WO2020056871A1 - 一种r-csk双速率复合电文信号播发控制方法 - Google Patents

一种r-csk双速率复合电文信号播发控制方法 Download PDF

Info

Publication number
WO2020056871A1
WO2020056871A1 PCT/CN2018/113488 CN2018113488W WO2020056871A1 WO 2020056871 A1 WO2020056871 A1 WO 2020056871A1 CN 2018113488 W CN2018113488 W CN 2018113488W WO 2020056871 A1 WO2020056871 A1 WO 2020056871A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
signal
phase
branch
code
Prior art date
Application number
PCT/CN2018/113488
Other languages
English (en)
French (fr)
Inventor
王盾
陈耀辉
李东俊
董启甲
Original Assignee
航天恒星科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天恒星科技有限公司 filed Critical 航天恒星科技有限公司
Publication of WO2020056871A1 publication Critical patent/WO2020056871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation

Definitions

  • the invention relates to a R-CSK dual-rate composite message signal broadcast control method, and belongs to the technical field of communication and navigation signal design.
  • the basic message is broadcast at a certain information rate to meet the system's basic service performance or public service performance requirements, while the extended message with the same or different information rate is broadcast to meet the system's additional service performance or non-public service performance requirements.
  • the extended text signal is not necessarily fully disclosed, the system requires a designed composite text signal to ensure that the basic text user can receive the basic text in the composite text signal in good condition without knowing the existence of the extended text signal.
  • the rate of broadcasting messages is generally less than the reciprocal of the spread-code period.
  • the spreading code period of the GPS L1 C / A code in the United States is 1ms
  • the rate of the navigation message is 50bps [Ref. ICD-GPS-200C].
  • the spreading code period of the WAAS satellite-based satellite-based augmentation system is 1ms
  • the navigation message is The rate is 500sps [Ref RTCA DO-229D-2006]. If you want to increase the transmission rate of the message, you must shorten the code length of the spreading code, or reverse the polarity multiple times in a code period. This will reduce the relevant characteristics during signal reception and tracking, and damage the signal reception performance.
  • the QZSS system designed a dedicated pilot channel that does not broadcast the telegram in the L6 signal of the CSK modulated message.
  • the pilot channel signal and the message broadcast signal are combined using TDM time division multiplexing and broadcast in the same carrier phase.
  • Document 1 [Refer to China National Invention Patent Acceptance No .: 201810947305.1] proposed a two-rate composite message signal broadcast control method, which uses BPSK carrier-modulated baseband signals with different message rates on the IQ orthogonal branches, and the DS branch uses DSSS. Direct sequence spread spectrum modulation is used to modulate the basic message.
  • the Q branch uses CSK code shift keying to modulate the extended message.
  • the two branches can be configured with different power ratios to meet the requirements of different message transmission rates.
  • Document 2 [Refer to China National Invention Patent Acceptance Number: 201811042847.0] proposed a code-shift keying modulation method (R-CSK modulation method) with multiple repeated phase shifts, which generates a phase offset based on the content of the transmission message. In an information transmission symbol time, a pseudo-random sequence with the same phase offset is repeatedly generated multiple times to obtain a higher effective information transmission rate.
  • R-CSK modulation method code-shift keying modulation method
  • the present invention introduces the code-shift keying modulation method of multiple repeated phase shifts proposed in Document 2 to improve the conventional CSK modulation method used in Document 1, which can obtain more Good dual-rate composite message information transmission performance.
  • the technical problem to be solved by the present invention is to provide a dual-rate composite message signal broadcast control method capable of effectively solving the requirements for multi-type message services in communication and navigation system applications.
  • the present invention adopts the following technical solutions:
  • An R-CSK dual-rate composite text signal broadcast control method which uses IQ two-way quadrature modulation to implement the dual-rate composite text signal broadcast, includes the following steps:
  • the same-phase I branch uses the preset keying modulation method to perform DSSS direct-sequence spreading on the basic message to construct the in-phase I branch baseband signal;
  • a preset keying modulation method is used to perform code-shift keying modulation with multiple repeated phase shifts for the extended message to obtain a pseudo-random spreading sequence, that is, the baseband signal of the orthogonal Q branch.
  • the code phase of the pseudo-random spreading sequence is controlled by the spread message;
  • IQ orthogonal modulation is performed to obtain an intermediate frequency carrier signal, and then the intermediate frequency carrier signal is subjected to up-conversion processing to obtain an RF carrier signal, and finally is subjected to power amplification processing to form
  • the dual-rate composite text signal is transmitted by the transmitting antenna.
  • the in-phase I branch baseband signal is constructed as follows:
  • channel coding is performed on the basic message to obtain an encoded bit stream D B (t);
  • the basic message spreading code C B (t) is generated by the basic message spreading code generator based on the basic message spreading code cycle clock and the Chip clock provided by the timing generator.
  • the bit stream D B (t) corresponding to the basic message is obtained by direct sequence spread spectrum modulation, and the bit stream corresponding to the basic message is updated to C B (t) ⁇ D B (t);
  • the orthogonal Q branch baseband signal is constructed as follows:
  • channel coding is performed on the extended message to obtain an encoded bit stream
  • each K R -bit parallel data duration ( Symbol time length) is equal to N times the cycle time of the spreading code of the spread message;
  • phase selection module According to the extended message spreading code cycle clock provided by the timing generator, a phase offset corresponding to the parallel data stream is generated by the phase selection module;
  • the extended text spread code generator uses a preset keying modulation method
  • the spreading spreading code generated by the spreading code generator of the text repeats the code shift keying modulation multiple times to obtain the modulated spreading spreading code signal.
  • the extended message symbol clock is an integer multiple of the extended message code period clock, and is synchronized with the extended message code period clock.
  • the preset keying modulation method is BPSK binary phase shift keying carrier modulation, or other multi-ary orthogonal signal modulation methods of the same nature.
  • the R-CSK dual-rate composite message signal broadcast control method of the present invention has the following excellent effects:
  • the R-CSK dual-rate composite message signal broadcast control method of the present invention uses IQ two-way quadrature modulation, in which the BPSK binary phase shift keying carrier modulation is used for the in-phase I branch, and the baseband signal is a basic message subjected to DSSS direct sequence spread spectrum ; BPSK binary phase-shift keying carrier modulation is used on the quadrature Q branch.
  • the baseband signal is a pseudo-random spread spectrum sequence that undergoes multiple phase-shifted code-shift keying modulations. The code phase of the pseudo-random sequence is controlled by the broadcast extended message.
  • the CSK modulation method can be used to obtain a higher message transmission rate than DSSS direct-sequence spreading; because the present invention uses code shift keying modulation with multiple repeated phase shifts, and Compared with the conventional CSK modulation system, when the effective information rate is the same, the demodulation performance of the receiver can be effectively improved; while the CSK modulation information transmission rate can be improved, the signal power density of the receiving end is kept unchanged, and a significant increase is avoided.
  • the receiving end demodulates the software and hardware costs and power consumption of the CSK message.
  • the basic text signals and extended text signals with different text rates are configured with different power ratios, which improves the signal transmission efficiency.
  • the IQ branches are orthogonal and the carrier phase is 90 degrees apart, it can effectively avoid receiving high-power extended text signals from receiving basic text signals.
  • the impact of performance; broadcasting the BPSK signal on the I branch can provide the Q branch with the synchronization information required for CSK demodulation, and can effectively broadcast the basic message; because the basic message signal and the extended message signal have different spreading codes and the carrier is positive
  • the system user who only needs to receive the basic message need not consider the existence of the extended message, which can simplify the design of the basic message receiver and reduce the cost of the basic message receiver.
  • the method of the invention is applicable to the fields of communication, navigation system design and the like.
  • FIG. 1 is a block diagram of a broadcasting method in an R-CSK dual-rate composite message signal broadcasting control method of the present invention
  • FIG. 2 is a timing relationship of components of the baseband signal of the I branch
  • FIG. 3 is a timing relationship of each component of the Q-branch baseband signal
  • FIG. 5 is a block diagram of a basic text signal receiver
  • FIG. 6 is a structural diagram of a coherent receiver of a composite message signal
  • FIG. 7 is a structural diagram of a non-coherent receiver of a composite message signal
  • FIG. 8 is a structural diagram of a comb filter
  • FIG. 9 is a conventional CSK modulation timing diagram
  • FIG. 10 is a comparison diagram of the effect of the R-CSK information transmission bit error rate of the present invention and the conventional CSK information bit error rate.
  • the R-CSK dual rate composite text signal broadcast control method of the present invention uses IQ two-way quadrature modulation to implement the dual rate composite text signal broadcast.
  • the in-phase I-branch uses the preset keying modulation method to perform DSSS direct-sequence spreading on the basic message to construct the in-phase I-branch baseband signal.
  • a preset keying modulation method is used to perform code-shift keying modulation with multiple repeated phase shifts for the extended message to obtain a pseudo-random spreading sequence, that is, the baseband signal of the orthogonal Q branch.
  • the code phase of the pseudo-random spreading sequence is controlled by the spread message.
  • the construction of the baseband signal of the in-phase I branch and the baseband signal of the quadrature Q branch are implemented by the following methods, respectively.
  • channel coding is performed on the basic message to obtain an encoded bit stream D B (t);
  • the basic message spreading code C B (t) is generated by the basic message spreading code generator based on the basic message spreading code cycle clock (referred to as the basic message code period clock in Figure 1) and the Chip clock provided by the timing generator.
  • the basic message code period clock referred to as the basic message code period clock in Figure 1
  • the Chip clock provided by the timing generator.
  • channel coding is performed on the extended message to obtain an encoded bit stream
  • each K R -bit parallel data duration ( Symbol time length) is equal to N times the cycle time of the spreading code of the spread message;
  • the phase selection module obtains the phase offset corresponding to the parallel data stream;
  • FIG. 3 shows the timing relationship of the components of the orthogonal Q-branch signal.
  • the extended message symbol clock time length T ES is equal to N times the extended message cycle clock time length T EC .
  • K R -bit is used to represent a symbol.
  • the spread rate of extended message information R E K R / T ES , the initial phase of K R -bit corresponding to PRN is expressed as a decimal value range as That can represent at most Phases.
  • the extended text spread code generator uses a preset keying modulation method
  • the spreading spreading code generated by the spreading code generator of the text repeats the code shift keying modulation multiple times to obtain the modulated spreading spreading code signal.
  • a pseudo-random spreading sequence S Q (t) is obtained, that is, an orthogonal Q branch baseband signal S Q (t), wherein the code phase of the pseudo-random spreading sequence is controlled by a spread message.
  • the constellation diagram of the complex baseband signal is only given as an example, and the power ratio relationship is not limited to this correspondence relationship.
  • the code length of the spread message spreading code is 10230 chips.
  • K R Limitation K R can take a maximum of 13, that is, the maximum symbol rate of the extended message in this example is 13 ksps. Regardless of the channel coding difference between the basic message and the extended message, in order to ensure the same message demodulation performance at the receiving end, a higher signal broadcast power is generally configured for the branch with a higher message rate.
  • the two branches use different spreading code sequences.
  • the IQ branch can allocate different transmit power, so that the basic message and the extended message received by the receiving end have the same receiving performance.
  • the spreading code and message of the two channels of the broadcast signal IQ are synchronized with each other.
  • j is an imaginary number.
  • the preset keying modulation method mentioned in the above method is BPSK binary phase shift keying carrier modulation, or other multi-ary orthogonal signal modulation with equivalent properties.
  • IQ orthogonal modulation is performed to obtain an intermediate frequency carrier signal, and then the intermediate frequency carrier signal is subjected to up-conversion processing to obtain an RF carrier signal, and finally is subjected to power amplification processing to form
  • the dual-rate composite text signal is transmitted by the transmitting antenna.
  • P s represents the total transmission power of the radio frequency signal of the composite message
  • f c represents the frequency of the transmitted signal
  • a basic message and an extended message are placed on orthogonal IQ branches, respectively.
  • To increase the broadcast rate of the extended message only the power of the extended message signal needs to be increased.
  • Improved signal broadcasting efficiency IQ branches are orthogonal and the carrier phase is 90 degrees apart, which can effectively avoid the impact of high-power extended text signals on the reception performance of basic text signals;
  • BPSK signals broadcast on the I branch can be both Q branches
  • the channel provides the synchronization information required for CSK demodulation, and can effectively broadcast the basic message; the use of code-shift keying modulation technology with multiple repeated phase shifts can effectively increase the information transmission rate and further improve the signal transmission efficiency.
  • the present invention further designs a composite signal receiving method, including a basic message receiving method in the R-CSK dual-rate composite message signal, and an R-CSK dual-rate composite message signal.
  • a composite signal receiving method including a basic message receiving method in the R-CSK dual-rate composite message signal, and an R-CSK dual-rate composite message signal.
  • Coherent demodulation extended message receiving method and non-coherent demodulation extended message receiving method in R-CSK dual rate composite message signal is shown in FIG. as follows:
  • the RF carrier signal received by the receiver antenna is processed by the RF front-end to output a digital intermediate frequency signal; the digital intermediate frequency signal is first mixed with the carrier loop copied carrier wave to output orthogonal IQ two baseband signals and IQ two baseband signals. Correlation operations are performed with the basic message spreading code copied by the basic message spreading code generator to obtain the two IQ correlation results. Subsequently, the two IQ correlation results are used as the input of the phase detection filter module, and the phase detection filter module calculates the carrier phase detection. The error and code phase detection error are filtered, and the phase detection error is filtered.
  • the filtering results are used to adjust the carrier NCO (Carrier NCO) and code NCO (Code NCO) respectively, so that the carrier output by the Carrier NCO is consistent with the received carrier, and
  • the basic message spreading code copied by the basic message spreading code generator under the control of the Code NCO is consistent with the receiving basic message spreading code, ensuring that the carrier and spreading code in the received signal at the next moment are still completely in the tracking loop. Stripping; meanwhile, the correlation result output by the I-branch correlator is judged by the basic message decision module to output basic message data bits.
  • the method for receiving a coherent demodulated extended message in a R-CSK dual-rate composite message signal is shown in FIG. 6 as follows:
  • the extended message spreading code cycle clock and Chip clock obtained after synchronization to the received signal to the extended message spreading code generator and coherent matching filter module, and send the extended message symbol clock and extended message.
  • the cycle clock of the spreading code is passed to the comb filter; the base signal of the Q branch is passed to the comb filter, and the comb filter superimposes N sets of pseudo-random sequence data in the same symbol into 1 set of pseudo-random sequence data;
  • the block diagram of the comb filter is shown in Figure 8.
  • the comb filter delays the input data sequentially by N-1 times under the control of the periodic clock of the spread message spreading code.
  • the cycle time is T EC seconds
  • the N-1 delay data is superimposed on the input data and sent to the data interception module.
  • the data interception module intercepts the input under the control of the extended message symbol clock and the extended message spread code cycle clock.
  • the data stream outputs N times of data superimposed in the same symbol, and the length of the data period is the spreading code cycle time T EC seconds.
  • the intercepted data is sent to a coherent matched filtering module.
  • the coherent matching filter module will receive the data block with a length of T EC and the extended message spreading code generator during the extended message spreading code cycle.
  • the clock and the spreading message spreading code generated under the control of the Chip clock are used to perform correlation matching calculation.
  • the correlation result is output to the correlation peak search module, and the phase of the local spreading message spreading code corresponding to the correlation peak is searched, and the phase is converted into bit data for output.
  • bit data output by the correlation peak search module is transmitted through the channel decoding module to obtain the transmitted extended message data.
  • the extended message spreading code cycle clock and Chip clock obtained after synchronization to the received signal to the extended message spreading code generator and non-coherent matching filter module, and extend the extended message symbol clock and extension.
  • the cycle clock of the spreading code of the message is passed to the comb filter; the two signals of the baseband IQ are passed to the comb filter, and the comb filter superimposes N sets of pseudo-random sequence data in the same symbol into 1 set of pseudo-random sequence data;
  • the block diagram of the comb filter is shown in Figure 8.
  • the comb filter delays the input data sequentially by N-1 times under the control of the periodic clock of the spread message spreading code, and spreads the message spread code each time.
  • the cycle time is T EC seconds
  • the N-1 delay data is superimposed on the input data and sent to the data interception module.
  • the data interception module intercepts the input under the control of the extended message symbol clock and the extended message spread code cycle clock.
  • the data stream outputs N times of data superimposed in the same symbol, and the length of the data period is the spreading code cycle time T EC seconds.
  • the intercepted data is sent to a non-coherent matched filtering module.
  • the non-coherent matching filter module will receive the data block with a length of T EC and the extended message spreading code generator in the extended message spreading code. Correlation matching calculation is performed on the extended message spreading code generated under the control of the periodic clock and the Chip clock, and the correlation result is output to the correlation peak search module, which searches for the phase of the local extended message spreading code corresponding to the relevant peak, and converts the phase to bit data for output;
  • bit data output by the correlation peak search module is transmitted through the channel decoding module to obtain the transmitted extended message data.
  • FIG. 10 shows the error rate of the R-CSK information transmission rate of the present invention and the conventional CSK information error rate
  • the effect comparison chart, the theoretical calculation of the bit error rate performance of the conventional CSK and R-CSK under the condition of the same transmission information rate, the related symbols and corresponding relationships are as follows:
  • FIG. 9 shows the timing diagram of conventional CSK modulation.
  • the cycle time of the spreading code spreading code is T EC
  • the chip length is L
  • the symbol time length is T ES
  • T ES T EC
  • using K- bit represents a symbol
  • the base M 2 K
  • the information rate R E K / T ES
  • the initial phase represented by the K-bit symbol modulates the pseudo-random sequence to complete CSK modulation.
  • the correspondence between a 2-bit message (m) and PRN (m) is only one embodiment of the present invention, and other correspondences may also be used.
  • the extended message spreading code cycle time is T EC
  • the chip length is L
  • the symbol time length is T ES
  • K R -bit is used to represent a symbol
  • the number of repetitions is N.
  • the R-CSK modulation method proposed by the present invention requires less bit energy to transmit information. In other words, when the information bit error rate and information bit energy are the same, the R-CSK modulation method proposed by the present invention can obtain a higher information transmission rate.
  • the basic message bit width is equal to the basic message spreading code period
  • the extended message spread code period is equal to the basic message spreading code period.
  • the basic message bit width and basic message spreading The code period and spreading code spreading code period can be set to any relationship that is coherent and synchronized with each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

提供一种R-CSK双速率复合电文信号播发控制方法,包括如下步骤:首先,同相I支路上,采用预设键控调制方法,针对基本电文进行DSSS直序扩频,构建同相I支路基带信号;同时,正交Q支路上,采用预设键控调制方法,针对扩展电文进行多次重复移相的码移键控调制,获得伪随机扩频序列,即正交Q支路基带信号,其中,伪随机扩频序列的码相位受扩展电文控制;然后,针对同相I支路基带信号与正交Q支路基带信号,进行IQ正交调制得到中频载波信号,再针对中频载波信号进行上变频处理,获得射频载波信号,最后经功率放大处理,构成双速率复合电文信号,交由发射天线进行播发。通过本发明能有效提升信息播发速率,并改进信号播发效率。

Description

一种R-CSK双速率复合电文信号播发控制方法 技术领域
本发明涉及一种R-CSK双速率复合电文信号播发控制方法,属于通信、导航信号设计技术领域。
背景技术
在当代通信、导航***设计中,根据应用需求的不同,往往需要在同一频点的信号中同时播发满足不同要求的复合电文。如:按一定信息速率播发基本电文,满足***基本服务性能或公开服务性能的要求,同时播发信息速率相同或不同的扩展电文,满足***附加服务性能或非公开服务性能的要求。由于扩展电文信号不一定完全公开,***要求设计的复合电文信号,可保证基本电文用户在不知扩展电文信号存在与否的情况下,性能完好地接收复合电文信号中的基本电文。
对于采用直序扩频信号体制的通信、导航***,播发电文的速率一般要小于扩频码周期的倒数。例如,美国的GPS L1 C/A码的扩频码周期为1ms,导航电文的速率为50bps[参考ICD-GPS-200C];WAAS卫星导航星基增强***的扩频码周期为1ms,导航电文的速率为500sps[参考RTCA DO-229D-2006]。如果要提升电文播发速率,就要缩短扩频码的码长,或一个码周期内极性翻转多次,这样会降低信号接收和跟踪时的相关特性,损坏信号接收性能。
另一方面,对于同样采用了码移键控调制方式(简称CSK调制方式)播发电文的日本QZSS准天顶卫星导航***,为了给CSK解调提供必须的扩频码码片和码周期时间信息,QZSS***在播发CSK调制电文的L6信号中,设计了不播发电文的专用导频通道,导频通道信号与电文播发信号采用TDM时分复用方式组合,在同一载波相位中播发[参考IS-QZSS Ver.1.6]。
文献1[参考中国国家发明专利受理号:201810947305.1]提出了一种双速率 复合电文信号播发控制方法,在IQ正交支路上分别采用BPSK载波调制的不同电文速率的基带信号,I支路采用DSSS直序扩频方式调制基本电文,Q支路采用CSK码移键控方式调制扩展电文,两个支路可以配置不同的功率配比,以适应不同电文传输速率的要求。文献2[参考中国国家发明专利受理号:201811042847.0]提出了一种多次重复移相的码移键控调制方法(简称R-CSK调制方法),根据传输电文的内容生成相位偏移量,在一个信息传输符号时间内,重复生成同一相位偏移量的伪随机序列多次,可以获得更高的有效信息传输速率。
本发明在文献1提出的双速率复合电文播发控制方法的基础上,引入文献2提出的多次重复移相的码移键控调制方法,改善文献1中采用的常规CSK调制方法,可以获得更好的双速率复合电文信息传输性能。
发明内容
本发明所要解决的技术问题是提供一种能够有效解决通信、导航***应用中对多类型电文服务需求的双速率复合电文信号播发控制方法。
为了解决上述技术问题,本发明采用以下技术方案:
一种R-CSK双速率复合电文信号播发控制方法,应用IQ两路正交调制,实现双速率复合电文信号的播发,包括如下步骤:
首先,同相I支路上,采用预设键控调制方法,针对基本电文进行DSSS直序扩频,构建同相I支路基带信号;
同时,正交Q支路上,采用预设键控调制方法,针对扩展电文进行多次重复移相的码移键控调制,获得伪随机扩频序列,即正交Q支路基带信号,其中,伪随机扩频序列的码相位受扩展电文控制;
然后,针对同相I支路基带信号与正交Q支路基带信号,进行IQ正交调制得到中频载波信号,再针对中频载波信号进行上变频处理,获得射频载波信号,最后经功率放大处理,构成双速率复合电文信号,交由发射天线进行播发。
作为本发明的一种优选技术方案:上述R-CSK双速率复合电文信号播发方 法中,同相I支路上,按如下方法构建同相I支路基带信号:
首先,针对基本电文进行信道编码得到编码后的比特流D B(t);
然后,根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),采用预设键控调制方法,针对所获基本电文对应的比特流D B(t)进行直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
最后,结合预设基本电文功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
作为本发明的一种优选技术方案:上述R-CSK双速率复合电文信号播发方法中,正交Q支路上,按如下方法构建正交Q支路基带信号:
首先,针对扩展电文进行信道编码得到编码后的比特流;
其次,根据时序发生器提供的扩展电文符号时钟,对扩展电文编码后对应的比特流进行1->K R bit串/并转换,得到并行数据流;其中每K R-bit并行数据持续时间(符号时间长度)等于扩展电文扩频码周期时间的N倍;
然后,根据时序发生器提供的扩展电文扩频码周期时钟,由相位选择模块产生并行数据流所对应的相位偏移量;
最后,根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及并行数据流所对应的相位偏移量,并由扩展电文扩频码发生器,采用预设键控调制方法,对扩展电文扩频码发生器产生的扩展电文扩频码重复多次进行码移键控调制,获得调制后的扩展电文扩频码信号
Figure PCTCN2018113488-appb-000001
并结合预设扩展电文功率配比系数A Q,按
Figure PCTCN2018113488-appb-000002
获得伪随机扩频序列S Q(t),即正交Q支路基带信号S Q(t),其中,伪随机扩频序列的码相位受扩展电文控制,(A I) 2+(A Q) 2=1。
作为本发明的一种优选技术方案:所述扩展电文符号时钟为扩展电文码周期时钟的整数倍,并与扩展电文码周期时钟同步。
另外,作为本发明的一种优选技术方案:所述预设键控调制方法为BPSK二进制相移键控载波调制、或其他同等性质的多进制正交信号调制方式。
本发明的R-CSK双速率复合电文信号播发控制方法与现有技术相比,具有以下优异效果:
本发明的R-CSK双速率复合电文信号播发控制方法,采用IQ两路正交调制,其中同相I支路上采用BPSK二进制相移键控载波调制,基带信号为经过DSSS直序扩频的基本电文;正交Q支路上采用BPSK二进制相移键控载波调制,基带信号为经过多次重复移相的码移键控调制的伪随机扩频序列,伪随机序列的码相位受播发的扩展电文控制;在扩频码长或周期相同的条件下,采用CSK调制方式,可以获得比DSSS直序扩频更高的电文播发速率;本发明由于采用多次重复移相的码移键控调制,与常规CSK调制***相比,在播发有效信息速率相同的情况下,可有效提升接收机的解调性能;可以在提高CSK调制信息传输速率的同时,保持接收端信号功率密度不变,避免大幅增加接收端解调CSK电文的软硬件成本和功耗;本发明由于将基本电文和扩展电文分别放在正交的IQ支路上,可以为电文速率不同的基本电文信号和扩展电文信号配置不同的功率比,提高了信号播发效率;由于IQ支路正交,载波相位相差90度,可有效避免大功率的扩展电文信号对基本电文信号接收性能的影响;在I支路上播发BPSK信号,既可为Q支路提供CSK解调所需的同步信息,又能有效播发基本电文;由于基本电文信号与扩展电文信号扩频码不同且载波正交,只需接收基本电文的***用户无需考虑扩展电文的存在,可以简化基本电文接收机的设计,降低基本电文接收机的成本。本发明方法适用于通信、导航***设计等领域。
附图说明
图1是本发明的R-CSK双速率复合电文信号播发控制方法中播发方法框图;
图2为I支路基带信号各分量的时序关系;
图3为Q支路基带信号各分量的时序关系;
图4为复数基带信号的星座图;
图5为基本电文信号接收机构成图;
图6为复合电文信号相干接收机构成图;
图7为复合电文信号非相干接收机构成图;
图8为梳状滤波器构成图;
图9为常规CSK调制时序图;
图10为本发明R-CSK的信息传输误码率与常规CSK信息误码率的效果对比图。
具体实施方式
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。
本发明的R-CSK双速率复合电文信号播发控制方法,在实际应用当中,如图1所示,应用IQ两路正交调制,实现双速率复合电文信号的播发。
首先,同相I支路上,采用预设键控调制方法,针对基本电文进行DSSS直序扩频,构建同相I支路基带信号。
同时,正交Q支路上,采用预设键控调制方法,针对扩展电文进行多次重复移相的码移键控调制,获得伪随机扩频序列,即正交Q支路基带信号,其中,伪随机扩频序列的码相位受扩展电文控制。
对于上述同相I支路基带信号与正交Q支路基带信号的构建,分别按如下各个方法实现。
其中,针对同相I支路基带信号的构建,具体方法如下:
首先,针对基本电文进行信道编码得到编码后的比特流D B(t);
然后,根据时序发生器所提供的基本电文扩频码周期时钟(图1中简称基本电文码周期时钟)和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),采用预设键控调制方法,针对所获基本电文对应的比特流D B(t)进行直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
如图2所示,给出了同相I支路基带信号各分量的时序关系,基本电文时钟时间长度为T BS=1ms,基本电文的信息经分组编码和信道编码后形成速率R B=1/T BS=1kbps、取值正负1的比特流D B(t)。基本电文扩频码C B(t)码速率为10.23MHz,基本电文扩频码周期时间长度T BC=1ms,取值正负1。电文与伪随机序列的对应关系为1->“PRN(0)+”,-1->“PRN(0)-”,其中,“PRN(0)+”表示初始相位为0的正极性伪随机序列,“PRN(0)-”表示初始相位为0的负极性伪随机序列。
最后,结合预设基本电文功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
针对正交Q支路基带信号的构建,具体方法如下:
首先,针对扩展电文进行信道编码得到编码后的比特流;
其次,根据时序发生器提供的扩展电文符号时钟,对扩展电文编码后对应的比特流进行1->K R bit串/并转换,得到并行数据流;其中每K R-bit并行数据持续时间(符号时间长度)等于扩展电文扩频码周期时间的N倍;
然后,根据时序发生器提供的扩展电文扩频码周期时钟(图1中简称为扩展电文码周期时钟),由相位选择模块获得并行数据流所对应的相位偏移量;
图3给出了正交Q支路信号各分量的时序关系,扩展电文符号时钟时间长度T ES等于扩展电文扩频码周期时钟时间长度T EC的N倍,采用K R-bit表示一个符号,扩展电文信息播发速率R E=K R/T ES,K R-bit对应PRN的初始相位表示成十进制数值范围为
Figure PCTCN2018113488-appb-000003
即最多可以表示
Figure PCTCN2018113488-appb-000004
个相位。不失一般性,为后续说明方便,设定N=2,扩展电文扩频码周期时钟时间长度T EC=1ms,采用4-bit表示一个符号,扩展电文信息播发速率R E=4/T ES=2kbps,4-bit对应PRN的初始相位表示成十进制数值为M R=0,1,…,15,以相同的相位重复调制2个相同的伪随机序列(即图3中4-bit电文(m)与N个PRN(m)对应),将2个初始相位相同的伪随机序列顺序连接,组成新的调制符号,完成多次重复移相的码移键控调制。图3中4-bit电文(m)与PRN(m)对应只是本发明的一个实施例,也可以为其它对应关系。
最后,根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及并行数据流所对应的相位偏移量,并由扩展电文扩频码发生器,采用预设键控调制方法,对扩展电文扩频码发生器产生的扩展电文扩频码重复多次进行码移键控调制,获得调制后的扩展电文扩频码信号
Figure PCTCN2018113488-appb-000005
并结合预设扩展电文功率配比系数A Q,按
Figure PCTCN2018113488-appb-000006
获得伪随机扩频序列S Q(t),即正交Q支路基带信号S Q(t),其中,伪随机扩频序列的码相位受扩展电文控制。
(A I) 2+(A Q) 2=1
如图4所示,给出了当设定
Figure PCTCN2018113488-appb-000007
时,复数基带信号的星座图,这里只给出了一个示例,功率配比关系不限于此对应关系。
在本发明的本示例中,扩展电文扩频码的码长为10230码片。K R的选取受
Figure PCTCN2018113488-appb-000008
限制,K R最大可取13,即本示例中扩展电文的最大符号速率为13ksps。不考虑基本电文和扩展电文信道编码差异的情况下,为保证在接收端获得同等的电文解调性能,一般对电文速率高的支路配置更高的信号播发功率。
两个支路采用不同的扩频码序列。当电文速率不同时,IQ支路可以分配不同的发射功率,使得接收端接收到的基本电文和扩展电文具有同等接收性能。播发信号IQ两路的扩频码和电文彼此保持同步。
则对于同相I支路基带信号S I(t)与正交Q支路基带信号S Q(t)的复数表达式如下:
S(t)=S I(t)+jS Q(t)
其中,j为虚数。
上述方法中所提及的预设键控调制方法为BPSK二进制相移键控载波调制、或其他同等性质的多进制正交信号调制方式。
然后,针对同相I支路基带信号与正交Q支路基带信号,进行IQ正交调制得到中频载波信号,再针对中频载波信号进行上变频处理,获得射频载波信号,最后经功率放大处理,构成双速率复合电文信号,交由发射天线进行播发。
这里双速率复合电文信号的射频发射信号表达如下:
Figure PCTCN2018113488-appb-000009
其中,P s表示复合电文射频信号发射总功率,f c表示发射信号频率。
本发明设计的一种R-CSK双速率复合电文信号播发控制方法中,将基本电文和扩展电文分别放在正交的IQ支路上,提升扩展电文的播发速率只需提升扩展电文信号的功率,提高了信号播发效率;IQ支路正交,载波相位相差90度,可有效避免大功率的扩展电文信号对基本电文信号接收性能的影响;在I支路上播发的BPSK信号,既可为Q支路提供CSK解调所需的同步信息,又能有效播发基本电文;采用多次重复移相的码移键控调制技术,可以有效提升信息播发速率,进一步改进信号播发效率。
针对上述设计的R-CSK双速率复合电文信号播发控制方法,本发明进一步设计了复合信号接收方法,包括R-CSK双速率复合电文信号中基本电文接收方法、R-CSK双速率复合电文信号中相干解调扩展电文接收方法、以及R-CSK双速率复合电文信号中非相干解调扩展电文接收方法;其中,R-CSK双速率复合电文信号中基本电文接收方法,如图5所示,具体如下:
接收机天线接收的射频载波信号经过射频前端(RF Front-End)处理输出数字中频信号;数字中频信号首先与载波环复制的载波混频输出正交的IQ两路基带信号,IQ两路基带信号分别与基本电文扩频码发生器复制的基本电文扩频码做相关运算,获得IQ两路相关结果;随后,IQ两路相关结果作为鉴相滤波模块的输入,鉴相滤波模块计算载波鉴相误差和码鉴相误差,并对鉴相误差进行滤波,滤波结果分别用来调节载波NCO(Carrier NCO)和码NCO(Code NCO),使Carrier NCO所输出的载波与接收载波保持一致,以及使基本电文扩频码发生器在Code NCO控制下复制的基本电文扩频码与接收基本电文扩频码保持一致,保证下一时刻接收信号中的载波和扩频码在跟踪环路中仍被彻底剥离;同 时I支路相关器输出的相关结果经基本电文判决模块判决输出基本电文数据比特。
R-CSK双速率复合电文信号中相干解调扩展电文接收方法,如图6所示,具体如下:
在解调基本电文时,将同步后所获与接收信号同步的扩展电文扩频码周期时钟、Chip时钟传递给扩展电文扩频码发生器和相干匹配滤波模块,将扩展电文符号时钟和扩展电文扩频码周期时钟传递给梳状滤波器;Q支路基带信号传递给梳状滤波器,梳状滤波器将同一符号内的N组伪随机序列数据叠加为1组伪随机序列数据;
其中,梳状滤波器构成框图如图8所示:梳状滤波器在扩展电文扩频码周期时钟的控制下,将输入数据顺序时延N-1次,每次时延扩展电文扩频码周期时间T EC秒,然后将N-1次时延数据与输入数据叠加后送给数据截取模块;其次,数据截取模块在扩展电文符号时钟和扩展电文扩频码周期时钟的控制下,截取输入数据流,输出同一符号内叠加了N次的数据,数据时间长度为扩展电文扩频码周期时间T EC秒。截取数据输送给相干匹配滤波模块。
然后,相干匹配滤波模块在扩展电文符号时钟和扩展电文扩频码周期时钟的控制下,将接收到的时间长度为T EC的数据块与扩展电文扩频码发生器在扩展电文扩频码周期时钟和Chip时钟控制下生成的扩展电文扩频码进行相关匹配计算,相关结果输出给相关峰搜索模块,搜索相关峰对应的本地扩展电文扩频码相位,并将相位转换为比特数据输出;
最后,将相关峰搜索模块输出的比特数据经过信道译码模块得到传输的扩展电文数据。
R-CSK双速率复合电文信号中非相干解调扩展电文接收方法,如图7所示,具体如下:
在解调基本电文时,将同步后所获与接收信号同步的扩展电文扩频码周期 时钟、Chip时钟传递给扩展电文扩频码发生器和非相干匹配滤波模块,将扩展电文符号时钟和扩展电文扩频码周期时钟传递给梳状滤波器;基带IQ两路信号传递给梳状滤波器,梳状滤波器将同一符号内的N组伪随机序列数据叠加为1组伪随机序列数据;
其中,梳状滤波器构成框图如图8所示:梳状滤波器在扩展电文扩频码周期时钟的控制下,将输入数据顺序时延N-1次,每次时延扩展电文扩频码周期时间T EC秒,然后将N-1次时延数据与输入数据叠加后送给数据截取模块;其次,数据截取模块在扩展电文符号时钟和扩展电文扩频码周期时钟的控制下,截取输入数据流,输出同一符号内叠加了N次的数据,数据时间长度为扩展电文扩频码周期时间T EC秒。截取数据输送给非相干匹配滤波模块。
然后,非相干匹配滤波模块在扩展电文符号时钟和扩展电文扩频码周期时钟的控制下,将接收到的时间长度为T EC的数据块与扩展电文扩频码发生器在扩展电文扩频码周期时钟和Chip时钟控制下生成的扩展电文扩频码进行相关匹配计算,相关结果输出给相关峰搜索模块,搜索相关峰对应的本地扩展电文扩频码相位,并将相位转换为比特数据输出;
最后,将相关峰搜索模块输出的比特数据经过信道译码模块得到传输的扩展电文数据。
为了更直观的体现本发明提出的Q支路采用R-CSK调制相比常规CSK调制的有效性,图10给出了本发明R-CSK的信息传输误码率与常规CSK信息误码率的效果对比图,针对常规CSK和R-CSK在传输信息速率一致的条件下的误码率性能进行理论计算,相关符号及对应关系约定如下:
图9给出了常规CSK调制时序图,在常规CSK中,扩展电文扩频码周期时间为T EC,码片长度为L,符号时间长度为T ES,其中T ES=T EC,采用K-bit表示一个符号,则进制M=2 K,信息速率R E=K/T ES;K-bit对应PRN的初始相位表示成十进制数值范围为M=0,1,…,2 K-1,即最多可以表示2 K个相位,以K-bit符号表示的初始相位对伪随机序列进行调制,完成CSK调制。图9中以K=2 为例,2-bit电文(m)与PRN(m)对应只是本发明的一个实施例,也可以为其它对应关系。
常规CSK调制的相干解调符号误码率计算公式如下:
Figure PCTCN2018113488-appb-000010
换算为信息比特误码率的公式如下:
Figure PCTCN2018113488-appb-000011
在R-CSK中,扩展电文扩频码周期时间为T EC,码片长度为L,符号时间长度为T ES,R,采用K R-bit表示一个符号,重复次数为N,为达到与常规CSK传输信息速率一致,需满足K R=NK,T ES,R=NT ES,则进制M R=2 NK=M N,信息速率R E,R=K R/T ES,R=NK/NT EC=K/T ES=R E
将R-CSK的M R带入CSK调制的相干解调符号误码率计算公式,则可以得到R-CSK的相干解调符号误码率计算公式:
Figure PCTCN2018113488-appb-000012
换算为信息比特误码率的公式如下:
Figure PCTCN2018113488-appb-000013
为计算方便,不失一般性,取K=2(即M=4),N=2(即M R=16)进行仿真,效果对比图如图10所示,可以看出在相同信息传输速率和相同E b/N 0比特能量噪声密度比的情况下,本发明提出的R-CSK调制方法获得的相干解调信息比特误码率较常规CSK调制方法得到的相干解调信息比特误码率低,传输性能更好。同样的结论也可以从CSK调制非相干解调的信息比特误码率计算公式获得。从图10可以推算出,在信息比特误码率相同的情况下,本发明提出的R-CSK调制方法传输信息所需的比特能量更少。或者可以说,在信息比特误码率和信息比特能量相同的情况下,本发明提出的R-CSK调制方法可以得到更高信息传输速率。
上述本发明示例中,基本电文比特宽度等于基本电文扩频码周期,扩展电文扩频码周期等于基本电文扩频码周期,这只是本发明的一个应用实例,基本电文比特宽度、基本电文扩频码周期、扩展电文扩频码周期可以设置为彼此相干同步的任何关系
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (5)

  1. 一种R-CSK双速率复合电文信号播发控制方法,其特征在于:应用IQ两路正交调制,实现双速率复合电文信号的播发,包括如下步骤:
    首先,同相I支路上,采用预设键控调制方法,针对基本电文进行DSSS直序扩频,构建同相I支路基带信号;
    同时,正交Q支路上,采用预设键控调制方法,针对扩展电文进行多次重复移相的码移键控调制,获得伪随机扩频序列,即正交Q支路基带信号,其中,伪随机扩频序列的码相位受扩展电文控制;
    然后,针对同相I支路基带信号与正交Q支路基带信号,进行IQ正交调制得到中频载波信号,再针对中频载波信号进行上变频处理,获得射频载波信号,最后经功率放大处理,构成双速率复合电文信号,交由发射天线进行播发。
  2. 根据权利要求1所述的一种R-CSK双速率复合电文信号播发控制方法,其特征在于:同相I支路上,按如下方法构建同相I支路基带信号:
    首先,针对基本电文进行信道编码得到编码后的比特流D B(t);
    然后,根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),采用预设键控调制方法,针对所获基本电文对应的比特流D B(t)进行直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
    最后,结合预设基本电文功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
  3. 根据权利要求1所述的一种R-CSK双速率复合电文信号播发控制方法,其特征在于:正交Q支路上,按如下方法构建正交Q支路基带信号:
    首先,针对扩展电文进行信道编码得到编码后的比特流;
    其次,根据时序发生器提供的扩展电文符号时钟,对扩展电文编码后对 应的比特流进行1->K Rbit串/并转换,得到并行数据流;其中每K R-bit并行数据持续时间、即符号时间长度等于扩展电文扩频码周期时间的N倍;
    然后,根据时序发生器提供的扩展电文扩频码周期时钟,由相位选择模块产生并行数据流所对应的相位偏移量;
    最后,根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及并行数据流所对应的相位偏移量,并由扩展电文扩频码发生器,采用预设键控调制方法,对扩展电文扩频码发生器产生的扩展电文扩频码重复多次进行码移键控调制,获得调制后的扩展电文扩频码信号
    Figure PCTCN2018113488-appb-100001
    并结合预设扩展电文功率配比系数A Q,按
    Figure PCTCN2018113488-appb-100002
    获得伪随机扩频序列S Q(t),即正交Q支路基带信号S Q(t),其中,伪随机扩频序列的码相位受扩展电文控制,(A I) 2+(A Q) 2=1。
  4. 根据权利要求3所述的一种R-CSK双速率复合电文信号播发控制方法,其特征在于:所述扩展电文符号时钟为扩展电文码周期时钟的整数倍,并与扩展电文码周期时钟同步。
  5. 根据权利要求1所述的一种R-CSK双速率复合电文信号播发控制方法,其特征在于:所述预设键控调制方法为BPSK二进制相移键控载波调制、或其他同等性质的多进制正交信号调制方式。
PCT/CN2018/113488 2018-09-17 2018-11-01 一种r-csk双速率复合电文信号播发控制方法 WO2020056871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811078853.1A CN109246041B (zh) 2018-09-17 2018-09-17 一种r-csk双速率复合电文信号播发控制方法
CN201811078853.1 2018-09-17

Publications (1)

Publication Number Publication Date
WO2020056871A1 true WO2020056871A1 (zh) 2020-03-26

Family

ID=65058567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113488 WO2020056871A1 (zh) 2018-09-17 2018-11-01 一种r-csk双速率复合电文信号播发控制方法

Country Status (2)

Country Link
CN (1) CN109246041B (zh)
WO (1) WO2020056871A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275189B (zh) * 2019-05-28 2021-11-16 西安空间无线电技术研究所 一种混合信息速率的码片时分导航信号调制方法及***
CN110244328B (zh) * 2019-05-28 2021-03-26 西安空间无线电技术研究所 一种导航增强信号调制方法及***
CN112230255A (zh) * 2019-06-28 2021-01-15 千寻位置网络有限公司 基础位置数据播发的控制方法、装置及信号发生设备
CN112020830B (zh) * 2019-12-18 2022-03-04 航天恒星科技有限公司 基于相位非连续r-csk调制的电文信号播发方法及装置
WO2022000442A1 (zh) * 2020-07-03 2022-01-06 航天恒星科技有限公司 一种双极性csk调制复合电文信号播发方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287634A1 (en) * 2009-08-17 2011-02-23 Electronics and Telecommunications Research Institute Apparatus for transmitting pseudolite signal based on single clock and positioning system using the same
CN103988094A (zh) * 2011-08-16 2014-08-13 欧洲太空署 使用基于伪随机噪声序列的扩频码的导航***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644560A (en) * 1982-08-13 1987-02-17 Hazeltine Corporation Intranetwork code division multiple access communication system
CN101753504A (zh) * 2008-12-16 2010-06-23 华为技术有限公司 差分调制解调方法、发射机以及接收机
CN101887113A (zh) * 2009-05-13 2010-11-17 中国科学院国家天文台 导航和通信一体化的信号结构
CN103067327B (zh) * 2011-10-24 2016-09-07 华为技术有限公司 信号传输方法和信号传输装置
US9071341B2 (en) * 2012-08-27 2015-06-30 Rupert Theodore Neff Random non-cyclical binary code generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287634A1 (en) * 2009-08-17 2011-02-23 Electronics and Telecommunications Research Institute Apparatus for transmitting pseudolite signal based on single clock and positioning system using the same
CN103988094A (zh) * 2011-08-16 2014-08-13 欧洲太空署 使用基于伪随机噪声序列的扩频码的导航***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TSAI, Y. R.: "M-ary Spreading-Code-Phase-Shift-Keying Modulation for DSSS Multiple Access Systems", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 57, no. 11, 30 November 2009 (2009-11-30), pages 3220 - 3224, XP011284828, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2009.11.050526 *
YIN, YANLING ET AL.: "Burst Mode Hybrid Spread Spectrum Technology for Covert Acoustic Communication", 2013 OCEANS- SAN DIEGO, 23 September 2013 (2013-09-23), pages 1 ; 2, XP032567655, ISSN: 0197-7385 *
YIN, YANLING ET AL.: "Burst Mode Hybrid Spread Spectrum Technology for Covert Acoustic Communication", 2013 OCEANS- SAN DIEGO, 23 September 2013 (2013-09-23), XP032567655, ISSN: 0197-7385 *

Also Published As

Publication number Publication date
CN109246041A (zh) 2019-01-18
CN109246041B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2020056871A1 (zh) 一种r-csk双速率复合电文信号播发控制方法
CN107911160B (zh) 北斗卫星导航信号大规模并行实时传输实现方法和***
WO2020047984A1 (zh) 一种多次重复移相的码移键控调制方法及其解调方法
US5327455A (en) Method and device for multiplexing data signals
US7711032B2 (en) Method, transmitter and receiver for spread-spectrum digital communication by Golay complementary sequence modulation
CA2175488C (en) Method and apparatus for bifurcating signal transmission over in-phase and quadrature phase spread spectrum communication channels
US20030138031A1 (en) Spread spectrum transmitter and spread spectrum receiver
US6233271B1 (en) Method and apparatus for decoding trellis coded direct sequence spread spectrum communication signals
CN110601717B (zh) 一种基于码分复用的通信与测距一体化***和方法
JPH07170210A (ja) スペクトラム拡散変復調方法及びそれを用いた変調器・ 復調器
JPH06296171A (ja) 広帯域伝送システム
CN112105958B (zh) 一种双极性csk调制复合电文信号播发方法及装置
JP2003505005A (ja) 二重直交符号及び周波数分割マルチプルアクセス通信システム
CN102215047B (zh) 一种高速数据传输的软扩频多路复用方法
CN102932032A (zh) 宽带无线通信与测距定位一体化***和方法
CN112020830B (zh) 基于相位非连续r-csk调制的电文信号播发方法及装置
US6215813B1 (en) Method and apparatus for encoding trellis coded direct sequence spread spectrum communication signals
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
US6072785A (en) Differential PSK signalling in CDMA networks
CN1185839C (zh) 扩频通信***中的偏移校正方法和***
CN114465856A (zh) 一种基于cdma体制的信号多进制调制方法、解调方法及设备
CN101471685A (zh) 窄带cdma反向链路及其调制扩频电路和解扩解调电路
US20120114020A1 (en) De-spreading method for noncoherent receiver and receiver applying the same
JPH0923170A (ja) データ復調方法およびスペクトル拡散通信システム
KR20020065809A (ko) 이동 통신시스템의 프리앰블 송수신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18933922

Country of ref document: EP

Kind code of ref document: A1