WO2020052524A1 - 封闭多孔复合材料、隔热材料、隔音材料、其制造方法 - Google Patents

封闭多孔复合材料、隔热材料、隔音材料、其制造方法 Download PDF

Info

Publication number
WO2020052524A1
WO2020052524A1 PCT/CN2019/104980 CN2019104980W WO2020052524A1 WO 2020052524 A1 WO2020052524 A1 WO 2020052524A1 CN 2019104980 W CN2019104980 W CN 2019104980W WO 2020052524 A1 WO2020052524 A1 WO 2020052524A1
Authority
WO
WIPO (PCT)
Prior art keywords
closed
composite material
porous composite
weight
parts
Prior art date
Application number
PCT/CN2019/104980
Other languages
English (en)
French (fr)
Inventor
钟金榜
Original Assignee
钟金榜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钟金榜 filed Critical 钟金榜
Priority to KR1020217003068A priority Critical patent/KR20210024163A/ko
Priority to US17/264,596 priority patent/US11814784B2/en
Priority to JP2021504145A priority patent/JP7406542B2/ja
Priority to EP19859670.2A priority patent/EP3816341A4/en
Publication of WO2020052524A1 publication Critical patent/WO2020052524A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • A41D31/065Thermally protective, e.g. insulating using layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • B32B9/025Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch comprising leather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/046Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0043Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0043Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
    • D06N3/005Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers obtained by blowing or swelling agent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0068Polymeric granules, particles or powder, e.g. core-shell particles, microcapsules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/584No clear coat specified at least some layers being let to dry, at least partially, before applying the next layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/10Composition of foam characterised by the foam pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/02Properties of the materials having acoustical properties
    • D06N2209/025Insulating, sound absorber
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/065Insulating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/06Building materials
    • D06N2211/063Wall coverings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • D06N2211/106Footwear
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/125Awnings, sunblinds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/261Body finishing, e.g. headliners
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/043Footwear

Definitions

  • the present disclosure relates to a closed porous composite material, a heat insulation material, a sound insulation material, and a manufacturing method thereof.
  • An embodiment of the present invention provides a method for manufacturing a closed porous composite material.
  • the method includes:
  • step 3 coating the mixture obtained in step 1 on the carrier;
  • the content of each component in step 1 is: 40-60 parts by weight of water-dispersible resin, 10-50 parts by weight of unexpanded heat-expandable microspheres, and 80-350 parts by weight of water .
  • the content of each component in step 1 is: 45-55 parts by weight of water-dispersible resin, 10-30 parts by weight of unexpanded heat-expandable microspheres, and 100-250 parts by weight of water. .
  • the unexpanded heat-expandable microspheres exhibit a hollow or spheroidal shape, an outer diameter of 10 ⁇ m to 40 ⁇ m, and a wall thickness of 1 ⁇ m to 10 ⁇ m.
  • the wall includes a thermoplastic type or a thermosetting type. Polymer Materials.
  • the water-dispersible resin includes two different water-based polyurethanes, one of which is 1 to 25 parts by weight; the other is 49 to 25 parts by weight.
  • the two different aqueous polyurethanes are respectively a first anionic aliphatic polyester polyurethane and a second anionic aliphatic polyester polyurethane, wherein the first anionic
  • the weight of the aliphatic polyester polyurethane is 10-20, preferably 15; the weight of the second anionic aliphatic polyester polyurethane is 40-30, preferably 35.
  • the mixture of step 1 further includes 0-1 parts by weight of a defoaming agent, 0-10 parts by weight of a curing agent, 0-10 parts by weight of a thickener, and 0- 5 parts by weight, 0-2 parts by weight of wetting and leveling agent, 0-5 parts by weight of feel agent, and 0-20 parts by weight of water-based colorant; preferably, the mixture of step 1 further includes defoaming 0.1-1 parts by weight of the agent, 0.1-10 parts by weight of the curing agent, 0.1-10 parts by weight of the thickener, 0.1-5 parts by weight of the antifungal agent, 0.1-2 parts by weight of the wetting and leveling agent, and 0.1-5 parts by weight of the feel agent Parts, at least one of 0.1-20 parts by weight of water-based colorant.
  • the carrier is heated to 100 ° C-180 ° C for a heating time of 10-300 seconds; preferably, the carrier is heated to 120 ° C-160 ° C for a heating time of 60- 120 seconds; preferably heating the carrier to 130 ° C-150 ° C for 60-90 seconds; preferably heating the carrier to 140 ° C-150 ° C for 60-80 seconds.
  • the water-dispersible resin includes at least one of an aqueous polyurethane resin, an aqueous acrylic resin, an aqueous polyurethane-modified acrylic resin, a butadiene emulsion, a neoprene emulsion, and a polyvinyl acetate emulsion.
  • an aqueous polyurethane resin an aqueous acrylic resin, an aqueous polyurethane-modified acrylic resin, a butadiene emulsion, a neoprene emulsion, and a polyvinyl acetate emulsion.
  • the curing agent includes at least one of polycarbodiimide, polyisocyanate, blocked polyisocyanate, aziridine, and amino resin; and the defoaming agent is silicone.
  • Type antifoaming agent; the wetting and leveling agent is a silicone type wetting and leveling agent; the feel agent includes high molecular weight silicone, wax powder, wax emulsion, fumed or precipitated silica and its dispersion At least one of the above;
  • the antifungal agent includes an organic or inorganic water-dispersible antifungal agent;
  • the thickener includes a polyurethane-associated type, an acrylic alkali-swellable type, a cellulose-based thickener, and an inorganic-based thickener At least one of.
  • the carrier includes one or more of a woven fabric, a non-woven fabric, leather, and a soft film.
  • the ratio of the size of the thermally expanded microspheres expanded in step 4 to the size of the unexpanded thermally expanded microspheres in step 1 is 2-10.
  • the closed porous composite material prepared by the method includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other.
  • the size of the cavity ranges from 20 ⁇ m to 800 ⁇ m, preferably 50 ⁇ m to 300 ⁇ m, more preferably 60 ⁇ m to 200 ⁇ m, and still more preferably 80 ⁇ m to 120 ⁇ m.
  • the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 3, It is preferably more than 3.33, preferably more than 16, preferably more than 33, preferably more than 83, preferably more than 166, preferably more than 333, preferably more than 417, preferably more than 556, preferably more than 833, preferably more than 1667.
  • the closed porous composite material prepared by the method is a heat insulation material
  • the heat insulation material includes a plurality of closed cavities and separates the plurality of closed cavities from each other.
  • the Kro value of the thermal insulation material is ⁇ 0.20, or ⁇ 0.40, or ⁇ 0.50, or ⁇ 0.60, or ⁇ 1.0, or ⁇ 1.5.
  • the closed porous composite material prepared by the method includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other, and the closed
  • the size of the cavity ranges from 20 ⁇ m to 800 ⁇ m, preferably from 50 ⁇ m to 300 ⁇ m, further preferably from 60 ⁇ m to 200 ⁇ m, further preferably from 80 ⁇ m to 120 ⁇ m
  • the density of the closed porous composite material is 5 kg / m 3 to 300 kg / m 3 , preferably 10kg / m 3 -200kg / m 3 , preferably 20kg / m 3 -150kg / m 3 , preferably 30kg / m 3 -100kg / m 3 , preferably 40kg / m 3 -90kg / m 3 , preferably 50kg / m 3 -80kg / m 3 , preferably 60 kg / m 3 -80 kg / m
  • An embodiment of the present invention provides a closed porous composite material including a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other, and the size range of the closed cavities 20 ⁇ m-800 ⁇ m, preferably 50 ⁇ m-300 ⁇ m, more preferably 60 ⁇ m-200 ⁇ m, still more preferably 80 ⁇ m-120 ⁇ m, the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 3, preferably greater than 3.33, It is preferably more than 16, preferably more than 33, preferably more than 83, preferably more than 166, preferably more than 333, preferably more than 417, preferably more than 556, preferably more than 833, preferably more than 1667.
  • the closed porous composite material is composed of a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other.
  • the polymer wall includes a thermoplastic or thermosetting polymer material on the inner side facing the closed cavity, and the polymer wall faces the closed cavity.
  • the outside includes a water-dispersible resin.
  • the thickness of the polymer wall is 0.01-5 ⁇ m, preferably 0.02 ⁇ m-2 ⁇ m, further preferably 0.03 ⁇ m-1.0 ⁇ m, still more preferably 0.04 ⁇ m-0.8 ⁇ m, and still more preferably It is 0.05 ⁇ m to 0.6 ⁇ m, and more preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the shape of the closed cavity includes a spherical shape, a spherical shape, and an irregular shape.
  • the closed cavity is obtained by expanding the unexpanded thermally expanded microspheres by 2-10 times in diameter.
  • the closed porous composite material is a thermal insulation material; when the thickness of the thermal insulation material is 0.2mm-3.0mm, the Kro value of the thermal insulation material is 0.1-3.0 .
  • the polymer wall includes a three-layer structure including two outer layers and an intermediate layer sandwiched between the two outer layers, wherein the two The materials of the two outer layers are the same, and the materials of the two outer layers are different from the materials of the intermediate layer sandwiched between the two outer layers.
  • the carrier includes one or more of a woven fabric, a non-woven fabric, leather, and a soft film.
  • the closed porous composite material includes a carrier and a heat insulation layer attached to the carrier.
  • the thickness of the carrier is 0.1 mm-5.0 mm, and the thickness of the heat insulation layer is 0.2mm-10mm.
  • two surfaces of the carrier of the closed porous composite material are each attached with a heat insulation layer
  • the thickness of the carrier is 0.1 mm-5.0 mm
  • any one of the heat insulation layers is attached.
  • the thickness is 0.2mm-10mm.
  • the closed porous composite material includes an outer two-layer carrier and the heat insulation layer sandwiched between the two-layer carriers, and any one of the two-layer carriers
  • the thickness of the carrier is 0.1mm-5.0mm, and the thickness of the heat insulation layer is 0.2mm-10mm.
  • the closed porous composite material includes a layer of a carrier and the heat insulation layer attached to the carrier, and the heat insulation layer has a multilayer structure of two or more layers;
  • the layer in the thermal insulation layer that is in direct contact with the carrier is referred to as the bottom thermal insulation layer
  • the layer furthest from the carrier is referred to as the surface thermal insulation layer, which is located in the bottom thermal insulation layer and the
  • the layer between the surface heat insulation layers is called an intermediate layer heat insulation layer
  • the content of the thermal expansion microspheres in the bottom heat insulation layer is greater than that in the surface heat insulation layer and the intermediate heat insulation layer.
  • the thermal expansion microsphere content is described.
  • the bottom heat insulation layer includes a water-dispersed resin
  • the surface heat insulation layer includes at least two different water-dispersed resins.
  • the unexpanded thermal expansion microspheres used in different thermal insulation layers may be the same or different.
  • a plurality of the closed porous composite materials are bonded together as a whole through an adhesive, or one or more of the closed porous composite materials are bonded to other materials through an adhesive.
  • the amount of the adhesive required for a single bonding is 10g / m 2 -25g / m 2 ; preferably, the adhesive is selected from PUR moisture-reactive adhesive At least one of hot melt adhesive, water-dispersible adhesive, and solvent-based adhesive.
  • An embodiment of the present invention provides a heat insulation material, the heat insulation material includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other.
  • the thickness of the heat insulation material is 1 mm
  • the Kro value of the thermal insulation material is ⁇ 0.20, or ⁇ 0.40, or ⁇ 0.50, or ⁇ 0.60, or ⁇ 1.0, or ⁇ 1.5.
  • the insulation material is composed of a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other.
  • the size of the closed cavity ranges from 20 ⁇ m to 800 ⁇ m, preferably from 50 ⁇ m to 300 ⁇ m, further preferably from 60 ⁇ m to 200 ⁇ m, and still more preferably from 80 ⁇ m to 120 ⁇ m.
  • the thickness of the polymer wall is 0.01 ⁇ m-5 ⁇ m, preferably 0.02 ⁇ m-2 ⁇ m, more preferably 0.03 ⁇ m-1.0 ⁇ m, and still more preferably 0.04 ⁇ m-0.8 ⁇ m, It is more preferably 0.05 ⁇ m to 0.6 ⁇ m, and still more preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the polymer wall includes a three-layer structure, wherein the materials of the two outer layers are the same, and the materials of the two outer layers are different from those sandwiched between the two outer layers. Material between the intermediate layers.
  • An embodiment of the present invention provides a closed porous composite material including a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other, and the size range of the closed cavities is 20 ⁇ m-800 ⁇ m, preferably 50 ⁇ m-300 ⁇ m, more preferably 60 ⁇ m-200 ⁇ m, more preferably 80 ⁇ m-120 ⁇ m, the density of the porous composite closure of 5kg / m 3 -300kg / m 3 , preferably from 10kg / m 3 - 200kg / m 3 , preferably 20kg / m 3 -150kg / m 3 , preferably 30kg / m 3 -100kg / m 3 , preferably 40kg / m 3 -90kg / m 3 , preferably 50kg / m 3 -80kg / m 3 , preferably 60kg / m 3 -80kg / m 3 .
  • the closed porous composite material is composed of a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other.
  • the thickness of the polymer wall is from 0.01 ⁇ m to 5 ⁇ m, preferably from 0.02 ⁇ m to 2 ⁇ m, further preferably from 0.03 ⁇ m to 1.0 ⁇ m, further preferably from 0.04 ⁇ m to 0.8 ⁇ m, further It is preferably 0.05 ⁇ m to 0.6 ⁇ m, and more preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the polymer wall includes a three-layer structure, wherein the materials of the two outer layers are the same, and the materials of the two outer layers are different from those sandwiched between the two outer layers. Material between the intermediate layers.
  • the thermal conductivity of the closed porous composite material is less than 0.030 w / mk, preferably, the thermal conductivity of the closed porous composite material is less than 0.025 w / mk, preferably, the closed The thermal conductivity of the porous composite material is less than 0.020 w / mk. Preferably, the thermal conductivity of the closed porous composite material is less than 0.016 w / mk.
  • the thermal conductivity is measured by the method described in Examples 26-36 of the specification of the present application.
  • An embodiment of the present invention provides a sound insulation material, which includes the closed porous composite material as described above.
  • An embodiment of the present invention provides a sound absorbing material, which includes the closed porous composite material as described above.
  • An embodiment of the present invention provides a garment including the closed porous composite material as described above, or the garment including the heat insulating material as described above.
  • the garment further includes a fabric and a lining, wherein the closed porous composite material or the thermal insulation material is disposed between the fabric and the lining.
  • An embodiment of the present invention provides a tent including the closed porous composite material as described above, or the tent includes the heat insulating material as described above.
  • An embodiment of the present invention provides a sleeping bag including the closed porous composite material described above, or the sleeping bag includes the heat insulating material described above.
  • An embodiment of the present invention provides a shoe.
  • the upper of the shoe includes the closed porous composite material as described above, or the upper includes the heat insulation material as described above.
  • An embodiment of the present invention provides a wallpaper, the wallpaper includes the closed porous composite material described above, or the wallpaper includes the heat insulation material described above.
  • An embodiment of the present invention provides a carriage, the carriage comprising a closed porous composite material as described above, or the carriage comprising a heat insulation material as described above.
  • An embodiment of the present invention provides an aircraft cabin, the aircraft cabin comprising a closed porous composite material as described above, or the aircraft cabin comprising a heat insulating material as described above.
  • An embodiment of the present invention provides a refrigerator including the closed porous composite material described above, or the refrigerator includes the heat insulating material described above.
  • FIG. 1 is a photomicrograph of a thermal expansion microsphere before expansion used in an embodiment of the present invention
  • TEM 2 is a transmission electron microscope (TEM) photograph of a single thermally expanded microsphere before expansion used in an embodiment of the present invention
  • FIG. 3 is a microscope photograph of a final product obtained in an embodiment of the present invention. It can be seen from the photograph that most of the expanded thermally expanded microspheres are regular spherical or spheroidal;
  • FIG. 5 is a scanning electron microscope photograph of a final product obtained according to an embodiment of the present invention.
  • FIG. 8 is an electronic computer tomography photograph of a final product obtained according to an embodiment of the present invention.
  • FIG. 9 is an electronic computer tomography photograph of a final product obtained according to an embodiment of the present invention.
  • FIG. 10 is an electronic computer tomogram of a final product obtained according to an embodiment of the present invention.
  • FIG. 11 to FIG. 17 show the thickness of the microsphere wall in the final product obtained by the embodiment of the present invention measured by SEM.
  • Man is a constant temperature animal, and the human body itself is a heat source that constantly generates heat. This constant heat needs to be released continuously. In the summer when the temperature is higher, the human body releases heat more slowly, and we will feel hot; in the cold winter, when the body releases heat faster, we will feel cold. When people feel cold, according to life experience, people generally choose to add clothes or change to thicker clothes. However, why keep warm by wearing extra clothes or changing thicker clothes? This needs to be considered from the main way of heat loss. Generally speaking, heat is lost in three main ways: heat conduction, heat convection, and heat radiation. Thermal radiation means that all objects whose temperature is higher than absolute zero continuously radiate electromagnetic waves to the surrounding space.
  • This article is to provide a thermal insulation material.
  • This material mainly uses organic materials that are not traditional thermal insulation materials. It can greatly exceed the traditional two aspects in carrying as much air as possible and preventing the air between the carried air and the outside air from flowing. Insulation material.
  • the principle of air static insulation under the same porosity, the larger the pore size, the larger the thermal conductivity; the interconnected pores have a higher thermal conductivity than the closed pores, and the higher the closed porosity, the lower the thermal conductivity .
  • this material can not only be used for thermal insulation and heat insulation, but also widely used in other fields, such as sound insulation and sound absorption.
  • the closed porous composite material in this article (the closed porous composite material is used for heat insulation, and it is a heat insulation material) has been successfully developed, which makes the tent not only lightweight, but also cool in summer and warm in winter.
  • the heat insulation material in this article has no change in thickness, feel and appearance. It can be envisaged that some equipment needs to be insulated and kept warm when parked and used outdoors.
  • the protective device made of the heat-insulating materials in this article is lighter, thinner and more effective than other materials.
  • the car was parked outdoors for a long time, and the temperature inside the compartment was extremely high. The moment the door was opened, the heat wave hit the face, the seat was hot, and the useful life of the car was shortened.
  • the temperature inside the car can be reduced by 15 °C -25 °C compared with the same period of last year.
  • the thermal resistance generated by the thermal insulation materials in this article can reduce the intensity of air conditioning in the car, greatly reduce fuel consumption, and also play a role in sound insulation.
  • thermal insulation materials in this article will help global shoe industry designers and manufacturers to realize their dreams of technological innovation, and bring consumers a new experience and more choices in keeping their feet warm in winter and wearing fashion.
  • the thermal insulation materials of this disclosure will bring a whole new experience.
  • the sound insulation and sound absorption effects will be greatly improved.
  • the noise is greatly reduced, and the warming effect is enhanced to make people live more comfortable.
  • the refrigerators we use have a thick insulation layer, which makes the refrigerator bloated and bulky.
  • the birth of the heat insulation material of the present disclosure can reduce the thickness of the heat insulation layer of the refrigerator by 60%, and the storage space of the refrigerator will become larger. Refrigerators made with new materials will change their clumsy and heavy image.
  • Eavesdropping is usually achieved by capturing sound vibrations on the window glass. If curtains are made using the heat-insulating material of the present disclosure, not only is eavesdropping-proof, but it is also heat-insulating and warm.
  • thermal insulation materials in this article on winter gloves not only keeps warmth, the movement of fingers is more flexible, and the work efficiency is higher.
  • the equipment used includes Hanbang brand HP-2020 constant temperature heating table produced by Wenzhou Hanbang Electronics Co., Ltd., Yuanhengtong YHT309 four-channel thermometer, Taiwan Taishi TES surface contact mesh probe TP-K03.
  • the test method includes: setting the temperature of the heating table at 60 ° C, and placing a sample of 5 cm in length and 3 cm in width on the heating table. During the test, the heating stage is always at a constant temperature, and one end of the heat-insulating material is held down with an object to prevent movement until the end of the test.
  • the source Hengtong YHT309 four-channel thermometer shows that the two groups of temperature values are stable for 10 seconds, and the temperature of the heating table, the surface of the insulation material and the test time are recorded separately. Test every 15 minutes for a total of 4 tests.
  • Test module basic module, single-sided method
  • Water-dispersible resin Leasys 3458 an anionic aqueous polyurethane aqueous dispersion (aliphatic) with a solid content of about 50 wt%
  • water-dispersed resin Impranil DLS an anionic aliphatic polyester polyurethane aqueous dispersion with a solid content of about 50 wt %
  • Impranil 1537 an anionic aliphatic polyester polyurethane aqueous dispersion with a solid content of about 60% by weight
  • thermal expansion microsphere Expancel 043 DU 80 a micro spherical plastic particle, the microsphere consists of a polymer shell The body and the gas that it encloses (the gas can expand under certain conditions).
  • Antifoaming agent BYK 093 a mixture of polysiloxane and hydrophobic solids dispersed in polyethylene glycol
  • wetting agent BYK 348 a polyether modified siloxane, non-volatile content> 96wt%
  • Thickener LYOPRINT PTF an acrylic polymer dispersion
  • water-based colorant NV 6800 an aqueous dispersion with a solid content of about 40% by weight.
  • Example 1-4 Effect of Adding Amount of Thermally Expandable Microspheres
  • Example 1 prepares various components according to the following formula:
  • the weight part of the water-dispersed resin in the claims of the present application refers to dry weight
  • the water-dispersed resin used in the examples is a water-containing aqueous dispersion, so it needs to be converted according to its solid content.
  • the water in the reaction system mainly comes from the deionized water, the water in the water-dispersible resin, and the water in the water-based colorant.
  • defoamers, wetting agents, thickeners, or water The content is very small, or due to its small amount, its effect on the total amount of water in the reaction system can be ignored.
  • the following embodiments can be converted in the same manner, and will not be repeated.
  • a bridging agent may be optionally added before the coating is applied.
  • the bridging agent may include, for example, polycarbodiimide, polyisocyanate, blocked polyisocyanate, aziridine, and amino resin.
  • the above formula is applied on a base cloth with a thickness of 0.28 mm, the sizing amount (wet weight) is 65 g / m 2 , and it is baked in an oven at 140 ° C. for 1 minute.
  • the thickness of the coating sample was 0.52mm.
  • Leasys 3458 is a trade name of a water-dispersible resin
  • Expancel 043 DU 80 is a trade name of thermally expandable microspheres
  • BYK 093 is a trade name of a defoaming agent
  • BYK 348 is a trade name of a wetting agent
  • LYOPRINT PTF is a trade name
  • NV 6800 is the trade name of water-based colorant.
  • the most critical components are water-dispersible resin and thermally expandable microspheres in an unexpanded state, while other components can be omitted according to specific application scenarios.
  • the thermally expandable microspheres in an unexpanded state will expand, and their volume will expand 2-50 times.
  • the water will evaporate, eventually forming a plurality of (very large) closed spheres, quasi-spheres, or (microspheres).
  • This superimposed multi-independent space structure product includes a large number of closed cavities and a plurality of closed cavities that separate the plurality of closed cavities from each other
  • a polymer wall comprising a thermoplastic or thermosetting polymer material (that is, a material from a thermally expanded microsphere) on the inner side facing the closed cavity, the polymer wall facing the closed cavity
  • the outside of the cavity includes a water-dispersible resin (ie, a material from the water-dispersible resin).
  • the thermally expanded microspheres are fully expanded, and the adjacent microsphere walls are in contact with each other to form a polymer wall of a sandwich structure, and the two outer layers of the polymer wall are the same material (both from the thermally expanded microspheres) ), And the materials of the two outer layers are different from those of the intermediate layer (from the water-dispersible resin) sandwiched between the two outer layers.
  • Examples 2-4 The operation of Examples 2-4 was the same as that of Example 1, but the content of the thermally expandable microspheres was adjusted.
  • the formulations of Examples 1-4 are listed in the following table:
  • Coating sample thickness is the thickness of the dry coating attached to the base cloth, the same below;
  • the normalized temperature difference is calculated by normalizing the thickness of the coating sample to 1 mm; it should be noted that the thermal insulation properties of the materials are discussed in all the examples in this article ( Including “temperature difference”, “normalized temperature difference”, and the following "Kroe value” and “normalized Kroe value”), the influence of the base cloth (carrier) on the thermal insulation performance is ignored, which is Because the base fabric polyester fiber has strong thermal conductivity, it makes little contribution to heat insulation.
  • the base fabric with a thickness of 0.28 mm used in Example 1-24 is measured under the same test conditions and the temperature difference is less than 0.8 ° C, while the base fabric with a thickness of 0.15 mm used in Example 25 is tested in the same test.
  • the temperature difference measured under the conditions is less than 0.2 ° C. This temperature difference comes from the thermal insulation of the air in the fluffy storage of the base fabric yarns. After the base fabric is coated, the space between the yarn and the yarn has been filled with expanded microspheres, and the air stored in the base material no longer exists. The influence of the heat insulation effect of the base fabric on the heat insulation performance of the final product can be ignored. Already.
  • Water-dispersible resin Leasys 3458 has a relatively small encapsulation power for microspheres.
  • the amount of thermally expandable microspheres exceeds the limit of water-dispersible resin encapsulation capacity, the larger the amount of microspheres, the worse the coating fastness and the surface chalking Severe (As for the evaluation of coating fastness, it gets better and better from left to right in the following order: Poor-> Poor-> Better-> Good.
  • the coating fastness is better or better. Can meet the requirements, and for other applications, such as building wall insulation materials, the coating fastness is poor, or even poor conditions can meet the application conditions). From the data of "normalized temperature difference" only, the microspheres used at 10g, 20g, and 30g all achieved good thermal insulation performance.
  • Example 5-7 The preparation process of Example 5-7 is the same as that of Example 1, but the type and ratio of the water-dispersible resin are adjusted.
  • the formulations of Examples 5-7 are listed in the following table:
  • Example 6 Compared with Leasys 3458 (Example 5), which is a water-dispersible resin alone, the formula (Example 6), which uses a mixture of two water-dispersed resins, Impranil DLS and Impranil 1537, has significantly improved the encapsulation power of the microspheres, and the coating Increased fastness. Due to the enhanced coating fastness, the expanded microspheres did not fall off substantially after the sample was formed, and the temperature difference between the sample prepared in Example 6 and the sample prepared in Example 5 was significantly higher. At the same time, it can also be found in Comparative Examples 6 and 7 that under the same conditions or similar conditions, the higher the microsphere content, the higher the coating thickness of the sample, the greater the temperature difference, and therefore the thermal resistance (insulation) The better the performance.
  • Examples 8-12 The preparation process of Examples 8-12 is the same as that of Example 1, but the amount of water is adjusted.
  • the formulations of Examples 8-12 are listed in the following table:
  • the "normalized temperature difference” is calculated by normalizing the thickness of the coating sample to 1mm.
  • Comparative results of Examples 8-12 In terms of composition, except for different amounts of water and thickener, the other components have the same amount, the same coating amount (wet weight), and the same baking conditions. The amount of water was gradually reduced from Example 8 to Example 12, so the amount of thickener was also reduced accordingly; Examples 11 and 12 did not add additional water, and the amount of thermally expanded microspheres of Example 12 was twice that of Example 11. Comparing the results of Examples 8-11, it can be seen that under the same coating amount (wet weight), the thickness of the coating sample (that is, the thickness of the product except for the base cloth after drying) increases first and then decreases (Example (8, 9, and 10 increase in sequence and decrease to Example 11). The temperature difference shows the same trend as the thickness of the coating sample.
  • Example 8 it is well understood that Examples 8, 9, and 10 increase sequentially.
  • the amount of water decreases and the relative proportion of dry components increases.
  • the thickness of the final coating sample increases and the temperature difference increases. 2.
  • the insulation effect is enhanced.
  • Example 11 compared with Example 10, when the amount of water is further reduced, the thickness of the final coating sample is reduced, and the temperature difference is also reduced, which is contrary to the above reasoning.
  • the two main components of the above components are water-dispersible resins and thermally expandable microspheres, and the role of water is second only.
  • the role of heat-expandable microspheres is that when they are heated and expanded, a large number of closed cavities are formed.
  • the volume of the water-dispersible resin is stretched during the expansion of the microspheres, reducing the density of the volume of the heat-expandable microspheres and the water-dispersible resin, and improving the heat insulation
  • thermal expansion microspheres alone are not enough, and the microspheres need to be bonded to form a whole with a certain mechanical strength (such as a flat layer with a certain thickness) before they can be used in some specific application scenarios (such as for Clothing insulation, or insulation on the inside wall of a building).
  • the water-dispersible resin plays this role.
  • Hinder can not fully and freely expand, the expansion of microspheres is hindered, and the ability to stretch and disperse water-dispersed resin decreases, the microsphere cavity cannot be maximized, and the role of microsphere insulation cannot be fully exerted; It is the high thermal conductivity of water-dispersed resins that reduces the heat insulation capacity: because less water is used, the amount of water-dispersed resins must be increased, and the thermal conductivity of water-dispersed resins is higher, and the increase in the amount of water-dispersed resins will inevitably lead to an increase in thermal conductivity High, that is, the insulation performance is reduced. Taking the above factors into consideration, the situation of Example 11 is better understood.
  • Example 11 no additional water was added at all, and some of the microspheres were constrained by the water-dispersed resin, which was crowded together and could not expand sufficiently.
  • the high content of the water-dispersed resin reduced the heat insulation performance, so at the same coating amount (wet In the case of heavy), the thickness of the final coating sample becomes smaller, and the temperature difference becomes smaller.
  • FIG. 1 a thermal expansion microsphere micrograph before expansion is used in an example of the present invention.
  • the thermal expansion microspheres used in the embodiments of the present invention are Expancel 043 and DU 80, with an average particle diameter of about 16 ⁇ m to 24 ⁇ m.
  • the ball wall material is a thermoplastic or thermosetting polymer material, which expands after heating and the diameter increases to 2-10 times the original diameter.
  • the shape of a single thermally expanded microsphere can be seen in FIG. 2. It can be seen from FIG. 1 that the thermally expanded microspheres before expansion exhibit regular spherical or spherical particles. It can be seen from FIG.
  • a single microsphere has a nearly spherical ellipsoid shape, with a long axis (outer diameter) length of 24.2 ⁇ m, a short axis (outer diameter) length of 22.6 ⁇ m, and a wall thickness of about 5 ⁇ m.
  • thermal expansion microspheres of other materials or sizes are selected, the related structures and materials will change, but these contents (specific materials and structures of the microspheres) should not be understood as limiting the scope of protection of the present invention.
  • FIG. 3 The micrograph of the final product obtained in Example 10 is shown in FIG. 3. It can be seen from the photo in FIG. 3 that most of the expanded thermally expanded microspheres are regular or spherical. In some areas, the microspheres may exhibit irregular shapes due to the severe squeezing between the microspheres.
  • the "size" herein refers to its diameter; for a quasi-spherical or irregular shape, the "size” herein refers to a sphere with the same volume as the sphere or irregular shape diameter of.
  • FIG. 3 shows that after heating and expanding, the volume of the microspheres increases several times, and the spherical walls become thinner and transparent.
  • Examples 13-17 The preparation process of Examples 13-17 is the same as that of Example 1, but the baking temperature is adjusted.
  • the formulations of Examples 13-17 are listed in the following table:
  • the coating thickness and heat insulation performance are related to the baking temperature.
  • this optimal temperature range is related to the composition and structure of the baking equipment and the used thermal expansion microspheres.
  • the thermal expansion microspheres used in this embodiment are Expancel 043 and DU 80. If other different baking equipment and / Or thermal expansion microspheres, the optimal application temperature range may change.
  • FIG. 4 is a SEM photograph of a directly obtained product
  • FIG. 5 is a SEM photograph of a further enlarged product
  • FIG. 6 is a SEM photograph of a cut product
  • FIG. 7 is a SEM photograph of a cut product further enlarged. It can be seen from Figure 4-5 that most of the expanded thermally expanded microspheres have a diameter of about 100 ⁇ m. It should be noted that the ruler in the lower right corner of the figure refers to the length of the entire ruler. Take Figure 4 as an example.
  • the fibrous object visible in the upper left of Figure 4 is
  • the fiber in the base material is not a thermal insulation material; because the polyester yarn used in the base fabric has strong thermal conductivity, in order to obtain a good thermal insulation effect, the microspheres should be fully covered after the microspheres are expanded.
  • the size of the expanded microspheres is affected by many factors, such as the composition and structure of the expanded microspheres, the heating temperature and time during the expansion process, and the proportion of each component.
  • the size of the expanded microspheres is also affected by many random factors, for example, insufficient heating of individual locations causes insufficient expansion of microspheres, excessive heating of individual locations causes excessive expansion of microspheres, and individual microspheres have structural defects (such as internal gas) Leaks, etc.) are completely unswelled. Therefore, even in the well-foamed materials, there are individual microspheres with particularly large or small sizes. For example, as shown in Figure 4, most microspheres are distributed in the range of 50 ⁇ m-150 ⁇ m, but there are also individual microspheres as small as About 20 ⁇ m, individual microspheres are larger than 250 ⁇ m. It can be seen from Figure 4-6 that the expanded microspheres are tightly clustered together.
  • microspheres are bonded together by a water-dispersible resin, it can be inferred that most of the spaces between the microspheres are also closed. From Figs. 4 and 5, very few ruptured thermally expanded microspheres can be seen (for example, the lower left corner of Fig. 4 and the lower right corner of Fig. 5). In the ideal case, each thermally expanded microsphere is fully expanded and does not break (thus ensuring that the internal space is closed). However, there are some uncontrollable factors during the heating process, such as local overheating or defects in individual microspheres. However, this kind of individual microsphere rupture does not have a fundamental impact on the thermal insulation performance of the final product.
  • Fig. 10 selects two expanded microspheres and accurately measures their sizes.
  • the short axis dimensions of the two microspheres are 63.94 ⁇ m (upper left) and 54.53 ⁇ m (middle position).
  • the corresponding major axis size should be between 100 ⁇ m and 200 ⁇ m.
  • Most of the microsphere sizes shown in Figure 10 are in this order.
  • the particle diameter of the unexpanded thermally expandable microspheres is different from Expancel 043DU80, the diameter of the microspheres after the final expansion will also be significantly different.
  • the base layer uses a base cloth with a thickness of 0.28 mm and a density of 68.5 g / m 2.
  • the base cloth is first coated with a primer coating mixture, dried at the unexpanded temperature set by Expancel 043DU80, and then dried at A one-layer coating mixture is applied on top of the dry primer coating mixture.
  • the primer and topcoat mixtures are formulated as follows:
  • Example 1 Under the shearing action of a high-speed mixer, the ingredients are sequentially added to the mixing kettle according to the above formula, and all materials are stirred for 0.5-1 hour to obtain the primer mixture and surface. Coat the mixture.
  • a bridging agent can be optionally added before construction.
  • the primer is applied on a base cloth with a thickness of 0.28 mm and a density of 68.5 g / m 2.
  • the sizing amount (wet weight) is 65 ⁇ 5 g g / m 2 , and it is baked in an oven at 100 ° for 1 minute. After drying (getting the bottom heat insulation layer), apply the top coat on the base coat.
  • the sizing amount (wet weight) is 130g ⁇ 5g / m 2 , and baked in an oven at 140 ° C for 1 minute (the top heat insulation layer is obtained). ).
  • the total thickness of the base cloth and the coating sample is 0.9mm, the temperature difference is 10.5 ° C, the coating fastness is very good, and the surface is not powdered.
  • the two-coat construction can increase the coating thickness and the Kro value. Because the fastness of the coating mainly depends on the top coat, the fastness of the bottom insulation layer can be reduced, and the improvement of its insulation performance is mainly considered, so that the amount of thermal expansion microspheres can be increased in the bottom insulation layer or different specifications can be selected Unexpanded thermally expanded microspheres, and can use only one water-dispersible resin.
  • the preparation process of the mixed materials of Examples 19-24 is the same as that of Example 1, but the coating equipment of Examples 19-24 is completely different from the previous equipment, and has the similarity of the industrial production line.
  • the coating samples can be tested for the Crowe value. (Cross value test sample National Textile Quality Supervision and Inspection Center testing instrument requires 60CM * 60CM area).
  • the formulations of Examples 19-24 are listed in the following table:
  • Test report number (NO) of Example 19 BA18001207-3; test report number (NO) of Example 20: BA18001207-1; test report number (NO) of Example 21: BA18001207-2; test of Example 22 Report number (NO): BA18001308-3; test number (NO) of Example 23: BA18001308-1; test report number (NO) of Example 24: BA18001308-2.
  • the coating density is calculated by subtracting the weight of the base fabric from the total weight of the product including the base fabric and the coating to obtain the coating quality; subtracting the total volume of the product including the base fabric and the coating The volume of the base cloth is used to obtain the coating volume; the coating quality is divided by the coating volume to obtain the coating density.
  • the laboratory sample coating is different from the coating equipment of the approximate production line: the laboratory sample coating can only cover an area of A4 paper size, and the baking is a box oven.
  • the approximate production line (also called "pilot test") can blow air up and down; the approximate production line is continuous production, and the tension and coating amount are more uniformly controlled.
  • the size of the produced sample is also large, and the thermal resistance test of professional instruments can be performed.
  • the approximate production line test is to verify the performance of the solution in this article in actual production, and it can better reflect the practical application value of the solution in this article.
  • the highest Crowe value is obtained when the air volume is 70% and the baking temperature is 160 ° C; but when the temperature is higher than 160 ° C, the thickness of the coating sample no longer increases and the thermal resistance decreases instead (indicating that excessive expansion of the microspheres may cause some micro The ball ruptures, but affects thermal resistance).
  • Example 19 is compared with Example 20. It can be seen from Table 5 that the reactant formulations and baking conditions of Example 19 and Example 20 are the same, the difference is that the coating amount (dry weight) of Example 19 is 6.05 g / m 2 , while the coating of Example 20 is The amount (dry weight) was 16.15 g / m 2 , and finally resulted in a difference in the thickness of the coating samples.
  • the coating amount (dry weight) of Example 20 is large, so the coating sample thickness is thicker and the Kro value is higher.
  • Example 19 foams more fully and has a lower density, and Example 20 has a higher density.
  • Example 20 is compared with Example 21.
  • the difference between Example 20 and Example 21 is the baking conditions, and the others are the same.
  • the baking conditions in Example 20 are 150 ° C, 1 minute, and 70% of the upper and lower air supply volume; the baking conditions in Example 21 are 150 ° C, 1 minute, and 50% of the upper and lower air supply volume; More fully.
  • the coating sample of Example 20 has a higher thickness, a higher Kro value, and a normalized Kro value, indicating that its baking conditions are better. Under the same conditions, the better the baking conditions, the more sufficient the microspheres swell, so the coating density of Example 20 is lower than the coating density of Example 21.
  • Example 20 and Example 21 there is a slight difference in the coating amount (dry weight) between Example 20 and Example 21 because the coating amount (dry weight) that is finally applied to the substrate is guaranteed even if the formula and coating conditions are exactly the same. ) Will also have a slight difference, but this difference has little effect on the thermal insulation performance of the product (for example, the coating amount (dry weight) difference between Example 20 and Example 21 is only 2%), which can be ignored. The same situation can be seen in Examples 23 and 24.
  • Example 20 is compared with Example 22.
  • the coating amount (dry weight) of Example 20 is 16.15 g / m 2 , the baking temperature is 150 ° C., 70% of the up and down air supply volume, and the baking time is 1 min; the coating amount (dry weight) of Example 22 is 23.3 g / m 2.
  • the baking temperature is 160 °C, 70% of the up and down air supply volume, the baking time is 1min; other conditions are the same. Because the coating amount (dry weight) of Example 22 is large, it is generally expected that the thermal insulation effect of Example 22 is better and the Kro value is higher. However, comparing the coating sample thickness and the Kro value of the two, it can be found that the coating sample thickness and the Kro value of Example 20 are significantly higher.
  • Example 22 The main reason is that the baking temperature of Example 22 is too high, which causes more microspheres to rupture in the final product, which reduces the thickness of the dry film of the coating and reduces the thermal insulation effect.
  • Example 22 The coating amount (dry weight) is increased, the expansion resistance of the microspheres located in the middle of the coating is increased, and the expansion is insufficient; at the same time, the outer microspheres are cracked due to excessively high temperature. The thermal effect decreases.
  • Example 20 is compared with Example 23.
  • the content of the microspheres is 50% higher than that in Example 20, and the coating amount (dry weight) is 55% higher.
  • the coating sample thickness and Kro value of Example 23 are lower than those in Example 20.
  • the thermal insulation effect of Example 23 is not better than that of Example 20, because the microspheres in the product of Example 23 have insufficient expansion.
  • the volatilization of water during the baking process the heating of the mixture and the expansion of the microspheres are all endothermic processes, when the coating amount (dry weight) is increased, the baking strength is not increased correspondingly, resulting in the final product of Example 23.
  • the microspheres in the medium did not swell sufficiently, and the dry film thickness and Kro value of the coating were not high.
  • Example 23 Comparison of Examples 23 and 24.
  • the difference between Example 23 and Example 24 is that the baking temperature of Example 24 is 10 ° C. higher than that of Example 23. It was found in the comparison between Example 20 and Example 23 that the baking of Example 23 was insufficient, so Example 24 improved the baking. After the temperature, the coating sample thickness and the Kro value (including the normalized Kro value) are higher, indicating that under the same formula, the baking conditions of Example 24 are better.
  • Example 19 seems to break this rule. The reason is that the coating amount (dry weight) of Example 19 is too small, which results in the coating sample being too thin. When the instrument is tested, there are micropores in the film layer that cause air convection (so Leading to heat loss), so the exception of Example 19 cannot be considered as breaking the aforementioned rule.
  • FIG. 11 to FIG. 17 are microsphere ball wall thicknesses measured by SEM, wherein FIG. 11 is from Example 19; FIG. 12 to FIG. 13 are from Example 25; FIG. 14 to FIG. 15 are from Example 24; and FIG. 16 to FIG. From Example 21.
  • the "thickness of the polymer wall” in the claims refers to a total thickness including two adjacent microsphere walls and a water-dispersible resin in the middle.
  • the three-layer structure of the above polymer wall can be distinguished as a whole, because on the one hand, during the heating process, the above-mentioned three-layer polymers have actually been fused with each other to become one; On the one hand, whether it is a polymer derived from microspheres or a polymer derived from water-dispersible resins, the thermal conductivity is not much different, and is much larger than the thermal conductivity of air. Therefore, for the thermal insulation material, the above has three layers The structural polymer wall as a whole is technically reasonable.
  • the inventors of the present invention have found that, on the one hand, it is necessary to ensure that the space inside the closed porous composite material is closed as much as possible, and on the other hand, the amount of polymer (whether the polymer is derived from thermal expansion) Microspheres are also derived from water-dispersible resins). Therefore, the above-mentioned three-layered polymer wall should not be understood as a limitation on the present disclosure, as long as the above two goals can be achieved (as much closed space as possible and as little polymer amount as possible), multiple methods can be used to achieve it.
  • the water-dispersible resin can be omitted, and only two layers of polymer from adjacent microspheres are present in the final product. Nonetheless (technically, it is not necessary to distinguish the internal structure of the polymer wall described above), in order to determine the ratio of the total volume of the closed cavity to the total volume of the polymer wall in the final product, it is necessary to know the thickness range of the individual expanded microsphere walls ( Take FIG. 13 as an example, that is, the thickness of the two sidewalls separated by the middle black line; and the middle black line is very thin, and the water-dispersed resin represented by the black line is actually incorporated into the microsphere walls on both sides).
  • the thickness of a single microsphere wall obtained from Figure 11-17 includes: 44.9nm, 48.2nm, 81.9nm, 96.6nm, 95.9nm, 149nm, 78.9nm, 89nm, 102nm, 351nm (two layers of microsphere walls in Figure 16 The boundary between them is not obvious), 314nm, 325nm. As shown in Figures 8 and 9, most of the microspheres contact each other after expansion, and many intersections are shown on the plan view. The thickness of the microsphere walls shown in Figures 11-17 are measured at a middle position away from the intersection.
  • the above calculation does not take into account the volume of space between the microspheres, so in fact the ratio of the total volume of the cavity of the heat-insulating material to the volume of the polymer wall will be greater than the above estimate.
  • the average wall thickness of 0.01 ⁇ m is close to the limit of the expansion of the microspheres used in the examples of the present invention, so the ratio of the cavity volume to the spherical wall volume is also close to the upper limit of 1666.7.
  • the ratio of the volume of the cavity to the volume of the spherical wall of the product of the embodiment of the present invention is less than 2000. However, if other microspheres with a larger expansion factor are used, the ratio of cavity volume to spherical wall volume may exceed 2000.
  • Example 18 For implementation, refer to Example 18, but expand the manufacturing scale and test the performance of the scheme herein in actual large-scale production.
  • the primer and topcoat mixtures are formulated as follows:
  • Example 1 With reference to the operation method of Example 1, under the shearing action of a high-speed mixer, the various ingredients are added to the mixing kettle in accordance with the above formulas. After all the materials have been charged and stirred for 0.5-1 hour, it can be selectively selected before construction. Add bridging agent.
  • the primer coating formula is applied on a base cloth with a thickness of 0.15mm, the sizing amount (wet weight) is 65 ⁇ 5g / m 2 , and it is baked in an oven at 100 ° C. for 1 minute. After drying, apply the top coat on the base coat, apply the sizing amount (wet weight) 130 ⁇ 5g / m 2 , and bake in an oven at 150 ° C. for 1 minute.
  • the total thickness of the base cloth and coating samples is 0.55mm-0.6mm (thus the coating thickness is 0.40mm-0.45mm), and the Kro value is 0.605 (the normalized Kro value converted to 1mm coating thickness is 1.34-1.51),
  • the coating has good fastness and no chalking on the surface.
  • the insulation coating density of this group of experiments was 75.6 kg / m 3 .
  • the two-coat application can increase the coating thickness and Kro value, but it is less than the thickness of the two coatings when they are applied separately; the coating fastness mainly depends on the top coating. Because the fastness of the coating mainly depends on the top coat, the fastness of the underlying thermal insulation layer can be reduced, and the improvement of its thermal insulation performance is mainly considered, so that the amount of thermally expanded microspheres can be increased in the underlying thermal insulation layer, and only Use a water-dispersible resin. In the two-coat process, due to the increase of the resistance of the primer microspheres, the expansion capacity will be affected to a certain extent. Under the conditions of increasing the microsphere content and the coating amount, the thermal resistance effect is better. Note: This Kro data is provided by the third party: Beijing Inspection and Yihe (Beijing) Product Quality Supervision, Inspection and Testing Center, inspection number: NB201805006.
  • multiple closed porous composite materials can be bonded together as a whole with an adhesive, or one or more closed porous composite materials can be bonded together with other materials as a whole with an adhesive.
  • two layers of the product produced in Example 25 are "face-to-face” (that is, the coating layers are opposite) are bonded together with an adhesive to obtain two outer layers as a base cloth and an intermediate layer as a closed porous material (insulation material).
  • "Sandwich” structured products the carrier surface and the carrier surface can also be used for compounding).
  • the hot melt adhesive compounding machine produced by Wuxi Nuoerte Machinery Co., Ltd. was used.
  • the adhesive was PUR moisture-reactive hot melt adhesive.
  • the amount of adhesive used was 15 g / m 2 dry weight.
  • the "sandwich” structured product has a total thickness of 1.21 mm and a Crowe value of 1.11. After double-layer compounding, the Kro value increases, which indicates that the increase in thickness after double-layer bonding and compounding improves the thermal insulation performance.
  • the closed porous composite material can also be bonded and compounded with other materials to expand the application field of the closed porous composite material. Note: The Crowe test is provided by: Beijing Inspection and Yihe (Beijing) Product Quality Supervision and Inspection Center, inspection number: NB201805004.
  • the closed porous composite materials herein can be used as sound absorbing materials or sound insulation materials.
  • the difference between sound absorption of materials and sound insulation of materials lies in that the sound absorption of materials focuses on the amount of reflected sound energy on the side of the sound source, and the goal is to reduce the reflected sound energy.
  • Material sound insulation focuses on the magnitude of the transmitted sound energy on the other side of the incident sound source. The goal is to reduce the transmitted sound energy. Attenuation and attenuation of incident sound energy by sound-absorbing materials is generally only a few tenths, so its sound absorption capacity, that is, the sound absorption coefficient, can be expressed by decimals; and sound insulation materials can attenuate the transmitted sound energy to 10 -3 to 10 -4 of the incident sound energy. Or smaller, for convenience of expression, its sound insulation is expressed in decibels.
  • the sound-absorbing material has little reflection of incident sound energy, which means that sound energy can easily enter and pass through this material.
  • the material of this material should be porous, loose and breathable.
  • the closed porous composite material in this article has the above-mentioned sound insulation and sound absorbing material porosity and the overall sheet-shaped sound insulation and sound absorption structural characteristics, so it has both sound insulation and sound absorption performance.
  • the thermal conductivity test method is Hot disk transient plane heat source method, and the thermal conductivity test conditions are:
  • Test module basic module, single-sided method
  • Example 31 is a conventional polyurethane coating. No expanded microspheres are added to the composition, and the thickness of the coating is only related to the amount of coating. Since the 50g / m 2 wet coating amount is a small value, the final dry coating is very Thin, the total thickness of the coating sample containing the substrate was measured to be almost equal to the thickness of the substrate itself. Because the substrate and the polyurethane coating are solid polymer materials, the thermal conductivity is very high, reaching 0.2093w / mk.
  • the expanded microspheres When the expanded microspheres are added to the formula, the expanded microspheres expand after being heated, so the coating thickness increases significantly, and it increases with the increase in the amount of microspheres added (Examples 26-30);
  • One result is that a large number of closed cells are generated in the coating film, which can effectively reduce the thermal conductivity of the coating film (Examples 26-30); however, when the amount of microspheres reaches a certain level, the microspheres foam during the foaming process. Squeeze each other, compete to absorb energy during baking, cannot fully expand, and the thermal conductivity cannot be further reduced.
  • the expansion microsphere When the expansion microsphere is added in an amount of 20-30 parts by weight, it has the lowest thermal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

一种封闭多孔复合材料及其制造方法,该方法包括:1)准备混合物,该混合物包括水分散型树脂30-70重量份、未膨胀的热膨胀微球10-300重量份、水100-550重量份,充分搅拌该混合物;2)准备一载体;3)将步骤1所得混合物涂覆到载体上;4)加热载体一定时间,在此过程中,该未膨胀的热膨胀微球膨胀;5)重复若干次步骤3-4,得到封闭多孔复合材料。该封闭多孔复合材料包括大量封闭空腔和将该大量封闭空腔彼此隔开的聚合物壁,封闭空腔的尺寸范围为20μm-800μm,封闭空腔总体积与聚合物壁的总体积之比大于16。

Description

封闭多孔复合材料、隔热材料、隔音材料、其制造方法 技术领域
本公开涉及一种封闭多孔复合材料、隔热材料、隔音材料及其制造方法。
背景技术
“衣食住行”是人类文明自诞生以来就需要面对和解决的头等大事。除了在热带以及希腊等少数地区,冬天的御寒问题一直困扰着人们。技术发展到今天,人类已经学会利用动物皮毛、棉花、羽绒等材料制造抵御严寒的服装,并且这些服装已经能够让人们长时间待在寒冷冬天的室外,但是这些服装都比较厚重。厚重的服装一方面阻碍了肢体的***,另一方面也不能满足人们的审美要求。这第二个方面的缺点对于那些想在寒冷冬天展示自己身体美丽曲线的女士显得尤其突出。试想:如果“隔热新材料”得到广泛应用,冬季到高寒地带观雪景,男士就可以穿着“隔热新材料”制成的时装闲庭信步,女生可以穿着“隔热新材料”制成的霓裳尽情摆拍,那是一种什么样的体验?
发明内容
本发明的实施例提供一种封闭多孔复合材料的制造方法,该方法包括:
1)准备混合物,所述混合物包括水分散型树脂30-70重量份、未膨胀的热膨胀微球10-300重量份、水50-550重量份,搅拌所述混合物;
2)准备一载体;
3)将步骤1所得混合物涂覆一层到所述载体上;
4)加热所述混合物和所述载体一定时间,在此过程中,所述未膨胀的热膨胀微球膨胀;
5)重复若干次步骤3-4,得到包括多层所述混合物的所述封闭多孔复合材料。
根据本发明的一种实施方式,例如,所述步骤1中各组分含量为:水分散型树脂40-60重量份、未膨胀的热膨胀微球10-50重量份、水80-350重量 份。
根据本发明的一种实施方式,例如,所述步骤1中各组分含量为:水分散型树脂45-55重量份、未膨胀的热膨胀微球10-30重量份、水100-250重量份。
根据本发明的一种实施方式,例如,所述未膨胀的热膨胀微球呈现中空的球形或类球形,外径10μm-40μm,壁厚1μm-10μm,所述壁包括热塑型或热固型高分子材料。
根据本发明的一种实施方式,例如,所述水分散型树脂包括2种不同的水性聚氨脂,其中一种重量份为1-25;另一种重量份为49-25。
根据本发明的一种实施方式,例如,所述2种不同的水性聚氨脂分别为第一阴离子型脂肪族聚酯聚氨酯和第二阴离子型脂肪族聚酯聚氨酯,其中所述第一阴离子型脂肪族聚酯聚氨酯的重量份为10-20,优选为15;所述第二阴离子型脂肪族聚酯聚氨酯的重量份为40-30,优选为35。
根据本发明的一种实施方式,例如,所述步骤1的混合物还包括消泡剂0-1重量份、固化剂0-10重量份、增稠剂0-10重量份、防霉剂0-5重量份、润湿流平剂0-2重量份、手感剂0-5重量份、水性色浆0-20重量份中的至少一种;优选的,所述步骤1的混合物还包括消泡剂0.1-1重量份、固化剂0.1-10重量份、增稠剂0.1-10重量份、防霉剂0.1-5重量份、润湿流平剂0.1-2重量份、手感剂0.1-5重量份、水性色浆0.1-20重量份中的至少一种。
根据本发明的一种实施方式,例如,所述步骤4中加热所述载体至100℃-180℃,加热时间10-300秒;优选加热所述载体至120℃-160℃,加热时间60-120秒;优选加热所述载体至130℃-150℃,加热时间60-90秒;优选加热所述载体至140℃-150℃,加热时间60-80秒。
根据本发明的一种实施方式,例如,所述水分散型树脂包括水性聚氨酯树脂、水性丙烯酸树脂、水性聚氨酯改性丙烯酸树脂、丁氰乳液、氯丁乳液、聚醋酸乙烯酯乳液中的至少一种。
根据本发明的一种实施方式,例如,所述固化剂包括聚碳化二亚胺、聚异氰酸酯、封闭型聚异氰酸酯、氮丙啶、氨基树脂中的至少一种;所述消泡剂为有机硅型消泡剂;所述润湿流平剂为有机硅型润湿流平剂;所述手感剂 包括高分子量有机硅、蜡粉、蜡乳液、气相或沉淀法二氧化硅及其分散液中的至少一种;所述防霉剂包括有机或无机类水分散型防霉剂;所述增稠剂包括聚氨酯缔合型、丙烯酸碱溶胀型、纤维素类增稠剂、无机类增稠剂中的至少一种。
根据本发明的一种实施方式,例如,所述载体包括机织布、无纺布、皮革、软质薄膜中的一种或多种。
根据本发明的一种实施方式,例如,步骤4中膨胀后的热膨胀微球尺寸与步骤1中未膨胀的热膨胀微球尺寸之比为2-10。
根据本发明的一种实施方式,例如,所述方法制备得到的所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭空腔总体积与所述聚合物壁的总体积之比大于3,优选大于3.33,优选大于16,优选大于33,优选大于83,优选大于166,优选大于333,优选大于417,优选大于556,优选大于833,优选大于1667。
根据本发明的一种实施方式,例如,所述方法制备得到的所述封闭多孔复合材料为隔热材料,所述隔热材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,当所述隔热材料的厚度为1mm时,所述隔热材料的克罗值≥0.20,或者≥0.40,或者≥0.50,或者≥0.60,或者≥1.0,或者≥1.5。
根据本发明的一种实施方式,例如,所述方法制备得到的所述封闭多孔复合材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭多孔复合材料的密度为5kg/m 3-300kg/m 3,优选10kg/m 3-200kg/m 3,优选20kg/m 3-150kg/m 3,优选30kg/m 3-100kg/m 3,优选40kg/m 3-90kg/m 3,优选50kg/m 3-80kg/m 3,优选60kg/m 3-80kg/m 3
本发明的实施例提供一种封闭多孔复合材料,所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm -200μm,进一步优选为80μm-120μm,所述封闭空腔总体积与所述聚合物壁的总体积之比大于3,优选大于3.33,优选大于16,优选大于33,优选大于83,优选大于166,优选大于333,优选大于417,优选大于556,优选大于833,优选大于1667。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成。
根据本发明的一种实施方式,例如,所述聚合物壁在朝向所述封闭空腔的内侧包括热塑型或热固型高分子材料、所述聚合物壁在朝向所述封闭空腔的外侧包括水分散型树脂。
根据本发明的一种实施方式,例如,所述聚合物壁的厚度为0.01-5μm,优选为0.02μm-2μm,进一步优选为0.03μm-1.0μm,进一步优选为0.04μm-0.8μm,进一步优选为0.05μm-0.6μm,进一步优选为0.1μm-0.5μm。
根据本发明的一种实施方式,例如,所述封闭空腔的形状包括球形、类球形和不规则形状。
根据本发明的一种实施方式,例如,所述封闭空腔由未膨胀的热膨胀微球直径膨胀2-10倍而得到。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料为隔热材料;当所述隔热材料厚度在0.2mm-3.0mm时,所述隔热材料的克罗值为0.1-3.0。
根据本发明的一种实施方式,例如,所述聚合物壁包括三层结构,所述三层结构包括两个外层以及夹在所述两个外层之间的中间层,其中所述两个外层的材料相同,且所述两个外层的材料不同于夹在所述两个外层之间的所述中间层的材料。
根据本发明的一种实施方式,例如,所述载体包括机织布、无纺布、皮革、软质薄膜中的一种或多种。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料包括载体和附着在所述载体之上的隔热层,所述载体厚度为0.1mm-5.0mm,所述隔热层厚度为0.2mm-10mm。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料的所述载体的两个表面各附着一个隔热层,所述载体厚度为0.1mm-5.0mm,所述任一 个隔热层厚度为0.2mm-10mm。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料包括外层的两层载体和夹在所述两层载体之间的所述隔热层,所述两层载体中任意一层载体的厚度为0.1mm-5.0mm,所述隔热层厚度为0.2mm-10mm。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料包括一层载体和附着在所述载体之上的所述隔热层,所述隔热层具有2层以上的多层结构;优选地,所述隔热层中与所述载体直接接触的层称为底层隔热层,距离所述载体最远的层称为面层隔热层,位于所述底层隔热层和所述面层隔热层之间的层称为中间层隔热层,所述底层隔热层中的所述热膨胀微球含量大于所述面层隔热层和所述中间层隔热层中的所述热膨胀微球含量。
根据本发明的一种实施方式,例如,所述底层隔热层包括一种水分散型树脂,所述面层隔热层包括至少两种不同的水分散型树脂。
根据本发明的一种实施方式,例如,不同隔热层中所采用的未膨胀的热膨胀微球可以相同,也可以不同。
根据本发明的一种实施方式,例如,多个所述封闭多孔复合材料通过粘合剂粘合在一起成为一个整体,或者一个或多个所述封闭多孔复合材料通过粘合剂与其他材料粘合在一起成为一个整体,单次所述粘合需要所述粘合剂的量为10g/m 2-25g/m 2;优选地,所述粘合剂选自PUR湿气反应型粘合剂、热熔胶、水分散型粘合剂和溶剂型粘合剂中的至少一种。
本发明的实施例提供一种隔热材料,所述隔热材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,当所述隔热材料的厚度为1mm时,所述隔热材料的克罗值≥0.20,或者≥0.40,或者≥0.50,或者≥0.60,或者≥1.0,或者≥1.5。
根据本发明的一种实施方式,例如,所述隔热材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成。
根据本发明的一种实施方式,例如,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm。
根据本发明的一种实施方式,例如,所述聚合物壁的厚度为0.01μm-5 μm,优选为0.02μm-2μm,进一步优选为0.03μm-1.0μm,进一步优选为0.04μm-0.8μm,进一步优选为0.05μm-0.6μm,进一步优选为0.1μm-0.5μm。
根据本发明的一种实施方式,例如,所述聚合物壁包括三层结构,其中两个外层的材料相同,且所述两个外层的材料不同于夹在所述两个外层之间的中间层的材料。
本发明的实施例提供一种封闭多孔复合材料,所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭多孔复合材料的密度为5kg/m 3-300kg/m 3,优选10kg/m 3-200kg/m 3,优选20kg/m 3-150kg/m 3,优选30kg/m 3-100kg/m 3,优选40kg/m 3-90kg/m 3,优选50kg/m 3-80kg/m 3,优选60kg/m 3-80kg/m 3
根据本发明的一种实施方式,例如,所述封闭多孔复合材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成。
根据本发明的一种实施方式,例如,所述聚合物壁的厚度为0.01μm-5μm,优选为0.02μm-2μm,进一步优选为0.03μm-1.0μm,进一步优选为0.04μm-0.8μm,进一步优选为0.05μm-0.6μm,进一步优选为0.1μm-0.5μm。
根据本发明的一种实施方式,例如,所述聚合物壁包括三层结构,其中两个外层的材料相同,且所述两个外层的材料不同于夹在所述两个外层之间的中间层的材料。
根据本发明的一种实施方式,例如,所述封闭多孔复合材料的导热系数小于0.030w/m.k,优选的,所述封闭多孔复合材料的导热系数小于0.025w/m.k,优选的,所述封闭多孔复合材料的导热系数小于0.020w/m.k,优选的,所述封闭多孔复合材料的导热系数小于0.016w/m.k。所述导热系数采用本申请说明书实施例26-36记载的方法测定。
本发明的实施例提供一种隔音材料,所述隔音材料包括如前所述的封闭多孔复合材料。
本发明的实施例提供一种吸音材料,所述吸音材料包括如前所述的封闭多孔复合材料。
本发明的实施例提供一种服装,所述服装包括如前所述的封闭多孔复合材料,或者所述服装包括如前所述的隔热材料。
根据本发明的一种实施方式,例如,所述服装还包括面料和里布,其中所述封闭多孔复合材料或者所述隔热材料设置在所述面料和所述里布之间。
本发明的实施例提供一种帐篷,所述帐篷包括如前所述的封闭多孔复合材料,或者所述帐篷包括如前所述的隔热材料。
本发明的实施例提供一种睡袋,所述睡袋包括如前所述的封闭多孔复合材料,或者所述睡袋包括如前所述的隔热材料。
本发明的实施例提供一种鞋,所述鞋的鞋面包括如前所述的封闭多孔复合材料,或者所述鞋面包括如前所述的隔热材料。
本发明的实施例提供一种墙纸,所述墙纸包括如前所述的封闭多孔复合材料,或者所述墙纸包括如前所述的隔热材料。
本发明的实施例提供一种车厢,所述车厢包括如前所述的封闭多孔复合材料,或者所述车厢包括如前所述的隔热材料。
本发明的实施例提供一种飞机客舱,所述飞机客舱包括如前所述的封闭多孔复合材料,或者所述飞机客舱包括如前所述的隔热材料。
本发明的实施例提供一种冰箱,所述冰箱包括如前所述的封闭多孔复合材料,或者所述冰箱包括如前所述的隔热材料。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例中使用的膨胀前的热膨胀微球显微镜照片;
图2为本发明实施例中使用的膨胀前的单个热膨胀微球透射电子显微镜(TEM)照片;
图3为本发明一实施例获得的最终产品的显微镜照片,由照片可见大部 分膨胀后的热膨胀微球呈规则球形或类球形;
图4为本发明一实施例获得的最终产品的扫描电镜照片;
图5为本发明一实施例获得的最终产品的扫描电镜照片;
图6为本发明一实施例获得的最终产品的扫描电镜照片;
图7为本发明一实施例获得的最终产品的扫描电镜照片;
图8为本发明一实施例获得的最终产品的电子计算机断层扫描照片;
图9为本发明一实施例获得的最终产品的电子计算机断层扫描照片;
图10为本发明一实施例获得的最终产品的电子计算机断层扫描照片;
图11-图17为通过SEM测得本发明实施例获得的最终产品中微球球壁的厚度。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。除非特别说明,本公开所称“份”指重量份。
人是恒温动物,人体本身就是一个不断产生热量的热源。这些不断产生的热量需要不断地释放。在气温较高的夏天,人体热量释放得较慢,我们就会感到热;而在寒冷的冬天,人体热量释放得较快,我们就会感到冷。当人们感觉到冷的时候,根据生活经验,人们一般会选择增添衣服或者换更厚的衣服。然而,为何穿增添衣服或者换更厚的衣服就能保暖呢?这需要从热量流失的主要途径来考虑。一般而言,热量主要通过三种途径流失:热传导、热对流和热辐射。热辐射是指一切温度高于绝对零度的物体都不断地向周围空间辐射电磁波,温度愈高,辐射出的总能量就愈大,短波成分也愈多。增添衣服或者换更厚的衣服对于热辐射的影响较小,主要是通过影响热传导和热对流来达到保暖的目的。对于保暖衣物而言,热传导就是较热的人体将热 量传递给与人体相接触的衣物,最终热量将通过衣物散发到寒冷的大气中;而热对流则是人体表面的空气受热后与周围寒冷的空气发生交换而散发热量。那么,要提高衣物的保暖性能,一方面要尽量选择热传导系数低的材料制造衣物,另一方面要尽量减少人体表面的空气与周围寒冷大气发生交换的机会。
在目前已知的材料中,静止的空气热传导率是最低的。因此,保暖衣物一般都选择蓬松的材料作为保暖材料,例如棉花、羽绒等。这些蓬松的材料中都携裹了大量的空气,因而与其他致密的材料相比具有更好的保暖效果。但是,这些已知的保暖材料的保暖性能依然不够好,以至于要达到抵御冬天寒冷的保暖效果,需要把衣服做得较厚,于是带来前述各种缺点(阻碍肢体的***,不能满足人们的审美要求)。
本文要提供一种保暖材料,这种材料主要利用非传统保暖材料的有机材料,在携裹尽可能多的空气、防止其携裹的空气与外界空气之间流通两个方面都能大大超过传统的保暖材料。根据空气静止隔热原理:在孔隙率相同的条件下,孔隙尺寸越大,导热系数越大;互相连通型的孔隙比封闭型孔隙的导热系数高,封闭孔隙率越高,则导热系数越低。同时,由于具有上述特点,这种材料不但能用于保暖、隔热,还能广泛地用在其它领域,例如隔音和吸音。
帐篷是户外运动必备的装备,隔热和保暖是始终困扰全球帐篷企业的技术难关。本文的封闭多孔复合材料(将该封闭多孔复合材料用于隔热,则为隔热材料)研发成功,使帐篷不仅轻便,而且夏天凉爽,冬天温暖。
户外运动服装因环境、气候因素和运动汗水排出,传统服装受潮后保暖率大弧度下降,特别是羽绒服,受潮后没有保暖能力。以下对本文的隔热材料进行了受潮保暖测试。测试采用第三方:京检颐和(北京)产品质量监督检测中心依据GB/T11048-2008A法,检验及判断,检验编号:NB201804008的检测报告记录:标样测试常规克罗值、称重记录数值,再把标样放到装有自来水的盆中浸泡3分钟完全湿透,取出放在阴凉处30分钟没有水滴滴出为止,手感标样潮湿,称重:含水率10%。再次测试克罗值与前次比较,克罗值下降3.6%。说明本文提供的隔热材料在受潮条件下还能保暖。户外运动爱好者使用本文提供的隔热材料制作的服装和装备,户外探险更安全,挑战 极限更加有信心。
把本文的隔热材料放进-40℃的冷冻柜里速冻30分钟,之后取出进行测试对比,本文的隔热材料在厚度、手感、外观没有任何改变。可以设想,有些装备在户外停放和使用需要隔热和保暖,使用本文的隔热材料制作的保护装置,比目前使用的材料更轻、更薄、隔热保暖更加有效。
汽车停放在户外长时间曝晒,车厢内气温极高。打开车门一瞬间,热浪扑面,座椅滚烫,车子有效使用期缩短。只要在车厢顶棚、周围的装饰面和车体钢板之间使用本文提供的隔热新材料,同比车内气温可下降15℃-25℃。同时,本文的隔热材料产生的热阻,不管是冬天还是夏天,能使车里空调使用强度下降,大大减少油耗的同时还能起到隔音的作用。
合脚、透气、轻便和受潮还能保暖,是理想冬季鞋材的最优选择。本文的隔热材料的应用,将助推全球鞋业设计、制造者实现技术创新的梦想,给消费者冬季脚部保暖和穿着时尚带来全新的体验和更多的选择。
对音响爱好者,本公开的隔热材料将带来全新体验。使用本公开隔热材料的房间,隔音和吸音效果将大幅提升。同时大幅降低噪音,增强保暖效果,使人们居住生活更加舒适。
目前,我们使用的冰箱,厚厚的隔热层,使冰箱臃肿而笨重。本公开的隔热材料的诞生,可以让冰箱隔热层厚度降低60%,冰箱储存空间将变得更大。采用新材料生产的冰箱,将一改又笨又重的形象。
窃听一般是通过捕捉声音对窗户玻璃震动来实现。如果使用本公开的隔热材料制成窗帘,不但防窃听,还能隔热和保暖。
本文的隔热材料在冬季手套上的使用,不但保暖,手指的运动更加灵活,工作效率更高。
下面结合实施例进一步说明本公开的技术方案。
本公开中采用如下测试方法。
温度差测试(温度差越大表示隔热性能越好):
采用仪器设备包括温州汉邦电子有限公司生产的汉邦牌HP-2020恒温加热台、源恒通YHT309四通道温度表、台湾泰仕TES表面接触式网状探头TP-K03。
测试方法包括:把加热台温度设定在60℃,隔热材料面积长5CM、宽 3CM的样品摆放在加热台上。测试过程中,加热台始终恒温,隔热材料的一端使用物体压住防止移动,一直到测试结束。
一支探头直接接触加热台表面,另一支探头接触加热台上隔热材料的表面,两支探头之间的间距2CM。双手平稳扶住探头手柄,源恒通YHT309四通道温度表显示两组温度值稳定不变10秒,分别记录加热台、隔热材料表面温度和测试时间。每隔15分钟测试一次,一共测试4次。
把加热台四次表面温度相加,减去隔热材料表面四次温度相加的值,即为温度差。
克罗值测试:
由第三方:国家纺织制品质量监督检验中心和京检颐和(北京)产品质量监督检验检测中心参照GB/T11048-2008A法进行。
克罗值的定义:一个安静坐着或从事轻度脑力劳动的人(代谢产热量为209.2KJ/m 2·h),在室温21℃,相对湿度小于50%,风速不超过0.l米秒的环境中感觉舒适时,所穿衣服的热阻值为1克罗。
导热系数测试:
采用Hot disk瞬态平面热源法,导热系数测试条件:
设备型号:TPS3500
测试模块:基本模块,单面法
探头型号:Kapton7577
加热功率:10mw
测试时间:1s
测试环境温度:26±0.5C
下部背景材料:石英
上部背景材料:聚苯乙烯泡沫
本文使用商品的组成如下。水分散型树脂Leasys3458:一种阴离子型水性聚氨酯水性分散体(脂肪族),固含量约50wt%;水分散型树脂Impranil DLS:一种阴离子型脂肪族聚酯聚氨酯水性分散体,固含量约50wt%;Impranil 1537:一种阴离子型脂肪族聚酯聚氨酯水性分散体,固含量约60wt%;热膨胀性微球Expancel 043 DU 80:是一种微小的球状塑料颗粒,微球由一种聚合物壳体和它包裹着的气体(在一定条件下该气体可以膨胀)组成, 当加热时,气体的内压增大,热塑性壳体***,造成微球的体积增大,气体仍在球内;消泡剂BYK 093:一种分散在聚乙二醇中的聚硅氧烷和疏水固体的混合物;润湿剂BYK 348:一种聚醚改性硅氧烷,不挥发份>96wt%;增稠剂LYOPRINT PTF:一种丙烯酸类聚合物分散体;水性色浆NV 6800:一种固含量约为40wt%的水性分散体。
实施例1-4热膨胀性微球添加量的影响
实施例1按照下面的配方准备各种组分:
Figure PCTCN2019104980-appb-000001
需要说明的是,本申请权利要求中水分散型树脂的重量份指的是干重,而实施例中使用的水分散型树脂是含水的水性分散体,因此需要根据其固含量进行换算。反应体系中的水主要来自加入的去离子水、水分散型树脂中的水分以及水性色浆中的水分;而对于热膨胀性微球、消泡剂、润湿剂、增稠剂,要么其中水含量非常少,要么由于本身用量很少,其对反应体系中水的总量影响可以忽略。换算之后的配方为:水分散型树脂Leasys3458,干重50g;热膨胀性微球Expancel 043 DU 80,40g;去离子水,300g+50g(来自水分散型树脂Leasys3458)+12g(来自水性色浆NV 6800)=362g;消泡剂BYK 093,0.3g;润湿剂BYK 348,1g;增稠剂LYOPRINT PTF,1g;水性色浆NV 6800,干重8g。以下各实施例都可以按照同样的方式换算,不再重复。
在高速搅拌机搅拌下,将上述各组分依次加入到搅拌釜中,搅拌速度为1000-1500转每分钟。所有组分投料后,再搅拌0.5-1小时。涂层施工前可以选择性的加入架桥剂,所述架桥剂例如可以包括聚碳化二亚胺、聚异氰酸酯、封闭型聚异氰酸酯、氮丙啶、氨基树脂。
以上配方在0.28mm厚度的基布上施工,上胶量(湿重)65g/m 2,在140℃ 的烘箱中烘烤1分钟。涂层样品厚度0.52mm。其中Leasys3458是一种水分散型树脂的商品名,Expancel 043 DU 80是热膨胀性微球的商品名,BYK 093是消泡剂的商品名,BYK 348是润湿剂的商品名,LYOPRINT PTF是增稠剂的商品名,NV 6800是水性色浆的商品名。需要说明的是,上述具体物质仅是为了举例说明,而不是对本发明的限制。上述组分中,最关键的组分是水分散型树脂和处于未膨胀状态的热膨胀性微球,而其他组分都是可以根据具体应用场景省略的。在加热过程中,处于未膨胀状态的热膨胀性微球会膨胀,其体积膨胀2-50倍,同时水被蒸发掉,最终形成包含多个(数量非常大)封闭球形、类球形或(微球膨胀过程中相互挤压而形成的)不规则形状的封闭空腔叠加的多独立空间结构产品,这种叠加多独立空间结构产品包括大量封闭空腔和将所述大量封闭空腔彼此隔开的聚合物壁,所述聚合物壁在朝向所述封闭空腔的内侧包括热塑型或热固型高分子材料(即来自热膨胀微球的材料)、所述聚合物壁在朝向所述封闭空腔的外侧包括水分散型树脂(即来自所述水分散型树脂的材料)。在大多数情况下,热膨胀微球充分膨胀,相邻的微球壁彼此相互接触,从而形成三明治结构的聚合物壁,所述聚合物壁的两个外层的材料相同(都来自热膨胀微球),且所述两个外层的材料不同于夹在所述两个外层之间的中间层的材料(来自水分散型树脂)。
实施例2-4的操作与实施例1相同,但调整了热膨胀性微球的含量。实施例1-4的配方列于下表:
表1实施例1-4的配方(单位:g)及性能表征
Figure PCTCN2019104980-appb-000002
Figure PCTCN2019104980-appb-000003
1“涂层样品厚度”为附着在所述基布上的干燥涂层的厚度,下同;
2由于温度差近似与涂层样品厚度成正比,将涂层样品厚度归一化为1mm计算得到“归一化温度差”;需要说明的是,本文所有实施例中讨论材料的隔热性能(包括“温度差”、“归一化温度差”、以及后面的“克罗值”、“归一化克罗值”),都忽略了基布(载体)对隔热性能的影响,这是因为基布涤纶纤维导热性强,对隔热的贡献很小。例如在实施例1-24中用到的0.28mm厚的基布,在同样试验条件下测量所得的温度差小于0.8℃,而实施例25中用到的0.15mm厚的基布,在同样试验条件下测量所得的温度差小于0.2℃。此温差来自基布纱线蓬松储存的空气的隔热作用。基布涂层后,纱线与纱线之间的空间已经被膨胀微球填满,基材储存的空气已经不存在,基布的隔热作用对最终产品隔热性能的影响也就可以忽略了。
从理论上讲,热膨胀性微球用量越大、涂层厚度越厚、涂层中封闭空腔体积所占比例就越大,同时涂层温度差也越大,热阻性越好。但是热膨胀性微球用量大会带来一个问题,就是会影响干燥涂层的附着力,所以实施例1的归一化温度差(“归一化温度差”体现的是相同涂层样品厚度下的隔热性能,因而比“温度差”更能体现隔热性能的好坏)反而不如实施例2高。对比实施例2、3、4的实验结果是:在同样的涂层量(湿重)情况下,微球含量越高,温度差越大(隔热性能越好)。水分散型树脂Leasys 3458对微球的包裹力较一般,当热膨胀性微球的用量超过水分散型树脂包裹能力的极限时,微球用量越大,涂层牢度越差,表面粉化越严重(关于涂层牢度的评价,按照以下顺序从左到右越来越好:差->较差->较好->好,对于服装类的产品,涂层牢度较好或者好即可满足要求,而对于其他应用,例如建筑墙体保温材料,则涂层牢度较差、甚至差的情况下也可满足应用条件)。仅从“归一化温度差”这一数据来看,微球用量为10g、20g、30g都获得了不错的隔热性能。
实施例5-7不同的水分散型树脂对涂层牢度的影响
实施例5-7的制备过程与实施例1相同,但调整了水分散型树脂的种类和配比。实施例5-7的配方列于下表:
表2实施例5-7的配方(单位:g)及性能表征
Figure PCTCN2019104980-appb-000004
与单独采用一种水分散型树脂Leasys3458(实施例5)相比,采用两种水分散型树脂Impranil DLS和Impranil 1537混合的配方(实施例6)对微球的包裹力有明显提高,涂层牢度增强。由于涂层牢度增强,所以样品成型后膨胀微球基本没有脱落,进而使实施例6制得样品温度差明显大于实施例5制得的样品。同时,对比实施例6和7也可以发现,在其他条件相同或相差不大的情况下,微球含量越高,样品的涂层厚度越高,温度差越大,因而热阻(隔热)性能越好。
实施例8-12水添加量的不同对热阻的影响及隔热材料的组成和结构
实施例8-12的制备过程与实施例1相同,但调整了水的用量。实施例8-12的配方列于下表:
表3实施例8-12的配方(单位:g)及性能表征
Figure PCTCN2019104980-appb-000005
Figure PCTCN2019104980-appb-000006
*由于温度差近似与涂层样品厚度成正比,将涂层样品厚度归一化为1mm计算得到“归一化温度差”。
对比实施例8-12的结果。组成上来看,除了水和增稠剂用量不同外,其他组分用量相同、涂层量(湿重)相同、烘烤条件也相同。水的用量由实施例8到实施例12逐渐减少,因而增稠剂的用量也相应减少;实施例11和12没有额外加水,并且实施例12的热膨胀微球用量是实施例11的2倍。比较实施例8-11的结果可以看到,在相同涂层量(湿重)的情况下,涂层样品厚度(即干燥后除基布外的产品厚度)先是增加,然后减小(实施例8、9、10依次增加,到实施例11减小),温度差呈现与涂层样品厚度相同的趋势。实施例8、9、10依次增加是很好理解的,水用量减小,干组分相对比例增加,那么在相同涂层量(湿重)的情况下最终涂层样品厚度增加、温度差增加、隔热效果增强。但实施例11与实施例10相比,在水量进一步减小的情况下,最终涂层样品厚度减小、温度差也变小,这则与上述推理相悖。要理解这一情况,需要考察水在上述方案中到底起什么作用。上述组分中最主要的2种组分是水分散型树脂和热膨胀性微球,而水的作用则仅次之。热膨胀微球的作用在于,当其加热膨胀后,形成大量封闭空腔,微球膨胀过程中对水分散 型树脂体积进行拉伸,降低热膨胀微球和水分散型树脂体积的密度,提高隔热性;但是光有热膨胀微球还不够,还需要将微球粘合形成一个有一定机械强度的整体(例如形成有一定厚度的平层),才能够用于一些具体的应用场景(例如用于服装隔热层,或者建筑内墙的隔热层)。而水分散型树脂就是起这个作用的。水的作用主要有两个:一是稀释水分散型树脂,减小水分散型树脂对膨胀过程中的热膨胀微球的束缚,使得热膨胀微球更加自由、充分地膨胀;二是减小水分散型树脂的固含量,阻遏因水分散型树脂高导热性带来热阻的下降。可以设想,完全不额外加水(因而只有来自水分散型树脂和色浆中的少量水)可能会带来两个问题:一是热膨胀微球在膨胀过程中过多地受到水分散型树脂的黏附、阻碍,无法充分、自由地膨胀,微球膨胀受阻而对水分散型树脂拉伸、分散的能力下降,不能使微球空腔最大化,因而无法充分地发挥微球隔热的作用;二是水分散型树脂高导热性造成隔热能力下降:因为水用得少,那么水分散型树脂的用量势必要增加,而水分散型树脂的导热系数较高,其用量提升必然导致导热性能升高,也即隔热性能下降。考虑到上述因素,实施例11的情况就比较好理解了。由于实施例11完全不额外加水,部分微球受到水分散型树脂过大的束缚,拥挤在一起而不能充分膨胀,水分散型树脂含量高使得隔热性能下降,所以在相同涂层量(湿重)情况下,最终涂层样品厚度反而变小,温度差也变小。
从实施例8-12的“归一化温度差”这一数据来看,在其它条件相同或类似的情况下,额外加水的用量为200g和300g时,隔热效果最好。一般每100重量份水分散型树脂(湿重)额外加水的用量在150-350重量份是较佳的选择。
进一步考察产品的结构和组成。如图1所示是本发明实施例中使用的膨胀前的热膨胀微球显微镜照片。本发明实施例中采用的热膨胀微球是Expancel 043 DU 80,其平均粒径大约是16μm-24μm,其球壁材料为热塑型或热固型高分子材料,加热后可膨胀,直径增加至原直径的2-10倍。单个的热膨胀微球形状可参见图2。由图1可见,膨胀前的热膨胀微球呈现规则的球形或类球形颗粒状。由图2可见,单个微球呈现接近球形的椭球状,其长轴(外径)长度为24.2μm,短轴(外径)长度为22.6μm,壁厚约5μm。需要说明的是,如果选用其他材料或尺寸的热膨胀微球,则相关结构、材料 会发生变化,但这些内容(微球的具体材料、结构)不应当理解为对本发明保护范围的限制。
实施例10最终获得产品的显微镜照片展示在附图3中。由附图3的照片可见大部分膨胀后的热膨胀微球呈规则球形或类球形。在部分区域,由于微球之间相互挤压较严重,膨胀后的微球可能呈现不规则外形。为方便描述起见,对于规则的球形,本文所述“尺寸”是指其直径;对于类球形或不规则的形状,本文所述“尺寸”是指与该类球形或不规则形状体积相同的球形的直径。附图3与附图1相比,可知加热膨胀后,微球体积增大了若干倍,其球壁变薄而至于透明。
实施例13-17不同烘烤温度对结果的影响
实施例13-17的制备过程与实施例1相同,但调整了烘烤的温度。实施例13-17的配方列于下表:
表4实施例13-17的配方(单位:g)及性能表征
Figure PCTCN2019104980-appb-000007
由上表结果可知,在配方一致和涂层量(湿重)一致的前提下,涂层厚度和隔热表现(温度差)和烘烤温度有关系。温度越低,涂层干膜厚度越低,保温性越差(热膨胀微球膨胀不充分);温度高到140℃-150℃时,涂层厚度和温度差最高,最佳施工温度是140℃-150℃。需要说明的是,这个最佳温度范围与烘烤设备和使用的热膨胀微球的组成和结构有关系,本实施例采用的热膨胀微球是Expancel 043 DU 80,如果使用其他不同的烘烤设备和/或热膨胀微球,则最佳施工温度范围可能会发生变化。
实施例17最终获得产品的扫描电镜照片展示在附图4-7中。其中图4是直接获得产品的SEM照片,图5是进一步放大的产品的SEM照片;图6是切开的产品的SEM照片,图7是进一步放大的切开的产品的SEM照片。由图4-5可见,大部分膨胀后的热膨胀微球直径在100μm左右。需要说明的是,图右下角的标尺是指整个标尺的长度。以图4为例,从最左边的白色标线到最右侧的白色标线代表500μm,因而相邻的两个白色标线之间的距离是50μm;图4左上部可见的纤维状物是基材中的纤维,不属于隔热材料;由于基布使用的涤纶纱线,导热性强,为获得较好的隔热效果,微球膨胀后应全面覆盖基布。膨胀微球的尺寸受诸多因素影响,例如膨胀微球的组成、结构,膨胀过程的加热温度和时间,各组分的配比等。另外,膨胀后的微球尺寸还受到很多随机因素的影响,例如,个别位置受热不够导致微球未能充分膨胀、个别位置过度受热导致微球过度膨胀、个别微球由于结构瑕疵(例如内部气体泄露等)完全未膨胀。因此,即使是发泡良好的材料中也存在个别尺寸特别大或者特别小的微球,例如由图4可见,绝大部分微球尺寸都分布在50μm-150μm区间,但也有个别微球小至20μm左右,个别微球大至250μm以上。由图4-6可见,膨胀后的微球紧密聚集在一起,由于微球之间通过水分散型树脂粘合在一起,可以推断微球之间的空间大部分也都是封闭的。从图4和图5可见极少数破裂的热膨胀微球(例如,图4左下角及图5右下角)。在理想情况下,每一个热膨胀微球都充分膨胀且不破裂(从而保证内部空间封闭)。但是在加热过程中有一些不可控因素,例如局部过热或者个别微球存在瑕疵。但是,这种个别微球破裂并不对最终产品的隔热性能造成根本的影响,理由至少有以下两点:1)破裂的微球占比相当小,从图4来看应该还不 到1%;2)即使个别微球破裂了,由于周边大量其他微球过度拥挤,将该破裂微球的内部空间重新又封闭起来。因此,实际上在本公开的实施例中制造封闭多孔复合材料的过程中,只要加热温度不过高、时间不过长,保证绝大部分或者大部分微球不破裂,就可以获得较好的隔热效果。此外需要声明,实施例17的产品SEM照片只是举例说明本公开的实现过程,不能理解为本发明的限制。改变热膨胀微球的材料和组成、膨胀过程的加热温度和时间、各组分的配比等因素,那么最终获得产品中微球的尺寸和形态都可能改变。
如图4、图5所示,SEM照片只能展现最终产品的表面形态。如果要了解最终产品内部的结构,只能将产品切开,如图6、图7所示。从图6、图7可见,大量的微球膨胀后拥挤在一起,几乎占据了整个空间。每一个微球内部空间都是封闭的,因此微球内部的气体是不流通的。而由于大量微球拥挤在一起,微球之间的空间实际上也大部分都是封闭的,因此最终产品中,几乎所有气体都是处在闭合空间,不能自由流动,消除了空气运动对于热能的传导和空气对流导致的热量丧失。但是将产品切开之后再观测其形态存在一个问题:切开过程中的机械力会使得微球的横切面发生形变,因而横切面的微球形状与实际产品内部的微球形状相比发生了变化。为了展现在自然状态下最终产品内部微球的形态,发明人进一步利用电子计算机断层扫描(Computed Tomography,CT)的方法,得到了实施例17的产品内部的形态,如图8-10所示。图8、图9、图10是对实施例17的产品内部不同位置进行的无损检测,因此反映的是最终产品自然状态下的内部结构。由图8-10可见,大部分微球都呈现椭球状,其中挤压严重的位置则呈不规则外形,几乎所有空间都被膨胀后的微球挤满。图10挑选了两个膨胀后的微球,对其尺寸进行了准确测量,得到两个微球短轴尺寸分别为63.94μm(左上)和54.53μm(中间位置)。对应的长轴尺寸应该都在100μm-200μm之间,图10可见的微球尺寸大多在此量级,当然也有个别较大的微球尺寸达300μm-500μm,个别较小的微球尺寸在20μm-30μm。需要说明的是,如果选择未膨胀的热膨胀性微球的粒径不同于Expancel 043DU80,最终膨胀后微球的直径也会有较大的不同。
实施例18多层施工工艺制造多层隔热材料
基层采用厚度为0.28mm、密度为68.5g/m 2的基布,在基布上先涂覆一层底涂混合物,根据Expancel 043DU80设定的未能膨胀的温度内烘干后,再在已干燥的底涂混合物之上涂覆一层面涂混合物。底涂混合物、面涂混合物配方如下:
底涂配方中各组份比例:
Figure PCTCN2019104980-appb-000008
面涂配方中各组份比例:
Figure PCTCN2019104980-appb-000009
参照实施例1的操作方式,在高速搅拌机剪切作用下,分别按照上述配方将各种成份依次加入到混料釜中,所有物质投料后再搅拌0.5-1小时,分别得到底涂混合物和面涂混合物。施工前可以选择性的加入架桥剂。
底涂配方在厚度0.28mm、密度为68.5g/m 2基布上施工,上胶量(湿重)65±5g g/m 2,在100°的烘箱中烘烤1分钟。干燥后(得到底层隔热层),在底涂基础上施工面涂,上胶量(湿重)130g±5g/m 2,在140℃的烘箱中烘烤1分钟(得到面层隔热层)。基布与涂层样品总厚度0.9mm,温度差 10.5℃,涂层牢度很好,表面无粉化,两涂施工可以增加涂层厚度和克罗值。由于涂层牢度主要取决于面涂,那么底层隔热层的牢度就可以降低要求,而主要考虑提高其隔热性能,从而底层隔热层中可以增加热膨胀微球的用量或者选择不同规格的未膨胀热膨胀微球,并且可以只使用一种水分散性树脂。
实施例19-24生产线测试结果
实施例19-24的混合物料制备过程与实施例1相同,但实施例19-24的涂层设备与之前的设备完全不同,具有工业生产线的近似性,其涂层的样品可以测试克罗值(克罗值测试样品国家纺织质量监督检验中心测试仪器需要60CM*60CM的面积大小)。实施例19-24的配方列于下表:
表5实施例19-24的配方(单位:g)及性能表征
Figure PCTCN2019104980-appb-000010
Figure PCTCN2019104980-appb-000011
1:实施例19-24的克罗值测试由:中国国家纺织制品质量监督检验中心提供检测。实施例19的测试报告编号(NO):BA18001207-3;实施例20的测试报告编号(NO):BA18001207-1;实施例21的测试报告编号(NO):BA18001207-2;实施例22的测试报告编号(NO):BA18001308-3;实施例23的测试编号(NO):BA18001308-1;实施例24的测试报告编号(NO):BA18001308-2。
2:由于克罗值近似与涂层样品厚度成正比,将涂层样品厚度归一化为1mm计算得到“归一化克罗值”。
3:涂层密度的计算方法是,将包括基布和涂层在内的产品总质量减去基布重量,得到涂层质量;将包括基布和涂层在内的产品总体积减去基布体积,得到涂层体积;将涂层质量除以涂层体积,得到涂层密度。
实验室小样涂层与近似生产线的涂层设备有以下不同:实验室小样涂层只能涂出A4纸张大小的面积,烘烤是箱式烘箱。近似生产线(也称“中试”)烘箱可以上下鼓风;近似生产线是连续化生产,张力、涂布量控制更加均匀,生产出的样品尺寸也大,可以进行专业仪器热阻测试。近似生产线测试是为了验证本文的方案在实际生产产品时候的表现,更能够体现本文方案的实际应用价值。
验证了配方在近似生产线测试的表现,牢度和实验条件不一样;即使同在150℃,风量不同(近似生产线的加热原理是用风机,把高热量的高温蒸汽或者导热油加热的热空气,吹到样品表面来加热涂层,所以在同样温度下风量和加热的能量直接相关,加热能量又会影响微球发泡,进而影响克罗值。通常加热能量越高,膨胀越好,克罗值越大;但是过高的加热能量会使微球膨胀过头,产生破裂,克罗值降低)。只要不超过热膨胀微球设定的膨胀极限,风量越大,厚度越高,热阻越好。最高克罗值在风量70%、烘烤温度为160℃时获得;但当温度高于160℃时,涂层样品厚度不再增加,热阻反而降低(说 明微球过度膨胀,可能导致部分微球破裂,反而影响热阻)。
对上述实施例的结果进行对比分析,结果如下。
实施例19与实施例20对比。从表5可见,实施例19与实施例20的反应物配方、烘烤条件等均相同,区别在于实施例19的涂层量(干重)为6.05g/m 2,而实施例20涂层量(干重)为16.15g/m 2,并最终导致了涂层样品厚度的不同。实施例20涂层量(干重)大,所以涂层样品厚度更厚,克罗值更高。在相同的配方和烘烤条件下,若涂层量(干重)越大,则水分散型树脂含量越高、水含量越大;由于水分的挥发和微球的膨胀都是吸热过程,在同样的烘烤条件下,微球的膨胀能力越弱、密度越高,所以实施例19发泡更加充分、密度更低,实施例20则密度更高。
实施例20与实施例21对比。实施例20与实施例21的区别在于烘烤条件,其他均相同。实施例20烘烤条件是150℃,1分钟,70%的上下送风风量;实施例21烘烤条件是150℃,1分钟,50%的上下送风风量;送风风量越大,发泡越充分。从样品的涂层干膜厚度和克罗值来看,实施例20涂层样品厚度更高、克罗值和归一化克罗值更高,说明它的烘烤条件更优。在其他条件相同的情况下,烘烤条件越优,微球的膨胀越充分,所以实施例20的涂层密度小于实施例21的涂层密度。需要说明的是,实施例20与实施例21的涂层量(干重)存在微小差异,原因在于即使保证配方、涂布条件完全一样,最终涂布到基材上的涂层量(干重)也会存在微小差别,但这个差别对产品的隔热性能影响甚微(例如实施例20与实施例21的涂层量(干重)相差仅有2%),可以忽略。同样的情况可见于实施例23和24。
实施例20与实施例22对比。实施例20涂层量(干重)为16.15g/m 2,烘烤温度150℃,70%的上下送风风量,烘烤时间1min;实施例22涂层量(干重)23.3g/m 2,烘烤温度160℃,70%的上下送风风量,烘烤时间1min;其他条件相同。由于实施例22的涂层量(干重)较大,通常会预期实施例22的隔热效果更好,克罗值更高。然而,对比两者的涂层样品厚度和克罗值可以发现,实施例20的涂层样品厚度和克罗值明显更高。原因主要是实施例22的烘烤温度过高,导致最终产品中有较多的微球破裂,使涂层干膜厚度降低,隔热效果反而下降。实施例22涂层量(干重)增加,位于涂层中部的微球膨胀阻力增大,膨胀不充分;同时温度过高导致外层微球破裂,所以实施 例22比20密度更高、隔热效果下降。
实施例20与实施例23对比。实施例23比实施例20微球含量高50%,涂层量(干重)高55%,但是实施例23的涂层样品厚度和克罗值都低于实施例20。在膨胀微球用量更大、涂层量(干重)更大的情况下,实施例23的隔热效果并没有比实施例20更好,原因在于实施例23产品中的微球膨胀不足。由于烘烤过程水分的挥发、混合物的加热和微球的膨胀都是吸热过程,在涂层量(干重)增加的情况下,却没有相应地增加烘烤强度,导致实施例23最终产品中的微球膨胀不充分,涂层干膜厚度、克罗值都不高。
实施例23和24的对比。实施例23与实施例24的不同在于实施例24的烘烤温度比实施例23高10℃,前面对比实施例20与实施例23发现,实施例23烘烤不足,因此实施例24提高烘烤温度后,具有更高的涂层样品厚度和克罗值(包括归一化克罗值),说明在同样的配方下,实施例24的烘烤条件更优。
在同样的配比下,涂层密度反映的实际上是微球发泡膨胀的程度。密度越小,微球发泡膨胀的程度越大,因而可以预期归一化克罗值越高。将实施例20和21、20和22、23和24,都可以发现符合这一规律。但实施例19似乎打破了这一规律,原因在于实施例19的涂层量(干重)太小,导致涂层样品厚度过薄,仪器测试时膜层有微孔穿透导致空气对流(因而导致热量丧失),所以实施例19的例外不能认为打破了前述规律。
为了确定最终产品中封闭空腔总体积与聚合物壁的总体积之比,除了需要知道微球的直径,还需要知道微球壁的厚度范围。图11-图17为通过SEM测得的微球球壁厚度,其中图11来自实施例19;图12-图13来自实施例25;图14-图15来自实施例24;图16-图17来自实施例21。从前面的图3-图10可以看到,最终产品中不同微球尺寸差别较大,原因在于不同微球发泡的程度受很多因素影响,这些因素包括微球壳体聚合树脂的厚度、包裹在微球内部的热膨胀气体的数量等。由于微球发泡膨胀程度不同,可以预料到最终产品中不同微球壁厚也不同,图11-图17的结果证实了这一点。例如,图16、图17都来自对实施例21的产品观测,但壁厚则由300多nm变化到700多nm。但是从观测结果来看,发泡充分的产品壁厚普遍要比发泡不足的产品壁厚要小。这一点也是容易理解的,微球发泡越充分,膨胀得越大,其壁将越 薄。由于当前条件下无法准确获得最终产品中膨胀微球的平均壁厚,图11-图17将帮助我们确定壁厚的分布范围。以图13为例,明显可以看出聚合物壁分为两层,中间有一条黑色线条分隔开。两侧的壁分别来自相邻且相接触的两个膨胀后的微球,而中间的深色区域来自水分散型树脂。权利要求中所述“聚合物壁的厚度”指的是包括两层相邻微球壁及中间的水分散型树脂的总厚度。实际上,作为隔热材料,可以对上述聚合物壁的三层结构不作区分,而当成一个整体,因为一方面在加热过程中,上述三层聚合物实际上已经相互融合而成为一体了;另一方面,不论是来自微球的聚合物还是来自水分散型树脂的聚合物,其导热系数相差不大,并且大大地大于空气的导热系数,因而对于隔热材料来说,将上述具有三层结构的聚合物壁当成一个整体,在技术上也是合理的。为了获得最佳的隔热效果,本发明的发明人发现一方面要保证封闭多孔复合材料内部的空间尽量都被封闭起来,另一方面要使得聚合物的用量(不论该聚合物是来自热膨胀性微球还是来自水分散型树脂)最小化。因此,不应当将上述三层结构的聚合物壁理解为对本公开的限制,只要能够达成上述两个目标(尽量多的封闭空间、尽量少的聚合物用量),可以采用多种方法来实现。例如,采用一种本身就具备粘性的热膨胀微球,因而水分散型树脂就可以省略,而最终的产品中就只存在来自相邻微球的两层聚合物。虽然如此(在技术上不需要区分上述聚合物壁的内部结构),为了确定最终产品中封闭空腔总体积与聚合物壁的总体积之比,需要知道单独的膨胀微球壁的厚度范围(以图13为例,即被中间黑色线条分隔开的两侧壁的厚度;而中间黑线很细,实际上将黑色线条代表的水分散型树脂并入了两侧的微球壁)。由图11-图17得到的单个微球壁厚度尺寸包括:44.9nm,48.2nm,81.9nm,96.6nm,95.9nm,149nm,78.9nm,89nm,102nm,351nm(图16中两层微球壁之间的分界不明显),314nm,325nm。如图8、图9所示,大部分微球膨胀之后相互接触,平面图上显示出很多交叉点。图11-图17微球壁厚度尺寸都是选择在远离上述交叉点的中间位置测量得到的。
假定膨胀后的热膨胀微球为规则的圆球状,圆球的直径为100μm(实施例中观测到的膨胀后的微球直径大多在100μm左右),假如单个微球平均壁厚为5μm,那么可以计算最终产品中封闭空腔与壁的体积比如下:单个球的表面积S=4πr2=4*3.14*50*50=31400,那么单个球壁的体积为V =S*h(厚度) =157000μm 3;球内空腔的体积V =πr 3*4/3=3.14*50*50*50*4/3=523333μm 3。那么空腔体积与球壁体积之比为V :V =523333/157000=3.33倍。若平均壁厚为1μm,则上述倍数为16.67;若平均壁厚为0.5μm,则上述倍数为33.3;若平均壁厚为0.2μm,则上述倍数为83.3;若平均壁厚为0.1μm,则上述倍数为166.7;若平均壁厚为0.05μm,则上述倍数为333.3;若平均壁厚为0.04μm,则上述倍数为416.7;若平均壁厚为0.03μm,则上述倍数为555.6;若平均壁厚为0.02μm,则上述倍数为833.3;若平均壁厚为0.01μm,则上述倍数为1666.7。需要注意的是,上述计算没有考虑微球之间的空间体积,因此实际上隔热材料空腔总体积与聚合物壁体积比会大于上述估算值。另外,从本发明实施例测量的壁厚数据来看,0.01μm的平均壁厚接近本发明实施例所用微球膨胀的极限,因此空腔体积与球壁体积之比1666.7也接近上限。根据以上计算推测,本发明实施例产品的空腔体积与球壁体积之比小于2000。但如果采用其他膨胀倍数更大的微球,则空腔体积与球壁体积之比可能突破2000。
实施例25多层施工工艺制造多层隔热材料-生产线测试
实施方式参考实施例18,但是扩大制造规模,测试本文的方案在实际大规模生产时的性能。采用厚度为0.15mm、密度为33.3g/m 2的基布,在基布上先涂覆一层底涂层混合物,把温度和烘烤时间设定在Expancel 043 DU80未膨胀微球未能膨胀的温度内进行烘干,再在已干燥的底涂混合物之上涂覆一层面涂混合物。底涂混合物、面涂混合物配方如下:
底涂配方中各组份比例:
Figure PCTCN2019104980-appb-000012
面涂配方中各组份比例:
Figure PCTCN2019104980-appb-000013
参照实施例1的操作方式,在高速搅拌机剪切作用下,分别按照上述配方将各种成份依次加入到混料釜中,所有物质投料后再搅拌0.5-1小时后,施工前可以选择性的加入架桥剂。
底涂配方在厚度0.15mm基布上施工,上胶量(湿重)65±5g/m 2,在100℃的烘箱中烘烤1分钟。干燥后,在底涂基础上施工面涂,上胶量(湿重)130±5g/m 2,在150℃的烘箱中烘烤1分钟。基布和涂层样品总厚度0.55mm-0.6mm(因而涂层厚度为0.40mm-0.45mm),克罗值0.605(换算为1mm涂层厚度的归一化克罗值为1.34-1.51),涂层牢度很好,表面无粉化。此组实验的隔热涂层密度是75.6kg/m 3。两涂施工可以增加涂层厚度和克罗值,但是小于两涂分别单独施工时的厚度叠加;涂层牢度主要取决于面涂。由于涂层牢度主要取决于面涂,那么底层隔热层的牢度就可以降低要求,而主要考虑提高其隔热性能,从而底层隔热层中可以增加热膨胀微球的用量,并且可以只使用一种水分散性树脂。两涂工艺由于底涂微球膨胀时阻力增加,膨胀能力会受到一定的影响,在增加微球含量和涂层量的条件下,热阻效果较好。注:此克罗值数据由第三方:京检颐和(北京)产品质量监督检验检测中心测试提供,检验编号:NB201805006。
在实际应用中,可以用粘合剂将多个封闭多孔复合材料粘合在一起成为一个整体,或者用粘合剂将一个或多个封闭多孔复合材料与其他材料粘合在一起成为一个整体。例如,用粘合剂将2层实施例25制作得到的产品“面对 面”(即涂层相对)地粘合在一起,得到2个外层为基布、中间层为封闭多孔材料(隔热材料)的“三明治”结构产品(也可以使用载体面与载体面相粘合的方式进行复合)。粘合采用无锡诺尔特机械有限公司生产的热熔胶复合机,粘合剂采用PUR湿气反应型热熔胶,粘合剂的使用量为干重15g/m 2,粘合复合后得到的所述“三明治”结构产品总厚度是1.21mm,克罗值为1.11。双层复合后,克罗值提高,说明双层粘合复合后厚度的增加使得隔热性能得到提高。封闭多孔复合材料还可以与其他材料进行粘合复合,扩大封闭多孔复合材料的应用领域。注:克罗值测试由:京检颐和(北京)产品质量监督检验检测中心提供,检验编号:NB201805004。
本文的封闭多孔复合材料可用作吸音材料或者隔音材料。材料吸音和材料隔音的区别在于,材料的吸音着眼于声源一侧反射声能的大小,目标是反射声能要小。材料隔音着眼于入射声源另一侧的透射声能的大小,目标是透射声能要小。吸音材料对入射声能的衰减吸收,一般只有十分之几,因此,其吸音能力即吸音系数可以用小数表示;而隔音材料可使透射声能衰减到入射声能的10 -3~10 -4或更小,为方便表达,其隔音量用分贝的计量方法表示。
这两种材料在材质上的差异是:吸音材料对入射声能的反射很小,这意味着声能容易进入和透过这种材料。可以想像,这种材料的材质应该是多孔、疏松和透气的,这就是典型的多孔性吸音材料,它在工艺上通常是用纤维状、颗粒状或发泡材料以形成多孔性结构;它的结构特征是:材料中具有大量的、互相贯通的、从表到里的微孔,也即具有一定的透气性。当声波入射到多孔材料表面时,引起微孔中的空气振动,由于摩擦阻力和空气的黏滞阻力以及热传导作用,将相当一部分声能转化为热能,从而起吸音作用。
对于隔音材料,要减弱透射声能,阻挡声音的传播,就不能如同吸音材料那样多孔、疏松、透气。相反它的材质应该是重而密实的,如钢板、铅板、砖墙等一类材料。隔音材料材质的要求是密实无孔隙或缝隙;有较大的重量。由于这类隔音材料质地密实,难于吸收和透过声能,导致反射能强,所以它的吸音性能差。
基于上述分析可知,本文封闭多孔复合材料兼备以上隔音、吸音材料的多孔性和整体片块状的隔音和吸音的结构特征,所以兼具隔音和吸音的性能。
实施例26-31不同微球添加量对导热系数的影响
表6实施例26-31的配方(单位:g)及性能表征
Figure PCTCN2019104980-appb-000014
导热系数测试方法为Hot disk瞬态平面热源法,导热系数测试条件为:
设备型号:TPS3500
测试模块:基本模块,单面法
探头型号:Kapton7577
加热功率:10mw
测试时间:1s
测试环境温度:26±0.5℃
下部背景材料:石英
上部背景材料:聚苯乙烯泡沫
对上述测试结果分析如下:
实施例31是常规聚氨酯涂层,组合物中没有添加膨胀微球,涂层厚度只与涂层量有关系,由于50g/m 2湿涂层量是一个较小的值,最终干涂层非常薄,测得包含基材的涂层样品总厚度几乎与基材本身厚度相等。由于基材和聚氨酯涂膜都是实心高分子材料,所以导热系数很高,达0.2093w/m.k。
当配方中加入膨胀微球后,膨胀微球在受热后膨胀,所以涂层厚度明显增加,而且随着微球添加量的增大而增大(实施例26-30);添加微球的另一个结果是,使涂膜内产生大量的封闭泡孔,可以有效降低涂膜的导热系数(实施例26-30);但是当微球的添加量达到一定量程度时,微球发泡过程中互相挤压,烘烤时竞争吸收能量,不能充分膨胀,导热系数无法进一步降低。当膨胀微球添加量为20-30重量份时,有最低的导热系数。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2018年9月10日递交的中国专利申请第201811051379.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (28)

  1. 一种封闭多孔复合材料的制造方法,其中,所述方法包括:
    1)准备混合物,所述混合物包括水分散型树脂30-70重量份、未膨胀的热膨胀微球10-300重量份、水100-550重量份,搅拌所述混合物;
    2)准备一载体;
    3)将步骤1所得混合物涂覆一层到所述载体上;
    4)加热所述混合物和所述载体一定时间,在此过程中,所述未膨胀的热膨胀微球膨胀;
    5)重复若干次步骤3-4,得到包括多层所述混合物的所述封闭多孔复合材料;
    所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为20-800μm,所述封闭空腔总体积与所述聚合物壁的总体积之比大于16。
  2. 根据权利要求1所述的方法,其中,所述步骤1中各组分含量为:水分散型树脂40-60重量份、未膨胀的热膨胀微球10-50重量份、水100-350重量份。
  3. 根据权利要求1或2所述的方法,其中,所述步骤1中各组分含量为:水分散型树脂45-55重量份、未膨胀的热膨胀微球10-30重量份、水100-250重量份。
  4. 根据权利要求1或2所述的方法,其中,所述未膨胀的热膨胀微球呈现中空的球形或类球形,外径10μm-40μm,壁厚1μm-10μm,所述壁包括热塑型或热固型高分子材料。
  5. 根据权利要求1-4的任一项所述的方法,其中,所述水分散型树脂包括2种不同的水性聚氨脂,其中一种重量份为1-25;另一种重量份为49-25。
  6. 根据权利要求5的所述的方法,其中,所述2种不同的水性聚氨脂分别为第一阴离子型脂肪族聚酯聚氨酯和第二阴离子型脂肪族聚酯聚氨酯,其中所述第一阴离子型脂肪族聚酯聚氨酯的重量份为10-20,优选为15;所述第二阴离子型脂肪族聚酯聚氨酯的重量份为40-30,优选为35。
  7. 根据权利要求1-6的任一项所述的方法,其中,所述步骤1的混合物还包括消泡剂0-1重量份、固化剂0-10重量份、增稠剂0-10重量份、防霉剂0-5重量份、润湿流平剂0-2重量份、手感剂0-5重量份、水性色浆0-20重量份中的至少一种;
    优选的,所述步骤1的混合物还包括消泡剂0.1-1重量份、固化剂0.1-10重量份、增稠剂0.1-10重量份、防霉剂0.1-5重量份、润湿流平剂0.1-2重量份、手感剂0.1-5重量份、水性色浆0.1-20重量份中的至少一种。
  8. 根据权利要求1-7的任一项所述的方法,其中,所述步骤4中加热所述载体至100℃-180℃,加热时间10-300秒;优选加热所述载体至120℃-160℃,加热时间60-120秒;优选加热所述载体至130℃-150℃,加热时间60-90秒;优选加热所述载体至140℃-150℃,加热时间60-80秒。
  9. 根据权利要求1-8的任一项所述的方法,其中,所述水分散型树脂包括水性聚氨酯树脂、水性丙烯酸树脂、水性聚氨酯改性丙烯酸树脂、丁氰乳液、氯丁乳液、聚醋酸乙烯酯乳液中的至少一种。
  10. 根据权利要求7所述的方法,其中,所述固化剂包括聚碳化二亚胺、聚异氰酸酯、封闭型聚异氰酸酯、氮丙啶、氨基树脂中的至少一种;所述消泡剂为有机硅型消泡剂;所述润湿流平剂为有机硅型润湿流平剂;所述手感剂包括高分子量有机硅、蜡粉、蜡乳液、气相或沉淀法二氧化硅及其分散液中的至少一种;所述防霉剂包括有机或无机类水分散型防霉剂;所述增稠剂包括聚氨酯缔合型、丙烯酸碱溶胀型、纤维素类增稠剂、无机类增稠剂中的至少一种。
  11. 根据权利要求1-10的任一项所述的方法,其中,所述载体包括机织布、无纺布、皮革、软质薄膜中的一种或多种。
  12. 根据权利要求1所述的方法,其中,步骤4中膨胀后的热膨胀微球尺寸与步骤1中未膨胀的热膨胀微球尺寸之比为2-10。
  13. 根据权利要求1-12的任一项所述的方法,其中,所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为50μm-300μm,优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭空腔总体积与所述聚合物壁的总体积之比大于16, 优选大于33,优选大于83,优选大于166,优选大于333,优选大于417,优选大于556,优选大于833。
  14. 根据权利要求1-12的任一项所述的方法,其中,所述封闭多孔复合材料为隔热材料,所述隔热材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,当所述隔热材料的厚度为1mm时,所述隔热材料的克罗值≥0.50,或者≥0.60,或者≥1.0,或者≥1.5。
  15. 根据权利要求1-12的任一项所述的方法,其中,所述封闭多孔复合材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭多孔复合材料的密度为5kg/m 3-300kg/m 3,优选10kg/m 3-200kg/m 3,优选20kg/m 3-150kg/m 3,优选30kg/m 3-100kg/m 3,优选40kg/m 3-90kg/m 3,优选50kg/m 3-80kg/m 3,优选60kg/m 3-80kg/m 3
  16. 一种封闭多孔复合材料,其中,所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭空腔总体积与所述聚合物壁的总体积之比大于16,优选大于33,优选大于83,优选大于166,优选大于333,优选大于417,优选大于556,优选大于833;所述聚合物壁的厚度为0.01μm-5μm。
  17. 根据权利要求16所述的封闭多孔复合材料,其中,所述封闭多孔复合材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成。
  18. 根据权利要求16或17所述的封闭多孔复合材料,其中,所述聚合物壁在朝向所述封闭空腔的内侧包括热塑型或热固型高分子材料、所述聚合物壁在朝向所述封闭空腔的外侧包括水分散型树脂。
  19. 根据权利要求16或17所述的封闭多孔复合材料,其中,所述聚合物壁的厚度为0.02μm-2μm,进一步优选为0.03μm-1.0μm,进一步优选为0.04μm-0.8μm,进一步优选为0.05μm-0.6μm,进一步优选为0.1μm-0.5μm。
  20. 根据权利要求16或17所述的封闭多孔复合材料,其中,所述封闭空腔的形状包括球形、类球形和不规则形状。
  21. 根据权利要求16或17所述的封闭多孔复合材料,其中,所述封闭空腔由未膨胀的热膨胀微球直径膨胀2-10倍而得到。
  22. 根据权利要求16或17所述的封闭多孔复合材料,其中,所述封闭多孔复合材料为隔热材料;当所述隔热材料厚度在0.2mm-3.0mm时,所述隔热材料的克罗值为0.1-3.0。
  23. 根据权利要求16或17所述的封闭多孔复合材料,其中,所述聚合物壁包括三层结构,所述三层结构包括两个外层以及夹在所述两个外层之间的中间层,其中所述两个外层的材料相同,且所述两个外层的材料不同于夹在所述两个外层之间的所述中间层的材料。
  24. 一种封闭多孔复合材料,其中,所述封闭多孔复合材料包括多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁,所述封闭空腔的尺寸范围为20μm-800μm,优选为50μm-300μm,进一步优选为60μm-200μm,进一步优选为80μm-120μm,所述封闭多孔复合材料的密度为5kg/m 3-100kg/m 3,优选10kg/m 3-100kg/m 3,优选20kg/m 3-100kg/m 3,优选30kg/m 3-100kg/m 3,优选40kg/m 3-90kg/m 3,优选50kg/m 3-80kg/m 3,优选60kg/m 3-80kg/m 3
  25. 根据权利要求24所述的封闭多孔复合材料,其中,所述封闭多孔复合材料由多个封闭空腔和将所述多个封闭空腔彼此隔开的聚合物壁组成。
  26. 根据权利要求24所述的封闭多孔复合材料,其中,所述聚合物壁的厚度为0.01μm-5μm,优选为0.02μm-2μm,进一步优选为0.03μm-1.0μm,进一步优选为0.04μm-0.8μm,进一步优选为0.05μm-0.6μm,进一步优选为0.1μm-0.5μm。
  27. 根据权利要求24-26的任一项所述的封闭多孔复合材料,其中,所述聚合物壁包括三层结构,其中两个外层的材料相同,且所述两个外层的材料不同于夹在所述两个外层之间的中间层的材料。
  28. 根据权利要求16-26的任一项所述的封闭多孔复合材料,其中,所述封闭多孔复合材料的导热系数小于0.030w/m.k,优选的,所述封闭多孔复 合材料的导热系数小于0.025w/m.k,优选的,所述封闭多孔复合材料的导热系数小于0.020w/m.k,优选的,所述封闭多孔复合材料的导热系数小于0.016w/m.k。
PCT/CN2019/104980 2018-09-10 2019-09-09 封闭多孔复合材料、隔热材料、隔音材料、其制造方法 WO2020052524A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217003068A KR20210024163A (ko) 2018-09-10 2019-09-09 밀폐형 다공성 복합 재료, 단열재, 방음재, 및 제조 방법
US17/264,596 US11814784B2 (en) 2018-09-10 2019-09-09 Closed porous composite material, thermal insulation material, sound insulation material, and manufacturing method thereof
JP2021504145A JP7406542B2 (ja) 2018-09-10 2019-09-09 密閉型多孔質複合材料・断熱材料・遮音材料、及びその製造方法
EP19859670.2A EP3816341A4 (en) 2018-09-10 2019-09-09 CLOSED POROUS COMPOSITE MATERIAL, THERMAL INSULATION MATERIAL, SOUND INSULATION MATERIAL AND PROCESS FOR ITS MANUFACTURING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811051379.3 2018-09-10
CN201811051379.3A CN109137537B (zh) 2018-09-10 2018-09-10 封闭多孔复合材料、隔热材料、隔音材料、其制造方法

Publications (1)

Publication Number Publication Date
WO2020052524A1 true WO2020052524A1 (zh) 2020-03-19

Family

ID=64824165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104980 WO2020052524A1 (zh) 2018-09-10 2019-09-09 封闭多孔复合材料、隔热材料、隔音材料、其制造方法

Country Status (6)

Country Link
US (1) US11814784B2 (zh)
EP (1) EP3816341A4 (zh)
JP (1) JP7406542B2 (zh)
KR (1) KR20210024163A (zh)
CN (1) CN109137537B (zh)
WO (1) WO2020052524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220334036A1 (en) * 2021-04-14 2022-10-20 MTU Aero Engines AG Method for characterizing a coating

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137537B (zh) 2018-09-10 2020-03-27 钟金榜 封闭多孔复合材料、隔热材料、隔音材料、其制造方法
CN112143212B (zh) * 2019-06-28 2023-04-07 德莎欧洲股份公司 组合物、泡棉基材、背衬、胶带及其用途
US20220388341A1 (en) * 2020-04-09 2022-12-08 Kolon Industries, Inc. Adhesive composition for tire cord, tire cord, and tire
KR102479069B1 (ko) * 2020-04-09 2022-12-16 코오롱인더스트리 주식회사 타이어 코드용 접착 조성물, 타이어 코드 및 타이어
KR102455302B1 (ko) * 2021-10-25 2022-10-18 배정주 전단농화유체를 이용한 차음용 흡음 복합재 및 이의 제조방법
CN116641236A (zh) * 2023-03-09 2023-08-25 东华大学 一种具有保温隔热效果的中空闭孔泡沫涂层及其复合纤维织物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354085A (zh) * 2000-10-23 2002-06-19 松下电工株式会社 带有可剥离表层的层压板和从层压板上剥离表层的方法
CN106591504A (zh) * 2017-01-12 2017-04-26 东莞市天熠皮业科技股份有限公司 一种利用数控切割机制备皮料的生产工艺
CN106671634A (zh) * 2017-01-12 2017-05-17 东莞市天熠皮业科技股份有限公司 一种利用激光镭射打标机制备皮料的生产工艺
CN106801111A (zh) * 2017-01-12 2017-06-06 东莞市天熠皮业科技股份有限公司 一种利用高强度压力机制备压花皮料的生产工艺
CN107401060A (zh) * 2017-07-05 2017-11-28 兰州科天新材料股份有限公司 一种具有抗压变高回弹性能的水性贝斯的制备方法
CN109137537A (zh) * 2018-09-10 2019-01-04 钟金榜 封闭多孔复合材料、隔热材料、隔音材料、其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325833C (zh) * 2002-05-15 2007-07-11 卡伯特公司 耐热绝缘复合物、含该复合物的基物、和其制备方法
JP4849993B2 (ja) * 2006-08-14 2012-01-11 日東電工株式会社 粘着シート、その製造方法および積層セラミックシートの切断方法
JP2008051123A (ja) * 2006-08-22 2008-03-06 Ebara Ballard Corp 伸縮性断熱防音シートとその製造方法
DE102006039261A1 (de) * 2006-08-22 2008-03-06 Lanxess Deutschland Gmbh Zugerichtetes Leder
CN102229709B (zh) * 2011-05-16 2013-02-27 四川大学 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
JP6140491B2 (ja) * 2012-08-07 2017-05-31 日東電工株式会社 両面粘着シート及び携帯電子機器
JP2015120867A (ja) * 2013-01-28 2015-07-02 株式会社リコー 多孔体、その製造方法、及びその連続製造装置
CN103710995B (zh) * 2013-12-11 2016-08-17 江西铭川科技实业有限公司 水性合成革及其生产线、生产方法
CN103753913B (zh) * 2014-01-07 2016-01-20 奕东电子(常熟)有限公司 一种防震、防滑、防静电保护贴膜
US9738788B1 (en) * 2014-05-26 2017-08-22 Hrl Laboratories, Llc Nanoparticle-coated multilayer shell microstructures
RU2017101191A (ru) * 2014-06-18 2018-07-18 Асахи Касеи Констракшн Матириалс Корпорейшн Пена из фенольной смолы и способ ее получения
US20170328073A1 (en) * 2014-12-21 2017-11-16 Palziv Ein Hanaziv Agricultural Cooperative Society Ltd. Polymer foam sheet and barrier layer composite
CN105386327B (zh) * 2015-10-16 2017-12-08 浙江禾欣新材料有限公司 高物性可压纹干法环保沙发革的制造方法
CN107447536A (zh) * 2017-06-16 2017-12-08 安踏(中国)有限公司 一种保暖面料及其制备工艺
JP7236432B2 (ja) * 2017-07-18 2023-03-09 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 発泡性組成物の誘電加熱
CN107722339A (zh) * 2017-10-31 2018-02-23 浙江昶丰新材料有限公司 一种水性聚氨酯组合物及由其制备形成的水性聚氨酯发泡体及其制备方法
CN108084484B (zh) * 2017-12-26 2020-08-25 山东大学 一种轻量化导电隔热复合材料及其制备方法、***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354085A (zh) * 2000-10-23 2002-06-19 松下电工株式会社 带有可剥离表层的层压板和从层压板上剥离表层的方法
CN106591504A (zh) * 2017-01-12 2017-04-26 东莞市天熠皮业科技股份有限公司 一种利用数控切割机制备皮料的生产工艺
CN106671634A (zh) * 2017-01-12 2017-05-17 东莞市天熠皮业科技股份有限公司 一种利用激光镭射打标机制备皮料的生产工艺
CN106801111A (zh) * 2017-01-12 2017-06-06 东莞市天熠皮业科技股份有限公司 一种利用高强度压力机制备压花皮料的生产工艺
CN107401060A (zh) * 2017-07-05 2017-11-28 兰州科天新材料股份有限公司 一种具有抗压变高回弹性能的水性贝斯的制备方法
CN109137537A (zh) * 2018-09-10 2019-01-04 钟金榜 封闭多孔复合材料、隔热材料、隔音材料、其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220334036A1 (en) * 2021-04-14 2022-10-20 MTU Aero Engines AG Method for characterizing a coating

Also Published As

Publication number Publication date
EP3816341A4 (en) 2021-10-06
KR20210024163A (ko) 2021-03-04
JP2021531391A (ja) 2021-11-18
CN109137537B (zh) 2020-03-27
US20210292964A1 (en) 2021-09-23
CN109137537A (zh) 2019-01-04
EP3816341A1 (en) 2021-05-05
US11814784B2 (en) 2023-11-14
JP7406542B2 (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2020052524A1 (zh) 封闭多孔复合材料、隔热材料、隔音材料、其制造方法
US10190254B2 (en) Skin material
JP5857174B2 (ja) エアロゲル/ptfe複合絶縁材料
CN109071848B (zh) 蓄热片
US9340971B2 (en) Advanced inorganic material for reflection of electromagnetic waves
CN104894877B (zh) 一种防风透气型纺织品的制备方法
US11932800B2 (en) Low density closed cell composite aerogel foam and articles including same
KR102363810B1 (ko) 축열 적층체
RU2779210C1 (ru) Композиционный материал с закрытыми порами, термоизоляционный материал, звукоизоляционный материал и способ их изготовления
CN107641453B (zh) 一种透气防风透湿的涂料的制备方法
CN108361475A (zh) 一种含有液态金属的隔热片
JPH0516273A (ja) 保温性透湿防水布帛
JP2018519196A (ja) 機能性生地及びその製造方法
JP2019001973A (ja) 蓄熱蓄冷機能を有するポリウレタン発泡体
CN108047583A (zh) 一种无机改性聚苯保温材料及其制备方法
JP7255294B2 (ja) 不燃シート
CN210065154U (zh) 一种气凝胶填充结构
JP2004169211A (ja) ダウンジャケット
CN117986672A (zh) 一种微孔聚合物辐射降温膜及其制备方法和应用
KR20190140155A (ko) 벽지 및 이의 제조방법
JPH02279324A (ja) 調湿性発泡シート
TWM581984U (zh) Aerogel PU foam structure
RU37484U1 (ru) Теплоизоляционный слоистый материал (варианты)
CN116118286A (zh) 一种服装保温用复合材料及其制备方法
JPS59129141A (ja) 保温・透湿性防水布

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504145

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003068

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE