WO2020052636A1 - 天线装置及终端设备 - Google Patents

天线装置及终端设备 Download PDF

Info

Publication number
WO2020052636A1
WO2020052636A1 PCT/CN2019/105601 CN2019105601W WO2020052636A1 WO 2020052636 A1 WO2020052636 A1 WO 2020052636A1 CN 2019105601 W CN2019105601 W CN 2019105601W WO 2020052636 A1 WO2020052636 A1 WO 2020052636A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
length
frequency
tractor
Prior art date
Application number
PCT/CN2019/105601
Other languages
English (en)
French (fr)
Inventor
王义金
黄奂衢
简宪静
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020052636A1 publication Critical patent/WO2020052636A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an antenna device and a terminal device.
  • a terminal device needs to support multiple frequencies. At this time, a larger number of antenna units or array units need to be provided to meet the multi-frequency requirements of the terminal device, which results in a higher cost of the terminal device.
  • the embodiments of the present disclosure provide an antenna device and a terminal device, so as to solve the problem that the terminal device needs to be provided with more antenna units or array units to meet the requirements of multi-frequency, thereby causing a relatively high cost of the terminal device.
  • an embodiment of the present disclosure provides an antenna device.
  • the antenna device includes a floor, an antenna body, and a tractor.
  • the antenna body is located between the tractor and the floor.
  • the antenna body includes one antenna.
  • a first radiator and at least one second radiator, the first radiator and the second radiator are electrically connected, and two ends of the first radiator are electrically connected to the floor and the antenna feed, respectively.
  • an embodiment of the present disclosure further provides a terminal device, including the foregoing antenna device.
  • An antenna device includes: a floor, an antenna body, and a tractor; the antenna body is located between the tractor and the floor; the antenna body includes a first radiator and At least one second radiator, the first radiator and the second radiator are electrically connected, and two ends of the first radiator are electrically connected to the floor and the antenna feed, respectively.
  • the antenna body since the antenna body includes a first radiator and at least one second radiator, the multi-frequency requirements of the terminal device can be supported, and there is no need to provide more antenna units or array units, which can save the cost of the terminal device.
  • FIG. 1 is one of the schematic structural diagrams of an antenna device according to an embodiment of the present disclosure
  • FIG. 2 is a second schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • FIG. 3 is a third schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • FIG. 4 is a fourth schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • the antenna device includes a floor 1, an antenna body 2, and a tractor 3, and the antenna body 2 is located in the tractor. Between the radiator 3 and the floor 1, the antenna body 2 includes a first radiator and at least one second radiator, the first radiator and the second radiator are electrically connected, and the first radiator The two ends of the body are electrically connected to the floor 1 and the antenna feed 4 respectively.
  • FIG. 1 may further include a signal line 5, and both ends of the first radiator are electrically connected to the floor 1 and the antenna feed 4 respectively, and the antenna feed 4 may be connected to the antenna feed 4 through the signal line 5 and The antenna feed 4 is electrically connected.
  • the above-mentioned floor 1 is formed by stacking a plurality of metal planes at a certain interval in the Z direction. A middle hole of the multi-layer metal planes is connected through holes to form through holes, so that all the metal planes form an integrated ground.
  • the metal plane may be a circuit board, and the number of the tractors 3 may also be multiple, and the floor 1, the antenna body 2, and the tractors 3 may be disposed over a non-conductive dielectric material.
  • the above antenna device can improve performance parameters of the millimeter wave array antenna, but is not limited to the millimeter wave array antenna.
  • the above-mentioned multilayer floor has a certain height in the Z direction, and also serves as a reflector of the antenna body 2 for reflecting a signal (such as a millimeter wave signal).
  • the tractor 3 has a traction effect on the signal.
  • the antenna body 2 includes a first radiator and at least one second radiator, and the first radiator and the second radiator are electrically connected, so that the antenna body 2 can support multiple frequency bands of signals. Since the antenna body 2 supports multiple frequency bands of signals, there is no need to provide multiple antenna units or array units, which reduces the space of the antenna and saves the cost of the terminal equipment.
  • the antenna (such as a millimeter wave antenna) can obtain a higher gain.
  • the first radiator and the at least one second radiator are both circular radiators, wherein the total length of each circular radiator is not equal, and the total length of the first radiator The longest, the total length of two adjacent circular radiators is reduced.
  • the total length of each annular radiator is not equal, so that signals of different frequency bands can be radiated.
  • a radiator with a longer total length can radiate lower frequency signals; a radiator with a shorter total length can radiate higher frequency signals.
  • the two ends of the first radiator are electrically connected to the floor 1 and the antenna feed 4 respectively, and the total length of the first radiator is the longest, the total length of two adjacent circular radiators is reduced. Distribution, so when there are multiple second radiators, the total length of the second radiator that is closer to the first radiator is longer, so that it can cover multiple frequency bands of the signal.
  • the antenna body 2 includes a second radiator 22, the first radiator 21 is located between the second radiator 22 and the floor 1, and the second radiator 22 is located in the Between the tractor 3 and the first radiator 21, a space surrounded by the first radiator 21 is in communication with a space surrounded by the second radiator 22.
  • FIG. 2 is a schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • the first radiator 21 is located between the second radiator 22 and the floor 1
  • the second radiator 22 is located between the tractor 3 and the first radiator 21, and the first radiator 21 surrounds The space is connected with the space surrounded by the second radiator 22.
  • One end of the first radiator 21 is electrically connected to the floor 1 and the other end is electrically connected to the antenna feed 4 and is electrically connected to the antenna feed 4 through the signal line 5.
  • the signal line 5 can pass through the middle of the multilayer metal plane, so as to be electrically connected to the antenna feed 4.
  • the antenna body 2 is a folded dipole antenna, and the folded dipole antenna operates in a millimeter wave frequency band.
  • the folded dipole antenna forms a plurality of loop structures, that is, a first loop formed by path A and a second loop formed by path B.
  • the third ring formed by path A and path B together.
  • the connection between the first ring and the second ring is narrowed. In this way, forming multiple loop structures of the folded vibrator antenna can make the antenna (such as a millimeter wave antenna) work in multiple frequency bands.
  • the directivity of the antenna can be improved, that is, the directivity of high gain can be obtained, and then the The transmission distance of the antenna.
  • the antenna can work in multiple frequency bands.
  • the first radiator 21 and the second radiator 22 are both rectangular and circular radiators, and the total length of the first radiator 21 is greater than the total length of the second radiator 22, The length of the long side of the second radiator 22 is greater than the length of the tractor 3.
  • the length of path B is smaller than the length of path A, and the length of path C is shorter than the length of path B in the Y direction.
  • the performance of the antenna (such as a millimeter wave antenna) can be satisfied.
  • the total length of different radiators in the antenna body 2 is an integer multiple of a half wavelength of the operating frequency of the radiator.
  • the total length of the first radiator 21 corresponds to a lower frequency operating in the millimeter wave band, and the total length corresponds to an integer multiple of the half wavelength corresponding to the lower frequency.
  • the total length of the second radiator 22 corresponds to a higher frequency operating in the millimeter wave band, and the total length corresponds to an integer multiple of a half wavelength corresponding to the higher frequency.
  • the total length of the first radiator 21 may correspond to a higher frequency operating in a millimeter wave band, and the total length may correspond to an integer multiple of a half wavelength corresponding to the higher frequency.
  • the sum of the total length of the first radiator 21 and the second radiator 22 corresponds to the lower frequency operating in the millimeter wave band, and the sum of the total length corresponds to an integer multiple of the half wavelength corresponding to the lower frequency.
  • the total length of different radiators in the antenna body 2 may also be approximately an integer multiple of a half wavelength of the operating frequency of the radiator, which is not limited in this embodiment.
  • the above setting method can better match the millimeter wave signals of different frequency bands for work.
  • the antenna body 2 includes two second radiators 22, the two second radiators 22 form a dipole antenna, and the first radiator 21 is a rectangular annular radiator, One of the two second radiators 22 is electrically connected to the floor 1 and the other is electrically connected to the antenna feed 4.
  • one of the two second radiators 22 is electrically connected to the floor 1 and the other is electrically connected to the antenna feed 4, and may be electrically connected to the antenna feed 4 through a signal line 5.
  • FIG. 3 is a schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • the second radiator 22 located on the upper layer is electrically connected to the floor 1
  • the second radiator 22 located on the lower layer is electrically connected to the antenna feed 4 through the signal line 5
  • one end of the first radiator 21 is The floor 1 is electrically connected, and the other end is electrically connected to the antenna feed 4 through a signal line 5.
  • FIG. 4 is a schematic structural diagram of an antenna device according to an embodiment of the present disclosure.
  • two second radiators 22 are removed based on FIG. 3, so that the connection manner of the first radiator 21 can be more intuitively understood, that is, one end of the first radiator 21 is electrically connected to the floor 1. The other end is electrically connected to the antenna feed 4 through a signal line 5.
  • the antenna body 2 includes two second radiators 22, the second radiator 22 is an inverted L-shaped radiator, and the first radiator 21 is a rectangular ring-shaped radiator.
  • the first radiator 21 and the second radiator 22 are connected through a gap coupling.
  • One of the two second radiators 22 is electrically connected to the floor 1 and the other is electrically connected to the antenna feed 4. Therefore, the antenna (such as a millimeter wave antenna) can work in multiple frequency bands.
  • two radiation arms of the dipole antenna are located on different planes, and the two radiation arms and the first radiator 21 are located on different planes.
  • the second radiator 22 located on the upper layer is located on the uppermost plane, and the second radiator 22 located on the lower layer is located on the middle plane.
  • the two radiating arms of the dipole antenna are located on different planes.
  • the radiator 21 is located on the lowermost plane.
  • each radiating arm is parallel to the length direction of the tractor 3.
  • the two second radiators 22 are located on a side above the first radiator 21.
  • the radiating arms of the second radiator 22 located on the upper layer face the negative direction of the Y-axis, and the radiating arms of the second radiator 22 on the lower layer face the positive direction of the Y-axis, thereby being relatively located on the upper layer and relatively second
  • the radiation arms of the radiator 22 face in opposite directions.
  • each radiation arm is parallel to the longitudinal direction of the tractor 3.
  • the antenna is a combined design of a dipole antenna and a folded dipole antenna.
  • the dipole antenna includes two second radiators 22, and the folded dipole antenna is the first radiator 21.
  • the antenna (such as a millimeter wave antenna) can work in multiple frequency bands.
  • the number of the tractors 3 may be at least two.
  • the number of the above-mentioned tractors 3 is at least two, which can strengthen the traction of the radiated signals of the antenna, and can improve the directivity of the antenna, that is, a higher antenna gain can be obtained, thereby increasing the transmission distance of the antenna signal.
  • this embodiment mode can be applied to a case where the antenna body includes two loop radiators, and can also be applied to a case where the antenna body includes one loop radiator and a dipole antenna.
  • the number of the tractors 3 is three, and the three tractors 3 are arranged in three layers.
  • the length of any two tractors 3 are equal, and the length of each tractor 3 is less than the target length.
  • the target length is the sum of the lengths of the two radiating arms.
  • the three tractors 3 are arranged in three layers, so that signals can be pulled on different planes.
  • the length of any two tractors 3 are equal, and the length of each tractor 3 is less than the target length.
  • the three tractors 3 can more traction the signals radiated by the antenna (such as a millimeter wave antenna), so that the radiation beam of the antenna can be more concentrated, so as to better overcome the defect of higher propagation loss and achieve a longer Communication distance.
  • the length of each radiating arm is a quarter wavelength corresponding to the first frequency in the millimeter wave band; the total length of the first radiator 21 is a half wavelength of the second frequency in the millimeter wave band.
  • the dipole antenna (including two second radiators 22) operates at a higher frequency in the millimeter wave band, that is, the first frequency described above, and the length of each radiating arm is the first in the millimeter wave band.
  • the folded dipole antenna (the first radiator 21) operates at a lower frequency in the millimeter wave band, that is, the above-mentioned second frequency.
  • the total length of the first radiator 21 is an integer multiple of a half wavelength of the second frequency in the millimeter wave band.
  • each radiating arm may be approximately a quarter wavelength corresponding to the first frequency in the millimeter wave band; the total length of the first radiator 21 may be approximately the second frequency in the millimeter wave band.
  • An integer multiple of a half wavelength is not limited in this embodiment.
  • the foregoing setting manner can better match the millimeter wave signals in different frequency bands for work.
  • a multi-layer connected floor 1 as a reflector of the antenna, and setting a tractor 3 for traction of the antenna signal
  • the directivity of the antenna (such as a millimeter wave antenna) can be improved, that is, a high-gain directivity can be obtained.
  • the antenna can be operated in multiple frequency bands.
  • An antenna device of this embodiment includes an antenna body 1, an antenna body 2, and a tractor 3.
  • the antenna body 2 is located between the tractor 3 and the floor 1.
  • the antenna body 2 includes A first radiator and at least one second radiator, the first radiator and the second radiator are electrically connected, and both ends of the first radiator are electrically connected to the floor 1 and the antenna feed 4 respectively connection.
  • the antenna body since the antenna body includes a first radiator 21 and at least one second radiator 22, the multi-frequency requirements of the terminal device can be supported, and there is no need to provide a larger number of antenna units or antenna arrays, which can save the cost of the terminal device.
  • the antenna can obtain a higher gain.
  • An embodiment of the present disclosure further provides a terminal device including the antenna device.
  • the terminal device may be a mobile phone, a tablet computer, a laptop computer, a personal digital assistant (PDA), and a mobile Internet device (MID). Or wearable device (Wearable Device) and so on.
  • PDA personal digital assistant
  • MID mobile Internet device
  • MID wearable device

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本公开提供一种天线装置及终端设备,该天线装置包括地板、天线体和牵引器,所述天线***于所述牵引器和所述地板之间,所述天线体包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接,所述第一辐射体的两端分别与所述地板和天线馈源电连接。

Description

天线装置及终端设备
相关申请的交叉引用
本申请主张在2018年9月14日在中国提交的中国专利申请No.201811075738.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种天线装置及终端设备。
背景技术
随着通信技术的迅速发展,多天线通讯已经成为终端设备的主流和未来的发展趋势,并且在此过程中,毫米波天线逐渐被引入到终端设备上。在实际的应用场景中,终端设备具有需要支持多频的需求,此时需要设置比较多的天线单元或阵列单元,来满足终端设备的多频需求,从而导致终端设备的成本比较高。
发明内容
本公开实施例提供一种天线装置及终端设备,以解决终端设备需要设置比较多的天线单元或阵列单元来满足多频需求,从而导致终端设备的成本比较高的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种天线装置,所述天线装置包括地板、天线体和牵引器,所述天线***于所述牵引器和所述地板之间,所述天线体包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接,所述第一辐射体的两端分别与所述地板和天线馈源电连接。
第二方面,本公开实施例还提供一种终端设备,包括上述天线装置。
本公开实施例的一种天线装置,所述天线装置包括地板、天线体和牵引器,所述天线***于所述牵引器和所述地板之间,所述天线体包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接, 所述第一辐射体的两端分别与所述地板和天线馈源电连接。这样,由于天线体包括一个第一辐射体和至少一个第二辐射体,从而可以支持终端设备的多频需求,无需设置比较多的天线单元或阵列单元,可以节省终端设备的成本。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的天线装置的结构示意图之一;
图2是本公开实施例提供的天线装置的结构示意图之二;
图3是本公开实施例提供的天线装置的结构示意图之三;
图4是本公开实施例提供的天线装置的结构示意图之四。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的天线装置的结构示意图,如图1所示,所述天线装置包括地板1、天线体2和牵引器3,所述天线体2位于所述牵引器3和所述地板1之间,所述天线体2包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接,所述第一辐射体的两端分别与所述地板1和天线馈源4电连接。
本实施例中,图1中还可以包括信号线5,所述第一辐射体的两端分别与所述地板1和天线馈源4电连接,与天线馈源4可以是通过信号线5与天线馈源4电连接。上述地板1由多层的金属平面在Z方向上以一定的间隔堆叠而成,多层金属平面其中间通过打过孔,进行通孔连接,使所有的金属平面形成一个整体的地。当然,该金属平面可以是电路板,上述牵引器3的数 量也可以是多个,且地板1、天线体2和牵引器3均可设置在非导电介质材料上方。上述天线装置可以提升毫米波阵列天线的性能参数,但不限于毫米波阵列天线。
本实施例中,上述多层地板在Z方向上有一定高度,同时也作为天线体2的反射器,用于对信号(如毫米波信号)的反射,牵引器3对信号具有牵引作用。上述天线体2包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接,从而天线体2可以支持信号的多个频段。由于天线体2支持信号的多个频段,从而无需设置多个天线单元或阵列单元,减小了天线的空间,节省了终端设备的成本。并且,通过地板1和牵引器3的设置,使得天线(如毫米波天线)可以获得较高的增益。
可选地,所述第一辐射体和所述至少一个第二辐射体均为环状辐射体,其中,每个环状辐射体的总长度不相等,且所述第一辐射体的总长度最长,相邻的两个环状辐射体的总长度呈减小分布。
本实施方式中,每个环状辐射体的总长度不相等,从而可以辐射不同频段的信号。总长度比较长的辐射体,可以辐射较低频率的信号;总长度比较短的辐射体,可以辐射较高频率的信号。由于第一辐射体的两端分别与所述地板1和天线馈源4电连接,且所述第一辐射体的总长度最长,相邻的两个环状辐射体的总长度呈减小分布,故多个第二辐射体时,越靠近第一辐射体的第二辐射体的总长度越长,从而可以覆盖信号的多个频段。
可选地,所述天线体2包括一个第二辐射体22,所述第一辐射体21位于所述第二辐射体22和所述地板1之间,所述第二辐射体22位于所述牵引器3和所述第一辐射体21之间,所述第一辐射体21围成的空间与所述第二辐射体22围成的空间连通。
一种实施方式中,为了更好的理解上述设置,可以参阅图2,图2为本公开实施例提供的天线装置的结构示意图。如图2所示,第一辐射体21位于第二辐射体22和所述地板1之间,第二辐射体22位于牵引器3和第一辐射体21之间,第一辐射体21围成的空间与第二辐射体22围成的空间连通,第一辐射体21的一端与所述地板1电连接,另一端与天线馈源4电连接,且通过信号线5与天线馈源4电连接。信号线5可以在多层金属平面的中间穿过, 从而与天线馈源4电连接。
本实施方式中,天线体2为折合振子天线,折合振子天线工作在毫米波频段,折合振子天线形成多个环状结构,即路径A形成的第一环,路径B形成的第二环,以及路径A与路径B一起形成的第三环。其中,第一环和第二环的连通处收窄。这样,折合振子天线形成多个环状结构可以使天线(如毫米波天线)工作在多个频段。
本实施方式中,通过设计多层相连的地板1作为天线的反射器,同时设置牵引器3用于天线的信号的牵引,可以提升天线的方向性,即可以获得高增益的方向性,进而提升天线的传输距离。并且通过设置多个环状的天线结构可以让天线工作在多个频段。
可选地,所述第一辐射体21和所述第二辐射体22均为矩形环状的辐射体,所述第一辐射体21的总长度大于所述第二辐射体22的总长度,所述第二辐射体22长边的长度大于所述牵引器3的长度。
本实施方式中,为了更好的理解上述设置,亦可以参阅图2。如图2所示,路径B的长度小于路径A的长度,路径C的长度小于路径B在Y方向的长度。通过这种设置方式,可以满足天线(如毫米波天线)的性能。
可选地,所述天线体2中不同的辐射体的总长度为该辐射体的工作频率半波长的整数倍。
本实施方式中,第一辐射体21的总长度对应为工作在毫米波波段的较低频率,该总长度对应为较低频率所对应的半波长的整数倍。第二辐射体22的总长度对应为工作在毫米波波段的较高频率,该总长度对应为较高频率所对应的半波长的整数倍。
或者,也可以是第一辐射体21的总长度对应为工作在毫米波波段的较高频率,该总长度对应为较高频率所对应的半波长的整数倍。第一辐射体21和第二辐射体22的总长度之和对应为工作在毫米波波段的较低频率,该总长度之和对应为较低频率所对应的半波长的整数倍。
需要说明的是,所述天线体2中不同的辐射体的总长度也可以近似为该辐射体的工作频率半波长的整数倍,对此本实施方式不作限定。
本实施方式中,通过上述的设置方式可以更好的匹配不同频段的毫米波 信号进行工作。
另一种实施方式,所述天线体2包括两个第二辐射体22,所述两个第二辐射体22形成偶极子天线,所述第一辐射体21为矩形环状的辐射体,所述两个第二辐射体22中的一个与所述地板1电连接,另一个与所述天线馈源4电连接。
另一实施方式中,上述两个第二辐射体22中的一个与所述地板1电连接,另一个与天线馈源4电连接,且可以通过信号线5与天线馈源4进行电连接。
为了更好的理解上述设置方式,可以参阅图3,图3为本公开实施例提供的天线装置的结构示意图。如图3所示,相对位于上层的第二辐射体22与地板1电连接,相对位于下层的第二辐射体22通过信号线5与天线馈源4电连接,第一辐射体21的一端与所述地板1电连接,另一端通过信号线5与所述天线馈源4电连接。
当然,为了更好的观察第一辐射体21的连接方式,可以参阅图4,图4为本公开实施例提供的天线装置的结构示意图。图4中,在图3的基础上去除了两个第二辐射体22,从而可以更加直观的理解第一辐射体21的连接方式,即第一辐射体21的一端与所述地板1电连接,另一端通过信号线5与所述天线馈源4电连接。
本实施方式中,所述天线体2包括两个第二辐射体22,所述第二辐射体22为倒L型辐射体,所述第一辐射体21为矩形环状的辐射体,所述第一辐射体21和所述第二辐射体22通过间隙耦合连接,所述两个第二辐射体22中的一个与所述地板1电连接,另一个与天线馈源4电连接。从而可以使天线(如毫米波天线)工作在多个频段。
可选地,所述偶极子天线的两个辐射臂位于不同的平面,且所述两个辐射臂与所述第一辐射体21位于不同的平面。
本实施方式中,为了更好的理解上述设置方式,依旧可以参阅图3。图3中,相对位于上层的第二辐射体22位于最上方的平面,相对位于下层的第二辐射体22位于中间的平面,则偶极子天线的两个辐射臂位于不同的平面,第一辐射体21位于最下方的平面。
可选地,每个辐射臂均与所述牵引器3的长度方向平行。
本实施方式中,为了更好的理解上述设置方式,依旧可以参阅图3。图3中,所述两个第二辐射体22位于所述第一辐射体21上方的一侧。相对位于上层的第二辐射体22的辐射臂朝向Y轴的负方向,相对位于下层的第二辐射体22的辐射臂的朝向Y轴的正方向,从而相对位于上层和相对位于下层的第二辐射体22的辐射臂的朝向相反。并且,每个辐射臂均与所述牵引器3的长度方向平行。
本实施方式中,天线为偶极子天线和折合振子天线的组合设计。偶极子天线包括两个第二辐射体22,折合振子天线为第一辐射体21。这样,通过偶极子天线和折合振子天线的组合设计,可以使天线(如毫米波天线)工作在多个频段。
对于本公开的所有实施例,所述牵引器3的数量可为至少两个。
本实施方式中,上述牵引器3的数量为至少两个,可以加强对天线的辐射信号的牵引,可以提升天线的方向性,即可以获得较高的天线增益,进而提升天线信号的传输距离。并且本实施方式可以适用于天线体包括两个环状辐射体的情况,也可以适用于天线体包括一个环状辐射体和偶极子天线的情况。
可选地,所述牵引器3的数量为三个,三个牵引器3设置为三层,任意两个牵引器3的长度均相等,且每个牵引器3的长度小于目标长度,所述目标长度为所述两个辐射臂的长度之和。
牵引器3的数量为三个时,三个牵引器3设置为三层,从而可以针对不同平面的信号进行牵引。任意两个牵引器3的长度均相等,且每个牵引器3的长度小于目标长度。这样,三个牵引器3可以更集中的对天线(如毫米波天线)辐射的信号进行牵引,使得天线的辐射波束可更集中,以更佳地克服传播损耗较高的缺陷,而达到较长的通信距离。
可选地,每个辐射臂的长度,均为毫米波波段的第一频率对应的四分之一波长;所述第一辐射体21的总长度为毫米波波段的第二频率的半波长的整数倍,所述第一频率为高频,所述第二频率为低频。
本实施方式中,偶极子天线(包括两个第二辐射体22)工作在毫米波波段较高的频率,即上述第一频率,每个辐射臂的长度,均为毫米波波段的第 一频率对应的四分之一波长。
本实施方式中,折合振子天线(第一辐射体21)工作在毫米波波段较低频率,即上述第二频率。所述第一辐射体21的总长度,为毫米波波段的第二频率的半波长的整数倍。
需要说明的是,每个辐射臂的长度,可以近似为毫米波波段的第一频率对应的四分之一波长;所述第一辐射体21的总长度可以近似为毫米波波段的第二频率的半波长的整数倍,对此本实施方式不作限定。
本实施方式中,通过上述的设置方式可以更好的匹配不同频段的毫米波信号进行工作。并且,通过设计多层相连的地板1作为天线的反射器,同时设置牵引器3用于天线的信号的牵引,可以提升天线(如毫米波天线)的方向性,即可以获得高增益的方向性,进而提升天线的传输距离。通过偶极子天线和折合振子天线的组合设计,可以使天线工作在多个频段。
本实施例的一种天线装置,所述天线装置包括地板1、天线体2和牵引器3,所述天线体2位于所述牵引器3和所述地板1之间,所述天线体2包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接,所述第一辐射体的两端分别与所述地板1和天线馈源4电连接。这样,由于天线体包括一个第一辐射体21和至少一个第二辐射体22,从而可以支持终端设备的多频需求,无需设置比较多的天线单元或天线阵列,可以节省终端设备的成本。并且,通过地板1和牵引器3的设置,使得天线可以获得较高的增益。
本公开实施例还提供一种终端设备,包括上述天线装置。
本实施例中,上述终端设备可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情 况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (12)

  1. 一种天线装置,包括地板、天线体和牵引器,所述天线***于所述牵引器和所述地板之间,其中,所述天线体包括一个第一辐射体和至少一个第二辐射体,所述第一辐射体和所述第二辐射体电连接,所述第一辐射体的两端分别与所述地板和天线馈源电连接。
  2. 根据权利要求1所述的天线装置,其中,所述第一辐射体和所述至少一个第二辐射体均为环状辐射体,其中,每个环状辐射体的总长度不相等,且所述第一辐射体的总长度最长,相邻的两个环状辐射体的总长度呈减小分布。
  3. 根据权利要求2所述的天线装置,其中,所述天线体包括一个第二辐射体,所述第一辐射***于所述第二辐射体和所述地板之间,所述第二辐射***于所述牵引器和所述第一辐射体之间,所述第一辐射体围成的空间与所述第二辐射体围成的空间连通。
  4. 根据权利要求3所述的天线装置,其中,所述第一辐射体和所述第二辐射体均为矩形环状的辐射体,所述第二辐射体长边的长度大于所述牵引器的长度。
  5. 根据权利要求4所述的天线装置,其中,所述天线体中不同的辐射体的总长度为该辐射体的工作频率半波长的整数倍。
  6. 根据权利要求1所述的天线装置,其中,所述天线体包括两个第二辐射体,所述两个第二辐射体形成偶极子天线,所述第一辐射体为矩形环状的辐射体,所述两个第二辐射体中的一个与所述地板电连接,另一个与所述天线馈源电连接。
  7. 根据权利要求6所述的天线装置,其中,所述偶极子天线的两个辐射臂位于不同的平面,且所述两个辐射臂与所述第一辐射***于不同的平面。
  8. 根据权利要求7所述的天线装置,其中,每个辐射臂均与所述牵引器的长度方向平行。
  9. 根据权利要求8所述的天线装置,其中,所述牵引器的数量为至少两个。
  10. 根据权利要求9所述的天线装置,其中,所述牵引器的数量为三个,三个牵引器设置为三层,任意两个牵引器的长度均相等,且每个牵引器的长度小于目标长度,所述目标长度为所述两个辐射臂的长度之和。
  11. 根据权利要求8所述的天线装置,其中,每个辐射臂的长度,均为毫米波波段的第一频率对应的四分之一波长;所述第一辐射体的总长度为毫米波波段的第二频率的半波长的整数倍,所述第一频率为高频,所述第二频率为低频。
  12. 一种终端设备,包括权利要求1至11中任一项所述的天线装置。
PCT/CN2019/105601 2018-09-14 2019-09-12 天线装置及终端设备 WO2020052636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811075738.9 2018-09-14
CN201811075738.9A CN108923112B (zh) 2018-09-14 2018-09-14 一种天线装置及终端设备

Publications (1)

Publication Number Publication Date
WO2020052636A1 true WO2020052636A1 (zh) 2020-03-19

Family

ID=64408241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105601 WO2020052636A1 (zh) 2018-09-14 2019-09-12 天线装置及终端设备

Country Status (2)

Country Link
CN (1) CN108923112B (zh)
WO (1) WO2020052636A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923112B (zh) * 2018-09-14 2021-04-27 维沃移动通信有限公司 一种天线装置及终端设备
CN109888454B (zh) * 2018-12-29 2021-06-11 瑞声精密制造科技(常州)有限公司 一种封装天线模组及电子设备
CN112153833B (zh) * 2019-06-28 2021-10-22 Oppo广东移动通信有限公司 壳体组件、天线装置及电子设备
CN112929475B (zh) * 2021-02-04 2023-12-08 维沃移动通信有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073258A1 (en) * 2007-03-07 2010-03-25 Konica Minolta Holdings, Inc. Antenna device
CN101710644A (zh) * 2009-12-23 2010-05-19 深圳华为通信技术有限公司 一种天线及无线通信装置
CN103503235A (zh) * 2011-01-18 2014-01-08 多康公司 圆极化复合环形天线
CN103825091A (zh) * 2014-03-19 2014-05-28 电子科技大学 超宽带定向天线
CN108923112A (zh) * 2018-09-14 2018-11-30 维沃移动通信有限公司 一种天线装置及终端设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121668A1 (de) * 1990-12-19 1992-06-25 Erhard Dr Unterreitmeier Verfahren zur herstellung einer yagi-antenne
JP4624662B2 (ja) * 2003-12-09 2011-02-02 八木アンテナ株式会社 通信機能を備えた電子カード
US7098863B2 (en) * 2004-04-23 2006-08-29 Centurion Wireless Technologies, Inc. Microstrip antenna
CN1905270B (zh) * 2005-07-26 2011-08-24 财团法人工业技术研究院 高增益环形天线
CN101359772B (zh) * 2007-07-31 2013-01-09 京信通信***(中国)有限公司 双环辐射单元和平板天线
JP2009200719A (ja) * 2008-02-20 2009-09-03 National Institutes Of Natural Sciences 平面マイクロ波アンテナ、一次元マイクロ波アンテナ及び二次元マイクロ波アンテナアレイ
CN201503913U (zh) * 2009-06-04 2010-06-09 宏霸数码科技(北京)有限公司 Rfid双折合振子天线
US8558748B2 (en) * 2009-10-19 2013-10-15 Ralink Technology Corp. Printed dual-band Yagi-Uda antenna and circular polarization antenna
CN102044756B (zh) * 2009-10-26 2014-07-02 雷凌科技股份有限公司 双频印刷式八木天线
CN102934285A (zh) * 2010-06-09 2013-02-13 盖尔创尼克斯有限公司 具有隔离特征的定向天线
CN102882000A (zh) * 2012-08-06 2013-01-16 哈尔滨工业大学 一种振子加载型平衡微带线馈电的印刷型八木天线阵列
CN102800951A (zh) * 2012-08-06 2012-11-28 哈尔滨工业大学 一种振子加载型平衡微带线馈电的印刷型八木天线
CN202797271U (zh) * 2012-08-28 2013-03-13 哗裕实业股份有限公司 宽带偶极天线
CN105514590B (zh) * 2016-02-19 2018-08-31 广东中元创新科技有限公司 高增益双环形振子天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073258A1 (en) * 2007-03-07 2010-03-25 Konica Minolta Holdings, Inc. Antenna device
CN101710644A (zh) * 2009-12-23 2010-05-19 深圳华为通信技术有限公司 一种天线及无线通信装置
CN103503235A (zh) * 2011-01-18 2014-01-08 多康公司 圆极化复合环形天线
CN103825091A (zh) * 2014-03-19 2014-05-28 电子科技大学 超宽带定向天线
CN108923112A (zh) * 2018-09-14 2018-11-30 维沃移动通信有限公司 一种天线装置及终端设备

Also Published As

Publication number Publication date
CN108923112B (zh) 2021-04-27
CN108923112A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2020052636A1 (zh) 天线装置及终端设备
US11594817B2 (en) Dual band patch antenna
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US10910700B2 (en) Omnidirectional antenna for mobile communication service
JP5983760B2 (ja) アレーアンテナ
JP2018529269A (ja) 基板集積導波路を含む広帯域アンテナ
US9318811B1 (en) Methods and designs for ultra-wide band(UWB) array antennas with superior performance and attributes
WO2020119367A1 (zh) 天线及终端设备
WO2020233474A1 (zh) 天线单元和电子设备
US10862212B2 (en) Antenna device and wireless communication device
TWI487191B (zh) 天線系統
US11942674B2 (en) Antenna structure and terminal device
WO2020020013A1 (zh) 毫米波无线终端设备
US9300054B2 (en) Printed circuit board based feed horn
WO2022134786A1 (zh) 一种天线和通信设备
CN109244646B (zh) 一种天线装置及终端设备
JP6690672B2 (ja) パッチアンテナ及びこれを備えるアンテナモジュール
WO2020143665A1 (zh) 天线结构及通信终端
WO2023066217A1 (zh) 天线装置与电子设备
WO2023051177A1 (zh) 双频双圆极化天线和天线***
JP2020174284A (ja) アンテナ装置
JP2020174285A (ja) アンテナ装置
TWI679807B (zh) 天線結構及具有該天線結構之無線通訊裝置
US9595756B1 (en) Dual polarized probe coupled radiating element for satellite communication applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859125

Country of ref document: EP

Kind code of ref document: A1