WO2020054256A1 - 人工皮革、及び、その製造方法 - Google Patents

人工皮革、及び、その製造方法 Download PDF

Info

Publication number
WO2020054256A1
WO2020054256A1 PCT/JP2019/030739 JP2019030739W WO2020054256A1 WO 2020054256 A1 WO2020054256 A1 WO 2020054256A1 JP 2019030739 W JP2019030739 W JP 2019030739W WO 2020054256 A1 WO2020054256 A1 WO 2020054256A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
fiber
artificial leather
fiber layer
fiber sheet
Prior art date
Application number
PCT/JP2019/030739
Other languages
English (en)
French (fr)
Inventor
大介 弘中
義幸 田所
慶一郎 阪田
大樹 梅本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2020546753A priority Critical patent/JP7165199B2/ja
Priority to EP19859696.7A priority patent/EP3851573A4/en
Priority to KR1020217005755A priority patent/KR20210035276A/ko
Priority to US17/270,113 priority patent/US20210180247A1/en
Priority to CN201980057160.0A priority patent/CN112639207A/zh
Publication of WO2020054256A1 publication Critical patent/WO2020054256A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0013Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using multilayer webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0009Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using flocked webs or pile fabrics upon which a resin is applied; Teasing, raising web before resin application
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0043Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
    • D06N3/0052Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers obtained by leaching out of a compound, e.g. water soluble salts, fibres or fillers; obtained by freezing or sublimation; obtained by eliminating drops of sublimable fluid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0075Napping, teasing, raising or abrading of the resin coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/02Synthetic macromolecular fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2203/00Macromolecular materials of the coating layers
    • D06N2203/06Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N2203/068Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1685Wear resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather

Definitions

  • the present invention relates to artificial leather having excellent texture and mechanical strength (such as abrasion resistance).
  • Artificial leather composed mainly of a fibrous base material such as a nonwoven fabric and a polyurethane resin has excellent features, such as easy care, functionality, and homogeneity, which are difficult to realize with natural leather. It is suitably used as a skin material and interior material for seats for bags for interiors, automobiles, aircraft, railway cars, and the like, as well as clothing materials such as ribbons and emblem base materials.
  • a method for producing such artificial leather conventionally, after impregnating a fibrous base material with an organic solvent solution of a polyurethane resin, the fibrous base material is placed in a non-solvent (for example, water or an organic solvent) of the polyurethane resin.
  • a non-solvent for example, water or an organic solvent
  • a method in which the polyurethane resin is wet-coagulated by dipping is generally employed.
  • a water-miscible organic solvent such as N, N-dimethylformamide is used as an organic solvent as a solvent for the polyurethane resin.
  • organic solvents are generally highly harmful to the human body and the environment. Therefore, in the production of artificial leather, a method that does not use an organic solvent is strongly required.
  • Patent Document 1 proposes a method in which a part of ultrafine fibers is constrained by a resin of the sea component of the sea-island type composite fiber to achieve a deorganizing solvent without using a polyurethane resin substantially.
  • Patent Literatures 2 to 4 disclose methods of using a water-dispersible polyurethane resin in which a polyurethane resin is dispersed in water instead of a conventional organic solvent-based polyurethane resin.
  • JP 2007-224481 A WO 2015/129602 JP 2017-137588 A JP 2013-234409 A
  • the fiber sheet obtained by tracing the method described in the example of Patent Document 1 does not substantially use a polyurethane resin, the surface quality and feeling are not sufficient. However, there is a problem that light fastness, texture, and the like are insufficient due to the presence of an inferior sea component. Further, in the method described in Patent Document 2, it is considered that by coagulating the water-dispersible polyurethane resin in hot water, the porous structure of the polyurethane resin can be achieved and the texture can be improved to some extent. It is hard to say that the excellent texture is satisfied, and there is still room for improvement in flexibility.
  • the method described in Patent Document 2 has a problem that the process is unstable, for example, the hot water in the coagulation bath is contaminated with a part of the polyurethane resin.
  • the method described in Patent Literature 3 has a problem that the area ratio of the polyurethane resin on the outer surface is low, and roughness occurs.
  • the method described in Patent Document 4 when impregnating with an aqueous polyurethane resin solution, since polyvinyl alcohol is not added, there are many polyurethane resins forming a closed shape in a cross section in the thickness direction, resulting in poor mechanical strength. There's a problem.
  • the problem to be solved by one embodiment of the present invention is that, by being excellent in texture and mechanical strength (abrasion resistance and the like), for example, clothing products and seats for interiors, automobiles, aircrafts, railway vehicles, and the like are used.
  • An object of the present invention is to provide an artificial leather that can be suitably used as a skin material or an interior material.
  • the present inventors have conducted intensive studies and as a result, have found that artificial leather having the following characteristics can solve the above problems, and have completed the present invention. That is, the present invention includes the following embodiments.
  • An artificial leather containing a fiber sheet and a polyurethane resin The fiber sheet includes a scrim that is a woven or knitted fabric, and a fiber layer (A) that forms a first outer surface of the artificial leather, In the thickness direction cross section of the fiber layer (A), the ratio (d / D) of the total area (d) of the polyurethane resin forming a closed shape having an area of 100 ⁇ m 2 or more to the total area (D) of the polyurethane resin. Is the following equation (1): 5 ⁇ (d / D) ⁇ 100 ⁇ 50 (%) (1) Satisfy the artificial leather.
  • the artificial leather according to the above aspect 1 or 2 wherein an area ratio of the polyurethane resin on the first outer surface is 6.5% or less.
  • the fiber sheet is: A fiber layer (A) constituting a first outer surface of the artificial leather, A fiber layer (B) constituting a second outer surface of the artificial leather, and a scrim disposed between the fiber layer (A) and the fiber layer (B); 4.
  • the method according to the above aspect 10 further comprising a step of coating the outer surface of the fiber layer (A) of the fiber sheet with a hot water-soluble resin aqueous solution before the resin filling step, and then drying. .
  • an artificial leather excellent in texture and mechanical strength (such as abrasion resistance), and a method for producing the same.
  • FIG. 1 is a conceptual diagram illustrating a configuration example of a fiber sheet.
  • FIG. 2 is a conceptual diagram illustrating how to determine the fiber diameter.
  • FIG. 3A is a diagram showing an SEM image of the outer surface of the fiber layer (A) in Example 1.
  • FIG. 3B is a diagram showing an image after the SEM image shown in FIG. 3A is subjected to a marking process.
  • FIG. 3C is an enlarged view of a part of FIGS. 3A and 3B.
  • FIG. 3D is a diagram showing an image after color threshold processing of FIG. 3B.
  • FIG. 3E is a diagram showing an image after binarizing the image shown in FIG. 3D.
  • One aspect of the present invention provides an artificial leather including a fiber sheet and a polyurethane resin.
  • the fiber sheet includes a scrim, which is a woven or knitted fabric, and a fiber layer (A) constituting a first outer surface of the artificial leather.
  • / D) is the following equation (1): 5 ⁇ (d / D) ⁇ 100 ⁇ 50 (%) (1) To be satisfied.
  • artificial leather refers to “a special non-woven fabric (mainly a fiber layer having a random three-dimensional three-dimensional structure, a polyurethane or a similar polymer elasticity having flexibility similar thereto)” Using a body-impregnated body).
  • synthetic leather is classified into “smooth” having a leather-like appearance and "nap” having a suede, velor, etc. according to its appearance.
  • the disclosed artificial leather relates to those classified as "nap” (ie, suede-like artificial leather having a brushed appearance).
  • the suede-like appearance can be formed by buffing the outer surface of the fiber layer (A) (that is, the surface to be the first outer surface of the artificial leather) with sandpaper or the like.
  • the first outer surface of the artificial leather is a surface that is exposed to the outside when the artificial leather is used (for example, a surface on the side that comes into contact with a human body in the case of a chair application).
  • the first outer surface is raised or raised by buffing or the like.
  • the “closed shape” of the polyurethane resin in the cross section in the thickness direction of the fiber layer (A) refers to an arbitrary point on the contour of the morphological image of the polyurethane resin when the cross section is observed with a scanning electron microscope (SEM). Is the starting point, and when a line is extended from the starting point along the contour, the line returns to the starting point.
  • SEM scanning electron microscope
  • One of the important features of one embodiment of the present invention is the state of filling the fiber sheet with the polyurethane resin.
  • the ratio of the total area (d) occupied by the polyurethane resin present in the shape ((d / D) ⁇ 100 (%)) is 5 to 50%.
  • the ratio of (d / D) is an index of the ratio of a large-sized portion of the polyurethane resin in the artificial leather.
  • the polyurethane resin When the above ratio is 50% or less, since the polyurethane resin is finely divided and filled in the fiber sheet, the degree of freedom of bending between the fibers constituting the fiber layer (A) and the scrim increases, so that the texture is soft. Become. Further, when the above ratio is 5% or more, the polyurethane resin sufficiently grips the fibers of the fiber layer (A) with each other (that is, functions sufficiently as a binder between the fibers), so that the market needs are sufficiently satisfied. Mechanical strength (abrasion resistance, etc.) can be obtained. The proportion is preferably 5% or more and 35% or less, more preferably 8% or more and 25% or less.
  • the average area of the polyurethane resin forming a closed shape in the cross section in the thickness direction of the fiber layer (A) may be 3 ⁇ m 2 or more and 18 ⁇ m 2 or less. preferable.
  • the average size of the polyurethane resin is 3 ⁇ m 2 or more, the role of the polyurethane resin as a binder between the fibers constituting the fiber layer (A) is good, so that the polyurethane resin has excellent soft texture and abrasion resistance. Artificial leather having mechanical strength is easily obtained.
  • the average size of the polyurethane resin is 18 ⁇ m 2 or less, the number of gripping points of the fibers constituting the fiber layer (A) with each other by the polyurethane resin increases, so that excellent mechanical strength such as abrasion resistance and a soft texture are obtained. Equipped artificial leather is easily obtained.
  • the average size of the polyurethane resin is preferably 4 ⁇ m 2 or more and 15 ⁇ m 2 or less, and more preferably 4 ⁇ m 2 or more and 12 ⁇ m 2 or less.
  • controlling the ratio of (d / D) and the average size of the polyurethane resin controlling the form of the polyurethane resin at the time of filling the fiber sheet (for example, the polyurethane in the polyurethane resin dispersion liquid) Controlling the average primary particle diameter of the resin, adding a small amount of a water-soluble resin such as polyvinyl alcohol to the impregnating liquid, and controlling the ratio of the polyurethane resin to the fiber sheet).
  • the ratio of the polyurethane resin to 100% by mass of the fiber sheet is preferably 5% by mass or more and 20% by mass or less.
  • the ratio of the polyurethane resin to the fiber sheet is the ratio of (d / D) of the present disclosure and the average area of the polyurethane resin forming the closed shape in the cross section in the thickness direction of the fiber layer (A) (average size of the polyurethane resin). ).
  • the ratio of the polyurethane resin is low, the ratio of (d / D) tends to be low, and the average size of the polyurethane resin tends to be small.
  • the ratio of the polyurethane resin when the ratio of the polyurethane resin is high, the ratio of (d / D) tends to be high, and the average size of the polyurethane resin tends to be large.
  • the ratio of the polyurethane resin to the fiber sheet is 5% by mass or more, the fibers are satisfactorily grasped by the polyurethane resin, and mechanical strength such as abrasion resistance that satisfies market needs is easily obtained.
  • the ratio of the polyurethane resin to the fiber sheet if the ratio of the polyurethane resin to the fiber sheet is 20% by mass or less, a soft texture is easily obtained.
  • the ratio of the polyurethane resin to the fiber sheet is more preferably from 6% by mass to 17% by mass, and still more preferably from 6% by mass to 15% by mass.
  • Polyurethane resin As the polyurethane resin used in the present invention, a resin obtained by reacting a polymer diol, an organic diisocyanate, and a chain extender is preferable.
  • a polycarbonate-based, polyester-based, polyether-based, silicone-based, or fluorine-based diol can be used, and a copolymer of two or more of these may be used.
  • a polycarbonate-based or polyether-based diol or a combination thereof is preferably used.
  • diols of polycarbonate type or polyester type or a combination thereof are preferably used.
  • a diol of a polyether type or a polyester type or a combination thereof is preferably used.
  • the polycarbonate diol can be produced by a transesterification reaction between an alkylene glycol and a carbonate, a reaction between phosgene or chloroformate and an alkylene glycol, and the like.
  • alkylene glycol examples include, but are not limited to, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol.
  • Branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-methyl-1,8-octanediol; Alicyclic diols such as 4-cyclohexanediol; aromatic diols such as bisphenol A; and the like, and these can be used alone or in combination of two or more.
  • polyester diol examples include polyester diols obtained by condensing various low molecular weight polyols with polybasic acids.
  • low molecular weight polyols examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propane Diols, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, and One or more selected from cyclohexane-1,4-dimethanol can be used. Further, adducts obtained by adding various alkylene oxides to bisphenol A can also be used.
  • polybasic acids include, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydroic acid
  • succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydroic acid
  • isophthalic acid may be mentioned.
  • polyether diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and a copolymer diol obtained by combining them.
  • the number average molecular weight of the polymer diol is preferably from 500 to 4000. By setting the number average molecular weight to 500 or more, more preferably 1500 or more, it is possible to prevent the texture from becoming hard. Further, by setting the number average molecular weight to 4000 or less, more preferably 3000 or less, the strength of the polyurethane resin can be favorably maintained.
  • organic diisocyanate examples include aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, and xylylene diisocyanate; and aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate. May be used in combination. Among them, aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate are preferably used from the viewpoint of light resistance.
  • chain extender amine-based chain extenders such as ethylenediamine and methylenebisaniline, and diol-based chain extenders such as ethylene glycol can be used. Further, a polyamine obtained by reacting a polyisocyanate with water can be used as a chain extender.
  • the polyurethane resin can be used in the form of a solvent-type polyurethane resin obtained by dissolving a polyurethane resin in an organic solvent such as N, N-dimethylformamide, or a water-dispersed polyurethane resin obtained by emulsifying a polyurethane resin with an emulsifier and dispersing the same in water.
  • a solvent-type polyurethane resin obtained by dissolving a polyurethane resin in an organic solvent such as N, N-dimethylformamide
  • a water-dispersed polyurethane resin obtained by emulsifying a polyurethane resin with an emulsifier and dispersing the same in water.
  • a water-dispersed polyurethane resin is preferred from the viewpoint of reduction.
  • the water-dispersible polyurethane resin can be impregnated into the fiber sheet in the form of a dispersion in which the polyurethane resin is dispersed with a desired particle size
  • the filling form of the polyurethane resin in the fiber sheet is controlled by controlling the particle size. Can be controlled well.
  • water-dispersible polyurethane resin a self-emulsifying polyurethane resin containing a hydrophilic group in the polyurethane molecule, a forced emulsifying polyurethane resin obtained by emulsifying the polyurethane resin with an external emulsifier, or the like can be used.
  • a cross-linking agent can be used in combination with the water-dispersed polyurethane resin for the purpose of improving durability such as wet heat resistance, abrasion resistance and hydrolysis resistance. It is preferable to add a cross-linking agent in order to improve the durability at the time of the liquid jet dyeing process, suppress the fiber from falling off, and obtain excellent surface quality.
  • the cross-linking agent may be an external cross-linking agent added as an additional component to the polyurethane resin, or may be an internal cross-linking agent for introducing a reactive group capable of forming a cross-linked structure in the polyurethane resin structure in advance.
  • Water-dispersed polyurethane resins used for artificial leather generally have a cross-linked structure in order to provide dyeing resistance, and thus tend to be hardly soluble in organic solvents such as N, N-dimethylformamide. Therefore, for example, when the artificial leather is immersed in N, N-dimethylformamide at room temperature for 12 hours to dissolve the polyurethane resin, and the cross section is observed with an electron microscope or the like, the resin-like resin having no fiber shape is obtained. If the product remains, it can be determined that the resinous material is a water-dispersed polyurethane resin.
  • the polyurethane resin is filled with the polyurethane resin dispersion from the viewpoint of easily controlling the ratio of (d / D) and controlling the average size of the polyurethane resin well, and At that time, the average primary particle diameter of the polyurethane resin in the dispersion is set to 0.1 ⁇ m or more and 0.8 ⁇ m or less.
  • the average primary particle diameter is a value obtained by measurement of a polyurethane resin dispersion liquid with a laser diffraction particle size distribution analyzer (“LA-920” manufactured by HORIBA).
  • the average primary particle diameter of the polyurethane resin By setting the average primary particle diameter of the polyurethane resin to 0.1 ⁇ m or more, it is easy to control the ratio of (d / D) to 5% or more, and further, to make the average size of the polyurethane resin 3 ⁇ m 2 or more. Therefore, artificial leather having excellent mechanical strength can be obtained by improving the force (that is, binder force) for holding the fibers in the fiber sheet with each other by the polyurethane resin. Further, by setting the average primary particle diameter of the polyurethane resin to 0.8 ⁇ m or less, the aggregation or coarsening of the polyurethane resin can be suppressed, and the (d / D) ratio can be easily controlled to 50% or less.
  • the average primary particle diameter of the polyurethane resin is 0.8 ⁇ m or less
  • the average area of the polyurethane resin in the cross section in the thickness direction of the fiber layer (A) is controlled to 18 ⁇ m 2 or less (that is, the polyurethane resin is aggregated and coarse).
  • the average primary particle size of the polyurethane resin is preferably from 0.1 ⁇ m to 0.6 ⁇ m, more preferably from 0.2 ⁇ m to 0.5 ⁇ m.
  • the concentration of the water-soluble resin may be appropriately determined according to the type of the polyurethane resin to be used.
  • the concentration is preferably 0.5% by mass or more and 5% by mass or less based on the entire impregnating liquid.
  • concentration of the polyvinyl alcohol resin is 0.5% by mass or more, the generation of a polyurethane resin having an area of 100 ⁇ m 2 or more in the cross section in the thickness direction of the fiber layer (A) is easily suppressed.
  • the ratio (d / D ⁇ 100%) of the total area (d) of the polyurethane resin having an area of 100 ⁇ m 2 or more to the total area (D) can be easily controlled to 50% or less.
  • concentration of the polyvinyl alcohol resin is preferable because the mechanical strength of the polyurethane resin itself hardly decreases and the adhesion between the polyurethane resin and the fibers constituting the artificial leather is hardly hindered.
  • a more preferable polyvinyl alcohol concentration is 0.6% by mass or more and 2.5% by mass or less, further preferably 0.7% by mass or more and 1.4% by mass or less.
  • stabilizers (ultraviolet absorbers, antioxidants, etc.), flame retardants, antistatic agents, pigments (carbon black, etc.) may be added to the impregnating liquid containing a polyurethane resin (eg, a water-dispersible polyurethane resin).
  • Agents may be added.
  • the total amount of these additives present in the artificial leather is, for example, 0.1 to 10.0 parts by mass, 0.2 to 8.0 parts by mass, or 0.3 to 6 parts by mass based on 100 parts by mass of the polyurethane resin. 0.0 parts by mass.
  • Such additives are distributed in the polyurethane resin of artificial leather.
  • the value including the additive (when used) is intended.
  • a fiber sheet 1 includes a scrim 11 which is a woven or knitted material and a fiber layer (A) 12.
  • a fiber sheet has at least these two layers, it is possible to provide excellent mechanical strength such as dimensional stability and tensile strength even when the state of filling of the polyurethane resin is miniaturized.
  • the fiber sheet preferably has a three-layer structure, and the scrim is preferably an intermediate layer.
  • a woven fabric is formed between a fiber layer (A) 12 constituting a first outer surface of artificial leather and a fiber layer (B) 13 constituting a second outer surface of artificial leather.
  • a three-layer structure in which the scrim 11 which is a knit is sandwiched in a sandwich and fibers are entangled between these layers is particularly preferable in terms of dimensional stability, tensile strength, tear strength and the like.
  • the fiber layer (A) and the fiber layer (B) can be individually designed.
  • the diameter, type, etc. of the fibers constituting these layers can be freely customized according to the function and use required of the artificial leather, which is preferable.
  • both excellent surface quality and high flame retardancy can be achieved.
  • the scrim which is a woven or knitted fabric, is preferably of the same polymer type as the fibers constituting the fiber layer (A) from the viewpoint of the same color by dyeing.
  • the fibers constituting the fiber layer (A) are polyester-based
  • the fibers constituting the scrim are also preferably polyester-based
  • the scrim is preferably used.
  • the constituent fibers are also preferably of polyamide type.
  • the scrim in the case of a knitted fabric is preferably a single knit knitted in a range from 22 gauge to 28 gauge. When the scrim is a woven fabric, higher dimensional stability and strength can be realized than with a knitted fabric.
  • the structure of the woven fabric may be plain weave, twill weave, satin weave, or the like, but plain weave is preferred in terms of cost and process such as confounding.
  • the yarn constituting the woven fabric may be a monofilament or a multifilament.
  • the single fiber fineness of the yarn is preferably 5.5 dtex or less from the viewpoint that flexible artificial leather is easily obtained.
  • a multifilament raw yarn such as polyester or polyamide, or a processed yarn subjected to false twisting is preferably twisted at a twist number of 0 to 3000 T / m.
  • the multifilament may be a conventional one, for example, preferably 33dtex / 6f, 55dtex / 24f, 83dtex / 36f, 83dtex / 72f, 110dtex / 36f, 110dtex / 48f, 167dtex / 36f, 166dtex / 48f of polyester, polyamide or the like. Used.
  • the yarn constituting the woven fabric may be a multifilament long fiber.
  • the weaving density of the yarn in the woven fabric is preferably from 30 to 150 yarns / inch, more preferably from 40 to 100 yarns / inch, from the viewpoint of obtaining artificial leather that is flexible and has excellent mechanical strength.
  • the fabric weight is preferably 20 to 150 g / m 2 .
  • the presence / absence of false twisting in the woven fabric, the number of twists, the fineness of the single filament of the multifilament, the weaving density, etc. are determined in addition to the entanglement with the constituent fibers of the fiber layer (A), the flexibility of the artificial leather, Since it also contributes to mechanical properties such as tear strength, tensile strength and elongation, and elasticity, it may be appropriately selected according to the target properties and applications.
  • the area ratio of the polyurethane resin on the first outer surface of the artificial leather is preferably 0% or more and 6.5% or less.
  • the area ratio is a value calculated by observing the first outer surface with a scanning electron microscope (SEM) at a magnification of 500 times and using an obtained SEM image.
  • SEM scanning electron microscope
  • the area ratio is 6.5% or less, the amount of the polyurethane resin exposed on the first outer surface, which causes "roughness" when touching the first outer surface, is reduced, and Since the degree of freedom of the fibers forming the nap is not reduced, the fibers follow when the first outer surface is stroked in the horizontal direction, and the "smooth" feel, that is, the so-called surface quality tends to be improved.
  • the area ratio of the polyurethane resin on the first outer surface is more preferably 3.5% or less, and further preferably 2% or less.
  • the area ratio may be, for example, 0.1% or more, or 0.5% or more from the viewpoint of manufacturability of artificial leather.
  • At least the fiber layer (A) is composed of fibers having an average diameter of 1 ⁇ m or more and 8 ⁇ m or less.
  • the average diameter of the fibers is 1 ⁇ m or more, the abrasion resistance, the coloring property by dyeing, and the light fastness are improved.
  • the average diameter of the fibers is 8 ⁇ m or less, artificial leather having a high fineness, a smooth surface tactile sensation, and a better surface quality can be easily obtained because the number density of the fibers is large.
  • the average diameter of the fibers constituting the fiber layer (A) is more preferably 2 ⁇ m or more and 6 ⁇ m or less, and further preferably 2 ⁇ m from the viewpoint of obtaining artificial leather having a higher level of wear resistance, dyeability, and surface quality. Not less than 5 ⁇ m.
  • Examples of the fibers constituting the fiber layer (the fiber layer (A) and the fiber layer (B) as an optional layer and the additional layer) constituting the artificial leather include polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate.
  • Synthetic fibers such as polyester fibers; polyamide fibers such as nylon 6, nylon 66, and nylon 12; Among them, in consideration of applications requiring durability, such as in the field of car seats, polyethylene terephthalate is preferred in that the fibers themselves do not yellow, etc., even when exposed to direct sunlight for a long time, and are excellent in color fastness. .
  • polyethylene or terephthalate that is chemically or material-recycled, or polyethylene terephthalate using a plant-derived material is more preferable.
  • the fibers are preferably substantially monofilament dispersed.
  • ultra-fine fiber-generating fibers such as sea-island type composite fibers (eg, using copolyester as a sea component and regular polyester as an island component), and forming a three-dimensional entangled body with a scrim
  • the fiber obtained by the fiberization treatment is present as a fiber bundle in the fiber layer (A), and is substantially dispersed as a single fiber.
  • a sea-island composite short fiber having an island component of 24 islands / 1f corresponding to a single fiber fineness of 0.2 dtex is prepared, and a fiber layer (A) is formed with the sea-island composite short fiber, followed by needle punching or the like.
  • a fiber layer (A) is formed with the sea-island composite short fiber, followed by needle punching or the like.
  • an ultrafine fiber having a single fiber fineness equivalent to 0.2 dtex can be obtained.
  • the fiber bundle (A) is present in the state of a fiber bundle in which 24 single fibers are converged (equivalent to 4.8 dtex in the converged state).
  • the expression that the fiber is “substantially monofilament dispersed” means that the fiber does not form a fiber bundle such as the island component in the above-mentioned sea-island composite fiber.
  • the fiber layer (A) is substantially composed of fibers in which single fibers are dispersed, the fiber layer (A) has excellent surface smoothness, and is uniform when the outer surface of the fiber layer (A) is raised by buffing or the like. Brushing is easy to obtain, and even when the adhesion rate of the polyurethane resin is relatively low, a pilling-like appearance called pilling is unlikely to occur due to friction, so that an artificial leather having more excellent surface quality and wear resistance can be obtained. .
  • the fiber spacing is likely to be narrow and uniform, so that good abrasion resistance can be obtained even when the polyurethane resin adheres in a fine form.
  • a method of dispersing fibers substantially as a single fiber a method of forming a fiber sheet by a papermaking method from a fiber manufactured by a direct spinning method, or dissolving or decomposing a sea component of a fiber sheet made of sea-island type composite fiber After the generation of the ultrafine fiber bundle, a method of injecting a high-speed water stream onto the surface of the ultrafine fiber bundle to promote the monofilamentization of the ultrafine fiber bundle is exemplified.
  • the fibers may or may not be dispersed as single fibers, but in a preferred embodiment, the layers other than the fiber layer (A) are used. Is composed of a single fiber-dispersed fiber.
  • the fact that the fibers constituting the layers other than the fiber layer (A) are dispersed as single fibers is preferable from the viewpoint that the thickness of the artificial leather becomes uniform, the processing accuracy is improved, and the quality is stabilized.
  • the basis weight of the fiber layer (A) is preferably from 10 g / m 2 to 200 g / m 2 , more preferably from 30 g / m 2 to 170 g / m 2 , and still more preferably, from the viewpoint of mechanical strength such as abrasion resistance. It is 60 g / m 2 or more and 170 g / m 2 or less.
  • the basis weight of the fiber layer (B) is low in cost and ease of manufacturing.
  • it can be preferably from 10 g / m 2 to 200 g / m 2 , more preferably from 20 g / m 2 to 170 g / m 2 .
  • Basis weight of the scrim, mechanical strength, and in terms of entanglement of the fiber layer and the scrim preferably 20 g / m 2 or more 150 g / m 2 or less, more preferably 20 g / m 2 or more 130 g / m 2 or less, more preferably Is 30 g / m 2 or more and 110 g / m 2 or less.
  • the weight of the entire fiber sheet is preferably from 50 g / m 2 to 550 g / m 2 , more preferably from 60 g / m 2 to 400 g / m 2 , and still more preferably from 70 g / m 2 to 350 g / m 2 .
  • the artificial leather preferably has a softness value of 28 cm or less.
  • the softness value is an index indicating the texture of artificial leather. By setting the flexibility value to 28 cm or less, the formability of the skin material or interior material of the seats of interiors, automobiles, aircrafts, railway vehicles, etc. is improved, and the consumption performance is improved. Is easy to satisfy.
  • the softness value is preferably 6 cm or more and 26 cm or less, more preferably 8 cm or more and 22 cm or less.
  • the method includes a fiber sheet producing step of producing a fiber sheet including the scrim and the fiber layer (A), and a resin filling step of filling the fiber sheet with a polyurethane resin.
  • the fiber sheet production step at least the fiber layer (A) is produced by a papermaking method.
  • the fiber sheet may include additional layers such as a fiber layer (B) in addition to the fiber layer (A) and the scrim, as described above.
  • the following steps (a), (b), and (c) are performed in the order of (a), (b), and (c), or (a), (c), and (b). And the like.
  • A a step of producing a fiber sheet comprising two or more layers including a scrim and a fiber layer (A); (b) performing buffing with sandpaper or the like on at least the outer surface of the fiber layer (A); Step of forming a raised surface (c) Step of impregnating the fiber sheet with a polyurethane resin, drying and filling the polyurethane sheet with the polyurethane resin
  • A Process As a method for producing each fiber layer (fiber layer (A), optional fiber layer (B), etc.) constituting the artificial leather fiber sheet, a direct spinning type method (for example, a spun bond method and a melt blown method) Method) or a method of forming a sheet using short fibers (for example, a dry method such as a carding method or an air laid method, and a wet method such as a papermaking method), and any of them can be suitably used. .
  • a sheet manufactured using short fibers is suitable in that the surface quality of the artificial leather is improved since the unevenness is small, the uniformity is excellent, and uniform raising is easily obtained.
  • the papermaking method is preferable in that the fibers are easily dispersed in a single fiber and a fiber layer having high uniformity can be formed.
  • the fiber layer (A) is manufactured by a papermaking method.
  • the papermaking method when a fiber layer composed of ultrafine fibers (for example, ultrafine fibers having an average diameter of 8 ⁇ m or less) is produced, fiber opening and single fiber dispersion are easily performed, and the uniformity of the obtained fiber layer tends to be high. Is particularly preferred.
  • the short fiber length is preferably 13 mm or more and 102 mm or less, more preferably 25 mm or more and 76 mm by a dry method (carding method, air laid method, etc.).
  • a dry method carding method, air laid method, etc.
  • it is more preferably 38 mm or more and 76 mm or less, preferably 1 mm or more and 30 mm or less, more preferably 2 mm or more and 25 mm or less, further preferably 3 mm or more and 20 mm or less by a wet method (papermaking method or the like).
  • the aspect ratio (L / D), which is the ratio of the length (L) to the diameter (D), of the short fiber used in the wet method (papermaking method or the like) is preferably 500 or more and 2000 or less, more preferably. 700 to 1500.
  • Such an aspect ratio is that the dispersibility and spreadability of the short fibers in the slurry when preparing the slurry by dispersing the short fibers in water are good, that the fiber layer strength is good.
  • the fiber length is short and single fibers are easily dispersed, so that it is difficult to obtain a pilling-like appearance called pilling due to friction.
  • the fiber length of the short fiber having a diameter of 4 ⁇ m is preferably 2 mm or more and 8 mm or less, more preferably 3 mm or more and 6 mm or less.
  • entanglement method used for producing a fiber sheet including a scrim and a fiber layer (A) there are a needle punch method, a hydroentanglement method and the like, and any of them can be suitably used.
  • the hydroentanglement method is preferred in that the scrim structure is less likely to be broken or deformed, and that it is highly suitable for entanglement processing of ultrafine fibers (for example, ultrafine fibers having an average diameter of 8 ⁇ m or less).
  • the hole diameter of the high-pressure water jet nozzle in the hydroentanglement method is preferably 0.05 mm or more and 0.40 mm or less, more preferably 0.08 mm or more and 0.30 mm or less, from the viewpoint of obtaining a high entanglement effect and excellent surface smoothness. It is.
  • water is usually injected at a water pressure of 1 to 10 MPa.
  • the distance from the high-pressure water jet surface to the object to be treated is preferably 5 mm or more and 100 mm or less, more preferably 5 mm or more and 100 mm or less, from the viewpoint of high confounding effect, conductive fabric before the confounding process, and processability during the confounding process. 10 mm or more and 70 mm or less.
  • the high-pressure water injection nozzle circularly move or reciprocate at right angles to the process direction in order to enhance the confounding effect and the surface smoothness.
  • the hydroentanglement conditions such as the nozzle hole diameter and the water pressure may be appropriately selected according to the configuration, the basis weight, the processing speed, and the like of the fiber sheet to be processed.
  • the number of barbs used for the needle is preferably 1 to 9.
  • the number of barbs is preferably 1 to 9.
  • a confounding effect can be obtained and damage to fibers can be suppressed.
  • the number of barbs is set to 9 or less, damage to fibers can be reduced, and needle marks remaining on artificial leather can be reduced, so that the appearance of the product can be improved.
  • the total depth of the barbs (the length from the barb tip to the barb bottom) is preferably 0.05 mm or more and 0.10 mm or less.
  • the barb has a total depth of 0.05 mm or more, good hooking to the fiber is obtained, so that efficient fiber entanglement becomes possible.
  • the barb has a total depth of 0.10 mm or less, needle marks remaining on the artificial leather are reduced, and the quality is improved.
  • the total depth of the barb is more preferably 0.06 mm or more and 0.08 mm or less.
  • Case of entangling the fibers by needle punching is preferably to a range of punch density 300 lines / cm 2 or more 6000 / cm 2 or less, 1000 / cm 2 or more 6000 / cm 2 or less to be Is more preferred.
  • step (B) Step In the step (b), at least the outer surface of the fiber layer (A) of the fiber sheet is subjected to buffing with sandpaper or the like to form a raised surface.
  • the polyurethane sheet is impregnated with the polyurethane resin and then dried to be filled with the polyurethane resin.
  • the polyurethane resin is impregnated in the form of an impregnating liquid such as a solution (for example, in a solvent-soluble type) or a dispersion (for example, in a water-dispersed type).
  • concentration of the polyurethane resin in the impregnation liquid may be, for example, 2 to 30% by mass, or 3 to 25% by mass, or 4 to 20% by mass.
  • the impregnating solution is prepared and the fiber sheet is impregnated so that the ratio of the polyurethane resin to 100% by mass of the fiber sheet is 5 to 20% by mass.
  • the method for producing artificial leather comprises, before the above (c), (d) adding an aqueous solution of a hot water-soluble resin to the fiber layer (A) (specifically, the artificial leather in the fiber layer (A)). After coating on the first outer surface) and drying.
  • a hot water-soluble resin is a resin that is hardly soluble in normal-temperature water, and specifically, has a falling rate of 25% or less with respect to normal-temperature water at a temperature of 20 ⁇ 2 ° C.
  • the drop-off rate was W1 (g) for the weight of the fiber sheet, W2 (g) for the fiber sheet obtained by coating the raised surface of the fiber layer (A) of the fiber sheet with the resin, and the fiber sheet was heated at a temperature of 20 g.
  • W3 the weight of a fiber sheet obtained by immersing the fiber sheet in ⁇ 2 ° C. normal temperature water for 10 seconds and then dehydrating and drying is defined as W3 (g)
  • the order of the steps (a), (b), (d), and (c) provides excellent surface quality and “smooth” feel by making the area ratio of the polyurethane resin on the outer surface of the artificial leather relatively low. It is preferable from the viewpoint of obtaining.
  • the fiber sheet is immersed in an aqueous solution of a hot water-soluble resin, and then dried. Then, a method of actively migrating the hot-water-soluble resin to the raised surface during drying (according to this method, the hot-water-soluble resin moves from the inside of the fiber sheet to the vicinity of the raised surface with the evaporation of water, The hot water-soluble resin is unevenly distributed near the raised surface in the cross-sectional direction of the fiber sheet), and the method of (d) coating the fiber layer (A) with the hot water-soluble resin and then drying. Any of the above methods can be adopted as a means for protecting the raised surface, but the coating method protects only the raised surface of the fiber layer (A), so that excellent surface quality and high abrasion resistance are easily obtained. preferable.
  • hot water-soluble resin examples include partially saponified polyvinyl alcohol and completely saponified polyvinyl alcohol.
  • partially saponified polyvinyl alcohol When partially saponified polyvinyl alcohol is used as the hot-water-soluble resin, the partially saponified polyvinyl alcohol tends to elute in water at room temperature (20 ° C.) as compared with completely saponified polyvinyl alcohol. It is preferable that polyvinyl alcohol is not excessively dropped off in the step of impregnating the fiber sheet with the water-dispersed polyurethane resin.
  • the degree of polymerization of the partially saponified polyvinyl alcohol is preferable to appropriately select the degree of polymerization of the partially saponified polyvinyl alcohol, and to add a crosslinking agent to the partially saponified polyvinyl alcohol aqueous solution.
  • the degree of saponification is preferably 70 mol% or more, more preferably 78 mol% or more, from the viewpoint that polyvinyl alcohol does not excessively fall off in the step of impregnating the fiber sheet with the water-dispersed polyurethane resin.
  • the degree of polymerization is preferably 1,000 or more, more preferably 1200 or more.
  • the hot water-soluble resin not only does not fall off excessively in the step of impregnating the fiber sheet with the water-dispersible polyurethane resin, but also has a high affinity for the outer surface of the fiber layer to be coated.
  • the partially saponified type having a degree of saponification of less than 90 mol% is preferred from the viewpoint of affinity with hydrophobic synthetic fibers and appropriate penetration in the thickness direction. Polyvinyl alcohol is preferred.
  • the degree of saponification of the polyvinyl alcohol resin is low and the fiber constituting the fiber layer (A) is a hydrophobic synthetic fiber such as a polyester fiber, the affinity between the polyvinyl alcohol resin and the hydrophobic synthetic fiber is high, Good surface uniformity due to good coating uniformity.
  • the degree of saponification of the partially saponified polyvinyl alcohol is preferably 90 mol% or less, more preferably 89 mol% or less.
  • the viscosity of the hot water-soluble resin (preferably partially saponified polyvinyl alcohol) aqueous solution used for coating the raised surface of the fiber layer (A) is 25 ⁇ 5 ° C. using a B-type viscometer (“B8L” manufactured by Tokyo Keiki). (Type), it is preferably in the range of 0.5 to 7.0 Pa ⁇ s.
  • B8L B-type viscometer
  • the viscosity of the hot water-soluble resin aqueous solution is 0.5 Pa ⁇ s or more, the hot water-soluble resin aqueous solution does not excessively penetrate in the thickness direction of the fiber sheet, and the hot water-soluble resin is added to the fiber layer (A). ) Can be adhered unevenly in the vicinity of the outer surface.
  • the viscosity of the aqueous hot-water-soluble resin solution is 7.0 Pa ⁇ s or less, the coating processability is good (the coating is well retained on the outer surface of the fiber layer (A)), and a uniform coating layer is obtained. As a result, the raised surface of the fiber layer (A) is well protected, and as a result, the surface quality is further improved.
  • the viscosity of the hot water-soluble resin aqueous solution is more preferably 1.0 to 5.0 Pa ⁇ s.
  • the degree of polymerization of the hot water-soluble resin is preferably from 1,000 to 4,000, more preferably from 1,200 to 1,700.
  • the concentration of the hot water-soluble resin in the hot water-soluble resin aqueous solution is, for example, preferably 10 to 13% by mass, and more preferably 11 to 12% by mass.
  • the coating amount of polyvinyl alcohol solids per unit area of the fiber sheet is such that there is little concern about inhibiting the binder effect of the polyurethane resin inside the fiber sheet, and it is easy to achieve both mechanical strength such as abrasion resistance and excellent surface quality. It is preferably from 5 g / m 2 to 20 g / m 2 , more preferably from 7 g / m 2 to 18 g / m 2 , and still more preferably from 9 g / m 2 to 15 g / m 2 .
  • Means for removing the hot water-soluble resin from the fiber sheet include, for example, a method of immersing the resin in hot water of 60 ° C. or higher, preferably 80 ° C. or higher, or a hot water of 80 ° C. And a method of removing the hot water-soluble resin while circulating water.
  • a method of removing the hot-water-soluble resin in the jet dyeing machine is preferable in that the steps of drying and winding the fiber sheet after removing the hot-water-soluble resin can be omitted, and the production efficiency can be increased.
  • the artificial leather is preferably dyed for the purpose of enhancing the value of the sensibility surface (that is, the visual effect).
  • a disperse dye is generally used when the fiber constituting the fiber layer (A) is a polyester fiber, and an acid dye is generally used when the fiber is a polyamide fiber.
  • an ordinary method well known to a dyeing processor can be used.
  • a jet dyeing machine is preferably used from the viewpoint of levelness.
  • the artificial leather dyed in this manner is preferably subjected to soaping and, if necessary, reduction washing (that is, washing in the presence of a chemical reducing agent) to remove excess dye.
  • the deepest part (that is, the part closest to the scrim) of the fiber layer (A) in the cut surface of the conductive-treated sample is set as the observation area, and the fibers constituting the scrim are observed.
  • SEM scanning electron microscope
  • the center of the cut surface of the sample subjected to the conductive treatment in the thickness direction of the artificial leather was set as the center point of the observation region, and the sample was observed with the SEM at a magnification of 500 times.
  • the observation conditions are as follows. Acceleration voltage: 5 kV Detector: YAG-BSE (backscattered electron) Imaging magnification: 500 times
  • the total area of each polyurethane resin distributed in the SEM image is calculated by the distribution number of the polyurethane resin.
  • the value divided by the above is defined as the average size of the measurement observation area.
  • the arithmetic mean value of five randomly measured points of the same measurement sample is defined as the average size of the sample.
  • Ratio (d / D) of the total area (d) of the polyurethane resin having an area of 100 ⁇ m 2 or more to the total area (D) of the polyurethane resin on the cut surface From the binarized image obtained by the same operation as the above (1), the total area (D) of the polyurethane resin in the SEM image and the total area of the polyurethane resin forming a closed shape having an area of 100 ⁇ m 2 or more ( d), and the value of ((d / D) ⁇ 100%) was calculated.
  • the average diameter of the fiber constituting the fiber layer (A) was determined using a scanning electron microscope (SEM, “JSM-5610” manufactured by JEOL) at a magnification of 1500 using the above cut surface of the artificial leather. A photograph was taken at a magnification of 100 times, and randomly selected 100 fibers constituting the first outer surface of the artificial leather in the fiber layer (A), measured the diameter of the cross section of the single fiber, and arithmetically averaged the measured values of 100 fibers It was determined as a value. When the observed shape of the cross section of the single fiber was not circular, the distance between the outer circumferences on a straight line orthogonal to the midpoint of the longest diameter of the single fiber cross section was defined as the fiber diameter.
  • FIG. 2 is a conceptual diagram illustrating how to determine the fiber diameter.
  • the cross section A of the fiber is elliptical as shown in FIG. 2
  • the distance c between the outer circumferences on a straight line b perpendicular to the midpoint p of the longest diameter a of the cross section A in the observation image is defined as the fiber diameter.
  • a sample was cut into a square of 20 cm ⁇ 20 cm to obtain a measurement sample.
  • the measurement sample was placed on a horizontal plane, and the vertices of the square were designated as A, B, C, and D, and the vertices A and C facing each other diagonally were overlapped.
  • Vertex A was placed on the horizontal plane, and vertex C was superimposed on vertex A.
  • the vertex C is gradually moved away from the vertex A along the diagonal line AC in a state where the vertex C is in contact with the measurement sample, and a point at which the vertex C is separated from the measurement sample surface is defined as a point E.
  • the distance was set to a flexibility value of 1.
  • Vertex A was replaced with vertex B, and vertex C was replaced with vertex D, and the flexibility value 2 was measured in the same procedure as above.
  • the arithmetic average of the flexible value 1 and the flexible value 2 was taken as the flexible value of the sample.
  • FIG. 3A is an example of an SEM image of the first outer surface of the measurement sample according to Example 1.
  • FIG. 3B is an example of the marking result of FIG. 3A by the subject
  • FIG. 3C is an example of marking determination.
  • the deposits are clearly non-fibrous deposits such as “view 1” in FIG.
  • the obtained marked SEM image (Fig. 3B) was binarized by the following method using image analysis software "ImageJ (version: 1.51j8), National Institutes of Health), and the first sample was obtained. The area ratio of the polyurethane resin in the SEM observation region on the outer surface was calculated. 1) The SEM image (FIG. 3B) on which marking was performed was subjected to a color threshold processing.
  • the processing conditions are as follows.
  • the red solid portion in the obtained processed SEM image corresponds to the polyurethane resin.
  • the color threshold processed SEM image was binarized by the MaxEntropy method.
  • the black portion in the binarized SEM image (FIG. 3E) was used as the polyurethane resin.
  • the value obtained by dividing the total area of the black portions in the binarized SEM image (FIG. 3E) by the area of the SEM image was defined as the area ratio.
  • Abrasion resistance Evaluation was carried out according to the test results in JIS-L-1096 (E method: Martindale method, pressing load: 12 kPa). The evaluation criteria are shown below.
  • a case in which the scrim was not exposed after abrasion was performed 30,000 times was regarded as a pass (A, B or C), and the evaluation was made based on the number of times the scrim was exposed or the pilling state of the worn surface as a measurement result.
  • B The scrim is not exposed after 30,000 times, but after 40,000 times, the scrim is exposed or pilling occurs on the worn surface.
  • Ratio of polyurethane resin to fiber sheet The ratio of polyurethane resin to fiber sheet was measured by the following method.
  • the mass of the fiber sheet before the polyurethane resin impregnation is defined as A (g).
  • the fiber sheet is impregnated with the polyurethane resin dispersion, and then heated and dried at 130 ° C. using a pin tenter drier, then softened while being immersed in hot water heated to 90 ° C., and then dried to obtain a polyurethane resin.
  • a filled fiber sheet (hereinafter, also referred to as “resin-filled fiber sheet”) is obtained.
  • the mass of the resin-filled fiber sheet is defined as B1 (g).
  • Example 1 (Production of fiber sheet) A polyethylene terephthalate fiber having an average single fiber diameter of 4 ⁇ m was produced by a melt spinning method, and cut to a length of 5 mm (hereinafter, a polyethylene terephthalate fiber having an average diameter of a single fiber of 4 ⁇ m cut to a length of 5 mm was referred to as “PET ultrafine” Short fibers ”).
  • PET ultrafine short fibers were dispersed in water, and a papermaking sheet having a basis weight of 100 g / m 2 was produced by a papermaking method and used as a fiber layer (A) as a surface layer.
  • PET ultrafine short fibers were dispersed in water, and a papermaking sheet having a basis weight of 50 g / m 2 was produced by a papermaking method and used as a fiber layer (B). Between the fiber layer (A) and the fiber layer (B), a scrim (plain woven fabric) having a basis weight of 95 g / m 2 made of polyethylene terephthalate fiber of 166 dtex / 48f was inserted to form a three-layer laminate.
  • a scrim plain woven fabric
  • a high-speed water flow using a straight flow injection nozzle having a hole diameter of 0.15 mm is sprayed onto the three-layer laminate at a pressure of 4 MPa from the fiber layer (A) side and 3 MPa from the fiber layer (B) side, After the fiber layer (A) and the fiber layer (B) are entangled with the scrim and entangled and integrated, the fiber layer is dried at 100 ° C. using an air-through type pin tenter dryer to obtain a fiber sheet having a three-layer structure.
  • the outer surface of the fiber layer (A) of the fiber sheet was raised by using # 400 emery paper. Subsequently, the fiber sheet was impregnated with the impregnating liquid containing the components shown in Table 2, and then heated and dried at 130 ° C. using a pin tenter dryer, and then immersed in hot water heated to 90 ° C. After drying, anhydrous sodium sulfate and polyvinyl alcohol resin were extracted and removed to obtain a fiber sheet (resin-filled fiber sheet) filled with a water-dispersed polyurethane resin. In the resin-filled fiber sheet, the ratio of the water-dispersed polyurethane resin to the total weight of the fibers in the fiber sheet was 10% by mass.
  • the resin-filled fiber sheet was dyed with a blue disperse dye having a dye concentration of 5.0% owf (“BlueFBL” manufactured by Sumitomo Chemical Co., Ltd.) using a jet dyeing machine at 130 ° C. for 15 minutes, and subjected to reduction washing. . Then, it dried at 100 degreeC for 5 minutes using the pin tenter dryer, and obtained the artificial leather.
  • a blue disperse dye having a dye concentration of 5.0% owf (“BlueFBL” manufactured by Sumitomo Chemical Co., Ltd.)
  • Example 2 In Example 1, the mass% of the polyether-based water-dispersible polyurethane in the impregnating liquid (that is, the solid content in the polyether-based water-dispersed polyurethane dispersion) was 4.5% by mass (Example 2) and 13%, respectively. Was changed to 0.5% by mass (Example 3), and the ratio of the water-dispersible polyurethane resin to the total fiber weight of the fiber sheet was changed to 5% by mass (Example 2) and 15% by mass (Example 3), respectively.
  • An artificial leather was obtained in the same procedure as in Example 1 except for the above.
  • Example 4 An artificial leather was obtained in the same procedure as in Example 2 except that the average primary particle diameter of the polyether-based water-dispersed polyurethane dispersion was changed to 0.2 ⁇ m.
  • Example 5 An artificial leather was obtained in the same procedure as in Example 1 except that the average diameter of the PET ultra-short fibers was changed to 7 ⁇ m.
  • Example 6 An artificial leather was obtained in the same procedure as in Example 1 except that the mass% of polyvinyl alcohol “N-300” in the impregnation liquid was changed to 3.0 mass%.
  • Example 7 Polyethylene terephthalate copolymerized with 8 mol% of sodium 5-sulfoisophthalate is used as the sea component, polyethylene terephthalate is used as the island component, and the composite ratio of the sea component is 20% by mass and the island component is 80% by mass.
  • the obtained sea-island composite fiber was cut into a staple by cutting the fiber into a fiber length of 51 mm, and a sheet having a basis weight of 125 g / m 2 was produced through a card and a cross wrapper, and used as a fiber layer (A).
  • a sheet having a basis weight of 63 g / m 2 was produced in the same manner and used as the fiber layer (B).
  • a 95 g / m 2 scrim (plain woven fabric) made of polyethylene terephthalate fiber of 166 dtex / 48 f was inserted between the fiber layer (A) and the fiber layer (B) to form a three-layer laminate.
  • a fiber sheet having a three-layer structure was obtained.
  • the fiber sheet is immersed in an aqueous solution of sodium hydroxide having a concentration of 10 g / L and heated to a temperature of 95 ° C., and treated for 25 minutes to remove sea components of the sea-island composite fiber while shrinking the fiber sheet. Processing was performed.
  • the average diameter of the single fibers of the fibers constituting the fiber layer (A) after sea removal was 4 ⁇ m.
  • a high-speed water stream using a straight-flow jet nozzle having a hole diameter of 0.15 mm is jetted at a pressure of 4 MPa from the fiber layer (A) side and at a pressure of 3 MPa from the fiber layer (B) side.
  • the fibers constituting the fiber bundle were promoted to become single fibers.
  • the fiber sheet was dried at 100 ° C. using an air-through type pin tenter dryer to obtain a fiber sheet having a three-layer structure.
  • artificial leather was produced in the same procedure as in (Production of artificial leather) in Example 1.
  • Example 8 In Example 7, an artificial leather was obtained in the same procedure as in Example 7, except that the water jet treatment was not performed on both the fiber layer (A) and the fiber layer (B) after sea removal.
  • Example 9 In Example 1, prior to the step of impregnating the fiber sheet with the impregnating liquid, 11 mass% of polyvinyl alcohol (Nippon Synthetic Chemical Industry Co., Ltd. “N-300 (degree of saponification 98 to 99 mol% or less, degree of polymerization 1200)”) was used. % Aqueous solution, aqueous solution viscosity: 1.5 Pa ⁇ s) is coated on the outer surface of the fiber layer (A) by a doctor knife method (solid content coating amount: 11 g / m 2 ), and then air-through type An artificial leather was obtained in the same procedure as in Example 1, except that the brushed surface was dried at 100 ° C. using a pin tenter dryer and the brushed surface was coated with polyvinyl alcohol.
  • Example 10 In Example 9, an aqueous solution prepared by diluting polyvinyl alcohol for coating processing into 11 mass% of "GM-14R (degree of saponification: 89 mol% or less, degree of polymerization: 1700)" manufactured by Nippon Synthetic Chemical Industry Co., Ltd. (aqueous solution viscosity: 1) An artificial leather was obtained in the same procedure as in Example 9 except that the thickness was changed to 0.5 Pa ⁇ s).
  • GM-14R degree of saponification: 89 mol% or less, degree of polymerization: 1700
  • Example 11 An artificial leather was obtained in the same procedure as in Example 10, except that the average primary particle diameter of the polyether-based water-dispersed polyurethane dispersion was changed to 0.7 ⁇ m.
  • Example 12 In Example 11, the mass% of the polyether-based water-dispersed polyurethane in the impregnating liquid (that is, the solid content in the polyether-based water-dispersed polyurethane dispersion) was changed to 16% by mass, and based on the total mass of the fibers of the fiber sheet.
  • An artificial leather was obtained in the same procedure as in Example 11, except that the ratio of the water-dispersed polyurethane resin was changed to 18% by mass.
  • Example 13 PVA impregnation method
  • polyvinyl alcohol Nippon Synthetic Chemical Industry Co., Ltd. “NL-05 (degree of saponification: 98 mol% or more, degree of polymerization: 500)”
  • NL-05 degree of saponification: 98 mol% or more, degree of polymerization: 500
  • the fiber sheet is nipped with a mangle (15% by mass of the solid content of polyvinyl alcohol based on the total mass of the fiber of the fiber sheet), and heated to 100 ° C. using an air-through type pin tenter dryer.
  • artificial leather was obtained in the same procedure as in Example 1 except that polyvinyl alcohol was migrated to the raised surface to give a raised effect similar to that of the coating process.
  • Example 14 An artificial leather was obtained in the same procedure as in Example 10, except that the mass% of polyvinyl alcohol “N-300” in the impregnation liquid was changed to 0% by mass.
  • Example 12 the mass% of the polyether-based water-dispersed polyurethane in the impregnation liquid (that is, the solid content in the polyether-based water-dispersed polyurethane dispersion) was changed to 22% by mass, and based on the total mass of the fibers of the fiber sheet.
  • An artificial leather was obtained in the same procedure as in Example 12, except that the ratio of the water-dispersed polyurethane resin was changed to 24% by mass.
  • Example 4 the mass% of the polyether-based water-dispersible polyurethane in the impregnating liquid (that is, the solid content in the polyether-based water-dispersed polyurethane dispersion) was changed to 2.7% by mass, and the total fiber content of the fiber sheet was changed.
  • An artificial leather was obtained in the same procedure as in Example 4, except that the ratio of the water-dispersed polyurethane resin to the mass was changed to 3% by mass.
  • NL-05 degree of saponification: 98 mol% or more, degree of polymerization: 500
  • NL-05 degree of saponification: 98 mol% or more, degree of polymerization: 500
  • Heating and drying was performed at 140 ° C. using a machine to obtain a polyvinyl alcohol resin-attached fiber sheet.
  • the adhesion ratio of the polyvinyl alcohol resin to the total mass of the fibers of the fiber sheet was 15% by mass.
  • the above-mentioned fiber sheet was impregnated with the impregnating liquid shown in Table 3, then dried by heating at 130 ° C. using a pin tenter dryer, and then softened while immersed in hot water heated to 90 ° C., and then dried.
  • the fiber sheet filled with the water-dispersed polyurethane resin is cut in half perpendicularly to the thickness direction, and the surface of the half-aged material that has not been cut is # 400.
  • reduction washing was performed.
  • Comparative Example 4 In Comparative Example 3, the mass% of the polyether-based water-dispersed polyurethane in the impregnating liquid (that is, the solid content in the polyether-based water-dispersed polyurethane dispersion) was changed to 9% by mass, based on the total mass of the fibers of the fiber sheet.
  • An artificial leather was obtained in the same procedure as in Comparative Example 3 except that the ratio of the water-dispersed polyurethane resin was changed to 10% by mass.
  • Table 4 shows the results of Examples 1 to 14 and Comparative Examples 1 to 4.
  • the artificial leather according to each of the examples in addition to having the scrim and the fiber layer (A), and having the polyurethane resin distributed in a specific structure, the surface quality and texture, and the mechanical strength (particularly abrasion resistance) It can be seen that excellent artificial leather was obtained. Further, the artificial leather according to each of the examples also has an advantage that an organic solvent is not used in a manufacturing process and an environmental load is small.
  • the artificial leather according to one embodiment of the present invention is excellent in surface quality, texture, and mechanical strength (abrasion resistance and the like), for example, it can be used for clothing products, interior products, automobiles, aircraft, railway vehicles, and the like. It can be suitably applied to a skin material of a sheet or an interior material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

風合い及び機械強度(耐摩耗性等)に優れることによって、例えば、服飾製品、並びに、インテリア用、自動車用、航空機用、鉄道車両用等のシートの表皮材又は内装材等に好適に用いることができる、人工皮革を提供する。本発明の一態様は、繊維シートとポリウレタン樹脂とを含む人工皮革であって、前記繊維シートが、織編物であるスクリムと、前記人工皮革の第1の外表面を構成する繊維層(A)とを含み、前記繊維層(A)の厚み方向断面において、前記ポリウレタン樹脂の総面積(D)に対する、面積100μm2以上の閉形状を形成しているポリウレタン樹脂の合計面積(d)の割合(d/D)が、以下の式(1):5≦(d/D)×100≦50 (%) (1)を満足する、人工皮革を提供する。

Description

人工皮革、及び、その製造方法
 本発明は、風合い及び機械強度(耐摩耗性等)に優れる人工皮革に関するものである。
 不織布等の繊維質基材とポリウレタン樹脂とを主材として構成された人工皮革は、イージーケア、機能性、均質性等、天然皮革では実現が難しい優れた特徴を有しており、衣類、靴、鞄、更に、インテリア用、自動車用、航空機用、鉄道車両用等のシートの表皮材及び内装材、リボン、ワッペン基材等の服飾材、等に好適に用いられる。
 このような人工皮革を製造する方法としては、従来、繊維質基材にポリウレタン樹脂の有機溶剤溶液を含浸せしめた後、繊維質基材をポリウレタン樹脂の非溶媒(例えば水又は有機溶剤)中に浸漬してポリウレタン樹脂を湿式凝固せしめる方法が、一般的に採用されている。この方法において、ポリウレタン樹脂の溶媒である有機溶剤としては、N,N-ジメチルホルムアミド等の水混和性有機溶剤が用いられる。しかしながら、一般的に有機溶剤は人体及び環境への有害性が高いことから、人工皮革の製造に関しては、有機溶剤を使用しない手法が強く求められている。
 例えば、特許文献1では、海島型複合繊維の海成分の樹脂によって極細繊維の一部を拘束することで、実質的にポリウレタン樹脂を用いず脱有機溶剤を達成する方法が提案されている。また、特許文献2~4では、従来の有機溶剤系ポリウレタン樹脂に代えて、水中にポリウレタン樹脂を分散させた水分散型ポリウレタン樹脂を用いる方法が記載されている。
特開2007-224481号公報 国際公開第2015/129602号 特開2017-137588号公報 特開2013-234409号公報
 しかし、特許文献1の実施例に記載されている方法をトレースして得られる繊維シートにおいては、ポリウレタン樹脂を実質的に使用しないため、表面品位及び風合いが十分ではなく、特に、耐久性及び弾性に劣る海成分の存在により耐光堅牢度、風合い等が不十分であるという問題がある。また、特許文献2に記載される方法では、熱水中で水分散型ポリウレタン樹脂を凝固させることでポリウレタン樹脂の多孔構造化を達成し風合いをある程度改善できると考えられるが、市場から求められるレベルでの優れた風合いを満足しているとは言い難く、また柔軟性にも改善の余地がある。加えて、特許文献2に記載される方法には、凝固浴の熱水がポリウレタン樹脂の一部で汚染される等、工程が不安定であるという問題もある。特許文献3に記載される方法では、外表面におけるポリウレタン樹脂の面積比率が低く、ざらつきが生じるという問題がある。特許文献4に記載される方法では、水性ポリウレタン樹脂溶液に含浸させる際に、ポリビニルアルコールを添加していないため、厚み方向断面において閉形状を形成しているポリウレタン樹脂が多く、機械強度が劣るという問題がある。
 本発明の一態様が解決しようとする課題は、風合い及び機械強度(耐摩耗性等)に優れることによって、例えば服飾製品、並びに、インテリア用、自動車用、航空機用、鉄道車両用等のシートの表皮材又は内装材等として好適に用いることができる、人工皮革を提供することである。
 本発明者らは、鋭意研究した結果、以下の特徴を持った人工皮革が上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[1] 繊維シートとポリウレタン樹脂とを含む人工皮革であって、
 前記繊維シートが、織編物であるスクリムと、前記人工皮革の第1の外表面を構成する繊維層(A)とを含み、
 前記繊維層(A)の厚み方向断面において、前記ポリウレタン樹脂の総面積(D)に対する、面積100μm2以上の閉形状を形成しているポリウレタン樹脂の合計面積(d)の割合(d/D)が、以下の式(1):
5≦(d/D)×100≦50 (%)   (1)
を満足する、人工皮革。
[2] 前記繊維層(A)の厚み方向断面において、ポリウレタン樹脂が形成している閉形状の平均面積が3μm2以上18μm2以下である、上記態様1に記載の人工皮革。
[3] 前記第1の外表面における前記ポリウレタン樹脂の面積比率が6.5%以下である、上記態様1又は2に記載の人工皮革。
[4] 前記繊維シートが、
 前記人工皮革の第1の外表面を構成する繊維層(A)、
 前記人工皮革の第2の外表面を構成する繊維層(B)、及び
 前記繊維層(A)と前記繊維層(B)との間に配置されたスクリム、
で構成された3層構造を有する、上記態様1~3のいずれかに記載の人工皮革。
[5] 少なくとも繊維層(A)が、平均直径1μm以上8μm以下の繊維で構成されている、上記態様1~4のいずれかに記載の人工皮革。
[6] 少なくとも繊維層(A)が、実質的に単繊維分散している繊維で構成されている、上記態様1~5のいずれかに記載の人工皮革。
[7] 前記繊維シート100質量%に対する前記ポリウレタン樹脂の比率が5質量%以上20質量%以下である、上記態様1~6のいずれかに記載の人工皮革。
[8] 柔軟値が28cm以下である、上記態様1~7のいずれかに記載の人工皮革。
[9] 前記ポリウレタン樹脂が、水分散型ポリウレタン樹脂である、上記態様1~8のいずれかに記載の人工皮革。
[10] 上記態様1~9のいずれかに記載の人工皮革の製造方法であって、
 前記スクリムと前記繊維層(A)とを含む前記繊維シートを作製する繊維シート作製工程、及び
 前記繊維シートにポリウレタン樹脂を充填する樹脂充填工程
を含み、前記繊維シート作製工程において、少なくとも繊維層(A)を抄造法で作製する、方法。
[11] 前記樹脂充填工程の前に、熱水溶解性樹脂水溶液を前記繊維シートの前記繊維層(A)の外表面にコーティングし、次いで乾燥する工程を更に含む、上記態様10に記載の方法。
 本発明の一態様によれば、風合い及び機械強度(耐摩耗性等)に優れる人工皮革、及び、その製造方法が提供される。
図1は、繊維シートの構成例を示す概念図である。 図2は、繊維直径の求め方を説明する概念図である。 図3Aは、実施例1における繊維層(A)の外表面のSEM画像を示す図である。 図3Bは、図3Aに示すSEM画像をマーキング処理した後の画像を示す図である。 図3Cは、図3A及び図3Bの一部を拡大した図である。 図3Dは、図3Bをカラースレショルド処理した後の画像を示す図である。 図3Eは、図3Dに示す画像を二値化処理した後の画像を示す図である。
 以下、本発明の例示の態様について、以下具体的に説明するが、本発明はこれらの態様に限定されるものではない。また、本開示の各種値は、特記がない限り、本開示の[実施例]の項に記載される方法又はこれと同等であることが当業者に理解される方法で得られる値である。
<人工皮革>
 本発明の一態様は、繊維シートとポリウレタン樹脂とを含む人工皮革を提供する。繊維シートは、織編物であるスクリムと、人工皮革の第1の外表面を構成する繊維層(A)とを含む。一態様においては、繊維層(A)の厚み方向断面において、ポリウレタン樹脂の総面積(D)に対する、面積100μm2以上の閉形状を形成しているポリウレタン樹脂の合計面積(d)の割合(d/D)が、以下の式(1):
5≦(d/D)×100≦50 (%)   (1)
を満足する。
 本開示で、「人工皮革」とは、家庭用品品質表示法に準じ「基材に特殊不織布(ランダム三次元立体構造を有する繊維層を主とし、ポリウレタン又はそれに類する可撓性を有する高分子弾性体を含浸させたもの)を用いているもの」である。また、JIS-6601の定義では、人工皮革は、その外観によって、革の銀面様外観を持つ「スムーズ」と、革のスエード、ベロア等の外観を持つ「ナップ」に分類されるが、本開示の人工皮革は「ナップ」に分類されるもの(すなわち、起毛調外観を有するスエード調人工皮革)に関するものである。スエード調外観は、繊維層(A)の外表面(すなわち、人工皮革の第1の外表面となる面)をサンドペーパー等でバフィング処理することにより形成できる。なお、本開示で、人工皮革の第1の外表面とは、人工皮革が使用される際に外部に露出する表面(例えば、椅子用途の場合は人体と接触する側の表面)である。一態様において、スエード調人工皮革の場合には、第1の外表面が、バフィング加工等により起毛又は立毛されている。
 本開示で、繊維層(A)の厚み方向断面におけるポリウレタン樹脂の「閉形状」とは、当該断面を走査型電子顕微鏡(SEM)で観察し、ポリウレタン樹脂の形態像の輪郭上の任意の点を始点とし、当該始点から当該輪郭に沿って線を延ばしたときに、当該線が当該始点に戻るような形状を意味する。
 本発明の一態様の重要な特徴の1つは、繊維シートに対するポリウレタン樹脂の充填状態である。耐摩耗性等の機械強度と風合いとを高いレベルで両立させるために、少なくとも繊維層(A)の厚み方向の断面において、ポリウレタン樹脂が占める総面積(D)の内、面積100μm2以上の閉形状で存在するポリウレタン樹脂が占める合計面積(d)の割合((d/D)×100(%))は、5~50%である。(d/D)の割合は、人工皮革中のポリウレタン樹脂のうち大サイズで分布している部分の割合の指標である。上記割合が50%以下である場合、ポリウレタン樹脂が微細化されて繊維シートに充填されているため、繊維層(A)を構成する繊維とスクリムとの屈曲自由度が大きくなるため、風合いが柔らかくなる。また、上記割合が5%以上である場合、ポリウレタン樹脂が繊維層(A)の繊維同士を互いに十分に把持する(すなわち繊維間のバインダーとして十分に機能する)ため、市場ニーズを満足する十分な機械強度(耐摩耗性等)が得られる。上記割合は、好ましくは5%以上35%以下、更に好ましくは8%以上25%以下である。
 繊維層(A)の厚み方向断面において閉形状を形成しているポリウレタン樹脂の平均面積(本開示で、「ポリウレタン樹脂の平均サイズ」ともいう。)は、3μm2以上18μm2以下であることが好ましい。ポリウレタン樹脂の平均サイズが3μm2以上である場合、ポリウレタン樹脂による、繊維層(A)を構成する繊維間のバインダーとしての役割が良好であるため、柔軟な風合い、及び耐摩耗性等の優れた機械強度を具備した人工皮革が得られ易い。一方、ポリウレタン樹脂の平均サイズが18μm2以下である場合、繊維層(A)を構成する繊維同士のポリウレタン樹脂による把持点が多くなるため、耐摩耗性等の優れた機械強度及び柔軟な風合いを具備した人工皮革が得られ易い。ポリウレタン樹脂の平均サイズは、好ましくは4μm2以上15μm2以下、更に好ましくは4μm2以上12μm2以下である。
 上記(d/D)の割合、及びポリウレタン樹脂の平均サイズをコントロールする方法の例としては、繊維シートへの充填時のポリウレタン樹脂の形態を制御すること(例えば、ポリウレタン樹脂分散液中の当該ポリウレタン樹脂の平均一次粒子径を制御すること、当該含浸液中にポリビニルアルコール等の水溶性樹脂を少量添加すること、繊維シートに対するポリウレタン樹脂の比率を制御すること)、等を例示できる。
 繊維シート100質量%に対するポリウレタン樹脂の比率は、5質量%以上20質量%以下であることが好ましい。繊維シートに対するポリウレタン樹脂の比率は、本開示の(d/D)の割合、及び、繊維層(A)の厚み方向断面において閉形状を形成しているポリウレタン樹脂の平均面積(ポリウレタン樹脂の平均サイズ)のコントロール性に影響する。ポリウレタン樹脂の比率が低い場合は、(d/D)の割合が低い傾向、及びポリウレタン樹脂の平均サイズが小さい傾向がある。一方、ポリウレタン樹脂の比率が高い場合は、(d/D)の割合が高い傾向、及びポリウレタン樹脂の平均サイズが大きい傾向がある。繊維シートに対するポリウレタン樹脂の比率が5質量%以上であれば、ポリウレタン樹脂によって繊維同士が良好に把持され、市場ニーズを満足する耐摩耗性等の機械強度が得られ易い。一方、繊維シートに対するポリウレタン樹脂の比率が20質量%以下であれば、柔軟な風合いが得られ易い。繊維シートに対するポリウレタン樹脂の比率は、より好ましくは6質量%以上17質量%以下、更に好ましくは6質量%以上15質量%以下である。
[ポリウレタン樹脂]
 本発明で用いられるポリウレタン樹脂としては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるものが好ましい。
 ポリマージオールとしては、例えば、ポリカーボネート系、ポリエステル系、ポリエーテル系、シリコーン系、フッ素系等のジオールを採用することができ、これらの2種以上を組み合わせた共重合体を用いてもよい。耐加水分解性の観点からは、ポリカーボネート系若しくはポリエーテル系又はこれらの組み合わせのジオールが好ましく用いられる。また、耐光性及び耐熱性の観点からは、ポリカーボネート系若しくはポリエステル系又はこれらの組み合わせのジオールが好ましく用いられる。さらに、コスト競争力の観点からは、ポリエーテル系若しくはポリエステル系又はこれらの組み合わせのジオールが好ましく用いられる。
 ポリカーボネート系ジオールは、アルキレングリコールと炭酸エステルとのエステル交換反応、ホスゲン又はクロル蟻酸エステルとアルキレングリコールとの反応等によって製造することができる。
 アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール等の直鎖アルキレングリコール;ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール等の分岐アルキレングリコール;1,4-シクロヘキサンジオール等の脂環族ジオール;ビスフェノールA等の芳香族ジオール;等が挙げられ、これらを1種又は2種以上の組み合わせで使用できる。
 ポリエステル系ジオールとしては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。
 低分子量ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、及びシクロヘキサン-1,4-ジメタノールから選ばれる一種又は二種以上を使用することができる。また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。
 また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、及びヘキサヒドロイソフタル酸から選ばれる一種又は二種以上が挙げられる。
 ポリエーテル系ジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、及びそれらを組み合わせた共重合ジオールを挙げることができる。
 ポリマージオールの数平均分子量は、500~4000であることが好ましい。数平均分子量を500以上、より好ましくは1500以上とすることにより、風合いが硬くなることを防ぐことができる。また、数平均分子量を4000以下、より好ましくは3000以下とすることにより、ポリウレタン樹脂の強度を良好に維持することができる。
 有機ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族系ジイソシアネート;及び、ジフェニルメタンジイソシアネート、トリレンジイソシアネート等の芳香族系ジイソシアネート;が挙げられ、またこれらを組み合わせて用いてもよい。中でも、耐光性の観点から、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート及びイソフォロンジイソシアネート等の脂肪族系ジイソシアネートが好ましく用いられる。
 鎖伸長剤としては、エチレンジアミン及びメチレンビスアニリン等のアミン系の鎖伸長剤、及びエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水とを反応させて得られるポリアミンを鎖伸長剤として用いることもできる。
 またポリウレタン樹脂は、ポリウレタン樹脂をN,N-ジメチルホルムアミド等の有機溶媒で溶解した溶剤型ポリウレタン樹脂、ポリウレタン樹脂を乳化剤で乳化させて水中へ分散させた水分散型ポリウレタン樹脂等の形態で使用できる。中でも、ポリウレタン樹脂を微細な形態で繊維シートに充填し易く、少量の付着でも風合い及び機械物性等の人工皮革としての要求性能が得られ易く、且つ、有機溶媒を使用する必要がなく環境負荷を低減できる点から、水分散型ポリウレタン樹脂が好ましい。すなわち、水分散型ポリウレタン樹脂は、ポリウレタン樹脂が所望の粒子径で分散した分散液の形態で繊維シートに含浸させることができるため、当該粒子径の制御によってポリウレタン樹脂の繊維シート中での充填形態を良好に制御できる。
 水分散型ポリウレタン樹脂としては、ポリウレタン分子内に親水基を含有する自己乳化型ポリウレタン樹脂、外部乳化剤でポリウレタン樹脂を乳化させた強制乳化型ポリウレタン樹脂等を使用することができる。
 水分散型ポリウレタン樹脂には、耐湿熱性、耐摩耗性及び耐加水分解性等の耐久性を向上させる目的で架橋剤を併用することができる。液流染色加工時の耐久性を向上させ、繊維の脱落を抑制し、優れた表面品位を得るために、架橋剤を添加することが好ましい。架橋剤は、ポリウレタン樹脂に対し、添加成分として添加する外部架橋剤でもよく、またポリウレタン樹脂構造内に予め架橋構造を採ることができる反応基を導入する内部架橋剤でもよい。
 人工皮革に使用される水分散型ポリウレタン樹脂は、一般的には染色加工耐性を具備させるために架橋構造をとっているため、N,N-ジメチルホルムアミド等の有機溶剤に溶け難い傾向にある。そのため、例えば、人工皮革をN,N-ジメチルホルムアミドに室温で12時間浸漬させて、ポリウレタン樹脂の溶解処理を行った後、電子顕微鏡等で断面を観察した際に、繊維形状を有しない樹脂状物が残存していれば、該樹脂状物は水分散型ポリウレタン樹脂であると判断できる。
 好ましい態様においては、上記(d/D)の割合を容易にコントロールする観点、及び、ポリウレタン樹脂の平均サイズを良好にコントロールする観点で、ポリウレタン樹脂分散液を用いてポリウレタン樹脂の充填を行い、かつその際に該分散液中のポリウレタン樹脂の平均一次粒子径を0.1μm以上0.8μm以下とする。なお、平均一次粒子径は、ポリウレタン樹脂分散液のレーザー型回折式粒度分布測定装置(HORIBA製「LA-920」)による測定で得られる値である。ポリウレタン樹脂の平均一次粒子径を0.1μm以上とすることで、(d/D)の割合を5%以上に制御すること、更に、ポリウレタン樹脂の平均サイズを3μm2以上とすることが容易であるため、繊維シート中の繊維同士をポリウレタン樹脂によって把持する力(すなわちバインダー力)を良好にすることによって優れた機械強度を有する人工皮革が得られる。また、ポリウレタン樹脂の平均一次粒子径を0.8μm以下とすることで、ポリウレタン樹脂が凝集又は粗大化することを抑制し、(d/D)の割合を50%以下に容易に制御できる。また、ポリウレタン樹脂の平均一次粒子径を0.8μm以下とすることは、繊維層(A)の厚み方向断面におけるポリウレタン樹脂の平均面積を18μm以下に制御する(すなわち、ポリウレタン樹脂が凝集、粗大化することを抑制する)点でも有利である。ポリウレタン樹脂分散液中のポリウレタン樹脂の平均一次粒子径を0.1μm以上0.8μm以下とすることで、人工皮革(特にその表層)を構成する繊維同士が把持される点が多くなり、柔軟な風合い、及び優れた機械強度(耐摩耗性等)が得られる。ポリウレタン樹脂の平均一次粒子径は好ましくは0.1μm以上0.6μm以下であり、さらに好ましくは0.2μm以上0.5μm以下である。
 ポリウレタン樹脂を含む含浸液を繊維シートに含浸させることによって繊維シートにポリウレタン樹脂を充填する場合、繊維シートを構成する繊維に対するポリウレタン樹脂の付着状態をコントロールする目的で、当該含浸液中にポリビニルアルコール、ポリアクリルアミド、カルボキシメチルセルロース等の水溶性樹脂を少量添加することも好ましい態様である。染色工程又は他の後工程にて熱水を用いて該水溶性樹脂を溶出除去することで、ポリウレタン樹脂の連続層の一部を分断し、ポリウレタン樹脂の付着状態を微細化する効果が得られる。水溶性樹脂の添加濃度は用いるポリウレタン樹脂の種類に応じて適宜決定すれば良いが、例えばポリビニルアルコール樹脂を用いる場合は、含浸液全体に対して0.5質量%以上5質量%以下が好ましい。ポリビニルアルコール樹脂の濃度が0.5質量%以上である場合、繊維層(A)の厚み方向の断面において面積100μm2以上を示すポリウレタン樹脂の発生が抑制され易くなり、当該断面において、ポリウレタン樹脂の総面積(D)に対する面積100μm2以上のポリウレタン樹脂の合計面積(d)の割合(d/D×100%)を50%以下に容易に制御できる。一方、ポリビニルアルコール樹脂の濃度を5質量%以下とすることで、ポリウレタン樹脂自体の機械強度の低下が起こり難く、且つ、ポリウレタン樹脂と人工皮革を構成する繊維との接着を妨げ難いので好ましい。より好ましいポリビニルアルコール濃度は0.6質量%以上2.5質量%以下、さらに好ましくは0.7質量%以上1.4質量%以下である。
 ポリウレタン樹脂(例えば水分散型ポリウレタン樹脂)を含む含浸液には、必要に応じて安定剤(紫外線吸収剤、酸化防止剤等)、難燃剤、帯電防止剤、顔料(カーボンブラック等)等の添加剤を添加してよい。人工皮革中に存在するこれら添加剤の総量は、ポリウレタン樹脂100質量部に対して、例えば0.1~10.0質量部、又は0.2~8.0質量部、又は0.3~6.0質量部であってよい。なおこのような添加剤は、人工皮革のポリウレタン樹脂中に分布することになる。本開示において、ポリウレタン樹脂のサイズ及び繊維シートに対する質量比率について言及するときの値は添加剤(用いる場合)も含んでの値を意図する。
[繊維シート]
 図1を参照し、繊維シート1は、織編物であるスクリム11と、繊維層(A)12とを含む。繊維シートがこれら2つの層を少なくとも有することにより、ポリウレタン樹脂の充填状態を微細化しても、寸法安定性及び引張強度等の優れた機械強度を具備することが可能となる。
 本発明の一態様において、繊維シートは、3層構造であり、且つ、スクリムが中間層であることが好ましい。図1を参照し、例えば、人工皮革の第1の外表面を構成する繊維層(A)12と、人工皮革の第2の外表面を構成する繊維層(B)13との間に、織編物であるスクリム11をサンドイッチ状に挟み込み、繊維をこれらの層間で交絡させてなる3層構造は、寸法安定性、引張強度、引裂強度等において特に好ましい。また、繊維層(A)と、繊維層(B)と、これらに挟まれたスクリムとの3層構造によれば、繊維層(A)と繊維層(B)とをそれぞれ個別に設計できるので、これらの層を構成する繊維の直径、種類等を、人工皮革に要求される機能及び用途に合わせて自由にカスタマイズでき好ましい。例えば、繊維層(A)に極細繊維を、繊維層(B)に難燃繊維をそれぞれ使用すれば、優れた表面品位と高い難燃性とを両立できる。
 織編物であるスクリムは、染色による同色性の点から、繊維層(A)を構成する繊維と同じポリマー系であることが好ましい。例えば、繊維層(A)を構成する繊維がポリエステル系であれば、スクリムを構成する繊維もポリエステル系であることが好ましく、繊維層(A)を構成する繊維がポリアミド系であれば、スクリムを構成する繊維もポリアミド系であることが好ましい。編物の場合のスクリムは、22ゲージ以上28ゲージ以下で編み上げたシングルニットが好ましい。スクリムが織物の場合、編物よりも高い寸法安定性及び強度が実現できる。織物の組織は、平織、綾織、朱子織等であってよいが、コスト面、及び交絡性等の工程面から、平織が好ましい。
 織物を構成する糸条は、モノフィラメントでもマルチフィラメントでもよい。糸条の単繊維繊度は、柔軟な人工皮革が得られ易い点で5.5dtex以下が好ましい。織物を構成する糸条の形態としては、ポリエステル、ポリアミド等のマルチフィラメントの生糸、又は仮撚り加工を施した加工糸等に撚数0~3000T/mで撚りを施したものが好ましい。該マルチフィラメントは通常のもので良く、例えばポリエステル、ポリアミド等の33dtex/6f、55dtex/24f、83dtex/36f、83dtex/72f、110dtex/36f、110dtex/48f、167dtex/36f、166dtex/48f等が好ましく用いられる。織物を構成する糸条は、マルチフィラメントの長繊維であってよい。織物における糸条の織密度は、柔軟で且つ機械強度に優れる人工皮革を得る点で、30~150本/インチが好ましく、更に好ましくは40~100本/インチである。良好な機械強度と適度な風合いとを具備するためには、織物の目付は20~150g/m2が好ましい。尚、織物における仮撚り加工の有無、撚数、マルチフィラメントの単繊維繊度、織密度等は、繊維層(A)の構成繊維との交絡性、人工皮革の柔軟性に加え、縫目強力、引裂強力、引張強伸度、伸縮性等の機械物性にも寄与するため、目標とする物性及び用途に応じて適宜選択すればよい。
 本発明の一態様において、人工皮革の第1の外表面におけるポリウレタン樹脂の面積比率は、好ましくは0%以上6.5%以下である。該面積比率は、第1の外表面を500倍の倍率にて走査型電子顕微鏡(SEM)で観察し、得られたSEM画像を用いて算出される値である。該面積比率が6.5%以下である場合、第1の外表面に触れた際の「ざらつき」の原因となる、第1の外表面に露出するポリウレタン樹脂の量を低減することとなり、また、起毛を形成する繊維の自由度が低減されることがないため、第1の外表面を水平方向に撫でた際に繊維が追従し「滑らか」な触感、いわゆる表面品位が向上する傾向がある。第1の外表面におけるポリウレタン樹脂の面積比率は、より好ましくは3.5%以下、更に好ましくは2%以下である。当該面積比率は、人工皮革の製造容易性の点で、例えば0.1%以上、又は0.5%以上であってもよい。
 人工皮革は、少なくとも繊維層(A)が平均直径1μm以上8μm以下の繊維から構成されていることが好ましい。繊維の平均直径が1μm以上である場合、耐摩耗性、染色による発色性、及び耐光堅牢度が良好になる。また、繊維の平均直径が8μm以下である場合、繊維の本数密度が大きいため、緻密調が高く、表面の触感が滑らかで、表面品位がより良好な人工皮革が得られ易い。耐摩耗性、染色性、及び表面品位を更に高いレベルで兼ね備えた人工皮革を得る観点で、繊維層(A)を構成する繊維の平均直径は、より好ましくは2μm以上6μm以下、更に好ましくは2μm以上5μm以下である。
 人工皮革を構成する繊維層(繊維層(A)、並びに任意の層としての繊維層(B)及び追加の層)を構成する繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系繊維;ナイロン6、ナイロン66、ナイロン12等のボリアミド系繊維;等の合成繊維が好適である。その中でも、カーシート分野等の、耐久性が要求される用途を考慮すると、直射日光に長時間曝露しても繊維自身が黄変等せず、染色堅牢度に優れる点で、ポリエチレンテレフタレートが好ましい。また、環境負荷を低減するという観点から、ケミカルリサイクル若しくはマテリアルリサイクルされたポリエチレンテレフタレート、又は植物由来原料を使ったポリエチレンテレフタレート等が更に好ましい。
 少なくとも繊維層(A)において、繊維は実質的に単繊維分散していることが好ましい。例えば、海島型複合繊維(例:共重合ポリエステルを海成分、レギュラーポリエステルを島成分に用いたもの等)等の極細繊維発生型繊維を使用し、スクリムとの三次元交絡体とした後で細繊化処理(海島型複合繊維の海成分を溶解、分解等によって除去)することによって得られる繊維は、繊維層(A)中では繊維束として存在することになり、実質的に単繊維分散していない。一例として、島成分が単繊維繊度0.2dtex相当で24島/1fである海島型複合短繊維を作製し、該海島型複合短繊維で繊維層(A)を形成した後、ニードルパンチ処理等でスクリムとの三次元交絡体を形成し、該三次元交絡体にポリウレタン樹脂を充填した後、海成分を溶解又は分解することで、単繊維繊度が0.2dtex相当の極細繊維が得られる。この場合、単繊維が24本収束した繊維束の状態(収束状態では4.8dtex相当)で繊維層(A)に存在することになる。
 本開示で、繊維が「実質的に単繊維分散している」とは、繊維が、例えば上記の海島型複合繊維中の島成分のような繊維束を形成していないことを意味する。繊維層(A)が、実質的に単繊維分散している繊維から構成されている場合、表面平滑性に優れ、例えば繊維層(A)の外表面をバフィング加工等によって起毛させる際に均質な起毛が得られ易く、且つ、ポリウレタン樹脂の付着率が比較的少ない場合でも、摩擦によってピリングと呼ばれる毛玉状の外観が生じ難いため、より優れた表面品位と耐摩耗性とを有する人工皮革が得られる。また、繊維が単繊維分散している場合、繊維間隔が狭く均一になり易いため、ポリウレタン樹脂が微細な形態で付着していても、良好な耐摩耗性が得られる。繊維を実質的に単繊維分散させる方法としては、直接紡糸法により製造された繊維を抄造法により繊維シート化する方法、海島型複合繊維で作製された繊維シートの海成分を溶解又は分解して極細繊維束を発生させた後に、極細繊維束面に高速水流を噴射することで、極細繊維束の単繊維化を促進する方法等が挙げられる。
 人工皮革を構成する繊維層のうち繊維層(A)以外の繊維層においては、繊維が単繊維分散していてもしていなくてもよいが、好ましい態様においては、繊維層(A)以外の層は単繊維分散している繊維で構成されている。繊維層(A)以外の層を構成する繊維が単繊維分散していることにより、人工皮革の厚みが均質となり加工精度が向上し、品質を安定化させるという観点から好ましい。
 繊維層(A)の目付は、耐摩耗性等の機械強度の観点から、好ましくは10g/m2以上200g/m2以下、より好ましくは30g/m2以上170g/m2以下、更に好ましくは60g/m2以上170g/m2以下である。人工皮革が3層以上からなる場合であって、繊維層(A)、スクリム、繊維層(B)の順で積層される場合、繊維層(B)の目付は、コスト及び製造のしやすさの観点から、好ましくは10g/m2以上200g/m2以下、より好ましくは20g/m2以上170g/m2以下とすることができる。スクリムの目付は、機械強度、及び繊維層とスクリムとの交絡性の観点から、好ましくは20g/m2以上150g/m2以下、より好ましくは20g/m2以上130g/m2以下、更に好ましくは30g/m2以上110g/m2以下である。
 繊維シート全体の目付は、好ましくは50g/m2以上550g/m2以下、より好ましくは60g/m2以上400g/m2以下、更に好ましくは70g/m2以上350g/m2以下である。
 本発明の一態様において、人工皮革の柔軟値は、28cm以下であることが好ましい。柔軟値とは、人工皮革の風合いを示す指標である。柔軟値を28cm以下とすることで、インテリア、自動車、航空機、鉄道車両等のシートの表皮材又は内装材の成形性が向上し、且つ、消費性能も良好となり、柔軟性に関して市場から求められるニーズを満足させ易い。柔軟値は、好ましくは6cm以上26cm以下、更に好ましくは8cm以上22cm以下である。
<人工皮革の製造方法>
 本発明の別の態様は、前述の人工皮革を製造する方法を提供する。一態様において、該方法は、
 スクリムと繊維層(A)とを含む繊維シートを作製する繊維シート作製工程、及び
 該繊維シートにポリウレタン樹脂を充填する樹脂充填工程
を含む。一態様においては、繊維シート作製工程において、少なくとも繊維層(A)を抄造法で作製する。繊維シートは、前述のように、繊維層(A)及びスクリムに加えて、繊維層(B)等の追加の層を含み得る。
 人工皮革の製造方法の好適例としては、下記に示す(a)(b)(c)の工程を、(a)(b)(c)の順、若しくは、(a)(c)(b)の順に実施する製造方法等が挙げられる。
(a)スクリムと繊維層(A)とを含む、2層以上からなる繊維シートを製造する工程
(b)少なくとも繊維層(A)の外表面に対してサンドペーパー等によるバフィング加工等を行い、起毛面を形成する工程
(c)繊維シートにポリウレタン樹脂を含浸後、乾燥し、ポリウレタン樹脂を充填する工程
(a)工程
 人工皮革の繊維シートを構成する各繊維層(繊維層(A)、任意の繊維層(B)等)の製造方法としては、紡糸直結型の方法(例えば、スパンボンド法及びメルトブローン法)、又は、短繊維を用いてシートを形成する方法(例えば、カーディング法、エアレイド法等の乾式法、及び、抄造法等の湿式法)が挙げられ、いずれも好適に用いることができる。短繊維を用いて製造されるシートは、目付斑が小さく均一性に優れ、且つ、均一な起毛が得られ易いため、人工皮革の表面品位を向上させる点で好適である。その中でも、繊維が単繊維分散し易く均一性が高い繊維層を形成できる点で抄造法が好ましい。特に、少なくとも繊維層(A)を抄造法で製造することが好ましい。抄造法は、極細繊維(例えば平均直径8μm以下の極細繊維)で構成された繊維層を作製する場合に、繊維の開繊及び単繊維分散がし易く、得られる繊維層の均一性が高い傾向があり、特に好ましい。
 上記の繊維層の製造方法として短繊維を用いた方法を選択する場合の短繊維長は、乾式法(カーディング法、エアレイド法等)で、好ましくは13mm以上102mm以下、より好ましくは25mm以上76mm以下、更に好ましくは38mm以上76mm以下であり、湿式法(抄造法等)で、好ましくは1mm以上30mm以下、より好ましくは2mm以上25mm以下、更に好ましくは3mm以上20mm以下である。例えば、湿式法(抄造法等)に用いられる短繊維の、長さ(L)と直径(D)との比であるアスペクト比(L/D)は、好ましくは500以上2000以下、より好ましくは700~1500である。このようなアスペクト比は、短繊維を水中に分散してスラリーを調製する際の該スラリー中での短繊維の分散性及び開繊性が良好であること、繊維層強度が良好であること、乾式法と較べて繊維長が短く且つ単繊維分散し易いため、摩擦によってピリングと呼ばれる毛玉状の外観になり難いこと、から好ましい。例えば、直径4μmの短繊維の繊維長は、好ましくは2mm以上8mm以下、より好ましくは3mm以上6mm以下である。
 スクリムと繊維層(A)とを含む繊維シートを製造する際に用いる交絡方法としては、ニードルパンチ法、水流交絡法等があり、いずれも好適に用いることができる。スクリム組織の破壊、変形等を起こし難い点、極細繊維(例えば平均直径8μm以下の極細繊維)の交絡処理に適性が高い点で、水流交絡法が好ましい。
 水流交絡法における高圧水噴射ノズルの孔径は、高い交絡効果と優れた表面平滑性とを得る点で、0.05mm以上0.40mm以下が好ましく、更に好ましくは、0.08mm以上0.30mm以下である。水流交絡においては、通常、水圧1~10MPaで水を噴射させる。また、高圧水噴射面から被処理物までの距離は、高い交絡効果、交絡処理前の導布、及び交絡処理時の工程通過性の点から、好ましくは5mm以上100mm以下であり、更に好ましくは10mm以上70mm以下である。また、高圧水噴射ノズルを円運動させること又は工程進行方向に対して直角に往復運動させることも、交絡効果及び表面平滑性を高める上で好ましい。ノズルの孔径、水圧等の水流交絡条件は、被処理物である繊維シートの構成、目付、処理スピード等に応じて適宜選択すればよい。
 ニードルパンチ法では、使用される針のバーブ本数は1~9本が好ましい。バーブの本数を1本以上とすることにより、交絡効果が得られ、且つ、繊維の損傷を抑えることができる。バーブ数を9本以下とすることにより、繊維の損傷を小さくすることができ、また、人工皮革に残る針跡を減らすことができるので、製品の外観を向上させることができる。
 繊維の交絡性及び製品外観への影響を考慮すると、バーブのトータルデプス(バーブの先端部からバーブ底部までの長さ)は0.05mm以上0.10mm以下であることが好ましい。バーブのトータルデプスが0.05mm以上であることで、繊維への良好な引掛かりが得られるため効率的な繊維交絡が可能となる。また、バーブのトータルデプスが0.10mm以下であることで、人工皮革に残る針跡が低減され、品位が向上する。バーブ部の強度と繊維交絡とのバランスを考慮すると、バーブのトータルデプスは、0.06mm以上0.08mm以下であることがより好ましい。
 ニードルパンチ法により繊維を絡合させる場合は、パンチ密度の範囲を300本/cm2以上6000本/cm2以下とすることが好ましく、1000本/cm2以上6000本/cm2以下とすることがより好ましい。
(b)工程
 (b)工程では、繊維シートの、少なくとも繊維層(A)の外表面に対して、サンドペーパー等によるバフィング加工等を行い、起毛面を形成する。
(c)工程
 (c)工程では、繊維シートにポリウレタン樹脂を含浸後、乾燥させることにより、ポリウレタン樹脂を充填する。典型的な態様において、ポリウレタン樹脂は、溶液(例えば溶剤溶解型の場合)、分散液(例えば水分散型の場合)等の含浸液の形態で含浸される。含浸液中のポリウレタン樹脂の濃度は、例えば、2~30質量%、又は3~25質量%、又は4~20質量%であってよい。一態様において、繊維シート100質量%に対するポリウレタン樹脂の比率が5~20質量%となるように含浸液の調製及び繊維シートへの含浸を行う。
 好ましい態様においては、人工皮革の製造方法が、上記(c)の前に、(d)熱水溶解性樹脂水溶液を繊維層(A)(具体的には繊維層(A)における、人工皮革の第1の外表面となる面)にコーティングした後、乾燥する工程を有する。なお本開示で、「熱水溶解性樹脂」とは、常温水に難溶解性であり、具体的には温度20±2℃の常温水に対する脱落率が25%以下である樹脂である。なお該脱落率は、繊維シートの重量をW1(g)、前記繊維シートの繊維層(A)の起毛面に該樹脂をコーティングした繊維シートの重量をW2(g)、前記繊維シートを温度20±2℃の常温水に10秒間浸漬したのち脱水乾燥して得られた繊維シートの重量をW3(g)としたとき、下記の式で得られる値である。
 脱落率=(W2-W3)/(W2-W1)×100(%)
 ポリウレタン樹脂の充填よりも前に熱水溶解性樹脂のコーティング、次いで乾燥を行うことにより、バフィング加工により少なくとも繊維層(A)の外表面に形成された起毛面を熱水溶解性樹脂で保護(すなわち、後工程で繊維シートに充填されるポリウレタン樹脂が起毛部分には過度に付着しないように保護)できる。次いで、ポリウレタン樹脂を充填し、次いで熱水中(例えば液流染色機中)で該熱水溶解性樹脂を除去すると、起毛を再び露出させることができる。したがって、(a)(b)(d)(c)の工程順は、人工皮革の外表面におけるポリウレタン樹脂の面積比率を比較的低くすることによって、優れた表面品位、及び「滑らかな」触感を得るという観点で好ましい。
 熱水溶解性樹脂を用いて繊維層(A)の外表面の起毛を保護する方法としては、繊維シートに起毛を形成した後、該繊維シートを熱水溶解性樹脂水溶液中に浸漬、次いで乾燥し、乾燥中に熱水溶解性樹脂を積極的に起毛面へマイグレーションさせる方法(この方法によれば、水分の蒸発に伴い熱水溶解性樹脂が繊維シートの内部から起毛面近傍に移動し、熱水溶解性樹脂が繊維シートの断面方向において起毛面付近に偏在する)、上記(d)において熱水溶解性樹脂を繊維層(A)にコーティングした後乾燥する方法、等がある。上記いずれの方法も起毛面を保護する手段として採用できるが、コーティング法は、繊維層(A)の起毛面のみを保護するため、優れた表面品位と高い耐摩耗性とが得られやすい点で好ましい。
 熱水溶解性樹脂としては、部分ケン化型ポリビニルアルコール、完全ケン化型ポリビニルアルコール等が挙げられる。なお、熱水溶解性樹脂として部分ケン化型ポリビニルアルコールを用いる場合、部分ケン化型ポリビニルアルコールは、完全ケン化型ポリビニルアルコールと比べて常温(20℃)の水に溶出し易い傾向があるため、水分散型ポリウレタン樹脂を繊維シートに含浸する工程でポリビニルアルコールが過度に脱落しないようにすることが好ましい。部分ケン化型ポリビニルアルコールの過度な脱落を防止する手段としては、部分ケン化型ポリビニルアルコールの重合度を適宜選択すること、部分ケン化型ポリビニルアルコール水溶液中に架橋剤を添加すること等が好ましく挙げられる。中でも、水分散型ポリウレタン樹脂を繊維シートに含浸する工程でポリビニルアルコールが過度に脱落しないという観点から、ケン化度が70モル%以上であることが好ましく、78モル%以上であることがより好ましい。また、重合度は1000以上であることが好ましく、1200以上であることがより好ましい。
 熱水溶解性樹脂は、水分散型ポリウレタン樹脂を繊維シートに含浸する工程で過度に脱落しないことに加え、コーティングする繊維層の外表面との親和性が高いことが好ましい。中でも、熱水溶解性樹脂としてポリビニルアルコールを用いる場合には、疎水性合成繊維との親和性や厚み方向に適度に浸透するという観点から、ケン化度が90モル%未満である部分ケン化型ポリビニルアルコールが好ましい。ポリビニルアルコール樹脂のケン化度が低く、且つ、繊維層(A)を構成する繊維がポリエステル系繊維等の疎水性合成繊維である場合、ポリビニルアルコール樹脂と疎水性合成繊維との親和性が高く、コーティングの均一性が良好であるため表面品位が良好になる。部分ケン化型ポリビニルアルコールのケン化度は90モル%以下が好ましく、より好ましくは89モル%以下である。
 繊維層(A)の起毛面にコーティングする際の熱水溶解性樹脂(好ましくは部分ケン化型ポリビニルアルコール)水溶液の粘度は、25±5℃にて、B型粘度計(東京計器製「B8L型」)で測定したときに、0.5~7.0Pa・sの範囲とすることが好ましい。熱水溶解性樹脂水溶液の粘度が0.5Pa・s以上である場合、熱水溶解性樹脂水溶液が繊維シートの厚み方向に過度に浸透することがなく、熱水溶解性樹脂を繊維層(A)の外表面付近に偏在して付着させることができる。その結果、繊維シート内部における水分散型ポリウレタン樹脂のバインダー効果を阻害する懸念が小さく、優れた表面品位と良好な機械強度とを両立し易い。熱水溶解性樹脂水溶液の粘度が7.0Pa・s以下である場合、コーティング加工性が良好で(コーティングが繊維層(A)の外表面上に良好に保持され)、均一なコーティング層が得られ、繊維層(A)の起毛面が良好に保護され、結果として表面品位が一層良好である。熱水溶解性樹脂水溶液の粘度は、より好ましくは1.0~5.0Pa・sである。
 なお、熱水溶解性樹脂水溶液の粘度を上記範囲内に調整する方法としては、熱水溶解性樹脂の重合度と、熱水溶解性樹脂水溶液の濃度とをファクターとして調整する方法等が挙げられる。熱水溶解性樹脂の重合度は、好ましくは1000~4000、より好ましくは1200~1700である。また、熱水溶解性樹脂水溶液中の熱水溶解性樹脂濃度は、例えば10~13質量%が好ましく、より好ましくは11~12質量%である。
 繊維シート内部におけるポリウレタン樹脂のバインダー効果を阻害する懸念が小さく、耐摩耗性等の機械強度と優れた表面品位とを両立させ易い点で、繊維シート単位面積当たりのポリビニルアルコール固形分のコーティング量は、好ましくは5g/m2以上20g/m2以下、より好ましくは7g/m2以上18g/m2以下、更に好ましくは9g/m2以上15g/m2以下である。
 熱水溶解性樹脂を繊維シートから除去する手段としては、例えば60℃以上、好ましくは80℃以上の熱水に浸漬させる方法、液流染色機内で染色加工を行う前に80℃以上の熱水を循環させながら熱水溶解性樹脂を除去する方法等が挙げられる。特に、液流染色機内で熱水溶解性樹脂を除去する方法が、熱水溶解性樹脂を除去した後の繊維シートの乾燥及び巻き取りという工程を省略でき、生産効率を高くできる点で好ましい。
 人工皮革は、感性面の価値(すなわち視覚効果)を高める目的で、染色処理されていることが好ましい。染色処理に用いる染料としては、繊維層(A)を構成する繊維がポリエステル系繊維の場合には分散染料、ポリアミド系繊維の場合には酸性染料が一般的である。染色方法としては、染色加工業者に良く知られた通常の方法を用いることができる。人工皮革においては、均染性の点から液流染色機が好適に用いられる。このようにして染色された人工皮革には、ソーピング、及び必要に応じて還元洗浄(すなわち化学的還元剤の存在下での洗浄)を実施し、余剰染料を除去することが好ましい。
 以下、本発明を実施例に基づいて更に具体的に説明するが、それらは本発明の範囲を限定するものではない。実施例及び比較例に係る人工皮革サンプルについて、表面品位及び物性を以下の方法で評価した。
(1)ポリウレタン樹脂の平均サイズ
・前処理
 サンプルを1cm×0.5cmにカットした後、該サンプルの内部空間をエポキシ系樹脂(主剤:日新EM製「Quetol812」、硬化剤:日新EM製「MNA」、加速剤:日新EM製「DMP-30」)で包埋した。得られた樹脂包埋サンプルをミクロトームで厚み方向と平行に切断し、平滑な切断面を得た。次いで、四酸化ルテニウムの飽和蒸気中に2時間静置し、サンプルに付着しているポリウレタン樹脂をルテニウムで電子染色した。次いで、オスミウム原子を1nmコーティング加工することで導電処理した。
・観察
 サンプルがスクリムを有する場合、導電処理済みのサンプルの上記切断面における繊維層(A)の最深部(すなわち最もスクリム側の部分)を観察領域とし、且つ、スクリムを構成する繊維を観察対象外として、500倍の倍率にて走査型電子顕微鏡(SEM、日立製「SU8220」)で観察した。なお、サンプルがスクリムを有しない場合、導電処理済みのサンプルの上記切断面における人工皮革厚み方向の中央部を観察領域の中心点とし、500倍の倍率にて前記SEMで観察した。観察条件は以下の通りである。
加速電圧:5kV
検出器 :YAG-BSE(反射電子)
撮像倍率:500倍
・画像解析
 得られたSEM反射電子像について、画像解析ソフト「ImageJ(バージョン:1.51j8)アメリカ国立衛生研究所)を用いて、以下の方法で画像を二値化し、ポリウレタン樹脂の平均サイズを求めた。
1)SEM画像をバンドパスフィルター処理する。処理条件は以下の通りである。
2)メディアンフィルター処理する(Radius=4.0pixels、1回)。
3)MaxEntropy法で二値化を実施し、二値化後のSEM画像内の黒色部分をポリウレタン樹脂とする。
4)得られた二値化像から、全ポリウレタン樹脂の平均サイズを算出する。すなわち、ImageJのAnalyze Particle機能(条件:Size=0-infinity、Circularity=0.00-1.00)を用い、SEM画像内に分布するそれぞれのポリウレタン樹脂の面積の合計を、ポリウレタン樹脂の分布数で除した値を測定観察領域の平均サイズとする。同一測定サンプルのランダムに測定した5点の相加平均値をサンプルの平均サイズとする。
(2)切断面における、ポリウレタン樹脂の総面積(D)に対する面積100μm2以上のポリウレタン樹脂の合計面積(d)の割合(d/D)
 上記(1)と同様の操作により得られた二値化像から、SEM画像内のポリウレタン樹脂の総面積(D)と、面積100μm2以上の閉形状を形成しているポリウレタン樹脂の合計面積(d)とを求め、((d/D)×100%)の値を算出した。
(3)繊維の平均直径の算出
 繊維層(A)を構成する繊維の平均直径は、人工皮革の上記切断面を走査型電子顕微鏡(SEM、JEOL製「JSM-5610」)を用いて倍率1500倍で撮影し、繊維層(A)のうち、人工皮革の第1の外表面をなす繊維をランダムに100本選び、単繊維の断面の直径を測定して、100本の測定値の算術平均値として求めた。
 単繊維の断面の観察形状が円形ではない場合は、単繊維断面の最長径の中点に直交する直線上の外周間距離を繊維径とした。図2は、繊維直径の求め方を説明する概念図である。例えば、図2のように繊維の断面Aが楕円形である場合、観察像における断面Aの最長径aの中点pに直交する直線b上の外周間距離cを繊維直径とした。
(4)柔軟値の算出
 サンプルを20cm×20cmの正方形にカットし測定サンプルとした。測定サンプルを水平面上に置き、正方形の頂点をA、B、C、Dとして、対角線で対面する頂点Aと頂点Cとを重ね合わせた。頂点Aを水平面に置き、頂点Cを頂点Aに重ね合わせた。次いで、頂点Cを、測定サンプルに接触させた状態で対角線ACに沿って頂点Aから徐々に遠ざけてゆき、頂点Cが測定サンプル面から離れた点を点Eとし、点Eと頂点Cとの距離を柔軟値1とした。頂点Aを頂点Bに、頂点Cを頂点Dにそれぞれ置き換えて上記と同様の手順で柔軟値2を測定した。柔軟値1と柔軟値2との算術平均値をサンプルの柔軟値とした。
(5)人工皮革の第1の外表面のSEM観察領域におけるポリウレタン樹脂の面積比率
・前処理及び観察
 同一のサンプルから0.5cm×0.5cmのサイズのサンプル片をランダムに3点切り出し、これらを測定サンプル(n=3)とした。次いで、測定サンプルを試料台に貼り付け5秒間エアブローし、測定サンプルの第1の外表面の夾雑物を取り除く工程を経たのち、測定サンプル3点それぞれの第1の外表面を500倍の倍率にて走査型電子顕微鏡(SEM、JEOL製「JSM-5610」)で観察した。図3Aは、実施例1に係る測定サンプルの第1の外表面のSEM画像の一例である。
・ポリウレタン樹脂のマーキング
 ランダムに選定した10人の被験者に、該SEM画像における繊維形態以外の付着物をポリウレタン樹脂とし、その分布状態をマーキングしてもらった。マーキングにはオレンジ色蛍光ペン(Оffice製「CビPB-K2-OR」)を用いた。なお、マーキング部は、HSV色空間において色相:22~43度、明度:40~100%、彩度40~85%の範囲である。該作業は、10人の被験者それぞれが、撮影したSEM画像3枚全てを対象としたため、マーキング済みのSEM画像は30枚得られた。図3Bは被験者による図3Aのマーキング結果の一例、図3Cはマーキングの判断例である。付着物は、図3Cの「視野1」のような明らかに繊維形態以外の付着物、図3Cの「視野2」のような小さい粒形の付着物、図3Cの「視野3」のような奥に見える付着物等として観察される、繊維形態以外のすべての付着物をマーキングした。なお、図3Cの「視野3」の丸枠で示すような繊維形態以外か否かが判別し辛い箇所はマーキングしないこととした。
・画像解析
 得られたマーキング済みのSEM画像(図3B)を画像解析ソフト「ImageJ(バージョン:1.51j8)アメリカ国立衛生研究所)」を用いて以下の方法で二値化し、サンプルの第1の外表面のSEM観察領域におけるポリウレタン樹脂の面積比率を算出した。
1)マーキング済みのSEM画像(図3B)をカラースレショルド処理した。処理条件は以下の通りである。
Figure JPOXMLDOC01-appb-T000001
 得られた処理後のSEM画像(図3D)内の赤色塗りつぶし部分がポリウレタン樹脂に対応する。
2)カラースレショルド処理したSEM画像をMaxEntropy法で二値化した。二値化後のSEM画像(図3E)内の黒色部分をポリウレタン樹脂とした。
3)二値化後のSEM画像(図3E)内の黒色部分の合計面積を、該SEM画像の面積で除した値を、上記面積比率とした。
4)上記手順をマーキング済みのSEM画像30枚全てに適用し、n=30の面積比率を測定した。それらを算術平均し、第1の外表面のSEM観察領域におけるポリウレタン樹脂の面積比率とした。
(6)表面品位
 人工皮革の表面品位は、健康状態の良好な成人男性及び成人女性各10名ずつ、計20名を評価者として、目視及び官能評価によって下記の基準で7段階評価し、最も多かった評価を表面品位とした。表面品位は、3~7級を良好(合格)とした。
7級:起毛が非常に緻密であり、触感は非常に滑らかで、外観は非常に良好である。
6級:7級と5級の間の評価である。
5級:起毛が緻密であり、触感は滑らかであり、外観は良好である。
4級:5級と3級の間の評価である。
3級:全体的に均一な起毛が存在し、ざらついた触感もなく、皮革の様な外観である。
2級:3級と1級の間の評価である。
1級:起毛がまだらであり、ざらざらした触感であり、外観は粗悪である。
(7)耐摩耗性
 JIS-L-1096(E法:マーチンデール法、押圧荷重12kPa)での試験結果に応じて評価を実施した。評価基準を以下に示す。30000回磨耗後にスクリムが露出しない場合を合格(A,B又はC)とし、測定結果としてスクリムが露出した摩耗回数、或いは、摩耗面のピリング発生状態に基づき、評価した。
A:40000回で、スクリムが露出せず摩耗面のピリングも発生しない。
B:30000回ではスクリム露出しないが、40000回で、スクリムが露出するか又は摩耗面にピリングが発生する。
C:20000回ではスクリム露出しないが、30000回で、スクリムが露出するか又は摩耗面にピリングが発生する。
D:20000回で、スクリムが露出するか又は摩耗面にピリングが発生する。
(8)繊維シートに対するポリウレタン樹脂の比率
 繊維シートに対するポリウレタン樹脂の比率は下記の方法で測定した。
 ポリウレタン樹脂含浸前の繊維シートの質量をA(g)とする。繊維シートにポリウレタン樹脂分散液を含浸し、次いでピンテンター乾燥機を用いて130℃で加熱乾燥し、次いで90℃に加熱した熱水に浸漬した状態で柔布し、次いで乾燥して、ポリウレタン樹脂が充填された繊維シート(以下、「樹脂充填繊維シート」ともいう。)を得る。樹脂充填繊維シートの質量をB1(g)とする。ポリウレタン樹脂の比率(C1)を以下の式で算出する。
 C1=(B1-A)/A×100(wt%)
(9)ポリウレタン樹脂分散液の平均一次粒子径
 レーザー型回折式粒度分布測定装置(HORIBA製「LA-920」)にて、同装置測定マニュアルに従い測定し、メディアン径を平均粒子径とした。
(10)ポリビニルアルコールのケン化度
 JIS K 6726(1994)3.5に準じて測定した。
(11)重合度
 JIS K 6726(1994)3.7に準じて測定した。
[実施例1]
(繊維シートの作製)
 単繊維の平均直径が4μmのポリエチレンテレフタレート繊維を溶融紡糸法により製造し、長さ5mmに切断した(以降、長さ5mmに切断した、単繊維の平均直径が4μmのポリエチレンテレフタレート繊維を「PET極細短繊維」とも称す)。該PET極細短繊維を水中に分散させ、抄造法により目付100g/m2の抄造シートを製造し、表層となる繊維層(A)として用いた。
 同様の方法にて、PET極細短繊維を水中に分散させ、抄造法により目付50g/m2の抄造シートを製造し、繊維層(B)として用いた。
 繊維層(A)と繊維層(B)との間に、166dtex/48fのポリエチレンテレフタレート繊維からなる目付95g/m2のスクリム(平織物)を挿入し、3層積層体とした。
 次いで、該3層積層体に対して、孔径0.15mmの直進流噴射ノズルを用いた高速水流を繊維層(A)側から4MPa、繊維層(B)側から3MPaの圧力で水流噴射し、繊維層(A)及び繊維層(B)をスクリムに絡合させて交絡一体化した後に、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥して、3層構造からなる繊維シートを得た。
(人工皮革の作製)
 該繊維シートの繊維層(A)の外表面を、#400のエメリペーパーを用いて起毛処理した。
 続いて、表2に示す成分を含む含浸液を上記繊維シートに含浸し、次いで、ピンテンター乾燥機を用いて130℃で加熱乾燥した後、90℃に加熱した熱水に浸漬した状態で柔布した後、乾燥することで、無水芒硝とポリビニルアルコール樹脂を抽出、除去し、水分散型ポリウレタン樹脂が充填された繊維シート(樹脂充填繊維シート)を得た。尚、樹脂充填繊維シートにおいて、繊維シートの繊維総質量に対する水分散型ポリウレタン樹脂の比率は10質量%であった。
Figure JPOXMLDOC01-appb-T000002
 最後に、樹脂充填繊維シートを染料濃度5.0%owfのブルー分散染料(住友化学株式会社製「BlueFBL」)で液流染色機を用いて130℃で15分間染色し、還元洗浄を行った。その後ピンテンター乾燥機を用いて100℃で5分間乾燥し、人工皮革を得た。
[実施例2、3]
 実施例1において、含浸液中のポリエーテル系水分散型ポリウレタン(すなわちポリエーテル系水分散型ポリウレタン分散液中の固形分)の質量%を、それぞれ4.5質量%(実施例2)、13.5質量%(実施例3)に変更し、繊維シートの繊維総重量に対する水分散型ポリウレタン樹脂の比率を、それぞれ5質量%(実施例2)、15質量%(実施例3)に変更したことを除き実施例1と同様の手順で、人工皮革を得た。
[実施例4]
 実施例2において、ポリエーテル系水分散型ポリウレタン分散液の平均一次粒子径を0.2μmに変更したことを除き実施例2と同様の手順で、人工皮革を得た。
[実施例5]
 実施例1において、PET極細短繊維の平均直径を7μmに変更したことを除き実施例1と同様の手順で、人工皮革を得た。
[実施例6]
 実施例1において、含浸液中のポリビニルアルコール「N-300」の質量%を3.0質量%へ変更したことを除き実施例1と同様の手順で、人工皮革を得た。
[実施例7]
 海成分として、5-スルホイソフタル酸ナトリウムを8モル%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分が20質量%で島成分が80質量%の複合比率で、島数16島/1f、平均繊維径が18μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カード及びクロスラッパーを通して目付125g/m2のシートを製造し、繊維層(A)として用いた。また、同様の方法で、目付63g/m2のシートを製造し、繊維層(B)として用いた。
 繊維層(A)と繊維層(B)との中間に、166dtex/48fのポリエチレンテレフタレート繊維からなる目付95g/m2のスクリム(平織物)を挿入し、3層積層体とした後、ニードルパンチ処理により3層構造からなる繊維シートを得た。
 該繊維シートを、95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して25分間処理を行い、繊維シートを収縮させつつ、海島型複合繊維の海成分を除去する脱海処理を行った。脱海後の繊維層(A)を構成する繊維の単繊維の平均直径は4μmであった。
 次いで、孔径0.15mmの直進流噴射ノズルを用いた高速水流を繊維層(A)側から4MPa、繊維層(B)側から3MPaの圧力で水流噴射し、海成分が脱落して生じた空隙を埋めるように緻密化処理を行うと同時に、繊維束を構成する繊維の単繊維化を促進した。その後、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥して3層構造からなる繊維シートを得た。
 得られた繊維シートを用い、実施例1の(人工皮革の作製)と同様の手順で、人工皮革を作製した。
[実施例8]
 実施例7において、脱海後に繊維層(A)、繊維層(B)共に水流噴射処理を行わなかったことを除き実施例7と同様の手順で、人工皮革を得た。
[実施例9]
 実施例1において、含浸液を繊維シートに含浸する工程の前に、ポリビニルアルコール(日本合成化学工業株式会社「N-300(ケン化度98~99モル%以下、重合度1200)」を11質量%に希釈調製した水溶液、水溶液粘度:1.5Pa・s)をドクターナイフ法により繊維層(A)の外表面にコーティング(固形分のコーティング量:11g/m2)した後、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥し、起毛面をポリビニルアルコールでコーティング加工した他は、実施例1と同様の手順で、人工皮革を得た。
[実施例10]
 実施例9において、コーティング加工用ポリビニルアルコールを日本合成化学工業株式会社製「GM-14R(ケン化度89モル%以下、重合度1700)」を11質量%に希釈調製した水溶液(水溶液粘度:1.5Pa・s)に変更したことを除き実施例9と同様の手順で、人工皮革を得た。
[実施例11]
 実施例10において、ポリエーテル系水分散型ポリウレタン分散液の平均一次粒子径を0.7μmに変更したことを除き実施例10と同様の手順で、人工皮革を得た。
[実施例12]
 実施例11において、含浸液中のポリエーテル系水分散型ポリウレタン(すなわちポリエーテル系水分散型ポリウレタン分散液中の固形分)の質量%を16質量%へ変更し、繊維シートの繊維総質量に対する水分散型ポリウレタン樹脂の比率を18質量%へ変更したことを除き実施例11と同様の手順で、人工皮革を得た。
[実施例13](PVA含浸法)
 実施例1において、含浸液を繊維シートに含浸する工程の前に、ポリビニルアルコール(日本合成化学工業株式会社「NL-05(ケン化度98モル%以上、重合度500)」)を8質量%に希釈調製した水溶液を繊維シートへ含浸させた後、マングルでニッピングし(繊維シートの繊維総質量に対するポリビニルアルコールの固形分付着量15質量%)、エアースルー式のピンテンター乾燥機を用いて100℃で乾燥し、起毛面へポリビニルアルコールをマイグレーションさせて、コーティング加工と同様な起毛保護効果を与えた他は、実施例1と同様の手順で、人工皮革を得た。
[実施例14]
 実施例10において、含浸液中のポリビニルアルコール「N-300」の質量%を0質量%に変更したことを除き実施例10と同様の手順で、人工皮革を得た。
[比較例1]
 実施例12において、含浸液中のポリエーテル系水分散型ポリウレタン(すなわちポリエーテル系水分散型ポリウレタン分散液中の固形分)の質量%を22質量%に変更し、繊維シートの繊維総質量に対する水分散型ポリウレタン樹脂の比率を24質量%に変更したことを除き実施例12と同様の手順で、人工皮革を得た。
[比較例2]
 実施例4において、含浸液中のポリエーテル系水分散型ポリウレタン(すなわちポリエーテル系水分散型ポリウレタン分散液中の固形分)の質量%を2.7質量%に変更し、繊維シートの繊維総質量に対する水分散型ポリウレタン樹脂の比率を3質量%に変更したことを除き実施例4と同様の手順で、人工皮革を得た。
[比較例3]
 海成分として、5-スルホイソフタル酸ナトリウムを8モル%共重合したポリエチレンテレフタレートを用い、島成分として、ポリエチレンテレフタレートを用い、海成分が20質量%で島成分が80質量%の複合比率で、島数16島/1f、平均繊維径が18μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カード及びクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理によりシートとした。このようにして得られたシートを、95℃の温水中に浸漬させて収縮させ、その後ピンテンター乾燥機を用いて100℃で5分間乾燥し、目付600g/mの単層のシートを得た。
 次に、該シートを、95℃の温度に加熱した濃度10g/Lの水酸化ナトリウム水溶液に浸漬して25分間処理を行い、海島型複合繊維の海成分を除去した脱海後の単層の繊維シートを得た。得られた脱海後の繊維シートを構成する繊維の単繊維の平均直径は4μmであった。
 続いて、ポリビニルアルコール(日本合成化学工業株式会社「NL-05(ケン化度98モル%以上、重合度500)」)を8質量%に希釈調製した水溶液を上記繊維シートに含浸させ、ピンテンター乾燥機を用いて140℃で加熱乾燥を行い、ポリビニルアルコール樹脂付着繊維シートを得た。この繊維シートの繊維総質量に対するポリビニルアルコール樹脂の付着率は15質量%であった。
 更に、表3に示す含浸液を上記繊維シートに含浸し、次いで、ピンテンター乾燥機を用いて130℃で加熱乾燥した後、90℃に加熱した熱水に浸漬した状態で柔布した後、乾燥することで、無水芒硝とポリビニルアルコール樹脂を抽出、除去し、水分散型ポリウレタン樹脂が充填された繊維シートを得た。この繊維シートの繊維総質量に対する水分散型ポリウレタン樹脂の比率は35質量%であった。
Figure JPOXMLDOC01-appb-T000003
 その後、エンドレスのバンドナイフを有する半裁機を用いて、水分散型ポリウレタン樹脂が充填された繊維シートを厚み方向に対して垂直に半裁し、半歳物の半裁されていない側の面を#400のエメリペーパーを用いて起毛処理した後、該半裁物を染料濃度5.0%owfのブルー分散染料(住友化学株式会社製「BlueFBL」)で液流染色機を用いて130℃で15分間染色し、還元洗浄を行った。その後ピンテンター乾燥機を用いて100℃で5分間乾燥し、単層の人工皮革を得た。
[比較例4]
 比較例3において、含浸液中のポリエーテル系水分散型ポリウレタン(すなわちポリエーテル系水分散型ポリウレタン分散液中の固形分)の質量%を9質量%に変更し、繊維シートの繊維総質量に対する水分散型ポリウレタン樹脂の比率を10質量%へ変更したことを除き比較例3と同様の手順で、人工皮革を得た。
 上記の実施例1~14および比較例1~4の結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、各実施例においては、スクリムと繊維層(A)とを有するとともに、ポリウレタン樹脂が特定構造で分布していることで、表面品位及び風合い、並びに機械強度(特に耐摩耗性)に優れる人工皮革が得られたことが分かる。また、各実施例に係る人工皮革は、製造工程で有機溶媒を使用せず環境負荷が小さいという利点も有する。
 本発明の一態様に係る人工皮革は、表面品位、風合い、及び機械強度(耐摩耗性等)に優れるため、例えば、服飾製品、並びに、インテリア用、自動車用、航空機用、鉄道車両用等のシートの表皮材又は内装材等に好適に適用され得る。
 1  繊維シート
 11  スクリム
 12  繊維層(A)
 13  繊維層(B)

Claims (11)

  1.  繊維シートとポリウレタン樹脂とを含む人工皮革であって、
     前記繊維シートが、織編物であるスクリムと、前記人工皮革の第1の外表面を構成する繊維層(A)とを含み、
     前記繊維層(A)の厚み方向断面において、前記ポリウレタン樹脂の総面積(D)に対する、面積100μm2以上の閉形状を形成しているポリウレタン樹脂の合計面積(d)の割合(d/D)が、以下の式(1):
    5≦(d/D)×100≦50 (%)   (1)
    を満足する、人工皮革。
  2.  前記繊維層(A)の厚み方向断面において、ポリウレタン樹脂が形成している閉形状の平均面積が3μm2以上18μm2以下である、請求項1に記載の人工皮革。
  3.  前記第1の外表面における前記ポリウレタン樹脂の面積比率が6.5%以下である、請求項1又は2に記載の人工皮革。
  4.  前記繊維シートが、
     前記人工皮革の第1の外表面を構成する繊維層(A)、
     前記人工皮革の第2の外表面を構成する繊維層(B)、及び
     前記繊維層(A)と前記繊維層(B)との間に配置されたスクリム、
    で構成された3層構造を有する、請求項1~3のいずれか一項に記載の人工皮革。
  5.  少なくとも繊維層(A)が、平均直径1μm以上8μm以下の繊維で構成されている、請求項1~4のいずれか一項に記載の人工皮革。
  6.  少なくとも繊維層(A)が、実質的に単繊維分散している繊維で構成されている、請求項1~5のいずれか一項に記載の人工皮革。
  7.  前記繊維シート100質量%に対する前記ポリウレタン樹脂の比率が5質量%以上20質量%以下である、請求項1~6のいずれか一項に記載の人工皮革。
  8.  柔軟値が28cm以下である、請求項1~7のいずれか一項に記載の人工皮革。
  9.  前記ポリウレタン樹脂が、水分散型ポリウレタン樹脂である、請求項1~8のいずれか一項に記載の人工皮革。
  10.  請求項1~9いずれか一項に記載の人工皮革の製造方法であって、
     前記スクリムと前記繊維層(A)とを含む前記繊維シートを作製する繊維シート作製工程、及び
     前記繊維シートにポリウレタン樹脂を充填する樹脂充填工程
    を含み、前記繊維シート作製工程において、少なくとも繊維層(A)を抄造法で作製する、方法。
  11.  前記樹脂充填工程の前に、熱水溶解性樹脂水溶液を前記繊維シートの前記繊維層(A)の外表面にコーティングし、次いで乾燥する工程を更に含む、請求項10に記載の方法。
PCT/JP2019/030739 2018-09-14 2019-08-05 人工皮革、及び、その製造方法 WO2020054256A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020546753A JP7165199B2 (ja) 2018-09-14 2019-08-05 人工皮革、及び、その製造方法
EP19859696.7A EP3851573A4 (en) 2018-09-14 2019-08-05 ARTIFICIAL LEATHER AND METHOD OF MANUFACTURING THEREOF
KR1020217005755A KR20210035276A (ko) 2018-09-14 2019-08-05 인공 피혁 및 그 제조 방법
US17/270,113 US20210180247A1 (en) 2018-09-14 2019-08-05 Artificial Leather and Method for Manufacturing Same
CN201980057160.0A CN112639207A (zh) 2018-09-14 2019-08-05 人工皮革及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172233 2018-09-14
JP2018-172233 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054256A1 true WO2020054256A1 (ja) 2020-03-19

Family

ID=69777798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030739 WO2020054256A1 (ja) 2018-09-14 2019-08-05 人工皮革、及び、その製造方法

Country Status (7)

Country Link
US (1) US20210180247A1 (ja)
EP (1) EP3851573A4 (ja)
JP (1) JP7165199B2 (ja)
KR (1) KR20210035276A (ja)
CN (1) CN112639207A (ja)
TW (1) TWI716996B (ja)
WO (1) WO2020054256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085427A1 (ja) * 2019-10-30 2021-05-06 旭化成株式会社 人工皮革及びその製法
CN113733840A (zh) * 2021-08-31 2021-12-03 东风商用车有限公司 一种用于商用车的降噪片及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218178A1 (ja) * 2019-04-25 2020-10-29 東レ株式会社 合成皮革および被覆物品
CN112227075B (zh) * 2020-09-10 2023-06-30 江苏华峰超纤材料有限公司 一种用于自然纹理pu合成革的复合无纺布及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122702A (en) * 1978-03-12 1979-09-22 Asahi Chemical Ind Suede leather type complex texture structure
JPS5584479A (en) * 1978-12-21 1980-06-25 Asahi Chemical Ind Production of suede like artificial leather
JPS6089299U (ja) * 1983-11-22 1985-06-19 三菱レイヨン株式会社 皮革様スリツトテ−プ
JPH06293116A (ja) * 1992-05-07 1994-10-21 Asahi Chem Ind Co Ltd 複合材料及びその製造方法
JP2001096658A (ja) * 1999-10-04 2001-04-10 Kuraray Co Ltd 立毛繊維シート及びその製造方法
JP2004169197A (ja) * 2002-11-18 2004-06-17 Asahi Kasei Fibers Corp 難燃性人工皮革
JP2005060859A (ja) * 2003-08-08 2005-03-10 Asahi Kasei Fibers Corp 伸張特性に優れた人工皮革及びその製造方法
JP2007224481A (ja) 2006-01-26 2007-09-06 Toray Ind Inc 皮革様シート状物およびその製造方法
JP2013234409A (ja) 2012-05-10 2013-11-21 Toray Ind Inc シート状物およびその製造方法
WO2015129602A1 (ja) 2014-02-27 2015-09-03 東レ株式会社 シート状物およびその製造方法
JP2017137588A (ja) 2016-02-02 2017-08-10 旭化成株式会社 伸びを有する人工皮革

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653995B2 (ja) * 1986-09-12 1994-07-20 株式会社ベル繊工 人造レザ−用基布とその製造方法
JP4346766B2 (ja) * 2000-01-11 2009-10-21 株式会社クラレ 皮革様シートおよびその製造方法
JP4935721B2 (ja) * 2007-03-19 2012-05-23 東レ株式会社 伸縮性シートとその製造方法
JP5584479B2 (ja) 2010-01-19 2014-09-03 株式会社Nttドコモ 端末回線開通システム及び端末回線開通方法
CN103998679B (zh) * 2011-10-18 2016-06-15 拜耳知识产权有限责任公司 涂覆织物的方法
CN105593432B (zh) * 2013-09-30 2019-05-31 可乐丽股份有限公司 立毛状人造革及其制造方法
KR101636476B1 (ko) 2014-05-12 2016-07-06 고려대학교 산학협력단 드론을 이용한 네트워크 서비스 제공 방법 및 그 장치
EP3211132B1 (en) * 2014-10-24 2019-11-20 Toray Industries, Inc. Sheet-like article
KR101615266B1 (ko) * 2015-08-31 2016-04-25 주식회사 동우에이엘티 균일한 미세기공이 형성된 폴리우레탄 합성 피혁의 제조방법 및 이에 의해 제조된 폴리우레탄 합성 피혁 및 폴리우레탄 필름
KR20170137588A (ko) 2016-10-06 2017-12-13 김홍연 엘이디가 구비된 음료용기
WO2018105261A1 (ja) * 2016-12-05 2018-06-14 Dic株式会社 合成皮革

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122702A (en) * 1978-03-12 1979-09-22 Asahi Chemical Ind Suede leather type complex texture structure
JPS5584479A (en) * 1978-12-21 1980-06-25 Asahi Chemical Ind Production of suede like artificial leather
JPS6089299U (ja) * 1983-11-22 1985-06-19 三菱レイヨン株式会社 皮革様スリツトテ−プ
JPH06293116A (ja) * 1992-05-07 1994-10-21 Asahi Chem Ind Co Ltd 複合材料及びその製造方法
JP2001096658A (ja) * 1999-10-04 2001-04-10 Kuraray Co Ltd 立毛繊維シート及びその製造方法
JP2004169197A (ja) * 2002-11-18 2004-06-17 Asahi Kasei Fibers Corp 難燃性人工皮革
JP2005060859A (ja) * 2003-08-08 2005-03-10 Asahi Kasei Fibers Corp 伸張特性に優れた人工皮革及びその製造方法
JP2007224481A (ja) 2006-01-26 2007-09-06 Toray Ind Inc 皮革様シート状物およびその製造方法
JP2013234409A (ja) 2012-05-10 2013-11-21 Toray Ind Inc シート状物およびその製造方法
WO2015129602A1 (ja) 2014-02-27 2015-09-03 東レ株式会社 シート状物およびその製造方法
EP3112530A1 (en) 2014-02-27 2017-01-04 Toray Industries, Inc. Sheet-like material and method for producing same
JP2017137588A (ja) 2016-02-02 2017-08-10 旭化成株式会社 伸びを有する人工皮革

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851573A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085427A1 (ja) * 2019-10-30 2021-05-06 旭化成株式会社 人工皮革及びその製法
CN113733840A (zh) * 2021-08-31 2021-12-03 东风商用车有限公司 一种用于商用车的降噪片及其制备方法
CN113733840B (zh) * 2021-08-31 2023-09-01 东风商用车有限公司 一种用于商用车的降噪片及其制备方法

Also Published As

Publication number Publication date
JP7165199B2 (ja) 2022-11-02
KR20210035276A (ko) 2021-03-31
EP3851573A4 (en) 2021-12-08
US20210180247A1 (en) 2021-06-17
CN112639207A (zh) 2021-04-09
TWI716996B (zh) 2021-01-21
JPWO2020054256A1 (ja) 2021-03-11
EP3851573A1 (en) 2021-07-21
TW202019701A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
WO2020054256A1 (ja) 人工皮革、及び、その製造方法
CN107849806B (zh) 皮革样布帛
KR20160137579A (ko) 인공 피혁과 그의 제조 방법
JP6838602B2 (ja) シート状物およびその製造方法
TW201907075A (zh) 絨毛狀人工皮革
EP3816342B1 (en) Artificial leather and production method therefor
JP6613764B2 (ja) 人工皮革およびその製造方法
US20220372698A1 (en) Artificial Leather and Production Method Therefor
EP3845704A1 (en) Artificial leather base material, method for production thereof, and napped artificial leather
EP3816343B1 (en) Artificial leather and production method therefor
CN113597485B (zh) 片状物
JP2022038822A (ja) 繊維シート及び該繊維シートを用いた人工皮革の製造方法
WO2024004475A1 (ja) 人工皮革及びその製法
WO2023120584A1 (ja) 人工皮革及びその製法
JP2020051003A (ja) 銀付人工皮革およびその製造方法
WO2024070649A1 (ja) 人工皮革
WO2024029215A1 (ja) 人工皮革およびその製造方法、ならびに、乗物用内装材、座席
WO2023189269A1 (ja) 人工皮革およびその製造方法、複合人工皮革
US20230287625A1 (en) Artificial leather
JP2023065062A (ja) 人工皮革及びその製法
US20230323594A1 (en) Artificial leather, production method therefor, and artificial leather backing material
JP2024065002A (ja) 人工皮革

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546753

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217005755

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859696

Country of ref document: EP

Effective date: 20210414