WO2020054765A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2020054765A1
WO2020054765A1 PCT/JP2019/035718 JP2019035718W WO2020054765A1 WO 2020054765 A1 WO2020054765 A1 WO 2020054765A1 JP 2019035718 W JP2019035718 W JP 2019035718W WO 2020054765 A1 WO2020054765 A1 WO 2020054765A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
motor
switching
switching line
clutch
Prior art date
Application number
PCT/JP2019/035718
Other languages
French (fr)
Japanese (ja)
Inventor
幸浩 稲満
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Publication of WO2020054765A1 publication Critical patent/WO2020054765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for controlling a transmission using a mode switching diagram.
  • a power consumption priority shift line set to prioritize improvement of power consumption and a shift priority set to priority are set.
  • a technique using a drive priority shift line using a shift diagram including a drive priority shift line, and after completion of shift control using the power consumption priority shift line is disclosed.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a control device capable of improving the kinetic performance and electric power consumption of a vehicle.
  • the present invention is a control device mounted on a vehicle and controlling a transmission using a mode switching diagram.
  • the transmission includes a first input shaft and a second input shaft that are coupled to and coaxial with the first motor and the second motor, respectively, a first reduction gear that transmits power of the first input shaft to the output shaft, A second reduction gear that transmits the power of the second input shaft to the output shaft at a reduction ratio smaller than the reduction ratio of the first reduction gear; a first clutch that disconnects or connects the first input shaft and the second input shaft; A second clutch comprising a one-way clutch for transmitting power from the first reduction gear to the output shaft.
  • the mode switching diagram includes a first switching line for switching from a first mode in which the first clutch is disengaged and the first motor is driven to a second mode in which the first clutch is disengaged and the second motor is driven, and a second mode for switching from the second mode.
  • a second switching line for switching to the first mode a third switching line for switching from the first mode to a third mode for disengaging the first clutch and driving the first motor and the second motor, and a first mode for the third mode.
  • a sixth switching line a seventh switching line for switching from the second mode to the fourth mode, an eighth switching line for switching from the fourth mode to the second mode, and a ninth switching line for connecting the first clutch in the second mode. , It has in 2 mode and the 10 switching line to cut the first clutch, the.
  • the first mode for driving the first motor by disengaging the first clutch the second mode for driving the second motor, and the first and second motors for disengaging the first clutch
  • a fourth mode in which the first clutch is connected to drive the first motor and the second motor the driving force can be secured from a low speed to a high speed, and the kinetic performance of the vehicle can be improved.
  • the power consumption can be improved. Therefore, the kinetic performance and electric power consumption of the vehicle can be improved.
  • Hysteresis is provided between the seventh switching line and the eighth switching line, and between the ninth switching line and the tenth switching line.
  • the control device of the third aspect it is determined whether or not the vehicle is climbing on a road surface having a predetermined gradient or more, based on the information on the magnitude of the longitudinal inclination of the vehicle detected by the inclination detector. If the result of the determination is that the vehicle is climbing a road surface having a predetermined slope or higher, the hysteresis between the first switching line and the second switching line is increased by the change circuit. Therefore, in addition to the effect of the second aspect, it is possible to suppress a busy shift when climbing a road surface having a large gradient.
  • the higher the temperature of the first motor or the second motor detected by the thermometer the smaller the required driving force from the first mode or the second mode to the third mode or the fourth mode.
  • the third switching line or the seventh switching line is moved by the moving circuit so as to switch to. Since the first motor and the second motor are simultaneously driven with a smaller required driving force, it is possible to reduce the torque required per motor and reduce the load on the motor. Therefore, in addition to the effect of any one of the first to third aspects, overheating of the first motor and the second motor can be suppressed.
  • the switching circuit switches to the third mode or the fourth mode. Can be switched. Therefore, in addition to the effect of any one of the first to fourth aspects, overheating of the first motor and the second motor can be suppressed.
  • FIG. 1 is a functional block diagram of a vehicle according to one embodiment.
  • 4 is a table showing combinations of operations of a first motor, a second motor, and a first clutch. It is a schematic diagram of a mode switching diagram. It is a flowchart of a switching control process.
  • FIG. 1 is a functional block diagram of a vehicle 10 according to one embodiment.
  • the vehicle 10 is equipped with a transmission 11 and a control device 50.
  • the transmission 11 has a first input shaft 14 connected to the first motor 12, a second input shaft 15 connected to the second motor 13, and an output shaft 16.
  • the first input shaft 14 and the second input shaft 15 are arranged coaxially.
  • the first input shaft 14 (second input shaft 15) and the output shaft 16 are arranged parallel to each other.
  • the first input shaft 14 and the second input shaft 15 are main shafts that directly receive the driving forces of the first motor 12 and the second motor 13, respectively.
  • the first input shaft 14 and the second input shaft 15 are connected to each other via a pilot bearing (not shown) so as to be relatively rotatable.
  • the first motor 12 and the second motor 13 are electric motors and have the same torque characteristics.
  • a battery (not shown) mounted on the vehicle 10 supplies electric power to drive circuits 52 and 53 of the first motor 12 and the second motor 13, respectively. The battery is supplied with external power and charged, and also supplied with regenerative power from the second motor 13.
  • the output of the transmission 11 is transmitted to a differential device 18 disposed at the center of the axle 17.
  • the axle 17 is arranged parallel to the output shaft 16.
  • the differential device 18 distributes the driving force to the left and right axles 17.
  • Wheels 19 are arranged at both ends of the axle 17, respectively.
  • the vehicle 10 has a plurality of wheels (not shown) other than the wheels 19, and can run by rotating the axles 17 and the wheels 19.
  • the first reduction gear 20 is a device that reduces the rotation of the first input shaft 14 and transmits the rotation to the output shaft 16.
  • the first reduction gear 20 includes a first gear 21 connected to the first input shaft 14, and a second gear 22 connected to the output shaft 16 or idling the output shaft 16 by switching the second clutch 23. .
  • the second gear 22 meshes with the first gear 21.
  • the first reduction gear 20 is set to a reduction ratio by the engagement of the first gear 21 and the second gear 22.
  • the second clutch 23 is interposed between the output shaft 16 and the second gear 22.
  • the second clutch 23 is a one-way clutch that transmits power in the forward direction from the second gear 22 to the output shaft 16.
  • the second clutch 23 transmits the forward rotation of the second gear 22 to the output shaft 16 so as to be able to be interrupted, and interrupts the transmission of the forward rotation from the output shaft 16 to the second gear 22.
  • the second reduction gear 30 is a device that reduces the rotation of the second input shaft 15 and transmits the reduced rotation to the output shaft 16.
  • the second reduction gear 30 includes a third gear 31 connected to the second input shaft 15 and a fourth gear 32 connected to the output shaft 16 and meshing with the third gear 31.
  • the second motor 13 can always transmit power to the output shaft 16 via the second reduction gear 30.
  • the second reduction gear 30 is set to a reduction gear ratio smaller than the reduction gear ratio of the first reduction gear 20 due to the engagement of the third gear 31 and the fourth gear 32.
  • the first reduction gear 20 is a low-speed transmission path
  • the second reduction gear 30 is a high-speed transmission path.
  • the fifth gear 33 connected to the output shaft 16 meshes with the sixth gear 34 connected to the differential device 18.
  • the fifth gear 33 and the sixth gear 34 transmit the power of the output shaft 16 to the axle 17 via the differential 18.
  • the first clutch 40 that disconnects or connects the first input shaft 14 and the second input shaft 15 is disposed between the first input shaft 14 and the second input shaft 15.
  • the first clutch 40 is a meshing clutch, and the sleeve 41 is moved and disconnected by the actuator 42.
  • the present invention is not limited to this, and it is of course possible to employ another clutch such as a friction clutch or incorporate a synchromesh into the first clutch 40.
  • the control device 50 is a device for controlling the first motor 12, the second motor 13, and the first clutch 40.
  • the control device 50 includes a CPU, a ROM, a RAM, and a backup RAM (all not shown).
  • the ROM stores a map such as a mode switching diagram 60 (see FIG. 3) and a program which are referred to when the program is executed.
  • the CPU executes arithmetic processing based on programs and maps stored in the ROM.
  • the RAM is a memory for temporarily storing a result of calculation by the CPU, data input from each sensor, and the like.
  • the backup RAM is a non-volatile memory that stores data to be stored and the like.
  • the control device 50 is connected via a CAN communication line 51 to a drive circuit 52 for driving the first motor 12 and a drive circuit 53 for driving the second motor 13.
  • the control device 50 is connected to a vehicle speed sensor 54, an accelerator opening sensor 55, a longitudinal acceleration sensor 56, a thermometer 57, and a sleeve position sensor 58.
  • the control device 50 uses the drive circuits 52 and 53 to perform power running control or regenerative control of the first motor 12 and the second motor 13.
  • the vehicle speed sensor 54 is a device for detecting the speed of the vehicle 10.
  • the vehicle speed sensor 54 includes an output circuit (not shown) that detects the rotation speed of the output shaft 16, processes the detection result, calculates the speed of the vehicle 10, and outputs the calculated speed to the control device 50.
  • the accelerator opening sensor 55 includes an output circuit (not shown) that detects the amount of depression of an accelerator pedal (not shown) by a driver, processes the detection result, and outputs the result to the control device 50.
  • the output of the accelerator opening sensor 55 is proportional to the total driving force (requested driving force) required by the driver.
  • the longitudinal acceleration sensor 56 includes an output circuit (not shown) that detects the longitudinal acceleration of the vehicle 10 (hereinafter, referred to as “longitudinal G”), processes the detection result, and outputs the result to the control device 50. .
  • the control device 50 By differentiating the vehicle speed detected by the vehicle speed sensor 54 to determine the acceleration of the vehicle 10 (hereinafter referred to as “vehicle G”) and calculating the difference between the front and rear G and the vehicle G, the control device 50 The gradient of the traveling road surface can be calculated.
  • the thermometer 57 includes an output circuit (not shown) that detects the temperatures of the first motor 12 and the second motor 13, processes the detection results, and outputs the result to the control device 50.
  • the sleeve position sensor 58 includes an output circuit (not shown) that detects the position of the sleeve 41 of the first clutch 40, processes the detection result, and outputs the result to the control device 50. Based on the detection result of the sleeve position sensor 58, the control device 50 detects whether the first clutch 40 is engaged or disconnected.
  • Another input / output device 59 connected to the control device 50 includes, for example, a brake stroke sensor.
  • FIG. 2 is a table showing combinations of operations of the first motor 12, the second motor 13, and the first clutch 40.
  • the motor to be driven and the clutch to be engaged in each mode are indicated by x.
  • the control device 50 uses a mode switching diagram 60 (see FIG. 3) to perform a first mode, a second A mode, a second B mode, and a third mode based on information input from the vehicle speed sensor 54, the accelerator opening sensor 55, and the like. And the control to switch the transmission 11 to one of the fourth mode and the fourth mode.
  • the control device 50 controls the power running of the first motor 12 in a state where the first clutch 40 is disengaged (first mode processing in FIG. 4: S8).
  • the first mode is used when starting or running at low speed. Since the output of the first motor 12 is transmitted to the output shaft 16 via the first reduction gear 20 having a larger reduction ratio than the second reduction gear 30, a strong driving torque is obtained from a low speed, and a strong start and low-speed running are achieved. It becomes possible.
  • the control device 50 controls the power running of the second motor 13 with the first clutch 40 disengaged.
  • the output of the second motor 13 is transmitted to the output shaft 16 via the second reduction gear 30 having a smaller reduction ratio than that of the first reduction gear 20, so that high-speed traveling with good power consumption is possible.
  • the drag loss caused by the first reduction gear 20 and the first motor 12 when driving is controlled can be suppressed (2A mode processing in FIG. 4: S9).
  • the control device 50 controls the power running of the first motor 12 and the second motor 13 with the first clutch 40 disengaged (third mode processing in FIG. 4: S11).
  • the second clutch 23 composed of a one-way clutch is used. Therefore, the driving forces of the first motor 12 and the second motor 13 are transmitted to the output shaft 16.
  • the second clutch 23 is disengaged.
  • the driving force of the second motor 13 is transmitted to the output shaft 16.
  • the second clutch 23 composed of a one-way clutch is disposed on the output shaft 16
  • the first motor 12 and the second motor 13 drive the output shaft 16, and the second motor 13 connects the output shaft 16 to the output shaft 16.
  • the driving state can be switched seamlessly.
  • the control device 50 controls the power running of the first motor 12 and the second motor 13 while the first clutch 40 is engaged (fourth mode process in FIG. 4: S12).
  • the output shaft 16 is constantly driven by the first motor 12 and the second motor 13, so that the torque output to the output shaft 16 can be increased.
  • both the first motor 12 and the second motor 13 drive the second speed reducer 30 on the high-speed transmission path, so that a sufficient driving torque can be obtained and acceleration can be performed even at a high speed.
  • FIG. 3 is a schematic diagram of the mode switching diagram 60.
  • the mode switching diagram 60 is determined based on the speed of the vehicle 10 and the position of the operating point 74 on the mode switching diagram 60 with the total driving force of the first motor 12 and the second motor 13 as parameters. It is a map for finding a suitable mode.
  • a plurality of switching lines are set in a region inside the maximum output line 80 by the first motor 12 and the second motor 13.
  • the total driving force (the driving force required by the driver) in the mode switching diagram 60 is calculated from the output result of the accelerator opening sensor 55 (see FIG. 1).
  • the first switching line 65 and the second switching line 66 are switching lines that partition the first mode 61 and the second mode 62.
  • the transmission 11 is switched from the first mode 61 to the second mode 62.
  • the transmission 11 is switched from the second mode 62 to the first mode 61.
  • the first switching line 65 and the second switching line 66 are set near an optimal power consumption line (not shown) for optimizing the power consumption of the first motor 12 and the second motor 13.
  • the first switching line 65 and the second switching line 66 are provided on both sides of the optimal power consumption line.
  • a hysteresis 75 is set between the first switching line 65 and the second switching line 66. The hysteresis 75 suppresses a busy shift in which the switching between the first mode 61 and the second mode 62 is frequently performed in a short time, and suppresses the occurrence of so-called torque shortage.
  • the third switching line 67 and the fourth switching line 68 are switching lines that partition the first mode 61 and the third mode 63.
  • the transmission 11 is switched from the first mode 61 to the third mode 63.
  • the transmission 11 is switched from the third mode 63 to the first mode 61.
  • the third switching line 67 and the fourth switching line 68 are set near an optimal power consumption line (not shown) for optimizing the power consumption of the first motor 12 and the second motor 13.
  • the third switching line 67 and the fourth switching line 68 are provided on both sides of the optimal power consumption line.
  • a hysteresis 76 is set between the third switching line 67 and the fourth switching line 68. The hysteresis 76 suppresses a busy shift in which the switching between the first mode 61 and the third mode 63 is frequently performed in a short time, and suppresses the driver's discomfort.
  • the fifth switching line 69 and the sixth switching line 70 are switching lines that partition the third mode 63 and the fourth mode 64.
  • the transmission 11 is switched from the third mode 63 to the fourth mode 64.
  • the transmission 11 is switched from the fourth mode 64 to the third mode 63.
  • the fifth switching line 69 and the sixth switching line 70 are set near an optimal power consumption line (not shown) that optimizes the power consumption of the first motor 12 and the second motor 13.
  • the fifth switching line 69 and the sixth switching line 70 are provided on both sides of the optimal power consumption line.
  • a hysteresis 77 is set between the fifth switching line 69 and the sixth switching line 70. The hysteresis 77 suppresses a busy shift in which the switching between the third mode 63 and the fourth mode 64 is frequently performed in a short time, and suppresses the driver's discomfort.
  • the seventh switching line 71 and the eighth switching line 72 are switching lines that partition the second mode 62 and the fourth mode 64.
  • the transmission 11 is switched from the second mode 62 to the fourth mode 64.
  • the transmission 11 is switched from the fourth mode 64 to the second mode 62.
  • the seventh switching line 71 and the eighth switching line 72 are set near an optimal power consumption line (not shown) for optimizing the power consumption of the first motor 12 and the second motor 13.
  • the seventh switching line 71 and the eighth switching line 72 are provided on both sides of the optimal power consumption line.
  • a hysteresis 78 is set between the seventh switching line 71 and the eighth switching line 72. The hysteresis 78 suppresses a busy shift in which the switching between the second mode 62 and the fourth mode 64 is frequently performed in a short time, and suppresses the driver's discomfort.
  • the ninth switching line 73 and the tenth switching line 74 are switching lines for connecting and disconnecting the first clutch 40 in the second mode 62.
  • the first clutch 40 can be connected and disconnected.
  • the operating point 74 crosses the ninth switching line 73 from the low speed side to the high speed side, the first clutch 40 is engaged (second B mode).
  • the first clutch 40 is engaged, the first motor 12 rotates. At this time, the regenerative control of the first motor 12 can be performed. The power consumption can be improved by the regenerative control of the first motor 12.
  • the first clutch 40 is disengaged (second A mode).
  • the first motor 12 stops rotating, so that the drag loss of the first motor 12 in the second mode 62 can be suppressed. As a result, power consumption in the second mode 62 can be improved.
  • a hysteresis 79 is set between the ninth switching line 73 and the tenth switching line 74.
  • the hysteresis 79 suppresses a busy shift in which the first clutch 40 is frequently connected and disconnected in a short period of time, and suppresses the driver's discomfort.
  • the switching control process executed by the control device 50 will be described with reference to FIG.
  • FIG. 4 is a flowchart of the switching control process.
  • the control device 50 stores in the ROM a plurality of mode switching diagrams 60 (see FIG. 3) corresponding to the temperatures of the first motor 12 and the second motor 13 and the gradient of the road surface on which the vehicle 10 travels. I have.
  • the switching control process is a process that is repeatedly executed (for example, at intervals of 0.2 seconds) by the control device 50 while the power is turned on.
  • the control device 50 acquires the accelerator opening based on the input of the accelerator opening sensor 55 and calculates the driver's required driving force (total driving force) (S1).
  • the control device 50 acquires the vehicle speed based on the input of the vehicle speed sensor 54 (S2), and acquires the temperatures of the first motor 12 and the second motor 13 based on the input of the thermometer 57 (S3).
  • any one of the temperatures of the first motor 12 and the second motor 13 may be reduced to a temperature (hereinafter referred to as a “first temperature”) that may cause deterioration of the insulation performance and durability of the first motor 12 and the second motor 13.
  • the control device 50 skips the processing of S5 to S7 and executes the fourth mode processing (S12).
  • the fourth mode process (S12) the first motor 12 and the second motor 13 are power-run controlled while the first clutch 40 is engaged, so that the driving force is distributed to the first motor 12 and the second motor 13. . Since the load per motor can be reduced, overheating of the motor can be prevented, and deterioration of insulation performance and durability of the first motor 12 and the second motor 13 can be prevented.
  • the control device 50 controls the vehicle 10 based on the input of the vehicle speed sensor 54 and the longitudinal acceleration sensor 56.
  • the gradient of the traveling road surface is acquired (S5).
  • the control device 50 selects a map (mode switching diagram 60) associated therewith based on the temperatures of the first motor 12 and the second motor 13 and the gradient of the road surface (S6).
  • the control device 50 switches from the first mode 61 to the third mode 63 with a smaller required driving force as the temperature of the first motor 12 or the second motor 13 is higher, or with a smaller required driving force.
  • a mode switching diagram 60 in which the third switching line 67 and the seventh switching line 71 are shifted downward is selected.
  • control device 50 selects a mode switching diagram 60 in which hysteresis 71 between first switching line 65 and second switching line 66 is greater as the gradient of the road surface on which vehicle 10 is climbing is greater.
  • the control device 50 calculates the position of the operating point 74 on the mode switching diagram 60 specified by the vehicle speed and the required driving force (S7), the first mode process (S8), the second A mode process (S9), One of the 2B mode processing (S10), the third mode processing (S11), and the fourth mode processing (S12) is executed, and this processing ends.
  • the control device 50 can switch the transmission 11 to any one of the first mode, the second mode (the second A and the second B mode), the third mode, and the fourth mode using the mode switching diagram 60. Therefore, it is possible to secure the driving force from a low speed to a high speed and improve the kinetic performance of the vehicle 10. Further, by setting the first switching line 65 to the tenth switching line 74 at a position close to the optimal power consumption line, the power consumption can be improved. Therefore, the kinetic performance and electric power consumption of the vehicle 10 can be improved.
  • the mode switching diagram 60 shows the relationship between the first switching line 65 and the second switching line 66, between the third switching line 67 and the fourth switching line 68, and between the fifth switching line 69 and the sixth switching line 70.
  • the hysteresis 75 to 79 are provided between the switching line 71, the switching line 71 and the switching line 72, and between the switching line 73 and the switching line 74, respectively, so that the switching can be performed in a short time. Can be suppressed. As a result, the occurrence of torque shortage can be suppressed, so that the dynamic performance of the vehicle 10 can be further improved. It can also reduce driver discomfort.
  • the control device 50 shifts the third switching line 67 downward so as to switch from the first mode 61 to the third mode 63 with a smaller required driving force as the temperature of the first motor 12 or the second motor 13 increases,
  • the mode switching diagram 60 in which the seventh switching line 71 is shifted downward so as to switch from the second mode 62 to the fourth mode 64 with a smaller required driving force is selected, when the motor temperature is high, The first motor 12 and the second motor 13 can be driven simultaneously with a small required driving force. Therefore, it is possible to reduce the load on the motor by distributing the driving force and suppress the overheating of the first motor 12 and the second motor 13.
  • the controller 50 selects the mode switching diagram 60 in which the hysteresis 75 between the first switching line 65 and the second switching line 66 is larger as the gradient of the road surface on which the vehicle 10 is climbing is larger. Busy shift between the first mode 61 and the second mode 62 when the vehicle climbs a road surface having a large road surface.
  • a circuit that executes the processing of S6 in the switching control processing (see FIG. 4) in the control device 50 is used. Applicable.
  • the moving circuit that shifts the third switching line 67 downward corresponds to a circuit that executes the process of S6 in the switching control process (see FIG. 4) in the control device 50.
  • the switching circuit for switching to the fourth mode 64 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature includes the processes of S4 and S12 in the switching control process (see FIG. 4) of the control device 50.
  • the accelerator opening is used as the required driving force as a parameter of the mode switching diagram 60
  • the present invention is not necessarily limited to this.
  • the value is proportional to the required driving force (total driving force), such as an accelerator opening speed (a changing speed of the accelerator opening)
  • other values can of course be used. It is also possible to add the detection result of the brake stroke sensor to the required driving force.
  • the present invention is not necessarily limited to this. Absent. It is naturally possible to provide an inclination detector (inclination sensor) for exclusively detecting the inclination of the vehicle 10 in the front-rear direction.
  • the mode is switched to the fourth mode 64 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature
  • the mode is switched to the fourth mode 64 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature.
  • it is not limited to this. It is naturally possible to switch to the third mode 63 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature. Also in this case, since the vehicle 10 can travel using the two motors, the load on the motors can be reduced and the overheating of the first motor 12 and the second motor 13 can be suppressed.
  • the hysteresis 75 to 79 is provided between the seventh switching line 71 and the eighth switching line 72 and between the ninth switching line 73 and the tenth switching line 74 has been described, but is not necessarily limited thereto. Not something. If any one or more of the hysteresis 75 to 79 is set, it is preferable because a busy shift between the modes in which the hysteresis is set can be suppressed.
  • a mode switching diagram according to the temperature of the first motor 12 and the second motor 13 and the gradient of the road surface on which the vehicle 10 travels is selected from a plurality of mode switching diagrams 60 stored in the ROM.
  • the invention is not necessarily limited to this. It is of course possible to correct the switching line according to the motor temperature and the gradient of the road surface to widen the hysteresis 71 of the mode switching diagram 60 and shift the third switching line 67 and the seventh switching line 71 downward. is there. In this case, the same effect can be obtained.
  • first motor 12 and the second motor 13 use electric motors having the same torque characteristics.
  • present invention is not necessarily limited to this. It is of course possible to use electric motors having different torque characteristics.
  • a motor having a low-speed torque characteristic is referred to as a first motor 12, and a motor having a high-speed torque characteristic is referred to as a second motor 13.
  • the first motor 12 having a low-speed torque characteristic is a motor whose torque peak value is on the low rotation side.
  • the second motor 13 having high-speed torque characteristics is a motor having a torque peak value on a higher rotation side than the rotation speed at which the torque of the first motor 12 peaks.
  • the present invention is not limited to this. It is naturally possible to provide one or more intermediate shafts, arrange the gears on the intermediate shafts, and provide the intermediate shaft with a gear train that constitutes a part of the first reduction gear 20 and the second reduction gear 30.
  • first input shaft 14 and the second input shaft 15 directly receive the driving force of the first motor 12 and the second motor 13 has been described, but the present invention is not necessarily limited to this. It is naturally possible to interpose a gear train or a belt between the first motor 12 and the first input shaft 14 or between the second motor 13 and the second input shaft 15.
  • first reduction gear 20 and the second reduction gear 30 are configured using the gear train
  • present invention is not necessarily limited to this. It is naturally possible to use other reduction gears using a belt, a continuously variable transmission (CVT) or the like as the first reduction gear 20 and the second reduction gear 30.
  • CVT continuously variable transmission
  • the present invention is not necessarily limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Provided is a control device with which it is possible to improve the electrical cost and movement performance of a vehicle. A control device (50) for controlling a transmission (11) using a mode-switching diagram (60), wherein the mode-switching diagram (60) comprises a switching line for switching between: a first mode (61), in which a first clutch (40) is disconnected and a first motor (12) is driven; a second mode (62), in which the first clutch (40) is disconnected and a second motor (13) is driven; a third mode (63), in which the first clutch (40) is disconnected and the first motor (12) and second motor (13) are driven; and a fourth mode (64), in which the first clutch (40) is connected and the first motor (12) and the second motor (13) are driven.

Description

制御装置Control device
 本発明はモード切換線図を用いて変速機の制御を行う制御装置に関するものである。 The present invention relates to a control device for controlling a transmission using a mode switching diagram.
 車両を駆動するモータが接続された変速機の制御装置として、例えば特許文献1には、電費の向上を優先して設定された電費優先変速線と、変速頻度の抑制を優先して設定された駆動優先変速線と、を備える変速線図を用い、電費優先変速線を用いた変速制御の完了後、駆動優先変速線を用いる技術が開示されている。 As a control device of a transmission to which a motor for driving a vehicle is connected, for example, in Japanese Patent Application Laid-Open No. H11-163, a power consumption priority shift line set to prioritize improvement of power consumption and a shift priority set to priority are set. There is disclosed a technique using a drive priority shift line using a shift diagram including a drive priority shift line, and after completion of shift control using the power consumption priority shift line.
特許第5896078号公報Japanese Patent No. 5896078
 しかし上記技術では、駆動優先変速線を用いる間は駆動力不足が生じないので車両の運動性能を向上できるが、その間は電費が悪化するおそれがある。 However, according to the above technology, while the driving priority shift line is used, there is no shortage of driving force, so that the kinetic performance of the vehicle can be improved.
 本発明は上述した問題点を解決するためになされたものであり、車両の運動性能および電費を向上できる制御装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and has as its object to provide a control device capable of improving the kinetic performance and electric power consumption of a vehicle.
 この目的を達成するために本発明は、車両に搭載されモード切換線図を用いて変速機の制御を行う制御装置である。変速機は、第1モータ及び第2モータにそれぞれ結合し同軸上に配置される第1入力軸および第2入力軸と、第1入力軸の動力を出力軸に伝達する第1減速機と、第1減速機の減速比よりも小さい減速比で第2入力軸の動力を出力軸に伝達する第2減速機と、第1入力軸と第2入力軸とを切断または接続する第1クラッチと、第1減速機から出力軸へ動力を伝達するワンウェイクラッチからなる第2クラッチと、を備えている。モード切換線図は、第1クラッチを切断し第1モータを駆動する第1モードから、第1クラッチを切断し第2モータを駆動する第2モードに切り換える第1切換線と、第2モードから第1モードに切り換える第2切換線と、第1モードから、第1クラッチを切断し第1モータ及び第2モータを駆動する第3モードに切り換える第3切換線と、第3モードから第1モードに切り換える第4切換線と、第3モードから、第1クラッチを接続し第1モータ及び第2モータを駆動する第4モードに切り換える第5切換線と、第4モードから第3モードに切り換える第6切換線と、第2モードから第4モードに切り換える第7切換線と、第4モードから第2モードに切り換える第8切換線と、第2モードにおいて第1クラッチを接続する第9切換線と、第2モードにおいて第1クラッチを切断する第10切換線と、を備えている。 To achieve this object, the present invention is a control device mounted on a vehicle and controlling a transmission using a mode switching diagram. The transmission includes a first input shaft and a second input shaft that are coupled to and coaxial with the first motor and the second motor, respectively, a first reduction gear that transmits power of the first input shaft to the output shaft, A second reduction gear that transmits the power of the second input shaft to the output shaft at a reduction ratio smaller than the reduction ratio of the first reduction gear; a first clutch that disconnects or connects the first input shaft and the second input shaft; A second clutch comprising a one-way clutch for transmitting power from the first reduction gear to the output shaft. The mode switching diagram includes a first switching line for switching from a first mode in which the first clutch is disengaged and the first motor is driven to a second mode in which the first clutch is disengaged and the second motor is driven, and a second mode for switching from the second mode. A second switching line for switching to the first mode, a third switching line for switching from the first mode to a third mode for disengaging the first clutch and driving the first motor and the second motor, and a first mode for the third mode. A fourth switching line for switching from the third mode to a fourth mode for connecting the first clutch and driving the first motor and the second motor, and a fourth switching line for switching from the fourth mode to the third mode. A sixth switching line, a seventh switching line for switching from the second mode to the fourth mode, an eighth switching line for switching from the fourth mode to the second mode, and a ninth switching line for connecting the first clutch in the second mode. , It has in 2 mode and the 10 switching line to cut the first clutch, the.
 請求項1記載の制御装置によれば、第1クラッチを切断し第1モータを駆動する第1モード、第2モータを駆動する第2モード、第1クラッチを切断し第1モータ及び第2モータを駆動する第3モード、第1クラッチを接続し第1モータ及び第2モータを駆動する第4モードに切り換え得る。これにより低速から高速まで駆動力を確保して、車両の運動性能を向上できる。さらに、最適電費線に近い位置に第1切換線から第10切換線を設定することにより電費を向上できる。よって、車両の運動性能および電費を向上できる。 According to the control device of the first aspect, the first mode for driving the first motor by disengaging the first clutch, the second mode for driving the second motor, and the first and second motors for disengaging the first clutch , And a fourth mode in which the first clutch is connected to drive the first motor and the second motor. As a result, the driving force can be secured from a low speed to a high speed, and the kinetic performance of the vehicle can be improved. Further, by setting the first switching line to the tenth switching line at a position close to the optimal power consumption line, the power consumption can be improved. Therefore, the kinetic performance and electric power consumption of the vehicle can be improved.
 請求項2記載の制御装置によれば、第1切換線と第2切換線との間、第3切換線と第4切換線との間、第5切換線と第6切換線との間、第7切換線と第8切換線との間、及び、第9切換線と第10切換線との間にそれぞれヒステリシスが設けられる。これにより、請求項1の効果に加え、短時間の間に切り換えが頻繁に行われるビジーシフトを抑制できる。 According to the control device of the second aspect, between the first switching line and the second switching line, between the third switching line and the fourth switching line, between the fifth switching line and the sixth switching line, Hysteresis is provided between the seventh switching line and the eighth switching line, and between the ninth switching line and the tenth switching line. Thus, in addition to the effect of the first aspect, it is possible to suppress a busy shift in which switching is frequently performed in a short time.
 請求項3記載の制御装置によれば、傾斜検出器が検出した車両の前後方向の傾斜の大きさに関する情報により、所定の勾配以上の路面を車両が登坂しているか判断される。判断の結果、所定の勾配以上の路面を車両が登坂している場合に、変更回路により、第1切換線と第2切換線との間のヒステリシスが大きくされる。よって、請求項2の効果に加え、勾配が大きい路面を登板するときのビジーシフトを抑制できる。 According to the control device of the third aspect, it is determined whether or not the vehicle is climbing on a road surface having a predetermined gradient or more, based on the information on the magnitude of the longitudinal inclination of the vehicle detected by the inclination detector. If the result of the determination is that the vehicle is climbing a road surface having a predetermined slope or higher, the hysteresis between the first switching line and the second switching line is increased by the change circuit. Therefore, in addition to the effect of the second aspect, it is possible to suppress a busy shift when climbing a road surface having a large gradient.
 請求項4記載の制御装置によれば、温度計が検出した第1モータ又は第2モータの温度が高いほど、より小さい要求駆動力で第1モード又は第2モードから第3モード又は第4モードに切り換えるように、移動回路により第3切換線または第7切換線が移動される。より小さい要求駆動力で第1モータ及び第2モータを同時に駆動するので、1モータ当たりに必要となるトルクを小さくしてモータの負荷を減らすことができる。よって、請求項1から3のいずれかの効果に加え、第1モータや第2モータの過熱を抑制できる。 According to the control device of the fourth aspect, the higher the temperature of the first motor or the second motor detected by the thermometer, the smaller the required driving force from the first mode or the second mode to the third mode or the fourth mode. The third switching line or the seventh switching line is moved by the moving circuit so as to switch to. Since the first motor and the second motor are simultaneously driven with a smaller required driving force, it is possible to reduce the torque required per motor and reduce the load on the motor. Therefore, in addition to the effect of any one of the first to third aspects, overheating of the first motor and the second motor can be suppressed.
 請求項5記載の制御装置によれば、温度計が検出した第1モータ又は第2モータの温度が所定の温度以上であると判断される場合に、切換回路により第3モード又は第4モードに切り換えられる。よって、請求項1から4のいずれかの効果に加え、第1モータや第2モータの過熱を抑制できる。 According to the control device of the fifth aspect, when it is determined that the temperature of the first motor or the second motor detected by the thermometer is equal to or higher than the predetermined temperature, the switching circuit switches to the third mode or the fourth mode. Can be switched. Therefore, in addition to the effect of any one of the first to fourth aspects, overheating of the first motor and the second motor can be suppressed.
一実施の形態における車両の機能ブロック図である。FIG. 1 is a functional block diagram of a vehicle according to one embodiment. 第1モータ、第2モータ及び第1クラッチの動作の組合せを示す図表である。4 is a table showing combinations of operations of a first motor, a second motor, and a first clutch. モード切換線図の模式図である。It is a schematic diagram of a mode switching diagram. 切換制御処理のフローチャートである。It is a flowchart of a switching control process.
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して、制御装置50が搭載された車両10について説明する。図1は一実施の形態における車両10の機能ブロック図である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, a vehicle 10 equipped with a control device 50 will be described with reference to FIG. FIG. 1 is a functional block diagram of a vehicle 10 according to one embodiment.
 図1に示すように車両10は、変速機11及び制御装置50が搭載されている。変速機11は、第1モータ12に接続される第1入力軸14、第2モータ13に接続される第2入力軸15及び出力軸16を備えている。第1入力軸14及び第2入力軸15は同軸上に配置される。第1入力軸14(第2入力軸15)及び出力軸16は互いに平行に配置されている。本実施形態では、第1入力軸14及び第2入力軸15は、それぞれ第1モータ12及び第2モータ13の駆動力を直接受ける主軸である。 車 両 As shown in FIG. 1, the vehicle 10 is equipped with a transmission 11 and a control device 50. The transmission 11 has a first input shaft 14 connected to the first motor 12, a second input shaft 15 connected to the second motor 13, and an output shaft 16. The first input shaft 14 and the second input shaft 15 are arranged coaxially. The first input shaft 14 (second input shaft 15) and the output shaft 16 are arranged parallel to each other. In the present embodiment, the first input shaft 14 and the second input shaft 15 are main shafts that directly receive the driving forces of the first motor 12 and the second motor 13, respectively.
 第1入力軸14及び第2入力軸15は、パイロットベアリング(図示せず)を介して互いに相対回転可能に連結されている。第1モータ12及び第2モータ13は電動モータであり、同一のトルク特性を有している。車両10に搭載されたバッテリ(図示せず)は第1モータ12及び第2モータ13の駆動回路52,53にそれぞれ電力を供給する。バッテリは、外部電力が供給されて充電される他、第2モータ13からの回生電力が供給される。 The first input shaft 14 and the second input shaft 15 are connected to each other via a pilot bearing (not shown) so as to be relatively rotatable. The first motor 12 and the second motor 13 are electric motors and have the same torque characteristics. A battery (not shown) mounted on the vehicle 10 supplies electric power to drive circuits 52 and 53 of the first motor 12 and the second motor 13, respectively. The battery is supplied with external power and charged, and also supplied with regenerative power from the second motor 13.
 変速機11の出力は、車軸17の中央に配置された差動装置18に伝達される。車軸17は出力軸16と平行に配置されている。差動装置18は左右の車軸17に駆動力を配分する。車軸17の両端に車輪19がそれぞれ配置されている。車両10は、車輪19以外に複数の車輪(図示せず)が配置されており、車軸17及び車輪19の回転駆動により走行できる。 出力 The output of the transmission 11 is transmitted to a differential device 18 disposed at the center of the axle 17. The axle 17 is arranged parallel to the output shaft 16. The differential device 18 distributes the driving force to the left and right axles 17. Wheels 19 are arranged at both ends of the axle 17, respectively. The vehicle 10 has a plurality of wheels (not shown) other than the wheels 19, and can run by rotating the axles 17 and the wheels 19.
 第1減速機20は第1入力軸14の回転を減速して出力軸16に伝達する装置である。第1減速機20は、第1入力軸14に結合する第1ギヤ21と、第2クラッチ23の切換によって出力軸16に結合または出力軸16を空転する第2ギヤ22と、を備えている。第2ギヤ22は第1ギヤ21にかみ合う。第1減速機20は、第1ギヤ21と第2ギヤ22とのかみ合いによる減速比に設定される。 The first reduction gear 20 is a device that reduces the rotation of the first input shaft 14 and transmits the rotation to the output shaft 16. The first reduction gear 20 includes a first gear 21 connected to the first input shaft 14, and a second gear 22 connected to the output shaft 16 or idling the output shaft 16 by switching the second clutch 23. . The second gear 22 meshes with the first gear 21. The first reduction gear 20 is set to a reduction ratio by the engagement of the first gear 21 and the second gear 22.
 第2クラッチ23は出力軸16と第2ギヤ22との間に介在する。第2クラッチ23は第2ギヤ22から出力軸16へ正転方向の動力を伝達するワンウェイクラッチである。第2クラッチ23は、第2ギヤ22の正回転を出力軸16に遮断可能に伝達する一方、出力軸16から第2ギヤ22への正回転の伝達を遮断する。第2クラッチ23がつながると第2ギヤ22は出力軸16に結合し、第2クラッチ23が切れると第2ギヤ22は出力軸16を空転する。 The second clutch 23 is interposed between the output shaft 16 and the second gear 22. The second clutch 23 is a one-way clutch that transmits power in the forward direction from the second gear 22 to the output shaft 16. The second clutch 23 transmits the forward rotation of the second gear 22 to the output shaft 16 so as to be able to be interrupted, and interrupts the transmission of the forward rotation from the output shaft 16 to the second gear 22. When the second clutch 23 is connected, the second gear 22 is connected to the output shaft 16, and when the second clutch 23 is disengaged, the second gear 22 idles the output shaft 16.
 第2減速機30は第2入力軸15の回転を減速して出力軸16に伝達する装置である。第2減速機30は、第2入力軸15に結合する第3ギヤ31と、出力軸16に結合し第3ギヤ31にかみ合う第4ギヤ32と、を備えている。第2モータ13は、第2減速機30を介して常に出力軸16に動力を伝達できる。第2減速機30は、第3ギヤ31と第4ギヤ32とのかみ合いにより、第1減速機20の減速比よりも小さい減速比に設定される。第1減速機20は低速用伝動経路であり、第2減速機30は高速用伝動経路である。 The second reduction gear 30 is a device that reduces the rotation of the second input shaft 15 and transmits the reduced rotation to the output shaft 16. The second reduction gear 30 includes a third gear 31 connected to the second input shaft 15 and a fourth gear 32 connected to the output shaft 16 and meshing with the third gear 31. The second motor 13 can always transmit power to the output shaft 16 via the second reduction gear 30. The second reduction gear 30 is set to a reduction gear ratio smaller than the reduction gear ratio of the first reduction gear 20 due to the engagement of the third gear 31 and the fourth gear 32. The first reduction gear 20 is a low-speed transmission path, and the second reduction gear 30 is a high-speed transmission path.
 出力軸16に結合する第5ギヤ33は、差動装置18に結合する第6ギヤ34にかみ合う。第5ギヤ33及び第6ギヤ34は、差動装置18を介して出力軸16の動力を車軸17に伝達する。 The fifth gear 33 connected to the output shaft 16 meshes with the sixth gear 34 connected to the differential device 18. The fifth gear 33 and the sixth gear 34 transmit the power of the output shaft 16 to the axle 17 via the differential 18.
 第1入力軸14と第2入力軸15との間を切断または接続する第1クラッチ40が、第1入力軸14と第2入力軸15との間に配置されている。本実施形態では第1クラッチ40はかみあいクラッチであり、アクチュエータ42によってスリーブ41を移動させて断接する。しかし、これに限られるものではなく、第1クラッチ40に摩擦クラッチ等の他のクラッチを採用したりシンクロメッシュを組み込んだりすることは当然可能である。 The first clutch 40 that disconnects or connects the first input shaft 14 and the second input shaft 15 is disposed between the first input shaft 14 and the second input shaft 15. In the present embodiment, the first clutch 40 is a meshing clutch, and the sleeve 41 is moved and disconnected by the actuator 42. However, the present invention is not limited to this, and it is of course possible to employ another clutch such as a friction clutch or incorporate a synchromesh into the first clutch 40.
 制御装置50(ECU)は、第1モータ12、第2モータ13及び第1クラッチ40を制御するための装置である。制御装置50は、CPU,ROM,RAM及びバックアップRAM(いずれも図示せず)を備えている。ROMは、プログラムを実行する際に参照されるモード切換線図60(図3参照)等のマップ及びプログラムが記憶されている。CPUは、ROMに記憶されたプログラムやマップに基づいて演算処理を実行する。RAMは、CPUでの演算結果や各センサから入力されたデータ等を一時的に記憶するメモリである。バックアップRAMは、保存すべきデータ等を記憶する不揮発性メモリである。 The control device 50 (ECU) is a device for controlling the first motor 12, the second motor 13, and the first clutch 40. The control device 50 includes a CPU, a ROM, a RAM, and a backup RAM (all not shown). The ROM stores a map such as a mode switching diagram 60 (see FIG. 3) and a program which are referred to when the program is executed. The CPU executes arithmetic processing based on programs and maps stored in the ROM. The RAM is a memory for temporarily storing a result of calculation by the CPU, data input from each sensor, and the like. The backup RAM is a non-volatile memory that stores data to be stored and the like.
 制御装置50は、CAN通信線51を通じて、第1モータ12を駆動する駆動回路52及び第2モータ13を駆動する駆動回路53が接続されている。制御装置50は、車速センサ54、アクセル開度センサ55、前後加速度センサ56、温度計57及びスリーブ位置センサ58が接続されている。制御装置50は、駆動回路52,53を使って第1モータ12及び第2モータ13を力行制御または回生制御する。 The control device 50 is connected via a CAN communication line 51 to a drive circuit 52 for driving the first motor 12 and a drive circuit 53 for driving the second motor 13. The control device 50 is connected to a vehicle speed sensor 54, an accelerator opening sensor 55, a longitudinal acceleration sensor 56, a thermometer 57, and a sleeve position sensor 58. The control device 50 uses the drive circuits 52 and 53 to perform power running control or regenerative control of the first motor 12 and the second motor 13.
 車速センサ54は、車両10の速度を検出するための装置である。車速センサ54は、出力軸16の回転速度を検出し、その検出結果を処理して車両10の速度を算出し制御装置50へ出力する出力回路(図示せず)を備えている。 The vehicle speed sensor 54 is a device for detecting the speed of the vehicle 10. The vehicle speed sensor 54 includes an output circuit (not shown) that detects the rotation speed of the output shaft 16, processes the detection result, calculates the speed of the vehicle 10, and outputs the calculated speed to the control device 50.
 アクセル開度センサ55は、ドライバーによるアクセルペダル(図示せず)の踏み込み量を検出し、その検出結果を処理して制御装置50へ出力する出力回路(図示せず)を備えている。アクセル開度センサ55の出力は、ドライバーが要求する総駆動力(要求駆動力)に比例する。 The accelerator opening sensor 55 includes an output circuit (not shown) that detects the amount of depression of an accelerator pedal (not shown) by a driver, processes the detection result, and outputs the result to the control device 50. The output of the accelerator opening sensor 55 is proportional to the total driving force (requested driving force) required by the driver.
 前後加速度センサ56は、車両10の前後方向の加速度(以下「前後G」と称す)を検出し、その検出結果を処理して制御装置50へ出力する出力回路(図示せず)を備えている。車速センサ54により検出される車速を微分して車両10の加速度(以下「車両G」と称す)を求め、前後Gと車両Gとの差分を算出することにより、制御装置50は、車両10が走行する路面の勾配を算出できる。 The longitudinal acceleration sensor 56 includes an output circuit (not shown) that detects the longitudinal acceleration of the vehicle 10 (hereinafter, referred to as “longitudinal G”), processes the detection result, and outputs the result to the control device 50. . By differentiating the vehicle speed detected by the vehicle speed sensor 54 to determine the acceleration of the vehicle 10 (hereinafter referred to as “vehicle G”) and calculating the difference between the front and rear G and the vehicle G, the control device 50 The gradient of the traveling road surface can be calculated.
 温度計57は、第1モータ12及び第2モータ13の温度をそれぞれ検出し、その検出結果を処理して制御装置50へ出力する出力回路(図示せず)を備えている。スリーブ位置センサ58は、第1クラッチ40のスリーブ41の位置を検出し、その検出結果を処理して制御装置50へ出力する出力回路(図示せず)を備えている。スリーブ位置センサ58の検出結果により、制御装置50は、第1クラッチ40がつながっているか切れているかを検出する。制御装置50に接続される他の入出力装置59としては、例えばブレーキストロークセンサが挙げられる。 The thermometer 57 includes an output circuit (not shown) that detects the temperatures of the first motor 12 and the second motor 13, processes the detection results, and outputs the result to the control device 50. The sleeve position sensor 58 includes an output circuit (not shown) that detects the position of the sleeve 41 of the first clutch 40, processes the detection result, and outputs the result to the control device 50. Based on the detection result of the sleeve position sensor 58, the control device 50 detects whether the first clutch 40 is engaged or disconnected. Another input / output device 59 connected to the control device 50 includes, for example, a brake stroke sensor.
 図2は第1モータ12、第2モータ13及び第1クラッチ40の動作の組合せを示す図表である。図2は、各モードにおいて駆動するモータ及び締結するクラッチが×で示される。制御装置50は、車速センサ54、アクセル開度センサ55等から入力された情報により、モード切換線図60(図3参照)を用いて第1モード、第2Aモード、第2Bモード、第3モード及び第4モードのいずれかに変速機11を切り換える制御をする。 FIG. 2 is a table showing combinations of operations of the first motor 12, the second motor 13, and the first clutch 40. In FIG. 2, the motor to be driven and the clutch to be engaged in each mode are indicated by x. The control device 50 uses a mode switching diagram 60 (see FIG. 3) to perform a first mode, a second A mode, a second B mode, and a third mode based on information input from the vehicle speed sensor 54, the accelerator opening sensor 55, and the like. And the control to switch the transmission 11 to one of the fourth mode and the fourth mode.
 図2に示すように第1モードでは、制御装置50は第1クラッチ40を切った状態で第1モータ12を力行制御する(図4の第1モード処理:S8)。第1モードは、発進時や低速走行時に使われる。第1モータ12の出力は、第2減速機30よりも減速比の大きい第1減速機20を介して出力軸16に伝達されるので、低速から大きな駆動トルクを得て力強い発進および低速走行が可能となる。 制 御 As shown in FIG. 2, in the first mode, the control device 50 controls the power running of the first motor 12 in a state where the first clutch 40 is disengaged (first mode processing in FIG. 4: S8). The first mode is used when starting or running at low speed. Since the output of the first motor 12 is transmitted to the output shaft 16 via the first reduction gear 20 having a larger reduction ratio than the second reduction gear 30, a strong driving torque is obtained from a low speed, and a strong start and low-speed running are achieved. It becomes possible.
 第2モード(第2A及び第2Bモード)では、制御装置50は第1クラッチ40を切った状態で第2モータ13を力行制御する。第2モータ13の出力は、第1減速機20よりも減速比の小さい第2減速機30を介して出力軸16に伝達されるので、電費の良い高速走行が可能となる。ワンウェイクラッチからなる第2クラッチ23は出力軸16から第2ギヤ22への動力の伝達を遮断するので、第2モードにおいて第1クラッチ40が切られた状態で、第2モータ13が出力軸16を駆動するときの第1減速機20及び第1モータ12による引き摺り損失を抑制できる(図4の第2Aモード処理:S9)。 で は In the second mode (2A and 2B modes), the control device 50 controls the power running of the second motor 13 with the first clutch 40 disengaged. The output of the second motor 13 is transmitted to the output shaft 16 via the second reduction gear 30 having a smaller reduction ratio than that of the first reduction gear 20, so that high-speed traveling with good power consumption is possible. The second clutch 23, which is a one-way clutch, cuts off the transmission of power from the output shaft 16 to the second gear 22, so that in the second mode, with the first clutch 40 disengaged, the second motor 13 The drag loss caused by the first reduction gear 20 and the first motor 12 when driving is controlled can be suppressed (2A mode processing in FIG. 4: S9).
 第2モードにおいて第1クラッチ40がつながれると、第1モータ12は連れ回る。このときは、第1クラッチ40をつないで第1モータ12及び第2モータ13を駆動する第4モード64への切換要求があったときに、スムーズに第4モード64へ切り換えられる(図4の第2Bモード処理:S10)。 When the first clutch 40 is engaged in the second mode, the first motor 12 rotates. At this time, when there is a request to switch to the fourth mode 64 for driving the first motor 12 and the second motor 13 by connecting the first clutch 40, the mode is smoothly switched to the fourth mode 64 (see FIG. 4). 2B mode processing: S10).
 第3モードでは、制御装置50は第1クラッチ40を切った状態で第1モータ12及び第2モータ13を力行制御する(図4の第3モード処理:S11)。第1モータ12により駆動される第2ギヤ22の回転数が、第2モータ13に駆動される第4ギヤ32(出力軸16)の回転数より大きいときは、ワンウェイクラッチからなる第2クラッチ23がつながるので、第1モータ12及び第2モータ13の駆動力が出力軸16に伝達される。 で は In the third mode, the control device 50 controls the power running of the first motor 12 and the second motor 13 with the first clutch 40 disengaged (third mode processing in FIG. 4: S11). When the rotation speed of the second gear 22 driven by the first motor 12 is higher than the rotation speed of the fourth gear 32 (output shaft 16) driven by the second motor 13, the second clutch 23 composed of a one-way clutch is used. Therefore, the driving forces of the first motor 12 and the second motor 13 are transmitted to the output shaft 16.
 一方、第1モータ12により駆動される第2ギヤ22の回転数が、第2モータ13に駆動される第4ギヤ32(出力軸16)の回転数より小さいときは第2クラッチ23が切れるので、第2モータ13の駆動力が出力軸16に伝達される。以上のように出力軸16にワンウェイクラッチからなる第2クラッチ23が配置されるので、第1モータ12及び第2モータ13が出力軸16を駆動する状態と、第2モータ13が出力軸16を駆動する状態とを、切れ目なく切り換えることができる。 On the other hand, when the rotation speed of the second gear 22 driven by the first motor 12 is smaller than the rotation speed of the fourth gear 32 (output shaft 16) driven by the second motor 13, the second clutch 23 is disengaged. The driving force of the second motor 13 is transmitted to the output shaft 16. As described above, since the second clutch 23 composed of a one-way clutch is disposed on the output shaft 16, the first motor 12 and the second motor 13 drive the output shaft 16, and the second motor 13 connects the output shaft 16 to the output shaft 16. The driving state can be switched seamlessly.
 第4モードでは、制御装置50は第1クラッチ40をつないだ状態で第1モータ12及び第2モータ13を力行制御する(図4の第4モード処理:S12)。第4モードでは、第1モータ12及び第2モータ13により出力軸16が常に駆動されるので、出力軸16に出力するトルクを大きくできる。特に、第1モータ12及び第2モータ13の両方で高速用伝動経路の第2減速機30を駆動するので、高速でも十分な駆動トルクを得て加速が可能となる。 In the fourth mode, the control device 50 controls the power running of the first motor 12 and the second motor 13 while the first clutch 40 is engaged (fourth mode process in FIG. 4: S12). In the fourth mode, the output shaft 16 is constantly driven by the first motor 12 and the second motor 13, so that the torque output to the output shaft 16 can be increased. In particular, both the first motor 12 and the second motor 13 drive the second speed reducer 30 on the high-speed transmission path, so that a sufficient driving torque can be obtained and acceleration can be performed even at a high speed.
 図3はモード切換線図60の模式図である。モード切換線図60は、車両10の速度、及び、第1モータ12及び第2モータ13の総駆動力をパラメータとする運転点74のモード切換線図60上の位置によって、変速機11の適切なモードを求めるためのマップである。切換線図60は、第1モータ12及び第2モータ13による最大出力線80の内側の領域に、複数の切換線が設定されている。本実施形態では、モード切換線図60の総駆動力(ドライバーの要求駆動力)は、アクセル開度センサ55(図1参照)の出力結果から算出される。 FIG. 3 is a schematic diagram of the mode switching diagram 60. The mode switching diagram 60 is determined based on the speed of the vehicle 10 and the position of the operating point 74 on the mode switching diagram 60 with the total driving force of the first motor 12 and the second motor 13 as parameters. It is a map for finding a suitable mode. In the switching diagram 60, a plurality of switching lines are set in a region inside the maximum output line 80 by the first motor 12 and the second motor 13. In the present embodiment, the total driving force (the driving force required by the driver) in the mode switching diagram 60 is calculated from the output result of the accelerator opening sensor 55 (see FIG. 1).
 第1切換線65及び第2切換線66は、第1モード61と第2モード62とを区画する切換線である。第1切換線65を運転点74が横切って第1モード61から第2モード62へ移動したときに、変速機11は第1モード61から第2モード62へ切り換えられる。第2切換線66を運転点74が横切って第2モード62から第1モード61へ移動したときに、変速機11は第2モード62から第1モード61へ切り換えられる。 The first switching line 65 and the second switching line 66 are switching lines that partition the first mode 61 and the second mode 62. When the operating point 74 crosses the first switching line 65 and moves from the first mode 61 to the second mode 62, the transmission 11 is switched from the first mode 61 to the second mode 62. When the operating point 74 crosses the second switching line 66 and moves from the second mode 62 to the first mode 61, the transmission 11 is switched from the second mode 62 to the first mode 61.
 第1切換線65及び第2切換線66は、第1モータ12及び第2モータ13の電費を最適にする最適電費線(図示せず)の近くに設定されている。本実施形態では、第1切換線65及び第2切換線66は最適電費線の両側に設けられている。第1切換線65と第2切換線66との間にはヒステリシス75が設定されている。ヒステリシス75により、短時間に第1モード61と第2モード62との切り換えが頻繁に行われるビジーシフトを抑制し、いわゆるトルク切れの発生を抑制する。 The first switching line 65 and the second switching line 66 are set near an optimal power consumption line (not shown) for optimizing the power consumption of the first motor 12 and the second motor 13. In the present embodiment, the first switching line 65 and the second switching line 66 are provided on both sides of the optimal power consumption line. A hysteresis 75 is set between the first switching line 65 and the second switching line 66. The hysteresis 75 suppresses a busy shift in which the switching between the first mode 61 and the second mode 62 is frequently performed in a short time, and suppresses the occurrence of so-called torque shortage.
 第3切換線67及び第4切換線68は、第1モード61と第3モード63とを区画する切換線である。第3切換線67を運転点74が横切って第1モード61から第3モード63へ移動したときに、変速機11は第1モード61から第3モード63へ切り換えられる。第4切換線68を運転点74が横切って第3モード63から第1モード61へ移動したときに、変速機11は第3モード63から第1モード61へ切り換えられる。 The third switching line 67 and the fourth switching line 68 are switching lines that partition the first mode 61 and the third mode 63. When the operating point 74 crosses the third switching line 67 and moves from the first mode 61 to the third mode 63, the transmission 11 is switched from the first mode 61 to the third mode 63. When the operating point 74 crosses the fourth switching line 68 and moves from the third mode 63 to the first mode 61, the transmission 11 is switched from the third mode 63 to the first mode 61.
 第3切換線67及び第4切換線68は、第1モータ12及び第2モータ13の電費を最適にする最適電費線(図示せず)の近くに設定されている。本実施形態では、第3切換線67及び第4切換線68は最適電費線の両側に設けられている。第3切換線67と第4切換線68との間にはヒステリシス76が設定されている。ヒステリシス76により、短時間に第1モード61と第3モード63との切り換えが頻繁に行われるビジーシフトを抑制し、ドライバーの違和感を抑制する。 The third switching line 67 and the fourth switching line 68 are set near an optimal power consumption line (not shown) for optimizing the power consumption of the first motor 12 and the second motor 13. In the present embodiment, the third switching line 67 and the fourth switching line 68 are provided on both sides of the optimal power consumption line. A hysteresis 76 is set between the third switching line 67 and the fourth switching line 68. The hysteresis 76 suppresses a busy shift in which the switching between the first mode 61 and the third mode 63 is frequently performed in a short time, and suppresses the driver's discomfort.
 第5切換線69及び第6切換線70は、第3モード63と第4モード64とを区画する切換線である。第5切換線69を運転点74が横切って第3モード63から第4モード64へ移動したときに、変速機11は第3モード63から第4モード64へ切り換えられる。第6切換線70を運転点74が横切って第4モード64から第3モード63へ移動したときに、変速機11は第4モード64から第3モード63へ切り換えられる。 The fifth switching line 69 and the sixth switching line 70 are switching lines that partition the third mode 63 and the fourth mode 64. When the operating point 74 crosses the fifth switching line 69 and moves from the third mode 63 to the fourth mode 64, the transmission 11 is switched from the third mode 63 to the fourth mode 64. When the operating point 74 crosses the sixth switching line 70 and moves from the fourth mode 64 to the third mode 63, the transmission 11 is switched from the fourth mode 64 to the third mode 63.
 第5切換線69及び第6切換線70は、第1モータ12及び第2モータ13の電費を最適にする最適電費線(図示せず)の近くに設定されている。本実施形態では、第5切換線69及び第6切換線70は最適電費線の両側に設けられている。第5切換線69と第6切換線70との間にはヒステリシス77が設定されている。ヒステリシス77により、短時間に第3モード63と第4モード64との切り換えが頻繁に行われるビジーシフトを抑制し、ドライバーの違和感を抑制する。 (5) The fifth switching line 69 and the sixth switching line 70 are set near an optimal power consumption line (not shown) that optimizes the power consumption of the first motor 12 and the second motor 13. In the present embodiment, the fifth switching line 69 and the sixth switching line 70 are provided on both sides of the optimal power consumption line. A hysteresis 77 is set between the fifth switching line 69 and the sixth switching line 70. The hysteresis 77 suppresses a busy shift in which the switching between the third mode 63 and the fourth mode 64 is frequently performed in a short time, and suppresses the driver's discomfort.
 第7切換線71及び第8切換線72は、第2モード62と第4モード64とを区画する切換線である。第7切換線71を運転点74が横切って第2モード62から第4モード64へ移動したときに、変速機11は第2モード62から第4モード64へ切り換えられる。第8切換線72を運転点74が横切って第4モード64から第2モード62へ移動したときに、変速機11は第4モード64から第2モード62へ切り換えられる。 7The seventh switching line 71 and the eighth switching line 72 are switching lines that partition the second mode 62 and the fourth mode 64. When the operating point 74 crosses the seventh switching line 71 and moves from the second mode 62 to the fourth mode 64, the transmission 11 is switched from the second mode 62 to the fourth mode 64. When the operating point 74 crosses the eighth switching line 72 and moves from the fourth mode 64 to the second mode 62, the transmission 11 is switched from the fourth mode 64 to the second mode 62.
 第7切換線71及び第8切換線72は、第1モータ12及び第2モータ13の電費を最適にする最適電費線(図示せず)の近くに設定されている。本実施形態では、第7切換線71及び第8切換線72は最適電費線の両側に設けられている。第7切換線71と第8切換線72との間にはヒステリシス78が設定されている。ヒステリシス78により、短時間に第2モード62と第4モード64との切り換えが頻繁に行われるビジーシフトを抑制し、ドライバーの違和感を抑制する。 (7) The seventh switching line 71 and the eighth switching line 72 are set near an optimal power consumption line (not shown) for optimizing the power consumption of the first motor 12 and the second motor 13. In the present embodiment, the seventh switching line 71 and the eighth switching line 72 are provided on both sides of the optimal power consumption line. A hysteresis 78 is set between the seventh switching line 71 and the eighth switching line 72. The hysteresis 78 suppresses a busy shift in which the switching between the second mode 62 and the fourth mode 64 is frequently performed in a short time, and suppresses the driver's discomfort.
 第9切換線73及び第10切換線74は、第2モード62において第1クラッチ40の断接のための切換線である。第2モード62では第1モータ12は駆動していないので、第1クラッチ40を断接できる。第9切換線73を低速側から高速側へ運転点74が横切ったときに、第1クラッチ40がつながれる(第2Bモード)。第1クラッチ40がつながれると第1モータ12は連れ回る。このときに、第1モータ12の回生制御を行うことは可能である。第1モータ12の回生制御により電費を向上できる。 The ninth switching line 73 and the tenth switching line 74 are switching lines for connecting and disconnecting the first clutch 40 in the second mode 62. In the second mode 62, since the first motor 12 is not driven, the first clutch 40 can be connected and disconnected. When the operating point 74 crosses the ninth switching line 73 from the low speed side to the high speed side, the first clutch 40 is engaged (second B mode). When the first clutch 40 is engaged, the first motor 12 rotates. At this time, the regenerative control of the first motor 12 can be performed. The power consumption can be improved by the regenerative control of the first motor 12.
 また、第2モード62において第10切換線74を高速側から低速側へ運転点74が横切ったときに、第1クラッチ40が切られる(第2Aモード)。第1クラッチ40が切られると第1モータ12の連れ回りがなくなるので、第2モード62において第1モータ12による引き摺り損失を抑制できる。これにより第2モード62のときの電費を向上できる。 In addition, when the operating point 74 crosses the tenth switching line 74 from the high speed side to the low speed side in the second mode 62, the first clutch 40 is disengaged (second A mode). When the first clutch 40 is disengaged, the first motor 12 stops rotating, so that the drag loss of the first motor 12 in the second mode 62 can be suppressed. As a result, power consumption in the second mode 62 can be improved.
 第9切換線73と第10切換線74との間にはヒステリシス79が設定されている。ヒステリシス79により、短時間に第1クラッチ40の断接が頻繁に行われるビジーシフトを抑制し、ドライバーの違和感を抑制する。 ヒ A hysteresis 79 is set between the ninth switching line 73 and the tenth switching line 74. The hysteresis 79 suppresses a busy shift in which the first clutch 40 is frequently connected and disconnected in a short period of time, and suppresses the driver's discomfort.
 図4を参照して制御装置50(図1参照)が実行する切換制御処理について説明する。図4は切換制御処理のフローチャートである。制御装置50は、第1モータ12及び第2モータ13の温度、及び、車両10が走行する路面の勾配に応じた種々のモード切換線図60(図3参照)を、ROMに複数記憶している。切換制御処理は電源が投入されている間、制御装置50によって繰り返し(例えば0.2秒間隔で)実行される処理である。 The switching control process executed by the control device 50 (see FIG. 1) will be described with reference to FIG. FIG. 4 is a flowchart of the switching control process. The control device 50 stores in the ROM a plurality of mode switching diagrams 60 (see FIG. 3) corresponding to the temperatures of the first motor 12 and the second motor 13 and the gradient of the road surface on which the vehicle 10 travels. I have. The switching control process is a process that is repeatedly executed (for example, at intervals of 0.2 seconds) by the control device 50 while the power is turned on.
 制御装置50は、切換制御処理において、アクセル開度センサ55の入力に基づきアクセル開度を取得して、ドライバーの要求駆動力(総駆動力)を算出する(S1)。制御装置50は、車速センサ54の入力に基づいて車速を取得し(S2)、温度計57の入力に基づき第1モータ12及び第2モータ13の温度を取得する(S3)。 In the switching control process, the control device 50 acquires the accelerator opening based on the input of the accelerator opening sensor 55 and calculates the driver's required driving force (total driving force) (S1). The control device 50 acquires the vehicle speed based on the input of the vehicle speed sensor 54 (S2), and acquires the temperatures of the first motor 12 and the second motor 13 based on the input of the thermometer 57 (S3).
 その結果、第1モータ12及び第2モータ13のいずれかの温度が、第1モータ12や第2モータ13の絶縁性能の劣化や耐久性の低下を引き起こすおそれのある温度(以下「第1温度」と称す)以上の場合は(S4:Yes)、S5~S7の処理をスキップして、制御装置50は第4モード処理(S12)を実行する。第4モード処理(S12)では、第1クラッチ40をつないだ状態で第1モータ12及び第2モータ13が力行制御されるので、第1モータ12及び第2モータ13に駆動力が配分される。1モータ当たりの負荷を減らすことができるので、モータの過熱を防ぎ、第1モータ12や第2モータ13の絶縁性能の劣化や耐久性の低下を防止できる。 As a result, any one of the temperatures of the first motor 12 and the second motor 13 may be reduced to a temperature (hereinafter referred to as a “first temperature”) that may cause deterioration of the insulation performance and durability of the first motor 12 and the second motor 13. In this case (S4: Yes), the control device 50 skips the processing of S5 to S7 and executes the fourth mode processing (S12). In the fourth mode process (S12), the first motor 12 and the second motor 13 are power-run controlled while the first clutch 40 is engaged, so that the driving force is distributed to the first motor 12 and the second motor 13. . Since the load per motor can be reduced, overheating of the motor can be prevented, and deterioration of insulation performance and durability of the first motor 12 and the second motor 13 can be prevented.
 一方、第1モータ12及び第2モータ13の両方の温度が第1温度未満の場合は(S4:No)、制御装置50は、車速センサ54及び前後加速度センサ56の入力に基づき、車両10が走行する路面の勾配を取得する(S5)。次に制御装置50は、第1モータ12及び第2モータ13の温度、及び、路面の勾配に基づき、それらに関連付けられたマップ(モード切換線図60)を選択する(S6)。 On the other hand, when the temperature of both the first motor 12 and the second motor 13 is lower than the first temperature (S4: No), the control device 50 controls the vehicle 10 based on the input of the vehicle speed sensor 54 and the longitudinal acceleration sensor 56. The gradient of the traveling road surface is acquired (S5). Next, the control device 50 selects a map (mode switching diagram 60) associated therewith based on the temperatures of the first motor 12 and the second motor 13 and the gradient of the road surface (S6).
 S6の処理において制御装置50は、第1モータ12又は第2モータ13の温度が高いほど、より小さい要求駆動力で第1モード61から第3モード63に切り換える、又は、より小さい要求駆動力で第2モード62から第4モード64に切り換えるように、第3切換線67及び第7切換線71が下方にシフトしたモード切換線図60を選択する。また制御装置50は、車両10が登坂している路面の勾配が大きいほど、第1切換線65と第2切換線66との間のヒステリシス71が大きいモード切換線図60を選択する。 In the process of S6, the control device 50 switches from the first mode 61 to the third mode 63 with a smaller required driving force as the temperature of the first motor 12 or the second motor 13 is higher, or with a smaller required driving force. In order to switch from the second mode 62 to the fourth mode 64, a mode switching diagram 60 in which the third switching line 67 and the seventh switching line 71 are shifted downward is selected. Further, control device 50 selects a mode switching diagram 60 in which hysteresis 71 between first switching line 65 and second switching line 66 is greater as the gradient of the road surface on which vehicle 10 is climbing is greater.
 制御装置50は、車速および要求駆動力によって特定される運転点74のモード切換線図60上の位置を算出し(S7)、第1モード処理(S8)、第2Aモード処理(S9)、第2Bモード処理(S10)、第3モード処理(S11)、第4モード処理(S12)のいずれかを実行して、この処理を終了する。 The control device 50 calculates the position of the operating point 74 on the mode switching diagram 60 specified by the vehicle speed and the required driving force (S7), the first mode process (S8), the second A mode process (S9), One of the 2B mode processing (S10), the third mode processing (S11), and the fourth mode processing (S12) is executed, and this processing ends.
 制御装置50は、モード切換線図60を用いて第1モード、第2モード(第2A及び第2Bモード)、第3モード及び第4モードのいずれかに変速機11を切り換え得る。よって、低速から高速まで駆動力を確保して、車両10の運動性能を向上できる。さらに、最適電費線に近い位置に第1切換線65から第10切換線74を設定することにより電費を向上できる。よって、車両10の運動性能および電費を向上できる。 The control device 50 can switch the transmission 11 to any one of the first mode, the second mode (the second A and the second B mode), the third mode, and the fourth mode using the mode switching diagram 60. Therefore, it is possible to secure the driving force from a low speed to a high speed and improve the kinetic performance of the vehicle 10. Further, by setting the first switching line 65 to the tenth switching line 74 at a position close to the optimal power consumption line, the power consumption can be improved. Therefore, the kinetic performance and electric power consumption of the vehicle 10 can be improved.
 モード切換線図60は、第1切換線65と第2切換線66との間、第3切換線67と第4切換線68との間、第5切換線69と第6切換線70との間、第7切換線71と第8切換線72との間、及び、第9切換線73と第10切換線74との間にそれぞれヒステリシス75~79が設けられているので、短時間に切り換えが頻繁に行われるビジーシフトを抑制できる。その結果、トルク切れの発生を抑制できるので、車両10の運動性能をさらに向上できる。ドライバーの違和感を抑制することもできる。 The mode switching diagram 60 shows the relationship between the first switching line 65 and the second switching line 66, between the third switching line 67 and the fourth switching line 68, and between the fifth switching line 69 and the sixth switching line 70. The hysteresis 75 to 79 are provided between the switching line 71, the switching line 71 and the switching line 72, and between the switching line 73 and the switching line 74, respectively, so that the switching can be performed in a short time. Can be suppressed. As a result, the occurrence of torque shortage can be suppressed, so that the dynamic performance of the vehicle 10 can be further improved. It can also reduce driver discomfort.
 制御装置50は、第1モータ12又は第2モータ13の温度が高いほど、より小さい要求駆動力で第1モード61から第3モード63に切り換えるように第3切換線67が下方にシフトした、又は、より小さい要求駆動力で第2モード62から第4モード64に切り換えるように第7切換線71が下方にシフトしたモード切換線図60を選択するので、モータの温度が高いときは、より小さい要求駆動力で第1モータ12及び第2モータ13を同時に駆動できる。よって、駆動力を配分してモータの負荷を減らし、第1モータ12や第2モータ13の過熱を抑制できる。 The control device 50 shifts the third switching line 67 downward so as to switch from the first mode 61 to the third mode 63 with a smaller required driving force as the temperature of the first motor 12 or the second motor 13 increases, Alternatively, since the mode switching diagram 60 in which the seventh switching line 71 is shifted downward so as to switch from the second mode 62 to the fourth mode 64 with a smaller required driving force is selected, when the motor temperature is high, The first motor 12 and the second motor 13 can be driven simultaneously with a small required driving force. Therefore, it is possible to reduce the load on the motor by distributing the driving force and suppress the overheating of the first motor 12 and the second motor 13.
 また制御装置50は、車両10が登坂している路面の勾配が大きいほど、第1切換線65と第2切換線66との間のヒステリシス75が大きいモード切換線図60を選択するので、勾配が大きい路面を登坂するときの第1モード61と第2モード62との間のビジーシフトを抑制できる。 The controller 50 selects the mode switching diagram 60 in which the hysteresis 75 between the first switching line 65 and the second switching line 66 is larger as the gradient of the road surface on which the vehicle 10 is climbing is larger. Busy shift between the first mode 61 and the second mode 62 when the vehicle climbs a road surface having a large road surface.
 なお、第1切換線65と第2切換線66との間のヒステリシス75を大きくする変更回路としては、制御装置50のうち、切換制御処理(図4参照)においてS6の処理を実行する回路が該当する。第3切換線67を下方にシフトさせる移動回路としては、制御装置50のうち、切換制御処理(図4参照)においてS6の処理を実行する回路が該当する。第1モータ12や第2モータ13の温度が第1温度以上の場合に第4モード64に切り換える切換回路としては、制御装置50のうち、切換制御処理(図4参照)においてS4及びS12の処理を実行する回路が該当する。 As a change circuit for increasing the hysteresis 75 between the first switching line 65 and the second switching line 66, a circuit that executes the processing of S6 in the switching control processing (see FIG. 4) in the control device 50 is used. Applicable. The moving circuit that shifts the third switching line 67 downward corresponds to a circuit that executes the process of S6 in the switching control process (see FIG. 4) in the control device 50. The switching circuit for switching to the fourth mode 64 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature includes the processes of S4 and S12 in the switching control process (see FIG. 4) of the control device 50. Corresponds to a circuit that executes
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily inferred.
 実施形態では、モード切換線図60のパラメータとなる要求駆動力としてアクセル開度を用いる場合について説明したが、必ずしもこれに限られるものではない。例えばアクセル開速度(アクセル開度の変化速度)等のように、要求駆動力(総駆動力)に比例する値であれば、他の値を用いることは当然可能である。また、ブレーキストロークセンサの検出結果を要求駆動力に加えることは当然可能である。 In the embodiment, the case where the accelerator opening is used as the required driving force as a parameter of the mode switching diagram 60 has been described, but the present invention is not necessarily limited to this. For example, as long as the value is proportional to the required driving force (total driving force), such as an accelerator opening speed (a changing speed of the accelerator opening), other values can of course be used. It is also possible to add the detection result of the brake stroke sensor to the required driving force.
 実施形態では、車速センサ54及び前後加速度センサ56(傾斜検出器の一例)の検出結果を用いて、車両10が走行する路面の勾配を算出する場合について説明したが、必ずしもこれに限られるものではない。車両10の前後方向の傾斜を専用に検出する傾斜検出器(傾斜センサ)を設けることは当然可能である。 In the embodiment, the case has been described where the gradient of the road surface on which the vehicle 10 travels is calculated using the detection results of the vehicle speed sensor 54 and the longitudinal acceleration sensor 56 (an example of a tilt detector). However, the present invention is not necessarily limited to this. Absent. It is naturally possible to provide an inclination detector (inclination sensor) for exclusively detecting the inclination of the vehicle 10 in the front-rear direction.
 実施形態では、切換制御処理(図4参照)のS4の処理において、第1モータ12や第2モータ13の温度が第1温度以上の場合に第4モード64に切り換える場合について説明したが、必ずしもこれに限られるものではない。第1モータ12や第2モータ13の温度が第1温度以上の場合に第3モード63に切り換えることは当然可能である。この場合も2つのモータを使って車両10を走行できるので、モータの負荷を減らし第1モータ12や第2モータ13の過熱を抑制できる。 In the embodiment, the case where the mode is switched to the fourth mode 64 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature has been described in the process of S4 of the switching control process (see FIG. 4). However, it is not limited to this. It is naturally possible to switch to the third mode 63 when the temperature of the first motor 12 or the second motor 13 is equal to or higher than the first temperature. Also in this case, since the vehicle 10 can travel using the two motors, the load on the motors can be reduced and the overheating of the first motor 12 and the second motor 13 can be suppressed.
 実施形態では、第1切換線65と第2切換線66との間、第3切換線67と第4切換線68との間、第5切換線69と第6切換線70との間、第7切換線71と第8切換線72との間、及び、第9切換線73と第10切換線74との間にそれぞれヒステリシス75~79が設けられる場合について説明したが、必ずしもこれに限られるものではない。ヒステリシス75~79のいずれか1つ以上が設定されていれば、ヒステリシスが設定されたモード間のビジーシフトを抑制できるので好ましい。 In the embodiment, between the first switching line 65 and the second switching line 66, between the third switching line 67 and the fourth switching line 68, between the fifth switching line 69 and the sixth switching line 70, The case where the hysteresis 75 to 79 is provided between the seventh switching line 71 and the eighth switching line 72 and between the ninth switching line 73 and the tenth switching line 74 has been described, but is not necessarily limited thereto. Not something. If any one or more of the hysteresis 75 to 79 is set, it is preferable because a busy shift between the modes in which the hysteresis is set can be suppressed.
 実施形態では、ROMに記憶された複数のモード切換線図60の中から、第1モータ12及び第2モータ13の温度、及び、車両10が走行する路面の勾配に応じたモード切換線図を選択し、そのモード切換線図を用いて変速機11を制御する場合について説明したが、必ずしもこれに限られるものではない。モータの温度や路面の勾配に応じて切換線を補正し、モード切換線図60のヒステリシス71を広げたり第3切換線67や第7切換線71を下方にシフトさせたりすることは当然可能である。この場合も同様の効果が得られる。 In the embodiment, a mode switching diagram according to the temperature of the first motor 12 and the second motor 13 and the gradient of the road surface on which the vehicle 10 travels is selected from a plurality of mode switching diagrams 60 stored in the ROM. Although the case where the transmission 11 is selected and the transmission 11 is controlled using the mode switching diagram has been described, the invention is not necessarily limited to this. It is of course possible to correct the switching line according to the motor temperature and the gradient of the road surface to widen the hysteresis 71 of the mode switching diagram 60 and shift the third switching line 67 and the seventh switching line 71 downward. is there. In this case, the same effect can be obtained.
 実施形態では、第1モータ12及び第2モータ13にトルク特性が同一の電動モータを用いる場合について説明したが、必ずしもこれに限られるものではない。トルク特性が異なる電動モータを用いることは当然可能である。例えば、低速用のトルク特性を有するモータを第1モータ12とし、高速用のトルク特性を有するモータを第2モータ13とする。低速用のトルク特性を有する第1モータ12は、トルクピーク値が低回転側にあるモータである。高速用のトルク特性を有する第2モータ13は、第1モータ12のトルクがピークとなる回転数よりも高回転側にトルクピーク値があるモータである。 In the embodiment, the case has been described in which the first motor 12 and the second motor 13 use electric motors having the same torque characteristics. However, the present invention is not necessarily limited to this. It is of course possible to use electric motors having different torque characteristics. For example, a motor having a low-speed torque characteristic is referred to as a first motor 12, and a motor having a high-speed torque characteristic is referred to as a second motor 13. The first motor 12 having a low-speed torque characteristic is a motor whose torque peak value is on the low rotation side. The second motor 13 having high-speed torque characteristics is a motor having a torque peak value on a higher rotation side than the rotation speed at which the torque of the first motor 12 peaks.
 実施形態では、第1入力軸14及び第2入力軸15と出力軸16との間に中間軸が配置されていない場合について説明したが、必ずしもこれに限られるものではない。中間軸を1本以上設け、中間軸にそれぞれギヤを配置し、第1減速機20及び第2減速機30の一部を構成する歯車列を中間軸に設けることは当然可能である。 In the embodiment, the case where the intermediate shaft is not arranged between the first input shaft 14 and the second input shaft 15 and the output shaft 16 has been described, but the present invention is not limited to this. It is naturally possible to provide one or more intermediate shafts, arrange the gears on the intermediate shafts, and provide the intermediate shaft with a gear train that constitutes a part of the first reduction gear 20 and the second reduction gear 30.
 実施形態では、第1入力軸14及び第2入力軸15が第1モータ12及び第2モータ13の駆動力を直接受ける場合について説明したが、必ずしもこれに限られるものではない。第1モータ12と第1入力軸14との間や第2モータ13と第2入力軸15との間に歯車列やベルト等を介在することは当然可能である。 In the embodiment, the case where the first input shaft 14 and the second input shaft 15 directly receive the driving force of the first motor 12 and the second motor 13 has been described, but the present invention is not necessarily limited to this. It is naturally possible to interpose a gear train or a belt between the first motor 12 and the first input shaft 14 or between the second motor 13 and the second input shaft 15.
 実施形態では、歯車列を用いて第1減速機20及び第2減速機30を構成する場合について説明したが、必ずしもこれに限られるものではない。第1減速機20及び第2減速機30に、ベルトや無段変速機(CVT)等を用いた他の減速機を用いることは当然可能である。 In the embodiment, the case where the first reduction gear 20 and the second reduction gear 30 are configured using the gear train has been described, but the present invention is not necessarily limited to this. It is naturally possible to use other reduction gears using a belt, a continuously variable transmission (CVT) or the like as the first reduction gear 20 and the second reduction gear 30.
 実施形態では、出力軸16と平行に配置された車軸17に車輪19が取り付けられる場合について説明したが、必ずしもこれに限られるものではない。例えば差動装置18に一対のプロペラシャフトを接続し、そのプロペラシャフトをそれぞれ車軸に接続することは当然可能である。これにより4輪駆動の車両が得られる。 In the embodiment, the case where the wheels 19 are mounted on the axle 17 arranged in parallel with the output shaft 16 has been described, but the present invention is not necessarily limited to this. For example, it is naturally possible to connect a pair of propeller shafts to the differential device 18 and connect each of the propeller shafts to the axle. As a result, a four-wheel drive vehicle is obtained.
 10  車両
 11  変速機
 12  第1モータ
 13  第2モータ
 14  第1入力軸
 15  第2入力軸
 16  出力軸
 20  第1減速機
 23  第2クラッチ
 30  第2減速機
 40  第1クラッチ
 50  制御装置
 54  車速センサ(傾斜検出器の一部)
 56  前後加速度センサ(傾斜検出器の一部)
 57  温度計
 60  モード切換線図
 61  第1モード
 62  第2モード
 62A 第2Aモード
 62B 第2Bモード
 63  第3モード
 64  第4モード
 65  第1切換線
 66  第2切換線
 67  第3切換線
 68  第4切換線
 69  第5切換線
 70  第6切換線
 71  第7切換線
 72  第8切換線
 73  第9切換線
 74  第10切換線
 75,76,77,78,79 ヒステリシス
DESCRIPTION OF SYMBOLS 10 Vehicle 11 Transmission 12 1st motor 13 2nd motor 14 1st input shaft 15 2nd input shaft 16 output shaft 20 1st reduction gear 23 2nd clutch 30 2nd reduction gear 40 1st clutch 50 control device 54 vehicle speed sensor (Part of tilt detector)
56 longitudinal acceleration sensor (part of tilt detector)
57 thermometer 60 mode switching diagram 61 first mode 62 second mode 62A second A mode 62B second B mode 63 third mode 64 fourth mode 65 first switching line 66 second switching line 67 third switching line 68 fourth Switching line 69 Fifth switching line 70 Sixth switching line 71 Seventh switching line 72 Eighth switching line 73 Ninth switching line 74 Tenth switching line 75,76,77,78,79 Hysteresis

Claims (5)

  1.  車両に搭載され、モード切換線図を用いて変速機の制御を行う制御装置であって、
     前記変速機は、第1モータ及び第2モータにそれぞれ結合し同軸上に配置される第1入力軸および第2入力軸と、
     前記第1入力軸の動力を出力軸に伝達する第1減速機と、
     前記第1減速機の減速比よりも小さい減速比で前記第2入力軸の動力を前記出力軸に伝達する第2減速機と、
     前記第1入力軸と前記第2入力軸とを切断または接続する第1クラッチと、
     前記第1減速機から前記出力軸へ動力を伝達するワンウェイクラッチからなる第2クラッチと、を備え、
     前記モード切換線図は、前記第1クラッチを切断し前記第1モータを駆動する第1モードから、前記第1クラッチを切断し前記第2モータを駆動する第2モードに切り換える第1切換線と、
     前記第2モードから前記第1モードに切り換える第2切換線と、
     前記第1モードから、前記第1クラッチを切断し前記第1モータ及び前記第2モータを駆動する第3モードに切り換える第3切換線と、
     前記第3モードから前記第1モードに切り換える第4切換線と、
     前記第3モードから、前記第1クラッチを接続し前記第1モータ及び前記第2モータを駆動する第4モードに切り換える第5切換線と、
     前記第4モードから前記第3モードに切り換える第6切換線と、
     前記第2モードから前記第4モードに切り換える第7切換線と、
     前記第4モードから前記第2モードに切り換える第8切換線と、
     前記第2モードにおいて前記第1クラッチを接続する第9切換線と、
     前記第2モードにおいて前記第1クラッチを切断する第10切換線と、を備える制御装置。
    A control device mounted on a vehicle and controlling a transmission using a mode switching diagram,
    The transmission includes a first input shaft and a second input shaft that are respectively coupled to the first motor and the second motor and are coaxially arranged;
    A first reduction gear that transmits power of the first input shaft to an output shaft;
    A second reduction gear that transmits power of the second input shaft to the output shaft at a reduction ratio smaller than a reduction ratio of the first reduction gear;
    A first clutch that disconnects or connects the first input shaft and the second input shaft;
    A second clutch consisting of a one-way clutch for transmitting power from the first reduction gear to the output shaft,
    The mode switching diagram includes a first switching line for switching from a first mode in which the first clutch is disengaged to drive the first motor to a second mode in which the first clutch is disengaged and the second motor is driven. ,
    A second switching line for switching from the second mode to the first mode;
    A third switching line for switching from the first mode to a third mode for disengaging the first clutch and driving the first motor and the second motor;
    A fourth switching line for switching from the third mode to the first mode;
    A fifth switching line that switches from the third mode to a fourth mode in which the first clutch is connected to drive the first motor and the second motor;
    A sixth switching line for switching from the fourth mode to the third mode,
    A seventh switching line for switching from the second mode to the fourth mode,
    An eighth switching line for switching from the fourth mode to the second mode,
    A ninth switching line that connects the first clutch in the second mode;
    A tenth switching line that disconnects the first clutch in the second mode.
  2.  前記第1切換線と前記第2切換線との間、前記第3切換線と前記第4切換線との間、前記第5切換線と前記第6切換線との間、前記7切換線と前記第8切換線との間、及び、前記第9切換線と前記第10切換線との間にそれぞれヒステリシスが設けられる請求項1記載の制御装置。 Between the first switching line and the second switching line, between the third switching line and the fourth switching line, between the fifth switching line and the sixth switching line, and between the seven switching lines. The control device according to claim 1, wherein hysteresis is provided between the eighth switching line and between the ninth switching line and the tenth switching line.
  3.  前記車両は、前記車両の前後方向の傾斜の大きさに関する情報を検出する傾斜検出器を備え、
     前記情報により所定の勾配以上の路面を前記車両が登坂していると判断される場合に、前記第1切換線と前記第2切換線との間のヒステリシスを大きくする変更回路を備える請求項2記載の制御装置。
    The vehicle includes an inclination detector that detects information about a magnitude of an inclination of the vehicle in a front-rear direction,
    3. A change circuit for increasing a hysteresis between the first switching line and the second switching line when it is determined from the information that the vehicle is climbing a road surface having a predetermined slope or higher. The control device as described.
  4.  前記車両は、前記第1モータ及び前記第2モータの温度を検出する温度計を備え、
     前記温度計が検出した温度が高いほど、より小さい要求駆動力で前記第1モード又は前記第2モードから第3モード又は前記第4モードに切り換えるように前記第3切換線または前記第7切換線を移動させる移動回路を備える請求項1から3のいずれかに記載の制御装置。
    The vehicle includes a thermometer that detects temperatures of the first motor and the second motor,
    The third switching line or the seventh switching line is configured to switch from the first mode or the second mode to the third mode or the fourth mode with a smaller required driving force as the temperature detected by the thermometer is higher. The control device according to any one of claims 1 to 3, further comprising a moving circuit for moving the control signal.
  5.  前記車両は、前記第1モータ及び前記第2モータの温度を検出する温度計を備え、
     前記温度計が検出した温度が所定の温度以上であると判断される場合に前記第3モード又は前記第4モードに切り換える切換回路を備える請求項1から4のいずれかに記載の制御装置。
    The vehicle includes a thermometer that detects temperatures of the first motor and the second motor,
    The control device according to any one of claims 1 to 4, further comprising a switching circuit that switches to the third mode or the fourth mode when it is determined that the temperature detected by the thermometer is equal to or higher than a predetermined temperature.
PCT/JP2019/035718 2018-09-14 2019-09-11 Control device WO2020054765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-172992 2018-09-14
JP2018172992A JP6745309B2 (en) 2018-09-14 2018-09-14 Control device

Publications (1)

Publication Number Publication Date
WO2020054765A1 true WO2020054765A1 (en) 2020-03-19

Family

ID=69777056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035718 WO2020054765A1 (en) 2018-09-14 2019-09-11 Control device

Country Status (2)

Country Link
JP (1) JP6745309B2 (en)
WO (1) WO2020054765A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022024216A1 (en) * 2020-07-28 2022-02-03

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350581B2 (en) * 1984-05-16 1988-10-11 Toyota Motor Co Ltd
JPH0998519A (en) * 1995-10-02 1997-04-08 Mitsubishi Motors Corp Driving equipment of electric vehicle
JP2002125393A (en) * 2000-10-16 2002-04-26 Nissan Motor Co Ltd Controller of dynamo-electric machine
JP2010215189A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Drive device for vehicle
JP2013108604A (en) * 2011-11-24 2013-06-06 Aisin Seiki Co Ltd Vehicle driving device
JP2017132344A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Hybrid vehicle
JP6353576B1 (en) * 2017-03-22 2018-07-04 株式会社ユニバンス Power transmission device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350581B2 (en) * 1984-05-16 1988-10-11 Toyota Motor Co Ltd
JPH0998519A (en) * 1995-10-02 1997-04-08 Mitsubishi Motors Corp Driving equipment of electric vehicle
JP2002125393A (en) * 2000-10-16 2002-04-26 Nissan Motor Co Ltd Controller of dynamo-electric machine
JP2010215189A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Drive device for vehicle
JP2013108604A (en) * 2011-11-24 2013-06-06 Aisin Seiki Co Ltd Vehicle driving device
JP2017132344A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Hybrid vehicle
JP6353576B1 (en) * 2017-03-22 2018-07-04 株式会社ユニバンス Power transmission device

Also Published As

Publication number Publication date
JP2020048271A (en) 2020-03-26
JP6745309B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP5429400B2 (en) Hybrid drive device for vehicle
JPH0993714A (en) Driver for electric vehicle
WO2014045092A1 (en) Control device for hybrid vehicle
JP5808601B2 (en) Driving force distribution control device and four-wheel drive vehicle
JP2007269072A (en) Working vehicle
JP2008195143A (en) Cooperative regenerative braking control device of hybrid vehicle
JP6807914B2 (en) Power system for torque vectoring control for electric vehicles
WO2020054765A1 (en) Control device
JPWO2018185827A1 (en) Clutch control method and clutch control device for four-wheel drive vehicle
JP4760757B2 (en) Vehicle drive device
JP5704339B2 (en) Fine movement control device for vehicle
JP6715901B2 (en) Drive
JP2014094596A (en) Gear shift controller for hybrid vehicle
JP4155378B2 (en) Drive control device for four-wheel drive vehicle
WO2021033301A1 (en) Drive device
JP5600286B2 (en) Driving force distribution control device for all-wheel drive vehicles
WO2023047587A1 (en) Travel drive control device for four-wheel-drive vehicle
WO2022024216A1 (en) Setting-off assistance device
JP7350098B2 (en) Control device
JP4136978B2 (en) Power transmission device for hybrid vehicle
JP2014054952A (en) Hybrid vehicle control device
JP7522394B2 (en) Drive control device for four-wheel drive vehicle
JP5685429B2 (en) Driving force distribution control device for all-wheel drive vehicles
JP7477302B2 (en) Control device
JP4424195B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859729

Country of ref document: EP

Kind code of ref document: A1