WO2020059605A1 - 半導体パッケージ - Google Patents

半導体パッケージ Download PDF

Info

Publication number
WO2020059605A1
WO2020059605A1 PCT/JP2019/035755 JP2019035755W WO2020059605A1 WO 2020059605 A1 WO2020059605 A1 WO 2020059605A1 JP 2019035755 W JP2019035755 W JP 2019035755W WO 2020059605 A1 WO2020059605 A1 WO 2020059605A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
semiconductor package
graphite
anisotropic graphite
crystal orientation
Prior art date
Application number
PCT/JP2019/035755
Other languages
English (en)
French (fr)
Inventor
真琴 沓水
一喜 筒井
聡志 奥
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2020059605A1 publication Critical patent/WO2020059605A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a semiconductor package.
  • a rise in temperature due to heat generated from a semiconductor element becomes a problem.
  • a semiconductor package including a semiconductor element, a heat diffusion member, and a cooling member such as a heat sink in order to suppress a temperature rise of the semiconductor package is known.
  • the heat diffusion member is a member that transmits heat from the semiconductor element to the cooling member, and is made of metal and / or anisotropic graphite.
  • Anisotropic graphite is composed of a number of graphite layers and has a crystal orientation plane. Anisotropic graphite exhibits high thermal conductivity in a direction parallel to the crystal orientation plane of anisotropic graphite and low thermal conductivity in a direction perpendicular thereto.
  • Patent Literature 1 discloses a structure in which a graphene sheet is stacked, an anisotropic heat conductive element including a support member, and a structure in which the anisotropic heat conductive element is combined with a heat source and a heat sink. It has been disclosed.
  • Patent Literature 1 does not describe the relationship between the direction in which the heat diffusion member and the cooling member are arranged and the cooling efficiency.
  • the object of the present invention is to provide a semiconductor package having an excellent cooling performance provided with a heat diffusion member for efficiently transmitting heat generated from a semiconductor element to a cooling member.
  • the present inventors in the semiconductor package, by arranging the cooling member so that the crystal orientation plane of the anisotropic graphite constituting the heat diffusion member, the heat transfer direction or the heat transfer surface of the cooling member intersect, The present inventors have found that a semiconductor package having excellent cooling efficiency can be provided, and have completed the present invention. That is, the present invention includes the following.
  • a semiconductor package with excellent cooling efficiency can be provided.
  • FIG. 1 is a perspective view of a semiconductor package 1 according to one embodiment of the present invention.
  • 1 is a perspective view of a semiconductor package 2 according to one embodiment of the present invention.
  • FIG. 2 is a perspective view of a semiconductor package 3 according to one embodiment of the present invention.
  • FIG. 2 is a plan view of a semiconductor package 4 according to one embodiment of the present invention.
  • FIG. 2 is a perspective view of a semiconductor package 5 according to one embodiment of the present invention.
  • a to B representing a numerical range means “A or more and B or less”.
  • an axis perpendicular to the X axis is defined as a Y axis
  • an axis perpendicular to a plane defined by the X axis and the Y axis is defined as a Z axis.
  • One embodiment of the present invention is a semiconductor package including (A) a semiconductor element, (B) a heat diffusion member, and (C) a cooling member, wherein (B) the heat diffusion member includes anisotropic graphite, A semiconductor package in which the cooling member is arranged such that a heat transfer direction or a heat transfer surface of the cooling member intersects a crystal orientation plane of isotropic graphite.
  • FIG. 1 shows (C) a semiconductor package 1 in which the cooling member is a heat sink.
  • FIG. 2 shows (C) the semiconductor package 2 in which the cooling member is a heat pipe.
  • FIG. 3 shows (D) the semiconductor package 3 including the auxiliary cooling member.
  • FIG. 4 shows a plan view of the semiconductor package 4 defining the intersection angle.
  • FIG. 5 shows a semiconductor package 5 which is (C) three heat pipes in which cooling members are arranged in parallel, and (D) includes an auxiliary cooling member.
  • the semiconductor element (A) is not particularly limited, but examples include a transistor, a diode, an integrated circuit, and a memory.
  • the (B) heat diffusion member according to one embodiment of the present invention contains at least (b1) anisotropic graphite.
  • the heat diffusion member is preferably formed by laminating (b1) an inorganic material layer on (b1) anisotropic graphite, and further joining the anisotropic graphite and the inorganic material layer (b2). More preferably, a metal layer is included.
  • the inorganic material layer is preferably laminated between the anisotropic graphite and the semiconductor element or between the anisotropic graphite and the cooling member.
  • the inorganic material layer covers the entire surface of the anisotropic graphite.
  • the anisotropic graphite according to one embodiment of the present invention is formed by laminating many graphite layers.
  • the length of the side parallel to the X axis is preferably 4 mm or more and 200 mm or less, Further, it is more preferably 10 mm or more and 150 mm or less, and further preferably 20 mm or more and 100 mm or less.
  • the length of the side parallel to the Y axis is preferably 4 mm or more and 200 mm or less, more preferably 10 mm or more and 100 mm or less, and even more preferably 15 mm or more and 50 mm or less.
  • the length of the side parallel to the Z axis is preferably 0.6 mm or more and 5.0 mm or less, more preferably 1.0 mm or more and 3.5 mm or less, and 1.2 mm or more and 2.5 mm or less. Is more preferable.
  • a method for producing anisotropic graphite is not particularly limited, but anisotropic graphite can be produced by, for example, cutting a graphite block.
  • Examples of a method for cutting the graphite block include a method using a diamond cutter, a wire saw, machining, and the like.
  • a method using a wire saw is preferable from the viewpoint of easily processing into a rectangular parallelepiped shape.
  • the surface of the anisotropic graphite may be polished or roughened, and a known technique such as file polishing, buffing, and blasting may be appropriately used.
  • the graphite block is not particularly limited, and a polymer-decomposed graphite block, a pyrolytic graphite block, an extruded graphite block, a molded graphite block, or the like can be used. From the viewpoint of having a high thermal conductivity and excellent heat transfer performance of the anisotropic graphite heat transfer member, a polymer-decomposed graphite block and a pyrolyzed graphite block are preferred.
  • a method for producing the graphite block for example, there is a method in which a carbonaceous gas such as methane is introduced into a furnace and heated to about 2000 ° C. with a heater to form fine carbon nuclei. The formed carbon nuclei are deposited in layers on the substrate, whereby a pyrolytic graphite block can be obtained.
  • a carbonaceous gas such as methane
  • the graphite block may be manufactured by laminating a polymer film such as a polyimide resin in multiple layers, and then performing heat treatment while applying pressure.
  • a laminate in which a polymer film as a starting material is laminated in multiple layers is preliminarily reduced to a temperature of about 1000 ° C. under reduced pressure or in an inert gas. It is carbonized by heat treatment to form a carbonized block. Thereafter, the carbonized block is graphitized by heat-treating to a temperature of 2800 ° C. or higher while press-pressing in an inert gas atmosphere. Thereby, a good graphite crystal structure can be formed, and a graphite block having excellent thermal conductivity can be obtained.
  • the metal layer according to one embodiment of the present invention can be used for bonding anisotropic graphite and an inorganic material layer.
  • the type of the metal layer is not particularly limited, but it is preferable to use a metal layer containing plating and a metal brazing material. When plating is used, the metal layer and the inorganic material layer may be integrated.
  • the metal brazing material can be bonded to anisotropic graphite by diffusion, and the metal brazing material itself has a relatively high thermal conductivity. Sex can be maintained.
  • the type of the metal brazing material is not particularly limited, but preferably contains silver, copper, and titanium from the viewpoint of maintaining high thermal conductivity.
  • a known material and a known technique can be used.
  • bonding can be performed by heating in a vacuum environment of 1 ⁇ 10 ⁇ 3 Pa and a temperature range of 700 to 1000 ° C. for 10 minutes to 1 hour, and cooling this to room temperature. is there. Further, in order to improve the bonding state, a load may be applied at the time of heating.
  • the inorganic material layer is joined to the entire surface of the anisotropic graphite using a metal brazing material, it is preferable to use a hollow frame or a bottomed frame.
  • a hollow frame or a bottomed frame is used, the interface between inorganic material layers is reduced as compared with a case where an inorganic material layer is bonded to each surface of anisotropic graphite, so that heat can be efficiently diffused. .
  • Examples of the inorganic material layer according to one embodiment of the present invention include a metal layer or a ceramic layer, and a metal layer is preferable.
  • a metal layer In the direction perpendicular to the crystal orientation plane of anisotropic graphite, that is, in the Y-axis direction, heat is relatively difficult to be transmitted. Therefore, by combining with a material having a relatively high thermal conductivity and isotropic properties, the thermal conductivity in the Y-axis direction of anisotropic graphite can be supplemented, and a higher heat radiation effect can be exhibited. .
  • metal forming the metal layer known materials such as gold, silver, copper, nickel, aluminum, molybdenum, tungsten, and alloys containing these can be used as appropriate.
  • ⁇ ⁇ As the type of ceramics forming the ceramics layer, known materials such as alumina, zirconia, silicon carbide, silicon nitride, boron nitride, and aluminum nitride can be appropriately used.
  • the inorganic material layer is preferably a metal layer, and the metal forming the metal layer is preferably copper.
  • the thickness of the inorganic material layer is preferably 100 ⁇ m or more and 300 ⁇ m or less, more preferably 120 ⁇ m or more and 250 ⁇ m or less, and still more preferably 150 ⁇ m or more and 225 ⁇ m or less.
  • the thickness is 100 ⁇ m or more, (a1) the thermal conductivity of the direction in which the heat of the anisotropic graphite is relatively difficult to transmit can be supplemented. Further, if it is 300 ⁇ m or less, the high thermal conductivity of (a1) anisotropic graphite is not hindered.
  • Examples of the method for forming the inorganic material layer include plating, sputtering, and attaching a plate. From the viewpoint of heat conduction, a method of attaching a plate is preferable.
  • the metal of the metal layer may be partially impregnated between the graphite layers forming the anisotropic graphite. preferable. If there is a minute gap between the graphite layers, the gap may hinder the heat transfer performance of the heat diffusion member. Therefore, it is preferable that the metal layer is impregnated so as to fill minute gaps between the graphite layers.
  • the interlayer of the graphite layer forming the anisotropic graphite is expanded, and then the metal layer is impregnated. Is preferred.
  • polymer-decomposed graphite which is produced by laminating a polymer film such as a polyimide film in multiple layers and then thermally decomposing as anisotropic graphite. Since polymer-decomposed graphite is made by laminating polymer films in multiple layers, gaps are formed linearly between layers derived from polymer films, as compared to pyrolytic graphite made by CVD or other methods. Can be. Therefore, the metal brazing material can be easily impregnated.
  • the cooling member according to one embodiment of the present invention is not particularly limited as long as it is a member that cools the heat generated from the semiconductor element, and examples thereof include a heat sink and a heat pipe.
  • the heat sink examples include a heat sink having a plate-like fin, a sword-shaped or bellows-shaped heat sink. Above all, a heat sink having a plate-like fin is preferable. As a heat sink having plate-like fins, a heat sink having a plurality of fins on a metal flat heat-receiving plate can be used.
  • FIG. 1 shows a semiconductor package 1 having a heat sink as an example.
  • the semiconductor element 12, the heat diffusion member 11, and the heat sink 13 are arranged such that the plane of the plate-like fins, which are the heat transfer surfaces in the heat sink, is orthogonal to the crystal orientation plane of the anisotropic graphite constituting the heat diffusion member.
  • a member number 14 indicates a line indicating a crystal orientation plane of anisotropic graphite.
  • the heat pipe is not particularly limited as long as it can transfer heat by repeating the phase change of evaporation and condensation of the liquid in the closed vessel, and examples thereof include a rod shape, a column shape, and a rectangular parallelepiped shape. .
  • FIG. 2 shows a semiconductor package 2 including a heat pipe as an example.
  • the semiconductor element 22, the heat diffusion member 21, and the heat pipe 23 are arranged so that the heat transfer direction 24 of the heat pipe is orthogonal to the crystal orientation plane of anisotropic graphite constituting the heat diffusion member.
  • member number 25 indicates a line indicating the crystal orientation plane of anisotropic graphite.
  • the heat transfer direction or the heat transfer surface of the cooling member intersects the crystal orientation plane of the anisotropic graphite constituting the heat diffusion member.
  • the heat transfer direction refers to a direction from the high temperature part to the low temperature part in the cooling member, and in the case of the rod-shaped heat pipe shown in FIG.
  • the heat transfer surface refers to a surface parallel to the plate of the plate-like fin.
  • FIG. 4 is a plan view of the semiconductor package 4 including the semiconductor element 41, the heat diffusion member 42, and the heat pipe 43 in order to define the intersection angle between the heat diffusion member and the cooling member.
  • an angle 46 between a direction 44 parallel to the crystal orientation plane of anisotropic graphite and a heat transfer direction 45 of the heat pipe is defined as an intersection angle between the heat diffusion member and the cooling member.
  • the angle between the direction parallel to the plate fins and the direction parallel to the crystal orientation plane of anisotropic graphite in the plan view may be the intersection angle.
  • the intersection angle between the heat diffusion member and the cooling member is preferably 60 degrees or more and 120 degrees or less, more preferably 70 degrees or more and 110 degrees or less, further preferably 80 degrees or more and 100 degrees or less, and particularly preferably 85 degrees or more and 95 degrees or less. , 90 degrees are most preferred.
  • the semiconductor package according to one embodiment of the present invention preferably further includes an auxiliary cooling member.
  • the auxiliary cooling member includes a water-cooled member and an air-cooled member such as a fan.
  • FIG. 3 shows the semiconductor package 3 including the substrate 36, the substrate 35, the semiconductor element 32, the heat diffusion member 31, the heat sink 33, the auxiliary cooling member 34, and the like as an example.
  • the auxiliary cooling member 34 is a fan, as shown in FIG. 3, it is preferable to dispose the fan blades perpendicular to the plate-like fins which are the heat transfer surfaces of the heat sink 33. With this arrangement, the heat of each fin of the cooling member can be more efficiently transmitted to the auxiliary cooling member.
  • FIG. 5 shows, as an example, the semiconductor package 5 including the auxiliary cooling member 56 and three heat pipes arranged in parallel.
  • the semiconductor element 52, the heat diffusion member 51, and the heat pipe 53 are arranged such that the heat transfer direction 54 of the heat pipe is orthogonal to the crystal orientation plane of anisotropic graphite constituting the heat diffusion member.
  • a member number 55 indicates a line indicating a crystal orientation plane of anisotropic graphite.
  • the auxiliary cooling member 56 is disposed on the heat pipe 53.
  • a semiconductor package including (A) a semiconductor element, (B) a heat diffusion member, and (C) a cooling member, wherein (B) the heat diffusion member includes anisotropic graphite, and a crystal of the anisotropic graphite.
  • the cooling member is a heat pipe, and the heat transfer direction of the heat pipe intersects the crystal orientation plane of the anisotropic graphite, and the intersection angle is 80 degrees or more and 100 degrees or less.
  • the cooling member is a heat pipe, and a heat transfer direction of the heat pipe intersects a crystal orientation plane of the anisotropic graphite, and an intersection angle is 85 degrees or more and 95 degrees or less.
  • the cooling member is a heat sink, and the plane of the fins constituting the heat sink intersects the crystal orientation plane of the anisotropic graphite, and the intersection angle is 80 degrees or more and 100 degrees or less.
  • the cooling member is a heat sink, and the surface of the fin constituting the heat sink intersects the crystal orientation plane of the anisotropic graphite, and the intersection angle is 85 degrees or more and 95 degrees or less.
  • a graphite block was produced by the method described in Production Example 1, and a heat diffusion member was produced by the method described in Production Example 2. As shown in Examples 1 and 2 and Comparative Examples 1 to 4, semiconductor packages were manufactured, and the heat transfer performance was evaluated.
  • the obtained graphite block had a thermal conductivity of 1500 W / mK in a direction parallel to the crystal orientation plane and a thermal conductivity of 5 W / mK perpendicular to the crystal orientation plane.
  • a titanium-based active silver solder of 40 mm ⁇ 40 mm ⁇ 50 ⁇ m is laminated as a metal layer on the upper and lower surfaces of the anisotropic graphite in which the crystal orientation plane of the anisotropic graphite is arranged parallel to the XZ plane as described above.
  • oxygen-free copper of 40 mm ⁇ 40 mm ⁇ 200 ⁇ m in thickness was laminated as an inorganic material layer.
  • the anisotropic graphite was heated at 850 ° C. for 30 minutes in a vacuum environment of 1 ⁇ 10 ⁇ 3 Pa under a load of 100 kg / m 2 from above and below.
  • a heat diffusion member (B1) having a side parallel to the X-axis 40 mm, a side parallel to the Y-axis 40 mm, and a side parallel to the Z-axis 1.5 mm. Obtained.
  • Example 1 The semiconductor element, the heat diffusion member (B1) obtained in Production Example 2, and the aluminum heat sink are arranged in this order such that the crystal orientation plane of the anisotropic graphite of the heat diffusion member and the plate-like fin of the heat sink are orthogonal to each other. Then, the semiconductor package (P1) was obtained by soldering.
  • Example 2 The semiconductor element, the heat diffusion member (B1) obtained in Production Example 2, and the aluminum heat sink are sequentially connected to the anisotropic graphite crystal orientation plane of the heat diffusion member and the plate-like fin of the heat sink at 80 degrees. And joined by solder to obtain a semiconductor package (P2).
  • the maximum temperature of the semiconductor element was 66.1 ° C.
  • Example 3 The semiconductor element, the heat diffusion member (B1) obtained in Production Example 2, and the aluminum heat sink are sequentially placed in this order.
  • the anisotropic graphite crystal orientation plane of the heat diffusion member and the plate-like fin of the heat sink intersect at 60 degrees. And joined by solder to obtain a semiconductor package (P3).
  • the maximum temperature of the semiconductor element was 66.9 ° C.
  • the maximum temperature of the semiconductor element was 69.7 ° C.
  • Example 4 The semiconductor element, the heat diffusion member (B1) obtained in Production Example 2, and the three heat pipes arranged in parallel, in this order, the crystal orientation plane of anisotropic graphite of the heat diffusion member and the heat transfer of the heat pipe.
  • the semiconductor package (P6) was obtained by arranging them so that their directions were orthogonal to each other and joining them with solder.
  • the maximum temperature of the semiconductor element was 43.9 ° C.
  • the maximum temperature of the semiconductor element was 62.7 ° C.
  • Example 1 to 3 and Comparative Examples 1 and 2 a substrate made of glass epoxy, the above-described semiconductor package (semiconductor element, heat diffusion member, aluminum heat sink) and a fan were joined by solder as shown in FIG.
  • Example 4 and Comparative Examples 3 and 4 the above-described semiconductor package (semiconductor element, heat diffusion member, heat pipe) and a fan were joined by solder as shown in FIG.
  • the maximum air temperature of the semiconductor element was measured by setting the air flow rate of the fan to 2 m 3 / min, the heat value of the semiconductor element to 60 W, and the outside air temperature to 25 ° C.
  • Tables 1 and 2 below summarize the configurations and evaluation results of the semiconductor packages of the examples and the comparative examples.
  • the semiconductor package of the present invention can be suitably used as a semiconductor package having high cooling efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

半導体素子から発生する熱を効率的に冷却部材に伝達し、半導体素子の温度を低く維持する冷却効率の優れた半導体パッケージを提供する。本発明者らは、異方性グラファイトを形成するグラファイト層の面を、冷却部材において放熱性が一番高い面方向に対して交差させた構成にすることで、冷却効率の優れた半導体パッケージを提供できる。

Description

半導体パッケージ
 本発明は、半導体パッケージに関する。
 半導体パッケージにおいて、半導体素子から発生する熱による温度上昇が問題となる。半導体パッケージの温度上昇を抑制するために、例えば、半導体素子と熱拡散部材とヒートシンクなどの冷却部材とを備える半導体パッケージが知られている。
 熱拡散部材は半導体素子から冷却部材に熱を伝える部材であり、金属および/または異方性グラファイトが用いられる。異方性グラファイトは、多数のグラファイト層からなり、結晶配向面を有する。異方性グラファイトの結晶配向面に対して、異方性グラファイトは平行な方向に高い熱伝導率を示し、垂直な方向に低い熱伝導率を示す。
 例えば、特許文献1には、グラフェンシートが積層された構造体と、支持部材を備えている異方性熱伝導素子、および、その異方性熱伝導素子を熱源およびヒートシンクと組み合わせた構造体が開示されている。
特開2011-23670号公報
 しかしながら、特許文献1には、熱拡散部材および冷却部材を配置する向きと冷却効率との関連性については、記載されていなかった。
 本発明は、半導体素子から発生する熱を効率的に冷却部材に伝達する熱拡散部材を備えた冷却性能の優れた半導体パッケージを提供することを目的とする。
 本発明者らは、半導体パッケージにおいて、熱拡散部材を構成する異方性グラファイトの結晶配向面を、冷却部材の熱移動方向あるいは熱移動面が交差するように、冷却部材を配置することで、冷却効率の優れた半導体パッケージを提供できることを見出し、本発明を完成するに至った。すなわち、本発明は以下を含む。
 (A)半導体素子、(B)熱拡散部材、(C)冷却部材を備える半導体パッケージであり、(B)熱拡散部材が、異方性グラファイトを含み、前記異方性グラファイトの結晶配向面に対して、前記冷却部材の熱移動方向あるいは熱移動面が交差するように、前記冷却部材を配置した半導体パッケージ。
 本発明の一態様によれば、冷却効率の優れた半導体パッケージを提供することができる。
本発明の一実施形態に係る半導体パッケージ1の斜視図である。 本発明の一実施形態に係る半導体パッケージ2の斜視図である。 本発明の一実施形態に係る半導体パッケージ3の斜視図である。 本発明の一実施形態に係る半導体パッケージ4の平面図である。 本発明の一実施形態に係る半導体パッケージ5の斜視図である。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。
 本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意図する。また、本明細書において、X軸と直交する軸をY軸とし、X軸とY軸とによって規定される平面に垂直な軸をZ軸とする。
 本発明の一実施形態は、(A)半導体素子、(B)熱拡散部材、(C)冷却部材を備える半導体パッケージであり、(B)熱拡散部材が、異方性グラファイトを含み、前記異方性グラファイトの結晶配向面に対して、前記冷却部材の熱移動方向あるいは熱移動面が交差するように、前記冷却部材を配置した半導体パッケージである。
 図1に、(C)冷却部材がヒートシンクである半導体パッケージ1を示す。
 図2に、(C)冷却部材がヒートパイプである半導体パッケージ2を示す。
 図3に、(D)補助冷却部材を備える半導体パッケージ3を示す。
 図4に、交差角度を定義する半導体パッケージ4の平面図を示す。
 図5に、(C)冷却部材が平行に配置された3本のヒートパイプであり、(D)補助冷却部材を備える半導体パッケージ5を示す。
 以下に、本発明の一実施形態に係る半導体パッケージを構成する各部材について説明する。
 <(A)半導体素子>
 本発明の一実施形態に係る(A)半導体素子は、特に限定されないが、トランジスタ、ダイオード、集積回路、メモリなどが挙げられる。
 <(B)熱拡散部材>
 本発明の一実施形態に係る(B)熱拡散部材は、少なくとも(b1)異方性グラファイトを含む。(B)熱拡散部材は、(b1)異方性グラファイトに(b3)無機材質層を積層して形成されていることが好ましく、さらに異方性グラファイトと無機材質層とを接合する(b2)金属層を含むことがより好ましい。
 無機材質層は、異方性グラファイトと半導体素子との間、あるいは異方性グラファイトと冷却部材との間に積層されていることが好ましい。
 無機材質層は、異方性グラファイトの全面を被覆していることが特に好ましい。
 <(b1)異方性グラファイト>
 本発明の一実施形態に係る異方性グラファイトは、グラファイト層が多数積層されることにより形成されている。異方性グラファイトの寸法としては、異方性グラファイトの結晶配向面をX-Z平面に平行に配置した場合において、X軸に平行な辺の長さが4mm以上200mm以下であることが好ましく、また10mm以上150mm以下であることがより好ましく、20mm以上100mm以下であることがさらに好ましい。Y軸に平行な辺の長さが4mm以上200mm以下であることが好ましく、また10mm以上100mm以下であることがより好ましく、15mm以上50mm以下であることがさらに好ましい。Z軸に平行な辺の長さが0.6mm以上5.0mm以下であることが好ましく、また1.0mm以上3.5mm以下であることがより好ましく、1.2mm以上2.5mm以下であることがさらに好ましい。
 異方性グラファイトの製造方法は特に限定されないが、例えばグラファイトブロックを切断する方法によって異方性グラファイトを製造可能である。グラファイトブロックを切断する方法としては、ダイヤモンドカッター、ワイヤーソー、マシニングなどを用いる方法が挙げられる。直方体形状に容易に加工できる観点で、ワイヤーソーを用いる方法が好ましい。
 異方性グラファイトは、表面を研磨もしくは粗面化してもよく、やすり研磨、バフ研磨、ブラスト処理など公知の技術を適宜用いることも可能である。
 <グラファイトブロック>
 前記グラファイトブロックとしては、特に制限はされず、高分子分解グラファイトブロック、熱分解グラファイトブロック、押出成形グラファイトブロック、モールド成形グラファイトブロックなどを用いることが可能である。高熱伝導率を有し、異方性グラファイト伝熱部材の熱伝達性能が優れる観点から、好ましくは、高分子分解グラファイトブロック、熱分解グラファイトブロックが挙げられる。
 前記グラファイトブロックの製造方法としては、例えば、メタンなどの炭素質ガスを炉内に導入し、ヒーターで2000℃程度まで加熱することにより、微細な炭素核を形成する方法が挙げられる。形成された炭素核は、基板上で層状に堆積し、これにより熱分解グラファイトブロックを得ることができる。
 また、前記グラファイトブロックは、ポリイミド樹脂などの高分子フィルムを多層に積層した後、プレス加圧しながら熱処理することによって作製してもよい。具体的には、高分子フィルムからグラファイトブロックを得るには、まず、出発物質である高分子フィルムを多層に積層した積層体を、減圧下もしくは不活性ガス中で、1000℃程度の温度まで予備加熱処理して炭素化し、炭素化ブロックとする。その後、この炭素化ブロックを不活性ガス雰囲気下、プレス加圧しながら、2800℃以上の温度まで熱処理することによりグラファイト化させる。これにより、良好なグラファイト結晶構造を形成することができるため、熱伝導性に優れたグラファイトブロックを得ることができる。
 グラファイトブロックの具体的な製造方法としては、たとえばWO2015/129317公報記載の方法などが挙げられる。
 <(b2)金属層>
 本発明の一実施形態に係る金属層は、異方性グラファイトと無機材質層とを接合するために用いることができる。金属層の種類としては、特に限定はされないが、めっき、金属系ろう材を含む金属層を用いることが好ましい。めっきを用いる場合には、金属層と無機材質層とが一体になっていてもよい。
 金属層として金属系ろう材を用いる場合、金属系ろう材は、異方性グラファイトとの拡散接合が可能であり、また、金属系ろう材自体の熱伝導率が比較的高いので、高い熱伝導性を維持することができる。金属系ろう材の種類については、特に制限されないが、高い熱伝導性を維持する観点から、銀、銅、チタンを含むことが好ましい。
 金属系ろう材を用いる接合方法については、公知の材料並びに公知の技術を用いることが出来る。例えば、活性銀ろうを用いた場合、1×10-3Paの真空環境、及び700~1000℃の温度範囲で10分から1時間加熱し、これを常温まで冷却することにより接合することが可能である。また、接合状態を良好にするために、加熱時に加重をかけても良い。
 また、金属系ろう材を用いて、無機材質層を異方性グラファイトの全面に接合する場合、中空枠を用いること、あるいは、有底枠を用いることが好ましい。中空枠あるいは有底枠を用いた場合、異方性グラファイトの各面にそれぞれ無機材質層を接合した場合に比べ、無機材質層同士の界面が減るため、効率的に熱を拡散することができる。
 <(b3)無機材質層>
 本発明の一実施形態に係る無機材質層としては、金属層もしくはセラミックス層が挙げられ、金属層が好ましい。異方性グラファイトの結晶配向面に垂直な方向、すなわちY軸方向へは、熱が相対的に伝わりにくい。そのため、熱伝導率が比較的高く、等方性を有する材料と複合することで、異方性グラファイトのY軸方向の熱伝導性を補うことができ、より高い放熱効果を発現することができる。
 金属層を形成する金属の種類としては、金、銀、銅、ニッケル、アルミニウム、モリブデン、タングステン、及びこれらを含む合金など公知の材料を適宜用いることができる。
 セラミックス層を形成するセラミックスの種類としては、アルミナ、ジルコニア、炭化珪素、窒化珪素、窒化ホウ素、窒化アルミなど公知の材料を適宜用いることができる。
 熱伝導性をより高める観点から、無機材質層としては、金属層が好ましく、金属層を形成する金属としては、銅が好ましい。
 無機材質層の厚さは、100μm以上300μm以下が好ましく、120μm以上250μm以下がより好ましく、150μm以上225μm以下であることがさらに好ましい。100μm以上であれば、(a1)異方性グラファイトの熱が相対的に伝わりにくい方向の熱伝導性を補うことができる。また、300μm以下であれば、(a1)異方性グラファイトの高い熱伝導率を阻害することがない。
 無機材質層の形成方法としては、めっき、スパッタあるいは板を貼り付ける方法が挙げられる。熱伝導の観点で、板を貼り付ける方法が好ましい。
 <金属層のグラファイト層への含浸>
 本発明の一実施形態に係る熱拡散部材において、無機材質層および金属層を設ける場合は、異方性グラファイトを形成するグラファイト層の層間に、金属層の金属が一部含浸していることが好ましい。グラファイト層の層間の微小な隙間があると、この隙間が熱拡散部材の熱伝達性能を阻害する場合がある。そのため、グラファイト層の層間の微小な隙間を埋めるように、金属層が含浸することが好ましい。
 金属層を含浸させる方法としては、異方性グラファイトと金属層と無機材質層とを接合する前に、異方性グラファイトを形成するグラファイト層の層間を広げておき、その後、金属層を含浸させることが好ましい。
 グラファイト層の層間を広げる方法としては、異方性グラファイトとして、ポリイミドフィルムなどの高分子フィルムを多層に積層した後、熱分解して作製される、高分子分解グラファイトを用いることが好ましい。高分子分解グラファイトは、高分子フィルムを多層に積層して作製されるため、CVD法などによって作製される熱分解グラファイトなどに比べ、高分子フィルム間由来の層間で直線状に隙間を形成することができる。そのため、金属系ろう材を容易に含浸することができる。
 <(C)冷却部材>
 本発明の一実施形態に係る冷却部材は、半導体素子から発生した熱を冷却する部材であれば特に制限されないが、ヒートシンク、ヒートパイプなどが挙げられる。
 ヒートシンクとしては、板状フィンを有するヒートシンク、剣山状あるいは蛇腹状のヒートシンクが挙げられる。なかでも、板状フィンを有するヒートシンクが好ましい。板状フィンを有するヒートシンクとしては、金属性平板状の受熱プレートに複数のフィンを有するものが挙げられる。
 図1に、一例として、ヒートシンクを備える半導体パッケージ1を示す。半導体素子12、熱拡散部材11、ヒートシンク13を、熱拡散部材を構成する異方性グラファイトの結晶配向面に対し、ヒートシンクにおいて熱移動面である板状のフィンの面が直交するように配置している。なお、図1において部材番号14は、異方性グラファイトの結晶配向面を示す線を指す。
 ヒートパイプとしては、密閉容器内の液体の蒸発、凝縮の相変化が繰り返されることにより、熱移動できるものであれば特に制限されず、その形状としては棒状、円柱状、直方体状などが挙げられる。
 図2に、一例として、ヒートパイプを備える半導体パッケージ2を示す。半導体素子22、熱拡散部材21、ヒートパイプ23を、熱拡散部材を構成する異方性グラファイトの結晶配向面に対し、ヒートパイプの熱移動方向24が直交するように配置している。なお、図2において部材番号25は、異方性グラファイトの結晶配向面を示す線を指す。
 <冷却部材の向き>
 本発明の一実施形態に係る半導体パッケージにおいて、熱拡散部材を構成する異方性グラファイトの結晶配向面に対し、冷却部材の熱移動方向あるいは熱移動面が交差している。前記熱移動方向とは、冷却部材において高温部から低温部を指す方向であり、図2に示す棒状のヒートパイプの場合、棒の長さ方向を指す。熱移動面とは、例えば、図1に示すヒートシンクの場合、板状フィンの板に平行な面を指す。
 図4に、熱拡散部材と冷却部材との交差角度を定義するために、半導体素子41と熱拡散部材42とヒートパイプ43とを備える半導体パッケージ4の平面図を示した。図4において、異方性グラファイトの結晶配向面に平行な方向44とヒートパイプの熱移動方向45がなす角度46を、熱拡散部材と冷却部材との交差角度とした。ヒートシンクの場合、平面図において、板状フィンに平行な方向と異方性グラファイトの結晶配向面に平行な方向とがなす角度を交差角度とすればよい。
 前記熱拡散部材と冷却部材の交差角度は、60度以上120度以下が好ましく、70度以上110度以下がより好ましく、80度以上100度以下がさらに好ましく、85度以上95度以下が特に好ましく、90度で直交していることが最も好ましい。
 <(D)補助冷却部材>
 本発明の一実施形態に係る半導体パッケージは、さらに、補助冷却部材を有することが好ましい。補助冷却部材としては、水冷式部材とファンなどの空冷式部材が挙げられる。
 図3に、一例として、基板36、基板35、半導体素子32、熱拡散部材31、ヒートシンク33および補助冷却部材34などを備える半導体パッケージ3を示す。補助冷却部材34がファンである場合は、図3のように、ヒートシンク33の熱移動面である板状フィンに対し、ファンの羽根が垂直になるように配置することが好ましい。このように配置することで、冷却部材の各フィンの熱をより効率的に補助冷却部材に伝えることができる。
 図5に、一例として、補助冷却部材56および平行に配置された3本のヒートパイプを備える半導体パッケージ5を示す。半導体素子52、熱拡散部材51、ヒートパイプ53を、熱拡散部材を構成する異方性グラファイトの結晶配向面に対し、ヒートパイプの熱移動方向54が直交するように配置している。なお、図5において部材番号55は、異方性グラファイトの結晶配向面を示す線を指す。そして、補助冷却部材56は、ヒートパイプ53上に配置されている。
 なお、本発明の一実施形態は、以下のように構成することもできる。
 [1](A)半導体素子、(B)熱拡散部材、(C)冷却部材を備える半導体パッケージであり、(B)熱拡散部材が、異方性グラファイトを含み、前記異方性グラファイトの結晶配向面に対して、前記冷却部材の熱移動方向あるいは熱移動面が交差するように、前記冷却部材を配置した半導体パッケージ。
 [2](C)冷却部材がヒートパイプであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートパイプの熱移動方向が交差しており、その交差角度が80度以上100度以下となるように、前記ヒートパイプを配置した[1]に記載の半導体パッケージ。
 [3](C)冷却部材がヒートパイプであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートパイプの熱移動方向が交差しており、その交差角度が85度以上95度以下となるように、前記ヒートパイプを配置した[1]に記載の半導体パッケージ。
 [4]前記異方性グラファイトの結晶配向面に対して、前記ヒートパイプの熱移動方向が直交するように、前記ヒートパイプを配置した[2]または[3]に記載の半導体パッケージ。
 [5](C)冷却部材がヒートシンクであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートシンクを構成するフィンの面が交差しており、その交差角度が80度以上100度以下となるように、前記ヒートシンクを配置した[1]に記載の半導体パッケージ。
 [6](C)冷却部材がヒートシンクであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートシンクを構成するフィンの面が交差しており、その交差角度が85度以上95度以下となるように、前記ヒートシンクを配置した[1]に記載の半導体パッケージ。
 [7]前記異方性グラファイトの結晶配向面に対して、前記ヒートシンクを構成するフィンの面が直交するように、前記ヒートシンクを配置した[5]または[6]に記載の半導体パッケージ。
 [8]さらに、(D)補助冷却部材を備える[1]~[7]のいずれか1つに記載の半導体パッケージ。
 以下に本発明の実施例を説明する。
 製造例1に記載した方法でグラファイトブロックを作製し、製造例2に記載した方法で熱拡散部材を作製した。実施例1および2、並びに比較例1~4に示すように、半導体パッケージを作製し、熱伝達性能を評価した。
 (製造例1)グラファイトブロックの作製
 100mm×100mm×厚さ25μmのポリイミドフィルムを、1500枚積層した後、40kg/cmの圧力でプレス加圧しながら、アルゴン雰囲気下、2900℃まで熱処理することによりグラファイトブロック(90mm×90mm、厚さ15mm)を作製した。
 得られたグラファイトブロックの結晶配向面に平行な方向の熱伝導率は1500W/mK、結晶配向面に垂直な熱伝導率は5W/mKであった。
 (製造例2)熱拡散部材の作製
 製造例1で作製したグラファイトブロック(90mm×90mm、厚さ15mm)を、ワイヤーソーで切断して異方性グラファイトを得た。異方性グラファイトの寸法は、異方性グラファイトの結晶配向面を、X-Z平面に平行に配置したときに、X軸に平行な辺の長さが40mm、Y軸に平行な辺の長さが40mm、Z軸に平行な辺の長さが1.1mmであった。
 次に、上記のように異方性グラファイトの結晶配向面をX-Z平面に平行に配置した異方性グラファイトの上下面に、金属層として40mm×40mm×50μmのチタン系活性銀ろうを重ね、次いで、無機材質層として40mm×40mm×厚さ200μmの無酸素銅を重ねた。さらに、前記異方性グラファイトを、上下から100kg/mの加重を加えた状態で、1×10-3Paの真空環境下、850℃で30分加熱した。この方法により、X軸に平行な辺の長さが40mm、Y軸に平行な辺の長さが40mm、Z軸に平行な辺の長さが1.5mmである熱拡散部材(B1)を得た。
 (実施例1)
 半導体素子、製造例2で得た熱拡散部材(B1)、アルミ製ヒートシンクを、この順番に、熱拡散部材の異方性グラファイトの結晶配向面とヒートシンクの板状フィンとが直交するように配置し、はんだにより接合し、半導体パッケージ(P1)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は64.9℃であった。
 (実施例2)
 半導体素子、製造例2で得た熱拡散部材(B1)、アルミ製ヒートシンクを、この順番に、熱拡散部材の異方性グラファイトの結晶配向面とヒートシンクの板状フィンとが80度で交差するように配置し、はんだにより接合し、半導体パッケージ(P2)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は66.1℃であった。
 (実施例3)
 半導体素子、製造例2で得た熱拡散部材(B1)、アルミ製ヒートシンクを、この順番に、熱拡散部材の異方性グラファイトの結晶配向面とヒートシンクの板状フィンとが60度で交差するように配置し、はんだにより接合し、半導体パッケージ(P3)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は66.9℃であった。
 (比較例1)
 半導体素子、製造例2で得た熱拡散部材(B1)、アルミ製ヒートシンクを、この順番に、熱拡散部材の異方性グラファイトの結晶配向面とヒートシンクの板状フィンとが平行になるように配置し、はんだにより接合し、半導体パッケージ(P4)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は84.9℃であった。
 (比較例2)
 半導体素子、40mm×40mm×1.5mmの銅からなる熱拡散部材(B2)、アルミ製ヒートシンクをこの順番に、はんだにより接合し、半導体パッケージ(P5)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は69.7℃であった。
 (実施例4)
 半導体素子、製造例2で得た熱拡散部材(B1)、平行に配置された3本のヒートパイプを、この順番に、熱拡散部材の異方性グラファイトの結晶配向面とヒートパイプの熱移動方向とが直交するように配置し、はんだにより接合し、半導体パッケージ(P6)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は43.9℃であった。
 (比較例3)
 半導体素子、製造例2で得た熱拡散部材(B1)、平行に配置された3本のヒートパイプを、この順番に、熱拡散部材の異方性グラファイトの結晶配向面とヒートパイプの熱移動方向とが平行になるように配置し、はんだにより接合し、半導体パッケージ(P7)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は62.7℃であった。
 (比較例4)
 半導体素子、40mm×40mm×1.5mmの銅からなる熱拡散部材(B2)、平行に配置された3本のヒートパイプをこの順番に、はんだにより接合し、半導体パッケージ(P8)を得た。
 下記に記載した熱伝達性能の評価をしたところ、半導体素子の最高温度は55.1℃であった。
 <熱伝達性能の評価>
 実施例1~3、比較例1、2について、ガラスエポキシからなる基板、上述の半導体パッケージ(半導体素子、熱拡散部材、アルミ製ヒートシンク)、ファンを、図3に示すようにはんだにより接合した。また、実施例4、比較例3、4について、上述の半導体パッケージ(半導体素子、熱拡散部材、ヒートパイプ)と、ファンとを、図5に示すようにはんだにより接合した。ファンの風量は、2m/min、半導体素子の発熱量は60W、外気温度は25℃とし、半導体素子の最高温度を測定した。
 以下の表1および表2に、実施例および比較例の半導体パッケージの構成および評価結果をまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の半導体パッケージは、冷却効率のよい半導体パッケージとして好適に利用することができる。
1 半導体パッケージ
11 熱拡散部材
12 半導体素子
13 ヒートシンク
14 異方性グラファイトの結晶配向面を示す線
2 半導体パッケージ
21 熱拡散部材
22 半導体素子
23 ヒートパイプ
24 ヒートパイプの熱移動方向
25 異方性グラファイトの結晶配向面を示す線
3 半導体パッケージ
31 熱拡散部材
32 半導体素子
33 ヒートシンク
34 補助冷却部材
35 基板
36 基板
4 半導体パッケージ(平面図、すなわち上から見た図)
41 半導体素子
42 熱拡散部材
43 ヒートパイプ
44 異方性グラファイトの結晶配向面に平行な方向
45 ヒートパイプの熱移動方向
46 交差角度
5 半導体パッケージ
51 熱拡散部材
52 半導体素子
53 ヒートパイプ
54 ヒートパイプの熱移動方向
55 異方性グラファイトの結晶配向面を示す線
56 補助冷却部材

Claims (8)

  1.  (A)半導体素子、(B)熱拡散部材、(C)冷却部材を備える半導体パッケージであり、(B)熱拡散部材が、異方性グラファイトを含み、前記異方性グラファイトの結晶配向面に対して、前記冷却部材の熱移動方向あるいは熱移動面が交差するように、前記冷却部材を配置した半導体パッケージ。
  2.  (C)冷却部材がヒートパイプであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートパイプの熱移動方向が交差しており、その交差角度が80度以上100度以下となるように、前記ヒートパイプを配置した請求項1に記載の半導体パッケージ。
  3.  (C)冷却部材がヒートパイプであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートパイプの熱移動方向が交差しており、その交差角度が85度以上95度以下となるように、前記ヒートパイプを配置した請求項1に記載の半導体パッケージ。
  4.  前記異方性グラファイトの結晶配向面に対して、前記ヒートパイプの熱移動方向が直交するように、前記ヒートパイプを配置した請求項2または3に記載の半導体パッケージ。
  5.  (C)冷却部材がヒートシンクであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートシンクを構成するフィンの面が交差しており、その交差角度が80度以上100度以下となるように、前記ヒートシンクを配置した請求項1に記載の半導体パッケージ。
  6.  (C)冷却部材がヒートシンクであり、前記異方性グラファイトの結晶配向面に対して、前記ヒートシンクを構成するフィンの面が交差しており、その交差角度が85度以上95度以下となるように、前記ヒートシンクを配置した請求項1に記載の半導体パッケージ。
  7.  前記異方性グラファイトの結晶配向面に対して、前記ヒートシンクを構成するフィンの面が直交するように、前記ヒートシンクを配置した請求項5または6に記載の半導体パッケージ。
  8.  さらに、(D)補助冷却部材を備える請求項1~7のいずれか1項に記載の半導体パッケージ。
PCT/JP2019/035755 2018-09-20 2019-09-11 半導体パッケージ WO2020059605A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-176640 2018-09-20
JP2018176640A JP2022003656A (ja) 2018-09-20 2018-09-20 半導体パッケージ

Publications (1)

Publication Number Publication Date
WO2020059605A1 true WO2020059605A1 (ja) 2020-03-26

Family

ID=69887021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035755 WO2020059605A1 (ja) 2018-09-20 2019-09-11 半導体パッケージ

Country Status (2)

Country Link
JP (1) JP2022003656A (ja)
WO (1) WO2020059605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725796B2 (en) 2021-06-30 2023-08-15 Nichia Corporation Light-emitting module, vehicle lamp, and heat dissipation member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085051A1 (ja) * 2022-10-17 2024-04-25 京セラ株式会社 放熱基板及び放熱装置
WO2024085050A1 (ja) * 2022-10-17 2024-04-25 京セラ株式会社 放熱基板及び放熱装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200586A (ja) * 2002-12-20 2004-07-15 Sony Corp 冷却装置および冷却装置を有する電子機器
JP2006196593A (ja) * 2005-01-12 2006-07-27 Sumitomo Electric Ind Ltd 半導体装置およびヒートシンク
JP2011159662A (ja) * 2010-01-29 2011-08-18 Toyota Central R&D Labs Inc 半導体装置
JP2012028520A (ja) * 2010-07-22 2012-02-09 Denso Corp 半導体冷却装置
JP2016026391A (ja) * 2009-07-14 2016-02-12 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド 異方性熱伝導要素およびその製造方法
JP2017034046A (ja) * 2015-07-31 2017-02-09 古河電気工業株式会社 ヒートシンク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200586A (ja) * 2002-12-20 2004-07-15 Sony Corp 冷却装置および冷却装置を有する電子機器
JP2006196593A (ja) * 2005-01-12 2006-07-27 Sumitomo Electric Ind Ltd 半導体装置およびヒートシンク
JP2016026391A (ja) * 2009-07-14 2016-02-12 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド 異方性熱伝導要素およびその製造方法
JP2011159662A (ja) * 2010-01-29 2011-08-18 Toyota Central R&D Labs Inc 半導体装置
JP2012028520A (ja) * 2010-07-22 2012-02-09 Denso Corp 半導体冷却装置
JP2017034046A (ja) * 2015-07-31 2017-02-09 古河電気工業株式会社 ヒートシンク

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725796B2 (en) 2021-06-30 2023-08-15 Nichia Corporation Light-emitting module, vehicle lamp, and heat dissipation member

Also Published As

Publication number Publication date
JP2022003656A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6602362B2 (ja) 高熱伝導率/低熱膨張率を有する複合材
WO2020059605A1 (ja) 半導体パッケージ
US7791188B2 (en) Heat spreader having single layer of diamond particles and associated methods
TW200933117A (en) Layered heat spreader and method of making the same
JP2016026391A (ja) 異方性熱伝導要素およびその製造方法
JP6580385B2 (ja) アルミニウムと炭素粒子との複合体及びその製造方法
JP2011023670A (ja) 異方性熱伝導素子及びその製造方法
JP2017123379A (ja) 半導体装置
EP3360159A1 (en) Anisotropic thermal conduit
JP2021100006A (ja) 半導体パッケージ
JP6544983B2 (ja) 冷却基板
JP7213482B2 (ja) グラファイト複合体および半導体パッケージ
JP2005077052A (ja) 平面型ヒートパイプ
KR20130099790A (ko) 이종접합 방열 구조체 및 그 제조방법
WO2019159776A1 (ja) 冷却装置
WO2022138711A1 (ja) 複合材料、半導体パッケージ及び複合材料の製造方法
JP6327513B2 (ja) 半導体装置及びその製造方法
JP2006344764A (ja) 放熱基板及びその製造方法
WO2019106874A1 (ja) 絶縁基板及び放熱装置
JP2000022055A (ja) 炭素繊維複合放熱板
JP7232257B2 (ja) 異方性グラファイトおよび異方性グラファイト複合体
JP2009188366A (ja) 一体型半導体放熱用基板とその製造方法
JP5979478B2 (ja) 3層構造積層ダイヤモンド系基板、パワー半導体モジュール用放熱実装基板およびそれらの製造方法
WO2024004555A1 (ja) グラファイト複合体、およびグラファイト複合体の製造方法
JP2022177993A (ja) 放熱板および半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP