WO2020057144A1 - 一种基于扭转弹簧的自适应柔性手爪及机器人 - Google Patents

一种基于扭转弹簧的自适应柔性手爪及机器人 Download PDF

Info

Publication number
WO2020057144A1
WO2020057144A1 PCT/CN2019/086327 CN2019086327W WO2020057144A1 WO 2020057144 A1 WO2020057144 A1 WO 2020057144A1 CN 2019086327 W CN2019086327 W CN 2019086327W WO 2020057144 A1 WO2020057144 A1 WO 2020057144A1
Authority
WO
WIPO (PCT)
Prior art keywords
bevel gear
flexible
torsion spring
winch
adaptive
Prior art date
Application number
PCT/CN2019/086327
Other languages
English (en)
French (fr)
Inventor
袁晗
陈鑫杰
徐文福
周丽丽
Original Assignee
哈尔滨工业大学(深圳)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学(深圳) filed Critical 哈尔滨工业大学(深圳)
Publication of WO2020057144A1 publication Critical patent/WO2020057144A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/10Gripping heads and other end effectors having finger members with three or more finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons

Definitions

  • the invention relates to the technical field of continuous robots, in particular to an adaptive flexible hand and a robot based on a torsion spring.
  • Discrete robots are generally composed of 5 to 7 rigid DOF joints connected by rigid rods. They have limited degrees of freedom, are weakly adaptable to non-structural environments, and are unable to perform tasks with complex environments.
  • continuous robots Compared with discrete robots, continuous robots use "invertebrate" flexible structures similar to elephant trunks, without discrete joints and rigid links. They can flexibly change their bending shapes and have a strong ability to adapt to unstructured environments. However, currently there are very few applications of continuous robots, and the technology is relatively immature. Therefore, it is of great significance to design a continuous robot with adaptive ability.
  • the present invention provides an adaptive flexible gripper based on a torsion spring, which adopts a continuous structure, has strong self-adaptive ability, and can adapt to an unstructured environment.
  • the present invention also provides a robot, which includes the above-mentioned torsion spring-based adaptive flexible gripper, which has strong adaptability and adaptability to an unstructured environment.
  • the technical solution adopted by the present invention to solve its technical problem is to provide an adaptive flexible gripper based on a torsion spring, including a driving device, a transmission device, and a flexible finger.
  • the transmission device includes a first bevel gear and a second bevel gear.
  • a torsion spring and a winch shaft the first bevel gear is connected to the driving device, the second bevel gear is meshed with the first bevel gear, and the second bevel gear is sleeved on the bevel gear shaft,
  • One end of the torsion spring is fixedly connected to the bevel gear shaft, and the other end is fixedly connected to the winch shaft.
  • the flexible finger is fixedly provided.
  • a driving rope is provided on the flexible finger, and the driving rope is wound around the winch.
  • a shaft, a free end of the driving rope is provided along a length direction of the flexible finger, and is fixed to an end of the flexible finger.
  • a winch is sleeved on the winch shaft, and a plurality of grooves are provided on the surface of the winch for the drive rope to be embedded.
  • a frame is further included, the frame includes a first fixed plate and a second fixed plate opposite to each other, the driving device is fixed on the first fixed plate, and the flexible finger It is fixed on the second fixing plate, and a bevel gear support plate, a first winch shaft support plate, and a second winch shaft support plate are connected between the first fixing plate and the second fixing plate.
  • a spring is provided between the bevel gear support plate and the first winch shaft support plate, the second bevel gear is provided on a side of the bevel gear support plate away from the torsion spring, and the bevel gear shaft passes through Passes through the bevel gear support plate and is fixedly connected to one end of the torsion spring, the winch is provided between the first winch shaft support plate and the second winch shaft support plate, and one end of the winch shaft passes through It passes through the first winch shaft support plate and is fixedly connected with the torsion spring.
  • the flexible finger includes a flexible column and a plurality of circular plates, one end of the flexible column is fixed on the second fixed plate, and the other end is freely disposed, and a plurality of the circular plates are along the flexible column. It is arranged in the length direction, and the driving rope passes through several of the circular plates in sequence, and is fixedly connected with the free end of the flexible column.
  • a wire conduit is also fixed on the second fixing plate for the driving rope to pass through.
  • the material of the conduit is polytetrafluoroethylene.
  • the material of the flexible column is silica gel.
  • the second bevel gear, the torsion spring, the winch shaft, the flexible finger, and the driving rope include three places, and the second bevel gear is located along the first A bevel gear is uniformly distributed in a circumferential direction, and the flexible fingers are uniformly distributed in a circumferential direction of the second fixing plate.
  • the present invention also provides a robot, including a robot body and the aforementioned adaptive flexible hand based on a torsion spring, and the adaptive flexible hand based on the torsion spring is fixed on the robot body.
  • the adaptive flexible gripper based on the torsion spring of the present invention adopts a continuous structure.
  • the first bevel gear drives the second bevel gear in turn
  • the second bevel gear drives the torsion spring
  • the winch shaft is driven by the torsion spring.
  • the driving rope on the winch shaft drives the flexible fingers to work.
  • the robot of the present invention includes the above-mentioned torsion spring-based adaptive flexible gripper, which has strong self-adaptive ability and can adapt to an unstructured environment.
  • 1 is an adaptive flexible hand based on a torsion spring according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a transmission device according to the present invention.
  • Figure 3 is a side view of Figure 2;
  • FIG. 4 is a schematic structural diagram of an embodiment of a flexible finger according to the present invention.
  • An adaptive flexible gripper based on a torsion spring includes a driving device 100, a transmission device 200, and a flexible finger 300.
  • the driving device 100 is preferably a stepping motor.
  • the transmission device 200 includes a winch shaft 240, a first bevel gear 250, a second bevel gear 260, and a torsion spring 270.
  • the first bevel gear 250 is firmly connected to the output shaft 230 of the stepper motor
  • the second bevel gear 260 is meshed with the first bevel gear 250
  • the second bevel gear 260 is sleeved on the bevel gear shaft 261.
  • the bevel gear shaft 261 and One end of the torsion spring 270 is fixedly connected, and the other end of the torsion spring 270 is fixedly connected to the winch shaft 240.
  • a winch 290 is sleeved on the winch shaft 240.
  • the winch 290 is provided with a plurality of grooves for the driving rope 320 to be embedded.
  • the torsion spring-based adaptive flexible claw of the present invention further includes a frame.
  • the frame includes a first fixing plate 210 and a second fixing plate 280 opposite to each other.
  • the stepping motor is fixed to the first On the fixing plate 210, the flexible finger 300 is fixed on the second fixing plate 280.
  • the torsion spring 270 is provided between the bevel gear support plate 220 and the first winch shaft support plate 221
  • the second bevel gear 260 is provided on the side of the bevel gear support plate 220 away from the torsion spring 260
  • the bevel gear shaft 261 It passes through the bevel gear support plate 220 and is fixedly connected to one end of the torsion spring 260.
  • the winch 290 is disposed between the first winding spiral support plate 221 and the second winding spiral support plate 222.
  • the two ends of the winch shaft 240 are respectively arranged at The first winch shaft support plate 221 and the second winch shaft support plate 222, and one end of the winch shaft 240 passes through the first winch shaft support plate 221 and is fixedly connected to the other end of the torsion spring 270.
  • the flexible finger 300 receives resistance, It is difficult for the winch shaft 240 to continue to rotate. 260 still rotating, the torsion spring 270 so that a certain strain of the two shafts to accommodate a non-torsion spring 270 is connected to rotate synchronously.
  • the flexible finger 300 includes a flexible post 310, a driving rope 320, and a plurality of circular plates 330.
  • the flexible post 310 is preferably a tubular structure made of silicone. One end of the flexible post 310 is fixed on the second fixing plate 280 and the other end. Freely set, during work, the free end of the flexible column 310 is bent under the driving of the driving rope 320 to achieve the function of holding objects.
  • Several circular plates 330 are distributed along the length of the flexible column 310, and several circular plates 330 pass through the shaft. The holes are closely fitted on the flexible column 310.
  • the circular plate 330 is provided with small circular holes through which the driving rope 320 passes.
  • the driving rope 320 is wound on the winch 290, and the free end of the driving rope 320 passes through several circular plates. A circular hole on 330 is fixed at the free end of the flexible column 310.
  • a torque will be generated on the flexible column 310 to cause the flexible finger 300 to bend, thereby realizing the action of grasping an object.
  • a plurality of second bevel gears 260, torsion springs 270, winch shafts 240, winches 290, and flexible fingers 300 are provided in accordance with the above-mentioned structure to meet the requirements of different conditions.
  • the second bevel gear 260, the torsion spring 270, the winch shaft 240, the winch 290, and the flexible finger 300 are preferably three.
  • the three second bevel gears 260 are evenly distributed along the circumferential direction of the first bevel gear 250.
  • the corresponding torsion spring 270, the winch shaft 240, the winch 290, and the flexible finger 300 are sequentially connected, so that three fingers with a uniform distribution in the circumferential direction are used to grasp the object.
  • the present invention also provides a robot including a robot body and the above-mentioned adaptive spring-based adaptive flexible claw, wherein the adaptive spring-based adaptive claw is fixed on the robot body, and the robot adopts a continuous structure. Good adaptability to non-structured environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种基于扭转弹簧的自适应柔性手爪及机器人。柔性手爪包括驱动装置(100)、传动装置(200)和柔性手指(300),传动装置(200)包括第一锥齿轮(250)、第二锥齿轮(260)、扭簧(270)以及绞盘轴(240),第一锥齿轮(250)与驱动装置(100)连接,第二锥齿轮(260)与第一锥齿轮(250)啮合,第二锥齿轮(260)套设于锥齿轮轴(261)上,扭簧(270)的两端分别与锥齿轮轴(261)和绞盘轴(240)固定连接,柔性手指(300)上设有驱动绳索(320),驱动绳索(320)缠绕于绞盘轴(240)上,且其自由端与柔性手指(300)的端部固定连接。

Description

一种基于扭转弹簧的自适应柔性手爪及机器人
技术领域
本发明涉及连续型机器人技术领域,尤其是涉及一种基于扭转弹簧的自适应柔性手爪及机器人。
背景技术
如今,机器人技术已经广泛应用于工业生产领域,机器人的应用给人类的生产生活带来极大的益处。目前,市场上使用的机器人多为离散型机器人。离散型机器人一般由5到7个刚性自由度关节通过刚性杆件连接组成,自由度有限,对非结构环境适应能力较弱,其无法胜任环境复杂的工作任务。
相比于离散型机器人,连续型机器人采用类似于象鼻的“无脊椎”柔性结构,没有离散关节和刚性连杆,可以灵活的改变自身的弯曲形状,对非结构化环境的适应能力强。然而,目前连续型机器人的应用还非常少,技术相对不成熟。因此,设计一种具有自适应能力的连续型机器人具有十分重要的意义。
发明内容
为了克服现有技术的不足,本发明提供一种基于扭转弹簧的自适应柔性手爪,其采用连续型结构,具有很强的自适应能力,能够适应非结构化环境。
为了克服现有技术的不足,本发明还提供一种机器人,其包括上述的基于扭转弹簧的自适应柔性手爪,具有很强的适应能力以及对非结构化环境的适应能力。
本发明解决其技术问题所采用的技术方案是:提供一种基于扭转弹簧的自适应柔性手爪,包括驱动装置、传动装置以及柔性手指,所述传动装置包括第一锥齿轮、第二锥齿轮、扭簧以及绞盘轴,所述第一锥齿轮与所述驱动装置连接,所述第二锥齿轮与所述第一锥齿轮啮合连接,所述第二锥齿轮套设于锥齿轮轴上,所述扭簧一端与所述锥齿轮轴固定连接,另一端与所述绞盘轴固定连接,所述柔性手指固定设置,所述柔性手指上设有驱动绳索,所述驱动绳索缠绕于所述绞盘轴,所述驱动绳索的自由端沿所述柔性手指的长度方向设置,并于所述柔性手指的端部固定。
作为上述技术方案的进一步改进,所述绞盘轴上套设有绞盘,所述绞盘表面设有若干供所述驱动绳索嵌入的凹槽。
作为上述技术方案的进一步改进,还包括框体,所述框体包括相对设置的第一固定板、第二固定板,所述驱动装置固设于所述第一固定板上,所述柔性手指固设于所述第二固定板上,所述第一固定板与所述第二固定板之间连接有锥齿轮支撑板、第一绞盘轴支撑板以及第二绞盘轴支撑板,所述扭簧设于所述锥齿轮支撑板与所述第一绞盘轴支撑板之间,所述第二锥齿轮设于所述锥齿轮支撑板远离所述扭簧一侧,且所述锥齿轮轴穿过所述锥齿轮支撑板并与所述扭簧的一端固定连接,所述绞盘设于所述第一绞盘轴支撑板与所述第二绞盘轴支撑板之间,且所述绞盘轴一端穿过所述第一绞盘轴支撑板并与所述扭簧固定连接。
作为上述技术方案的进一步改进,所述柔性手指包括柔性柱以及若干圆板,所述柔性柱一端固定在所述第二固定板上,另一端自由设置,若干所述圆板沿所述柔性柱的长度方向设置,所述驱动绳索依次穿过若干所述圆板,并与所述柔性柱自由一端固定连接。
作为上述技术方案的进一步改进,所述第二固定板上还固设有供所述驱动绳索穿过的导线管。
作为上述技术方案的进一步改进,所述导线管的材质为聚四氟乙烯。
作为上述技术方案的进一步改进,所述柔性柱的材质为硅胶。
作为上述技术方案的进一步改进,所述第二锥齿轮、所述扭簧、所述绞盘轴、所述柔性手指以及所述驱动绳索包括三处,三处所述第二锥齿轮沿所述第一锥齿轮的周向方向均匀分布,所述柔性手指沿所述第二固定板的周向方向均匀分布。
本发明还提供一种机器人,包括机器人主体以及上述的基于扭转弹簧的自适应柔性手爪,所述基于扭转弹簧的自适应柔性手爪固设于所述机器人主体上。
本发明的有益效果是:
本发明的基于扭转弹簧的自适应柔性手爪,采用连续型结构,工作时,依次通过第一锥齿轮带动第二锥齿轮转动,第二锥齿轮带动扭簧工作,然后通过扭簧带动绞盘轴转动,进而绞盘轴上的驱动绳索带动柔性手指工作,在抓取不规则形状的物体时,当其中一个或几根柔性手指与物体抵持而其他柔性手指还未与物体接触时,由于扭簧的作用,第一锥齿轮与绞盘轴处于不同步的转动状态,导致各个柔性手指的弯曲形状不同,故而具有很强的自适应能力。
本发明的机器人包括上述的基于扭转弹簧的自适应柔性手爪,其具有很强的自适应能力,能够适应非结构化环境。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明一个实施例的基于扭转弹簧的自适应柔性手爪;
图2是本发明传动装置一个实施例的结构示意图;
图3是图2的侧面图;
图4是本发明柔性手指一个实施例的结构示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本发明中所使用的上、下、左、右、前、后等描述仅仅是相对于附图中本发明各组成部分的相互位置关系来说的。
此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的组合。
参照图1,示出了本发明一个实施例的基于扭转弹簧的自适应柔性手爪的结构示意图。一种基于扭转弹簧的自适应柔性手爪,包括驱动装置100、传动装置200以及柔性手指300。
驱动装置100优选为步进电机。
如图2与图3,传动装置200包括绞盘轴240、第一锥齿轮250、第二锥齿轮260、扭簧270。第一锥齿轮250与步进电机的输出轴230紧固连接,第二锥齿轮260与第一锥齿轮250啮合连接,第二锥齿轮260套设于锥齿轮轴261上,锥齿轮轴261与扭簧270的一端固定连接,扭簧270的另一端与绞盘轴240固定连接。
绞盘轴240上套设有绞盘290,绞盘290上设有若干供驱动绳索320嵌入的凹槽。
参照图1至图3,本发明的基于扭转弹簧的自适应柔性手爪还包括框体,框体包括相对设置的第一固定板210、第二固定板280,步进电机固设于第一固定板210上,柔性手指300固设于第二固定板280上,第一固定板210与第二固定板280之间还连接有锥齿轮支撑板220、第一绞盘轴支撑板221、第二绞盘轴支撑板222,扭簧270设于锥齿轮支撑板220与第一绞盘轴支撑板221之间,第二锥齿轮260设于锥齿轮支撑板220远离扭簧260一侧,锥齿轮轴261穿过锥齿轮支撑板220并与扭簧260的一端固定连接,绞盘290设于第一绕线螺旋支撑板221与第二绕线螺旋支撑板222之间,绞盘轴240两端分别转动设置于第一绞盘轴支撑板221与第二绞盘轴支撑板222上,且绞盘轴240一端穿过第一绞盘轴支撑板221并与扭簧270的另一端固定连接,当柔性手指300受到阻力的原因,绞盘轴240难以继续旋转,此时第二锥齿轮260仍在旋转,故使得扭簧270产生一定的形变以适应扭簧270所连接的两根轴的非同步转动。
参照图4,柔性手指300包括柔性柱310、驱动绳索320以及若干圆板330,柔性柱310优选为硅胶制成的管状结构,柔性柱310的一端固定设置在第二固定板280上,另一端自由设置,在工作时,柔性柱310的自由一端在驱动绳索320的驱动下弯曲,从而实现夹持物体的作用,若干圆板330沿柔性柱310的长度方向分布,且若干圆板330通过轴孔等距离的紧配合在柔性柱310上,圆板330上设有供驱动绳索320穿过的小圆孔,驱动绳索320缠绕在绞盘290上,且驱动绳索320的自由端穿过若干圆板330上的圆孔,并且固定设置在柔性柱310的自由一端,当驱动绳索320受到拉力时,会对柔性柱310产生力矩使得柔性手指300发生弯曲,实现对物体抓取的动作。
按照上述的结构设置有多处第二锥齿轮260、扭簧270、绞盘轴240、绞盘290、柔性手指300,以适应不同条件的需求。本实施例中,第二锥齿轮260、扭簧270、绞盘轴240、绞盘290、柔性手指300优选为3处,其中,3个第二锥齿轮260沿第一锥齿轮250的圆周方向均匀分布,对应的扭簧270、绞盘轴240、绞盘290、柔性手指300依次相连,从而具有周向均匀分布的3个手指用于抓取物体。
在抓取的过程中,当其中一个柔性手指300先接触物体,并与物体抵持,在扭簧270的作用下,对应的第二锥齿轮260、绞盘轴240做非同步转动,此时,该柔性手指300对物体的抓取力不会继续增加,而等待另外两个柔性手指300继续抓取物体,整个抓取过程具有更好的适应性。
本发明还提供一种机器人,包括机器人主体以及上述的基于扭转弹簧的自适应柔性手爪,其中,该基于扭转弹簧的自适应柔性手爪固设于机器人主体上,该机器人采用连续型结构,具有对非结构环境良好的适应能力。
以上是对本发明的较佳实施进行的具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

  1. 一种基于扭转弹簧的自适应柔性手爪,其特征在于,包括驱动装置、传动装置以及柔性手指,所述传动装置包括第一锥齿轮、第二锥齿轮、扭簧以及绞盘轴,所述第一锥齿轮与所述驱动装置连接,所述第二锥齿轮与所述第一锥齿轮啮合连接,所述第二锥齿轮套设于锥齿轮轴上,所述扭簧一端与所述锥齿轮轴固定连接,另一端与所述绞盘轴固定连接,所述柔性手指固定设置,所述柔性手指上设有驱动绳索,所述驱动绳索缠绕于所述绞盘轴,所述驱动绳索的自由端沿所述柔性手指的长度方向设置,并于所述柔性手指的端部固定。
  2. 根据权利要求1所述的基于扭转弹簧的自适应柔性手爪,其特征在于,所述绞盘轴上套设有绞盘,所述绞盘表面设有若干供所述驱动绳索嵌入的凹槽。
  3. 根据权利要求2所述的基于扭转弹簧的自适应柔性手爪,其特征在于,还包括框体,所述框体包括相对设置的第一固定板、第二固定板,所述驱动装置固设于所述第一固定板上,所述柔性手指固设于所述第二固定板上,所述第一固定板与所述第二固定板之间连接有锥齿轮支撑板、第一绞盘轴支撑板以及第二绞盘轴支撑板,所述扭簧设于所述锥齿轮支撑板与所述第一绞盘轴支撑板之间,所述第二锥齿轮设于所述锥齿轮支撑板远离所述扭簧一侧,且所述锥齿轮轴穿过所述锥齿轮支撑板并与所述扭簧的一端固定连接,所述绞盘设于所述第一绞盘轴支撑板与所述第二绞盘轴支撑板之间,且所述绞盘轴一端穿过所述第一绞盘轴支撑板并与所述扭簧固定连接。
  4. 根据权利要求1所述的基于扭转弹簧的自适应柔性手爪,其特征在于,所述柔性手指包括柔性柱以及若干圆板,所述柔性柱一端固定在所述第二固定板上,另一端自由设置,若干所述圆板沿所述柔性柱的长度方向设置,所述驱动绳索依次穿过若干所述圆板,并与所述柔性柱自由一端固定连接。
  5. 根据权利要求4所述的基于扭转弹簧的自适应柔性手爪,其特征在于,所述第二固定板上还固设有供所述驱动绳索穿过的导线管。
  6. 根据权利要求5所述的基于扭转弹簧的自适应柔性手爪,其特征在于,所述导线管的材质为聚四氟乙烯。
  7. 根据权利要求4所述的基于扭转弹簧的自适应柔性手爪,其特征在于,所述柔性柱的材质为硅胶。
  8. 根据权利要求1-7中任一项所述的基于扭转弹簧的自适应柔性手爪,其特征在于,所述第二锥齿轮、所述扭簧、所述绞盘轴、所述柔性手指以及所述驱动绳索包括三处,三处所述第二锥齿轮沿所述第一锥齿轮的周向方向均匀分布,所述柔性手指沿所述第二固定板的周向方向均匀分布。
  9. 一种机器人,其特征在于,包括机器人主体以及如权利要求1-8中任一项所述的基于扭转弹簧的自适应柔性手爪,所述基于扭转弹簧的自适应柔性手爪固设于所述机器人主体上。
PCT/CN2019/086327 2018-09-18 2019-05-10 一种基于扭转弹簧的自适应柔性手爪及机器人 WO2020057144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811088831.3 2018-09-18
CN201811088831.3A CN109176586B (zh) 2018-09-18 2018-09-18 一种基于扭转弹簧的自适应柔性手爪及机器人

Publications (1)

Publication Number Publication Date
WO2020057144A1 true WO2020057144A1 (zh) 2020-03-26

Family

ID=64908284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086327 WO2020057144A1 (zh) 2018-09-18 2019-05-10 一种基于扭转弹簧的自适应柔性手爪及机器人

Country Status (2)

Country Link
CN (1) CN109176586B (zh)
WO (1) WO2020057144A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112045406A (zh) * 2020-09-28 2020-12-08 广东惠而浦家电制品有限公司 一种扭簧自动装配机构
CN114012713A (zh) * 2021-11-24 2022-02-08 上海大学 一种连续体机器人驱动组件
CN115256362A (zh) * 2022-07-27 2022-11-01 西南科技大学 一种多级柔性模块化连续体机器人及控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109176586B (zh) * 2018-09-18 2021-11-12 哈尔滨工业大学(深圳) 一种基于扭转弹簧的自适应柔性手爪及机器人
CN110465965A (zh) * 2019-08-06 2019-11-19 李泽铭 流体力平衡弹性件阵列自适应机器人手装置
CN111015646A (zh) * 2019-12-25 2020-04-17 中国科学院沈阳自动化研究所 绳驱式欠驱动自适应软体机械手
JP2021159999A (ja) 2020-03-30 2021-10-11 国立研究開発法人産業技術総合研究所 複数の指を有するロボットハンドの駆動機構
CN112248018A (zh) * 2020-10-13 2021-01-22 武汉轻工大学 一种柔性手爪及机械手
CN112594830A (zh) * 2020-12-18 2021-04-02 北京东方华脉工程设计有限公司 一种室内新风换气除霾***
CN113154001B (zh) * 2021-02-26 2022-07-05 北京大学 一种基于绳驱动的超输入柔性驱动器
CN113291790B (zh) * 2021-05-25 2022-08-30 武汉理工大学 一种自适应抓取机构
CN113696213B (zh) * 2021-09-18 2022-03-01 安徽理工大学 一种机械手
CN114833861B (zh) * 2022-04-29 2024-05-17 北京科技大学 一种可变手指根部空间线驱软体手

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106378788A (zh) * 2016-10-19 2017-02-08 上海未来伙伴机器人有限公司 一种无人机手抓装置
CN107127771A (zh) * 2017-06-28 2017-09-05 吕梁学院 一种水下电动柔性机械手
CN107225587A (zh) * 2017-06-27 2017-10-03 哈尔滨工程大学 一种用于海底生物无损捕捞的形状自适应机械手结构
CN207522597U (zh) * 2017-12-01 2018-06-22 深圳光启合众科技有限公司 仿生柔性结构及具有其的机器人
CN109176586A (zh) * 2018-09-18 2019-01-11 哈尔滨工业大学(深圳) 一种基于扭转弹簧的自适应柔性手爪及机器人

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650704A (en) * 1995-06-29 1997-07-22 Massachusetts Institute Of Technology Elastic actuator for precise force control
US8918212B2 (en) * 2009-06-24 2014-12-23 Intuitive Surgical Operations, Inc. Arm with a combined shape and force sensor
KR102226358B1 (ko) * 2012-12-11 2021-03-10 인헨스 테크놀로지스 엘엘씨 적응적 팔 지지 시스템 및 사용 방법
KR101469493B1 (ko) * 2013-12-03 2014-12-05 한국과학기술연구원 차동 기어 특성을 이용한 로봇 핑거 구동 모듈 및 이를 포함하는 로봇 핸드
CN104924315B (zh) * 2015-05-11 2020-09-25 清华大学 磁流变液辅助柔性掌面自适应欠驱动机器人手装置
CN107214715A (zh) * 2016-03-07 2017-09-29 温州市科泓机器人科技有限公司 柔性超高速机械手
WO2018033716A1 (en) * 2016-08-15 2018-02-22 Heriot-Watt University An Improved Gripper
CN106272526B (zh) * 2016-09-19 2019-02-26 上海未来伙伴机器人有限公司 一种灵巧手
JP6723366B2 (ja) * 2016-11-10 2020-07-15 シェンチェン マイルボット ロボティクス カンパニー リミテッド フレキシブルアクチュエータ、ロボット関節、ロボット及び外骨格ロボット
CN107097246A (zh) * 2017-05-25 2017-08-29 凯钠迪(上海)科技有限公司 一种自适应绳驱式欠驱动三指机械手
CN207656716U (zh) * 2017-11-10 2018-07-27 香港中文大学(深圳) 一种新型抓取机械手
CN108247656A (zh) * 2017-12-30 2018-07-06 哈尔滨工业大学深圳研究生院 一种可变形的三指灵巧手
CN108527434B (zh) * 2018-06-19 2024-03-22 苏州大学 抓取直径自适应调节式软体抓手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106378788A (zh) * 2016-10-19 2017-02-08 上海未来伙伴机器人有限公司 一种无人机手抓装置
CN107225587A (zh) * 2017-06-27 2017-10-03 哈尔滨工程大学 一种用于海底生物无损捕捞的形状自适应机械手结构
CN107127771A (zh) * 2017-06-28 2017-09-05 吕梁学院 一种水下电动柔性机械手
CN207522597U (zh) * 2017-12-01 2018-06-22 深圳光启合众科技有限公司 仿生柔性结构及具有其的机器人
CN109176586A (zh) * 2018-09-18 2019-01-11 哈尔滨工业大学(深圳) 一种基于扭转弹簧的自适应柔性手爪及机器人

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112045406A (zh) * 2020-09-28 2020-12-08 广东惠而浦家电制品有限公司 一种扭簧自动装配机构
CN114012713A (zh) * 2021-11-24 2022-02-08 上海大学 一种连续体机器人驱动组件
CN114012713B (zh) * 2021-11-24 2022-12-27 上海大学 一种连续体机器人驱动组件
CN115256362A (zh) * 2022-07-27 2022-11-01 西南科技大学 一种多级柔性模块化连续体机器人及控制方法

Also Published As

Publication number Publication date
CN109176586A (zh) 2019-01-11
CN109176586B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2020057144A1 (zh) 一种基于扭转弹簧的自适应柔性手爪及机器人
WO2020082723A1 (zh) 一种绳索驱动柔性手爪及机器人
WO2020057142A1 (zh) 一种基于涡卷弹簧的多指柔性机械手
WO2021110060A1 (zh) 32自由度仿生柔顺内骨骼灵巧手
WO2023279996A1 (zh) 一种可自动弯曲回位的机械臂夹持器
WO2019140930A1 (zh) 自适应欠驱动转向三指机器人夹爪
CN110154045B (zh) 一种柔索驱动串联四自由度喷涂机械臂
CN107984484B (zh) 末端精确补偿直线平夹自适应机器人手指装置
CN111421566A (zh) 一种皮带式欠驱动三关节机械手指结构及其操作方法
CN111168698B (zh) 一种绳驱动仿生机械手爪及康复护理装置
CN110640782A (zh) 采用拉线驱动的单驱动柔性机械控制***及方法、机器人
CN202241307U (zh) 连杆滑块式欠驱动仿生机器人手装置
CN111872970A (zh) 一种自适应刚性手爪
WO2022199695A1 (zh) 一种用于机器人的多自由度器械
CN109434863A (zh) 自适应机械手爪
WO2019140929A1 (zh) 一种仿人机械手
CN113211480B (zh) 一种基于单向传动的两指机械手
CN111421565A (zh) 一种滑轮式欠驱动三关节机械手指结构
CN113635331B (zh) 夹取机构及柔性机械手
Ma et al. CT ARM-I: Coupled tendon-driven manipulator model I-design and basic experiments
CN107363857B (zh) 一种机械手及机器人
CN210704895U (zh) 一种机械手
CN210101817U (zh) 一种步进式爬杆机器人
CN112091954B (zh) 一种仿生灵巧手及其控制方法
CN111571632A (zh) 一种多场景自适应三指机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863637

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19863637

Country of ref document: EP

Kind code of ref document: A1