WO2020057428A1 - 荧光测定容器及荧光测定装置 - Google Patents

荧光测定容器及荧光测定装置 Download PDF

Info

Publication number
WO2020057428A1
WO2020057428A1 PCT/CN2019/105592 CN2019105592W WO2020057428A1 WO 2020057428 A1 WO2020057428 A1 WO 2020057428A1 CN 2019105592 W CN2019105592 W CN 2019105592W WO 2020057428 A1 WO2020057428 A1 WO 2020057428A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
fluorescence
section
cell layer
container
Prior art date
Application number
PCT/CN2019/105592
Other languages
English (en)
French (fr)
Inventor
越石直孝
大河内健吾
Original Assignee
牛尾电机(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 牛尾电机(苏州)有限公司 filed Critical 牛尾电机(苏州)有限公司
Priority to JP2020569960A priority Critical patent/JP2021526647A/ja
Publication of WO2020057428A1 publication Critical patent/WO2020057428A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the present invention relates to a fluorescence measurement container and a fluorescence measurement device as a centrifugal separation container.
  • the cells were first concentrated by centrifugation using a centrifuge tube, and then the cells were irradiated with excitation light from a light source and observed from the cells Of fluorescence.
  • the bottoms of conventional PCR (Polimerase Chain Reaction) tubes and centrifuge tubes are conical or hemispherical as shown in Fig. 8.
  • cells and red blood cells are deposited on the bottom of the centrifuge tube.
  • the bottom layer is the red blood cell layer.
  • the top is laminated in the form of a cell layer.
  • the fluorescence emitted from the cell layer can only be observed from the bottom of the centrifuge tube through the red blood cell layer, or the cell layer can be observed from the side of the centrifuge tube to the side of the cell layer.
  • the red blood cell layer prevents the observation.
  • the present invention has been made in view of the above background, and a main object thereof is to provide a fluorescence measurement container and a fluorescence measurement device, which can perform optical observation on the cell layer without transferring the centrifuged cell layer to another container.
  • a first aspect of the present invention is a fluorescence measurement container for performing fluorescence measurement on a cell collected from a portion to be detected in a living body, and is characterized by including a storage portion and an opening portion, and the opening portion can be passed from the opening portion to the inside.
  • the detection solution containing the cells has a bottom on the side opposite to the opening portion; the measurement portion is connected to the bottom of the accumulation portion, and the thickness of the internal space is constant, and two opposite to each other in the direction of the thickness
  • One of the surfaces is a measurement surface, and at least the measurement surface can transmit light emitted from the cells.
  • the cells and red blood cells in the detection solution are separated into layers having the same thickness as the internal space of the measurement section by centrifugation of the detection solution.
  • the cell layer automatically becomes a layer suitable for optical observation by centrifugal force. Therefore, the cell layer can be optically observed without transferring the centrifuged cell layer to another container as in the past.
  • the thicker the fluorescent substance such as a cell layer
  • the stronger the fluorescence intensity when the bottoms of conventional PCR tubes and centrifuge tubes are conical or hemispherical, the thickness of the internal space (that is, the width in the left-right direction in FIG. 8) is different, so even if the concentration of the fluorescent substance is the same, The intensity of the emitted fluorescence varies depending on where the light is irradiated.
  • the optical path length is constant at any position of the measurement section, and the quantitativeness of the optical measurement can be achieved.
  • the bottom portion of the accumulation portion gradually narrows as it approaches the measurement portion from the accumulation portion.
  • the cells and the red blood cells in the detection solution can easily enter the measurement portion to form a cell layer and a red blood cell layer.
  • the non-measurement surface other than the measurement surface of the measurement unit can transmit fluorescence emitted from the cell layer.
  • the surface of the measurement portion other than the measurement surface other than the measurement surface is colored black.
  • the surface of the measurement portion other than the measurement surface other than the measurement surface is provided with unevenness.
  • the thickness of the internal space of the measurement unit is 0.5 mm or more and 3 mm or less.
  • the thickness of the internal space of the measurement section is 0.5 mm or more, it is possible to allow a large cell mass to enter the measurement section.
  • the thickness of the internal space of the measurement portion is 3 mm or less, excitation light can sufficiently reach from one side of the cell layer to the other side, and the entire cell layer can be measured.
  • the seventh aspect further includes a lid for closing the opening.
  • the eighth aspect of the present invention is a fluorescence measurement device, comprising: the fluorescence measurement container according to any one of the first to seventh aspects; and a light source directed to the measurement section of the fluorescence measurement container.
  • the measurement surface is irradiated with excitation light; a fluorescence filter transmits fluorescence emitted from the cell layer in the measurement section; an imaging lens transmits the fluorescence to form an image; and a light receiving element performs an image formed through the imaging lens.
  • the fluorescence measurement container includes a measurement section and the thickness of the internal space is constant, the cells and red blood cells in the detection solution are separated by the centrifugation of the detection solution to have the same thickness as the internal space of the measurement section.
  • the thickness layer is arranged in this measurement section, that is, the cell layer automatically becomes a layer suitable for optical observation by centrifugal force. Therefore, the cell layer can be optically observed without transferring the centrifuged cell layer to another container as in the past.
  • the thickness of the internal space of the measurement section is constant, the optical path length is constant at any position of the measurement section, and the quantitativeness of the optical measurement can be achieved.
  • FIG. 1 is a perspective view showing a fluorescence measurement container according to the first embodiment.
  • FIG. 2 is a front view showing a fluorescence measurement container according to the first embodiment.
  • Fig. 3 is a side view showing a fluorescence measurement container according to the first embodiment.
  • FIG. 4 is a front view showing a state in which a detection liquid is stored in the fluorescence measurement container according to the first embodiment.
  • FIG. 5 is a front view showing a state in which the detection solution stored in the fluorescence measurement container according to the first embodiment is centrifuged.
  • FIG. 6 is a side view showing a state where the detection solution stored in the fluorescence measurement container according to the first embodiment is centrifuged.
  • FIG. 7 is a schematic diagram showing a fluorescence measurement device according to a second embodiment.
  • FIG. 8 is a diagram showing a state where a detection solution stored in a conventional PCR tube or a centrifuge tube is centrifuged.
  • FIG. 1 is a perspective view showing a fluorescence measurement container 100 according to the first embodiment.
  • FIG. 2 is a front view showing the fluorescence measurement container 100 according to the first embodiment.
  • FIG. 3 is a side view showing the fluorescence measurement container 100 according to the first embodiment.
  • the fluorescence measurement container 100 is a container for containing a test solution containing cells collected from a cervix or a trachea waiting to be detected, and is a type of a centrifugation container (centrifuge tube) that performs fluorescence measurement on the cells collected from the site to be detected.
  • the fluorescence measurement container 100 includes a cylindrical storage portion 10 and a flat measurement portion 20.
  • the shape of the storage portion 10 is not particularly limited, and the cylindrical shape is merely an example.
  • the shape of the measurement portion 20 is not particularly limited, and the shape of the measurement portion 20 is not particularly limited.
  • the flat shape is merely an example.
  • the shape of the bottom surface of the measurement portion 20 in FIG. 1 may be the same length and width.
  • the accumulation section 10 has an opening 11 at one end, and a detection solution containing cells can be accumulated from the opening 11 to the inside (see FIG. 4).
  • the accumulation portion 10 includes a bottom portion 12 on the side opposite to the opening portion 11.
  • the accumulation section 10 communicates with the measurement section 20 through the bottom section 12.
  • the bottom section 12 is preferably formed to gradually narrow as it approaches the measurement section 20 from the accumulation section 10.
  • the shape of the bottom section 12 is not limited to this.
  • the diameter of the accumulation portion 10 is not particularly limited, but is preferably set to a size that can be entered by a cell collection brush for collecting cells of a site to be detected. Generally, since the width of the brush head of the cell collection brush is about 20 mm, the diameter of the accumulation portion 10 is preferably 20 mm or more.
  • the diameter of the accumulation portion 10 is preferably a size suitable for being placed in a general-purpose centrifugal separation device, and may be, for example, 30 mm ⁇ 5 mm.
  • the thickness of the internal space of the measurement unit 20, that is, the width in the left-right direction in FIG. 3 is made constant.
  • a cell layer and a red blood cell layer (refer to FIGS. 5 and 6) obtained by centrifuging the detection solution are arranged in layers in the same thickness as the thickness of the internal space of the measurement section 20, and the red blood cell layer is disposed.
  • a cell layer is arranged above the red blood cell layer.
  • At least the measurement surface of the measurement unit 20, that is, the incident surface for observing the excitation light of the cell layer is made of a material capable of transmitting a wavelength of fluorescence emitted from the cell layer. Specifically, it may be suitable for optical measurement, and it may be, for example, transparent glass or transparent resin.
  • the thickness of the internal space of the measurement section 20 is not particularly limited as long as it is set to a size suitable for optical measurement.
  • the thickness of the internal space of the measurement unit 20 is preferably 3 mm or less in terms of the distance that light can enter the inside of the living tissue.
  • the thickness of the internal space of the measurement unit 20 is preferably 0.5 mm or more in terms of a size that allows a large cell mass to enter the measurement unit 20. From the above two points, the thickness of the internal space of the measurement section 20 is preferably 0.5 mm or more and 3 mm or less.
  • the overall height (that is, the entire length) of the fluorescence measurement container 100 is not particularly limited. However, it is preferably a size that can be placed in a general centrifugal separation device.
  • the entire height (that is, the entire length) of the fluorescence measurement container 100 can be set to 120 mm or less.
  • FIG. 4 is a front view showing a state where a detection liquid is stored in the fluorescence measurement container 100.
  • FIG. 5 is a front view showing a state where the detection solution stored in the fluorescence measurement container 100 is centrifuged.
  • FIG. 6 is a side view showing a state where the detection solution stored in the fluorescence measurement container 100 is centrifuged.
  • a detection solution containing cells of a site to be detected is placed from the opening portion 11 of the fluorescence measurement container 100 into the inside of the fluorescence measurement container 100.
  • a general-purpose centrifugal separator is used to perform a centrifugal separation process on the container to be detected containing the detection liquid.
  • the cells and red blood cells separated from the detection solution by centrifugation are each arranged in a layered layer having the same thickness as the thickness of the internal space of the measurement unit 20 into the fluorescence measurement container 100
  • a red blood cell layer is disposed below the measurement unit 20, and a cell layer is disposed above the red blood cell layer.
  • excitation light is irradiated from the measurement surface of the measurement unit 20, and the fluorescence from the cell layer is observed.
  • the fluorescence measurement container 100 includes the measurement section 20 and the thickness of the internal space is constant. Therefore, the cells and red blood cells in the detection solution are separated by the centrifugation of the detection solution to have the same thickness as the internal space of the measurement section 20
  • the layered arrangement to the measurement section 20 means that the cell layer automatically becomes a layered layer suitable for optical observation by centrifugal force. Therefore, the cell layer can be optically observed without transferring the centrifuged cell layer to another container as in the past.
  • the thicker the fluorescent substance such as a cell layer
  • the stronger the fluorescence intensity when the bottoms of conventional PCR tubes and centrifuge tubes are conical or hemispherical, the thickness of the internal space (that is, the width in the left-right direction in FIG. 3) is different. Therefore, even if the concentration of the fluorescent substance is the same, The intensity of the emitted fluorescence varies depending on where the light is irradiated.
  • the optical path length is constant at any position of the measurement section 20, and the quantitativeness of the optical measurement can be achieved.
  • a fluorescence measurement container 100 having a thickness of 1 mm in the internal space of the measurement unit 20 was prepared.
  • a liquid in which white particles are mixed is placed inside the fluorescence measurement container 100, and centrifuged. As a result, the white particles were deposited in a layered manner in the measurement section 20 and became a shape suitable for observation.
  • a PCR tube which is a type of conventional ordinary centrifugation container (centrifuge tube), was prepared.
  • a liquid in which white particles were mixed was placed inside the PCR tube, and centrifuged.
  • the white particles were three-dimensionally precipitated at the bottom of the conical shape of the PCR tube, and it was difficult to observe the white particles on the opposite side from any observation direction.
  • the fluorescence measurement container according to the first embodiment of the present invention has been described above, but the present invention is not limited to this. A modification of the first embodiment will be described below.
  • the measurement surface of the measurement unit 20 is made of a material capable of transmitting the wavelength of the fluorescence emitted from the cell layer.
  • a non-measurement surface other than the measurement surface may transmit. Fluorescence emitted from the cell layer.
  • the measurement unit 20 is made of transparent glass, transparent resin, or the like.
  • the measurement unit 20 only needs to be able to transmit a wavelength component to be observed. That is, when only light in the infrared region or the ultraviolet region is processed, the measurement section 20 may not be a transparent material.
  • the material of the measurement section 20 may be a low autofluorescence material that does not generate fluorescence due to excitation light.
  • the surface of the measurement section 20 other than the measurement surface may be colored in a color such as black. This makes it possible to absorb light that interferes with fluorescence measurement, such as stray light and scattered light.
  • the surface of the measurement section 20 other than the measurement surface is provided with fine unevenness. Accordingly, it is possible to prevent generation of light that interferes with fluorescence measurement, such as stray light and diffuse reflection light.
  • the fluorescence measurement container 100 may further include a lid that closes the opening 11. This can prevent the detection liquid from overflowing from the opening portion 11.
  • the lid can be made of the same material as that of the measurement unit 20 in the first embodiment and Modifications 1 to 5 or can be subjected to the same coloring treatment or surface treatment.
  • FIG. 7 is a schematic diagram showing a fluorescence measurement device 200 according to the second embodiment.
  • the fluorescence measurement device 200 includes a fluorescence measurement container 100 according to the first embodiment and a modification thereof, and a light source 210 that irradiates the measurement surface of the measurement section 20 of the fluorescence measurement container 100 with excitation light.
  • the light is not particularly limited, and can be arbitrarily changed in the ultraviolet to infrared range according to the characteristics of the detection target for which the light difference is desired; the fluorescence filter 220 transmits fluorescence emitted from the cell layer in the measurement section 20; the imaging lens 230 enables Fluorescence is transmitted to form an image; and a light receiving element 240 observes an image transmitted through the imaging lens 230.
  • the light receiving element 240 may be, for example, a camera, a photodiode, a photomultiplier tube, or the like.
  • the fluorescence measurement container 100 since the fluorescence measurement container 100 includes the measurement section 20 and the thickness of the internal space is constant, the cells and red blood cells in the detection solution are separated from the measurement section 20 by centrifugation of the detection solution.
  • the thickness of the internal space is layered to the measurement unit 20, that is, the cell layer automatically becomes a layer suitable for optical observation by centrifugal force. Therefore, the cell layer after centrifugation can be transferred to another container as before.
  • the cell layer is optically observed.
  • the thickness of the internal space of the measurement section 20 is constant, the optical path length is constant at any position of the measurement section 200, and the quantitativeness of the optical measurement can be achieved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种荧光测定容器(100)及荧光测定装置(200),用于对从生物体的待检测部位采集的细胞进行荧光测定。荧光测定容器(100)具备:蓄积部(10),具有开口部(11),能够从该开口部(11)向内部蓄积含有细胞的检测液,在与开口部(11)相反的一侧具有底部(12);测定部(20),与蓄积部(10)的底部(12)连接,其内部空间的厚度一定,在厚度的方向上彼此对置的两个面中的一个面为测定面,至少测定面能够透过从细胞放出的光。

Description

荧光测定容器及荧光测定装置 技术领域
本发明涉及一种作为离心分离容器的荧光测定容器及荧光测定装置。
背景技术
以往,在对痰、尿沉渣、子宫颈涂片等细胞浓度低的检测液进行光学观测时,首先使用离心管进行离心分离来浓缩细胞,之后从光源向细胞照射激发光,并观测从细胞发出的荧光。
通常,以往的PCR(Polimerase Chain Reaction)管及离心管的底部如图8所示呈圆锥状或半球状,在离心分离后细胞及红血球沉淀在离心管的底部,以最下层为红血球层,其上为细胞层的形式层叠。在对细胞层进行光学观测时,只能从离心管的下方经由红血球层来观测细胞层发出的荧光,或者从离心管的侧方对细胞层的一侧观测细胞层。在从离心管的下方经由红血球层来观测细胞层的情况下,红血球层会妨碍观测。在从离心管的侧方对细胞层的一侧观测细胞层的情况下,由于从细胞层的一侧到另一侧的距离大,因此无法观测到细胞层的另一侧的情况。因此,难以对细胞层整体进行观测。
因此,操作者必须将沉淀在离心管的底部的细胞层转移到其他容器中来进行观测,导致观测过程变得繁杂。
发明内容
本发明是鉴于以上背景而完成的,其主要目的在于,提供一种荧光测定容器及荧光测定装置,不需要将离心分离后的细胞层转移到其他容器就能够对细胞层进行光学观测。
本发明的技术方案1为一种荧光测定容器,用于对从生物体的待检测部位采集的细胞进行荧光测定,其特征在于,具备:蓄积部,具有开口部,能够从该开口部向内部蓄积含有上述细胞的检测液,在与上述开口部相反 的一侧具有底部;测定部,与上述蓄积部的上述底部连接,其内部空间的厚度一定,在上述厚度的方向上彼此对置的两个面中的一个面为测定面,至少上述测定面能够透过从上述细胞放出的光。
根据技术方案1的发明,由于具备测定部,且其内部空间的厚度一定,因此检测液中的细胞和红血球通过检测液的离心分离而分别以与测定部的内部空间的厚度相同的厚度层状配置到该测定部,即细胞层通过离心力自动成为适合光学观测的层状,因此不需要像以往那样将离心分离后的细胞层转移到其他容器就能够对细胞层进行光学观测。
此外,通常,荧光物质(例如细胞层)的厚度越厚,荧光的强度越强。因此,像以往的PCR管及离心管的底部呈圆锥状或半球状的情况下,由于其内部空间的厚度(即图8中左右方向上的宽度)不同,因此即使荧光物质的浓度相同,但根据光所照射的位置,所发出的荧光的强度也不同。这样,若光在细胞层中所经过的距离即光路长度不是一定的,则荧光的强度也不是一定的,容器的内部空间的厚度成为变量,难以实现光学测定的定量性,因此无法准确地观测细胞的光学特性。
而根据本发明,由于测定部的内部空间的厚度一定,因此光路长度在测定部的任何位置均一定,从而能够实现光学测定的定量性。
此外,技术方案2中,上述蓄积部的上述底部随着从上述蓄积部靠向上述测定部而逐渐变窄。
由此,能够使检测液中的细胞和红血球容易进入到测定部来形成细胞层和红血球层。
此外,技术方案3中,上述测定部的除了上述测定面以外的非测定面也能够透过从上述细胞层放出的荧光。
此外,技术方案4中,上述测定部的除了上述测定面以外的非测定面的表面被着色成黑色。
由此,能够吸收杂散光、散射光等对荧光测定有干扰的光。
此外,技术方案5中,上述测定部的除了上述测定面以外的非测定面的表面上设置有凹凸。
由此,能够防止产生杂散光、漫反射光等对荧光测定有干扰的光。
此外,技术方案6中,上述测定部的上述内部空间的厚度为0.5mm以 上且3mm以下。
由此,由于测定部的内部空间的厚度为0.5mm以上,因此能够使大型的细胞块也能够进入到测定部。并且,由于测定部的内部空间的厚度为3mm以下,因此激发光能够从细胞层的一侧充分到达另一侧,能够对细胞层整体进行测定。
此外,技术方案7中,还具备封闭上述开口部盖子。
由此,能够防止检测液从开口部溢出。
此外,本发明的技术方案8为一种荧光测定装置,其特征在于,具备:前述技术方案1~7中任一项所述的荧光测定容器;光源,向上述荧光测定容器的上述测定部的上述测定面照射激发光;荧光过滤器,透射从上述测定部中的细胞层发出的荧光;成像透镜,使上述荧光透过而成像;以及受光元件,对透过上述成像透镜而成的像进行观察。
根据技术方案8的发明,由于荧光测定容器具备测定部,且其内部空间的厚度一定,因此检测液中的细胞和红血球通过检测液的离心分离而分别以与测定部的内部空间的厚度相同的厚度层状配置到该测定部,即细胞层通过离心力自动成为适合光学观测的层状,因此不需要像以往那样将离心分离后的细胞层转移到其他容器就能够对细胞层进行光学观测。此外,由于测定部的内部空间的厚度一定,因此光路长度在测定部的任何位置均一定,从而能够实现光学测定的定量性。
附图说明
图1是表示第一实施方式的荧光测定容器的立体图。
图2是表示第一实施方式的荧光测定容器的主视图。
图3是表示第一实施方式的荧光测定容器的侧视图。
图4是表示第一实施方式的荧光测定容器中蓄积有检测液的状态的主视图。
图5是表示第一实施方式的荧光测定容器中蓄积的检测液进行离心分离后的状态的主视图。
图6是表示第一实施方式的荧光测定容器中蓄积的检测液进行离心分离后的状态的侧视图。
图7是表示第二实施方式的荧光测定装置的示意图。
图8是表示以往的PCR管或离心管中蓄积的检测液进行离心分离后的状态的图。
具体实施方式
下面,结合附图对本发明的荧光测定容器及荧光测定装置进行说明。
[第一实施方式]
基于附图说明第一实施方式的荧光测定容器100。图1是表示第一实施方式的荧光测定容器100的立体图。图2是表示第一实施方式的荧光测定容器100的主视图。图3是表示第一实施方式的荧光测定容器100的侧视图。
荧光测定容器100是用于收容包含从子宫颈或气管等待检测部位采集的细胞的检测液的容器,是离心分离容器(离心管)的一种,对从待检测部位采集的细胞进行荧光测定。如图1~图3所示,本实施方式的荧光测定容器100具备圆筒状的蓄积部10和扁平状的测定部20,蓄积部10的形状没有特别限定,圆筒状仅仅是示例,还可以是多棱柱状、椭圆柱状等,测定部20的形状也没有特别限定,扁平状仅仅是示例,还可以是在图1中测定部20的底面的长度与宽度相同的形状等。
蓄积部10的一端具有开口部11,能够从该开口部11向内部蓄积含有细胞的检测液(参考图4)。蓄积部10在与开口部11相反的一侧具备底部12。蓄积部10通过底部12与测定部20连通。为了使通过离心分离而从检测液分离出来的细胞及红血球更容易地从蓄积部10进入到测定部20,底部12优选形成为随着从蓄积部10靠向测定部20而逐渐变窄。但是,只要是细胞及红血球能够从蓄积部10进入到测定部20,则底部12的形状不限定于此。
此外,蓄积部10的直径没有特别的限定,但优选被设置成能够供用于采集待检测部位的细胞的细胞采集刷子进入的大小。通常,细胞采集刷子的刷头的宽度为20mm左右,因此蓄积部10的直径优选为20mm以上。并且,蓄积部10的直径优选为适合放入通用的离心分离设备中的大小,例如可以是30mm±5mm。
测定部20的内部空间的厚度即图3中左右方向上的宽度被设为一定。在该测定部20中分别以与测定部20的内部空间的厚度相同的厚度层状配置通过对检测液进行离心分离而得到的细胞层和红血球层(参考图5、图6),红血球层配置在测定部20的下部,细胞层配置在红血球层的上方。测定部20的至少测定面即用于观测细胞层的激发光的入射面由能够透过从细胞层放出的荧光的波长的材质构成。具体地说,只要是能够适合于进行光学测定即可,例如可以是透明玻璃或透明树脂等。
此外,测定部20的内部空间的厚度没有特别限定,只要被设置成适合于进行光学测定的尺寸即可。从光线能够进入到生物体组织内部的距离方面考虑,测定部20的内部空间的厚度优选为3mm以下。此外,从使大型的细胞块能够进入到测定部20中的尺寸方面考虑,测定部20的内部空间的厚度优选为0.5mm以上。从以上两个方面考虑,测定部20的内部空间的厚度优选为0.5mm以上且3mm以下。
此外,荧光测定容器100的整体高度(即全长)没有特别限定。但是,优选为能够放入到通常的离心分离设备中的尺寸,例如荧光测定容器100的整体高度(即全长)可以被设为120mm以下。
下面结合附图说明本实施方式的荧光检测容器100的使用方法。
图4是表示荧光测定容器100中蓄积有检测液的状态的主视图。图5是表示荧光测定容器100中蓄积的检测液进行离心分离后的状态的主视图。图6是表示荧光测定容器100中蓄积的检测液进行离心分离后的状态的侧视图。
首先,如图4所示,从荧光测定容器100的开口部11向荧光测定容器100的内部放入含有待检测部位的细胞的检测液。接着,用通用的离心分离机对装有检测液的待检测容器进行离心分离处理。离心分离处理结束后,如图5、图6所示,通过离心分离而从检测液分离出来的细胞和红血球分别以与测定部20的内部空间的厚度相同的厚度层状配置到荧光测定容器100的测定部20中,红血球层配置在测定部20的下部,细胞层配置在红血球层的上方。接着,从测定部20的测定面照射激发光,并观测来自细胞层的荧光。
下面说明本实施方式的荧光测定容器100的作用效果。
本实施方式的荧光测定容器100具备测定部20,且其内部空间的厚度一定,因此检测液中的细胞和红血球通过检测液的离心分离而分别以与测定部20的内部空间的厚度相同的厚度层状配置到该测定部20,即细胞层通过离心力自动成为适合光学观测的层状,因此不需要像以往那样将离心分离后的细胞层转移到其他容器就能够对细胞层进行光学观测。
此外,通常,荧光物质(例如细胞层)的厚度越厚,荧光的强度越强。因此,像以往的PCR管及离心管的底部呈圆锥状或半球状的情况下,由于其内部空间的厚度(即图3中左右方向上的宽度)不同,因此即使荧光物质的浓度相同,但根据光所照射的位置,所发出的荧光的强度也不同。这样,若光在细胞层中所经过的距离即光路长度不是一定的,则荧光的强度也不是一定的,容器的内部空间的厚度成为变量,难以实现光学测定的定量性,因此无法准确地观测细胞的光学特性。
而根据本发明,由于测定部20的内部空间的厚度一定,因此光路长度在测定部20的任何位置均一定,从而能够实现光学测定的定量性。
[实验例]
准备了测定部20的内部空间的厚度为1mm的荧光测定容器100。在荧光测定容器100的内部放入混合了白色颗粒的液体,并进行离心分离处理。结果,白色颗粒以层状沉淀到测定部20中,成为了适合于进行观测的形状。
[比较例]
准备了以往的普通的离心分离用容器(离心管)的一种的PCR管。与实验例同样地,在PCR管的内部放入混合了白色颗粒的液体,并进行离心分离处理。结果,白色颗粒在PCR管的圆锥形的底部立体地沉淀,从无论从哪个方向进行观测,均难以观测到相反侧的白色颗粒。
以上说明了本发明的第一实施方式的荧光测定容器,但本发明不限定于此。下面说明书第一实施方式的变形例。
[变形例1]
第一实施方式的荧光测定容器100中,测定部20的测定面由能够透过从细胞层放出的荧光的波长的材质构成,但还可以是,除了测定面以外的 非测定面也能够透过从细胞层放出的荧光。
[变形例2]
第一实施方式的荧光测定容器100中,说明了测定部20由透明玻璃或透明树脂等构成的例子。但是,测定部20只要能够透过想要观察的波长成分即可。也就是说,在仅处理红外区域或紫外区域的光的情况下,测定部20也可以不是透明材质。
[变形例3]
测定部20的材质还可以是不会因激发光而产生荧光的低自体荧光材质。
[变形例4]
测定部20的除了测定面以外的非测定面的表面还可以被着色成黑色等颜色。由此,能够吸收杂散光、散射光等对荧光测定有干扰的光。
[变形例5]
测定部20的除了测定面以外的非测定面的表面上设置有细微的凹凸。由此,能够防止产生杂散光、漫反射光等对荧光测定有干扰的光。
[变形例6]
荧光测定容器100还可以具备封闭开口部11盖子。由此,能够防止检测液从开口部11溢出。此外,该盖子可以选用与第一实施方式及变形例1~变形例5中的测定部20同样的材质,或被实施同样的着色处理或表面处理。
[第二实施方式]
基于图7说明第二实施方式的荧光测定装置200。图7是表示第二实施方式的荧光测定装置200的示意图。
如图7所示,荧光测定装置200具备:第一实施方式及其变形例的荧光测定容器100;光源210,向荧光测定容器100的测定部20的测定面照射激发光,光源210所发出的光没有特别限定,例如可以根据想要光差的检测对象的特性,在紫外线到红外线区域内任意变更;荧光过滤器220,透射从测定部20中的细胞层发出的荧光;成像透镜230,使荧光透过而成像;以及受光元件240,对透过成像透镜230而成的像进行观察,受光元件240例如可以是相机、光电二极管、光电倍增管等。
根据本实施方式的荧光测定装置200,由于荧光测定容器100具备测定部20,且其内部空间的厚度一定,因此检测液中的细胞和红血球通过检测液的离心分离而分别以与测定部20的内部空间的厚度相同的厚度层状配置到该测定部20,即细胞层通过离心力自动成为适合光学观测的层状,因此不需要像以往那样将离心分离后的细胞层转移到其他容器就能够对细胞层进行光学观测。此外,由于测定部20的内部空间的厚度一定,因此光路长度在测定部200的任何位置均一定,从而能够实现光学测定的定量性。
以上参照附图说明了本发明的实施方式及变形例。但以上说明仅是本发明的具体例子,用于理解本发明,而不用于限定本发明的范围。本领域技术人员能够基于本发明的技术思想对实施方式进行各种变形及组合,由此得到的方式也包括在本发明的范围内。

Claims (8)

  1. 一种荧光测定容器,用于对从生物体的待检测部位采集的细胞进行荧光测定,其特征在于,具备:
    蓄积部,具有开口部,能够从该开口部向内部蓄积含有上述细胞的检测液,在与上述开口部相反的一侧具有底部;
    测定部,与上述蓄积部的上述底部连接,其内部空间的厚度一定,在上述厚度的方向上彼此对置的两个面中的一个面为测定面,至少上述测定面能够透过从上述细胞放出的荧光。
  2. 根据权利要求1所述的荧光测定容器,其特征在于,
    上述蓄积部的上述底部随着从上述蓄积部靠向上述测定部而逐渐变窄。
  3. 根据权利要求1所述的荧光测定容器,其特征在于,
    上述测定部的除了上述测定面以外的非测定面也能够透过从上述细胞层放出的荧光。
  4. 根据权利要求1所述的荧光测定容器,其特征在于,
    上述测定部的除了上述测定面以外的非测定面的表面被着色成黑色。
  5. 根据权利要求1所述的荧光测定容器,其特征在于,
    上述测定部的除了上述测定面以外的非测定面的表面上设置有凹凸。
  6. 根据权利要求1所述的荧光测定容器,其特征在于,
    上述测定部的上述内部空间的厚度为0.5mm以上且3mm以下。
  7. 根据权利要求1~6中任一项所述的荧光测定容器,其特征在于,
    还具备封闭上述开口部盖子。
  8. 一种荧光测定装置,其特征在于,具备:
    权利要求1~7中任一项所述的荧光测定容器;
    光源,向上述荧光测定容器的上述测定部的上述测定面照射激发光;
    荧光过滤器,透射从上述测定部中的细胞层发出的荧光;
    成像透镜,使上述荧光透过而成像;以及
    受光元件,对透过上述成像透镜而成的像进行观察。
PCT/CN2019/105592 2018-09-20 2019-09-12 荧光测定容器及荧光测定装置 WO2020057428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569960A JP2021526647A (ja) 2018-09-20 2019-09-12 蛍光測定容器及び蛍光測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811099557.X 2018-09-20
CN201811099557.XA CN110927126A (zh) 2018-09-20 2018-09-20 荧光测定容器及荧光测定装置

Publications (1)

Publication Number Publication Date
WO2020057428A1 true WO2020057428A1 (zh) 2020-03-26

Family

ID=69856157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105592 WO2020057428A1 (zh) 2018-09-20 2019-09-12 荧光测定容器及荧光测定装置

Country Status (3)

Country Link
JP (1) JP2021526647A (zh)
CN (1) CN110927126A (zh)
WO (1) WO2020057428A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019230A1 (de) * 2006-05-15 2007-11-22 Sartorius Biotech Gmbh Probengefäß
CN103250042A (zh) * 2010-12-08 2013-08-14 凯杰有限公司 用于光学分析的流体处理管以及分析流体的方法
JP2014029278A (ja) * 2012-07-31 2014-02-13 Ushio Inc 蛍光測定方法及び蛍光測定キット
US20150329892A1 (en) * 2014-05-13 2015-11-19 Asl Analytical, Inc. Apparatus and Method for Optical Sampling in Miniature Bioprocessing Vessels
CN105413599A (zh) * 2014-09-12 2016-03-23 安纳利蒂克耶拿股份公司 反应容器、反应容器布置和用于分析物质的方法
JP6011394B2 (ja) * 2013-03-04 2016-10-19 ウシオ電機株式会社 蛍光光度計
CN107923838A (zh) * 2015-06-16 2018-04-17 泰斯科有限公司 生物材料测定仪器
CN209215221U (zh) * 2018-09-20 2019-08-06 牛尾电机(苏州)有限公司 荧光测定容器及荧光测定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1334338A4 (en) * 2000-10-12 2008-03-19 Amnis Corp PICTURE AND ANALYSIS OF PARAMETERS OF SMALL MOBILE OBJECTS, SUCH AS CELLS, FOR EXAMPLE
JP2002310886A (ja) * 2001-04-11 2002-10-23 Canon Inc ディスクサイトメトリーによる分析方法及び装置
BRPI0920586A2 (pt) * 2008-10-31 2017-05-30 Bio Merieux Inc dispositivo de separacao para uso na separacao ,caracterizacao e/ou identificacao de micro-organismos.
WO2015022781A1 (ja) * 2013-08-15 2015-02-19 コニカミノルタ株式会社 細胞検出方法および細胞検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019230A1 (de) * 2006-05-15 2007-11-22 Sartorius Biotech Gmbh Probengefäß
CN103250042A (zh) * 2010-12-08 2013-08-14 凯杰有限公司 用于光学分析的流体处理管以及分析流体的方法
JP2014029278A (ja) * 2012-07-31 2014-02-13 Ushio Inc 蛍光測定方法及び蛍光測定キット
JP6011394B2 (ja) * 2013-03-04 2016-10-19 ウシオ電機株式会社 蛍光光度計
US20150329892A1 (en) * 2014-05-13 2015-11-19 Asl Analytical, Inc. Apparatus and Method for Optical Sampling in Miniature Bioprocessing Vessels
CN105413599A (zh) * 2014-09-12 2016-03-23 安纳利蒂克耶拿股份公司 反应容器、反应容器布置和用于分析物质的方法
CN107923838A (zh) * 2015-06-16 2018-04-17 泰斯科有限公司 生物材料测定仪器
CN209215221U (zh) * 2018-09-20 2019-08-06 牛尾电机(苏州)有限公司 荧光测定容器及荧光测定装置

Also Published As

Publication number Publication date
CN110927126A (zh) 2020-03-27
JP2021526647A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
AU2007229975B2 (en) Device and method for detection of fluorescence labelled biological components
CN101490529B (zh) 测量设备和方法
ES2913335T3 (es) Análisis de imagen y medición de muestras biológicas
CN105899936B (zh) 光学成像***及使用其的方法
JP6038214B2 (ja) 微生物の分離、キャラクタリゼーションおよび/または同定に用いる分離装置
DK2778231T3 (en) PROCEDURE FOR TEMPERATURE OF STEM CELLS, PROCEDURE FOR REMOVAL OF CELL AREA IN STANDING TENDING AGAINST DIFFERENTIALIZATION, AND DEVICE FOR TEMPERATURE OF STEM CELLS
KR100500610B1 (ko) 형광 현미경 및 이를 사용한 관측 방법
WO2014056372A1 (zh) 一种检测纳米粒子的方法
US8093015B2 (en) Method for determining the viability of cells in cell cultures
JP7110344B2 (ja) 細胞検査装置及び細胞検査方法
JP6439693B2 (ja) 細胞検出方法および細胞検出装置
CN104749105A (zh) 基于近红外光镊激发上转换发光的定量检测装置及检测方法
WO2020057428A1 (zh) 荧光测定容器及荧光测定装置
CN116438438A (zh) 用于基于流动的单颗粒和/或单分子分析的方法和设备
CN209215221U (zh) 荧光测定容器及荧光测定装置
US20240167934A1 (en) Excitation-emission matrix flow cytometry systems and uses thereof
WO2021145461A1 (ja) 血液凝固測定装置、血液凝固時間の測定方法、血液凝固反応の完了判定方法、および血液自動遠心分離装置
JP5663905B2 (ja) チップ構造体
CN108779423B (zh) Pcr用容器
JP5655917B2 (ja) チップ構造体
US20210356487A1 (en) Multisystem for simultaneously performing biochemical examination and blood test, and multi-disc used therein
JP2011220947A (ja) 微生物検査装置及び微生物検査チップ
US20230175951A1 (en) Systems and Methods for Live Cell Imaging
JP6172021B2 (ja) 細胞整列チップ、その製造方法、標的細胞の検出方法、標的細胞の検出装置および細胞捕捉不良領域の検出方法
CN220508778U (zh) 用于快速体液检测的紫外光学显微成像***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863289

Country of ref document: EP

Kind code of ref document: A1