設けられる。
A magnetic core 3e for generating a magnetic attraction force with the anchor 3h;
One end face 3ja of the projection 3j is provided on the side where the magnetic core 3e is arranged, and the other end face 3jb is provided on the diamagnetic core side.
 曲面部3rは曲率半径を有する曲面部であり、曲面部3rは平面部3sに正接する。 The curved surface portion 3r is a curved surface portion having a radius of curvature, and the curved surface portion 3r is tangent to the flat surface portion 3s.
 このとき、凸部3jは曲面部3rの径方向外側に面取りまたは曲面部3rの曲率半径Rより小さい曲率半径の曲面部3uを有する。 と き At this time, the convex portion 3j has a chamfer or a curved surface portion 3u having a radius of curvature smaller than the radius of curvature R of the curved surface portion 3r on the radially outer side of the curved surface portion 3r.
 加圧室が形成されるシリンダ6と、吸入行程、戻し行程及び吐出行程を切替える電磁吸入弁機構3と、シリンダ6内で往復動するプランジャ2と、燃料を吐出する吐出弁機構4と、を備えた高圧燃料供給ポンプ100において、電磁吸入弁機構3として上記の電磁弁を備える。 A cylinder 6 in which a pressurized chamber is formed, an electromagnetic suction valve mechanism 3 for switching between a suction stroke, a return stroke, and a discharge stroke, a plunger 2 reciprocating in the cylinder 6, and a discharge valve mechanism 4 for discharging fuel. The high-pressure fuel supply pump 100 includes the above-described electromagnetic valve as the electromagnetic suction valve mechanism 3.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Note that the present invention is not limited to the above-described embodiment, and includes various modifications.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, for a part of the configuration of the embodiment, it is possible to add / delete / replace another configuration.
 2…プランジャ、3…電磁吸入弁機構(電磁弁)、3e…磁気コア、3h…アンカー、3i…ロッド、3j…凸部、3ja…凸部3jの一端面、3jb…凸部3jの他端面、3m…ロッド付勢ばね、3p…凸部3jの他端面3jbと接触するアンカー3hの接触面、3q…アンカー3hロッド3iを挿通するアンカー3hの貫通孔、3r…凸部3jの他端面3jbに形成された曲面部、3s…凸部3jの他端面3jbに形成された平面部、3u…凸部3jに形成された面取りまたは小曲率半径の曲面部、4…吐出弁機構、6…シリンダ、100…高圧燃料供給ポンプ、L1…平面部3sの径方向長さL1、L2…曲面部3rの径方向長さ。 2 ... plunger, 3 ... electromagnetic suction valve mechanism (electromagnetic valve), 3e ... magnetic core, 3h ... anchor, 3i ... rod, 3j ... convex portion, 3ja ... one end surface of convex portion 3j, 3jb ... other end surface of convex portion 3j. Reference numeral 3m: rod biasing spring; 3p: contact surface of the anchor 3h that contacts the other end surface 3jb of the convex portion 3j; 3q: through hole of the anchor 3h through which the rod 3i is inserted; 3s... A flat surface formed on the other end surface 3jb of the projection 3j, 3u... A chamfered or small radius of curvature formed on the projection 3j, 4... A discharge valve mechanism, 6. , 100: high-pressure fuel supply pump, L1: radial length L1, L2 of plane portion 3s, radial length of curved surface portion 3r.

Claims (12)

  1.  外径側に凸となる凸部が形成されたロッドと、
     前記ロッドの軸方向における前記凸部の一端面に接触し、前記ロッドを付勢するロッド付勢ばねと、
     前記ロッドに対して前記軸方向に相対変位可能に構成され、前記軸方向における前記凸部の他端面と接触する接触面を有するアンカーと、を備えた電磁弁において、
     前記凸部の前記他端面は、径方向内側に形成された平面部と、前記平面部の径方向外側に形成された曲面部と、を有し、
     前記曲面部は、前記ロッド付勢ばねの最外径部よりも内径側から外径側に亘って形成され、
     前記ロッドは前記平面部及び前記曲面部が前記アンカーの前記接触面と接触可能に構成された電磁弁。
    A rod formed with a convex portion that is convex on the outer diameter side,
    A rod biasing spring that contacts one end surface of the protrusion in the axial direction of the rod and biases the rod;
    An electromagnetic valve comprising: an anchor configured to be relatively displaceable in the axial direction with respect to the rod, and having a contact surface that is in contact with the other end surface of the protrusion in the axial direction.
    The other end surface of the convex portion has a flat portion formed radially inward, and a curved portion formed radially outward of the flat portion,
    The curved surface portion is formed from the inner diameter side to the outer diameter side of the outermost diameter portion of the rod urging spring,
    An electromagnetic valve in which the rod is configured such that the flat portion and the curved surface portion can contact the contact surface of the anchor.
  2.  請求項1に記載の電磁弁において、
     前記平面部は、前記アンカーが前記ロッド付勢ばねにより付勢されて静止した状態において、前記接触面に対し接触するように構成された電磁弁。
    The solenoid valve according to claim 1,
    The solenoid valve, wherein the flat portion is configured to contact the contact surface when the anchor is urged by the rod urging spring and stopped.
  3.  請求項1に記載の電磁弁において、
     前記曲面部は、前記アンカーが前記ロッド付勢ばねにより付勢されて静止した状態において、前記接触面に対し非接触となるように構成された電磁弁。
    The solenoid valve according to claim 1,
    The electromagnetic valve is configured such that the curved surface portion does not contact the contact surface when the anchor is urged by the rod urging spring and stopped.
  4.  請求項1に記載の電磁弁において、
     前記曲面部は、前記ロッド及び前記アンカーが前記軸方向に対し外径側に傾いた場合において、前記接触面に対し接触するように構成された電磁弁。
    The solenoid valve according to claim 1,
    An electromagnetic valve, wherein the curved surface portion is configured to come into contact with the contact surface when the rod and the anchor are inclined to the outer diameter side with respect to the axial direction.
  5.  請求項1に記載の電磁弁において、
     前記曲面部の径方向長さL2を前記平面部の径方向長さL1で割ったL2/L1が0.37~6.5となるように前記平面部及び前記曲面部が構成された電磁弁。
    The solenoid valve according to claim 1,
    An electromagnetic valve having the flat portion and the curved portion configured such that L2 / L1 obtained by dividing the radial length L2 of the curved portion by the radial length L1 of the flat portion is 0.37 to 6.5. .
  6.  請求項5に記載の電磁弁において、
     前記平面部又は前記曲面部は、前記接触面と衝突する際に発生する面圧が、前記L2/L1の範囲内で、前記平面部又は前記曲面部を構成する材料の許容面圧以下となるように、L2が設定される電磁弁。
    The solenoid valve according to claim 5,
    The surface pressure generated when the flat surface portion or the curved surface portion collides with the contact surface is equal to or less than the allowable surface pressure of the material forming the flat surface portion or the curved surface portion within the range of L2 / L1. Solenoid valve in which L2 is set.
  7.  請求項1に記載の電磁弁において、
     前記曲面部における最大の曲率半径が3.0mm~10.0mmの範囲となるように前記曲面部が構成された電磁弁。
    The solenoid valve according to claim 1,
    An electromagnetic valve, wherein the curved surface portion is configured such that a maximum radius of curvature of the curved surface portion is in a range of 3.0 mm to 10.0 mm.
  8.  請求項1に記載の電磁弁において、
     前記アンカーは前記ロッドが挿通する貫通孔を有し、
     前記凸部は前記ロッドの前記貫通孔との摺動部外周面に対して拡径部として構成される電磁弁。
    The solenoid valve according to claim 1,
    The anchor has a through hole through which the rod is inserted,
    An electromagnetic valve in which the convex portion is configured as an enlarged diameter portion with respect to an outer peripheral surface of a sliding portion of the rod with the through hole.
  9.  請求項1に記載の電磁弁において、
     前記アンカーとの間で磁気吸引力を発生する磁気コアを備え、
     前記凸部の前記一端面は前記磁気コアが配置される側に設けられ、前記他端面は反磁気コア側に設けられる電磁弁。
    The solenoid valve according to claim 1,
    A magnetic core that generates a magnetic attraction force with the anchor,
    An electromagnetic valve, wherein the one end surface of the projection is provided on a side on which the magnetic core is disposed, and the other end surface is provided on a non-magnetic core side.
  10.  請求項1に記載の電磁弁において、
     前記曲面部は、曲率半径を有する曲面部であり、
     前記曲面部は前記平面部に正接する電磁弁。
    The solenoid valve according to claim 1,
    The curved surface portion is a curved surface portion having a radius of curvature,
    An electromagnetic valve, wherein the curved portion is tangent to the flat portion.
  11.  請求項10に記載の電磁弁において、
     前記凸部は、前記曲面部の径方向外側に、面取りまたは曲面部3rの曲率半径Rより小さい曲率半径の曲面部を有する電磁弁。
    The solenoid valve according to claim 10,
    The solenoid valve, wherein the convex portion has a curved surface portion having a radius of curvature smaller than the radius of curvature R of the chamfered or curved surface portion 3r on a radially outside of the curved surface portion.
  12.  加圧室が形成されるシリンダと、吸入行程、戻し行程及び吐出行程を切替える電磁吸入弁機構と、シリンダ内で往復動するプランジャと、燃料を吐出する吐出弁機構と、を備えた高圧燃料供給ポンプにおいて、
     前記電磁吸入弁機構として請求項1に記載の電磁弁を備えた高圧燃料供給ポンプ。
    High-pressure fuel supply comprising a cylinder in which a pressurized chamber is formed, an electromagnetic suction valve mechanism for switching between a suction stroke, a return stroke, and a discharge stroke, a plunger reciprocating in the cylinder, and a discharge valve mechanism for discharging fuel. In the pump,
    2. A high-pressure fuel supply pump comprising the electromagnetic valve according to claim 1 as the electromagnetic suction valve mechanism.
PCT/JP2019/035136 2018-09-26 2019-09-06 Electromagnetic valve and high-pressure fuel supply pump WO2020066547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020548326A JP6978610B2 (en) 2018-09-26 2019-09-06 Solenoid valve and high pressure fuel supply pump
CN201980038245.4A CN112243474B (en) 2018-09-26 2019-09-06 Electromagnetic valve and high-pressure fuel supply pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180017 2018-09-26
JP2018180017 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066547A1 true WO2020066547A1 (en) 2020-04-02

Family

ID=69953419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035136 WO2020066547A1 (en) 2018-09-26 2019-09-06 Electromagnetic valve and high-pressure fuel supply pump

Country Status (3)

Country Link
JP (1) JP6978610B2 (en)
CN (1) CN112243474B (en)
WO (1) WO2020066547A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204345A (en) * 2014-04-14 2015-11-16 日立オートモティブシステムズ株式会社 fluid control solenoid
JP2016094913A (en) * 2014-11-17 2016-05-26 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017014920A (en) * 2015-06-29 2017-01-19 日立オートモティブシステムズ株式会社 Solenoid valve and high pressure fuel supply pump
WO2018123323A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump provided with electromagnetic intake valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204345A (en) * 2014-04-14 2015-11-16 日立オートモティブシステムズ株式会社 fluid control solenoid
JP2016094913A (en) * 2014-11-17 2016-05-26 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017014920A (en) * 2015-06-29 2017-01-19 日立オートモティブシステムズ株式会社 Solenoid valve and high pressure fuel supply pump
WO2018123323A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump provided with electromagnetic intake valve

Also Published As

Publication number Publication date
CN112243474A (en) 2021-01-19
JP6978610B2 (en) 2021-12-08
JPWO2020066547A1 (en) 2021-06-10
CN112243474B (en) 2022-03-25

Similar Documents

Publication Publication Date Title
JP6633195B2 (en) High pressure fuel supply pump
US11542903B2 (en) High-pressure fuel supply pump provided with electromagnetic intake valve
JP2020020342A (en) High-pressure fuel pump and its manufacturing method
JP6734941B2 (en) High pressure fuel supply pump
JP6709282B2 (en) High pressure fuel supply pump and assembling method thereof
JP6862574B2 (en) High pressure fuel supply pump
WO2020066547A1 (en) Electromagnetic valve and high-pressure fuel supply pump
JP7139265B2 (en) High-pressure fuel supply pump and relief valve mechanism
JPWO2018221077A1 (en) Solenoid valve, electromagnetic suction valve mechanism, and high-pressure fuel pump
JP6959109B2 (en) Relief valve mechanism and fuel supply pump equipped with it
JP2020172901A (en) High pressure fuel supply pump and suction valve mechanism
WO2023058287A1 (en) Electromagnetic intake valve mechanism and fuel pump
JP7482327B2 (en) Solenoid valve mechanism and fuel pump
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
JP7482313B2 (en) Fuel pump
JP6596542B2 (en) Valve mechanism and high-pressure fuel supply pump provided with the same
JP7397729B2 (en) Fuel pump
JP7385750B2 (en) Fuel pump
JP6938101B2 (en) Manufacturing method of high-pressure fuel supply pump and high-pressure fuel supply pump
JP7077212B2 (en) High pressure fuel pump
WO2024084567A1 (en) Fuel pump
US20240151198A1 (en) Fuel Pump
WO2022249550A1 (en) Electromagnetic valve mechanism and fuel pump
JP2018150911A (en) Relief valve mechanism and fuel feed pump including the same
JP7089399B2 (en) Manufacturing method of fuel supply pump and fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865208

Country of ref document: EP

Kind code of ref document: A1