WO2020063948A1 - 一种超低碳钢及超低碳钢中氧化物夹杂的控制方法 - Google Patents

一种超低碳钢及超低碳钢中氧化物夹杂的控制方法 Download PDF

Info

Publication number
WO2020063948A1
WO2020063948A1 PCT/CN2019/108924 CN2019108924W WO2020063948A1 WO 2020063948 A1 WO2020063948 A1 WO 2020063948A1 CN 2019108924 W CN2019108924 W CN 2019108924W WO 2020063948 A1 WO2020063948 A1 WO 2020063948A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
ultra
low carbon
carbon steel
molten steel
Prior art date
Application number
PCT/CN2019/108924
Other languages
English (en)
French (fr)
Inventor
胡汉涛
马志刚
王俊凯
薛菲
林顺财
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to DE112019004848.1T priority Critical patent/DE112019004848T5/de
Publication of WO2020063948A1 publication Critical patent/WO2020063948A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Definitions

  • the invention relates to a steelmaking process, and in particular, to a method for controlling oxide inclusions in ultra-low carbon steel and ultra-low carbon steel.
  • the patent emphasizes that its technological effect is caused by the addition of Al to deoxidize the molten steel after the addition of trace rare earth, which suppresses the agglomeration of Al 2 O 3 in the molten steel and reduces the formation of large particle Al 2 O 3 inclusions.
  • the purpose of the present invention is to provide a method for controlling oxide inclusions in ultra-low carbon steel and ultra-low carbon steel, so as to reduce the hazards of inclusions remaining in the steel, improve the surface quality of cold-rolled finished products, and improve the steel blockage of cold-rolled finished products. rate.
  • a method for controlling oxide inclusions in ultra-low carbon steel includes the following steps:
  • the vacuum decarburization treatment in the RH furnace makes the carbon in the molten steel below the required value of the finished product.
  • the molten steel is deoxidized and alloyed by adding Al, and the pure cycle time of the molten steel is greater than 6min. Ce, pure circulation of molten steel for 2-10min, vacuum treatment is completed.
  • the weight percentage of the components of the ultra-low carbon steel products is: C ⁇ 0.005%, Si ⁇ 0.05%, Mn 0.4-0.9%, Al 0.02-0.1%, Ti ⁇ 0.01%, P ⁇ 0.05%, S ⁇ 0.02%, N ⁇ 0.003% and excess Fe.
  • the rare earth metal Ce composition mass percentage is: Ce> 90%, La ⁇ 5%, O ⁇ 0.015%.
  • the slag blocking operation is used in the tapping process in step 1) to ensure that the slag thickness of the ladle is ⁇ 50mm.
  • the present invention also provides an ultra-low carbon steel prepared by the foregoing method for controlling oxide inclusions in an ultra-low carbon steel.
  • the oxygen (free oxygen and combined oxygen) added in the converter smelting is the most important oxygen source in the entire smelting process.
  • molten steel and slag containing a large amount of oxygen enter the ladle.
  • the slag blocking operation is used in the tapping process to ensure that the thickness of the ladle slag is ⁇ 50mm (no slag is added).
  • the Al modifier is 0.5 ⁇ 2kg / t steel.
  • vacuum decarburization is performed so that the carbon in the molten steel is below the required value of the finished product.
  • Al is added to deoxidize the molten steel and alloy it.
  • the pure cycle time of the molten steel is greater than 6 minutes to ensure that the deoxidation product Al 2 O 3 in the steel fully floats to the top ladle slag.
  • the rare earth metal Ce is added, the molten steel is circulated purely for 2-10 minutes, and the vacuum treatment is completed.
  • the rare earth metal Ce (containing a small amount of La) is added to the molten steel, and the composition of the final oxide is controlled to Ce 2 O 3 ⁇ Al 2 O 3 to improve the oxide inclusion performance and reduce the Purpose of cold rolled steel defects in mild steel.
  • the present invention finds that in the later stage of refining after deoxidation, a rare earth metal (especially Ce, containing a small amount of La) is added to the molten steel, and the reaction with the deoxidized product Al 2 O 3 of the molten steel is not sent as follows:
  • n 11, 1, and 0.
  • the reaction products are: Ce 2 O 3 ⁇ 11Al 2 O 3 (also known as ⁇ Al 2 O 3 ), Ce 2 O 3 ⁇ Al 2 O 3, and Ce 2 O 3 .
  • the product CeO 2 ⁇ Al 2 O 3 is a liquid phase at the temperature of molten steel at 1600 ° C.
  • the solid phase has smooth edges without obvious acute angles, and the hardness is close to that of the steel matrix.
  • the Al 2 O 3 crystals generated in conventional aluminum deoxidized steel belong to the ⁇ crystal form, which is a hexagonal cell structure.
  • FIG. 2 are the inclusions generated in the present invention, and the main component is confirmed as Ce 2 O 3 ⁇ Al 2 O 3 , the light-colored region on the right in the agglomerates in FIG. 2 is MnS.
  • Figure 1 shows the single deoxidation product Al 2 O 3 in the cold-rolled product produced by the conventional process.
  • the composite inclusions controlled by the present invention have relatively smooth edges without obvious edges and corners, and the rolled inclusions of the present invention tend to extend along the rolling direction and have better plasticity.
  • the rare earth metal Ce added to the molten steel in the present invention contains a small amount of La, and this part of La can also play a similar role to Ce.
  • the amount of rare earth added exceeds a certain value, all the Al 2 O 3 in the molten steel can be reduced, and all the oxygen in the molten steel exists in the form of Ce 2 O 3.
  • the molten steel is deoxidized by adding Al, and the rare-earth metal Ce is added to form an ultra-low carbon steel.
  • the content of the oxide of the rare-earth metal Ce in the ultra-low carbon steel is relative to the total oxide inclusions in the ultra-low carbon steel. It is 60-80 wt%.
  • the amount of rare earth added is too low, and unstable Ce 2 O 3 ⁇ 11Al 2 O 3 ( ⁇ Al 2 O 3 ) or even a single Al 2 O 3 exists in the steel.
  • the unstable ⁇ Al 2 O 3 at low and medium temperatures decomposes and eutectoid reaction occurs:
  • the rare-earth metal Ce is added to the molten steel after Al deoxidation to improve the cold-rolled sheet steel.
  • CeO 2 ⁇ Al 2 O 3 is formed by reacting the rare-earth metal with Al 2 O 3.
  • the approach of the steel substrate is much lower than the hardness of pure Al 2 O 3 , so that during cold rolling and subsequent cold working, the mechanical damage of the steel substrate by Al 2 O 3 inclusions is greatly reduced.
  • FIG. 1 is a photograph of a single deoxidation product Al 2 O 3 in a cold-rolled product produced by a conventional process
  • Fig. 2 is a photo of Ce 2 O 3 ⁇ Al 2 O 3 composite inclusions treated with rare earth.
  • the production process of ultra-low carbon steel is: molten iron desulfurization, dephosphorization-converter decarburization-tapping, ladle top slag modification-RH decarburization, deoxidation and composition fine-tuning-continuous casting-hot rolling-pickling-cold Rolling.
  • Example 1 Process effect For the judgment of the final process effect, the conventional furnaces with the same tundish and adjacent ones are used as the comparison object.
  • the cold-rolled steel blocking rate in the embodiment of the present invention is 1.75%, which is caused by Al 2 O 3 0, the cold-rolled steel blockage rates of the adjacent front and rear cold-rolled steels are 3.51% and 3.22%, respectively, and those caused by Al 2 O 3 are 1.21% and 0.72%, respectively.
  • Example 2-8 and Comparative Examples 1-10 were prepared using the same experimental conditions as in Example 1 .
  • Table 1 is a comparison of some embodiments of the method of the present invention in actual production.
  • the oxide inclusion control method developed for ultra-low carbon steel cold-rolled products effectively improves the performance of deoxidation inclusions in steel, thereby reducing the incidence of steel defects in cold-rolled finished products, and is suitable for ultra-low-carbon steel cold-rolled products.
  • the quality improvement has application value in steelmaking plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种超低碳钢中氧化物夹杂的控制方法,包括如下步骤:1)转炉冶炼,保证停吹时钢液[O]=450~600ppm,[C]=0.01-0.05%;出钢保证钢包渣厚≤50mm,出钢前期加入石灰2.0-5.0kg/t钢,末期Al质改质剂0.5~2kg/t钢,对钢包顶渣进行改质、脱氧,使钢包顶渣中[(wt%CaO)+(wt%MgO)]/(wt%Al 2O 3)=1.4-1.9,氧化性组分(wt%FeO)+(wt%MnO)≤8;2)RH炉中真空脱碳处理;真空脱碳处理结束,加入Al对钢液进行脱氧、合金化,钢液纯循环时间大于6min;再加入稀土金属Ce,钢液纯循环2-10min,真空处理结束。该控制方法降低残留在钢中夹杂物的危害,改善冷轧成品表面质量,提高冷轧成品钢质封锁率。

Description

一种超低碳钢及超低碳钢中氧化物夹杂的控制方法 技术领域
本发明涉及炼钢工艺,特别涉及一种超低碳钢及超低碳钢中氧化物夹杂的控制方法。
背景技术
随着技术的进步,用户对钢质量的要求越来越高。对超低碳钢而言,已经出现对薄至0.05mm厚度冷轧成品板的需求。从冶炼的角度来看,须将钢中的夹杂物总量降至极低水平且控制基体中无大颗粒夹杂物存在。从夹杂物特性控制的角度,须将残留在钢中夹杂物的危害尽可能降低。现阶段,广泛采用LD-RH-CC工艺流程生产超低碳钢,成品氧可以控制至低于20ppm甚至更低,相应钢中夹杂物总量已达到极低水平,但冷轧成品仍然大量存在由钢中残留Al 2O 3夹杂所导致的钢质封锁。为此,控制最终生成夹杂物(Al 2O 3)的特性,从而降低其对成品的危害,成为了一个必然选择。与冶炼中其他环节相比,RH炉具备真空环境、反应和流动动力学条件好,是最理想的氧化物夹杂控制场所。
中国专利公开号CN1678761B公开的技术方案中强调Al脱氧后,向钢液中添加Ce、La、Pr、Nd中的一种或两种以上的稀土元素,钢中稀土氧化物/(稀土氧化物+氧化铝)=0.5-15%,REM/T.O=0.05-0.5,通过减少Al脱氧产物Al 2O 3的团簇化,进而减小钢中夹杂物尺寸,提高产品质量。该专利强调其工艺效果是由于微量稀土加入Al脱氧后的钢液,抑制钢液中Al 2O 3的团聚,减少大颗粒Al 2O 3夹杂生成所致。
发明内容
本发明的目的在于提供一种超低碳钢及超低碳钢中氧化物夹杂的控制方法,以期降低残留在钢中夹杂物的危害,改善冷轧成品表面质量,提高冷轧成品钢质封锁率。
为达到上述目的,本发明的技术方案是:
一种超低碳钢中氧化物夹杂的控制方法,其包括如下步骤:
1)冶炼,
转炉冶炼,采用顶底复吹,保持底吹操作,保证停吹时钢液[O]=450~600ppm,[C]=0.01-0.05%;同时出钢保证钢包渣厚≤50mm,出钢前期加入石灰2.0-5.0kg/t钢,末期Al质改质剂0.5~2kg/t钢,对钢包顶渣进行改质和脱氧,使钢包顶渣中[(wt%CaO)+(wt%MgO)]/(wt%Al 2O 3)=1.4-1.9,氧化性组分(wt%FeO)+(wt%MnO)≤8;
2)真空脱碳处理
RH炉中进行真空脱碳处理,使得钢液中的碳位于成品要求值以下;真空脱碳处理结束,加入Al对钢液进行脱氧,合金化,钢液纯循环时间大于6min;再加入稀土金属Ce,钢液纯循环2-10min,真空处理结束。
优选的,所述超低碳钢类产品的成分重量百分比为:C≤0.005%,Si≤0.05%,Mn 0.4-0.9%,Al 0.02-0.1%,Ti≤0.01%,P≤0.05%,S≤0.02%,N≤0.003%及余Fe。
优选的,所述稀土金属Ce加入量的上限为稀土加入质量(Kg)与钢中总氧(ppm)比,REM/T.O=3.40,稀土加入量的下限确定为REM/T.O=0.80。
优选的,所述稀土金属Ce组成质量百分比为:Ce>90%,La<5%,O<0.015%。
优选的是,步骤1)中出钢过程采用滑板挡渣操作,保证钢包渣厚≤50mm。
进一步地,本发明还提供了一种通过前述超低碳钢中氧化物夹杂的控制方法制备得到的超低碳钢。
在本发明控制方法中:
超低碳钢冶炼时,转炉冶炼加入的氧(自由氧和化合态氧)是整个冶炼过程最主要的氧源,随后出钢过程中,含大量氧的钢液和钢渣进入钢包。钢液中的氧除用于真空循环精炼脱碳外,都在随后脱氧过程中形成氧化物夹杂,对钢的品质有害。因此,本发明要求转炉保持良好的底吹操作(顶 底复吹),以保证停吹时钢液[O]=450~600ppm([C]=0.01-0.05)。同时出钢过程采用滑板挡渣操作,保证钢包渣厚≤50mm(未加渣料),出钢前期加入石灰2.0-5.0kg/t钢,末期Al质改质剂0.5~2kg/t钢,对钢包顶渣进行改质和脱氧,使得真空处理前钢包顶渣中[(wt%CaO)+(wt%MgO)]/(wt%Al 2O 3)=1.4-1.9,氧化性组分(wt%FeO)+(wt%MnO)≤8。
在RH炉中,进行真空脱碳处理,使得钢液中的碳位于成品要求值以下。真空处理脱碳结束,加入Al对钢液进行脱氧,合金化。钢液纯循环时间大于6min,以保证钢中脱氧产物Al 2O 3充分上浮至钢包顶渣。加入稀土金属Ce,钢液纯循环2-10min,真空处理结束。
本发明在RH炉真空脱氧结束,向钢液中加入稀土金属Ce(含少量的La),控制最终氧化物的组成为Ce 2O 3·Al 2O 3,改善氧化物类夹杂性能,降低超低碳钢冷轧钢质缺陷的目的。
本发明发现,脱氧后的精炼后期,加入稀土金属(特指Ce,含少量La)至钢液中,与未排除钢液的脱氧产物Al 2O 3发送如下反应:
2[Ce]+(n+1)(Al 2O 3)=(Ce 2O 3·nAl 2O 3)+2[Al]   (1)
这里n的可能取值为:11、1和0。与之对应,随着稀土加入量的增加,反应产物依次为:Ce 2O 3·11Al 2O 3(又称βAl 2O 3)、Ce 2O 3·Al 2O 3和Ce 2O 3。其中的生成物CeO 2·Al 2O 3,在1600℃钢液温度下呈液相,固相时边缘光滑无明显锐角,硬度与钢基体的接近。而常规铝脱氧钢中生成的Al 2O 3晶体属于α晶型,为六方晶胞结构,钢液温度下呈固相,边缘锐利,莫氏硬度为9级,远大于其他常见材料。在冷轧和后续冷加工时,与原始单一组分的Al 2O 3夹杂相比,本发明的钢中夹杂物Ce 2O 3·Al 2O 3对钢板基体机械损伤的几率大大降低,从而减轻对钢板基体的损伤程度,改善成品表面和内部质量。本发明工艺生产的冷轧成品中典型夹杂物示于图2,图2中的团聚物中的深色区域部分为本发明中生成的夹杂物,主要组分确认为Ce 2O 3·Al 2O 3,图2中团聚物中右侧的浅色区域部分为MnS。同时图1给出了常规工艺生产的冷轧成品中单一脱氧产物Al 2O 3。与单一Al 2O 3相比,本发明控制生成的复合夹杂物,边缘相对光滑无明显棱角,经轧制本发明的夹杂物有沿轧制方向延展的趋势,塑性较好。
本发明中向钢液中加入的稀土金属Ce中会含有少量的La,这部分La也可以起到与Ce类似的作用。
关于稀土加入量,存在一合理的区间。本发明稀土加入量的上限确定为稀土加入质量(kg)与钢中总氧(ppm)比,REM/T.O=3.40。当稀土加入量超过一定值后,钢液中的Al 2O 3可被全部还原,钢液中的氧全部以Ce 2O 3形式存在,存在2种可能的不良后果:1)生成的单一稀土氧化物Ce 2O 3,比重大,不易上浮;2)钢中游离态Ce含量急剧上升,与耐材反应,污染钢液,严重情况下会导致塞棒或水口熔损,致使浇铸异常或中断。
本发明中通过加入Al对钢液进行脱氧,再加入稀土金属Ce形成超低碳钢,该超低碳钢中稀土金属Ce的氧化物的含量相对于超低碳钢中总的氧化物夹杂物为60-80wt%。
稀土加入量的下限确定为REM/T.O=0.80。稀土加入量过低,钢中存在不稳定的Ce 2O 3·11Al 2O 3(βAl 2O 3),甚至单一的Al 2O 3。随着温度的降低,中低温不稳定的βAl 2O 3分解,发生共析反应:
Ce 2O 3·11Al 2O 3(S)→Al 2O 3(S4)+Ce 2O 3·Al 2O 3(S)   (2)
生成两个稳定固相Al 2O 3(S4)和Ce 2O 3·Al 2O 3。这些残存于钢中的单一Al 2O 3,降低了稀土对Al 2O 3夹杂的改性效果,无法充分体现冷轧产品质量提高的冶金效果。
本发明的有益效果:
本发明控制方法中,稀土金属Ce加入Al脱氧后的钢液中,对冷轧薄板钢质的改善效果,是由稀土金属与Al 2O 3反应生成CeO 2·Al 2O 3,其硬度与钢基体的接近,远低于单纯Al 2O 3的硬度,从而在冷轧和后续冷加工时,大大降低了Al 2O 3夹杂对钢板基体的机械损伤。
1)有效降低冷轧钢质缺陷封锁率,降低幅度>35%;
2)有效降低Al 2O 3致冷轧钢质缺陷封锁率,降低幅度>25%;
3)对最终成品质量改善显著。
附图说明
图1为常规工艺生产的冷轧成品中单一脱氧产物Al 2O 3的照片;
图2为经稀土处理的Ce 2O 3·Al 2O 3复合夹杂物照片。
具体实施方式
下面结合实施例对发明做进一步说明:
超低碳钢的生产工艺路径为:铁水脱硫、脱磷-转炉脱碳-出钢,钢包顶渣顶渣改质-RH脱碳、脱氧和成分微调-连铸-热轧-酸洗-冷轧。
实施例1
转炉吹炼结束,[C]=280ppm,[O]=550ppm;挡渣出钢,出钢初期加入石灰3.32kg/t钢,末期加入铝渣0.87kg/t钢;真空处理前钢包顶渣成分(wt%FeO)+(wt%MnO)≤7.40,[(wt%CaO)+(wt%MgO)]/(wt%Al 2O 3)=1.72,渣厚118mm。真空脱碳结束,加入Al对钢液进行脱氧、合金化,调整钢液成份至规格范围,[C]=20ppm,[Si]=0.01,[Mn]=0.65,[S]=120ppm,[Al]=0.045,[Ti]=0.004,钢液循环6.8min;稀土加入后,钢液循环4.2min,精炼结束,连铸,随后热轧、酸洗和冷轧。REM/T.O=1.75。
实施例1工艺效果:对于最终工艺效果的判断,以同中间包且相邻的常规炉次作为比较对象,本发明实施例冷轧钢质封锁率为1.75%,其中Al 2O 3所致为0,相邻前后炉次冷轧钢质封锁率分别为3.51%和3.22%,Al 2O 3所致的分别1.21%和0.72%。
实施例2-8及对比例1-10
如表1中所示,除冷轧成品厚度、REM/T.O值与实施例1不同外,实施例2-8及对比例1-10采用了与实施例1相同的实验条件制备了冷轧钢板。
表1为实际生产中一些应用本发明方法实施例的情况对比。
表1
Figure PCTCN2019108924-appb-000001
Figure PCTCN2019108924-appb-000002
本发明针对超低碳钢冷轧产品开发的氧化物夹杂控制方法,有效改善了钢中脱氧夹杂的性能,进而降低了冷轧成品钢质缺陷的发生率,适用于超低碳钢冷轧产品质量改善,在炼钢厂具有推广应用价值。

Claims (6)

  1. 一种超低碳钢中氧化物夹杂的控制方法,其特征是,包括如下步骤:
    1)转炉冶炼,采用顶底复吹,保持底吹操作,保证停吹时钢液[O]=450~600ppm,[C]=0.01-0.05%;同时出钢保证钢包渣厚≤50mm,出钢前期加入石灰2.0-5.0kg/t钢,末期Al质改质剂0.5~2kg/t钢,对钢包顶渣进行改质和脱氧,使钢包顶渣中[(wt%CaO)+(wt%MgO)]/(wt%Al 2O 3)=1.4-1.9,氧化性组分(wt%FeO)+(wt%MnO)≤8;
    2)RH炉中进行真空脱碳处理,使得钢液中的碳位于成品要求值以下;真空脱碳处理结束,加入Al对钢液进行脱氧,合金化,钢液纯循环时间大于6min;再加入稀土金属Ce,钢液纯循环2-10min,真空处理结束。
  2. 如权利要求1所述的超低碳钢中氧化物夹杂的控制方法,其特征是,所述超低碳钢类产品的成分重量百分比为:C≤0.005%,Si≤0.05%,Mn 0.4-0.9%,Al 0.02-0.1%,Ti≤0.01%,P≤0.05%,S≤0.02%,N≤0.003%及余Fe。
  3. 如权利要求1所述的超低碳钢中氧化物夹杂的控制方法,其特征是,所述稀土金属Ce加入量的上限为稀土加入质量(kg)与钢中总氧(ppm)比,REM/T.O=3.40,稀土加入量的下限确定为REM/T.O=0.80。
  4. 如权利要求1或3所述的超低碳钢中氧化物夹杂的控制方法,其特征是,所述稀土金属Ce组成质量百分比为:Ce>90%,La<5%,O<0.015%。
  5. 如权利要求1所述的超低碳钢中氧化物夹杂的控制方法,其特征是,步骤1)中出钢过程采用滑板挡渣操作,保证钢包渣厚≤50mm。
  6. 根据权利要求1-5中所述的超低碳钢中氧化物夹杂的控制方法制备得到的超低碳钢。
PCT/CN2019/108924 2018-09-29 2019-09-29 一种超低碳钢及超低碳钢中氧化物夹杂的控制方法 WO2020063948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019004848.1T DE112019004848T5 (de) 2018-09-29 2019-09-29 Stahl mit ultraniedrigem Kohlenstoffgehalt und Verfahren zur Kontrolle von Oxideinschlüssen in Stahl mit ultraniedrigem Kohlenstoffgehalt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811146115.6 2018-09-29
CN201811146115.6A CN109402321B (zh) 2018-09-29 2018-09-29 一种超低碳钢中氧化物夹杂的控制方法

Publications (1)

Publication Number Publication Date
WO2020063948A1 true WO2020063948A1 (zh) 2020-04-02

Family

ID=65466636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108924 WO2020063948A1 (zh) 2018-09-29 2019-09-29 一种超低碳钢及超低碳钢中氧化物夹杂的控制方法

Country Status (3)

Country Link
CN (1) CN109402321B (zh)
DE (1) DE112019004848T5 (zh)
WO (1) WO2020063948A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094987A (zh) * 2020-10-14 2020-12-18 马鞍山钢铁股份有限公司 一种钢水碳含量的控制方法
CN115323119A (zh) * 2022-07-13 2022-11-11 首钢京唐钢铁联合有限责任公司 一种高纯净度if钢的制备方法
CN116814890A (zh) * 2023-07-18 2023-09-29 辛集市澳森特钢集团有限公司 一种帘线钢夹杂物塑形化控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402321B (zh) * 2018-09-29 2020-11-17 宝山钢铁股份有限公司 一种超低碳钢中氧化物夹杂的控制方法
CN112442631B (zh) * 2019-08-30 2022-03-18 宝山钢铁股份有限公司 一种含钛超低碳钢冷轧钢质缺陷的控制方法
CN111411197A (zh) * 2020-04-30 2020-07-14 包头钢铁(集团)有限责任公司 一种稀土处理细化超低碳IF钢铸轧全过程Al2O3夹杂物的方法
CN113333701B (zh) * 2021-06-03 2022-11-22 北京首钢股份有限公司 一种冷轧薄板钢表面线状卷渣缺陷的控制方法
CN115537504A (zh) 2021-06-29 2022-12-30 宝山钢铁股份有限公司 一种含钛超低碳钢的制备方法
CN114262766A (zh) * 2021-11-30 2022-04-01 邯郸钢铁集团有限责任公司 一种rh精炼超低碳钢快速脱碳的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301815A (ja) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd 低炭素鋼の溶製方法
EP0520085A1 (en) * 1991-06-27 1992-12-30 Kawasaki Steel Corporation Method of producing ultra-low-carbon steel
CN1678761A (zh) * 2002-07-23 2005-10-05 新日本制铁株式会社 氧化铝团簇少的钢材
CN101215618A (zh) * 2007-12-27 2008-07-09 本钢板材股份有限公司 一种冶炼超低碳钢的方法
CN103451349A (zh) * 2013-08-16 2013-12-18 河北钢铁股份有限公司邯郸分公司 一种防止超低碳铝脱氧钢水浇铸过程水口堵塞的控制方法
CN107354269A (zh) * 2017-05-26 2017-11-17 内蒙古包钢钢联股份有限公司 Rh复合脱氧生产超低碳钢的方法
CN109402321A (zh) * 2018-09-29 2019-03-01 宝山钢铁股份有限公司 一种超低碳钢中氧化物夹杂的控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626278B2 (ja) * 1996-03-25 2005-03-02 Jfeスチール株式会社 クラスターのないAlキルド鋼の製造方法
CN102719600A (zh) * 2012-03-29 2012-10-10 鞍钢股份有限公司 一种超低碳钢的生产方法
CN105821178B (zh) * 2016-03-24 2018-03-06 首钢总公司 超低碳钢的冶炼方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301815A (ja) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd 低炭素鋼の溶製方法
EP0520085A1 (en) * 1991-06-27 1992-12-30 Kawasaki Steel Corporation Method of producing ultra-low-carbon steel
CN1678761A (zh) * 2002-07-23 2005-10-05 新日本制铁株式会社 氧化铝团簇少的钢材
CN101215618A (zh) * 2007-12-27 2008-07-09 本钢板材股份有限公司 一种冶炼超低碳钢的方法
CN103451349A (zh) * 2013-08-16 2013-12-18 河北钢铁股份有限公司邯郸分公司 一种防止超低碳铝脱氧钢水浇铸过程水口堵塞的控制方法
CN107354269A (zh) * 2017-05-26 2017-11-17 内蒙古包钢钢联股份有限公司 Rh复合脱氧生产超低碳钢的方法
CN109402321A (zh) * 2018-09-29 2019-03-01 宝山钢铁股份有限公司 一种超低碳钢中氧化物夹杂的控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094987A (zh) * 2020-10-14 2020-12-18 马鞍山钢铁股份有限公司 一种钢水碳含量的控制方法
CN115323119A (zh) * 2022-07-13 2022-11-11 首钢京唐钢铁联合有限责任公司 一种高纯净度if钢的制备方法
CN115323119B (zh) * 2022-07-13 2023-12-22 首钢京唐钢铁联合有限责任公司 一种高纯净度if钢的制备方法
CN116814890A (zh) * 2023-07-18 2023-09-29 辛集市澳森特钢集团有限公司 一种帘线钢夹杂物塑形化控制方法
CN116814890B (zh) * 2023-07-18 2024-06-04 辛集市澳森特钢集团有限公司 一种帘线钢夹杂物塑形化控制方法

Also Published As

Publication number Publication date
DE112019004848T5 (de) 2021-07-01
CN109402321A (zh) 2019-03-01
CN109402321B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2020063948A1 (zh) 一种超低碳钢及超低碳钢中氧化物夹杂的控制方法
CN112143974B (zh) 无取向硅钢的生产方法以及无取向硅钢
WO2021036974A1 (zh) 一种含钛超低碳钢冷轧钢质缺陷的控制方法
CN101736129B (zh) 一种去除钢液中全氧的方法
CN107012282B (zh) 一种提高优质超低碳钢纯净度的方法
CN111206177B (zh) 一种低酸溶铝含量的swrh82b钢生产方法
CN105603156A (zh) 超低硫if钢的生产方法
KR101449799B1 (ko) 강의 제조 방법
CN107201422A (zh) 一种低碳钢的生产方法
CN111778452B (zh) 一种磁性能优良的无取向电工钢板及其冶炼方法
CN111876678A (zh) 一种解决高强钢铸坯裂纹的工艺方法
CN109554605A (zh) 一种ld-rh工艺生产超低碳钢的氧化物夹杂控制方法
WO2023274223A1 (zh) 一种含钛超低碳钢的制备方法
CN111172469B (zh) 一种低酸溶铝含量的swrh82b盘条
CN115141904B (zh) 一种用于制备低碳冷轧基板的连铸坯及其冶炼工艺
EP3674424B1 (en) Smelting method for ultra-low carbon 13cr stainless steel
CN115029508B (zh) 一种提升if钢镁改质效果的方法
CN113604724B (zh) 一种904l超级奥氏体不锈钢及其制备方法
WO2023274222A1 (zh) 一种钢液的钙处理方法
CN111088453A (zh) 一种swrh82b钢中酸溶铝的控制方法
CN114134284B (zh) 一种热连轧带钢夹杂物控制方法及热连轧带钢
CN115094311B (zh) 生产无取向电工钢的方法和无取向电工钢
CN115852233B (zh) 一种控制齿轮钢硼元素的方法
CN117344094A (zh) 一种钢中氧化物夹杂的控制方法
CN113025868B (zh) 一种含铝无取向硅钢中残余元素的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865848

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19865848

Country of ref document: EP

Kind code of ref document: A1