WO2020062890A1 - 电子设备壳体、电子设备和复合体 - Google Patents

电子设备壳体、电子设备和复合体 Download PDF

Info

Publication number
WO2020062890A1
WO2020062890A1 PCT/CN2019/087230 CN2019087230W WO2020062890A1 WO 2020062890 A1 WO2020062890 A1 WO 2020062890A1 CN 2019087230 W CN2019087230 W CN 2019087230W WO 2020062890 A1 WO2020062890 A1 WO 2020062890A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
layer
electronic device
workpiece
back shell
Prior art date
Application number
PCT/CN2019/087230
Other languages
English (en)
French (fr)
Inventor
马兰
金海燕
潘玲
喻娜
陈梁
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP19866630.7A priority Critical patent/EP3860319A4/en
Priority to KR1020217009467A priority patent/KR102537236B1/ko
Priority to JP2021517564A priority patent/JP2022501831A/ja
Priority to US17/281,189 priority patent/US20210400831A1/en
Publication of WO2020062890A1 publication Critical patent/WO2020062890A1/zh
Priority to JP2023168944A priority patent/JP2023182686A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0243Mechanical details of casings for decorative purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • C03C27/042Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts
    • C03C27/044Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts of glass, glass-ceramic or ceramic material only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to electronic device housings, electronic devices, and composites.
  • the present application proposes an electronic device casing.
  • the electronic device casing combines a frame made of different materials and a back shell together through a sealing layer.
  • the combination effect is better, the appearance effect is better, and the shielding effect on the signal is weak.
  • Good mechanical properties, wide application range or long service life, can meet consumer consumption experience.
  • the present application provides an electronic device.
  • the electronic device includes the electronic device case described above.
  • the inventor found that the electronic device has a simple structure and is easy to implement. It can implement 5G and wireless charging functions, has a strong ability to receive or transmit signals, has a long service life, and has all the features and advantages of the electronic device casing described above. , The market competitiveness is strong.
  • FIG. 2 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device casing in some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a composite in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a composite in another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for preparing a composite body according to an embodiment of the present application.
  • FIG. 9 is a scanning electron microscope photograph of a cross-section of a sealing layer according to an embodiment of the present application.
  • FIG. 11 is a scanning electron microscope line scan spectrum of a sealing sub-layer containing phosphate glass powder according to an embodiment of the present application.
  • electronic device housings such as mobile phone housings
  • electronic device housings are mostly made of all-metal parts, injecting inorganic parts (such as glass or ceramics) on metal parts, and combining metal parts with inorganic parts (such as glass or ceramics) through TP frame dispensing. It is prepared in a manner that the strength of the prepared electronic device casing is not high, the bonding force between the metal part and the inorganic part is not strong, it is easy to be damaged, and the service life is short.
  • the inventors conducted in-depth research.
  • the sealing layer between the metal part and the inorganic part can be set to a multilayer structure, and By using different components for each sealing sublayer, the difference in thermal expansion coefficient between adjacent two structures can be adjusted, so that the matching between the two adjacent structures is better, the probability of damage is greatly reduced, and the bonding force is improved.
  • you can The metal part is pre-treated first to obtain a bonding promoting layer on its surface, so that the bonding force between the bonding promoting layer and the sealing layer is strong, and then the metal part and the inorganic part have a strong bonding force.
  • the present application provides an electronic device housing.
  • the electronic device housing includes: a frame body 10; a sealing layer 200, and the sealing A layer 200 is disposed on at least a part of the outer surface of the frame body 10, and the sealing layer 200 includes a plurality of sealing sublayers that are sequentially stacked (the two sealing sublayers 210 and 220 are taken as an example in FIG. 1 for illustration). ), And the components of two adjacent sealing sublayers are different; a back shell 20, the back shell 20 is connected to the frame body 10 through the sealing layer 200.
  • the sealing sublayer uses different components to flexibly adjust the thermal expansion coefficient of the sealing sublayer and the back shell or the The compatibility of the frame body, and furthermore, the sealing layer can be used to firmly combine the frame body and the back shell of different materials and large thermal expansion coefficients.
  • the difference in thermal expansion coefficient between adjacent two structures is small, and the matching is more compatible. Good, the possibility of bad due to temperature changes is significantly reduced, the bonding strength is high, the service life is long, and it can well meet the signal use requirements and avoid signal shielding problems, which can meet the increasing aesthetic requirements of users, and has better Use performance and improve user experience.
  • the thermal expansion coefficient of each layer structure gradually changes, and the matching is better.
  • the binding force between the frame and the back shell is stronger, which can well cushion the problem of the mismatch of the thermal expansion coefficient between the back shell and the frame. It can improve various defects and defects caused by thermal vibration, the mechanical properties of the electronic device housing are better, and the probability of damage is significantly reduced.
  • the thermal expansion coefficient of the frame body when the thermal expansion coefficient of the frame body is greater than that of the back shell, the thermal expansion coefficients of the plurality of sealing sublayers decrease in the above directions; when the thermal expansion coefficient of the frame body is less than the thermal expansion coefficient of the back shell, multiple The thermal expansion coefficient of the sealing sub-layer is increased in the above-mentioned direction; thus, the thermal expansion coefficient can be gradually increased or decreased gradually from the frame to the back shell, which can significantly improve various problems caused by thermal expansion.
  • the frame is a metal frame
  • the back shell is an inorganic back shell.
  • a bonding promoting layer 30 is further provided between the metal frame 10 and the sealing layer 200. Therefore, the combination between the metal frame and the inorganic back shell can be significantly promoted, so that the bonding force is strong, seamless and stepless bonding can be achieved, the mechanical properties of the shell are good, and the appearance is beautiful.
  • a material forming the metal frame includes aluminum alloy or stainless steel. Therefore, the materials are widely available, the price is low, the strength is high, and the performance is better.
  • the stainless steel may be selected from at least one of SUS301 stainless steel, SUS304 stainless steel, and SUS316L stainless steel, or a grade selected from "GB / T 20878-2007 stainless steel and heat-resistant steel grades and chemical composition" It is at least one of stainless steels such as S30110, S30408, S31603, etc .; the aluminum alloy can be selected from 5052 aluminum alloy, 5182 aluminum alloy, 6063 aluminum alloy, 6061 aluminum alloy, 6013 aluminum alloy, and zinc content in the range of 1% -10% 7 series aluminum and so on.
  • the bonding promoting layer and the metal frame have a strong bonding force and are not easy to fall off, and the wetting property of the bonding promoting layer and the sealing layer is better, and the bonding force is also stronger, which is beneficial to obtaining an electronic device casing with a better bonding effect.
  • the above-mentioned composition-promoting layer can not only be compatible with the sealing layer similarly and be better compatible with each other, but also can better form a concave-convex structure and a porous structure, which can further improve the bonding strength and the usability of the shell.
  • the specific composition of the bonding promotion layer may also be related to the material of the metal frame.
  • it may include an oxide of the corresponding metal forming the metal frame.
  • the metal frame is an aluminum alloy. Oxides of alloying elements in aluminum alloys.
  • the frame in order to improve the aesthetics of the frame, can be decorated, for example, polishing, sandblasting, wire drawing, physical vapor deposition (PVD) coating, laser engraving, spray coating, and anti-fingerprinting can be performed.
  • polishing for example, polishing, sandblasting, wire drawing, physical vapor deposition (PVD) coating, laser engraving, spray coating, and anti-fingerprinting can be performed.
  • PVD physical vapor deposition
  • At least one of AF coating and other methods is used to process the frame to obtain a frame with a better decorative effect, and further improve the aesthetics and practicability of the frame.
  • the shape of the back shell may be 2D, 2.5D, or 3D, etc., and thus the appearance of the back shell is beautiful.
  • Oxide-based glass frit; one sealing sub-layer may be borate-based glass frit, and the other sealing sub-layer may be silicate oxide-based glass frit; in other embodiments, both sealing sub-layers may be It is the same glass frit (if both are borosilicate oxide glass frit), but the components and / or content contained in the glass frit are different. Specifically, it can be oxidized in the borosilicate oxide glass frit.
  • the types of substances and / or other substances are the same, but the contents of various oxides and / or other substances are different, and the types of oxides and / or other substances in the borosilicate oxide-based glass powder may also be different.
  • glass frit, a binder, and a solvent may be mixed to prepare a sealing paste, and then the sealing sublayer is formed by using the sealing paste.
  • the specific amount of the solvent is not particularly limited. Those skilled in the art can determine a suitable amount of the solvent according to the fluidity of the sealing slurry forming the sealing sublayer.
  • the glass powder in the sealing layer is a low-melting glass powder.
  • glass The temperature at which the powder is completely melted is below the softening point of the glass back shell. Therefore, when the frame and the back shell are sealed, the temperature has not yet reached the softening point of the glass back shell, and the glass back shell will not be softened and deformed, so that the flatness, appearance and optical performance of the electronic device will not be affected. Defects and defects occur due to excessive temperature.
  • silicate oxide systems such as high-silica glass
  • the binder includes at least one of a silicate-based inorganic binder (which may include, but is not limited to, water glass and the like) and an aqueous polyurethane. Therefore, the bonding effect of the adhesive is strong, the glass frit can be effectively prepared to form an encapsulating paste, and it is beneficial to apply the encapsulating paste on the surface of the adhesion promoting layer.
  • a silicate-based inorganic binder which may include, but is not limited to, water glass and the like
  • an aqueous polyurethane aqueous polyurethane. Therefore, the bonding effect of the adhesive is strong, the glass frit can be effectively prepared to form an encapsulating paste, and it is beneficial to apply the encapsulating paste on the surface of the adhesion promoting layer.
  • the transition of a plurality of sealing sub-layers with different components can effectively combine back shells and frames with different materials and large differences in thermal expansion coefficients, and the casing has excellent bonding strength.
  • various complex shapes and structures can be realized.
  • the position where the frame 10 and the back shell 20 in the electronic device housing are connected can be an inner right-angle structure. (A in Fig. 4), inner step structure (b in Fig. 4), curved surface structure on the outer surface (c in Fig. 4), or a curved surface structure with an inner surface protruding outward (f in Fig.
  • the inner surface of the frame may be
  • the structure is gradually inclined inward (d in FIG. 4), the structure is gradually inclined outward (e in FIG. 4), or the curved structure is convex inward (g in FIG. 4). In this way, various complex shapes can be realized, which can be easily assembled with internal components, or special light and shadow effects can be achieved.
  • the electronic device includes at least one of a mobile phone, a tablet computer, a notebook computer, a VR (Virtual Reality) device, an AR (Augmented Reality) device, a wearable device, and a game machine.
  • a mobile phone a tablet computer
  • a notebook computer a VR (Virtual Reality) device
  • an AR (Augmented Reality) device a wearable device
  • a game machine a game machine
  • the electronic device may also include a structure that a conventional electronic device should have. Taking the electronic device as a mobile phone as an example, referring to FIG. 2, it may further include a fingerprint module.
  • the group 21, the camera module 22, the control module 23, the CPU, the connection circuit, the package structure, etc. are not repeated here.
  • the composite includes: a first workpiece 100; a sealing layer 200, the sealing layer 200 is disposed on an outer surface of the first workpiece 100, and the sealing layer 200 includes a plurality of sealing sublayers which are sequentially stacked (two sealing sublayers 210 and 220 are taken as an example for illustration), and the components of two adjacent sealing sublayers are different; the second workpiece 300, so The second workpiece 300 is connected to the first workpiece 100 through the sealing layer 200.
  • the thermal expansion coefficient can be flexibly adjusted by adjusting the composition of the sealing sublayers, thereby forming
  • the sealing sublayer with a small difference in thermal expansion coefficient can make the thermal expansion coefficient of the first workpiece to the second workpiece gradually transition, better matching, the possibility of the composite body being bad due to temperature changes is greatly reduced, the mechanical properties are ideal, and the service life It is long and has good appearance effect, high strength, and weak shielding effect of the compound on the signal, which is suitable for making electronic equipment casings.
  • the first workpiece is a metal piece
  • the second workpiece is an inorganic piece
  • a bonding promoting layer 30 is further provided between the metal piece and the sealing layer. Therefore, the compatibility between the metal part and the sealing layer is better, and the bonding force is greater, which is beneficial to obtain a shell with better performance.
  • a material forming the metal part includes stainless steel or aluminum alloy. Therefore, the source of metal parts is wide, the price is low, the strength is high, and the expansion coefficient is relatively suitable, which is suitable for making a frame of an electronic device housing.
  • the stainless steel may be selected from at least one of SUS301 stainless steel, SUS304 stainless steel, and SUS316L stainless steel, or a grade selected from "GB / T 20878-2007 stainless steel and heat-resistant steel grades and chemical composition" It is at least one of stainless steels such as S30110, S30408, S31603, etc .; the aluminum alloy can be selected from 5052 aluminum alloy, 5182 aluminum alloy, 6063 aluminum alloy, 6061 aluminum alloy, 6013 aluminum alloy, and zinc content in the range of 1% -10% 7 series aluminum and so on.
  • the material forming the inorganic part is selected from the group consisting of chemically and physically strengthened high-alumina glass, ZrO 2 (3Y) ceramics with phase toughening properties, and ZrO 2 (3Y) )-At least one of Al 2 O 3 ceramics.
  • the first workpiece is a ceramic piece
  • the second workpiece is a glass piece.
  • the material forming the ceramic part is selected from at least one of ZrO 2 (3Y) ceramics having phase change toughening characteristics, and ZrO 2 (3Y) -Al 2 O 3 ceramics having phase change toughening characteristics; forming glass
  • the materials of the parts include chemically and physically strengthened high alumina glass. Therefore, the expansion coefficients of the first workpiece and the second workpiece are more suitable, the strength is better, the usage requirements can be more satisfied, the service life is longer, and the signal transmission rate is higher.
  • the present application provides a method for preparing a complex. According to an embodiment of the present application, referring to FIG. 7, the method includes:
  • the sealing paste is formed by mixing the glass frit, the binder, and the solvent together, and the glass frit, the binder, and the solvent are consistent with the foregoing description, and are not repeated here.
  • the sealing paste includes 88-92 parts by weight of glass powder, 8-12 parts by weight of a binder, and an appropriate amount of a solvent.
  • the specific amount of the solvent is not particularly limited. Those skilled in the art can determine an appropriate amount of the solvent according to the fluidity of the sealing slurry forming the sealing layer. Therefore, the sealing slurry has better mixing effect and better viscosity, which is beneficial for coating it on the surface of the adhesion promoting layer.
  • each of the sealing sublayers is formed by the following steps: coating the sealing slurry on a corresponding outer surface (the outer surface of the first workpiece or other sealing sublayers) Surface), the sealing sublayer is obtained, and the above operation is repeated multiple times to obtain a sealing layer containing multiple sealing sublayers. Therefore, the operation is simple, convenient, easy to implement, and a sealing layer with better performance can be obtained.
  • each of the sealing sub-layers is formed by the following steps: applying the sealing slurry to a corresponding outer surface (the first workpiece or other sealing sub-layers).
  • the operation is simple, convenient, and easy to implement, which can make the bonding strength of the sealing layer and the first workpiece higher, which is more conducive to achieving a seamless combination between the first workpiece and the second workpiece.
  • the method when the first workpiece is a metal workpiece, before forming the sealing layer, the method further includes pre-processing the first workpiece to form a bonding promoting layer on at least a part of a surface of the first workpiece.
  • the first workpiece before the first workpiece is pre-processed, it may further include steps of degreasing, cleaning and drying the first workpiece, thereby obtaining a clean surface of the first workpiece, which is beneficial to It is pretreated on its surface.
  • the pre-processing includes performing at least one of an oxidation treatment and a coating treatment on the first workpiece. Therefore, the operation is simple, convenient, and easy to implement, and a bonding promotion layer with a relatively appropriate expansion coefficient and similar compatibility with the sealing layer can be formed, so as to facilitate the seamless bonding between the subsequent first workpiece and the second workpiece.
  • the coating process may be performed by at least one of a chemical vapor deposition method and a molten salt electrolysis method.
  • the operation is simple, convenient, and easy to implement, and a binding promotion layer with better performance can be obtained.
  • a metal layer or a metal oxide layer is deposited on the surface of the first workpiece.
  • the bonding force between the bonding promoting layer and the first workpiece and the sealing layer is strong.
  • the pretreatment is performed by the molten salt electrolytic method, a single metal layer is formed on the surface of the first workpiece.
  • the performance of the formed bonding promotion layer is better, which is more conducive to achieving seamless integration between the first workpiece and the second workpiece and achieving integration.
  • the oxidation treatment may be a metal oxidation treatment method known in the art, so that the outer surface of the metal part can be directly oxidized to form a metal oxide layer, the bonding strength is higher, and the performance of the obtained shell is more good.
  • the second workpiece is consistent with the foregoing description, and will not be repeated here.
  • the temperature at which the sealing layer completely melts is lower than the softening temperature of the second workpiece. Therefore, diffusion and wetting occurs between the sealing layer and the second workpiece, the sealing effect is better, and a better sealing effect can be achieved. Combined effect, and it will hardly damage the second workpiece, making the appearance of the composite more beautiful.
  • the temperature at which the sealing layer completely melts refers to the lowest temperature value when the sealing layer has completely melted
  • the softening temperature of the second workpiece refers to the temperature when the second workpiece starts to soften.
  • the method for preparing a composite body described above is simple, convenient, and easy to implement.
  • the bonding promoting layer can be relatively firmly connected to the sealing layer, and the first workpiece and the second workpiece can be relatively firmly bonded together.
  • the obtained complex has all the features and advantages described above, so it will not be repeated here.
  • this method is also applicable to the preparation of the aforementioned electronic device casing, as long as the first workpiece is a frame and the second workpiece is a back shell, and the specific operations are completely the same.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is stainless steel, and the adhesion promotion layer on its surface is a metal oxide layer (alumina layer), the thickness of the adhesion promotion layer is 1 micron, and the method of forming the adhesion promotion layer is chemical vapor deposition;
  • Sealing sublayer 1 Including 92 parts by weight of borosilicate oxide glass powder, 8 parts by weight of silicate inorganic binder, and appropriate amount of ethanol, the method of forming the sealing sublayer 1 is to mix the above raw materials Forming a sealing slurry coated on the outer surface of the bonding promoting layer; heating and melting and then solidifying to obtain a vitrified sealing sub-layer 1;
  • Sealing sublayer 2 comprising 92 parts by weight of phosphate oxide-based glass powder, 8 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sublayer 2 is to mix the above-mentioned raw materials to form a sealing slurry.
  • the forming material is high alumina glass
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is aluminum alloy, and the surface of the adhesion promotion layer is a metal oxide layer (titanium oxide layer), the thickness of the adhesion promotion layer is 1 micron, and the method of forming the adhesion promotion layer is chemical vapor deposition;
  • Sealing sublayer 1 comprising 88 parts by weight of a borosilicate oxide-based glass powder, 12 parts by weight of a silicate-based inorganic binder, and an appropriate amount of ethanol. The sealing slurry is mixed and coated on the outer surface of the bonding promotion layer, and then heated to melt, and the sealing sublayer 1 is obtained after solidification;
  • Sealing sublayer 2 comprising 88 parts by weight of phosphate oxide-based glass powder, 12 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sublayer 2 is to mix the above raw materials to form a sealing slurry.
  • the forming material is high alumina glass.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is stainless steel, and the adhesion promotion layer on its surface is a metal oxide layer (nickel oxide), the thickness of the adhesion promotion layer is 5 micrometers, and the method of forming the adhesion promotion layer is chemical vapor deposition;
  • the forming material is ZrO 2 (3Y) ceramic.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is aluminum alloy, and the surface of the adhesion promotion layer is a metal oxide layer (molybdenum oxide), the thickness of the adhesion promotion layer is 1 micron, and the method of forming the adhesion promotion layer is chemical vapor deposition;
  • Sealing sublayer 1 Including 90 parts by weight of borosilicate oxide-based glass powder, 10 parts by weight of a silicate-based inorganic binder, and an appropriate amount of ethanol, the method of forming the sealing sublayer 1 is to use the above raw materials The sealing slurry is mixed and coated on the outer surface of the adhesion-promoting layer; the glassy sealing sub-layer 1 is obtained after heating and melting and then solidifying;
  • Sealing sublayer 2 90 weight parts of phosphate oxide-based glass powder, 10 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sublayer 2 is to mix the above raw materials to form a sealing slurry.
  • the forming material is ZrO 2 (3Y) ceramic.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • the forming material is aluminum alloy
  • the adhesion promotion layer on the surface is a metal layer (aluminum layer)
  • the thickness of the adhesion promotion layer is 1 micron
  • the method of forming the adhesion promotion layer is chemical vapor deposition
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Sealing sub-layer 1 comprising 90 parts by weight of a halide-based glass powder, 10 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sub-layer 1 is to mix the above-mentioned raw materials to form a sealing slurry and apply the bonding agent.
  • Sealing sublayer 2 90 weight parts of borosilicate oxide-based glass powder, 10 parts by weight of silicate inorganic binder, and appropriate amount of ethanol. Mixing to form a sealing paste coated on the outer surface of the above-mentioned vitrified sealing sublayer 1;
  • the forming material is ZrO 2 (3Y) -Al 2 O 3 ceramic.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is ZrO 2 (3Y) -Al 2 O 3 ceramic.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing layer 1 is within ⁇ 10%
  • the difference in thermal expansion coefficient is within ⁇ 10%
  • the difference in thermal expansion coefficient between the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is stainless steel, and the surface of the adhesion promotion layer is a metal layer (molybdenum layer), the thickness of the adhesion promotion layer is 10 microns, and the method of forming the adhesion promotion layer is molten salt electrolysis;
  • Sealing sublayer 1 comprising 90 parts by weight of borate-based glass powder, 10 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sublayer 1 is to mix the above raw materials to form a sealing slurry and apply On the outer surface of the bonding-promoting layer; after heating and melting and then solidifying, a vitrified sealing sub-layer 1 is obtained;
  • Sealing sublayer 2 comprising 90 parts by weight of silicate oxide-based glass powder, 10 parts by weight of a silicate inorganic binder, and an appropriate amount of ethanol to form the sealing sublayer 2 by mixing the above raw materials Forming a sealing paste coated on the outer surface of the sealing sub-layer 1 after the vitrification;
  • the forming material is ZrO 2 (3Y) -Al 2 O 3 ceramic.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is stainless steel, and the surface of the adhesion promotion layer is a metal layer (molybdenum layer), the thickness of the adhesion promotion layer is 10 microns, and the method of forming the adhesion promotion layer is molten salt electrolysis;
  • Sealing sublayer 1 comprising 90 parts by weight of borate-based glass powder, 10 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sublayer 1 is to mix the above raw materials to form a sealing slurry and apply On the outer surface of the bonding-promoting layer; after heating and melting and then solidifying, a vitrified sealing sub-layer 1 is obtained;
  • Sealing sublayer 3 comprising 90 parts by weight of phosphate-based glass powder, 10 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method for forming the sealing sublayer 3 is to mix the above raw materials to form a sealing slurry and apply the coating on the above.
  • the forming material is ZrO 2 (3Y) -Al 2 O 3 ceramic.
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients of the thermal expansion coefficient is within ⁇ 10%
  • the thermal expansion coefficient difference between the sealing sublayer 2 and the sealing sublayer 2 is within ⁇ 10%
  • the thermal expansion coefficient difference between the sealing sublayer 3 and the inorganic back shell is ⁇ 10. Within%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is stainless steel, and the adhesion promotion layer on its surface is a metal oxide layer (alumina layer), the thickness of the adhesion promotion layer is 1 micron, and the method of forming the adhesion promotion layer is chemical vapor deposition;
  • Sealing sublayer 1 Including 92 parts by weight of borosilicate oxide glass powder, 8 parts by weight of silicate inorganic binder, and appropriate amount of ethanol, the method of forming the sealing sublayer 1 is to mix the above raw materials Forming a sealing slurry coated on the outer surface of the bonding promoting layer; heating and melting and then solidifying to obtain a vitrified sealing sub-layer 1;
  • the forming material is high alumina glass
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking, and can achieve seamless and stepless combination between the metal frame and the inorganic back shell, and hardly shield signals.
  • the metal frame of the electronic device casing and the inorganic back shell The bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • the forming material is stainless steel, and the adhesion promotion layer on its surface is a metal oxide layer (alumina layer), the thickness of the adhesion promotion layer is 1 micron, and the method of forming the adhesion promotion layer is chemical vapor deposition;
  • Sealing sublayer 2 comprising 92 parts by weight of borosilicate oxide-based glass powder, 8 parts by weight of a silicate-based inorganic binder, and an appropriate amount of ethanol to form the sealing sublayer 2 by mixing the above raw materials Forming a sealing paste coated on the outer surface of the sealing sub-layer 1 after the vitrification;
  • the forming material is high alumina glass
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficient of the bonding promotion layer and the sealing sublayer 1 is within ⁇ 10%
  • the sealing sublayer 1 and the sealing sublayer 2 The difference between the thermal expansion coefficients is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 2 and the inorganic back shell is within ⁇ 10%.
  • composition of the casing of the electronic device is the same as that of the embodiment 1, except that the surface of the metal frame in the comparative example 1 does not contain a bonding promoting layer.
  • the difference between the thermal expansion coefficients of the sealing sublayer 1 and the metal frame is within ⁇ 10%
  • the difference between the thermal expansion coefficients of the sealing sublayer 1 and the sealing sublayer 2 is within ⁇ 10%
  • the sealing sublayer 2 and the inorganic The difference in thermal expansion coefficient of the back shell is within ⁇ 10%.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • Ceramic frame the forming material is ZrO 2 (3Y) -Al 2 O 3 ceramic;
  • Sealing sublayer 1 comprising 90 parts by weight of borate-based glass powder, 10 parts by weight of water-based polyurethane, and an appropriate amount of water.
  • the method of forming the sealing sublayer 1 is to mix the above raw materials to form a sealing slurry and apply On the outer surface of the ceramic piece; the glassy sealing sub-layer 1 is obtained after heating and melting and solidification;
  • Sealing sublayer 2 comprising 90 parts by weight of silicate oxide-based glass powder, 10 parts by weight of a silicate inorganic binder, and an appropriate amount of ethanol to form the sealing sublayer 2 by mixing the above raw materials Forming a sealing paste coated on the outer surface of the sealing sub-layer 1 after the vitrification;
  • the forming material is high alumina glass.
  • the difference between the thermal expansion coefficient of the ceramic frame and the sealing sublayer 1 is within ⁇ 10%, and the difference between the thermal expansion coefficient of the sealing sublayer 1 and the sealing sublayer 2 is within ⁇ 10%.
  • the sealing sublayer 2 and glass The difference in thermal expansion coefficient of the back shell is within ⁇ 10%.
  • the appearance of the electronic device casing of this embodiment is beautiful and good-looking. It can realize seamless and stepless combination between the ceramic frame and the glass back shell, and hardly shield the signal.
  • the bonding strength is 100N or more.
  • Composition of electronic equipment housing is a composition of electronic equipment housing
  • Ceramic frame ZrO 2 (3Y) ceramic
  • Sealing sublayer 2 comprising 90 parts by weight of silicate oxide-based glass powder, 10 parts by weight of a silicate inorganic binder, and an appropriate amount of ethanol to form the sealing sublayer 2 by mixing the above raw materials Forming a sealing paste coated on the outer surface of the sealing sub-layer 1 after the vitrification;
  • the forming material is high alumina glass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Signal Processing (AREA)
  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

提供了电子设备壳体、电子设备和复合体。其中,电子设备壳体包括:框体;封接层,所述封接层设置在所述框体的至少一部分外表面上,所述封接层包括依次层叠设置的多个封接子层;背壳,所述背壳通过所述封接层与所述框体相连;其中,相邻两个封接子层的成分不同。

Description

电子设备壳体、电子设备和复合体
优先权信息
本申请请求2018年9月30日向中国国家知识产权局提交的、专利申请号为201811161748.4的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及电子设备技术领域,具体的,涉及电子设备壳体、电子设备和复合体。
背景技术
近年来随着5G和无线充电技术的兴起,电子设备对信号的要求越来越高。目前,电子设备壳体例如手机壳体多采用金属材质,金属对电磁信号具有较强的屏蔽作用,使得信号不能有效透过电子设备壳体,进而使得目前的电子设备壳体不能满足消费者的消费体验。
因而,目前的电子设备壳体仍有待改进。
申请内容
本申请提出一种电子设备壳体,该电子设备壳体中通过封接层将不同材质的框体和背壳结合在一起,结合效果较佳、外观效果较佳、对信号的屏蔽作用较弱、力学性能良好、应用范围广泛或者使用寿命较长,能够满足消费者的消费体验。
在本申请的一个方面,本申请提供了一种电子设备壳体。根据本申请的实施例,该电子设备壳体包括:框体;封接层,所述封接层设置在所述框体的至少一部分外表面上,所述封接层包括依次层叠设置的多个封接子层;背壳,所述背壳通过所述封接层与所述框体相连;其中,相邻两个所述封接子层的成分不同。发明人发现,该电子设备壳体中背壳和框体结合牢固、力学性能良好,同时外观效果美观,使得各个封接子层采用不同的成分可以通过封接层可以将不同材质、热膨胀系数相差较大的框体和背壳牢固的结合在一起,相邻两层结构之间的热膨胀系数差异小,匹配性更好,因温度变化发生不良的可能性显著降低,使用寿命长,且能够很好的满足信号使用要求,避免信号屏蔽问题,既可满足用户日益增强的审美要求,又具有较佳的使用性能,提高用户体验。
在本申请的另一方面,本申请提供了一种电子设备。根据本申请的实施例,该电子设备包括前面所述的电子设备壳体。发明人发现,该电子设备结构简单、易于实现,可以实现5G和无线充电功能,接收或者发射信号的能力较强,使用寿命较长,且具备前面所述 的电子设备壳体的所有特征和优点,市场竞争力较强。
本申请提供了一种复合体。根据本申请的实施例,该复合体包括:第一工件;封接层,所述封接层设置在所述第一工件的至少一部分外表面上,所述封接层包括依次层叠设置的多个封接子层,且相邻两个所述封接子层的成分不同;第二工件,所述第二工件通过所述封接层与所述第一工件连接。发明人发现,该复合体中第一工件和第二工件结合力较强,使得各个封接子层采用不同的成分可以通过封接层将不同材质、热膨胀系数相差较大的第一工件和第二工件牢固的结合在一起,相邻两结构之间的热膨胀系数差异小,匹配性更好,复合体因温度变化而发生不良的可能性大大降低,力学性能理想,使用寿命长,且外观效果较佳,强度较高,对信号的屏蔽作用较弱,获得使用效果较佳的复合体,适于制作电子设备壳体。
附图说明
图1是本申请一个实施例中的电子设备壳体的结构示意图。
图2是本申请一个实施例中的电子设备的结构示意图。
图3是本申请另一个实施例中的电子设备壳体的结构示意图.
图4是本申请一些实施例中的电子设备壳体的结构示意图。
图5是本申请一个实施例中的复合体的结构示意图。
图6是本申请另一个实施例中的复合体的结构示意图。
图7是本申请一个实施例中的制备复合体的方法的流程示意图。
图8是本申请实施例中框体和背壳之间的结合强度测试示意图。
图9是本申请一个实施例的封接层截面的扫描电镜照片。
图10是本申请一个实施例的含有硼硅酸盐玻璃粉的封接子层的扫描电镜线扫描谱图。
图11是本申请一个实施例的含有磷酸盐玻璃粉的封接子层的扫描电镜线扫描谱图。
具体实施方式
下面详细描述本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本申请是基于发明人的以下认识和发现而完成的:
目前,电子设备壳体如手机壳体多采用全金属件加工、在金属件上注塑无机件(例 如玻璃或者陶瓷)、通过TP框点胶将金属件和无机件(例如玻璃或者陶瓷)结合的方式进行制备,制备得到的电子设备壳体强度不高,金属件与无机件之间的结合力不强,容易损坏,使用寿命短。针对上述技术问题,发明人进行了深入的研究,研究后发现,为了提高金属件与无机件之间的结合力,可以将金属件与无机件之间的封接层设置为多层结构,且通过各个封接子层采用不同的成分可以调整相邻两结构之间的热膨胀系数差异,使得相邻两结构之间匹配度更好,发生损坏的几率大大降低,进而提高结合力,另外,可以先将金属件进行预处理,以便在其表面得到结合促进层,使得该结合促进层与封接层之间的结合力较强,进而使得金属件与无机件之间具有较强的结合力。
有鉴于此,在本申请的一个方面,本申请提供了一种电子设备壳体。根据本申请的实施例,参照图1(图1对应图2中A-A’线的剖面图)和图2,该电子设备壳体包括:框体10;封接层200,所述封接层200设置在所述框体10的至少一部分外表面上,所述封接层200包括依次层叠设置的多个封接子层(图1中以两个封接子层210和220为例说明),且相邻两个所述封接子层的成分不同;背壳20,所述背壳20通过所述封接层200与所述框体10相连。发明人发现,该电子设备壳体中背壳和框体结合牢固、力学性能良好,同时外观效果美观,封接子层采用不同的成分可以灵活调整封接子层的热膨胀系数和与背壳或框体的相容性,进而可以通过封接层可以将不同材质、热膨胀系数相差较大的框体和背壳牢固的结合在一起,相邻两结构之间的热膨胀系数差异小,匹配性更好,因温度变化发生不良的可能性显著降低,结合强度高,使用寿命长,且能够很好的满足信号使用要求,避免信号屏蔽问题,既可满足用户日益增强的审美要求,又具有较佳的使用性能,提高用户体验。
其中,需要说明的是,本文中采用的描述方式“相邻两结构”是指电子设备壳体或后文所述的复合体中任意相邻的两层,例如包括但不限于框体和与其相邻的封接子层、两个相邻的封接子层、背壳和与其相邻的封接子层等;“相邻两个所述封接子层的成分不同”是指相邻两个封接子层中含有的组分不同和/或各组分的含量不同;“相邻两结构之间的热膨胀系数差异在±10%以内”是指相邻两结构的热膨胀系数的差除以相邻两结构中热膨胀系数较大值小于或等于10%,具体的,参照图1,框体10和封接子层220为相邻的两结构,两者之间的热膨胀系数差异=(框体10的热膨胀系数-封接子层220的热膨胀系数)/框体10和封接子层220的热膨胀系数中的较大值;“框体、封接层和背壳的分布方向”是指框体、封接层和背壳排列(或称层叠)的方向,具体可参见图1中箭头所示方向,其它类似描述含义相同。
根据本申请的实施例,为了使得电子设备壳体中不同层结构之间的热膨胀系数匹配性 更佳,所述封接层200的热膨胀系数在所述框体10和所述背壳20的热膨胀系数之间,且所述框体10、多个所述封接子层和所述背壳20中相邻两结构之间的热膨胀系数差异在±10%以内。由此,各层结构的热膨胀系数匹配性更好,框体和背壳之间的结合力更强。在本申请的一些实施例中,在所述框体10、所述封接层200和所述背壳20的分布方向(参照图1中箭头所示方向)上,多个所述封接子层的热膨胀系数梯度升高或梯度降低。由此,各层结构的热膨胀系数逐渐变化,匹配性更好,框体和背壳之间的结合力更强,可以很好的缓冲背壳和框体之间的热膨胀系数不匹配问题,很好的改善因热振而引起的各种不良和缺陷,电子设备壳体的力学性能更佳,且发生损坏的几率显著降低。具体的,当框体的热膨胀系数大于背壳的热膨胀系数时,多个封接子层的热膨胀系数在上述方向上梯度降低;当框体的热膨胀系数小于的背壳的热膨胀系数时,多个封接子层的热膨胀系数在上述方向上梯度升高;由此,可使得从框体到背壳的方向上热膨胀系数逐升高或逐渐降低,显著改善因热膨胀而引起的各种问题。
根据本申请的实施例,所述框体为金属框,所述背壳为无机背壳;其中,参照图3,所述金属框10与封接层200间还设有结合促进层30。由此,可以明显促进金属框和无机背壳之间的结合,使其结合力较强,可实现无缝无台阶结合,壳体的力学性能佳,外观美观。根据本申请的实施例,为了进一步提高金属框和无机背壳之间的结合力,结合促进层满足以下条件的至少一种:所述结合促进层与所述封接层相似相溶;所述结合促进层远离所述金属框的表面具有凹凸结构;所述结合促进层具有多孔结构。由此,相似相溶可以结合促进层与封接层之间的浸润性较佳,凹凸结构可以有效增大结合促进层和封接层之间的结合力,而多孔结构可以使得封接层的一部分填充在该多孔结构中,进一步增大结合促进层和封接层之间的结合力,从而获得的壳体结合强度更好,使用性能更佳。
根据本申请的实施例,形成金属框的材料包括铝合金或者不锈钢。由此,材料来源广泛,价格较低,强度较高,使用性能较佳。在本申请的一些实施例中,不锈钢可以选自SUS301不锈钢、SUS304不锈钢、SUS316L不锈钢中的至少之一,或者选自《GB/T 20878-2007不锈钢和耐热钢牌号及化学成分》中的牌号为S30110、S30408、S31603等的不锈钢中的至少之一;铝合金可以选自5052铝合金、5182铝合金、6063铝合金、6061铝合金、6013铝合金以及锌含量在1%-10%范围内的7系铝等。
根据本申请的实施例,所述结合促进层包括M或者MxO n,其中,M为选自Al、Ti、Ni和Mo中的至少一种,x为1、2或3,n=1~6的整数。具体的,一些实施例中,结合促进层可以为金属层,具体的可以为Al层、Ti层、Ni层或Mo层;另一些实施例中,结合促进层可以为金属氧化物层,具体可以为氧化铁、氧化铝、氧化钛、氧化镍或氧化钼等。 由此,结合促进层与金属框的结合力较强,不易脱落,且结合促进层与封接层的浸润性更好,结合力也较强,有利于获得结合效果较佳的电子设备壳体。且上述成分的结合促进层不仅可以与封接层相似相溶,更好的相溶结合,且可以更好的形成凹凸结构和多孔结构,进一步提高结合强度和壳体的使用性能。本领域技术人员可以理解,结合促进层的具体成分也可以与金属框的材质有关,例如可以包括形成金属框的对应金属的氧化物,例如金属框为铝合金,结合促进层中可以含有氧化铝及其铝合金中合金元素的氧化物。
根据本申请的实施例,所述结合促进层的厚度为1-10微米,例如结合促进层的厚度可以为1微米、2微米、3微米、4微米、5微米、6微米、7微米、8微米、9微米、10微米等。由此,结合促进层的厚度较为合适,外观比较美观,可以将金属框与封接层牢固的结合在一起,且结合促进层受温度影响膨胀不明显,有利于延长电子设备壳体的使用寿命。相对于上述厚度范围,当结合促进层厚度过薄时,说明预处理程度相对不够,使得该结合促进层性质近金属框键性而无机背壳(如玻璃或陶瓷)键性相对不足,润湿性相对较差,与无机背壳结合力相对不足;当结合促进层厚度过厚时,说明预处理相对过度,使得该结合促进层性质近无机背壳键性而金属框键性相对不足,封接时容易全部溶解到无机背壳中,而与金属框结合力相对不足。
在本申请的一些实施例中,为了提高框体的美观度,可以对框体进行装饰处理,例如可以通过抛光、喷砂、拉丝、物理气相沉积(PVD)镀膜、镭雕、喷涂、防指纹镀膜(AF Coating)等方式中的至少一种对框体进行处理,以获得装饰效果较佳的框体,进一步提高框体的美观性和实用性。
根据本申请的实施例,形成无机背壳的材料包括玻璃或者陶瓷等。由此,材料来源广泛,强度较佳,几乎不会屏蔽信号,有利于实现5G和无线充电功能。在本申请的一些实施例中,形成无机背壳的材料选自化学和物理强化的高铝玻璃、具有相变增韧特性的ZrO 2(3Y)陶瓷、具有相变增韧特性的ZrO 2(3Y)-Al 2O 3陶瓷中的至少之一。根据本申请的实施例,形成玻璃背壳的材料包括化学和物理强化的高铝玻璃。由此,无机背壳的强度更佳,更能够满足使用需求,使用寿命更长,信号的透过率较高。
在本申请的一些实施例中,为了提高背壳的美观度,可以对背壳进行装饰处理,例如可以通过施釉、镭雕、PVD镀膜、AF Coating、拉丝、抛光等方式中的至少之一对背壳进行处理,以获得装饰效果较佳的背壳,进一步提高背壳的美观性和实用性。
根据本申请的实施例,背壳的形状可以为2维、2.5维或者3维等,由此,背壳外观美观好看。
根据本申请的一些实施例,所述框体为陶瓷框体,所述背壳为玻璃背壳。具体的,形 成陶瓷框体的材料选自具有相变增韧特性的ZrO 2(3Y)陶瓷、具有相变增韧特性的ZrO 2(3Y)-Al 2O 3陶瓷中的至少之一,形成玻璃背壳的材料选自化学和物理强化的高铝玻璃等。由此,更能够满足使用需求,外观美观,使用寿命更长,信号的透过率较高。
根据本申请的实施例,形成所述封接子层的材料各自独立地包括:玻璃粉和粘结剂;其中,相邻两个所述封接子层中的所述玻璃粉的成分不同。例如当封接层包括两个封接子层时,可以一个封接子层为硼硅酸盐氧化物系玻璃粉,另一个封接子层为磷酸盐氧化物系玻璃粉;可以一个封接子层为硫化物系玻璃粉,另一个封接子层为硼硅酸盐氧化物系玻璃粉;可以一个封接子层为卤化物系玻璃粉,另一个封接子层为硼硅酸盐氧化物系玻璃粉;可以一个封接子层为硼酸盐系玻璃粉,另一个封接子层为硅酸盐氧化物系玻璃粉;另一些实施例中,可以两个封接子层均为同一系玻璃粉(如均为硼硅酸盐氧化物系玻璃粉),但玻璃粉中含有的组分和/或含量不同,具体的,可以是硼硅酸盐氧化物系玻璃粉中氧化物和/或其他物质种类相同,但各种氧化物和/或其他物质的含量不同,也可以是硼硅酸盐氧化物系玻璃粉中氧化物和/或其他物质种类不同。由此,封接层可以有效的将框体与背壳牢固的结合在一起,同时可以通过调整各个封接子层的成分使得各层结构之间的热膨胀系数匹配性和相容性更好,得到使用性能较佳、使用寿命较长的电子设备壳体,同时多个封接子层的多层结构可以方便的通过扫描电镜(SEM)线扫描观察到。
根据本申请的实施例,为了进一步提高框体与背壳之间的结合强度,形成所述封接子层的材料中所述玻璃粉和所述粘结剂的质量比为88~92:8-12。由此,上述各组分在上述含量范围内,框体与背壳之间的结合强度更高,更有利于实现框体与背壳之间的一体化,进而实现框体与背壳之间的无缝无台阶结合,使得电子设备壳体的外观更加美观、好看,且封接层的组分在上述范围内更有利于实现其与框体与背壳之间的膨胀系数之间的匹配。
根据本申请的实施例,在制备封接子层过程中,可以将玻璃粉、粘结剂和溶剂混合制成封接浆料,然后利用封接浆料形成封接子层。其中,上述溶剂的具体用量没有特别的限制要求,本领域技术人员可以根据形成封接子层的封接浆料的流动性来确定合适的溶剂用量。
根据本申请的实施例,所述玻璃粉中不含铅。由此,该玻璃粉对人体几乎没有危害,对环境也比较友好,更有利于受到消费者的喜爱。
根据本申请的实施例,所述玻璃粉包括硅酸盐氧化物系(如高硅氧玻璃、钠钙玻璃、铝硅酸盐玻璃、硼硅酸盐玻璃)、磷酸盐系、硼酸盐系玻璃粉、硫化物系玻璃粉和卤化系玻璃粉中的至少一种。由此,玻璃粉的来源较为广泛,粘结力较强,膨胀系数较为合适,使用性能较佳。
根据本申请的实施例,当背壳为玻璃背壳时,为了获得性能更好、外观更平整和美观的电子设备壳体,封接层中的玻璃粉为低熔点玻璃粉,具体的,玻璃粉完全熔融的温度低于玻璃背壳的软化点。由此,当封接框体和背壳时,温度还未到达玻璃背壳的软化点,玻璃背壳不会发生软化变形,从而不会影响电子设备的平整性、外观和光学性能,不会因温度过高而发生不良和缺陷。
根据本申请的实施例,当框体为金属框时,为了使得玻璃粉与所述结合促进层相似相溶,提高结合强度,可以根据需要调整结合促进层和封接层的具体成分,在本申请的一些具体实施例中,结合促进层包括金属氧化物层(即M xO n其中,M为Fe、Al、Ti、Ni和Mo中的至少一种,x为1、2或3,n=1~6的整数)或金属层(即M,其中M为Al、Ti、Ni和Mo中的至少一种),相应的玻璃粉可选自硅酸盐氧化物系(如高硅氧玻璃、钠钙玻璃、铝硅酸盐玻璃、硼硅酸盐玻璃)、磷酸盐系、硼酸盐系玻璃粉、硫化物系玻璃粉和卤化系玻璃粉中的至少一种。由此,可以使得封接层与结合促进层之间相似相溶,有利于封接层与结合促进层之间较好的相互扩散和渗透,使得二者之间结合的更加密实,进而有利于提高封接层与结合促进层之间的结合强度。
根据本申请的实施例,所述粘结剂包括硅酸盐类无机粘结剂(例如可以包括但不限于水玻璃等)和水性聚氨酯中的至少一种。由此,粘结剂的粘结作用较强,可以有效的将玻璃粉制备形成封装浆料,且有利于将封装浆料涂覆在结合促进层的表面上。
根据本申请的实施例,所述溶剂包括乙醇和水中的至少一种。由此,粘结剂以及玻璃粉可以均匀的分散在上述溶剂中,进而使得封接层与结合促进层、背壳之间的结合较为牢固。
根据本申请实施例的上述电子设备壳体,通过多个成分不同的封接子层过渡,可以有效将不同材质、热膨胀系数差异较大的背壳和框体结合,壳体具有优异的结合强度,同时能够实现各种复杂的形状和结构,具体地,参照图4(图中未示出封接层),电子设备壳体中框体10和背壳20相连接的位置可以为内直角结构(图4中a)、内阶梯结构(图4中b)、外表面曲面结构(图4中c)或内表面为向外侧凸起的曲面结构(图4中f),框体内表面可以为逐渐向内倾斜结构(图4中d)、逐渐向外倾斜结构(图4中e)或向内侧凸起的曲面结构(图4中g)。由此可以实现各种复杂的形状,方便与内部元器件组装,或者可以实现特殊的光影效果。
在本申请的另一方面,本申请提供了一种电子设备。根据本申请的实施例,该电子设备包括前面所述的复合体或者前面所述的电子设备壳体。发明人发现,该电子设备结构简单、易于实现,可以实现5G和无线充电功能,接收或者发射型号的能力较强,使用寿命 较长,且具备前面所述的复合体或者前面所述的电子设备壳体的所有特征和优点,市场竞争力较强。
根据本申请的实施例,该电子设备包括:手机、平板电脑、笔记本电脑、VR(虚拟现实)设备、AR(增强现实)设备、可穿戴设备和游戏机中的至少一种。由此,应用范围较广,可以满足消费者的消费体验。
需要说明的是,上述电子设备除了包括前面所述的电子设备壳体之外,还可以包括常规电子设备应该具备的结构,以电子设备为手机为例,参照图2,其还可以包括指纹模组21,摄像模组22,控制模组23、CPU、连接电路、封装结构等,在此不再过多赘述。
本申请提供了一种复合体。根据本申请的实施例,参照图5,该复合体包括:第一工件100;封接层200,所述封接层200设置在所述第一工件100的外表面上,所述封接层200包括依次层叠设置的多个封接子层(图5中以两个封接子层210和220为例说明),且相邻两个封接子层的成分不同;第二工件300,所述第二工件300通过所述封接层200与所述第一工件100连接。发明人发现,该复合体中第一工件和第二工件结合力较强,其通过设置多个成分不同的封接子层,可以灵活地通过调整封接子层的成分调整热膨胀系数,从而形成热膨胀系数差异小的封接子层,可以使得从第一工件到第二工件热膨胀系数逐渐过渡,匹配性更好,复合体因温度变化而发生不良的可能性大大降低,力学性能理想,使用寿命长,且外观效果较佳,强度较高,且复合体对信号的屏蔽作用较弱,适于制作电子设备壳体。
根据本申请的实施例,参照图6,第一工件为金属件,第二工件为无机件,且金属件和封接层之间还设有结合促进层30。由此,金属件和封接层之间的相容性更好,结合力更大,利于获得性能更好的壳体。在本申请的一些实施例中,形成所述金属件的材料包括不锈钢或铝合金。由此,金属件的来源广泛,价格较低,强度较高,膨胀系数较为合适,适于制作电子设备壳体的框体。在本申请的一些实施例中,不锈钢可以选自SUS301不锈钢、SUS304不锈钢、SUS316L不锈钢中的至少之一,或者选自《GB/T 20878-2007不锈钢和耐热钢牌号及化学成分》中的牌号为S30110、S30408、S31603等的不锈钢中的至少之一;铝合金可以选自5052铝合金、5182铝合金、6063铝合金、6061铝合金、6013铝合金以及锌含量在1%-10%范围内的7系铝等。
根据本申请的实施例,形成所述无机件的材料包括玻璃或陶瓷。由此,无机件的来源较为广泛,价格较低,膨胀系数较为合适,几乎不会屏蔽信号,适于制作电子设备壳体的背壳,进而有利于实现5G和无线充电功能,且无机件与封接层之间相似相溶,在封接时二者之间会发生扩散浸润,封接效果较佳,结合强度较强,有利于实现无缝结合、一体化。 在本申请的一些实施例中,形成无机件的材料选自化学和物理强化的高铝玻璃、具有相变增韧特性的ZrO 2(3Y)陶瓷、具有相变增韧特性的ZrO 2(3Y)-Al 2O 3陶瓷中的至少之一。
根据本申请的实施例,结合促进层可以是通过在金属件的表面进行预处理获得的,为了获得性能较佳的结合促进层,预处理的方式包括化学气相沉积法和熔盐电解法中的至少一种。由此,形成结合促进层的方法简单、方便,易于实现。结合促进层的成分、厚度等与前文描述的结合促进层一致,在此不再过多赘述。
根据本申请的实施例,第一工件为陶瓷件,且第二工件为玻璃件。具体的,形成陶瓷件的材料选自具有相变增韧特性的ZrO 2(3Y)陶瓷、具有相变增韧特性的ZrO 2(3Y)-Al 2O 3陶瓷中的至少之一;形成玻璃件的材料包括化学和物理强化的高铝玻璃。由此,第一工件和第二工件的膨胀系数更合适,强度更佳,更能够满足使用需求,使用寿命更长,信号的透过率较高。
在本申请的另一方面,本申请提供了一种制备复合体的方法。根据本申请的实施例,参照图7,该方法包括:
S100:利用封接浆料在所述第一工件的至少一部分外表面上形成封接层。
根据本申请的实施例,所述封接浆料中含有玻璃粉。由此,由该封接浆料形成的封接层的粘结力较强,有利于提高第一工件与第二工件之间的结合强度,且玻璃粉与前面的描述一致,在此不再过多赘述。
根据本申请的实施例,封接浆料是将玻璃粉、粘结剂以及溶剂混合在一起之后形成的,且玻璃粉、粘结剂以及溶剂与前面的描述一致,在此不再过多赘述。根据本申请的实施例,封接浆料包括88-92重量份的玻璃粉,8-12重量份的粘结剂以及溶剂适量。根据本申请的实施例,上述溶剂的具体用量没有特别的限制要求,本领域技术人员可以根据形成封接层的封接浆料的流动性来确定合适的溶剂用量。由此,封接浆料混合效果较佳,粘度较佳,有利于将其涂覆在结合促进层的表面上。
在本申请的一些实施例中,每个所述封接子层是通过以下步骤形成的:将所述封接浆料涂覆在相应的外表面(第一工件或其它封接子层的外表面)上,得到所述封接子层,重复多次上述操作,即可获得含有多个封接子层的封接层。由此,操作简单、方便,易于实现,且可以获得性能较佳的封接层。在本申请的另一些实施例中,每个所述封接子层是通过以下步骤形成的:将所述封接浆料涂覆在相应的外表面(第一工件或其它封接子层的外表面)上,得到封接浆料层;将所述封接浆料层加热至熔融,然后使熔融的所述封接浆料层凝固,得到所述封接子层,重复多次涂覆步骤形成多个封接浆料层,然后将多个封接浆料层加热至熔融再凝固,即可获得含有多个封接子层的封接层。由此,操作简单、方便, 易于实现,可以使得封接层与第一工件的结合强度更高,更有利于实现第一工件与第二工件之间的无缝结合。
根据本申请的实施例,当第一工件为金属工件时,在形成封接层之前,还包括对第一工件进行预处理,以便在所述第一工件的至少一部分表面上形成结合促进层。
根据本申请的实施例,在对第一工件进行预处理之前,还可以包括对第一工件进行去油、清洗和干燥的步骤,由此,可以获得洁净的第一工件的表面,有利于在其表面上进行预处理。
根据本申请的实施例,第一工件、结合促进层与前面的描述一致,在此不再过多赘述。
根据本申请的实施例,所述预处理包括对所述第一工件进行氧化处理和镀膜处理中的至少一种。由此,操作简单、方便,易于实现,且可以形成膨胀系数较为合适、并与封接层相似相溶的结合促进层,以利于后续第一工件与第二工件之间的无缝结合。
根据本申请的实施例,所述镀膜处理可以通过化学气相沉积法和熔盐电解法中的至少一种进行的。由此,操作简单、方便,易于实现,可以获得性能较佳的结合促进层。根据本申请的实施例,通过化学气相沉积法进行预处理时,是在第一工件的表面上沉积一层金属层或金属氧化物层。由此,结合促进层与第一工件和封接层之间的结合力较强。根据本申请的实施例,利用熔盐电解法进行预处理时,是在第一工件的表面单独形成一层金属层。由此,形成的结合促进层的性能更佳,更有利于实现第一工件与第二工件之间的无缝结合,实现一体化。
在本申请的一些实施例中,熔盐电解法形成结合促进层的具体操作可以为将第一工件作为阴极浸入熔融盐中,熔盐电解使第一工件表面得到薄层异质金属覆盖物。由此,操作简单、方便,易于实现,且可以获得性能较佳的结合促进层。
根据本申请的实施例,氧化处理可以为本领域已知的金属氧化处理方法,由此可以使得金属件的外表面直接氧化形成金属氧化物层,结合强度更高,获得的壳体的性能更佳。
S200:将第二工件与所述封接层接触,将所述封接层加热至熔融,然后使熔融的所述封接层凝固,得到所述复合体。
根据本申请的实施例,第二工件与前面的描述一致,在此不再过多赘述。
根据本申请的实施例,封接层完全融化的温度比第二工件的软化温度低,由此,封接层与第二工件之间会发生扩散浸润,封接效果较佳,可以实现较佳的结合效果,且几乎不会损坏第二工件,使得复合体的外观比较美观。需要说明的是,封接层完全融化的温度是指封接层达到完全熔融时的最低温度值,第二工件的软化温度是指第二工件开始发生软化时的温度。
根据本申请的实施例,上述制备复合体的方法操作简单、方便,易于实现,结合促进层可以比较牢固的与封接层连接,进而可以将第一工件和第二工件比较牢固的结合在一起,且获得的复合体具备前面所述的所有特征和优点,在此不再过多赘述。而且,该方法同样适用于制备前面所述的电子设备壳体,只要第一工件为框体,第二工件为背壳即可,具体操作完全一致。
下面详细描述本申请的实施例。
如无特别说明,在后面的实施例和对比例中,通过下列方法对电子设备壳体的性能进行测试。
性能检测方法:
结合强度性能检测:拉拔力测试。
具体操作如下:
设备:万能试验机
样条:将第一工件和第二工件分别制成尺寸为30mm*12mm*0.7mm的样条;第一工件和第二工件的结合面积(或者说封接层的面积)为6mm*12mm;
测试方法:将测试样条固定在试验台上,万能试验机以5mm/min速度加载,直到第一工件或第二工件非结合部分断裂或结合面脱落,测试示意图见图8。
多个封接子层表征:扫面电镜(SEM)线扫描。
实施例1
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属氧化物层(氧化铝层),结合促进层的厚度为1微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括92重量份的硼硅酸盐氧化物系玻璃粉,8重量份的硅酸盐类无机粘结剂,适量乙醇,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括92重量份的磷酸盐氧化物系玻璃粉,8重量份的水性聚氨酯,适量水,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为高铝玻璃;
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层 1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内,且金属框、封接子层1、封接子层2和无机背壳的热膨胀系数逐渐减小。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
将壳体进行切割,得到类似图3所示的截面,通过扫描电镜观察封接层对应的位置,扫描电镜照片参见图9,图9中横线上方对应封接子层2,横线下方对应封接子层1,分别对封接子层1和封接子层2进行线扫描,扫描谱图分别见图10和图11。通过图9、图10和图11可见,封接位置处放大观察无封接痕迹,通过扫描电镜线扫描可以检测和表征不同成分的子封接层。
实施例2
电子设备壳体的组成:
金属框:形成材料为铝合金,其表面的结合促进层为金属氧化物层(氧化钛层),结合促进层的厚度为1微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括88重量份的硼硅酸盐氧化物系玻璃粉,12重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上之后进行加热至熔融,凝固之后得到封接子层1;
封接子层2:包括88重量份的磷酸盐氧化物系玻璃粉,12重量份的水性聚氨酯,适量水,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为高铝玻璃。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例3
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属氧化物层(氧化镍), 结合促进层的厚度为5微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括90重量份的硼硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的磷酸盐氧化物系玻璃粉,10重量份的水性聚氨酯,适量水,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为ZrO 2(3Y)陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例4
电子设备壳体的组成:
金属框:形成材料为铝合金,其表面的结合促进层为金属氧化物层(氧化钼),结合促进层的厚度为1微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括90重量份的硼硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的磷酸盐氧化物系玻璃粉,10重量份的水性聚氨酯,适量水,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为ZrO 2(3Y)陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例5
电子设备壳体的组成:
金属框:形成材料为铝合金,其表面的结合促进层为金属层(铝层),结合促进层的厚度为1微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括90重量份的硫化物系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硼硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例6
电子设备壳体的组成:
金属框:形成材料为铝合金,其表面的结合促进层为金属层(钛层),结合促进层的厚度为10微米,形成结合促进层的方式为熔盐电解;
封接子层1:包括90重量份的卤化物系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硼硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例7
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属层(镍层),结合促进层的厚度为10微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括90重量份的磷酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硼硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例8
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属层(钼层),结合促进层的厚度为10微米,形成结合促进层的方式为熔盐电解;
封接子层1:包括90重量份的硼酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例9
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属层(钼层),结合促进层的厚度为10微米,形成结合促进层的方式为熔盐电解;
封接子层1:包括90重量份的硼酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
封接子层3:包括90重量份的磷酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层3的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层2的外表面上;
无机背壳:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷。
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与封接子层2的热膨胀系数的差异为±10%以内,封接子层3与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例10
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属氧化物层(氧化铝层),结合促进层的厚度为1微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括92重量份的硼硅酸盐氧化物系玻璃粉,8重量份的硅酸盐类无机粘结剂,适量乙醇,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括88重量份的硼硅酸盐氧化物系玻璃粉(与封接子层1采用相同的玻璃粉),12重量份的硅酸盐类无机粘结剂,适量乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为高铝玻璃;
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例11
电子设备壳体的组成:
金属框:形成材料为不锈钢,其表面的结合促进层为金属氧化物层(氧化铝层),结合促进层的厚度为1微米,形成结合促进层的方式为化学气相沉积;
封接子层1:包括92重量份的铝硅酸盐氧化物系玻璃粉,8重量份的硅酸盐类无机粘结剂,适量乙醇,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在结合促进层的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括92重量份的硼硅酸盐氧化物系玻璃粉,8重量份的硅酸盐类无机粘结剂,适量乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
无机背壳:形成材料为高铝玻璃;
其中,结合促进层与金属框的热膨胀系数的差异为±10%以内,结合促进层与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为100N以上。
实施例12
电子设备壳体的组成同实施例1,不同之处在于本对比例1中金属框的表面不含有结合促进层。
其中,封接子层1与金属框的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与无机背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体外观美观,可以实现金属框与无机背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的金属框与无机背壳的结合强度为60~80N。
实施例3
电子设备壳体的组成:
陶瓷框:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷;
封接子层1:包括90重量份的硼酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在陶瓷件的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
玻璃背壳:形成材料为高铝玻璃。
其中,陶瓷框与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与玻璃背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现陶瓷框与玻璃背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的陶瓷框与玻璃背壳的结合强度为100N以上。
实施例14
电子设备壳体的组成:
陶瓷框:形成材料为ZrO 2(3Y)陶瓷
封接子层1:包括90重量份的硼酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在陶瓷件的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述 玻璃化后的封接子层1的外表面上;
玻璃背壳:形成材料为高铝玻璃。
其中,陶瓷框与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与玻璃背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现陶瓷框与玻璃背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的陶瓷框与玻璃背壳的结合强度为100N以上。
实施例15
电子设备壳体的组成:
陶瓷框:形成材料为ZrO 2(3Y)-Al 2O 3陶瓷;
封接子层1:包括90重量份的硼酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在陶瓷件的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的硅酸盐氧化物系玻璃粉,10重量份的硅酸盐类无机粘结剂,适量的乙醇,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
封接子层3:包括90重量份的磷酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层3的方式为将上述原料混合形成封接浆料涂覆在封接子层2的外表面上;
玻璃背壳:形成材料为高铝玻璃。
其中,陶瓷框与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与封接子层3的热膨胀系数的差异为±10%以内,封接子层3与玻璃背壳的热膨胀系数的差异为±10%以内,且陶瓷框、封接子层1、封接子层2、封接子层3和玻璃背壳的热膨胀系数逐渐减小。
本实施例的电子设备壳体的外观美观、好看,可以实现陶瓷框与玻璃背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的陶瓷框与玻璃背壳的结合强度为100N以上。
实施例16
电子设备壳体的组成:
陶瓷框:形成材料为ZrO 2(3Y)陶瓷
封接子层1:包括90重量份的硼酸盐系玻璃粉,10重量份的水性聚氨酯,适量的水, 形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在陶瓷件的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括92重量份的硼酸盐系玻璃粉(与封接子层1采用相同的玻璃粉),8重量份的水性聚氨酯,适量的水,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
玻璃背壳:形成材料为高铝玻璃。
其中,陶瓷框与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与玻璃背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现陶瓷框与玻璃背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的陶瓷框与玻璃背壳的结合强度为100N以上。
实施例17
电子设备壳体的组成:
陶瓷框:形成材料为ZrO 2(3Y)陶瓷
封接子层1:包括90重量份的硼硅酸盐氧化物系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层1的方式为将上述原料混合形成封接浆料涂覆在陶瓷件的外表面上;加热熔融再固化后得到玻璃化封接子层1;
封接子层2:包括90重量份的铝硅酸盐氧化物系玻璃粉,10重量份的水性聚氨酯,适量的水,形成封接子层2的方式为将上述原料混合形成封接浆料涂覆在上述玻璃化后的封接子层1的外表面上;
玻璃背壳:形成材料为高铝玻璃。
其中,陶瓷框与封接子层1的热膨胀系数的差异为±10%以内,封接子层1与封接子层2的热膨胀系数的差异为±10%以内,封接子层2与玻璃背壳的热膨胀系数的差异为±10%以内。
本实施例的电子设备壳体的外观美观、好看,可以实现陶瓷框与玻璃背壳之间的无缝无台阶结合,且几乎不会屏蔽信号,电子设备壳体的陶瓷框与玻璃背壳的结合强度为100N以上。
对比例1
同实施例1,差别在于封接层为单层结构,包括硼硅酸盐玻璃粉,金属框为铝合金与封接层之间的热膨胀系数差异为30%,封接层与无机背壳之间的热膨胀系数差异为20%。该 对比例中得到的壳体,金属框和背壳之间热膨胀系数差异过大,封接后容易开裂。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种电子设备壳体,其特征在于,包括:
    框体;
    封接层,所述封接层设置在所述框体的至少一部分外表面上,所述封接层包括依次层叠设置的多个封接子层;
    背壳,所述背壳通过所述封接层与所述框体相连;
    其中,相邻两个所述封接子层的成分不同。
  2. 根据权利要求1所述的电子设备壳体,其特征在于,所述封接层的热膨胀系数在所述框体和所述背壳的热膨胀系数之间,且所述框体、多个所述封接子层和所述背壳中相邻两结构之间的热膨胀系数差异在±10%以内。
  3. 根据权利要求1或2所述的电子设备壳体,其特征在于,在所述框体、所述封接层和所述背壳的分布方向上,多个所述封接子层的热膨胀系数梯度升高或梯度降低。
  4. 根据权利要求1-3中任一项所述的电子设备壳体,其特征在于,所述框体为金属框,所述背壳为无机背壳;
    其中,所述金属框与封接层间还设有结合促进层。
  5. 根据权利要求4所述的电子设备壳体,其特征在于,所述结合促进层满足以下条件的至少一种:
    所述结合促进层与所述封接层相似相溶;
    所述结合促进层远离所述金属框的表面具有凹凸结构;
    所述结合促进层具有多孔结构;
    所述结合促进层中含有M或者M xO n,其中,M为选自Fe、Al、Ti、Ni和Mo中的至少一种,x为1、2或3,n为1~6的整数;
    所述结合促进层的厚度为1-10微米。
  6. 根据权利要求4或5所述的电子设备壳体,其特征在于,形成所述金属框的材料包括不锈钢或铝合金;
    形成所述无机背壳的材料包括玻璃或陶瓷。
  7. 根据权利要求1-3中任一项所述的电子设备壳体,其特征在于,所述框体为陶瓷框体,所述背壳为玻璃背壳。
  8. 根据权利要求1-7中任一项所述的电子设备壳体,其特征在于,形成所述封接子层的材料各自独立地包括:
    玻璃粉;和
    粘结剂;
    其中,所述玻璃粉和所述粘结剂的质量比为88~92:8~12,且相邻两个所述封接子层中的所述玻璃粉的成分不同。
  9. 根据权利要求8所述的电子设备壳体,其特征在于,所述玻璃粉满足以下条件的至少一种:
    所述玻璃粉中不含铅;
    所述玻璃粉包括硅酸盐氧化物系、磷酸盐系、硼酸盐系玻璃粉、硫化物系玻璃粉和卤化系玻璃粉中的至少一种。
  10. 一种电子设备,其特征在于,包括权利要求1-9中任一项所述的电子设备壳体。
  11. 一种复合体,其特征在于,包括:
    第一工件;
    封接层,所述封接层设置在所述第一工件的至少一部分外表面上,所述封接层包括依次层叠设置的多个封接子层,且相邻两个所述封接子层的成分不同;
    第二工件,所述第二工件通过所述封接层与所述第一工件连接;
    其中,所述封接层如权利要求1、8或9所限定。
  12. 根据权利要求11所述的复合体,其特征在于,所述封接层的热膨胀系数在所述第一工件和所述第二工件的热膨胀系数之间,且所述第一工件、多个所述封接子层和所述第二工件中相邻两层结构之间的热膨胀系数差异在±10%以内。
  13. 根据权利要求11或12所述的复合体,其特征在于,在所述第一工件、所述封接层和所述第二工件的分布方向上,多个所述封接子层的热膨胀系数梯度升高或梯度降低。
  14. 根据权利要求11-13中任一项所述的复合体,其特征在于,所述第一工件为金属件,所述第二工件为无机件,其中,所述金属件和所述封接层之间还设有结合促进层,所述结合促进层如权利要求3-5中任一项所限定。
  15. 根据权利要求11-13中任一项所述的复合体,其特征在于,所述第一工件为陶瓷件,所述第二工件为玻璃件。
PCT/CN2019/087230 2018-09-30 2019-05-16 电子设备壳体、电子设备和复合体 WO2020062890A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19866630.7A EP3860319A4 (en) 2018-09-30 2019-05-16 HOUSING FOR ELECTRONIC DEVICE, ELECTRONIC DEVICE AND COMBINED BODY
KR1020217009467A KR102537236B1 (ko) 2018-09-30 2019-05-16 전자 장치 하우징, 전자 장치, 및 복합체
JP2021517564A JP2022501831A (ja) 2018-09-30 2019-05-16 電子機器ケース、電子機器及び複合体
US17/281,189 US20210400831A1 (en) 2018-09-30 2019-05-16 Electronic device housing, electronic device, and compound body
JP2023168944A JP2023182686A (ja) 2018-09-30 2023-09-29 電子機器ケース、電子機器及び複合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811161748.4A CN110972418B (zh) 2018-09-30 2018-09-30 电子设备壳体、电子设备和复合体
CN201811161748.4 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062890A1 true WO2020062890A1 (zh) 2020-04-02

Family

ID=69950969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087230 WO2020062890A1 (zh) 2018-09-30 2019-05-16 电子设备壳体、电子设备和复合体

Country Status (7)

Country Link
US (1) US20210400831A1 (zh)
EP (1) EP3860319A4 (zh)
JP (2) JP2022501831A (zh)
KR (1) KR102537236B1 (zh)
CN (1) CN110972418B (zh)
TW (1) TWI711358B (zh)
WO (1) WO2020062890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449792A (zh) * 2020-10-30 2022-05-06 Oppo广东移动通信有限公司 壳体及其制作方法、电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436678A (zh) * 2020-11-04 2022-05-06 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN114447604A (zh) * 2020-11-05 2022-05-06 英业达科技有限公司 天线装置
CN116063867A (zh) * 2022-12-28 2023-05-05 中国科学院青岛生物能源与过程研究所 一种宽温域复合密封材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318591A1 (en) * 2010-06-28 2011-12-29 Fih (Hong Kong) Limited Molded article and method for making the same
CN203167461U (zh) * 2012-07-27 2013-08-28 肖特玻璃科技(苏州)有限公司 用于电子设备外壳或边框的层状结构
CN106657505A (zh) * 2017-02-09 2017-05-10 广东欧珀移动通信有限公司 终端的壳体及终端
CN107613069A (zh) * 2017-08-31 2018-01-19 广东欧珀移动通信有限公司 壳体组件、侧键模组及移动终端

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450751B2 (ja) * 1998-08-26 2003-09-29 日本碍子株式会社 接合体、高圧放電灯およびその製造方法
JP2001307633A (ja) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp フラットディスプレイパネル、フラットディスプレイ装置およびフラットディスプレイパネルの製造方法
DE10026651C1 (de) * 2000-05-29 2001-07-26 Siemens Ag Materialverbund sowie Herstellung und Verwendung des Materialverbunds
DE10203795B4 (de) * 2002-01-31 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Halbleiterbauelements
JP5639737B2 (ja) * 2004-12-28 2014-12-10 テクニカル ユニバーシティ オブ デンマーク ガラスに対する金属の、金属に対する金属の、又は、セラミックに対する金属の接続を生じさせる方法。
JP2008226553A (ja) * 2007-03-09 2008-09-25 Electric Power Dev Co Ltd 色素増感型太陽電池の封止部および色素増感型太陽電池
CN102203026A (zh) * 2008-11-14 2011-09-28 旭硝子株式会社 带密封材料层的玻璃构件的制造方法及电子器件的制造方法
CN101745792A (zh) * 2008-12-12 2010-06-23 晟铭电子科技股份有限公司 塑胶嵌入多孔性结构且结合金属基材的方法
KR101242849B1 (ko) * 2009-10-16 2013-03-13 애플 인크. 휴대용 컴퓨팅 시스템
US9232670B2 (en) * 2010-02-02 2016-01-05 Apple Inc. Protection and assembly of outer glass surfaces of an electronic device housing
US9156735B2 (en) * 2010-04-27 2015-10-13 Ferro Corporation Hermetic sealing of glass plates
JPWO2012117978A1 (ja) * 2011-02-28 2014-07-07 旭硝子株式会社 気密部材とその製造方法
CN202079858U (zh) * 2011-04-21 2011-12-21 浙江南化防腐设备有限公司 新型聚丙烯碳钢复合板
CN104780241B (zh) * 2012-02-24 2018-06-26 比亚迪股份有限公司 一种手机壳体
KR101507503B1 (ko) * 2012-05-29 2015-03-31 엘지디스플레이 주식회사 디스플레이 장치
TWM456284U (zh) * 2012-07-04 2013-07-01 Darfon Materials Corp 殼體
US9499428B2 (en) * 2012-07-20 2016-11-22 Ferro Corporation Formation of glass-based seals using focused infrared radiation
TW201417982A (zh) * 2012-11-05 2014-05-16 Compal Electronics Inc 電子裝置之殼體的組裝方法及電子裝置之殼體的組合
CN104051323B (zh) * 2013-03-13 2017-12-29 中芯国际集成电路制造(上海)有限公司 一种半导体封装结构及其制备方法
CN203872220U (zh) * 2014-04-30 2014-10-08 宋志光 带充电条的多功能手机壳
CN104409330B (zh) * 2014-12-02 2017-10-20 京东方科技集团股份有限公司 衬底基板和显示基板及其制作方法、显示装置
KR102483950B1 (ko) * 2015-04-28 2023-01-03 삼성디스플레이 주식회사 디스플레이 장치 실링용 조성물, 이를 포함한 유기발광 디스플레이 장치 및 그 제조방법
JP6493798B2 (ja) * 2015-05-28 2019-04-03 日本電気硝子株式会社 気密パッケージの製造方法
CN105307438A (zh) * 2015-11-18 2016-02-03 广东欧珀移动通信有限公司 一种电子装置外壳、制作方法以及电子装置
DE202016007614U1 (de) * 2015-12-23 2018-03-13 Apple Inc. Gehäuse mit metallischer Innenflächenschicht
JP2017191805A (ja) * 2016-04-11 2017-10-19 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
JP6665701B2 (ja) * 2016-06-17 2020-03-13 日本電気硝子株式会社 波長変換部材及びその製造方法、並びに発光デバイス
CN107117987A (zh) * 2017-04-11 2017-09-01 厦门博恩思应用材料科技有限公司 一种陶瓷玻璃组及其制备方法
CN207185012U (zh) * 2017-09-28 2018-04-03 广东欧珀移动通信有限公司 移动终端及其壳体
CN207409494U (zh) * 2017-11-27 2018-05-25 信利半导体有限公司 一种oled显示器
KR102420438B1 (ko) * 2018-01-08 2022-07-14 삼성디스플레이 주식회사 표시 장치 및 휴대용 단말기
CN108219681A (zh) * 2018-01-15 2018-06-29 上海穗杉实业股份有限公司 一种高温密封胶及其制备方法和用途
KR102533426B1 (ko) * 2018-05-03 2023-05-17 삼성전자 주식회사 전자장치의 관로 구조 및 이를 포함하는 전자장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110318591A1 (en) * 2010-06-28 2011-12-29 Fih (Hong Kong) Limited Molded article and method for making the same
CN203167461U (zh) * 2012-07-27 2013-08-28 肖特玻璃科技(苏州)有限公司 用于电子设备外壳或边框的层状结构
CN106657505A (zh) * 2017-02-09 2017-05-10 广东欧珀移动通信有限公司 终端的壳体及终端
CN107613069A (zh) * 2017-08-31 2018-01-19 广东欧珀移动通信有限公司 壳体组件、侧键模组及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3860319A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449792A (zh) * 2020-10-30 2022-05-06 Oppo广东移动通信有限公司 壳体及其制作方法、电子设备

Also Published As

Publication number Publication date
TWI711358B (zh) 2020-11-21
KR20210049160A (ko) 2021-05-04
US20210400831A1 (en) 2021-12-23
JP2023182686A (ja) 2023-12-26
EP3860319A4 (en) 2021-12-01
CN110972418A (zh) 2020-04-07
EP3860319A1 (en) 2021-08-04
KR102537236B1 (ko) 2023-05-26
TW202015504A (zh) 2020-04-16
CN110972418B (zh) 2022-01-07
JP2022501831A (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020062890A1 (zh) 电子设备壳体、电子设备和复合体
JP6342528B2 (ja) イオン交換プロセスに適合した装飾用多孔性無機層
TWI518200B (zh) 玻璃構成用機具及方法
CN107739948B (zh) 一种金刚石/铝复合材料及其高效率制备方法
US20180305974A1 (en) Vacuum insulating glass (vig) unit with metallic peripheral edge seal and/or methods of making the same
KR20190062604A (ko) 전자파 투과성 금속 광택 부재, 이것을 사용한 물품 및 금속 박막
KR101579239B1 (ko) 적층체 및 적층체의 제조 방법
CN110971735B (zh) 电子设备壳体、电子设备和复合体
CN111978088A (zh) 一种强韧化超高致密度抗超高温烧蚀涂层及其制备方法
CN106757004B (zh) 一种钽金属表面激光多层熔覆Ta2O5陶瓷涂层的方法
CN104402533A (zh) 一种在碳化硅表面真空熔覆金属涂层的方法
CN106458766B (zh) 二氧化锆陶瓷外观件及其制造方法
TW201518527A (zh) 矽靶材構造體之製造方法及矽靶材構造體
JP2013182714A (ja) 導電性積層体並びにその製造方法及び前駆体
CN110635816B (zh) 复合结构件的制备方法、复合结构件及电子设备
JP2015199629A (ja) 封着材料、封着体
JP2009170848A (ja) セラミック電子部品及びその製造方法
CN210457982U (zh) 制备复合壳体的***
TWI477388B (zh) 製造殼體之方法及殼體
US9741461B2 (en) Contact pins for glass seals and methods for their production
CN111204985B (zh) 半成品玻璃结构及其制备方法、玻璃壳体及其制备方法和移动电子设备
TW201425259A (zh) 塊體金屬玻璃之連接方法
CN109722665A (zh) 一种钼基材料表面防护涂层的制备方法
CN103728682B (zh) 一种泡沫硅反射镜及其制备方法
CN110937826B (zh) 电熔接玻璃的方法和玻璃复合体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517564

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217009467

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019866630

Country of ref document: EP

Effective date: 20210430