WO2022269977A1 - Electromagnetic suction valve mechanism and fuel pump - Google Patents

Electromagnetic suction valve mechanism and fuel pump Download PDF

Info

Publication number
WO2022269977A1
WO2022269977A1 PCT/JP2022/004022 JP2022004022W WO2022269977A1 WO 2022269977 A1 WO2022269977 A1 WO 2022269977A1 JP 2022004022 W JP2022004022 W JP 2022004022W WO 2022269977 A1 WO2022269977 A1 WO 2022269977A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
fuel
stopper
seat
Prior art date
Application number
PCT/JP2022/004022
Other languages
French (fr)
Japanese (ja)
Inventor
智 飯塚
裕之 山田
繁彦 小俣
裕貴 杉山
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022269977A1 publication Critical patent/WO2022269977A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths

Definitions

  • the present invention relates to an electromagnetic intake valve mechanism and a fuel pump equipped with the electromagnetic intake valve mechanism.
  • Fuel pumps that are widely used in the market today include piston pumps equipped with electromagnetic intake valves. Some electromagnetic intake valves are composed of an intake valve that passively opens and closes with respect to fluid movement, and an electromagnetic actuator that engages with the intake valve to regulate the operation of the intake valve.
  • a spring pushes the valve body toward the valve opening side when the electromagnetic intake valve is open. At that time, the valve body is also pushed to the valve opening side by the fluid force of the fuel flowing in from the upstream side of the fuel passage.
  • the electromagnetic suction valve closes, the magnetic attraction force generated by the magnetic circuit causes the mover to move the valve body in the valve closing direction.
  • the electromagnetic suction valve is provided with a spring that pushes the valve body in the valve closing direction. When the electromagnetic suction valve closes, the valve body is also pushed in the valve closing direction by the fluid force of the fuel flowing back from the pressurizing chamber side.
  • An object of the present invention is to provide an electromagnetic intake valve mechanism and a fuel pump that can reduce the force of fuel pushing the valve body in the valve closing direction, in consideration of the above problems.
  • the electromagnetic intake valve mechanism of the present invention comprises a valve body, a valve seat on which the valve body is seated, and a stopper that restricts the movement of the valve body in the valve opening direction.
  • the stopper has a protrusion provided with a side surface facing the side peripheral surface of the valve body and a tip surface facing the valve seat. In the valve open state in which the movement of the valve body in the valve opening direction is restricted by the stopper, the tip surface of the protrusion is located closer to the valve seat than the upstream end face of the valve body facing the valve seat.
  • the fuel pump of the present invention comprises a body having a pressurizing chamber, a plunger supported by the body so as to be able to reciprocate and increasing or decreasing the capacity of the pressurizing chamber by reciprocating motion, and the plunger for discharging fuel into the pressurizing chamber. and an intake valve mechanism.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to a first embodiment of the present invention
  • FIG. 1 is a longitudinal sectional view of a high-pressure fuel supply pump according to a first embodiment of the invention
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2
  • FIG. 4 is a cross-sectional view showing an enlarged valve open state of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
  • FIG. 3 is an enlarged cross-sectional view showing a closed state of the electromagnetic suction valve mechanism according to the first embodiment of the present invention
  • FIG. 4 is a perspective view of a stopper of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
  • FIG. 1 is a longitudinal sectional view of a high-pressure fuel supply pump according to a first embodiment of the invention
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2
  • FIG. 4 is a cross-sectional view showing an
  • FIG. 4 is an explanatory diagram showing the flow of fuel in the valve open state of the electromagnetic intake valve mechanism according to the first embodiment of the present invention
  • FIG. 7 is a cross-sectional view showing an enlarged state of an open valve mechanism of an electromagnetic suction valve mechanism according to a second embodiment of the present invention
  • FIG. 11 is a cross-sectional view showing an enlarged open state of an electromagnetic intake valve mechanism according to a third embodiment of the present invention
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
  • the fuel supply system includes a high-pressure fuel supply pump (fuel pump) 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107.
  • fuel pump fuel pump
  • ECU Engine Control Unit
  • fuel tank 103 fuel tank
  • common rail 106 common rail
  • injectors 107 injectors 107.
  • Components of the high-pressure fuel supply pump 100 are integrally incorporated in a pump body 1 (hereinafter referred to as "body 1").
  • the fuel in the fuel tank 103 is pumped up by a feed pump 102 driven based on a signal from the ECU 101.
  • the pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown) and sent to the low-pressure fuel suction port 81 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104 .
  • the high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106 .
  • a plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106 .
  • a plurality of injectors 107 are mounted according to the number of cylinders (combustion chambers), and inject fuel according to the drive current output from the ECU 101 .
  • the fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 directly injects fuel into the cylinder of the engine.
  • the fuel pressure sensor 105 outputs the detected pressure data to the ECU 101.
  • the ECU 101 determines an appropriate injection fuel amount (target injection fuel length) and an appropriate fuel pressure (target fuel pressure), etc.
  • the ECU 101 also controls driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as the fuel pressure (target fuel pressure). That is, the ECU 101 has a pump control section that controls the high-pressure fuel supply pump 100 and an injector control section that controls the injector 107 .
  • the high-pressure fuel supply pump 100 has a pressure pulsation reduction mechanism 9, an electromagnetic intake valve mechanism 3 that is a variable displacement mechanism, a discharge valve mechanism 5, and a relief valve mechanism 6 (see FIG. 2).
  • the fuel flowing from the low-pressure fuel intake port 81 reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the pressure pulsation reducing mechanism 9 and the intake passage 10b.
  • the fuel that has flowed into the electromagnetic intake valve mechanism 3 passes through the valve body 32, flows through the intake passage 1a formed in the body 1, and then flows into the pressurization chamber 11.
  • a plunger 2 is reciprocally inserted into the pressurizing chamber 11 .
  • the plunger 2 reciprocates when power is transmitted by a cam 91 (see FIG. 2) of the engine.
  • the pressurization chamber 11 fuel is sucked from the electromagnetic intake valve mechanism 3 during the downward stroke of the plunger 2, and is pressurized during the upward stroke.
  • the discharge valve mechanism 5 is opened, and high pressure fuel is pressure-fed to the common rail 106 through the fuel discharge port 12a.
  • the discharge of fuel by the high-pressure fuel supply pump 100 is operated by opening and closing the electromagnetic intake valve mechanism 3 .
  • the opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101 .
  • FIG. 2 is a vertical cross-sectional view of the high-pressure fuel supply pump 100 seen in a cross section perpendicular to the horizontal direction.
  • 3 is a cross-sectional view taken along line AA shown in FIG. 2.
  • the body 1 of the high-pressure fuel supply pump 100 is provided with the above-described intake passage 1a and mounting flange 1b (see FIG. 3).
  • the mounting flange 1b is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine) and fixed with a plurality of bolts (screws) not shown. That is, the high-pressure fuel supply pump 100 is fixed to the fuel pump mounting portion 90 by the mounting flange 1b.
  • an O-ring 93 which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the body 1.
  • This O-ring 93 prevents engine oil from leaking outside the engine (internal combustion engine) through between the fuel pump mounting portion 90 and the body 1 .
  • a cylinder 4 that guides the reciprocating motion of the plunger 2 is attached to the body 1 of the high-pressure fuel supply pump 100 .
  • the cylinder 4 is formed in a cylindrical shape and is press-fitted into the body 1 at its outer peripheral side.
  • the body 1 and the cylinder 4 form a pressure chamber 11 together with the electromagnetic suction valve mechanism 3, the plunger 2, and the discharge valve mechanism 5 (see FIG. 3).
  • the body 1 is provided with a fixing portion 1c that engages with the central portion of the cylinder 4 in the axial direction.
  • the fixed portion 1c of the body 1 is plastically deformed by applying a load from below (lower side in FIG. 2), and presses the cylinder 4 upward. Thereby, the cylinder 4 is press-fitted into the body 1 .
  • the fuel pressurized in the pressurization chamber 11 can be prevented from leaking from between the cylinder 4 and the body 1 .
  • a tappet 92 is provided at the lower end of the plunger 2 .
  • the tappet 92 converts the rotational motion of the cam 91 attached to the camshaft of the engine into vertical motion and transmits it to the plunger 2 .
  • the plunger 2 is urged toward the cam 91 by the spring 16 via the retainer 15 and pressed against the tappet 92 .
  • the tappet 92 reciprocates as the cam 91 rotates.
  • the plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurization chamber 11 .
  • a seal holder 17 is arranged between the cylinder 4 and the retainer 15 .
  • the seal holder 17 is formed in a cylindrical shape into which the plunger 2 is inserted, and has an auxiliary chamber 17a at its upper end on the cylinder 4 side.
  • the seal holder 17 holds a plunger seal 18 at the lower end on the retainer 15 side.
  • the plunger seal 18 is in slidable contact with the outer circumference of the plunger 2 .
  • the plunger seal 18 seals the fuel in the auxiliary chamber 17a when the plunger 2 reciprocates, preventing the fuel in the auxiliary chamber 17a from flowing into the engine.
  • the plunger seal 18 also prevents lubricating oil (including engine oil) that lubricates the sliding parts in the engine from flowing into the body 1 .
  • the plunger 2 reciprocates vertically. If the plunger 2 descend
  • the plunger 2 has a large diameter portion 2a and a small diameter portion 2b.
  • the large diameter portion 2a and the small diameter portion 2b are positioned in the auxiliary chamber 17a. Therefore, the volume of the auxiliary chamber 17a increases and decreases as the plunger 2 reciprocates.
  • the sub-chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 3).
  • a fuel passage 10c see FIG. 3
  • the plunger 2 moves downward, fuel flows from the auxiliary chamber 17a to the low-pressure fuel chamber 10.
  • the plunger 2 moves upward, fuel flows from the low-pressure fuel chamber 10 to the auxiliary chamber 17a.
  • the flow rate of fuel into and out of the high-pressure fuel supply pump 100 during the intake stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced, and the pressure pulsation generated inside the high-pressure fuel supply pump 100 can be reduced.
  • a suction joint 8 is attached to the side portion of the body 1 .
  • the suction joint 8 is connected to a low-pressure pipe 104 (see FIG. 1) through which fuel supplied from a fuel tank 103 passes. Fuel in the fuel tank 103 is supplied from the intake joint 8 to the inside of the high-pressure fuel supply pump 100 .
  • the suction joint 8 has a low-pressure fuel suction port 81 connected to the low-pressure pipe 104 and a suction passage 82 communicating with the low-pressure fuel suction port 81 .
  • Fuel passing through the intake passage 82 reaches the intake port 31b (see FIG. 2) of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b (see FIG. 2) provided in the low-pressure fuel chamber 10. do.
  • a suction filter 83 is arranged in the fuel passage communicating with the suction passage 82 . The suction filter 83 removes foreign matter present in the fuel and prevents foreign matter from entering the high-pressure fuel supply pump 100 .
  • the body 1 of the high-pressure fuel supply pump 100 is provided with a low-pressure fuel chamber (damper chamber) 10 .
  • This low-pressure fuel chamber 10 is covered with a damper cover 14 .
  • the damper cover 14 is formed, for example, in a tubular (cup-like) shape with one side closed.
  • the low-pressure fuel chamber 10 has a low-pressure fuel flow path 10a and an intake passage 10b.
  • the intake passage 10 b communicates with the intake port 31 b of the electromagnetic intake valve mechanism 3 .
  • the fuel that has passed through the low-pressure fuel passage 10a reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the intake passage 10b.
  • a pressure pulsation reduction mechanism 9 is provided in the low-pressure fuel flow path 10a.
  • pressure pulsation occurs in the low-pressure fuel chamber 10.
  • FIG. The pressure pulsation reducing mechanism 9 reduces pressure pulsation generated in the high-pressure fuel supply pump 100 from spreading to the low-pressure pipe 104 .
  • the pressure pulsation reducing mechanism 9 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are pasted together at their outer periphery and an inert gas such as argon is injected inside.
  • the metal diaphragm damper of the pressure pulsation reducing mechanism 9 absorbs or reduces pressure pulsation by expanding and contracting.
  • the body 1 is provided with a discharge valve mechanism 5 that communicates with the pressurization chamber 11 .
  • the discharge valve mechanism 5 includes a discharge valve seat 51, a valve body 52 that can be seated and separated from the discharge valve seat 51, a discharge valve spring 53 that biases the valve body 52 toward the discharge valve seat 51, and a discharge valve guide 54 that slides and guides the valve body 52 .
  • the discharge valve seat 51, the valve body 52, the discharge valve spring 53, and the discharge valve guide 54 are housed in a discharge valve chamber 1d formed in the body 1.
  • the discharge valve chamber 1d is a substantially cylindrical space extending in the horizontal direction.
  • One end of the discharge valve chamber 1d communicates with the pressure chamber 11 via the fuel passage 1e.
  • the other end of the discharge valve chamber 1 d is open to the side surface of the body 1 .
  • a plug 55 seals the opening of the other end of the discharge valve chamber 1d.
  • the plug 55 and the body 1 are joined by welding, for example.
  • a discharge joint 12 is also welded to the body 1 .
  • the discharge joint 12 has a fuel discharge port 12a.
  • the fuel discharge port 12a communicates with the discharge valve chamber 1d via a discharge passage 1f extending horizontally inside the body 1.
  • a fuel discharge port 12a of the discharge joint 12 is connected to a common rail 106 (see FIG. 1).
  • the valve body 52 When there is no difference in fuel pressure between the pressure chamber 11 and the discharge valve chamber 1d, the valve body 52 is pressed against the discharge valve seat 51 by the biasing force of the discharge valve spring 53. As a result, the discharge valve mechanism 5 is closed. When the fuel pressure in the pressure chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 1d, the valve element 52 moves against the biasing force of the discharge valve spring 53 and leaves the discharge valve seat 51. As a result, the discharge valve mechanism 5 is opened.
  • the discharge valve mechanism 5 When the discharge valve mechanism 5 is opened, the high-pressure fuel in the pressure chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 1d, the discharge passage 1f, and the fuel discharge port 12a.
  • the discharge valve mechanism 5 When the discharge valve mechanism 5 is open, the valve body 52 contacts the discharge valve guide 54 and the stroke of the valve body 52 is restricted.
  • the stroke of the valve body 52 is appropriately determined by the discharge valve guide 54. As a result, delay in closing of the discharge valve mechanism 5 due to the long stroke of the valve element 52 can be prevented. As a result, the fuel discharged into the discharge valve chamber 1d can be prevented from flowing back into the pressurizing chamber 11 again, and a decrease in the efficiency of the high-pressure fuel supply pump 100 can be suppressed. In this manner, the discharge valve mechanism 5 functions as a check valve that restricts the flow direction of fuel.
  • the body 1 is provided with a relief valve mechanism 6 communicating with the pressurization chamber 11 .
  • the relief valve mechanism 6 has a relief valve seat 61 , a relief valve 62 that contacts and separates from the relief valve seat 61 , and a relief valve holder 63 that holds the relief valve 62 .
  • the relief valve mechanism 6 also has a relief spring 64 that biases the relief valve 62 toward the relief valve seat 61 and a relief valve housing 65 .
  • the relief valve housing 65 is fitted into a relief valve chamber 1g formed in the body 1.
  • the relief valve chamber 1g is a substantially cylindrical space extending in the horizontal direction.
  • One end of the relief valve chamber 1g communicates with the pressure chamber 11 via the fuel passage 1h.
  • the discharge joint 12 described above is joined to the other end of the relief valve chamber 1g.
  • the relief valve housing 65 contains the relief spring 64, the relief valve holder 63, the relief valve 62, and the relief valve seat 61.
  • the relief spring 64, the relief valve holder 63, and the relief valve 62 are inserted in this order. After that, the relief valve seat 61 is press-fitted and fixed to the relief valve housing 65 .
  • the relief spring 64 has one end in contact with the relief valve housing 65 and the other end in contact with the relief valve holder 63 .
  • the relief valve holder 63 is engaged with the relief valve 62 .
  • the biasing force of the relief spring 64 acts on the relief valve 62 via the relief valve holder 63 .
  • the relief valve 62 is pressed by the biasing force of the relief spring 64 and closes the fuel passage of the relief valve seat 61 .
  • a fuel passage of the relief valve seat 61 communicates with the discharge passage 1f. The movement of fuel between the pressure chamber 11 (upstream side) and the relief valve seat 61 (downstream side) is blocked by the relief valve 62 contacting (adhering to) the relief valve seat 61 .
  • the relief valve mechanism 6 of the present embodiment communicates with the pressurizing chamber 11, it is not limited to this, and communicates with, for example, a low-pressure passage (low-pressure fuel suction port 81, suction passage 10b, etc.). You may make it
  • the electromagnetic suction valve mechanism 3 is inserted into a lateral hole 1i formed in the body 1.
  • the electromagnetic suction valve mechanism 3 has a suction valve housing 31 press-fitted into the lateral hole 1i, a valve body 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor .
  • the electromagnetic suction valve mechanism 3 is roughly divided into a suction valve mechanism portion including the valve body 32 and a solenoid mechanism portion including the electromagnetic coil 35 , the anchor 36 and the rod 33 .
  • the intake valve housing 31 is formed in a cylindrical shape, and has a valve seat 31a on its inner periphery. Further, the intake valve housing 31 is formed with an intake port 31b reaching from the outer peripheral portion to the inner peripheral portion. The intake port 31b communicates with the intake passage 10b in the low-pressure fuel chamber 10 described above. The intake valve housing 31 also has a rod guide 31c through which the rod 33 passes.
  • a stopper 37 facing the valve seat 31 a of the intake valve housing 31 is arranged in the lateral hole 1 i formed in the body 1 .
  • the valve body 32 is arranged between the stopper 37 and the valve seat 31a.
  • a valve biasing spring 38 is interposed between the stopper 37 and the valve body 32 .
  • a valve biasing spring 38 biases the valve body 32 toward the valve seat 31a.
  • the valve body 32 closes the communicating portion between the suction port 31b and the pressurizing chamber 11 by abutting (seating) on the valve seat 31a.
  • the electromagnetic suction valve mechanism 3 is closed.
  • the valve body 32 opens the communicating portion between the intake port 31 b and the pressurizing chamber 11 by abutting against the stopper 37 .
  • the electromagnetic suction valve mechanism 3 is opened.
  • the rod 33 passes through the rod guide 31c of the intake valve housing 31 and the anchor 36.
  • a rod collar portion 33a is formed on the rod 33 .
  • One end of a rod biasing spring 34 is engaged with the rod collar portion 33a.
  • the other end of the rod biasing spring 34 is engaged with a fixed core 39 arranged to surround the rod biasing spring 34 .
  • the rod biasing spring 34 biases the valve body 32 in the valve opening direction, which is the stopper 37 side, via the rod 33 .
  • the anchor 36 is formed in a substantially cylindrical shape. One end of an anchor biasing spring 40 abuts against one axial end of the anchor 36 . The other axial end of the anchor 36 faces the end face of the fixed core 39 . A flange contact portion is formed at the other axial end of the anchor 36 with which the rod collar portion 33a of the rod 33 contacts.
  • the other end of the anchor biasing spring 40 is in contact with the rod guide 31c.
  • the anchor biasing spring 40 biases the anchor 36 toward the rod collar portion 33 a of the rod 33 .
  • the movable distance of the anchor 36 is set longer than the movable distance of the valve body 32 . As a result, the valve body 32 can be reliably brought into contact (seated) on the valve seat 31a, and the electromagnetic intake valve mechanism 3 can be reliably closed.
  • the electromagnetic coil 35 is arranged so as to go around the fixed core 39 .
  • a terminal member 30 (see FIG. 2) is electrically connected to the electromagnetic coil 35 .
  • a current flows through the electromagnetic coil 35 via the terminal member 30 .
  • the rod 33 In a non-energized state in which no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the valve body 32 in the valve opening direction.
  • the valve body 32 separates from the valve seat 31a and comes into contact with the stopper 37, and the electromagnetic suction valve mechanism 3 is opened. That is, the electromagnetic intake valve mechanism 3 is of a normally open type that opens when no power is supplied.
  • the fuel in the intake port 31b passes between the valve body 32 and the valve seat 31a, through the plurality of communication grooves 377a (see FIG. 6) of the stopper 37, and the intake passage 1a. and flows into the pressurization chamber 11.
  • the electromagnetic suction valve mechanism 3 is in the open state, the valve body 32 contacts the stopper 37, so the position of the valve body 32 in the valve opening direction is restricted.
  • the gap between the valve body 32 and the valve seat 31a is the movable range of the valve body 32, which is the valve opening stroke.
  • the electromagnetic coil 35, the anchor 36, and the fixed core 39 constitute the magnetic attraction force generator according to the present invention.
  • the anchor 36 is attracted to the fixed core 39 when a magnetic attraction force is generated on the magnetic attraction surface. As a result, the anchor 36 moves against the biasing force of the rod biasing spring 34 and contacts the fixed core 39 .
  • FIG. 4 is an enlarged cross-sectional view showing the open state of the electromagnetic intake valve mechanism 3.
  • FIG. 5 is a cross-sectional view showing an enlarged closed state of the electromagnetic intake valve mechanism 3.
  • FIG. 6 is a perspective view of the stopper 37.
  • the valve body 32 has a valve portion 321 and a fitting projection 322 projecting from the valve portion 321 .
  • the valve portion 321 is formed in a disc shape having an appropriate thickness.
  • the valve portion 321 has a first surface 321 a facing the valve seat 31 a and a second surface 321 b facing the stopper 37 .
  • the first surface 321a corresponds to the valve upstream end surface according to the present invention.
  • the fitting protrusion 322 protrudes substantially perpendicularly from the second surface 321b of the valve portion 321 .
  • the fitting protrusion 322 is formed in a cylindrical shape having a cylindrical hole 322a.
  • the fitting protrusion 322 is slidably fitted into a guide hole 375 of the stopper 37, which will be described later.
  • One end of the valve biasing spring 38 abuts on the bottom surface of the cylindrical hole 322 a of the fitting protrusion 322 .
  • the fitting protrusion 322 is provided with a through hole 322b penetrating from the outer peripheral surface to the inner peripheral surface.
  • the through hole 322b serves as a breather passage through which the fuel in the cylindrical hole 322a of the fitting protrusion 322 flows to the outside of the fitting protrusion 322.
  • An end face 322c which is one axial end of the fitting protrusion 322, is chamfered.
  • the valve seat 31 a of the intake valve housing 31 has a seat portion 311 against which the first surface 321 a of the valve body 32 abuts, and a seat outer peripheral portion 312 forming the periphery of the seat portion 311 .
  • the seat portion 311 is formed as an annular projecting portion projecting toward the valve body 32 from the seat outer peripheral portion 312 . That is, the seat outer peripheral portion 312 has a shape recessed with respect to the seat portion 311 .
  • the seat outer peripheral portion 312 has a plane substantially parallel to the first surface 321 a of the valve body 32 . Also, the seat portion 311 has an inclined surface 311 a that is continuous with the seat outer peripheral portion 312 .
  • the stopper 37 is fixed to the intake valve housing 31. As shown in FIG. 6, the stopper 37 is formed in a substantially cylindrical shape and has a plurality of inner peripheral surfaces with different diameters. A guide pin 370 is press-fitted into a through hole 371 forming the inner peripheral surface of the stopper 37 having the smallest diameter.
  • the stopper 37 has a spring bearing surface 372 , a stopper surface 373 and a facing surface 374 .
  • the spring seat surface 372 forms the bottom surface of the hole forming the inner peripheral surface of the stopper 37 having the second smallest diameter.
  • the other end of the valve biasing spring 38 contacts the spring seat surface 372 .
  • a guide pin 370 passes through the valve biasing spring 38 .
  • the stopper surface 373 forms the bottom surface of a guide hole 375 that forms the inner peripheral surface of the stopper 37 with the third smallest diameter.
  • the end face of the valve body 32 in the valve open state contacts the stopper face 373 .
  • the fitting protrusion 322 of the valve body 32 is slidably fitted to the inner peripheral surface of the guide hole 375 .
  • An appropriate gap is provided between the inner peripheral surface of the guide hole 375 and the fitting protrusion 322 .
  • the axial length of the inner peripheral surface of the guide hole 375 is set to an appropriate sliding length of the fitting protrusion 322 . As a result, eccentricity and inclination of the valve body 32 can be suppressed.
  • the facing surface 374 forms the bottom surface of the hole that forms the inner peripheral surface of the stopper 37 with the largest diameter.
  • a valve portion 321 of the valve body 32 is inserted into the hole forming the inner peripheral surface of the stopper 37 having the largest diameter.
  • An appropriate gap is formed between the inner peripheral surface of the stopper 37 having the largest diameter and the outer peripheral surface of the valve portion 321 (see FIGS. 4 and 5).
  • the second surface 321 b of the valve portion 321 faces the facing surface 374 .
  • the stopper 37 has a shielding portion 376 .
  • the shielding portion 376 forms a cylindrical portion having a hole that forms the inner peripheral surface of the stopper 37 with the largest diameter. As shown in FIG. 4, when the electromagnetic suction valve mechanism 3 is open, the end surface 376a of the shielding portion 376 protrudes from the first surface 321a of the valve body 32 toward the valve seat 31a.
  • An end surface 376 a of the shielding portion 376 is formed on a plane substantially parallel to the plane of the seat outer peripheral portion 312 and the first surface 321 a of the valve body 32 .
  • the channel cross-sectional area of the gap generated between the shielding part 376 and the valve body 32 (valve part 321) is set to be equal to or larger than the channel cross-sectional area of the through hole 322b. This prevents the fuel returning from the intake passage 1a (see FIG. 2) from interfering with the operation of the valve body 32. As shown in FIG.
  • the stopper 37 has a press-fitting portion 377 that is continuous with the shielding portion 376 .
  • the press-fitting portion 377 is press-fitted into the intake valve housing 31 .
  • the stopper 37 is fixed to the intake valve housing 31 by press-fitting the press-fit portion 377 into the intake valve housing 31 .
  • the press-fit portion 377 is provided with a plurality of communication grooves 377a.
  • the communication groove 377a forms a communication path between the intake valve housing 31 and the stopper 37 through which fuel passes.
  • the communication path serves as a flow path that connects the suction port 31 b and the pressurization chamber 11 .
  • the number of communicating grooves of the stopper according to the present invention may be five or more, or may be three or less.
  • machining an axially symmetrical part in the vertical direction increases the number of machining steps, but it is possible to reduce the number of machining steps by reducing the number of grooves.
  • by providing the communication groove 377a it is possible to facilitate gripping the stopper 37 with a tool during processing.
  • the electromagnetic intake valve mechanism 3 As described above, if the electromagnetic intake valve mechanism 3 is closed during the compression stroke, the fuel flowing into the pressurization chamber 11 during the intake stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic intake valve mechanism 3 is open during the compression stroke, the fuel in the pressurization chamber 11 is pushed back toward the intake passage 1a and is not discharged to the common rail 106 side. Thus, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3 . The opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101 .
  • the volume of the pressurization chamber 11 increases and the fuel pressure in the pressurization chamber 11 decreases.
  • the fuel pressure in the pressure chamber 11 becomes lower than the pressure in the intake port 31b, and when the biasing force due to the pressure difference between the two exceeds the biasing force of the valve biasing spring 38, the valve body 32 moves toward the valve seat 31a. , and the electromagnetic suction valve mechanism 3 is opened.
  • the fuel flows between the valve body 32 and the valve seat 31a and into the pressurization chamber 11 through a plurality of communication grooves 377a (see FIG. 6) provided in the stopper 37. As shown in FIG.
  • the plunger 2 After completing the intake stroke, the plunger 2 turns to upward movement and shifts to the compression stroke. At this time, the electromagnetic coil 35 remains in a non-energized state, and no magnetic attraction force acts between the anchor 36 and the fixed core 39 .
  • the rod biasing spring 34 is set to have a necessary and sufficient biasing force to maintain the valve body 32 at the valve open position away from the valve seat 31a in the non-energized state.
  • the pressure of the fuel in the pressure chamber 11 increases as the plunger 2 rises. It passes through and is discharged to common rail 106 (see FIG. 1).
  • This stroke is called a discharge stroke. That is, the compression stroke from the bottom dead center to the top dead center of the plunger 2 consists of a return stroke and a discharge stroke.
  • the timing of energizing the electromagnetic coil 35 If the timing of energizing the electromagnetic coil 35 is advanced, the proportion of the return stroke in the compression stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the intake passage 10b, and more fuel is discharged at high pressure. On the other hand, if the timing of energizing the electromagnetic coil 35 is delayed, the ratio of the return stroke in the compression stroke increases and the ratio of the discharge stroke decreases. As a result, more fuel is returned to the intake passage 10b, and less fuel is discharged at high pressure. By controlling the timing of energization of the electromagnetic coil 35 in this way, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
  • FIG. 7 is an explanatory diagram showing the flow of fuel when the electromagnetic intake valve mechanism 3 is open.
  • FIG. 7 shows the flow of fuel that flows backward during the return process when the electromagnetic intake valve mechanism 3 is in the open state.
  • the seat outer peripheral portion 312 of the intake valve housing 31 has a shape recessed from the seat portion 311 .
  • a shielding portion 376 of the stopper 37 faces the sheet outer peripheral portion 312 .
  • backflow fuel 300 the fuel 300 flowing back toward the electromagnetic intake valve mechanism 3 presses the second surface 321b of the valve body 32 when passing through the communication groove 377a of the stopper 37.
  • the fuel pressure is the same as the fuel pressure in the gap between the valve body 32 and the shielding portion 376 .
  • the backflow fuel 300 passes through a curved flow path formed by the shielding portion 376 of the stopper 37 and the seat outer peripheral portion 312 .
  • the backflow fuel 300 passes through the end face 376a of the shielding portion 376 while curving.
  • part of the backflow fuel 300 flows between the valve body 32 (valve portion 321) and the shielding portion 376 in a vortex.
  • the flow velocity of fuel between the valve body 32 (valve portion 321) and the shield portion 376 increases, and the pressure decreases. Therefore, the pressure of the fuel pressing the second surface 321b of the valve body 32 decreases.
  • the entrance for fuel to enter between the stopper 37 and the valve body 32 is only between the shielding portion 376 and the valve body 32 (valve portion 321).
  • fuel does not enter between the second surface 321b of the valve body 32 and the opposing surface 374 of the stopper 37 except between the shielding portion 376 and the valve body 32 (valve portion 321).
  • the pressure of the fuel between the valve element 32 (valve portion 321) and the shielding portion 376 is reduced, the pressure of the fuel that presses the second surface 321b of the valve element 32 can be reduced.
  • FIG. 8 is a cross-sectional view showing an enlarged valve open state of the electromagnetic intake valve mechanism according to the second embodiment.
  • the high-pressure fuel supply pump according to the second embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment.
  • the high-pressure fuel supply pump according to the second embodiment differs from the high-pressure fuel supply pump 100 according to the first embodiment in the electromagnetic suction valve mechanism 3A. Therefore, here, the electromagnetic suction valve mechanism 3A will be described, and the description of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
  • An electromagnetic intake valve mechanism 3A according to the second embodiment has the same configuration as the electromagnetic intake valve mechanism 3 (see FIG. 4) according to the first embodiment.
  • the electromagnetic intake valve mechanism 3A differs from the electromagnetic intake valve mechanism 3 in the intake valve housing 131.
  • the intake valve housing 131 is formed in a cylindrical shape, and has a valve seat 131a on its inner periphery. Further, the intake valve housing 31 is provided with an intake port 31b and a rod guide 31c.
  • a valve seat 131 a of the intake valve housing 131 has a seat portion 1311 against which the first surface 321 a of the valve body 32 abuts, and a seat outer peripheral portion 1312 forming the periphery of the seat portion 1311 .
  • the seat portion 1311 is formed as an annular protrusion that protrudes toward the valve body 32 from the seat outer peripheral portion 1312 . That is, the seat outer peripheral portion 1312 has a shape recessed with respect to the seat portion 1311 .
  • the seat outer peripheral portion 1312 has a plane substantially parallel to the first surface 321 a of the valve body 32 .
  • the plane of the seat outer peripheral portion 1312 faces the gap between the valve body 32 and the shielding portion 376 .
  • the seat portion 1311 has an inclined surface 1311 a that continues to the seat outer peripheral portion 1312 .
  • the angle A of the inclined surface 1311a with respect to the axis of the rod 33 is set to be sharper than the angle of the inclined surface 311a of the seat portion 311 according to the first embodiment.
  • the angle A of the inclined surface 311a is made obtuse as in the first embodiment, the plane of the seat outer peripheral portion 312 faces the gap between the valve body 32 and the blocking portion 376. Gone.
  • the more acute the angle A the more the backflow fuel 300 causes flow separation on the inclined surface 1311a.
  • the backflow fuel 300 moves toward the first surface 321a of the valve body 32 while suppressing the occurrence of cavitation erosion.
  • the force with which the backflow fuel 300 presses the valve body 32 in the valve opening direction can be increased more than in the first embodiment.
  • the flow rate of fuel between the valve body 32 (valve portion 321) and the shield portion 376 increases and the pressure decreases. Therefore, the pressure of the fuel pressing the second surface 321b of the valve body 32 decreases. As a result, the force by which the fuel presses the valve body 32 in the valve closing direction can be reduced, and the valve body 32 does not move in the valve closing direction unless controlled by the magnetic circuit (electromagnetic coil 35, anchor 36, etc.).
  • FIG. 9 is a cross-sectional view showing an enlarged open state of the electromagnetic intake valve mechanism according to the third embodiment.
  • a high-pressure fuel supply pump according to the third embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment.
  • the high-pressure fuel supply pump according to the third embodiment differs from the high-pressure fuel supply pump 100 according to the first embodiment in the electromagnetic suction valve mechanism 3B. Therefore, here, the electromagnetic intake valve mechanism 3B will be described, and the description of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
  • An electromagnetic intake valve mechanism 3B according to the third embodiment has the same configuration as the electromagnetic intake valve mechanism 3 (see FIG. 4) according to the first embodiment.
  • the difference between the electromagnetic intake valve mechanism 3B and the electromagnetic intake valve mechanism 3 is the valve element 132 .
  • the valve body 132 has a valve portion 1321 and a fitting projection 1322 projecting from the valve portion 1321 .
  • the fitting protrusion 1322 has the same configuration as the fitting protrusion 322 of the first embodiment.
  • the valve portion 1321 is formed in a disc shape having an appropriate thickness.
  • the valve portion 321 has a first surface 1321 a facing the valve seat 31 a and a second surface 1321 b facing the stopper 37 .
  • the first surface 1321a corresponds to the valve upstream end surface according to the present invention.
  • a sliding protrusion 1321 c is provided on the outer peripheral surface of the valve portion 1321 .
  • the sliding protrusion 1321c is slidably engaged with the inner peripheral surface of the shielding portion 376 of the stopper 37 .
  • valve body 132 Since the valve body 132 is slidably engaged with the inner peripheral surface of the shielding portion 376 of the stopper 37, the work of assembling the valve body 132 and the stopper 37 can be simplified. As a result, it is possible to improve workability in assembling the electromagnetic suction valve mechanism 3B. In addition, since the space into which fuel enters between the valve element 132 and the stopper 37 can be reduced, the dead volume of the electromagnetic intake valve mechanism 3B can be reduced.
  • the flow velocity of fuel between the valve body 132 (valve portion 1321) and the shield portion 376 increases and the pressure decreases. Therefore, the pressure of the fuel pressing the second surface 1321b of the valve body 132 decreases. As a result, the force by which the fuel presses the valve body 132 in the valve closing direction can be reduced, and the valve body 132 does not move in the valve closing direction unless controlled by the magnetic circuit (electromagnetic coil 35, anchor 36, etc.). can be made
  • the electromagnetic intake valve mechanism 3 includes the valve element 32, the valve seat 31a on which the valve element 32 is seated, and the movement of the valve element 32 in the valve opening direction. and a stopper 37 that limits the
  • the stopper 37 has a shielding portion 376 (protrusion) provided with a side surface (inner peripheral surface) facing the side peripheral surface of the valve body 32 and an end surface 376a (tip surface) facing the valve seat 31a.
  • the end surface 376a of the shielding portion 376 is a first surface 321a (valve upstream side end surface) facing the valve seat 31a of the valve body 32. is positioned closer to the valve seat 31a than the
  • part of the backflow fuel 300 that has passed through the end surface 376a of the stopper 37 is separated from the flow, and part of the backflow fuel 300 vortexes between the valve element 32 (valve portion 321) and the shielding portion 376. It flows like winding.
  • the flow velocity of fuel between the valve body 32 and the shielding portion 376 increases, and the pressure decreases. Therefore, the force by which the fuel presses the valve body 32 in the valve closing direction can be reduced.
  • valve seat 31a is continuous with the seat outer peripheral portion 312 (flat portion) facing the end surface 376a (tip surface) of the shielding portion 376 (projection portion), and the seat outer peripheral portion 312. and a seat portion 311 protruding toward the valve body 32 side.
  • the seat outer peripheral portion 312 (flat portion), the tip surface of the seat portion 311, and the first surface 321a (valve upstream end surface) of the valve body 32 are parallel to each other.
  • the backflow fuel 300 passing through the end face 376a of the blocking portion 376 can be reliably curved.
  • the backflow fuel 300 can be directed toward the first surface 321a of the valve body 32, and the backflow fuel 300 can press the valve body 32 in the valve opening direction.
  • the seat outer peripheral portion 312 (flat portion) of the valve seat 131 a faces the gap between the shielding portion 376 (projection portion) and the valve body 32 .
  • the angle A of the inclined surface 1311a of the seat portion 1311 with respect to the moving direction of the valve body 32 (the axis of the rod 33) can be made acute.
  • the backflow fuel 300 causes flow separation on the inclined surface 1311a, and flows toward the first surface 321a (the end surface on the upstream side of the valve) of the valve body 32 while suppressing the occurrence of cavitation erosion. Therefore, the force with which the backflow fuel 300 presses the valve body 32 in the valve opening direction can be increased.
  • valve body 132 according to the third embodiment described above is slidably engaged with the shielding portion 376 (projection) of the stopper 37 .
  • the assembly work of the valve body 132 and the stopper 37 can be simplified, and the workability of the assembly work of the electromagnetic intake valve mechanism 3B can be improved.
  • the shielding portion 376 protruding portion
  • the shielding portion 376 is formed in a tubular shape with a side surface serving as an inner peripheral surface.
  • the inlet for the fuel that enters between the stopper 37 and the valve body 32 is between the side peripheral surface of the valve body 32 and the shielding portion 376 .
  • valve body 32 has a cylindrical fitting protrusion 322 that is slidably fitted to the stopper 37 .
  • the fitting protrusion 322 is provided with a through hole that communicates between the stopper 37 and the valve body 32 and the inside of the fitting protrusion 322 .
  • the flow channel cross-sectional area between the stopper 37 and the valve body 32 is equal to or larger than the flow channel cross-sectional area of the through hole. This prevents the backflow fuel 300 from interfering with the operation of the valve body 32 .
  • the high-pressure fuel supply pump 100 (fuel pump) according to the first embodiment described above is supported by the body 1 having the pressurizing chamber 11 and the body 1 so as to be able to reciprocate. It has a plunger 2 for increasing or decreasing the capacity, and the electromagnetic intake valve mechanism 3 for discharging fuel into the pressurizing chamber 11 .
  • the flow velocity of fuel between the valve body 32 and the shielding portion 376 increases, and the pressure decreases. Therefore, the force by which the fuel presses the valve body 32 in the valve closing direction can be reduced.
  • the valve body 132 is provided with the sliding protrusion 1321c so that the valve body 132 is slidably engaged with the shielding portion 376 of the stopper 37 .
  • an engaging projection may be provided on the shielding portion of the stopper so that the valve body is slidably engaged with the shielding portion.
  • Fuel pressure sensor 106 Common rail 107... Injector 300... Reverse flow Fuel 311, 1311 Seat portion 311a, 1311a Inclined surface 312, 1312 Seat outer peripheral portion 321, 1321 Valve portion 321a, 1321a First surface 321b, 1321b Second surface 322 Fitting mating protrusion, 322a... tubular hole, 322b... through hole, 322c end surface 370 guide pin 371 through hole 372 spring seat surface 373 stopper surface 374 opposing surface 375 guide hole 376 shielding portion 376a end surface 377 press-fit portion 377a ... communication groove, 1321c ... sliding projection

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The present invention provides an electromagnetic suction valve mechanism and a fuel pump capable of reducing a force with which fuel presses a valve body in the valve closing direction. This electromagnetic suction valve mechanism comprises: a valve body; a valve seat on which the valve body sits; and a stopper which limits the movement of the valve body in the valve opening direction. The stopper has a shielding section (protruding section) provided with: a side surface (inner peripheral surface) facing the side peripheral surface of the valve body; and an end surface (tip surface) facing the valve seat. In a valve opening state in which a movement of the valve body in the valve opening direction is inhibited, the end surface of the shielding section is positioned closer to the valve seat side than a first surface (valve upstream-side end surface) facing the valve seat of the valve body.

Description

電磁吸入弁機構及び燃料ポンプElectromagnetic suction valve mechanism and fuel pump
 本発明は、電磁吸入弁機構、及び電磁吸入弁機構を備える燃料ポンプに関する。 The present invention relates to an electromagnetic intake valve mechanism and a fuel pump equipped with the electromagnetic intake valve mechanism.
 近年、内燃機関の高出力・低排気化とともに、グローバル展開が進められている。直噴エンジンに燃料を供給する燃料ポンプ(高圧燃料供給ポンプ)においては、簡易な構成で、低コストに製造することが重要な課題である。現在、市場で広く普及している燃料ポンプには、電磁吸入弁を備えたピストン式ポンプがある。電磁吸入弁の構成は、流体の動きに対して受動的に開閉する吸入弁と、吸入弁に係合して吸入弁の動作を規制する電磁アクチュエータからなるものがある。 In recent years, the global expansion of internal combustion engines has progressed along with the trend toward higher output and lower emissions. In a fuel pump (high-pressure fuel supply pump) that supplies fuel to a direct injection engine, it is important to manufacture the fuel pump with a simple structure at low cost. Fuel pumps that are widely used in the market today include piston pumps equipped with electromagnetic intake valves. Some electromagnetic intake valves are composed of an intake valve that passively opens and closes with respect to fluid movement, and an electromagnetic actuator that engages with the intake valve to regulate the operation of the intake valve.
 例えば、特許文献1に記載されたポンプは、電磁吸入弁が開弁しているとき、ばねが弁体を開弁側に押している。その際、弁体は、燃料通路上流側より流れ込んでくる燃料の流体力によっても開弁側に押されている。一方、電磁吸入弁が閉弁する場合は、磁気回路によって発生した磁気吸引力によって可動子が弁体を閉弁方向に移動させる。また、電磁吸入弁は、弁体を閉弁方向に押すばねを備えている。電磁吸入弁が閉弁する際、弁体は、加圧室側から逆流した燃料の流体力によっても閉弁方向に押されている。 For example, in the pump described in Patent Document 1, a spring pushes the valve body toward the valve opening side when the electromagnetic intake valve is open. At that time, the valve body is also pushed to the valve opening side by the fluid force of the fuel flowing in from the upstream side of the fuel passage. On the other hand, when the electromagnetic suction valve closes, the magnetic attraction force generated by the magnetic circuit causes the mover to move the valve body in the valve closing direction. Further, the electromagnetic suction valve is provided with a spring that pushes the valve body in the valve closing direction. When the electromagnetic suction valve closes, the valve body is also pushed in the valve closing direction by the fluid force of the fuel flowing back from the pressurizing chamber side.
特開2014-114722号公報JP 2014-114722 A
 しかしながら、特許文献1に記載されたポンプのように、加圧室側から逆流した燃料による流体力によって弁体が磁気回路による制御無しで閉弁方向に移動してしまうと、燃料を吐出しない燃料カット時に、吐出流量を0にできない。 However, as in the pump described in Patent Document 1, if the valve element moves in the valve closing direction without control by the magnetic circuit due to the fluid force of the fuel flowing back from the pressurizing chamber side, the fuel will not be discharged. The discharge flow rate cannot be set to 0 during cutting.
 本発明の目的は、上記の問題点を考慮し、燃料が弁体を閉弁方向に押す力を低減することが可能な電磁吸入弁機構及び燃料ポンプを提供することにある。 An object of the present invention is to provide an electromagnetic intake valve mechanism and a fuel pump that can reduce the force of fuel pushing the valve body in the valve closing direction, in consideration of the above problems.
 上記課題を解決し、本発明の目的を達成するため、本発明の電磁吸入弁機構は、弁体と、弁体が着座する弁座と、弁体の開弁方向の移動を制限するストッパとを備える。ストッパは、弁体の側周面に対向する側面と、弁座に対向する先端面とが設けられた突起部を有する。弁体がストッパに開弁方向の移動を制限された開弁状態において、突起部の先端面は、弁体の弁座に対向する弁上流側端面よりも弁座側に位置する。 In order to solve the above problems and achieve the object of the present invention, the electromagnetic intake valve mechanism of the present invention comprises a valve body, a valve seat on which the valve body is seated, and a stopper that restricts the movement of the valve body in the valve opening direction. Prepare. The stopper has a protrusion provided with a side surface facing the side peripheral surface of the valve body and a tip surface facing the valve seat. In the valve open state in which the movement of the valve body in the valve opening direction is restricted by the stopper, the tip surface of the protrusion is located closer to the valve seat than the upstream end face of the valve body facing the valve seat.
 また、本発明の燃料ポンプは、加圧室を備えたボディと、ボディに往復運動可能に支持され、往復運動により加圧室の容量を増減させるプランジャと、加圧室へ燃料を吐出する上記吸入弁機構とを備える。 Further, the fuel pump of the present invention comprises a body having a pressurizing chamber, a plunger supported by the body so as to be able to reciprocate and increasing or decreasing the capacity of the pressurizing chamber by reciprocating motion, and the plunger for discharging fuel into the pressurizing chamber. and an intake valve mechanism.
 上記構成の吸入弁機構によれば、燃料が弁体を閉弁方向に押す力を低減することができる。
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the intake valve mechanism configured as described above, it is possible to reduce the force of the fuel pushing the valve body in the valve closing direction.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to a first embodiment of the present invention; FIG. 本発明の第1実施形態に係る高圧燃料供給ポンプの縦断面図である。1 is a longitudinal sectional view of a high-pressure fuel supply pump according to a first embodiment of the invention; FIG. 図2に示すA-A線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2; 本発明の第1実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。FIG. 4 is a cross-sectional view showing an enlarged valve open state of the electromagnetic intake valve mechanism according to the first embodiment of the present invention; 本発明の第1実施形態に係る電磁吸入弁機構の閉弁状態を拡大した状態で示す断面図である。FIG. 3 is an enlarged cross-sectional view showing a closed state of the electromagnetic suction valve mechanism according to the first embodiment of the present invention; 本発明の第1実施形態に係る電磁吸入弁機構のストッパの斜視図である。FIG. 4 is a perspective view of a stopper of the electromagnetic intake valve mechanism according to the first embodiment of the present invention; 本発明の第1実施形態に係る電磁吸入弁機構の開弁状態における燃料の流れを示す説明図である。FIG. 4 is an explanatory diagram showing the flow of fuel in the valve open state of the electromagnetic intake valve mechanism according to the first embodiment of the present invention; 本発明の第2実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。FIG. 7 is a cross-sectional view showing an enlarged state of an open valve mechanism of an electromagnetic suction valve mechanism according to a second embodiment of the present invention; 本発明の第3実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。FIG. 11 is a cross-sectional view showing an enlarged open state of an electromagnetic intake valve mechanism according to a third embodiment of the present invention;
1.第1実施形態
 以下、本発明の第1実施形態に係る電磁弁機構及び高圧燃料供給ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。
1. First Embodiment Hereinafter, an electromagnetic valve mechanism and a high-pressure fuel supply pump according to a first embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected to the member which is common in each figure.
[燃料供給システム]
 まず、本実施形態に係る高圧燃料供給ポンプ(燃料ポンプ)を用いた燃料供給システムについて、図1を用いて説明する。
 図1は、本実施形態に係る高圧燃料供給ポンプを用いた燃料供給システムの全体構成図である。
[Fuel supply system]
First, a fuel supply system using a high-pressure fuel supply pump (fuel pump) according to this embodiment will be described with reference to FIG.
FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel supply pump according to this embodiment.
 図1に示すように、燃料供給システムは、高圧燃料供給ポンプ(燃料ポンプ)100と、ECU(Engine Control Unit)101と、燃料タンク103と、コモンレール106と、複数のインジェクタ107とを備えている。高圧燃料供給ポンプ100の部品は、ポンプボディ1(以下、「ボディ1」とする。)に一体に組み込まれている。 As shown in FIG. 1, the fuel supply system includes a high-pressure fuel supply pump (fuel pump) 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107. . Components of the high-pressure fuel supply pump 100 are integrally incorporated in a pump body 1 (hereinafter referred to as "body 1").
 燃料タンク103の燃料は、ECU101からの信号に基づいて駆動するフィードポンプ102によって汲み上げられる。汲み上げられた燃料は、不図示のプレッシャレギュレータにより適切な圧力に加圧され、低圧配管104を通して高圧燃料供給ポンプ100の低圧燃料吸入口81に送られる。 The fuel in the fuel tank 103 is pumped up by a feed pump 102 driven based on a signal from the ECU 101. The pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown) and sent to the low-pressure fuel suction port 81 of the high-pressure fuel supply pump 100 through the low-pressure pipe 104 .
 高圧燃料供給ポンプ100は、燃料タンク103から供給された燃料を加圧して、コモンレール106に圧送する。コモンレール106には、複数のインジェクタ107と、燃料圧力センサ105が装着されている。複数のインジェクタ107は、気筒(燃焼室)数にあわせて装着されており、ECU101から出力される駆動電流に従って燃料を噴射する。本実施形態の燃料供給システムは、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムである。 The high-pressure fuel supply pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106 . A plurality of injectors 107 and a fuel pressure sensor 105 are attached to the common rail 106 . A plurality of injectors 107 are mounted according to the number of cylinders (combustion chambers), and inject fuel according to the drive current output from the ECU 101 . The fuel supply system of this embodiment is a so-called direct injection engine system in which the injector 107 directly injects fuel into the cylinder of the engine.
 燃料圧力センサ105は、検出した圧力データをECU101に出力する。ECU101は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料長)や適切な燃料圧力(目標燃料圧力)等を演算する。 The fuel pressure sensor 105 outputs the detected pressure data to the ECU 101. The ECU 101 determines an appropriate injection fuel amount (target injection fuel length) and an appropriate fuel pressure (target fuel pressure), etc.
 また、ECU101は、燃料圧力(目標燃料圧力)等の演算結果に基づいて、高圧燃料供給ポンプ100や複数のインジェクタ107の駆動を制御する。すなわち、ECU101は、高圧燃料供給ポンプ100を制御するポンプ制御部と、インジェクタ107を制御するインジェクタ制御部を有する。 The ECU 101 also controls driving of the high-pressure fuel supply pump 100 and the plurality of injectors 107 based on calculation results such as the fuel pressure (target fuel pressure). That is, the ECU 101 has a pump control section that controls the high-pressure fuel supply pump 100 and an injector control section that controls the injector 107 .
 高圧燃料供給ポンプ100は、圧力脈動低減機構9と、容量可変機構である電磁吸入弁機構3と、吐出弁機構5と、リリーフ弁機構6(図2参照)とを有している。低圧燃料吸入口81から流入した燃料は、圧力脈動低減機構9、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。 The high-pressure fuel supply pump 100 has a pressure pulsation reduction mechanism 9, an electromagnetic intake valve mechanism 3 that is a variable displacement mechanism, a discharge valve mechanism 5, and a relief valve mechanism 6 (see FIG. 2). The fuel flowing from the low-pressure fuel intake port 81 reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the pressure pulsation reducing mechanism 9 and the intake passage 10b.
 電磁吸入弁機構3に流入した燃料は、弁体32を通過し、ボディ1に形成された吸入通路1aを流れた後に加圧室11に流入する。加圧室11には、プランジャ2が往復動可能に挿入されている。プランジャ2は、エンジンのカム91(図2参照)により動力が伝えられて往復動する。 The fuel that has flowed into the electromagnetic intake valve mechanism 3 passes through the valve body 32, flows through the intake passage 1a formed in the body 1, and then flows into the pressurization chamber 11. A plunger 2 is reciprocally inserted into the pressurizing chamber 11 . The plunger 2 reciprocates when power is transmitted by a cam 91 (see FIG. 2) of the engine.
 加圧室11では、プランジャ2の下降行程において電磁吸入弁機構3から燃料が吸入され、上昇行程において燃料が加圧される。加圧室11の燃料圧力が所定値を超えると、吐出弁機構5が開弁し、高圧燃料が燃料吐出口12aを経てコモンレール106へ圧送される。高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。 In the pressurization chamber 11, fuel is sucked from the electromagnetic intake valve mechanism 3 during the downward stroke of the plunger 2, and is pressurized during the upward stroke. When the fuel pressure in the pressurization chamber 11 exceeds a predetermined value, the discharge valve mechanism 5 is opened, and high pressure fuel is pressure-fed to the common rail 106 through the fuel discharge port 12a. The discharge of fuel by the high-pressure fuel supply pump 100 is operated by opening and closing the electromagnetic intake valve mechanism 3 . The opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101 .
[高圧燃料供給ポンプ]
 次に、高圧燃料供給ポンプ100の構成について、図2及び図3を用いて説明する。
 図2は、高圧燃料供給ポンプ100の水平方向に直交する断面で見た縦断面図である。
図3は、図2に示すA-A線に沿った断面図である。
[High pressure fuel supply pump]
Next, the configuration of the high-pressure fuel supply pump 100 will be described with reference to FIGS. 2 and 3. FIG.
FIG. 2 is a vertical cross-sectional view of the high-pressure fuel supply pump 100 seen in a cross section perpendicular to the horizontal direction.
3 is a cross-sectional view taken along line AA shown in FIG. 2. FIG.
 図2及び図3に示すように、高圧燃料供給ポンプ100のボディ1には、上述した吸入通路1aと、取付けフランジ1b(図3参照)が設けられている。取付けフランジ1bは、エンジン(内燃機関)の燃料ポンプ取付け部90に密着し、図示しない複数のボルト(ねじ)で固定されている。すなわち、高圧燃料供給ポンプ100は、取付けフランジ1bによって燃料ポンプ取付け部90に固定されている。 As shown in FIGS. 2 and 3, the body 1 of the high-pressure fuel supply pump 100 is provided with the above-described intake passage 1a and mounting flange 1b (see FIG. 3). The mounting flange 1b is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine) and fixed with a plurality of bolts (screws) not shown. That is, the high-pressure fuel supply pump 100 is fixed to the fuel pump mounting portion 90 by the mounting flange 1b.
 図2に示すように、燃料ポンプ取付け部90とボディ1との間には、シート部材の一具体例を示すOリング93が介在されている。このOリング93は、エンジンオイルが燃料ポンプ取付け部90とボディ1との間を通ってエンジン(内燃機関)の外部に漏れることを防止している。 As shown in FIG. 2, an O-ring 93, which is a specific example of a seat member, is interposed between the fuel pump mounting portion 90 and the body 1. This O-ring 93 prevents engine oil from leaking outside the engine (internal combustion engine) through between the fuel pump mounting portion 90 and the body 1 .
 また、高圧燃料供給ポンプ100のボディ1には、プランジャ2の往復運動をガイドするシリンダ4が取り付けられている。シリンダ4は、筒状に形成されており、その外周側においてボディ1に圧入されている。ボディ1及びシリンダ4は、電磁吸入弁機構3、プランジャ2、吐出弁機構5(図3参照)と共に加圧室11を形成している。 A cylinder 4 that guides the reciprocating motion of the plunger 2 is attached to the body 1 of the high-pressure fuel supply pump 100 . The cylinder 4 is formed in a cylindrical shape and is press-fitted into the body 1 at its outer peripheral side. The body 1 and the cylinder 4 form a pressure chamber 11 together with the electromagnetic suction valve mechanism 3, the plunger 2, and the discharge valve mechanism 5 (see FIG. 3).
 ボディ1には、シリンダ4の軸方向の中央部に係合する固定部1cが設けられている。
ボディ1の固定部1cは、下方(図2中の下方)から荷重を加えられることで塑性変形し、シリンダ4を上方へ押圧する。これにより、シリンダ4がボディ1に圧入される。その結果、加圧室11にて加圧された燃料が、シリンダ4とボディ1との間から漏れないようにすることができる。
The body 1 is provided with a fixing portion 1c that engages with the central portion of the cylinder 4 in the axial direction.
The fixed portion 1c of the body 1 is plastically deformed by applying a load from below (lower side in FIG. 2), and presses the cylinder 4 upward. Thereby, the cylinder 4 is press-fitted into the body 1 . As a result, the fuel pressurized in the pressurization chamber 11 can be prevented from leaking from between the cylinder 4 and the body 1 .
 プランジャ2の下端には、タペット92が設けられている。タペット92は、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達する。プランジャ2は、リテーナ15を介してばね16によりカム91側に付勢されており、タペット92に圧着されている。タペット92は、カム91の回転に伴って往復動する。プランジャ2は、タペット92と一緒に往復動し、加圧室11の容積を変化させる。 A tappet 92 is provided at the lower end of the plunger 2 . The tappet 92 converts the rotational motion of the cam 91 attached to the camshaft of the engine into vertical motion and transmits it to the plunger 2 . The plunger 2 is urged toward the cam 91 by the spring 16 via the retainer 15 and pressed against the tappet 92 . The tappet 92 reciprocates as the cam 91 rotates. The plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurization chamber 11 .
 また、シリンダ4とリテーナ15との間には、シールホルダ17が配置されている。シールホルダ17は、プランジャ2が挿入される筒状に形成されており、シリンダ4側である上端部に副室17aを有している。また、シールホルダ17は、リテーナ15側である下端部にプランジャシール18を保持している。 A seal holder 17 is arranged between the cylinder 4 and the retainer 15 . The seal holder 17 is formed in a cylindrical shape into which the plunger 2 is inserted, and has an auxiliary chamber 17a at its upper end on the cylinder 4 side. In addition, the seal holder 17 holds a plunger seal 18 at the lower end on the retainer 15 side.
 プランジャシール18は、プランジャ2の外周に摺動可能に接触している。プランジャシール18は、プランジャ2が往復動したとき、副室17aの燃料をシールし、副室17aの燃料がエンジン内部へ流入しないようにしている。また、プランジャシール18は、エンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がボディ1の内部に流入することを防止している。 The plunger seal 18 is in slidable contact with the outer circumference of the plunger 2 . The plunger seal 18 seals the fuel in the auxiliary chamber 17a when the plunger 2 reciprocates, preventing the fuel in the auxiliary chamber 17a from flowing into the engine. The plunger seal 18 also prevents lubricating oil (including engine oil) that lubricates the sliding parts in the engine from flowing into the body 1 .
 図2において、プランジャ2は、上下方向に往復動する。プランジャ2が下降すると、加圧室11の容積が拡大し、プランジャ2が上昇すると、加圧室11の容積が減少する。
すなわち、プランジャ2は、加圧室11の容積を拡大及び縮小させる方向に往復動するように配置されている。
In FIG. 2, the plunger 2 reciprocates vertically. If the plunger 2 descend|falls, the volume of the pressurization chamber 11 will expand, and if the plunger 2 raises, the volume of the pressurization chamber 11 will reduce.
That is, the plunger 2 is arranged so as to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 11 .
 プランジャ2は、大径部2aと小径部2bを有している。プランジャ2が往復動すると、大径部2a及び小径部2bは、副室17aに位置する。したがって、副室17aの体積は、プランジャ2の往復動によって増減する。 The plunger 2 has a large diameter portion 2a and a small diameter portion 2b. When the plunger 2 reciprocates, the large diameter portion 2a and the small diameter portion 2b are positioned in the auxiliary chamber 17a. Therefore, the volume of the auxiliary chamber 17a increases and decreases as the plunger 2 reciprocates.
 副室17aは、燃料通路10c(図3参照)により低圧燃料室10と連通している。プランジャ2の下降時は、副室17aから低圧燃料室10へ燃料の流れが発生し、プランジャ2の上昇時は、低圧燃料室10から副室17aへ燃料の流れが発生する。これにより、高圧燃料供給ポンプ100の吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料供給ポンプ100内部で発生する圧力脈動を低減することができる。 The sub-chamber 17a communicates with the low-pressure fuel chamber 10 through a fuel passage 10c (see FIG. 3). When the plunger 2 moves downward, fuel flows from the auxiliary chamber 17a to the low-pressure fuel chamber 10. When the plunger 2 moves upward, fuel flows from the low-pressure fuel chamber 10 to the auxiliary chamber 17a. As a result, the flow rate of fuel into and out of the high-pressure fuel supply pump 100 during the intake stroke or return stroke of the high-pressure fuel supply pump 100 can be reduced, and the pressure pulsation generated inside the high-pressure fuel supply pump 100 can be reduced.
 図3に示すように、ボディ1の側面部には、吸入ジョイント8が取り付けられている。
吸入ジョイント8は、燃料タンク103から供給された燃料を通す低圧配管104(図1参照)に接続されている。燃料タンク103の燃料は、吸入ジョイント8から高圧燃料供給ポンプ100の内部に供給される。
As shown in FIG. 3, a suction joint 8 is attached to the side portion of the body 1 .
The suction joint 8 is connected to a low-pressure pipe 104 (see FIG. 1) through which fuel supplied from a fuel tank 103 passes. Fuel in the fuel tank 103 is supplied from the intake joint 8 to the inside of the high-pressure fuel supply pump 100 .
 吸入ジョイント8は、低圧配管104に接続された低圧燃料吸入口81と、低圧燃料吸入口81に連通する吸入流路82とを有している。吸入流路82を通過した燃料は、低圧燃料室10に設けた圧力脈動低減機構9及び吸入通路10b(図2参照)を介して電磁吸入弁機構3の吸入ポート31b(図2参照)に到達する。吸入流路82に連通する燃料通路内には、吸入フィルタ83が配置されている。吸入フィルタ83は、燃料に存在する異物を除去し、高圧燃料供給ポンプ100内に異物が進入することを防ぐ。 The suction joint 8 has a low-pressure fuel suction port 81 connected to the low-pressure pipe 104 and a suction passage 82 communicating with the low-pressure fuel suction port 81 . Fuel passing through the intake passage 82 reaches the intake port 31b (see FIG. 2) of the electromagnetic intake valve mechanism 3 via the pressure pulsation reduction mechanism 9 and the intake passage 10b (see FIG. 2) provided in the low-pressure fuel chamber 10. do. A suction filter 83 is arranged in the fuel passage communicating with the suction passage 82 . The suction filter 83 removes foreign matter present in the fuel and prevents foreign matter from entering the high-pressure fuel supply pump 100 .
 図2に示すように、高圧燃料供給ポンプ100のボディ1には、低圧燃料室(ダンパ室)10が設けられている。この低圧燃料室10は、ダンパーカバー14によって覆われている。ダンパーカバー14は、例えば、一方側が閉塞された筒状(カップ状)に形成されている。 As shown in FIG. 2, the body 1 of the high-pressure fuel supply pump 100 is provided with a low-pressure fuel chamber (damper chamber) 10 . This low-pressure fuel chamber 10 is covered with a damper cover 14 . The damper cover 14 is formed, for example, in a tubular (cup-like) shape with one side closed.
 低圧燃料室10は、低圧燃料流路10aと、吸入通路10bを有している。吸入通路10bは、電磁吸入弁機構3の吸入ポート31bに連通している。低圧燃料流路10aを通った燃料は、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。 The low-pressure fuel chamber 10 has a low-pressure fuel flow path 10a and an intake passage 10b. The intake passage 10 b communicates with the intake port 31 b of the electromagnetic intake valve mechanism 3 . The fuel that has passed through the low-pressure fuel passage 10a reaches the intake port 31b of the electromagnetic intake valve mechanism 3 via the intake passage 10b.
 低圧燃料流路10aには、圧力脈動低減機構9が設けられている。加圧室11に流入した燃料が再び開弁状態の電磁吸入弁機構3を通って吸入通路10bへと戻されると、低圧燃料室10に圧力脈動が発生する。圧力脈動低減機構9は、高圧燃料供給ポンプ100内で発生した圧力脈動が低圧配管104へ波及することを低減する。 A pressure pulsation reduction mechanism 9 is provided in the low-pressure fuel flow path 10a. When the fuel that has flowed into the pressurization chamber 11 passes through the open electromagnetic intake valve mechanism 3 and is returned to the intake passage 10b, pressure pulsation occurs in the low-pressure fuel chamber 10. FIG. The pressure pulsation reducing mechanism 9 reduces pressure pulsation generated in the high-pressure fuel supply pump 100 from spreading to the low-pressure pipe 104 .
 圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されている。圧力脈動低減機構9の金属ダイアフラムダンパは、膨張・収縮することで圧力脈動を吸収或いは低減する。 The pressure pulsation reducing mechanism 9 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are pasted together at their outer periphery and an inert gas such as argon is injected inside. The metal diaphragm damper of the pressure pulsation reducing mechanism 9 absorbs or reduces pressure pulsation by expanding and contracting.
 図3に示すように、ボディ1には、加圧室11に連通する吐出弁機構5が設けられている。吐出弁機構5は、吐出弁シート51と、吐出弁シート51に対して着座及び離座が可能な弁体52と、弁体52を吐出弁シート51側に付勢する吐出弁ばね53と、弁体52を摺動ガイドする吐出弁ガイド54とを有する。 As shown in FIG. 3 , the body 1 is provided with a discharge valve mechanism 5 that communicates with the pressurization chamber 11 . The discharge valve mechanism 5 includes a discharge valve seat 51, a valve body 52 that can be seated and separated from the discharge valve seat 51, a discharge valve spring 53 that biases the valve body 52 toward the discharge valve seat 51, and a discharge valve guide 54 that slides and guides the valve body 52 .
 吐出弁シート51、弁体52、吐出弁ばね53、及び吐出弁ガイド54は、ボディ1に形成された吐出弁室1dに収納されている。吐出弁室1dは、水平方向に延びる略円柱状の空間である。吐出弁室1dの一端は、燃料通路1eを介して加圧室11に連通している。吐出弁室1dの他端は、ボディ1の側面に開口している。吐出弁室1dの他端の開口は、プラグ55によって封止されている。プラグ55とボディ1は、例えば、溶接により接合されている。 The discharge valve seat 51, the valve body 52, the discharge valve spring 53, and the discharge valve guide 54 are housed in a discharge valve chamber 1d formed in the body 1. The discharge valve chamber 1d is a substantially cylindrical space extending in the horizontal direction. One end of the discharge valve chamber 1d communicates with the pressure chamber 11 via the fuel passage 1e. The other end of the discharge valve chamber 1 d is open to the side surface of the body 1 . A plug 55 seals the opening of the other end of the discharge valve chamber 1d. The plug 55 and the body 1 are joined by welding, for example.
 また、ボディ1には、吐出ジョイント12が溶接により接合されている。吐出ジョイント12は、燃料吐出口12aを有している。燃料吐出口12aは、ボディ1の内部において水平方向に延びる吐出通路1fを介して吐出弁室1dに連通している。また、吐出ジョイント12の燃料吐出口12aは、コモンレール106(図1参照)に接続されている。 A discharge joint 12 is also welded to the body 1 . The discharge joint 12 has a fuel discharge port 12a. The fuel discharge port 12a communicates with the discharge valve chamber 1d via a discharge passage 1f extending horizontally inside the body 1. As shown in FIG. A fuel discharge port 12a of the discharge joint 12 is connected to a common rail 106 (see FIG. 1).
 加圧室11と吐出弁室1dとの間に燃料圧力の差が無い状態では、弁体52が吐出弁ばね53の付勢力により吐出弁シート51に圧着されている。これにより、吐出弁機構5は、閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室1dの燃料圧力よりも大きくなると、弁体52は、吐出弁ばね53の付勢力に抗して移動し、吐出弁シート51から離れる。これにより、吐出弁機構5は、開弁状態となる。 When there is no difference in fuel pressure between the pressure chamber 11 and the discharge valve chamber 1d, the valve body 52 is pressed against the discharge valve seat 51 by the biasing force of the discharge valve spring 53. As a result, the discharge valve mechanism 5 is closed. When the fuel pressure in the pressure chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 1d, the valve element 52 moves against the biasing force of the discharge valve spring 53 and leaves the discharge valve seat 51. As a result, the discharge valve mechanism 5 is opened.
 吐出弁機構5が開弁状態になると、加圧室11内の高圧の燃料は、吐出弁室1d、吐出通路1f、燃料吐出口12aを経てコモンレール106(図1参照)に吐出される。吐出弁機構5の開弁状態において、弁体52は吐出弁ガイド54と接触し、弁体52のストロークが制限される。 When the discharge valve mechanism 5 is opened, the high-pressure fuel in the pressure chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 1d, the discharge passage 1f, and the fuel discharge port 12a. When the discharge valve mechanism 5 is open, the valve body 52 contacts the discharge valve guide 54 and the stroke of the valve body 52 is restricted.
 弁体52のストロークは、吐出弁ガイド54によって適切に決定される。これにより、弁体52のストロークが長いことにより生じる吐出弁機構5の閉じ遅れを防ぐことができる。その結果、吐出弁室1dに吐出された燃料が、再び加圧室11内に逆流してしまうことを防止でき、高圧燃料供給ポンプ100の効率低下を抑制することができる。このように、吐出弁機構5は、燃料の流通方向を制限する逆止弁となる。 The stroke of the valve body 52 is appropriately determined by the discharge valve guide 54. As a result, delay in closing of the discharge valve mechanism 5 due to the long stroke of the valve element 52 can be prevented. As a result, the fuel discharged into the discharge valve chamber 1d can be prevented from flowing back into the pressurizing chamber 11 again, and a decrease in the efficiency of the high-pressure fuel supply pump 100 can be suppressed. In this manner, the discharge valve mechanism 5 functions as a check valve that restricts the flow direction of fuel.
 また、ボディ1には、加圧室11に連通するリリーフ弁機構6が設けられている。リリーフ弁機構6は、リリーフ弁シート61と、リリーフ弁シート61に接離するリリーフ弁62と、リリーフ弁62を保持するリリーフ弁ホルダ63とを有する。また、リリーフ弁機構6は、リリーフ弁62をリリーフ弁シート61側へ付勢するリリーフばね64と、リリーフ弁ハウジング65とを有する。 Also, the body 1 is provided with a relief valve mechanism 6 communicating with the pressurization chamber 11 . The relief valve mechanism 6 has a relief valve seat 61 , a relief valve 62 that contacts and separates from the relief valve seat 61 , and a relief valve holder 63 that holds the relief valve 62 . The relief valve mechanism 6 also has a relief spring 64 that biases the relief valve 62 toward the relief valve seat 61 and a relief valve housing 65 .
 リリーフ弁ハウジング65は、ボディ1に形成されたリリーフ弁室1gに嵌合している。リリーフ弁室1gは、水平方向に延びる略円柱状の空間である。リリーフ弁室1gの一端は、燃料通路1hを介して加圧室11に連通している。リリーフ弁室1gの他端には、上述の吐出ジョイント12が接合されている。 The relief valve housing 65 is fitted into a relief valve chamber 1g formed in the body 1. The relief valve chamber 1g is a substantially cylindrical space extending in the horizontal direction. One end of the relief valve chamber 1g communicates with the pressure chamber 11 via the fuel passage 1h. The discharge joint 12 described above is joined to the other end of the relief valve chamber 1g.
 リリーフ弁ハウジング65は、リリーフばね64、リリーフ弁ホルダ63、リリーフ弁62、及びリリーフ弁シート61を内包する。リリーフ弁ハウジング65内には、リリーフばね64、リリーフ弁ホルダ63、リリーフ弁62がこの順に挿入される。その後、リリーフ弁シート61がリリーフ弁ハウジング65に圧入固定されている。 The relief valve housing 65 contains the relief spring 64, the relief valve holder 63, the relief valve 62, and the relief valve seat 61. In the relief valve housing 65, the relief spring 64, the relief valve holder 63, and the relief valve 62 are inserted in this order. After that, the relief valve seat 61 is press-fitted and fixed to the relief valve housing 65 .
 リリーフばね64は、一端部がリリーフ弁ハウジング65に当接し、他端部がリリーフ弁ホルダ63に当接している。リリーフ弁ホルダ63は、リリーフ弁62に係合している。リリーフ弁62には、リリーフばね64の付勢力がリリーフ弁ホルダ63を介して作用する。 The relief spring 64 has one end in contact with the relief valve housing 65 and the other end in contact with the relief valve holder 63 . The relief valve holder 63 is engaged with the relief valve 62 . The biasing force of the relief spring 64 acts on the relief valve 62 via the relief valve holder 63 .
 リリーフ弁62は、リリーフばね64の付勢力により押圧され、リリーフ弁シート61の燃料通路を塞いでいる。リリーフ弁シート61の燃料通路は、吐出通路1fに連通している。加圧室11(上流側)とリリーフ弁シート61(下流側)との間における燃料の移動は、リリーフ弁62がリリーフ弁シート61に接触(密着)することにより遮断されている。 The relief valve 62 is pressed by the biasing force of the relief spring 64 and closes the fuel passage of the relief valve seat 61 . A fuel passage of the relief valve seat 61 communicates with the discharge passage 1f. The movement of fuel between the pressure chamber 11 (upstream side) and the relief valve seat 61 (downstream side) is blocked by the relief valve 62 contacting (adhering to) the relief valve seat 61 .
 コモンレール106やその先の部材内の圧力が高くなると、燃料吐出口12a側の燃料がリリーフ弁62を押圧して、リリーフばね64の付勢力に抗してリリーフ弁62を移動させる。その結果、リリーフ弁62が開弁し、吐出通路1f内の燃料が、リリーフ弁シート61の燃料通路を通って加圧室11に戻る。したがって、リリーフ弁62を開弁させる圧力は、リリーフばね64の付勢力によって決定される。 When the pressure in the common rail 106 and the members beyond it rises, the fuel on the side of the fuel discharge port 12a presses the relief valve 62 and moves the relief valve 62 against the urging force of the relief spring 64. As a result, the relief valve 62 is opened, and the fuel in the discharge passage 1f returns to the pressurization chamber 11 through the fuel passage of the relief valve seat 61. Therefore, the pressure for opening the relief valve 62 is determined by the biasing force of the relief spring 64 .
 なお、本実施形態のリリーフ弁機構6は、加圧室11に連通しているが、これに限定されるものではなく、例えば、低圧通路(低圧燃料吸入口81や吸入通路10b等)に連通するようにしてもよい。 Although the relief valve mechanism 6 of the present embodiment communicates with the pressurizing chamber 11, it is not limited to this, and communicates with, for example, a low-pressure passage (low-pressure fuel suction port 81, suction passage 10b, etc.). You may make it
[電磁吸入弁機構]
 図2及び図3に示すように、電磁吸入弁機構3は、ボディ1に形成された横穴1iに挿入されている。電磁吸入弁機構3は、横穴1iに圧入された吸入弁ハウジング31と、弁体32と、ロッド33と、ロッド付勢ばね34と、電磁コイル35と、アンカー36とを有している。電磁吸入弁機構3は、弁体32を含む吸入弁機構部と、電磁コイル35やアンカー36、ロッド33を含むソレノイド機構部とに大別される。
[Electromagnetic suction valve mechanism]
As shown in FIGS. 2 and 3, the electromagnetic suction valve mechanism 3 is inserted into a lateral hole 1i formed in the body 1. As shown in FIG. The electromagnetic suction valve mechanism 3 has a suction valve housing 31 press-fitted into the lateral hole 1i, a valve body 32, a rod 33, a rod biasing spring 34, an electromagnetic coil 35, and an anchor . The electromagnetic suction valve mechanism 3 is roughly divided into a suction valve mechanism portion including the valve body 32 and a solenoid mechanism portion including the electromagnetic coil 35 , the anchor 36 and the rod 33 .
 吸入弁ハウジング31は、筒状に形成されており、内周部に弁座31aが設けられている。また、吸入弁ハウジング31には、外周部から内周部に到達する吸入ポート31bが形成されている。この吸入ポート31bは、上述した低圧燃料室10における吸入通路10bに連通している。また、吸入弁ハウジング31は、ロッド33が貫通するロッドガイド31cを有している。 The intake valve housing 31 is formed in a cylindrical shape, and has a valve seat 31a on its inner periphery. Further, the intake valve housing 31 is formed with an intake port 31b reaching from the outer peripheral portion to the inner peripheral portion. The intake port 31b communicates with the intake passage 10b in the low-pressure fuel chamber 10 described above. The intake valve housing 31 also has a rod guide 31c through which the rod 33 passes.
 ボディ1に形成された横穴1iには、吸入弁ハウジング31の弁座31aに対向するストッパ37が配置されている。弁体32は、ストッパ37と弁座31aとの間に配置されている。また、ストッパ37と弁体32との間には、弁付勢ばね38が介在されている。
弁付勢ばね38は、弁体32を弁座31a側に付勢する。
A stopper 37 facing the valve seat 31 a of the intake valve housing 31 is arranged in the lateral hole 1 i formed in the body 1 . The valve body 32 is arranged between the stopper 37 and the valve seat 31a. A valve biasing spring 38 is interposed between the stopper 37 and the valve body 32 .
A valve biasing spring 38 biases the valve body 32 toward the valve seat 31a.
 弁体32は、弁座31aに当接(着座)することにより、吸入ポート31bと加圧室11との連通部を閉鎖する。弁体32が吸入ポート31bと加圧室11との連通部を閉鎖すると、電磁吸入弁機構3が閉弁状態になる。弁体32は、ストッパ37に当接することにより、吸入ポート31bと加圧室11との連通部を開放する。弁体32が吸入ポート31bと加圧室11との連通部を開放すると、電磁吸入弁機構3が開弁状態になる。 The valve body 32 closes the communicating portion between the suction port 31b and the pressurizing chamber 11 by abutting (seating) on the valve seat 31a. When the valve body 32 closes the communicating portion between the suction port 31b and the pressurizing chamber 11, the electromagnetic suction valve mechanism 3 is closed. The valve body 32 opens the communicating portion between the intake port 31 b and the pressurizing chamber 11 by abutting against the stopper 37 . When the valve body 32 opens the communicating portion between the suction port 31b and the pressurizing chamber 11, the electromagnetic suction valve mechanism 3 is opened.
 ロッド33は、吸入弁ハウジング31のロッドガイド31cとアンカー36を貫通している。ロッド33には、ロッド鍔部33aが形成されている。ロッド鍔部33aには、ロッド付勢ばね34の一端に係合している。ロッド付勢ばね34の他端は、ロッド付勢ばね34を囲うように配置された固定コア39に係合している。ロッド付勢ばね34は、ロッド33を介して弁体32をストッパ37側である開弁方向に付勢する。 The rod 33 passes through the rod guide 31c of the intake valve housing 31 and the anchor 36. A rod collar portion 33a is formed on the rod 33 . One end of a rod biasing spring 34 is engaged with the rod collar portion 33a. The other end of the rod biasing spring 34 is engaged with a fixed core 39 arranged to surround the rod biasing spring 34 . The rod biasing spring 34 biases the valve body 32 in the valve opening direction, which is the stopper 37 side, via the rod 33 .
 アンカー36は、略円筒状に形成されている。アンカー36の軸方向の一端には、アンカー付勢ばね40の一端が当接する。アンカー36の軸方向の他端は、固定コア39の端面に対向している。アンカー36の軸方向の他端には、ロッド33のロッド鍔部33aが当接するフランジ当接部が形成されている。 The anchor 36 is formed in a substantially cylindrical shape. One end of an anchor biasing spring 40 abuts against one axial end of the anchor 36 . The other axial end of the anchor 36 faces the end face of the fixed core 39 . A flange contact portion is formed at the other axial end of the anchor 36 with which the rod collar portion 33a of the rod 33 contacts.
 アンカー付勢ばね40の他端は、ロッドガイド31cに当接している。アンカー付勢ばね40は、アンカー36をロッド33のロッド鍔部33a側に付勢している。アンカー36の移動可能距離は、弁体32の移動可能距離よりも長く設定される。これにより、弁体32を弁座31aに確実に当接(着座)させることができ、電磁吸入弁機構3を確実に閉弁状態にすることができる。 The other end of the anchor biasing spring 40 is in contact with the rod guide 31c. The anchor biasing spring 40 biases the anchor 36 toward the rod collar portion 33 a of the rod 33 . The movable distance of the anchor 36 is set longer than the movable distance of the valve body 32 . As a result, the valve body 32 can be reliably brought into contact (seated) on the valve seat 31a, and the electromagnetic intake valve mechanism 3 can be reliably closed.
 電磁コイル35は、固定コア39の周りを一周するように配置されている。電磁コイル35には、端子部材30(図2参照)が電気的に接続されている。電磁コイル35には、端子部材30を介して電流が流れる。電磁コイル35に電流が流れていない無通電状態において、ロッド33は、ロッド付勢ばね34による付勢力によって開弁方向に付勢され、弁体32を開弁方向に押圧している。その結果、弁体32が弁座31aから離れてストッパ37に当接し、電磁吸入弁機構3が開弁状態になっている。すなわち、電磁吸入弁機構3は、無通電状態において開弁するノーマルオープン式となっている。 The electromagnetic coil 35 is arranged so as to go around the fixed core 39 . A terminal member 30 (see FIG. 2) is electrically connected to the electromagnetic coil 35 . A current flows through the electromagnetic coil 35 via the terminal member 30 . In a non-energized state in which no current flows through the electromagnetic coil 35, the rod 33 is biased in the valve opening direction by the biasing force of the rod biasing spring 34, and presses the valve body 32 in the valve opening direction. As a result, the valve body 32 separates from the valve seat 31a and comes into contact with the stopper 37, and the electromagnetic suction valve mechanism 3 is opened. That is, the electromagnetic intake valve mechanism 3 is of a normally open type that opens when no power is supplied.
 電磁吸入弁機構3の開弁状態において、吸入ポート31bの燃料は、弁体32と弁座31aとの間を通り、ストッパ37の複数の連通溝377a(図6参照)及び吸入通路1aを通って加圧室11に流入する。電磁吸入弁機構3の開弁状態において、弁体32は、ストッパ37と接触するため、弁体32の開弁方向の位置が規制される。電磁吸入弁機構3の開弁状態において、弁体32と弁座31aとの間に存在する隙間は、弁体32の可動範囲であり、これが開弁ストロークとなる。 When the electromagnetic intake valve mechanism 3 is open, the fuel in the intake port 31b passes between the valve body 32 and the valve seat 31a, through the plurality of communication grooves 377a (see FIG. 6) of the stopper 37, and the intake passage 1a. and flows into the pressurization chamber 11. When the electromagnetic suction valve mechanism 3 is in the open state, the valve body 32 contacts the stopper 37, so the position of the valve body 32 in the valve opening direction is restricted. In the open state of the electromagnetic intake valve mechanism 3, the gap between the valve body 32 and the valve seat 31a is the movable range of the valve body 32, which is the valve opening stroke.
 電磁コイル35に電流が流れると、アンカー36と固定コア39のそれぞれの磁気吸引面(対向面)において磁気吸引力が発生する。電磁コイル35と、アンカー36と、固定コア39は、本発明に係る磁気吸引力発生部を構成する。磁気吸引面において磁気吸引力が発生すると、アンカー36は、固定コア39に吸引される。その結果、アンカー36は、ロッド付勢ばね34の付勢力に抗して移動し、固定コア39に接触する。 When a current flows through the electromagnetic coil 35, a magnetic attraction force is generated on each magnetic attraction surface (facing surface) of the anchor 36 and the fixed core 39. The electromagnetic coil 35, the anchor 36, and the fixed core 39 constitute the magnetic attraction force generator according to the present invention. The anchor 36 is attracted to the fixed core 39 when a magnetic attraction force is generated on the magnetic attraction surface. As a result, the anchor 36 moves against the biasing force of the rod biasing spring 34 and contacts the fixed core 39 .
 アンカー36が固定コア39側である閉弁方向へ移動すると、アンカー36が係合するロッド33がアンカー36と共に移動する。その結果、弁体32は、開弁方向への付勢力から解放され、弁付勢ばね38による付勢力により閉弁方向に移動する。そして、弁体32が、吸入弁ハウジング31の弁座31aに接触すると、電磁吸入弁機構3が閉弁状態になる。 When the anchor 36 moves in the valve closing direction on the side of the fixed core 39 , the rod 33 with which the anchor 36 engages moves together with the anchor 36 . As a result, the valve body 32 is released from the biasing force in the valve opening direction, and moves in the valve closing direction due to the biasing force of the valve biasing spring 38 . When the valve body 32 contacts the valve seat 31a of the intake valve housing 31, the electromagnetic intake valve mechanism 3 is closed.
[弁体、弁座及びストッパの構成]
 次に、弁体32、弁座31a及びストッパ37の構成について、図4~図6を参照して説明する。
 図4は、電磁吸入弁機構3の開弁状態を拡大した状態で示す断面図である。図5は、電磁吸入弁機構3の閉弁状態を拡大した状態で示す断面図である。図6は、ストッパ37の斜視図である。
[Construction of valve body, valve seat and stopper]
Next, configurations of the valve body 32, the valve seat 31a and the stopper 37 will be described with reference to FIGS. 4 to 6. FIG.
FIG. 4 is an enlarged cross-sectional view showing the open state of the electromagnetic intake valve mechanism 3. As shown in FIG. FIG. 5 is a cross-sectional view showing an enlarged closed state of the electromagnetic intake valve mechanism 3. As shown in FIG. 6 is a perspective view of the stopper 37. FIG.
 図4及び図5に示すように、弁体32は、弁部321と、弁部321から突出する嵌合突部322とを有する。弁部321は、適当な厚みを有する円板状に形成されている。弁部321は、弁座31aに対向する第1面321aと、ストッパ37に対向する第2面321bを有する。第1面321aは、本発明に係る弁上流側端面に対応する。 As shown in FIGS. 4 and 5 , the valve body 32 has a valve portion 321 and a fitting projection 322 projecting from the valve portion 321 . The valve portion 321 is formed in a disc shape having an appropriate thickness. The valve portion 321 has a first surface 321 a facing the valve seat 31 a and a second surface 321 b facing the stopper 37 . The first surface 321a corresponds to the valve upstream end surface according to the present invention.
 嵌合突部322は、弁部321の第2面321bから略垂直に突出している。嵌合突部322は、筒孔322aを有する円筒状に形成されている。嵌合突部322は、ストッパ37の後述するガイド孔375に摺動可能に嵌合する。嵌合突部322の筒孔322aにおける底面には、弁付勢ばね38の一端が当接する。 The fitting protrusion 322 protrudes substantially perpendicularly from the second surface 321b of the valve portion 321 . The fitting protrusion 322 is formed in a cylindrical shape having a cylindrical hole 322a. The fitting protrusion 322 is slidably fitted into a guide hole 375 of the stopper 37, which will be described later. One end of the valve biasing spring 38 abuts on the bottom surface of the cylindrical hole 322 a of the fitting protrusion 322 .
 嵌合突部322には、外周面から内周面まで貫通する貫通孔322bが設けられている。この貫通孔322bは、嵌合突部322の筒孔322a内の燃料が嵌合突部322の外側に流れるようにした息抜き流路となる。また、嵌合突部322の軸方向の一端である端面322cには、面取り加工が施されている。 The fitting protrusion 322 is provided with a through hole 322b penetrating from the outer peripheral surface to the inner peripheral surface. The through hole 322b serves as a breather passage through which the fuel in the cylindrical hole 322a of the fitting protrusion 322 flows to the outside of the fitting protrusion 322. As shown in FIG. An end face 322c, which is one axial end of the fitting protrusion 322, is chamfered.
 吸入弁ハウジング31の弁座31aは、弁体32の第1面321aが当接するシート部311と、シート部311の周囲を形成するシート外周部312とを有する。シート部311は、シート外周部312よりも弁体32側に突出する円環状の突出部に形成されている。つまり、シート外周部312は、シート部311に対して窪んだ形状となっている。
シート外周部312は、弁体32の第1面321aと略平行な平面を有している。また、シート部311は、シート外周部312に連続する傾斜面311aを有している。
The valve seat 31 a of the intake valve housing 31 has a seat portion 311 against which the first surface 321 a of the valve body 32 abuts, and a seat outer peripheral portion 312 forming the periphery of the seat portion 311 . The seat portion 311 is formed as an annular projecting portion projecting toward the valve body 32 from the seat outer peripheral portion 312 . That is, the seat outer peripheral portion 312 has a shape recessed with respect to the seat portion 311 .
The seat outer peripheral portion 312 has a plane substantially parallel to the first surface 321 a of the valve body 32 . Also, the seat portion 311 has an inclined surface 311 a that is continuous with the seat outer peripheral portion 312 .
 ストッパ37は、吸入弁ハウジング31に固定されている。図6に示すように、ストッパ37は、略円筒状に形成されており、径の異なる複数の内周面を有している。ストッパ37の最も径が小さい内周面を形成する貫通孔371には、ガイドピン370が圧入固定されている。 The stopper 37 is fixed to the intake valve housing 31. As shown in FIG. 6, the stopper 37 is formed in a substantially cylindrical shape and has a plurality of inner peripheral surfaces with different diameters. A guide pin 370 is press-fitted into a through hole 371 forming the inner peripheral surface of the stopper 37 having the smallest diameter.
 ストッパ37は、ばね座面372と、ストッパ面373と、対向面374とを有している。ばね座面372は、ストッパ37の2番目に径が小さい内周面を形成する孔の底面を形成している。ばね座面372には、弁付勢ばね38の他端が当接する。弁付勢ばね38には、ガイドピン370が貫通している。 The stopper 37 has a spring bearing surface 372 , a stopper surface 373 and a facing surface 374 . The spring seat surface 372 forms the bottom surface of the hole forming the inner peripheral surface of the stopper 37 having the second smallest diameter. The other end of the valve biasing spring 38 contacts the spring seat surface 372 . A guide pin 370 passes through the valve biasing spring 38 .
 ストッパ面373は、ストッパ37の3番目に径が小さい内周面を形成するガイド孔375の底面を形成する。ストッパ面373には、開弁状態における弁体32の端面が当接する。ガイド孔375の内周面には、弁体32の嵌合突部322が摺動可能に嵌合する。
ガイド孔375の内周面は、嵌合突部322との間に適切な隙間を設けている。また、ガイド孔375の内周面の軸方向の長さは、嵌合突部322の適切な摺動長に設定されている。これにより、弁体32の偏心や傾きを抑制することができる。
The stopper surface 373 forms the bottom surface of a guide hole 375 that forms the inner peripheral surface of the stopper 37 with the third smallest diameter. The end face of the valve body 32 in the valve open state contacts the stopper face 373 . The fitting protrusion 322 of the valve body 32 is slidably fitted to the inner peripheral surface of the guide hole 375 .
An appropriate gap is provided between the inner peripheral surface of the guide hole 375 and the fitting protrusion 322 . In addition, the axial length of the inner peripheral surface of the guide hole 375 is set to an appropriate sliding length of the fitting protrusion 322 . As a result, eccentricity and inclination of the valve body 32 can be suppressed.
 対向面374は、ストッパ37の最も径が大きい内周面を形成する孔の底面を形成している。ストッパ37の最も径が大きい内周面を形成する孔には、弁体32の弁部321が挿入されている。ストッパ37の最も径が大きい内周面と弁部321の外周面との間には、適当な距離の間隙が形成されている(図4及び図5参照)。対向面374には、弁部321の第2面321bが対向する。 The facing surface 374 forms the bottom surface of the hole that forms the inner peripheral surface of the stopper 37 with the largest diameter. A valve portion 321 of the valve body 32 is inserted into the hole forming the inner peripheral surface of the stopper 37 having the largest diameter. An appropriate gap is formed between the inner peripheral surface of the stopper 37 having the largest diameter and the outer peripheral surface of the valve portion 321 (see FIGS. 4 and 5). The second surface 321 b of the valve portion 321 faces the facing surface 374 .
 また、ストッパ37は、遮蔽部376を有している。遮蔽部376は、ストッパ37の最も径が大きい内周面を形成する孔を有する筒部を形成している。図4に示すように、電磁吸入弁機構3の開弁状態において、遮蔽部376の端面376aは、弁体32の第1面321aよりも弁座31a側に突出している。また、遮蔽部376の端面376aは、シート外周部312の平面及び弁体32の第1面321aと略平行な平面に形成されている。 Also, the stopper 37 has a shielding portion 376 . The shielding portion 376 forms a cylindrical portion having a hole that forms the inner peripheral surface of the stopper 37 with the largest diameter. As shown in FIG. 4, when the electromagnetic suction valve mechanism 3 is open, the end surface 376a of the shielding portion 376 protrudes from the first surface 321a of the valve body 32 toward the valve seat 31a. An end surface 376 a of the shielding portion 376 is formed on a plane substantially parallel to the plane of the seat outer peripheral portion 312 and the first surface 321 a of the valve body 32 .
 遮蔽部376と弁体32(弁部321)との間に生じる隙間の流路断面積は、貫通孔322bの流路断面積以上に設定する。これにより、吸入通路1a(図2参照)から戻ってくる燃料が、弁体32の動作を阻害しないようにすることができる。 The channel cross-sectional area of the gap generated between the shielding part 376 and the valve body 32 (valve part 321) is set to be equal to or larger than the channel cross-sectional area of the through hole 322b. This prevents the fuel returning from the intake passage 1a (see FIG. 2) from interfering with the operation of the valve body 32. As shown in FIG.
 さらに、ストッパ37は、遮蔽部376に連続する圧入部377を有している。圧入部377は、吸入弁ハウジング31に圧入される。吸入弁ハウジング31に圧入部377を圧入することにより、ストッパ37が吸入弁ハウジング31に固定されている。圧入部377には、複数の連通溝377aが設けられている。連通溝377aは、吸入弁ハウジング31とストッパ37との間に、燃料が通る連通路を形成する。連通路は、吸入ポート31bと加圧室11を繋ぐ流路となる。 Furthermore, the stopper 37 has a press-fitting portion 377 that is continuous with the shielding portion 376 . The press-fitting portion 377 is press-fitted into the intake valve housing 31 . The stopper 37 is fixed to the intake valve housing 31 by press-fitting the press-fit portion 377 into the intake valve housing 31 . The press-fit portion 377 is provided with a plurality of communication grooves 377a. The communication groove 377a forms a communication path between the intake valve housing 31 and the stopper 37 through which fuel passes. The communication path serves as a flow path that connects the suction port 31 b and the pressurization chamber 11 .
 本実施形態では、連通溝377aを4つ設けている。しかし、本発明に係るストッパの連通溝としては、5つ以上であってもよく、また3つ以下であってもよい。一般的に軸対称の部品に縦方向の加工を行うと、加工工数が増えるが、溝の数を減らすことにより加工工数を減らすことが可能である。また、連通溝377aを設けることにより、加工時に工具でストッパ37を把持し易くすることができる。 In this embodiment, four communication grooves 377a are provided. However, the number of communicating grooves of the stopper according to the present invention may be five or more, or may be three or less. In general, machining an axially symmetrical part in the vertical direction increases the number of machining steps, but it is possible to reduce the number of machining steps by reducing the number of grooves. Also, by providing the communication groove 377a, it is possible to facilitate gripping the stopper 37 with a tool during processing.
[高圧燃料供給ポンプの動作]
 次に、本実施形態に係る高圧燃料供給ポンプの動作について説明する。
 図2に示すカム91が回転してプランジャ2が下降した場合に、電磁吸入弁機構3が開弁していると、吸入通路1aから加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁吸入弁機構3が閉弁していると、加圧室11内の燃料は昇圧され、吐出弁機構5(図3参照)を通過してコモンレール106(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を圧縮行程と称する。
[Operation of high-pressure fuel supply pump]
Next, the operation of the high-pressure fuel supply pump according to this embodiment will be described.
When the cam 91 shown in FIG. 2 rotates and the plunger 2 descends, if the electromagnetic intake valve mechanism 3 is open, fuel flows into the pressurization chamber 11 from the intake passage 1a. Hereinafter, the stroke in which the plunger 2 descends will be referred to as a suction stroke. On the other hand, if the electromagnetic intake valve mechanism 3 is closed when the plunger 2 rises, the pressure of the fuel in the pressurization chamber 11 is increased, and the fuel in the pressure chamber 11 passes through the discharge valve mechanism 5 (see FIG. 3) to reach the common rail 106 (see FIG. 3). 1). Hereinafter, the process in which the plunger 2 rises will be referred to as a compression stroke.
 上述したように、圧縮行程中に電磁吸入弁機構3が閉弁していれば、吸入行程中に加圧室11に流入した燃料が加圧され、コモンレール106側へ吐出される。一方、圧縮行程中に電磁吸入弁機構3が開弁していれば、加圧室11内の燃料は吸入通路1a側へ押し戻され、コモンレール106側へ吐出されない。このように、高圧燃料供給ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。 As described above, if the electromagnetic intake valve mechanism 3 is closed during the compression stroke, the fuel flowing into the pressurization chamber 11 during the intake stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic intake valve mechanism 3 is open during the compression stroke, the fuel in the pressurization chamber 11 is pushed back toward the intake passage 1a and is not discharged to the common rail 106 side. Thus, the discharge of fuel by the high-pressure fuel supply pump 100 is controlled by opening and closing the electromagnetic intake valve mechanism 3 . The opening and closing of the electromagnetic intake valve mechanism 3 is controlled by the ECU 101 .
 吸入行程では、加圧室11の容積が増加し、加圧室11内の燃料圧力が低下する。この吸入行程において、加圧室11の燃料圧力が吸入ポート31bの圧力よりも低くなり、両者の差圧による付勢力が弁付勢ばね38による付勢力を超えると、弁体32は弁座31aから離れ、電磁吸入弁機構3が開弁状態になる。その結果、燃料は、弁体32と弁座31aとの間を通り、ストッパ37に設けられた複数の連通溝377a(図6参照)を通って加圧室11に流入する。 In the intake stroke, the volume of the pressurization chamber 11 increases and the fuel pressure in the pressurization chamber 11 decreases. In this intake stroke, the fuel pressure in the pressure chamber 11 becomes lower than the pressure in the intake port 31b, and when the biasing force due to the pressure difference between the two exceeds the biasing force of the valve biasing spring 38, the valve body 32 moves toward the valve seat 31a. , and the electromagnetic suction valve mechanism 3 is opened. As a result, the fuel flows between the valve body 32 and the valve seat 31a and into the pressurization chamber 11 through a plurality of communication grooves 377a (see FIG. 6) provided in the stopper 37. As shown in FIG.
 吸入行程を終了した後は、プランジャ2が上昇運動に転じて、圧縮行程に移る。このとき、電磁コイル35は、無通電状態を維持したままであり、アンカー36と固定コア39との間に磁気吸引力は作用していない。ロッド付勢ばね34は、無通電状態において弁体32を弁座31aから離れた開弁位置で維持するのに必要十分な付勢力を有するよう設定されている。 After completing the intake stroke, the plunger 2 turns to upward movement and shifts to the compression stroke. At this time, the electromagnetic coil 35 remains in a non-energized state, and no magnetic attraction force acts between the anchor 36 and the fixed core 39 . The rod biasing spring 34 is set to have a necessary and sufficient biasing force to maintain the valve body 32 at the valve open position away from the valve seat 31a in the non-energized state.
 この状態において、プランジャ2が上昇運動をしても、ロッド33が開弁位置に留まるため、ロッド33により付勢された弁体32も同様に開弁位置に留まる。したがって、加圧室11の容積は、プランジャ2の上昇運動に伴い減少するが、この状態では、一度、加圧室11に流入した燃料が、再び開弁状態の電磁吸入弁機構3を通して吸入通路10bへ戻されることになり、加圧室11内の圧力が上昇することは無い。この行程を戻し行程と称する。 In this state, even if the plunger 2 moves upward, the rod 33 stays at the valve open position, so the valve body 32 urged by the rod 33 also stays at the valve open position. Therefore, the volume of the pressurization chamber 11 decreases as the plunger 2 moves upward, but in this state, the fuel once flowing into the pressurization chamber 11 flows through the electromagnetic intake valve mechanism 3 in the open state again to the intake passage. 10b, the pressure in the pressurizing chamber 11 does not rise. This stroke is called a return stroke.
 戻し工程において、ECU101(図1参照)からの制御信号が電磁吸入弁機構3に印加されると、電磁コイル35には、端子部材30を介して電流が流れる。電磁コイル35に電流が流れると、固定コア39とアンカー36の磁気吸引面において磁気吸引力が作用し、アンカー36が固定コア39に引き寄せられる。そして、磁気吸引力がロッド付勢ばね34の付勢力よりも大きくなると、アンカー36は、ロッド付勢ばね34の付勢力に抗して固定コア39側へ移動し、アンカー36と係合するロッド33が弁体32から離れる方向に移動する。その結果、弁付勢ばね38による付勢力と燃料が吸入通路10bに流れ込むことによる流体力により弁体32が弁座31aに着座し、電磁吸入弁機構3が閉弁状態になる。 In the return process, when a control signal from the ECU 101 (see FIG. 1) is applied to the electromagnetic intake valve mechanism 3, current flows through the electromagnetic coil 35 via the terminal member 30. When an electric current flows through the electromagnetic coil 35 , a magnetic attraction force acts on the magnetic attraction surfaces of the fixed core 39 and the anchor 36 , and the anchor 36 is attracted to the fixed core 39 . When the magnetic attraction force becomes larger than the biasing force of the rod biasing spring 34 , the anchor 36 moves toward the fixed core 39 against the biasing force of the rod biasing spring 34 , and the rod engages with the anchor 36 . 33 moves away from the valve body 32 . As a result, the valve body 32 is seated on the valve seat 31a by the biasing force of the valve biasing spring 38 and the fluid force due to the fuel flowing into the intake passage 10b, and the electromagnetic intake valve mechanism 3 is closed.
 電磁吸入弁機構3が閉弁状態になった後、加圧室11の燃料は、プランジャ2の上昇と共に昇圧され、燃料吐出口12a(図3参照)の圧力以上になると、吐出弁機構5を通過してコモンレール106(図1参照)へ吐出される。この行程を吐出行程と称する。すなわち、プランジャ2の下死点から上死点までの間の圧縮行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構3の電磁コイル35への通電タイミングを制御することで、吐出される燃料の量を制御することができる。 After the electromagnetic intake valve mechanism 3 is closed, the pressure of the fuel in the pressure chamber 11 increases as the plunger 2 rises. It passes through and is discharged to common rail 106 (see FIG. 1). This stroke is called a discharge stroke. That is, the compression stroke from the bottom dead center to the top dead center of the plunger 2 consists of a return stroke and a discharge stroke. By controlling the timing of energization of the electromagnetic coil 35 of the electromagnetic intake valve mechanism 3, the amount of fuel to be discharged can be controlled.
 電磁コイル35へ通電するタイミングを早くすれば、圧縮行程中における戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。その結果、吸入通路10bに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、電磁コイル35へ通電するタイミングを遅くすれば、圧縮行程中における戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。その結果、吸入通路10bに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。このように、電磁コイル35への通電タイミングを制御することで、高圧吐出される燃料の量をエンジン(内燃機関)が必要とする量に制御することができる。 If the timing of energizing the electromagnetic coil 35 is advanced, the proportion of the return stroke in the compression stroke becomes smaller and the proportion of the discharge stroke becomes larger. As a result, less fuel is returned to the intake passage 10b, and more fuel is discharged at high pressure. On the other hand, if the timing of energizing the electromagnetic coil 35 is delayed, the ratio of the return stroke in the compression stroke increases and the ratio of the discharge stroke decreases. As a result, more fuel is returned to the intake passage 10b, and less fuel is discharged at high pressure. By controlling the timing of energization of the electromagnetic coil 35 in this way, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
[開弁状態における燃料の流れ]
 次に、電磁吸入弁機構3の開弁状態における燃料の流れについて、図7を参照して説明する。
 図7は、電磁吸入弁機構3の開弁状態における燃料の流れを示す説明図である。
[Fuel flow in valve open state]
Next, the flow of fuel when the electromagnetic intake valve mechanism 3 is open will be described with reference to FIG.
FIG. 7 is an explanatory diagram showing the flow of fuel when the electromagnetic intake valve mechanism 3 is open.
 図7は、電磁吸入弁機構3の開弁状態における戻し工程時に逆流した燃料の流れを示している。図7に示すように、吸入弁ハウジング31のシート外周部312は、シート部311に対して窪んだ形状となっている。そして、ストッパ37の遮蔽部376は、シート外周部312に対向している。 FIG. 7 shows the flow of fuel that flows backward during the return process when the electromagnetic intake valve mechanism 3 is in the open state. As shown in FIG. 7 , the seat outer peripheral portion 312 of the intake valve housing 31 has a shape recessed from the seat portion 311 . A shielding portion 376 of the stopper 37 faces the sheet outer peripheral portion 312 .
 戻し工程において、電磁吸入弁機構3側へ逆流する燃料300(以下、「逆流燃料300」とする)が、ストッパ37の連通溝377aを通過する際、弁体32の第2面321bを押圧する燃料の圧力は、弁体32と遮蔽部376との隙間にある燃料の圧力と同じになる。その後、逆流燃料300は、ストッパ37の遮蔽部376とシート外周部312により形成された湾曲した流路を通過する。その結果、逆流燃料300は、湾曲しながら遮蔽部376の端面376aを通過する。 In the return process, the fuel 300 flowing back toward the electromagnetic intake valve mechanism 3 (hereinafter referred to as "backflow fuel 300") presses the second surface 321b of the valve body 32 when passing through the communication groove 377a of the stopper 37. The fuel pressure is the same as the fuel pressure in the gap between the valve body 32 and the shielding portion 376 . After that, the backflow fuel 300 passes through a curved flow path formed by the shielding portion 376 of the stopper 37 and the seat outer peripheral portion 312 . As a result, the backflow fuel 300 passes through the end face 376a of the shielding portion 376 while curving.
 逆流燃料300が端面376aを通過すると、流路を形成するストッパ37側の壁が無くなる。つまり、遮蔽部376の端面376aが、弁体32の第1面321aよりも弁座31a側に位置するため、遮蔽部376の内側に壁が無い領域が形成されている。これにより、端面376aを通過した逆流燃料300の一部に流れの剥離が発生する。 When the backflow fuel 300 passes through the end surface 376a, the wall on the side of the stopper 37 forming the flow path disappears. In other words, since the end surface 376a of the shielding portion 376 is located closer to the valve seat 31a than the first surface 321a of the valve body 32, a wallless area is formed inside the shielding portion 376. As shown in FIG. As a result, flow separation occurs in part of the backflow fuel 300 that has passed through the end surface 376a.
 その結果、逆流燃料300の一部は、弁体32(弁部321)と遮蔽部376との間で渦を巻くように流れる。これにより、弁体32(弁部321)と遮蔽部376との間の燃料の流速が上がり、圧力が低下する。したがって、弁体32の第2面321bを押圧する燃料の圧力が低下する。 As a result, part of the backflow fuel 300 flows between the valve body 32 (valve portion 321) and the shielding portion 376 in a vortex. As a result, the flow velocity of fuel between the valve body 32 (valve portion 321) and the shield portion 376 increases, and the pressure decreases. Therefore, the pressure of the fuel pressing the second surface 321b of the valve body 32 decreases.
 弁体32の第2面321bを押圧する燃料の圧力が低下すると、燃料が弁体32を閉弁方向へ押圧する力が小さくなる。その結果、磁気回路(電磁コイル35やアンカー36等)による制御をしない場合に弁体32が閉弁方向に移動しないようにすることができ、燃料を吐出しない燃料カット時に、吐出流量を0にすることができる。 When the pressure of the fuel pressing the second surface 321b of the valve body 32 decreases, the force of the fuel pressing the valve body 32 in the valve closing direction decreases. As a result, it is possible to prevent the valve body 32 from moving in the valve closing direction when the control by the magnetic circuit (the electromagnetic coil 35, the anchor 36, etc.) is not performed. can do.
 また、弁体32を閉弁方向へ押圧する力が小さくなることにより、アンカー36やロッド付勢ばね34の小型化を図ったり、ロッド付勢ばね34のばね力を小さくしたりすることができる。その結果、アンカー36と固定コア39の衝突音や、弁体32と弁座31aの衝突音の低減を図ることができる。 Further, by reducing the force that presses the valve body 32 in the valve closing direction, it is possible to reduce the size of the anchor 36 and the rod urging spring 34, and to reduce the spring force of the rod urging spring 34. . As a result, collision noise between the anchor 36 and the fixed core 39 and collision noise between the valve element 32 and the valve seat 31a can be reduced.
 また、遮蔽部376の端面376aを通過した逆流燃料300には、弁体32の第1面321aに向かって流れ込むものがある。これにより、端面376aを通過した逆流燃料300が弁体32を開弁方向へ押圧する。その結果、弁体32が閉弁方向に移動しないようにすることができる。 Some of the backflow fuel 300 that has passed through the end surface 376a of the shielding portion 376 flows toward the first surface 321a of the valve body 32. As a result, the backflow fuel 300 that has passed through the end surface 376a presses the valve body 32 in the valve opening direction. As a result, the valve body 32 can be prevented from moving in the valve closing direction.
 さらに、ストッパ37と弁体32の間に浸入する燃料の浸入口は、遮蔽部376と弁体32(弁部321)との間のみである。これにより、遮蔽部376と弁体32(弁部321)との間以外から、弁体32の第2面321bとストッパ37の対向面374との間に燃料が浸入しない。その結果、弁体32(弁部321)と遮蔽部376との間の燃料の圧力を下げれば、弁体32の第2面321bを押圧する燃料の圧力を低下させることができる。 Furthermore, the entrance for fuel to enter between the stopper 37 and the valve body 32 is only between the shielding portion 376 and the valve body 32 (valve portion 321). As a result, fuel does not enter between the second surface 321b of the valve body 32 and the opposing surface 374 of the stopper 37 except between the shielding portion 376 and the valve body 32 (valve portion 321). As a result, if the pressure of the fuel between the valve element 32 (valve portion 321) and the shielding portion 376 is reduced, the pressure of the fuel that presses the second surface 321b of the valve element 32 can be reduced.
2.第2実施形態
 次に、本発明の第2実施形態に係る電磁吸入弁機構について、図8を参照して説明する。
 図8は、第2実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。
2. Second Embodiment Next, an electromagnetic intake valve mechanism according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 8 is a cross-sectional view showing an enlarged valve open state of the electromagnetic intake valve mechanism according to the second embodiment.
 第2実施形態に係る高圧燃料供給ポンプは、第1実施形態に係る高圧燃料供給ポンプ100と同様の構成を備えている。第2実施形態に係る高圧燃料供給ポンプが、第1実施形態に係る高圧燃料供給ポンプ100と異なる点は、電磁吸入弁機構3Aである。そのため、ここでは、電磁吸入弁機構3Aについて説明し、高圧燃料供給ポンプ100と共通の構成についての説明を省略する。 The high-pressure fuel supply pump according to the second embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment. The high-pressure fuel supply pump according to the second embodiment differs from the high-pressure fuel supply pump 100 according to the first embodiment in the electromagnetic suction valve mechanism 3A. Therefore, here, the electromagnetic suction valve mechanism 3A will be described, and the description of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
[電磁吸入弁機構]
 第2実施形態に係る電磁吸入弁機構3Aは、第1実施形態に係る電磁吸入弁機構3(図4参照)と同様の構成を備えている。電磁吸入弁機構3Aが電磁吸入弁機構3と異なる点は、吸入弁ハウジング131である。吸入弁ハウジング131は、筒状に形成されており、内周部に弁座131aが設けられている。また、吸入弁ハウジング31には、吸入ポート31bと、ロッドガイド31cが設けられている。
[Electromagnetic suction valve mechanism]
An electromagnetic intake valve mechanism 3A according to the second embodiment has the same configuration as the electromagnetic intake valve mechanism 3 (see FIG. 4) according to the first embodiment. The electromagnetic intake valve mechanism 3A differs from the electromagnetic intake valve mechanism 3 in the intake valve housing 131. As shown in FIG. The intake valve housing 131 is formed in a cylindrical shape, and has a valve seat 131a on its inner periphery. Further, the intake valve housing 31 is provided with an intake port 31b and a rod guide 31c.
 吸入弁ハウジング131の弁座131aは、弁体32の第1面321aが当接するシート部1311と、シート部1311の周囲を形成するシート外周部1312とを有する。
シート部1311は、シート外周部1312よりも弁体32側に突出する円環状の突出部に形成されている。つまり、シート外周部1312は、シート部1311に対して窪んだ形状となっている。
A valve seat 131 a of the intake valve housing 131 has a seat portion 1311 against which the first surface 321 a of the valve body 32 abuts, and a seat outer peripheral portion 1312 forming the periphery of the seat portion 1311 .
The seat portion 1311 is formed as an annular protrusion that protrudes toward the valve body 32 from the seat outer peripheral portion 1312 . That is, the seat outer peripheral portion 1312 has a shape recessed with respect to the seat portion 1311 .
 また、シート外周部1312は、弁体32の第1面321aと略平行な平面を有している。シート外周部1312の平面は、弁体32と遮蔽部376との間の間隙に対向している。 Also, the seat outer peripheral portion 1312 has a plane substantially parallel to the first surface 321 a of the valve body 32 . The plane of the seat outer peripheral portion 1312 faces the gap between the valve body 32 and the shielding portion 376 .
 シート部1311は、シート外周部1312に連続する傾斜面1311aを有する。傾斜面1311aのロッド33の軸心線に対する角度Aは、第1実施形態に係るシート部311の傾斜面311aの角度よりも鋭角に設定されている。 The seat portion 1311 has an inclined surface 1311 a that continues to the seat outer peripheral portion 1312 . The angle A of the inclined surface 1311a with respect to the axis of the rod 33 is set to be sharper than the angle of the inclined surface 311a of the seat portion 311 according to the first embodiment.
 角度Aが鈍角になればなるほど、吸入流路の圧損が小さくなる。その結果、電磁吸入弁機構3Aの吸入効率が向上する。また、図7に示すように、第1実施形態のように傾斜面311aの角度Aを鈍角にすると、シート外周部312の平面が、弁体32と遮蔽部376との間の間隙に対向しなくなる。  The more obtuse the angle A, the smaller the pressure loss in the intake passage. As a result, the suction efficiency of the electromagnetic suction valve mechanism 3A is improved. Further, as shown in FIG. 7, when the angle A of the inclined surface 311a is made obtuse as in the first embodiment, the plane of the seat outer peripheral portion 312 faces the gap between the valve body 32 and the blocking portion 376. Gone.
 一方、角度Aが鋭角になればなるほど、逆流燃料300が傾斜面1311aにおいて流れの剥離を発生させる。これにより、逆流燃料300は、キャビテーションエロージョンの発生を抑制しながら、弁体32の第1面321aに向かう。その結果、逆流燃料300が弁体32を開弁方向へ押圧する力を、第1実施形態よりも増大させることができる。 On the other hand, the more acute the angle A, the more the backflow fuel 300 causes flow separation on the inclined surface 1311a. As a result, the backflow fuel 300 moves toward the first surface 321a of the valve body 32 while suppressing the occurrence of cavitation erosion. As a result, the force with which the backflow fuel 300 presses the valve body 32 in the valve opening direction can be increased more than in the first embodiment.
 弁体32を開弁方向へ押圧する力が大きくなることにより、アンカー36やロッド付勢ばね34の小型化を図ったり、ロッド付勢ばね34のばね力を小さくしたりすることができる。その結果、アンカー36と固定コア39の衝突音や、弁体32と弁座31aの衝突音の低減を図ることができる。 By increasing the force that presses the valve body 32 in the valve opening direction, it is possible to reduce the size of the anchor 36 and the rod biasing spring 34, and to reduce the spring force of the rod biasing spring 34. As a result, collision noise between the anchor 36 and the fixed core 39 and collision noise between the valve element 32 and the valve seat 31a can be reduced.
 また、電磁吸入弁機構3Aにおいても、第1実施形態の電磁吸入弁機構3と同様に、弁体32(弁部321)と遮蔽部376との間の燃料の流速が上がり、圧力が低下するため、弁体32の第2面321bを押圧する燃料の圧力が低下する。その結果、燃料が弁体32を閉弁方向へ押圧する力を小さくすることができ、磁気回路(電磁コイル35やアンカー36等)による制御をしない場合に弁体32が閉弁方向に移動しないようにすることができる。 Also in the electromagnetic intake valve mechanism 3A, as in the electromagnetic intake valve mechanism 3 of the first embodiment, the flow rate of fuel between the valve body 32 (valve portion 321) and the shield portion 376 increases and the pressure decreases. Therefore, the pressure of the fuel pressing the second surface 321b of the valve body 32 decreases. As a result, the force by which the fuel presses the valve body 32 in the valve closing direction can be reduced, and the valve body 32 does not move in the valve closing direction unless controlled by the magnetic circuit (electromagnetic coil 35, anchor 36, etc.). can be made
3.第3実施形態
 次に、本発明の第3実施形態に係る電磁吸入弁機構について、図9を参照して説明する。
 図9は、第3実施形態に係る電磁吸入弁機構の開弁状態を拡大した状態で示す断面図である。
3. Third Embodiment Next, an electromagnetic intake valve mechanism according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 9 is a cross-sectional view showing an enlarged open state of the electromagnetic intake valve mechanism according to the third embodiment.
 第3実施形態に係る高圧燃料供給ポンプは、第1実施形態に係る高圧燃料供給ポンプ100と同様の構成を備えている。第3実施形態に係る高圧燃料供給ポンプが、第1実施形態に係る高圧燃料供給ポンプ100と異なる点は、電磁吸入弁機構3Bである。そのため、ここでは、電磁吸入弁機構3Bについて説明し、高圧燃料供給ポンプ100と共通の構成についての説明を省略する。 A high-pressure fuel supply pump according to the third embodiment has the same configuration as the high-pressure fuel supply pump 100 according to the first embodiment. The high-pressure fuel supply pump according to the third embodiment differs from the high-pressure fuel supply pump 100 according to the first embodiment in the electromagnetic suction valve mechanism 3B. Therefore, here, the electromagnetic intake valve mechanism 3B will be described, and the description of the configuration common to the high-pressure fuel supply pump 100 will be omitted.
[電磁吸入弁機構]
 第3実施形態に係る電磁吸入弁機構3Bは、第1実施形態に係る電磁吸入弁機構3(図4参照)と同様の構成を備えている。電磁吸入弁機構3Bが電磁吸入弁機構3と異なる点は、弁体132である。弁体132は、弁部1321と、弁部1321から突出する嵌合突部1322とを有する。嵌合突部1322は、第1実施形態の嵌合突部322と同じ構成である。
[Electromagnetic suction valve mechanism]
An electromagnetic intake valve mechanism 3B according to the third embodiment has the same configuration as the electromagnetic intake valve mechanism 3 (see FIG. 4) according to the first embodiment. The difference between the electromagnetic intake valve mechanism 3B and the electromagnetic intake valve mechanism 3 is the valve element 132 . The valve body 132 has a valve portion 1321 and a fitting projection 1322 projecting from the valve portion 1321 . The fitting protrusion 1322 has the same configuration as the fitting protrusion 322 of the first embodiment.
 弁部1321は、適当な厚みを有する円板状に形成されている。弁部321は、弁座31aに対向する第1面1321aと、ストッパ37に対向する第2面1321bを有する。第1面1321aは、本発明に係る弁上流側端面に対応する。弁部1321の外周面には、摺動突部1321cが設けられている。摺動突部1321cは、ストッパ37における遮蔽部376の内周面に摺動可能に係合する。 The valve portion 1321 is formed in a disc shape having an appropriate thickness. The valve portion 321 has a first surface 1321 a facing the valve seat 31 a and a second surface 1321 b facing the stopper 37 . The first surface 1321a corresponds to the valve upstream end surface according to the present invention. A sliding protrusion 1321 c is provided on the outer peripheral surface of the valve portion 1321 . The sliding protrusion 1321c is slidably engaged with the inner peripheral surface of the shielding portion 376 of the stopper 37 .
 弁体132がストッパ37における遮蔽部376の内周面に摺動可能に係合するため、弁体132とストッパ37の組立作業を簡単にすることができる。その結果、電磁吸入弁機構3Bの組立作業の作業性を向上させることができる。また、弁体132とストッパ37燃との間において燃料が浸入するスペースを小さくすることができるため、電磁吸入弁機構3Bのデッドボリュームを減らすことができる。 Since the valve body 132 is slidably engaged with the inner peripheral surface of the shielding portion 376 of the stopper 37, the work of assembling the valve body 132 and the stopper 37 can be simplified. As a result, it is possible to improve workability in assembling the electromagnetic suction valve mechanism 3B. In addition, since the space into which fuel enters between the valve element 132 and the stopper 37 can be reduced, the dead volume of the electromagnetic intake valve mechanism 3B can be reduced.
 また、電磁吸入弁機構3Bにおいても、第1実施形態の電磁吸入弁機構3と同様に、弁体132(弁部1321)と遮蔽部376との間の燃料の流速が上がり、圧力が低下するため、弁体132の第2面1321bを押圧する燃料の圧力が低下する。その結果、燃料が弁体132を閉弁方向へ押圧する力を小さくすることができ、磁気回路(電磁コイル35やアンカー36等)による制御をしない場合に弁体132が閉弁方向に移動しないようにすることができる。 Further, in the electromagnetic intake valve mechanism 3B, similarly to the electromagnetic intake valve mechanism 3 of the first embodiment, the flow velocity of fuel between the valve body 132 (valve portion 1321) and the shield portion 376 increases and the pressure decreases. Therefore, the pressure of the fuel pressing the second surface 1321b of the valve body 132 decreases. As a result, the force by which the fuel presses the valve body 132 in the valve closing direction can be reduced, and the valve body 132 does not move in the valve closing direction unless controlled by the magnetic circuit (electromagnetic coil 35, anchor 36, etc.). can be made
4.まとめ
 以上説明したように、上述した第1実施形態に係る電磁吸入弁機構3は、弁体32と、弁体32が着座する弁座31aと、弁体32の開弁方向への移動を制限するストッパ37とを備える。ストッパ37は、弁体32の側周面に対向する側面(内周面)と、弁座31aに対向する端面376a(先端面)とが設けられた遮蔽部376(突起部)を有する。
弁体32がストッパ37に開弁方向への移動を制限された開弁状態において、遮蔽部376の端面376aは、弁体32の弁座31aに対向する第1面321a(弁上流側端面)よりも弁座31a側に位置する。
4. Summary As described above, the electromagnetic intake valve mechanism 3 according to the first embodiment described above includes the valve element 32, the valve seat 31a on which the valve element 32 is seated, and the movement of the valve element 32 in the valve opening direction. and a stopper 37 that limits the The stopper 37 has a shielding portion 376 (protrusion) provided with a side surface (inner peripheral surface) facing the side peripheral surface of the valve body 32 and an end surface 376a (tip surface) facing the valve seat 31a.
In the valve open state in which the movement of the valve body 32 in the valve opening direction is restricted by the stopper 37, the end surface 376a of the shielding portion 376 is a first surface 321a (valve upstream side end surface) facing the valve seat 31a of the valve body 32. is positioned closer to the valve seat 31a than the
 これにより、ストッパ37の端面376aを通過した逆流燃料300の一部に流れの剥離が発生し、逆流燃料300の一部が、弁体32(弁部321)と遮蔽部376との間で渦を巻くように流れる。その結果、弁体32と遮蔽部376との間の燃料の流速が上がり、圧力が低下する。したがって、燃料が弁体32を閉弁方向へ押圧する力を小さくすることができる。 As a result, part of the backflow fuel 300 that has passed through the end surface 376a of the stopper 37 is separated from the flow, and part of the backflow fuel 300 vortexes between the valve element 32 (valve portion 321) and the shielding portion 376. It flows like winding. As a result, the flow velocity of fuel between the valve body 32 and the shielding portion 376 increases, and the pressure decreases. Therefore, the force by which the fuel presses the valve body 32 in the valve closing direction can be reduced.
 また、上述した第1実施形態に係る弁座31aは、遮蔽部376(突起部)の端面376a(先端面)に対向するシート外周部312(平面部)と、シート外周部312に連続し、弁体32側に突出するシート部311とを有する。そして、シート外周部312(平面部)と、シート部311の先端面と、弁体32の第1面321a(弁上流側端面)は、平行である。これにより、遮蔽部376の端面376aを通過する逆流燃料300を確実に湾曲させることができる。その結果、逆流燃料300を弁体32の第1面321aに向かわせることができ、逆流燃料300によって弁体32を開弁方向へ押圧することができる。 Further, the valve seat 31a according to the first embodiment described above is continuous with the seat outer peripheral portion 312 (flat portion) facing the end surface 376a (tip surface) of the shielding portion 376 (projection portion), and the seat outer peripheral portion 312. and a seat portion 311 protruding toward the valve body 32 side. The seat outer peripheral portion 312 (flat portion), the tip surface of the seat portion 311, and the first surface 321a (valve upstream end surface) of the valve body 32 are parallel to each other. As a result, the backflow fuel 300 passing through the end face 376a of the blocking portion 376 can be reliably curved. As a result, the backflow fuel 300 can be directed toward the first surface 321a of the valve body 32, and the backflow fuel 300 can press the valve body 32 in the valve opening direction.
 また、上述した第2実施形態に係る弁座131aのシート外周部312(平面部)は、遮蔽部376(突起部)と弁体32との間の間隙に対向する。これにより、シート部1311における傾斜面1311aの弁体32の移動方向(ロッド33の軸心線)に対する角度Aを鋭角にすることができる。その結果、逆流燃料300が傾斜面1311aにおいて流れの剥離を発生させ、キャビテーションエロージョンの発生を抑制しながら、弁体32の第1面321a(弁上流側端面)に向かう。したがって、逆流燃料300が弁体32を開弁方向へ押圧する力を、増大させることができる。 Also, the seat outer peripheral portion 312 (flat portion) of the valve seat 131 a according to the second embodiment described above faces the gap between the shielding portion 376 (projection portion) and the valve body 32 . As a result, the angle A of the inclined surface 1311a of the seat portion 1311 with respect to the moving direction of the valve body 32 (the axis of the rod 33) can be made acute. As a result, the backflow fuel 300 causes flow separation on the inclined surface 1311a, and flows toward the first surface 321a (the end surface on the upstream side of the valve) of the valve body 32 while suppressing the occurrence of cavitation erosion. Therefore, the force with which the backflow fuel 300 presses the valve body 32 in the valve opening direction can be increased.
 また、上述した第3実施形態に係る弁体132は、ストッパ37の遮蔽部376(突起部)に摺動可能に係合する。これにより、弁体132とストッパ37の組立作業を簡単にすることができ、電磁吸入弁機構3Bの組立作業の作業性を向上させることができる。 Also, the valve body 132 according to the third embodiment described above is slidably engaged with the shielding portion 376 (projection) of the stopper 37 . As a result, the assembly work of the valve body 132 and the stopper 37 can be simplified, and the workability of the assembly work of the electromagnetic intake valve mechanism 3B can be improved.
 また、上述した第1実施形態に係る遮蔽部376(突起部)は、側面が内周面となる筒状に形成されている。そして、ストッパ37と弁体32の間に浸入する燃料の浸入口は、弁体32の側周面と遮蔽部376との間である。これにより、弁体32と遮蔽部376との間の燃料の圧力を下げれば、燃料が弁体32を閉弁方向へ押圧する力を小さくすることができる。 In addition, the shielding portion 376 (protruding portion) according to the first embodiment described above is formed in a tubular shape with a side surface serving as an inner peripheral surface. The inlet for the fuel that enters between the stopper 37 and the valve body 32 is between the side peripheral surface of the valve body 32 and the shielding portion 376 . As a result, if the pressure of the fuel between the valve body 32 and the shielding portion 376 is lowered, the force of the fuel pressing the valve body 32 in the valve closing direction can be reduced.
 また、上述した第1実施形態に係る弁体32は、ストッパ37に摺動可能に嵌合する筒状の嵌合突部322を有する。この嵌合突部322には、ストッパ37と弁体32との間と当該嵌合突部322の内側とを連通する貫通孔が設けられている。そして、ストッパ37と弁体32との間の流路断面積は、貫通孔の流路断面積以上である。これにより、逆流燃料300が、弁体32の動作を阻害しないようにすることができる。 Further, the valve body 32 according to the first embodiment described above has a cylindrical fitting protrusion 322 that is slidably fitted to the stopper 37 . The fitting protrusion 322 is provided with a through hole that communicates between the stopper 37 and the valve body 32 and the inside of the fitting protrusion 322 . The flow channel cross-sectional area between the stopper 37 and the valve body 32 is equal to or larger than the flow channel cross-sectional area of the through hole. This prevents the backflow fuel 300 from interfering with the operation of the valve body 32 .
 また、上述した第1実施形態に係る高圧燃料供給ポンプ100(燃料ポンプ)は、加圧室11を備えたボディ1と、ボディ1に往復運動可能に支持され、往復運動により加圧室11の容量を増減させるプランジャ2と、加圧室11へ燃料を吐出する上記電磁吸入弁機構3とを備える。これにより、弁体32と遮蔽部376との間の燃料の流速が上がり、圧力が低下する。したがって、燃料が弁体32を閉弁方向へ押圧する力を小さくすることができる。 Further, the high-pressure fuel supply pump 100 (fuel pump) according to the first embodiment described above is supported by the body 1 having the pressurizing chamber 11 and the body 1 so as to be able to reciprocate. It has a plunger 2 for increasing or decreasing the capacity, and the electromagnetic intake valve mechanism 3 for discharging fuel into the pressurizing chamber 11 . As a result, the flow velocity of fuel between the valve body 32 and the shielding portion 376 increases, and the pressure decreases. Therefore, the force by which the fuel presses the valve body 32 in the valve closing direction can be reduced.
 以上、本発明の電磁吸入弁機構及び燃料ポンプの実施形態について、その作用効果も含めて説明した。しかしながら、本発明の電磁吸入弁機構及び燃料ポンプは、上述の実施形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The embodiments of the electromagnetic intake valve mechanism and the fuel pump of the present invention have been described above, including their effects. However, the electromagnetic intake valve mechanism and fuel pump of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the invention described in the claims.
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the above-described embodiments have been described in detail for easy-to-understand description of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 例えば、上述した第3実施形態では、弁体132に摺動突部1321cを設け、弁体132をストッパ37の遮蔽部376に摺動可能に係合させる構成にした。しかし、本発明に係る電磁吸入弁機構としては、ストッパの遮蔽部に係合突部を設け、弁体を遮蔽部に摺動可能に係合させる構成にしてもよい。 For example, in the above-described third embodiment, the valve body 132 is provided with the sliding protrusion 1321c so that the valve body 132 is slidably engaged with the shielding portion 376 of the stopper 37 . However, as the electromagnetic intake valve mechanism according to the present invention, an engaging projection may be provided on the shielding portion of the stopper so that the valve body is slidably engaged with the shielding portion.
 1…ボディ(ポンプボディ)、 2…プランジャ、 3,3A,3B…電磁吸入弁機構、 4…シリンダ、 5…吐出弁機構、 6…リリーフ弁機構、 8…吸入ジョイント、
 9…圧力脈動低減機構、 10…低圧燃料室、 11…加圧室、 12…吐出ジョイント、 30…端子部材、 31,131…吸入弁ハウジング、 31a,131a…弁座、 31b…吸入ポート、 31c…ロッドガイド、 32,132…弁体、 33…ロッド、 35…電磁コイル、 36…アンカー、 37…ストッパ、 39…固定コア、
 40…アンカー付勢ばね、 100…高圧燃料供給ポンプ、 101…ECU、 102…フィードポンプ、 103…燃料タンク、 104…低圧配管、 105…燃料圧力センサ、 106…コモンレール、 107…インジェクタ、 300…逆流燃料、 311,1311…シート部、 311a,1311a…傾斜面、 312,1312…シート外周部、 321,1321…弁部、 321a,1321a…第1面、 321b,1321b…第2面、 322…嵌合突部、 322a…筒孔、 322b…貫通孔、
 322c…端面、 370…ガイドピン、 371…貫通孔、 372…ばね座面、 373…ストッパ面、 374…対向面、 375…ガイド孔、 376…遮蔽部、 376a…端面、 377…圧入部、 377a…連通溝、 1321c…摺動突部
DESCRIPTION OF SYMBOLS 1... Body (pump body), 2... Plunger, 3, 3A, 3B... Electromagnetic intake valve mechanism, 4... Cylinder, 5... Discharge valve mechanism, 6... Relief valve mechanism, 8... Intake joint,
9 Pressure pulsation reduction mechanism 10 Low pressure fuel chamber 11 Pressurization chamber 12 Discharge joint 30 Terminal member 31, 131 Suction valve housing 31a, 131a Valve seat 31b Suction port 31c ... Rod guide 32, 132 ... Valve body 33 ... Rod 35 ... Electromagnetic coil 36 ... Anchor 37 ... Stopper 39 ... Fixed core
40... Anchor biasing spring 100... High-pressure fuel supply pump 101... ECU 102... Feed pump 103... Fuel tank 104... Low-pressure pipe 105... Fuel pressure sensor 106... Common rail 107... Injector 300... Reverse flow Fuel 311, 1311 Seat portion 311a, 1311a Inclined surface 312, 1312 Seat outer peripheral portion 321, 1321 Valve portion 321a, 1321a First surface 321b, 1321b Second surface 322 Fitting mating protrusion, 322a... tubular hole, 322b... through hole,
322c end surface 370 guide pin 371 through hole 372 spring seat surface 373 stopper surface 374 opposing surface 375 guide hole 376 shielding portion 376a end surface 377 press-fit portion 377a ... communication groove, 1321c ... sliding projection

Claims (7)

  1.  弁体と、
     前記弁体が着座する弁座と、
     前記弁体の開弁方向への移動を制限するストッパと、を備え、
     前記ストッパは、前記弁体の側周面に対向する側面と、前記弁座に対向する先端面とが設けられた突起部を有し、
     前記弁体が前記ストッパに開弁方向への移動を制限された開弁状態において、前記突起部の先端面は、前記弁体の前記弁座に対向する弁上流側端面よりも前記弁座側に位置する
     電磁吸入弁機構。
    a valve body;
    a valve seat on which the valve body is seated;
    a stopper that restricts the movement of the valve body in the valve opening direction,
    The stopper has a protrusion provided with a side surface facing the side peripheral surface of the valve body and a tip surface facing the valve seat,
    In the valve open state in which the movement of the valve body in the valve opening direction is restricted by the stopper, the tip end face of the projection is closer to the valve seat than the valve upstream end face facing the valve seat of the valve body. located in the electromagnetic intake valve mechanism.
  2.  前記弁座は、前記突起部の先端面に対向する平面部と、前記平面部に連続し、前記弁体側に突出するシート部とを有し、
     前記平面部と、前記突起部の先端面と、前記弁上流側端面は、平行である
     請求項1に記載の電磁吸入弁機構。
    The valve seat has a flat portion facing the tip surface of the protrusion, and a seat portion continuous with the flat portion and protruding toward the valve body,
    2. The electromagnetic suction valve mechanism according to claim 1, wherein the planar portion, the tip surface of the protrusion, and the upstream end surface of the valve are parallel to each other.
  3.  前記弁座の平面部は、前記突起部と前記弁体との間の間隙に対向する
     請求項2に記載の電磁吸入弁機構。
    3. The electromagnetic suction valve mechanism according to claim 2, wherein the planar portion of the valve seat faces the gap between the protrusion and the valve body.
  4.  前記弁体は、前記ストッパの前記突起部に摺動可能に係合する
     請求項2に記載の電磁吸入弁機構。
    3. The electromagnetic intake valve mechanism according to claim 2, wherein the valve body is slidably engaged with the protrusion of the stopper.
  5.  前記突起部は、前記側面が内周面となる筒状に形成されており、
    前記ストッパと前記弁体の間に浸入する燃料の浸入口は、前記弁体の側周面と前記突起部との間である
     請求項1~4のいずれか1項に記載の電磁吸入弁機構。
    The protrusion is formed in a tubular shape with the side surface serving as an inner peripheral surface,
    5. The electromagnetic intake valve mechanism according to any one of claims 1 to 4, wherein an inlet for fuel entering between the stopper and the valve body is between the side peripheral surface of the valve body and the protrusion. .
  6.  前記弁体は、前記ストッパに摺動可能に嵌合する筒状の嵌合突部を有し、
     前記嵌合突部には、前記ストッパと前記弁体との間と当該嵌合突部の内側とを連通する貫通孔が設けられており、
     前記ストッパと前記弁体との間の流路断面積は、前記貫通孔の流路断面積以上である
     請求項5に記載の電磁吸入弁機構。
    The valve body has a cylindrical fitting protrusion that is slidably fitted to the stopper,
    The fitting protrusion is provided with a through hole that communicates between the stopper and the valve body and the inside of the fitting protrusion,
    6. The electromagnetic intake valve mechanism according to claim 5, wherein a cross-sectional area of the flow path between the stopper and the valve body is greater than or equal to the cross-sectional area of the flow path of the through hole.
  7.  加圧室を備えたボディと、
     前記ボディに往復運動可能に支持され、往復運動により前記加圧室の容量を増減させるプランジャと、
     前記加圧室へ燃料を吐出する電磁吸入弁機構と、を備え、
     前記電磁吸入弁機構は、
     弁体と、
     前記弁体が着座する弁座と、
     前記弁体の開弁方向への移動を制限するストッパと、を備え、
     前記ストッパは、前記弁体の側周面に対向する側面と、前記弁座に対向する先端面とが設けられた突起部を有し、
     前記弁体が前記ストッパに開弁方向への移動を制限された開弁状態において、前記突起部の先端面は、前記弁体の前記弁座に対向する弁上流側端面よりも前記弁座側に位置する
     燃料ポンプ。
    a body with a pressurized chamber;
    a plunger that is reciprocally supported by the body and that reciprocates to increase or decrease the volume of the pressurizing chamber;
    an electromagnetic intake valve mechanism for discharging fuel into the pressurized chamber,
    The electromagnetic suction valve mechanism is
    a valve body;
    a valve seat on which the valve body is seated;
    a stopper that restricts the movement of the valve body in the valve opening direction,
    The stopper has a projection provided with a side surface facing the side peripheral surface of the valve body and a tip surface facing the valve seat,
    In the valve open state in which the movement of the valve body in the valve opening direction is restricted by the stopper, the tip surface of the protrusion is closer to the valve seat than the valve upstream end face facing the valve seat of the valve body. located in the fuel pump.
PCT/JP2022/004022 2021-06-25 2022-02-02 Electromagnetic suction valve mechanism and fuel pump WO2022269977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-105300 2021-06-25
JP2021105300 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022269977A1 true WO2022269977A1 (en) 2022-12-29

Family

ID=84543956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004022 WO2022269977A1 (en) 2021-06-25 2022-02-02 Electromagnetic suction valve mechanism and fuel pump

Country Status (1)

Country Link
WO (1) WO2022269977A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114722A (en) * 2012-12-07 2014-06-26 Denso Corp High-pressure pump
JP2014227961A (en) * 2013-05-24 2014-12-08 株式会社日本自動車部品総合研究所 High pressure pump
JP2015086736A (en) * 2013-10-29 2015-05-07 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2019065853A (en) * 2017-09-29 2019-04-25 株式会社デンソー High pressure pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114722A (en) * 2012-12-07 2014-06-26 Denso Corp High-pressure pump
JP2014227961A (en) * 2013-05-24 2014-12-08 株式会社日本自動車部品総合研究所 High pressure pump
JP2015086736A (en) * 2013-10-29 2015-05-07 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2019065853A (en) * 2017-09-29 2019-04-25 株式会社デンソー High pressure pump

Similar Documents

Publication Publication Date Title
US11542903B2 (en) High-pressure fuel supply pump provided with electromagnetic intake valve
JP6934519B2 (en) High pressure fuel pump
WO2021054006A1 (en) Electromagnetic suction valve and high-pressure fuel supply pump
JP6697552B2 (en) High pressure fuel supply pump
WO2018092538A1 (en) High-pressure fuel supply pump
JP7178504B2 (en) Fuel pump
JP7316466B2 (en) Fuel pump
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
JP7139265B2 (en) High-pressure fuel supply pump and relief valve mechanism
WO2023058287A1 (en) Electromagnetic intake valve mechanism and fuel pump
JP2021188544A (en) Fuel pump
WO2019097990A1 (en) Relief valve mechanism and fuel supply pump comprising same
JP6596304B2 (en) High pressure fuel supply pump
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump
CN112243474B (en) Electromagnetic valve and high-pressure fuel supply pump
US20240159208A1 (en) Electromagnetic Valve Mechanism and Fuel Pump
JP7385750B2 (en) Fuel pump
JP7482313B2 (en) Fuel pump
WO2024089843A1 (en) Fuel pump
JP7024071B2 (en) Fuel supply pump
WO2021229862A1 (en) Valve mechanism, and high-pressure fuel supply pump provided with same
WO2022014150A1 (en) Fuel pump
WO2023203761A1 (en) Electromagnetic valve mechanism and fuel supply pump
WO2023032253A1 (en) Fuel pump
JP2023071061A (en) Fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE