WO2020040347A1 - 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법 - Google Patents

내염기성이 향상된 폴리이미드 필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2020040347A1
WO2020040347A1 PCT/KR2018/011539 KR2018011539W WO2020040347A1 WO 2020040347 A1 WO2020040347 A1 WO 2020040347A1 KR 2018011539 W KR2018011539 W KR 2018011539W WO 2020040347 A1 WO2020040347 A1 WO 2020040347A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
polyimide
polyamic acid
film
dianhydride
Prior art date
Application number
PCT/KR2018/011539
Other languages
English (en)
French (fr)
Inventor
김기훈
이길남
최정열
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201880096720.9A priority Critical patent/CN112585195B/zh
Publication of WO2020040347A1 publication Critical patent/WO2020040347A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3615Organic materials containing polymers

Definitions

  • the present invention relates to a polyimide film having improved base resistance and a method of manufacturing the same.
  • Polyimide (PI) is a polymer material having thermal stability based on a rigid aromatic backbone, and has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of an imide ring.
  • polyimide has attracted much attention as a highly functional material that can be used in microelectronics and optical fields based on excellent electrical properties such as insulation and low dielectric constant.
  • the polyimide may be used as a film that is attached to or added to a circuit to provide electrical insulation to the circuit and at the same time protects the circuit against moisture, light sources, impacts, and the like.
  • the film As a film protecting the circuit as described above, various examples may exist, but in the case of a composite film having an adhesive layer formed on one or both sides of the film, the film may be referred to as a coverlay in a narrow sense, and the polyimide film may be It can be preferably used for the coverlay.
  • a process of mixing and evenly dispersing carbon black in a polyamic acid as a precursor is essential. If the carbon black is not evenly dispersed in this process, problems such as poor shielding or surface defects may occur. In essence, carbon blacks differ in physical / chemical properties from polyamic acids or polyimides and are therefore not easily blended and / or dispersed in polyimides or polyamic acids.
  • the manufacturing process of the circuit may include a drill process, a plating process, a desmear process, a washing process, and the like, and the polyimide film may be exposed to the basic solution during the above process. At this time, when the polyimide film is slightly decomposed or modified by the basic solution, the carbon black contained therein may be largely dropped.
  • the shielding may be lost with the removal of the black tint from the coverlay, and the weight and thickness reduction may be accompanied as well as the surface defects due to the dropping of the carbon black, so that the function as the coverlay may be significantly reduced.
  • a polyimide film prepared using the first polyamic acid, the second polyamic acid, and carbon black having different characteristics from each other, even though it is in the form of an ultra thin film of 8 ⁇ m or less, While meeting the mechanical properties, it may have very good shielding properties and resistance to improved base components (hereinafter referred to as 'base resistance').
  • the dispersion of the carbon black is improved to improve the quality of the polyimide A film can be obtained.
  • the present invention has a substantial object to provide a specific embodiment thereof.
  • the present invention provides a polymer comprising: a first polyamic acid polymerized with a first diamine containing a first dianhydride and up to two benzene rings;
  • the present invention provides a method of making the polyimide film.
  • the present invention provides a coverlay comprising the polyimide film and an electronic device comprising the coverlay.
  • dianhydride is intended to include precursors or derivatives thereof, which technically may not be dianhydride, but nevertheless will react with the diamine to form a polyamic acid. This polyamic acid can be converted back to polyimide.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but will nevertheless react with dianhydrides to form polyamic acid, which polyamic The acid can be converted back to polyimide.
  • the crystallinity is 65% or more, the light transmittance is 0.09 or less, the base resistance index evaluated based on the polyimide film thickness before and after the base component exposure is 70% or more, the thickness may be 8.0 ⁇ m or less.
  • the first polyamic acid may form a first polyimide chain through imidization
  • the second polyamic acid may form a second polyimide chain through imidization
  • At least a portion of the first polyimide chain and the second polyimide chain may be crosslinked with each other through imidization.
  • the first polyamic acid may be a material having a relatively rigid structure in molecular structure.
  • the first polyimide chain derived from the first polyamic acid can be of relatively rigid structure.
  • This first polyimide chain can contribute to inherent the tensile strength and / or modulus inevitably required for the polyimide film, in particular for the polyimide film to have a certain mechanical strength.
  • the second polyamic acid may be a material having a relatively flexible structure on the molecular structure, a material having a relatively high crystallinity and excellent chemical resistance. Accordingly, the second polyimide chain derived from the second polyamic acid may be relatively high in crystallinity and excellent in chemical resistance.
  • the polyimide film of the present invention not only inherently possesses a level of mechanical properties corresponding to the first polyimide chain, even in a thin form of 8 ⁇ m or less.
  • the predetermined degree of crystallinity (65% or more) and chemical resistance, which are difficult to be embedded by only one polyimide chain, may be embedded by the second polyimide chain.
  • the polyimide film of the present invention is a polyimide film having a low crystallinity of less than 65%. It can have a relatively low light transmittance in comparison. This can serve as a very important advantage in polyimide films containing carbon black where shielding, shading and the like are required.
  • the polyimide film of the present invention may have the following physical properties.
  • the crystallinity of the polymer in the film state is 70% or more
  • Tensile strength is more than 200 kgf / cm 3 .
  • Modulus is 3 GPa or more
  • Light transmittance is 0.07 or less
  • the base resistance index evaluated based on the polyimide film thickness before and after base component exposure may be at least 75%.
  • the first polyamic acid has a viscosity of 50,000 cP to 300,000 cP measured at 23 ° C. when the solid content is 15% by weight, and the second polyamic acid has 23 ° C. when the solid content is 15% by weight.
  • the viscosity measured at may be 5,000 cP to 30,000 cP.
  • the polyimide film may significantly reduce heat resistance and mechanical properties.
  • the viscosity of the first polyamic acid is more than 300,000 cP, there may be a problem in terms of the manufacturing process of the film. Specifically, as the precursor composition has high viscosity, there may be a problem in the film forming process of the film, and it may be difficult to produce the film to 8 ⁇ m or less.
  • the viscosity of the second polyamic acid is less than 5,000 cP, the formation of the second polyimide chain may not be sufficient. This is not preferable in terms of improving the base resistance of the polyimide film.
  • the viscosity of the second polyamic acid exceeds 30,000 cP, the dispersibility of carbon black in the precursor composition may be lowered, which is not preferable in view of manufacturing processability of the polyimide film.
  • polyimide is vulnerable to base components such as degradation or denaturation when exposed to a base environment.
  • base components such as degradation or denaturation
  • the carbon black is largely eliminated and the thickness reduction is more serious.
  • ultra-thin polyimide films of very thin thickness for example, 8 ⁇ m or less have been required.
  • the dropout phenomenon of carbon black in the ultra-thin polyimide film is more severe than that of the polyimide film having a typical thickness of 10 ⁇ m or more. This is because even if the same absolute amount of carbon black is dropped in the normal polyimide film and the ultra-thin polyimide film, the ratio of the carbon black dropped to the carbon black of the entire polyimide film is much higher in the ultra-thin type.
  • the base component penetrates from the surface, in the case of an ultra-thin polyimide film having a close distance to the surface, relatively more carbon black may be eliminated under the same conditions.
  • the basic resistance means that the polyimide film is not easily decomposed and / or denatured even when exposed to the base environment, and the thickness of the polyimide film is reduced during the decomposition and / or denaturation. You can judge.
  • test method (a) comprising the following steps:
  • the flexible circuit board cut to 4 * 10 cm was exposed to 10% NaOH solution for 3 minutes at 55 ° C, and the desmear solution (10% NaMnO 4 + 4% NaOH) was exposed to 5 minutes at 55 ° C for washing. Repeating twice and measuring the thickness of the film (second thickness); And
  • the basic resistance index may be about 50% to 60%.
  • the polyimide film of the present invention may have a base resistance index according to the test method (a) of at least 70% or more, in particular 75% or more, in particular 80% or more. This is a markedly improved base resistance compared to conventional polyimide films.
  • the second polyimide chain is unconditionally contained in the polyimide film unconditionally.
  • the above advantages can be expressed when the content of the second polyimide chain in the polyimide film is a certain level, but if it exceeds, the advantages for the base resistance are not enhanced or improved, whereas the tensile strength of the polyimide film And / or the modulus may drop dramatically.
  • This phenomenon may be more prominent in ultra thin films of 8.0 ⁇ m or less. That is, it is important that the polyimide film contains an appropriate amount of the first polyimide chain and the second polyimide chain so that the mechanical properties and the base resistance are compatible.
  • the polyimide film of the present invention has an average particle diameter of 80 to 92% by weight of the first polyimide chain, 3 to 10% by weight of the second polyimide chain, and 5 to 10% by weight, based on the total weight thereof. 5 ⁇ m of carbon black, and the thickness of the film may be 7.5 ⁇ m or less.
  • the polyimide film of the present invention may include from 5 to 7 wt% of the second polyimide chain of 83 to 92 wt% of the first polyimide chain, based on its total weight.
  • the first dianhydride is pyromellitic dianhydride (or PMDA)
  • the second dianhydride is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (or s-BPDA) and / or 2,3,3', 4'-biphenyltetracarboxylic Ric dianhydride (or a-BPDA).
  • Diamines with one benzene ring 1,4-diaminobenzene (or paraphenylenediamine, PDA, PPD), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-dia Minotoluene, 3,5-diaminobenzoic acid (DABA);
  • the second diamine may be 1,3-bis (4-aminophenoxy) benzene (TPE-R) and / or 1,4-bis (3-aminophenoxy) benzene (TPE-Q).
  • the first diamine and the first dianhydride have a rigid molecular structure, and the second polyimide chain formed by combining them may realize a predetermined level of heat resistance, tensile strength and modulus required for the polyimide film.
  • the TPE-based diamine is a monomer containing three benzene rings, a monomer having excellent chemical resistance, and may mainly act to increase the crystallinity of the polymer.
  • the BPDA-based dianhydride is a relatively soft monomer on the molecular structure including two benzene rings, and excellent in chemical resistance.
  • the second polyimide chains formed by combining them can implement excellent chemical resistance.
  • carbon blacks tend to agglomerate rather than readily disperse upon simple mixing with polyamic acid.
  • first polyamic acid and the second polyamic acid which share similar chemical properties, can be relatively easily mixed.
  • the carbon black in the form of the black crude liquid is mixed with the second polyamic acid having a relatively low viscosity, thereby easily inducing the dispersion of the carbon black primarily.
  • the mixed solution is mixed with the first polyamic acid
  • the second polyamic acid is easily mixed with the first polyamic acid
  • the carbon black that has already been dispersed rapidly mixes with the second polyamic acid and the first polyamic acid in the first half. Or may be dispersed.
  • the above may be a major advantage of the manufacturing method according to the present invention.
  • an organic solvent may be used in preparing the first polyamic acid, the second polyamic acid, and the black crude liquid.
  • Non-limiting examples of organic solvents that can be used in these steps may be aprotic polar solvents.
  • Non-limiting examples of the aprotic polar solvent include amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc), p-chlorophenol, o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in combination of two or more thereof.
  • amide solvents such as N, N'-dimethylformamide (DMF) and N, N'-dimethylacetamide (DMAc)
  • p-chlorophenol o-chloro Phenol solvents
  • o-chloro Phenol solvents such as phenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), diglyme, and the like, and the like, and these may be used alone or in
  • the method of polymerizing the first polyamic acid and the second polyamic acid For example, the method of polymerizing the first polyamic acid and the second polyamic acid,
  • the first polyamic acid, the second polyamic acid and / or black for the purpose of improving various properties of the film, such as the sliding, thermal conductivity, conductivity, corona resistance, loop hardness of the polyimide film derived from the precursor composition
  • a filler may be added.
  • the filler to be added is not particularly limited, preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, dibasic calcium phosphate, barium sulfate, calcium carbonate and the like.
  • the average particle diameter of a filler is not specifically limited, It can determine according to the polyimide film characteristic to modify and the kind of filler to add.
  • the average particle diameter of the filler may be from 0.05 ⁇ m to 100 ⁇ m, in particular from 0.1 ⁇ m to 75 ⁇ m, more preferably from 0.1 ⁇ m to 50 ⁇ m, in particular from 0.1 ⁇ m to 25 ⁇ m.
  • the modifying effect is insignificant, and if it exceeds this range, the filler may significantly impair the surface property of the polyimide film or cause a decrease in the mechanical properties of the film.
  • the addition amount of a filler it is not specifically limited also about the addition amount of a filler, It can determine by the polyimide film characteristic to be modified, filler particle diameter, etc ..
  • the amount of the filler added is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, more preferably 0.02 to 80 parts by weight, based on 100 parts by weight of the polyamic acid solids of the precursor composition. to be.
  • the amount of filler added is less than this range, the effect of modification by the filler is less likely to appear, and if it exceeds this range, the mechanical properties of the polyimide film may be greatly reduced.
  • the addition method of a filler is not specifically limited, Of course, any well-known method can be used.
  • the obtaining of the polyimide film may include forming a polyimide film by imidating the gel film after preparing the gel film by forming the precursor composition on a support and drying the film.
  • thermal imidation method As a specific method of such imidation, the thermal imidation method, the chemical imidation method, or the composite imidation method which uses the said thermal imidation method and the chemical imidation method together is mentioned as an example, About these the following non-limiting examples It will be described in more detail through.
  • the thermal imidization method is a method of excluding an chemical catalyst and inducing an imidization reaction with a heat source such as a hot air or an infrared dryer.
  • the gel film may be heat-treated to obtain a polyimide film.
  • a gel film can be understood as a film intermediate which has self-support at an intermediate stage with respect to the conversion from polyamic acid to polyimide.
  • the precursor composition is cast in the form of a film on a support such as a glass plate, aluminum foil, endless stainless belt, or a stainless drum, and then the precursor composition on the support 50 °C to 200 °C, Specifically, the drying may be performed at a variable temperature ranging from 80 ° C to 150 ° C.
  • a process of stretching the gel film may be performed to adjust the thickness and size of the polyimide film obtained in the subsequent heat treatment process and to improve orientation, and the stretching may be performed in the machine transport direction (MD) and the machine transport direction. It may be performed in at least one direction of the transverse direction (TD) with respect to.
  • MD machine transport direction
  • TD transverse direction
  • the gel film thus obtained is fixed to a tenter and then heat treated at a variable temperature ranging from 50 ° C. to 500 ° C., specifically 150 ° C. to 500 ° C. to remove water, residual solvent, and the like remaining in the gel film. Nearly all amic acid groups can be imidated to obtain the polyimide film of the present invention.
  • the polyimide film obtained as described above may be heated to a temperature of 400 ° C. to 650 ° C. for 5 seconds to 400 seconds to further cure the polyimide film, and may remain in the obtained polyimide film. This may be done under a predetermined tension to relieve stress.
  • the chemical imidization method is a method of promoting imidization of an amic acid group by adding a dehydrating agent and / or an imidizing agent to the precursor composition.
  • the term "dehydrating agent” refers to a substance that promotes a ring-closure reaction through dehydration to polyamic acid, and includes, but is not limited to, aliphatic acid anhydrides, aromatic acid anhydrides, and N, N '. -Dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower patty acid anhydride, aryl phosphonic dihalide, thionyl halide and the like. Of these, aliphatic acid anhydrides may be preferred in view of ease of availability and cost, and non-limiting examples thereof include acetic anhydride (AA), propion acid anhydride, and lactic acid anhydride. These etc. are mentioned, These can be used individually or in mixture of 2 or more types.
  • imidizing agent means a substance having an effect of promoting a ring closure reaction to polyamic acid, and may be an imine-based component such as aliphatic tertiary amine, aromatic tertiary amine, and heterocyclic tertiary amine. Can be. Of these, heterocyclic tertiary amines may be preferable in view of reactivity as a catalyst. Non-limiting examples of heterocyclic tertiary amines include quinoline, isoquinoline, ⁇ -picolin (BP), pyridine, and the like, and these may be used alone or in combination of two or more thereof.
  • imine-based component such as aliphatic tertiary amine, aromatic tertiary amine, and heterocyclic tertiary amine.
  • heterocyclic tertiary amines may be preferable in view of reactivity as a catalyst.
  • Non-limiting examples of heterocyclic tertiary amines include quinoline, iso
  • the addition amount of a dehydrating agent exists in the range of 0.5-5 mol with respect to 1 mol of amic acid groups in polyamic acid, and it is especially preferable to exist in the range of 1.0 mol-4 mol.
  • the addition amount of the imidizing agent is preferably in the range of 0.05 mol to 2 mol, and particularly preferably in the range of 0.2 mol to 1 mol with respect to 1 mol of the amic acid group in the polyamic acid.
  • the dehydrating agent and the imidating agent are less than the above range, chemical imidization is insufficient, cracks may be formed in the polyimide film to be produced, and the mechanical strength of the film may be lowered.
  • the imidization may proceed excessively rapidly, and in this case, it is difficult to cast in the form of a film or the produced polyimide film may exhibit brittle characteristics, which is not preferable. not.
  • the composite imidation method which further performs the thermal imidation method can be used for manufacture of a polyimide film.
  • the complex imidation method includes a chemical imidization process of adding a dehydrating agent and / or an imidizing agent to the precursor composition at a low temperature; And a thermal imidization process of drying the precursor composition to form a gel film and heat treating the gel film.
  • the type and amount of the dehydrating agent and the imidating agent may be appropriately selected according to the above-described chemical imidization method.
  • the precursor composition containing a dehydrating agent and / or an imidizing agent is cast in a film form on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum, and then onto the support.
  • the precursor composition is dried at a variable temperature in the range of 50 ° C. to 200 ° C., specifically 80 ° C. to 200 ° C.
  • chemical converting agents and / or imidating agents can act as catalysts so that amic acid groups can be rapidly converted to imide groups.
  • a process of stretching the gel film may be performed to adjust the thickness and size of the polyimide film obtained in the subsequent heat treatment process and to improve orientation, and the stretching may be performed in the machine transport direction (MD) and the machine transport direction. It may be performed in at least one direction of the transverse direction (TD) with respect to.
  • MD machine transport direction
  • TD transverse direction
  • the gel film thus obtained is fixed in a tenter and then heat treated at a variable temperature in the range of 50 ° C. to 600 ° C., specifically 150 ° C. to 600 ° C. to remove water, catalyst, residual solvent, etc. remaining in the gel film, Nearly all remaining amic acid groups can be imidated to obtain the polyimide film of the present invention.
  • the dehydrating agent and / or the imidating agent may act as a catalyst, thereby rapidly converting the amic acid group into the imide group, thereby enabling high imidization rate.
  • the polyimide film obtained as described above may be heated to a temperature of 400 ° C. to 650 ° C. for 5 seconds to 400 seconds to further cure the polyimide film, and may remain in the obtained polyimide film. This may be done under a predetermined tension to relieve stress.
  • the film was peeled off the SUS plate, fixed to the pin frame, and transferred to a high temperature tenter.
  • the film was heated from 200 ° C. to 600 ° C. in a high temperature tenter and then cooled at 25 ° C. and separated from the pin frame to remove about 86% by weight of the first polyimide chain and 5% by weight of the second polyimide relative to the total weight of the polyimide film.
  • a 7.5 ⁇ m thick polyimide film was prepared comprising the mid chain and 9 wt% carbon black.
  • the amounts of the first polyamic acid solution and the second polyamic acid solution were adjusted so that the polyimide film contained about 88% by weight of the first polyimide chain and 3% by weight of the second polyimide chain relative to the total weight thereof. Except that, a polyimide film having a thickness of 7.5 ⁇ m was prepared in the same manner as in Example 1.
  • the amounts of the first polyamic acid solution and the second polyamic acid solution were adjusted so that the polyimide film contained about 84% by weight of the first polyimide chain and 7% by weight of the second polyimide chain relative to the total weight thereof. Except that, a polyimide film having a thickness of 7.5 ⁇ m was prepared in the same manner as in Example 1.
  • a 7.5 ⁇ m-thick polyimide film was prepared in the same manner as in Example 1, except that the amount of the solution and the carbon black was adjusted.
  • Preparation Example 1-2 was omitted, and Preparation of the mixed solution was omitted in Preparation Example 1-3, and the dosage amount in Preparation Example 1-4 to include about 91 wt% of the first polyimide chain and 9 wt% of carbon black.
  • a polyimide film having a thickness of 7.5 ⁇ m was prepared in the same manner as in Example 1 except that the black crude liquid was directly mixed with the first polyamic acid.
  • the amounts of the first polyamic acid solution and the second polyamic acid solution were adjusted so that the polyimide film contained about 90% by weight of the first polyimide chain and 1% by weight of the second polyimide chain relative to the total weight thereof. Except that, a polyimide film having a thickness of 7.5 ⁇ m was prepared in the same manner as in Example 1.
  • the amounts of the first polyamic acid solution and the second polyamic acid solution were adjusted so that the polyimide film contained about 80% by weight of the first polyimide chain and 11% by weight of the second polyimide chain relative to the total weight thereof. Except that, a polyimide film having a thickness of 7.5 ⁇ m was prepared in the same manner as in Example 1.
  • the first polyamic acid solution and the second such that the polyimide film comprises about 95% by weight of the first polyimide chain, 5% by weight of the second polyimide chain, relative to its total weight
  • a polyimide film having a thickness of 7.5 ⁇ m was prepared in the same manner as in Example 1, except that the amount of the polyamic acid solution was adjusted and mixed.
  • a 7.5 ⁇ m-thick polyimide film was prepared in the same manner as in Example 1, except that the amount of the solution and the carbon black was adjusted.
  • a 7.5 ⁇ m-thick polyimide film was prepared in the same manner as in Example 1, except that the amount of the solution and the carbon black was adjusted.
  • Example 2 About 86% by weight of the first polyimide chain, 5% by weight, based on the total weight of the polyimide film, was prepared in the same manner as in Example 1, except that Preparation Example 1-2 was changed as follows to prepare a second polyamic acid. A 7.5 ⁇ m thick polyimide film was prepared comprising a second polyimide chain of 9 wt% carbon black.
  • the second polyamic acid solution described in Comparative Example 7 was used, such that the polyimide film comprises about 88% by weight of the first polyimide chain and 3% by weight of the second polyimide chain relative to its total weight.
  • a 7.5 ⁇ m-thick polyimide film was prepared in the same manner as in Example 1, except that the amounts of the mixed acid solution and the second polyamic acid solution were adjusted.
  • the second polyamic acid solution described in Comparative Example 7 was used, so that the polyimide film comprises about 84% by weight of the first polyimide chain, 7% by weight of the second polyimide chain, relative to its total weight;
  • a 7.5 ⁇ m-thick polyimide film was prepared in the same manner as in Example 1, except that the amounts of the mixed acid solution and the second polyamic acid solution were adjusted.
  • the base resistance index was measured using test method (a).
  • the light transmittance was measured in the visible region using an optical transmittance measuring device (Model: ColorQuesetXE, manufacturer: HunterLab).
  • Tensile strength was measured by the method given in KS6518.
  • Modulus was measured by the method set forth in ASTM D882, using the Instron 5564 model.
  • Crystallinity was measured by X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • Examples 1 to 4 exhibited a relatively high crystallinity, light transmittance of 0.09 or less, very good shielding and light shielding functions, and also excellent in basic resistance. In addition, Examples 1 to 4 exhibited a level of compliance with tensile strength and modulus, which are mechanical properties.
  • Comparative Example 1 which contains no second polyimide chain at all, shows very poor base resistance, and the crystallinity is about 0, which is extremely low. The characteristics did not show superiority. From this, it can be seen that the inclusion of the second polyimide chain according to the present invention mainly plays a role in improving the base resistance, shielding, and light shielding properties.
  • Comparative Example 2 exhibited low base resistance as it contained a small amount of second polyimide chain outside the scope of the present invention.
  • Comparative Example 3 contains an excess of the second polyimide chain outside the scope of the present invention, but it can be seen that the tensile strength and modulus are significantly reduced. From these results it can be understood that it is important that the first polyimide chain and the second polyimide chain are contained within the scope of the present invention.
  • Comparative Examples 4 to 6 show that the inclusion of carbon black in the scope of the present invention is preferable in terms of achieving a low light transmittance, and in particular, Comparative Example 6 is due to the excessive content of carbon black even though the second polyimide chain is contained. Due to the low base resistance.
  • Comparative Examples 7 to 9 implement the second polyimide chain using monomers different from the monomers disclosed in the present invention. Comparing these comparative examples with Examples 1 to 3, it can be seen that the results of the examples are better when the second polyimide chain is contained in the same content. In addition, Comparative Examples 7 to 9 have a low crystallinity, and it can be seen that there is no effect of improving shielding and light shielding properties as compared with the Examples.
  • the polyimide film according to the invention comprises a first polyimide chain, a second polyimide chain and carbon black.
  • a polyimide film may be inherent to desired levels of mechanical properties and basic resistance which are difficult to be compatible with each other as the properties of each polyimide chain complementarily act, and have high crystallinity and low light transmittance. Has an advantage.
  • the polyimide film of the present invention is excellent in base resistance despite having a thin thickness of 8 ⁇ m or less, and carbon black dropout can be significantly suppressed even when the base component is exposed.
  • An advantage of the production process according to the invention is that it includes a method which can facilitate the dispersion of carbon black.
  • the production method of the present invention by mixing carbon black in the form of black crude liquid with a relatively low viscosity second polyamic acid, dispersion of carbon black can be easily induced primarily, and then the mixed solution is first polyamic acid.
  • the carbon black that has already been dispersed can quickly blend and / or disperse with the second polyamic acid throughout the first polyamic acid as the second polyamic acid is easily mixed with the first polyamic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 제1 디안하이드라이드 및 2 개 이하의 벤젠 고리를 함유하는 제1 디아민이 중합된 제1 폴리아믹산; 제2 디안하이드라이드 및 3 개 이상의 벤젠 고리를 함유하는 제2 디아민이 중합된 제2 폴리아믹산; 및 카본 블랙을 포함하는 전구체 조성물을 이미드화하여 제조되고, 결정화도가 65 % 이상이고, 광투과율이 0.09 이하이고, 염기 성분 노출 전후의 폴리이미드 필름 두께를 기준으로 평가한 내염기성 지수가 70 % 이상이며, 두께가 8.0 ㎛ 이하인 폴리이미드 필름을 제공한다.

Description

내염기성이 향상된 폴리이미드 필름 및 이의 제조방법
본 발명은 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법에 관한 것이다.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄를 기본으로 하는 열적 안정성을 가진 고분자 물질로, 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다.
뿐만 아니라 폴리이미드는 절연특성, 낮은 유전율과 같은 뛰어난 전기적 특성에 기반하여 미소 전자 분야, 광학 분야 등에 사용될 수 있는 고기능성 재료로 크게 각광받고 있다.
미소 전자 분야의 예로서, 휴대용 전자기기 및 통신기기에 포함되는 고집적 회로 등을 들 수 있다. 폴리이미드는 회로에 부착 또는 부가되어 상기 회로에 전기적 절연성을 제공함과 동시에, 수분, 광원, 충격 등에 대해 회로를 보호하는 필름으로서 이용될 수 있다.
이와 같이 회로를 보호하는 필름으로는 다양한 예들이 존재할 수 있지만, 필름의 일면 또는 양면에 접착층이 형성되어 있는 복합 필름의 경우, 좁은 의미에서 커버레이(coverlay)로 지칭할 수 있고, 폴리이미드 필름은 상기 커버레이에 바람직하게 이용될 수 있다.
최근에는 회로에 대한 시각적 보안성, 차폐기능 및 차광기능이 중요하게 부각되면서, 카본 블랙을 함유하여 블랙 색조를 가지는 특수한 폴리이미드 필름이 커버레이의 소재로 각광받고 있다.
블랙 색조를 가지는 폴리이미드 필름을 제조하기 위해서는, 전구체인 폴리아믹산 중에 카본 블랙을 혼합하고 고르게 분산시키는 과정이 필수적이다. 이러한 과정에서 카본 블랙이 고르게 분산되지 않는 경우 차폐기능이 저하되거나 표면 불량이 발생하는 등의 문제가 발생할 수 있다. 본질적으로 카본 블랙은 폴리아믹산 또는 폴리이미드와 물리적/화학적 성질이 상이하여 폴리이미드 또는 폴리아믹산 중에 혼화 및/또는 분산되는 것이 용이하지 않다.
또한, 회로의 제조 과정이 드릴(drill) 공정, 도금 공정, 디스미어(desmear) 공정 및 세척 공정 등을 포함할 수 있으며, 이상의 공정 중에 폴리이미드 필름이 염기성 용액에 노출될 수 있다. 이때 염기성 용액에 의해 폴리이미드 필름이 약간이라도 분해되거나 변성되는 경우, 그에 함유되어 있던 카본 블랙이 대거 탈락될 수 있다.
이러한 이유로 커버레이에서 블랙 색조의 제거와 함께 차폐성이 소실될 수 있으며, 카본 블랙의 탈락으로 인한 표면 불량뿐만 아니라 중량 및 두께 감소가 수반될 수 있어 커버레이로서의 기능이 현저히 저하될 수 있다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명의 일 측면에 따르면, 서로 상이한 특성을 가진 제1 폴리아믹산 및 제2 폴리아믹산과 카본 블랙을 이용하여 제조된 폴리이미드 필름은, 8 ㎛ 이하의 초 박막 형태임에도 불구하고 그에 요구되는 소정의 기계적 물성을 충족하면서도, 매우 우수한 차폐성 및 개선된 염기 성분에 대한 내성(이하 '내염기성'으로 지칭함)을 내재할 수 있다.
본 발명의 또 다른 측면에 따르면, 제2 폴리아믹산과 카본 블랙을 포함하는 혼합액을 제조하고 이를 제1 폴리아믹산과 혼합하여 폴리이미드 필름을 제조할 경우, 카본 블랙의 분산이 향상되어 양질의 폴리이미드 필름을 수득할 수 있다.
이러한 측면들에 따라 앞선 종래의 문제가 해결될 수 있으며, 이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.
하나의 실시양태에서, 본 발명은 제1 디안하이드라이드 및 2 개 이하의 벤젠 고리를 함유하는 제1 디아민이 중합된 제1 폴리아믹산;
제2 디안하이드라이드 및 3 개 이상의 벤젠 고리를 함유하는 제2 디아민이 중합된 제2 폴리아믹산; 및 카본 블랙을 포함하는 전구체 조성물을 이미드화하여 제조되는 폴리이미드 필름을 제공한다.
하나의 실시양태에서, 본 발명은 상기 폴리이미드 필름을 제조하는 방법을 제공한다.
하나의 실시양태에서, 본 발명은 상기 폴리이미드 필름을 포함하는 커버레이(coverlay) 및 상기 커버레이를 포함하는 전자 장치를 제공한다.
이하에서는 본 발명에 따른 "폴리이미드 필름" 및 "폴리이미드 필름의 제조방법"의 순서로 발명의 실시양태를 보다 상세하게 설명한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 "디아민(diamine)"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성될 수 있는 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다. 수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다. 본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.
폴리이미드 필름
본 발명에 따른 폴리이미드 필름은,
제1 디안하이드라이드 및 2 개 이하의 벤젠 고리를 함유하는 제1 디아민이 중합된 제1 폴리아믹산;
제2 디안하이드라이드 및 3 개 이상의 벤젠 고리를 함유하는 제2 디아민이 중합된 제2 폴리아믹산; 및
카본 블랙을 포함하는 전구체 조성물을 이미드화하여 제조되고,
결정화도가 65 % 이상이고, 광투과율이 0.09 이하이고, 염기 성분 노출 전후의 폴리이미드 필름 두께를 기준으로 평가한 내염기성 지수가 70 % 이상이며, 두께가 8.0 ㎛ 이하일 수 있다.
하나의 구체적인 예에서, 상기 제1 폴리아믹산은 이미드화를 통해 제1 폴리이미드 사슬을 형성할 수 있고, 상기 제2 폴리아믹산은 이미드화를 통해 제2 폴리이미드 사슬을 형성할 수 있다.
일부 측면에서, 이미드화를 통해 상기 제1 폴리이미드 사슬 및 상기 제2 폴리이미드 사슬의 적어도 일부가 서로 가교될 수 있다.
상기 제1 폴리아믹산은 분자 구조 상, 상대적으로 강직한 구조의 물질일 수 있다. 따라서, 제1 폴리아믹산으로부터 유도된 제1 폴리이미드 사슬은 상대적으로 강직한 구조로 이루어질 수 있다.
이러한 제1 폴리이미드 사슬은 폴리이미드 필름이 소정의 기계적 강도를 갖도록, 상세하게는 폴리이미드 필름에 필연적으로 요구되는 인장강도 및/또는 모듈러스를 내재하게 하는데 기여할 수 있다.
상기 제2 폴리아믹산은 분자 구조 상, 상대적으로 유연한 구조의 물질일 수 있고, 상대적으로 결정화도가 높으며 내화학성이 우수한 물질일 수 있다. 따라서, 상기 제2 폴리아믹산으로부터 유도된 제2 폴리이미드 사슬은 상대적으로 고 결정성이면서도 내화학성이 우수할 수 있다.
주목할 점은, 이들 사슬 각각의 특성들이 상보적으로 작용함에 따라, 본 발명의 폴리이미드 필름은 8 ㎛ 이하의 얇은 형태에서도, 제1 폴리이미드 사슬에 상응하는 수준의 기계적 특성을 내재할 뿐만 아니라 제1 폴리이미드 사슬만으로는 내재되기 어려운, 소정의 결정화도(65 % 이상)와 내화학성이 제2 폴리이미드 사슬에 의해 내재될 수 있다.
일반적으로, 고분자 결정은 빛을 산란시키거나 흡수하므로 결정화도가 높을수록 필름의 광투과율은 낮아지는 반비례 관계인 바, 본 발명의 폴리이미드 필름은, 65 % 미만의 저 결정화도를 갖는 통상적인 폴리이미드 필름과 비교하여 상대적으로 낮은 광투과율을 가질 수 있다. 이는 차폐, 차광 등이 요구되는, 카본 블랙을 함유하는 폴리이미드 필름에서 매우 중요한 이점으로 작용할 수 있다.
앞선 특징에 기반하여 본 발명의 폴리이미드 필름은, 하기의 물성을 가질 수 있다.
필름 상태에서의 고분자 결정화도가 70 % 이상이고,
인장강도가 200 kgf/cm3 이상이고,
모듈러스가 3 GPa 이상이고,
광투과율이 0.07 이하이고,
염기 성분 노출 전후의 폴리이미드 필름 두께를 기준으로 평가한 내염기성 지수가 75 % 이상일 수 있다.
하나의 구체적인 예에서, 상기 제1 폴리아믹산은 고형분 함량이 15 중량%일 때 23℃에서 측정한 점도가 50,000 cP 내지 300,000 cP이고, 상기 제2 폴리아믹산은 고형분 함량이 15 중량%일 때 23℃에서 측정한 점도가 5,000 cP 내지 30,000 cP일 수 있다.
상기 제1 폴리아믹산의 점도가 50,000 cP 미만일 때, 폴리이미드 필름은 내열성 및 기계적 물성이 크게 저하될 수 있다. 상기 제1 폴리아믹산의 점도가 300,000 cP 초과일 때, 필름의 제조 공정 측면에서 문제가 있을 수 있다. 구체적으로, 상기 전구체 조성물이 고점도를 가짐에 따라, 필름의 제막 공정에 문제가 생길 가능성이 있으며, 나아가 8 ㎛ 이하로 필름을 제작하기 어려울 수 있다.
상기 제2 폴리아믹산의 점도가 5,000 cP 미만일 때, 제2 폴리이미드 사슬의 형성이 충분하지 않을 수 있다. 이는 폴리이미드 필름의 내염기성 향상 측면에서 바람직하지 않다. 상기 제2 폴리아믹산의 점도가 30,000 cP를 초과할 때에는, 전구체 조성물 중에서 카본 블랙의 분산성이 저하될 수 있는 바, 폴리이미드 필름의 제조 공정성 측면에서 바람직하지 않다.
한편, 폴리이미드는 염기 환경에 노출되는 경우 분해되거나 변성되는 등 염기 성분에 취약한 편이다. 카본 블랙을 포함하는 폴리이미드 필름은, 염기 성분에 의한 분해나 변성 시, 카본 블랙이 대거 탈락하여 두께 감소가 더욱 심각하다.
최근에는, 전자 기기의 소형화에 대응하기 위해 두께가 매우 얇은, 예를 들어, 8 ㎛ 이하의 초박막형 폴리이미드 필름이 요구되고 있다. 그러나 초박막형 폴리이미드 필름에서의 카본 블랙의 탈락 현상은 10 ㎛ 이상의 통상적인 두께를 갖는 폴리이미드 필름과 비교하여 그 폐해가 더 심각하다. 이는 통상의 폴리이미드 필름과 초박막형 폴리이미드 필름에서 동일한 절대량의 카본 블랙이 탈락된다고 하더라도, 초박막형의 경우 폴리이미드 필름 전체의 카본 블랙 대비 탈락되는 카본 블랙의 비율이 훨씬 높기 때문이다. 또한, 염기 성분은 표면으로부터 침투하므로, 표면과의 거리가 가까운 초박막형의 폴리이미드 필름의 경우, 동일한 조건에서 상대적으로 더 많은 카본 블랙이 탈락될 수 있다.
따라서, 특히 카본 블랙을 포함하면서 두께가 8 ㎛ 이하인 초박막형 폴리이미드 필름은 이의'내염기성'을 개선할 필요가 있다.
내염기성이란, 폴리이미드 필름이 염기 환경에 노출되더라도 쉽게 분해 및/또는 변성되지 않는 성질을 의미하며 상기 분해 및/또는 변성 시에 폴리이미드 필름의 두께가 감소되므로, 두께 감소에 기준하여 내염기성을 판단할 수 있다.
이와 관련하여 내염기성을 평가하기 위한 하나의 예는 염기성 용액에 폴리이미드 필름을 노출시키고, 노출 전후의 필름의 두께 변화를 측정하는 방법이며, 본 발명에서는 하기 단계를 포함하는 테스트 방법 (a)를 이용한다:
폴리이미드 필름의 양면을 코로나 처리하는 단계;
폴리이미드 필름, 본딩 시트 및 동박을 순서대로 적층한 후, 핫 프레스를 이용하여 온도 160 ℃에서 30 분간 50 kgf의 압력 하에 접합시킨 후 4*10 ㎝로 재단하여 연성회로기판 시료를 제조하고 두께(제1 두께)를 측정하는 단계; 및
4*10 ㎝로 재단한 연성회로기판을 10% NaOH 용액에 55 ℃에서 3분 노출시키고, 디스미어액(10 % NaMnO4 + 4 % NaOH)에 55 ℃에서 5분 노출시킨 후 세척하는 공정을 2회 반복하고 필름의 두께(제2 두께)를 측정하는 단계; 및
상기 제1 두께에 대한 상기 제2 두께의 변화 정도를 백분율로 나타내는 단계((제1 두께-제2 두께)/제1 두께 X 100).
통상의 폴리이미드 필름의 경우, 이상의 테스트 방법 (a)을 거치면 내염기성 지수가 대략 50 % 내지 60 % 정도로 나타날 수 있다.
반면에 본 발명의 폴리이미드 필름은 테스트 방법 (a)에 의한 내염기성 지수가 적어도 70 %이상, 상세하게는 75 %이상, 특히 상세하게는 80 % 이상일 수 있다. 이는 통상의 폴리이미드 필름에 비해 현저하게 개선된 내염기성이다.
이상에 대해서는 '발명을 실시하기 위한 구체적인 내용'을 통해 보다 구체적으로 증명할 것이지만, 요약하면, 제2 폴리아믹산으로부터 유래된 제2 폴리이미드 사슬이 염기 성분에 대해 상대적으로 강력한 내성을 가짐에 따라, 폴리이미드 필름으로의 염기 성분 침투가 차단되는 것은 물론, 제1 폴리이미드 사슬이 분해되더라도 제2 폴리이미드 사슬이 폴리이미드 필름의 골격을 어느 정도 유지할 수 있기 때문으로 추측된다. 이에 따라, 카본 블랙 탈락 현상의 빈도가 현저하게 감소될 수 있음은 물론이다.
다만 이상의 이점에도 불구하고 제2 폴리이미드 사슬이 폴리이미드 필름에 무조건적으로 많이 포함되는 것은 바람직하지 않다.
구체적으로, 폴리이미드 필름에서 제2 폴리이미드 사슬의 함량이 일정 수준일 때 앞선 이점이 발현될 수 있지만, 이를 넘어서는 경우, 내염기성에 대한 이점이 강화되거나 향상되지 않는데 반해, 폴리이미드 필름의 인장강도 및/또는 모듈러스가 급격하게 저하될 수 있기 때문이다.
이러한 현상은 8.0 ㎛ 이하의 초박막형 필름에서 더욱 두드러지게 나타날 수 있다. 즉, 기계적 물성과 내염기성이 양립 가능하도록, 폴리이미드 필름은 적정량의 제1 폴리이미드 사슬 및 제2 폴리이미드 사슬을 함유하는 것이 중요하다.
이에 본 발명의 폴리이미드 필름은 이의 총 중량에 대하여, 80 내지 92 중량%의 제1 폴리이미드 사슬, 3 내지 10 중량%의 제2 폴리이미드 사슬, 및 5 내지 10 중량%의 평균입경이 0.1 내지 5 ㎛인 카본 블랙을 포함할 수 있으며, 필름의 두께는 7.5 ㎛ 이하일 수 있다.
더욱 상세하게는 본 발명의 폴리이미드 필름은 이의 총 중량에 대하여, 83 내지 92 중량%의 제1 폴리이미드 사슬 5 내지 7 중량%의 제2 폴리이미드 사슬을 포함할 수 있다.
하나의 구체적인 예에서, 상기 제1 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA)이고,
상기 제2 디안하이드라이드는 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 s-BPDA) 및/또는 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 a-BPDA)일 수 있다.
상기 제1 디아민은,
1) 벤젠 고리 1개를 갖는 디아민: 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA, PPD), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(DABA);
2) 벤젠 고리 2개를 갖는 디아민: 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카르복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드 및 4,4'-디아미노디페닐설폭사이드으로 이루어진 군으로부터 선택되는 적어도 1종일 수 있다.
상기 제2 디아민은, 1,3-비스(4-아미노페녹시)벤젠(TPE-R) 및/또는 1,4-비스(3-아미노페녹시)벤젠(TPE-Q)일 수 있다.
상기 제1 디아민과 제1 디안하이드라이드는, 분자 구조가 강직하며, 이들이 조합되어 형성되는 제2 폴리이미드 사슬이 폴리이미드 필름에 요구되는 소정 수준의 내열성, 인장강도 및 모듈러스를 구현할 수 있다.
상기 TPE계 디아민은 벤젠 고리 3 개를 함유하는 단량체로서, 내화학성이 우수한 단량체이고, 중합체의 결정화도 상승에 주요하게 작용할 수 있다.
상기 BPDA계 디안하이드라이드는 2 개의 벤젠 고리를 포함하여 분자 구조 상으로 상대적으로 연성의 단량체이며, 내화학성이 우수하다.
따라서, 이들이 조합되어 형성되는 제2 폴리이미드 사슬은 우수한 내화학성을 구현할 수 있다.
폴리이미드 필름의 제조방법
본 발명의 폴리이미드 필름의 제조방법은,
제1 디안하이드라이드 및 제1 디아민으로부터 제1 폴리아믹산을 중합하는 단계;
제2 디안하이드라이드 및 제2 디아민으로부터 제2 폴리아믹산을 중합하는 단계;
밀링기를 이용하여 평균입경 0.1 내지 5 ㎛의 카본 블랙을 제조하고 이를 포함하는 블랙 조액을 제조하는 단계;
상기 제2 폴리아믹산 및 상기 블랙 조액을 혼합하여 혼합액을 제조하는 단계;
상기 제1 폴리아믹산에 상기 혼합액을 혼합하여 전구체 조성물을 제조하는 단계; 및
상기 전구체 조성물을 이미드화하여 폴리이미드 필름을 수득하는 단계를 포함할 수 있다.
일반적으로, 카본 블랙은 폴리아믹산과의 단순 혼합 시 쉽게 분산되지 않고 응집하려는 경향이 있다. 반면, 유사한 화학적 특성을 공유하는 제1 폴리아믹산과 제2 폴리아믹산은 상대적으로 쉽게 혼화될 수 있다.
이에, 본 발명의 제조방법은 상기 블랙 조액 형태의 카본 블랙을 상대적으로 저점도의 제2 폴리아믹산과 혼합함으로써, 카본 블랙의 분산을 일차적으로 손쉽게 유도할 수 있다.
이후 혼합액을 제1 폴리아믹산에 혼합하면, 제2 폴리아믹산이 제1 폴리아믹산과 쉽게 혼합됨에 따라, 이미 분산되어 있던 카본 블랙이 제2 폴리아믹산과 함께 제1 폴리아믹산의 전반으로 빠르게 혼화 및/또는 분산될 수 있다. 이상이 본 발명에 따른 제조방법의 주요한 이점일 수 있다.
하나의 구체적인 예에서, 제1 폴리아믹산, 제2 폴리아믹산 및 블랙 조액을 제조하는 단계에서 유기용매가 이용될 수 있다.
이들 단계에서 사용될 수 있는 유기용매의 비제한적인 예는, 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매의 비제한적인 예로서, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
상기 제1 폴리아믹산 및 제2 폴리아믹산을 중합하는 방법은 예를 들어,
(1) 디아민 단량체 전량을 유기용매 중에 넣고, 그 후 디안하이드라이드 단량체를 디아민 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(2) 디안하이드라이드 단량체 전량을 유기용매 중에 넣고, 그 후 디아민 단량체를 디안하이드라이드 단량체와 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;
(3) 디아민 단량체 중 일부 성분을 유기용매 중에 넣은 후, 반응 성분에 대해서 디안하이드라이드 단량체 중 일부 성분을 약 95 몰% 내지 105 몰%의 비율로 혼합한 후, 나머지 디아민 단량체 성분을 첨가하고 이에 연속해서 나머지 디안하이드라이드 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법;
(4) 디안하이드라이드 단량체를 유기용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95 몰% 내지 105 몰%의 비율로 혼합한 후, 다른 디안하이드라이드 단량체 성분을 첨가하고 연속해서 나머지 디아민 단량체 성분을 첨가하여, 디아민 단량체 및 디안하이드라이드 단량체가 실질적으로 등몰이 되도록 하여 중합하는 방법; 및
(5) 유기용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이 되도록 반응시켜, 제1 중합물을 형성하고, 또 다른 유기용매 중에서 일부 디아민 단량체 성분과 일부 디안하이드라이드 단량체 성분을 어느 하나가 과량이 되도록 반응시켜 제2 중합물을 형성한 후, 제1, 제2 중합물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 중합물을 형성할 때 디아민 단량체 성분이 과잉일 경우, 제2 중합물에서는 디안하이드라이드 단량체 성분을 과량으로 하고, 제1 중합물에서 디안하이드라이드 단량체 성분이 과잉일 경우, 제2 중합물에서는 디아민 단량체 성분을 과량으로 하여, 제1, 제2 중합물들을 혼합하여 이들 반응에 사용되는 전체 디아민 단량체 성분과 디안하이드라이드 단량체 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.
다만, 상기 방법은 본 발명의 실시를 돕기 위한 예시로서, 본 발명의 범주가 이들로서 한정되는 것은 아니며, 공지된 어떠한 방법을 사용할 수 있음은 물론이다.
한편, 상기 전구체 조성물로부터 유래되는 폴리이미드 필름의 접동성, 열전도성, 도전성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 제1 폴리아믹산, 제2 폴리아믹산 및/또는 블랙 조액의 제조 시, 필러를 첨가할 수도 있다. 첨가되는 필러는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모, 제2인산칼슘, 황산바륨 및 탄산칼슘 등을 들 수 있다.
필러의 평균 입경은 특별히 한정되는 것은 아니고, 개질하고자 하는 폴리이미드 필름 특성과 첨가하는 필러의 종류에 따라서 결정할 수 있다. 하나의 예에서, 상기 필러의 평균 입경은 0.05 ㎛ 내지 100 ㎛, 상세하게는 0.1 ㎛ 내지 75 ㎛, 더욱 바람직하게는 0.1 ㎛ 내지 50 ㎛, 특히 상세하게는 0.1 ㎛ 내지 25 ㎛일 수 있다.
평균 입경이 이 범위를 하회하면 개질 효과가 미미하고, 이 범위를 상회하면 필러가 폴리이미드 필름의 표면성을 크게 손상시키거나, 필름의 기계적 특성 저하를 유발할 수 있다.
또한, 필러의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하고자 하는 폴리이미드 필름 특성이나 필러 입경 등에 의해 결정할 수 있다.
하나의 예에서, 필러의 첨가량은 전구체 조성물의 폴리아믹산 고형분 100 중량부에 대하여 0.01 중량부 내지 100 중량부, 바람직하게는 0.01 중량부 내지 90 중량부, 더욱 바람직하게는 0.02 중량부 내지 80 중량부이다.
필러 첨가량이 이 범위를 하회하면, 필러에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 폴리이미드 필름의 기계적 특성이 크게 저하될 수 있다. 필러의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수 있음은 물론이다.
한편, 상기 폴리이미드 필름을 수득하는 단계는 상기 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조한 후, 상기 겔 필름을 이미드화하여 폴리이미드 필름을 형성하는 단계를 포함할 수 있다.
이러한 이미드화의 구체적인 방법으로는 열 이미드화법, 화학 이미드화법 또는 상기 열 이미드화법과 화학 이미드화법을 병용하는 복합 이미드화법을 예로 들 수 있으며, 이들에 대해서는 이하의 비제한적인 예를 통해 보다 구체적으로 설명한다.
<열 이미드화법>
상기 열 이미드화 법은, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법으로서,
상기 전구체 조성물을 건조하여 겔 필름을 형성하는 과정; 및
상기 겔 필름을 열처리하여 폴리이미드 필름을 수득하는 과정을 포함할 수 있다.
여기서, 겔 필름이란, 폴리아믹산으로부터 폴리이미드로의 변환에 대해 중간 단계에서 자기 지지성을 가지는 필름 중간체라 이해할 수 있다.
상기 겔 필름을 형성하는 과정은, 전구체 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅하고, 이후 지지체 상의 전구체 조성물을 50 ℃ 내지 200 ℃, 상세하게는 80 ℃ 내지 150 ℃ 범위의 가변적인 온도에서 건조하는 것일 수 있다.
이에 따라 전구체 조성물에 부분적인 경화 및/또는 건조가 일어남으로써 겔 필름이 형성될 수 있다. 그 다음에 지지체로부터 박리하여 겔 필름을 얻을 수 있다.
경우에 따라서는 이후 열처리 과정에서 수득되는 폴리이미드 필름의 두께 및 크기를 조절하고 배향성을 향상시키기 위하여 상기 겔 필름을 연신시키는 공정이 수행될 수 있으며, 연신은 기계반송방향(MD) 및 기계반송방향에 대한 횡방향(TD) 중 적어도 하나의 방향으로 수행될 수 있다.
이와 같이 수득한 겔 필름을, 텐터에 고정한 다음 50 ℃ 내지 500 ℃, 상세하게는 150 ℃ 내지 500 ℃ 범위의 가변적인 온도에서 열처리하여 겔 필름에 잔존하는 물, 잔류 용매 등을 제거하고, 남아 있는 거의 모든 아믹산기를 이미드화하여, 본 발명의 폴리이미드 필름을 수득할 수 있다.
경우에 따라서는 상기와 같이 수득한 폴리이미드 필름을 400 ℃ 내지 650 ℃의 온도로 5 초 내지 400 초간 가열 마감하여 폴리이미드 필름을 더욱 경화시킬 수도 있으며, 수득한 폴리이미드 필름에 잔류할 수도 있는 내부 응력을 완화시키기 위해서 소정의 장력 하에서 이를 수행할 수도 있다.
<화학 이미드화법>
상기 화학 이미드화법은 전구체 조성물에 탈수제 및/또는 이미드화제를 첨가하여 아믹산기의 이미드화를 촉진하는 방법이다.
여기서 "탈수제"란, 폴리아믹산에 대한 탈수 작용을 통해 폐환 반응을 촉진하는 물질을 의미하고, 이에 대한 비제한적인 예로서, 지방족의 애시드 안하이드라이드, 방향족의 애시드 안하이드라이드, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 패티 애시드 안하이드라이드, 아릴 포스포닉 디할라이드, 및 티오닐 할라이드 등을 들 수 있다. 이중에서도 입수의 용이성, 및 비용의 관점에서 지방족 애시드 안하이드라이드가 바람직할 수 있고, 이의 비제한적인 예로서, 아세틱 안하이드라이드(AA), 프로피온 애시드 안하이드라이드, 및 락틱 애시드 안하이드라이드 등을 들 수 있으며, 이들을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
또한, "이미드화제"란 폴리아믹산에 대한 폐환 반응을 촉진하는 효과를 갖는 물질을 의미하고, 예를 들어 지방족 3급 아민, 방향족 3급 아민, 및 복소환식 3급 아민 등의 이민계 성분일 수 있다. 이중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민이 바람직할 수 있다. 복소환식 3급 아민의 비제한적인 예로서, 퀴놀린, 이소퀴놀린, β-피콜린(BP), 피리딘 등을 들 수 있으며, 이들을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
탈수제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.5 내지 5 몰의 범위 내인 것이 바람직하고, 1.0 몰 내지 4 몰의 범위 내인 것이 특히 바람직하다. 또한, 이미드화제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.05 몰 내지 2 몰의 범위 내인 것이 바람직하고, 0.2 몰 내지 1 몰의 범위 내인 것이 특히 바람직할 수 있다.
상기 탈수제 및 이미드화제가 상기 범위를 하회하면 화학적 이미드화가 불충분하고, 제조되는 폴리이미드 필름에 크랙이 형성될 수 있고, 필름의 기계적 강도도 저하될 수 있다. 또한, 이들 첨가량이 상기 범위를 상회하면 이미드화가 과도하게 빠르게 진행될 수 있으며, 이 경우, 필름 형태로 캐스팅하기 어렵거나 제조된 폴리이미드 필름이 브리틀(brittle)한 특성을 보일 수 있어, 바람직하지 않다.
<복합 이미드화법>
이상의 화학 이미드화법에 연계하여, 열 이미드화법을 추가로 수행하는 복합 이미드화법이 폴리이미드 필름의 제조에 이용될 수 있다.
구체적으로 복합 이미드화법은, 저온에서 전구체 조성물에 탈수제 및/또는 이미드화제를 첨가하는 화학 이미드화 과정; 및 상기 전구체 조성물을 건조하여 겔 필름을 형성하고, 상기 겔 필름을 열처리하는 열 이미드화 과정을 포함할 수 있다.
상기 화학 이미드화 과정의 수행 시, 탈수제와 이미드화제의 종류 및 첨가량은 앞선 화학 이미드화법에 설명한 바에 따라 적절하게 선택될 수 있다.
상기 겔 필름을 형성하는 과정에서는 탈수제 및/또는 이미드화제를 함유하는 전구체 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅하고, 이후 지지체 상의 전구체 조성물을 50 ℃ 내지 200 ℃, 상세하게는 80 ℃ 내지 200 ℃ 범위의 가변적인 온도에서 건조한다. 이러한 과정에서, 화학 전환제 및/또는 이미드화제가 촉매로 작용하여 아믹산기가 이미드기로 빠르게 변환될 수 있다.
경우에 따라서는 이후 열처리 과정에서 수득되는 폴리이미드 필름의 두께 및 크기를 조절하고 배향성을 향상시키기 위하여 상기 겔 필름을 연신시키는 공정이 수행될 수 있으며, 연신은 기계반송방향(MD) 및 기계반송방향에 대한 횡방향(TD) 중 적어도 하나의 방향으로 수행될 수 있다.
이와 같이 수득한 겔 필름을, 텐터에 고정한 다음 50 ℃ 내지 600 ℃, 상세하게는 150 ℃ 내지 600 ℃ 범위의 가변적인 온도에서 열처리하여 겔 필름에 잔존하는 물, 촉매, 잔류 용매 등을 제거하고, 남아 있는 거의 모든 아믹산기를 이미드화하여, 본 발명의 폴리이미드 필름을 수득할 수 있다. 이와 같은 열처리 과정에서도 탈수제 및/또는 이미드화제가 촉매로서 작용하여 아믹산기가 이미드기로 빠르게 전환될 수 있어 높은 이미드화율의 구현이 가능할 수 있다.
경우에 따라서는 상기와 같이 수득한 폴리이미드 필름을 400 ℃ 내지 650 ℃의 온도로 5 초 내지 400 초간 가열 마감하여 폴리이미드 필름을 더욱 경화시킬 수도 있으며, 수득한 폴리이미드 필름에 잔류할 수도 있는 내부 응력을 완화시키기 위해서 소정의 장력 하에서 이를 수행할 수도 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시예 1>
제조예 1-1: 제1 폴리아믹산의 중합
제1 폴리아믹산 용액 중합 공정으로서, 질소 분위기하의 1 L 반응기에 용매로서 DMF를 407.5 g 투입하였다.
온도를 25 ℃로 설정한 다음, 디아민 단량체로서 ODA 13.26 g 및 PPD 21.48 g을 투입하고, 30 분 가량 교반하여 단량체가 용해된 것을 확인한 뒤에 PMDA을 57.76 g을 분할 투입하고 최종적으로 점도 250,000 cP에서 300,000 cP가 되도록 마지막 투입량을 조정하여 투입하였다.
투입이 끝나면 온도를 유지하면서 1 시간 동안 교반하여 최종점도 260,000 cP의 제1 폴리아믹산 용액을 수득하였다.
제조예 1-2: 제2 폴리아믹산의 중합
제2 폴리아믹산 용액의 중합 공정으로서, 질소 분위기하의 1 L 반응기에 용매로서 DMF를 425 g 투입하였다.
온도를 25 ℃로 설정한 다음, 디아민 단량체로서 TPE-R 37.38 g를 투입하고, 30 분 가량 교반하여 단량체가 용해된 것을 확인한 뒤에 s-BPDA 37.62 g을 분할 투입하고 최종점도를 5,000 cP에서 30,000 cP가 되도록 소량씩 투입하였다.
투입이 끝나면 온도를 유지하면서 2 시간 동안 교반하여 최종 점도 5,500 cP의 제2 폴리아믹산 용액을 수득하였다.
제조예 1-3: 블랙 조액 및 제2 폴리아믹산을 혼합한 혼합액의 제조
카본 블랙 30 g을 70 g의 DMF와 분산제 BYK-1162 0.1 g 와 혼합한 후 밀링 머신을 이용하여 평균 입경 0.5 ㎛의 블랙조액을 제조하였다.
상기 제조예 1-2에서 제조된 제2 폴리아믹산 용액 24.5 g과 상기 블랙 조액 32 g을 DMF 43.5 g과 혼합하여 혼합액을 제조하였다.
제조예 1-4: 초박막 블랙 폴리이미드 필름의 제조
상기 제조예 1-1에서 제조된 제1 폴리아믹산 용액 40.5 g에 상기 제조예 1-3에서 제조된 혼합액 13.3 g을 혼합하고, 촉매로서 이소퀴놀린(IQ) 3.47 g, 무수초산(AA) 16.47 g, 및 DMF 5.89 g을 투입한 후, 균일하게 혼합하여 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 70 ㎛로 캐스팅하고 100 ℃ 내지 200 ℃의 온도범위에서 건조시켰다.
그 다음, 필름을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하였다.
필름을 고온 텐터에서 200 ℃부터 600 ℃까지 가열한 후 25 ℃에서 냉각시킨 후 핀 프레임에서 분리하여 폴리이미드 필름 총 중량에 대하여 약 86 중량%의 제1 폴리이미드 사슬, 5 중량%의 제2 폴리이미드 사슬 및 9 중량%의 카본 블랙을 포함하는 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<실시예 2>
폴리이미드 필름이 이의 총 중량에 대하여 약 88 중량%의 제1 폴리이미드 사슬, 3 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액과 제2 폴리아믹산 용액의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<실시예 3>
폴리이미드 필름이 이의 총 중량에 대하여 약 84 중량%의 제1 폴리이미드 사슬, 7 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액과 제2 폴리아믹산 용액의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<실시예 4>
폴리이미드 필름이 이의 총 중량에 대하여 약 92 중량%의 제1 폴리이미드 사슬, 3 중량%의 제2 폴리이미드 사슬 및 5 중량%의 카본 블랙을 포함하도록, 제1 폴리아믹산 용액, 제2 폴리아믹산 용액 및 카본 블랙의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 1>
제조예 1-2를 생략하였고, 제조예 1-3에서 혼합액의 제조를 생략하였으며, 약 91 중량%의 제1 폴리이미드 사슬 및 9 중량%의 카본 블랙을 포함하도록, 제조예 1-4에서 투입량을 조절하여 제1 폴리아믹산에 블랙 조액을 직접 혼합한 것을 제외하면 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 2>
폴리이미드 필름이 이의 총 중량에 대하여 약 90 중량%의 제1 폴리이미드 사슬, 1 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액과 제2 폴리아믹산 용액의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 3>
폴리이미드 필름이 이의 총 중량에 대하여 약 80 중량%의 제1 폴리이미드 사슬, 11 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액과 제2 폴리아믹산 용액의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 4>
제조예 1-3을 생략하고, 폴리이미드 필름이 이의 총 중량에 대하여 약 95 중량%의 제1 폴리이미드 사슬, 5 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액과 제2 폴리아믹산 용액의 투입량을 각각 조절하여 혼합한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 5>
폴리이미드 필름이 이의 총 중량에 대하여 약 92 중량%의 제1 폴리이미드 사슬, 5 중량%의 제2 폴리이미드 사슬 및 3 중량%의 카본 블랙을 포함하도록, 제1 폴리아믹산 용액, 제2 폴리아믹산 용액 및 카본 블랙의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 6>
폴리이미드 필름이 이의 총 중량에 대하여 약 80 중량%의 제1 폴리이미드 사슬, 5 중량%의 제2 폴리이미드 사슬 및 15 중량%의 카본 블랙을 포함하도록, 제1 폴리아믹산 용액, 제2 폴리아믹산 용액 및 카본 블랙의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 7>
제조예 1-2를 하기와 같이 변경하여 제2 폴리아믹산을 제조한 것을 제외하면, 실시예 1과 동일한 방법으로 폴리이미드 필름 총 중량에 대하여 약 86 중량%의 제1 폴리이미드 사슬, 5 중량%의 제2 폴리이미드 사슬 및 9 중량%의 카본 블랙을 포함하는 7.5㎛ 두께의 폴리이미드 필름을 제조하였다:
-제2 폴리아믹산 용액의 중합 공정으로서, 질소 분위기하의 1L 반응기에 용매로서 DMF를 425 g 투입하였다. 온도를 25 ℃로 설정한 다음, 디아민 단량체로서 ODA 30.51 g를 투입하고, 30분 가량 교반하여 단량체가 용해된 것을 확인한 뒤에 s-BPDA 43.49 g을 분할 투입하고 최종점도를 5,000 cP에서 30,000 cP가 되도록 소량씩 투입하였다. 투입이 끝나면 온도를 유지하면서 1시간 동안 교반하여 최종 점도 5,500 cP의 제2 폴리아믹산 용액을 수득하였다.
<비교예 8>
비교예 7에 기재된 제2 폴리아믹산 용액을 이용하였으며, 폴리이미드 필름이 이의 총 중량에 대하여 약 88 중량%의 제1 폴리이미드 사슬, 3 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액 및 제2 폴리아믹산 용액의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<비교예 9>
비교예 7에 기재된 제2 폴리아믹산 용액을 이용하였으며, 폴리이미드 필름이 이의 총 중량에 대하여 약 84 중량%의 제1 폴리이미드 사슬, 7 중량%의 제2 폴리이미드 사슬을 포함하도록, 제1 폴리아믹산 용액 및 제2 폴리아믹산 용액의 투입량을 각각 조절한 것을 제외하면, 실시예 1과 동일한 방법으로 7.5 ㎛ 두께의 폴리이미드 필름을 제조하였다.
<실험예: 폴리이미드 필름의 물성 평가>
실시예 1 내지 실시예 4 및 비교예 1 내지 비교예 9에서 각각 제조된 폴리이미드 필름에 대해 다음과 같은 방식으로 내염기성, 광투과율, 인장강도, 모듈러스 및 결정화도를 측정하고, 이의 결과를 하기 표 1에 정리하였다.
1) 내염기성 테스트
테스트 방법(a)를 이용하여 내염기성 지수를 측정하였다.
2) 광투과율 테스트
광투과율 측정 기기(모델명: ColorQuesetXE, 제조사: HunterLab)를 이용하여 가시광 영역에서 ASTM D1003 방법으로 광투과율을 측정하였다.
3) 인장강도
인장강도는 KS6518 에 제시된 방법에 의해 측정하였다.
4) 모듈러스
모듈러스는 Instron 5564 모델을 이용하여, ASTM D882에 제시된 방법에 의해 측정하였다.
5) 결정화도
XRD(X-Ray Diffraction) 분석을 통해 결정화도를 측정하였다. 일반적으로 무정형 고분자의 경우 넓은 영역을 점유하는 피크가 나오며, 다만 고분자 사슬이 결정성 부분을 포함하는 경우에는 부분적으로 뾰족한 회절피크와 넓은 영역이 동시에 나오게 된다. 여기서 두 피크의 세기와 상대면적을 비교하여 결정화도를 측정 할 수 있다.
비율* 제2 PAA** 단량체 내염기성(%) 광투과율(%) 인장강도(kgf/cm3) 모듈러스(GPa) 결정화도(%)
실시예 1 86:5:9 TPE-R; BPDA 75 0.04 210 3.1 70
실시예 2 88:3:9 TPE-R; BPDA 73 0.07 200 3.0 65
실시예 3 84:7:9 TPE-R; BPDA 81 0.03 215 3.2 76
실시예 4 92:3:5 TPE-R; BPDA 70 0.09 210 3.15 65
비교예 1 91:0:9 없음 54 0.13 190 2.9 0
비교예 2 90:1:9 TPE-R; BPDA 56 0.20 190 2.9 30
비교예 3 80:11:9 TPE-R; BPDA 85 0.01 165 2.4 89
비교예 4 95:5:0 TPE-R; BPDA 78 65 210 3.2 70
비교예 5 92:5:3 TPE-R; BPDA 72 13 215 3.1 70
비교예 6 80:5:15 TPE-R; BPDA 68 0.00 140 2.0 70
비교예 7 86:5:9 ODA; BPDA 70 0.13 185 2.9 53
비교예 8 88:3:9 ODA; BPDA 68 0.13 180 2.85 49
비교예 9 84:7:9 ODA; BPDA 72 0.13 190 2.95 58
* 제1 폴리아믹산 : 제2 폴리아믹산 : 카본 블랙의 중량 비율
** 제2 PAA = 제2 폴리아믹산
표 1에서와 같이, 실시예 1 내지 4는 상대적으로 높은 결정화도를 나타내었고, 광투과율이 0.09 이하로 매우 우수한 차폐, 차광 기능을 가지며, 내염기성 또한 우수함을 알 수 있다. 뿐만 아니라, 실시예 1 내지 4는 기계적 물성인 인장강도와 모듈러스도 준수한 수준을 나타내었다.
한편, 제2 폴리이미드 사슬을 전혀 함유하지 않은 비교예 1은 매우 불량한 내염기성을 나타내며, 결정화도는 약 0으로서 극히 낮고 이에 따라 카본 블랙을 포함함에도 불구하고 광투과율이 상대적으로 높게 측정되어 차폐, 차광 특성에서도 우수함을 나타내지 못하였다. 이로부터 본 발명에 따른 제2 폴리이미드 사슬의 함유 여부가 내염기성과 차폐, 차광 특성 개선에 주요하게 작용함을 알 수 있다.
비교예 2는 본 발명의 범위를 벗어나서 소량의 제2 폴리이미드 사슬을 함유함에 따라, 낮은 내염기성을 나타내었다.
비교예 3은 본 발명의 범위를 벗어나서 과량의 제2 폴리이미드 사슬을 함유하지만, 인장강도와 모듈러스가 현저하게 저하된 것을 확인할 수 있다. 이러한 결과로부터 제1 폴리이미드 사슬과 제2 폴리이미드 사슬이 본 발명의 범위로 함유되는 것이 중요함을 이해할 수 있다.
비교예 4 내지 6은 카본 블랙이 본 발명의 범위로 포함됨이 낮은 광투과율 달성 측면에서 바람직함을 보여주고 있고, 특히 비교예 6은 제2 폴리이미드 사슬이 함유되었음에도 불구하고 과도한 카본 블랙의 함량으로 인해 내염기성이 저하되었다.
비교예 7 내지 9는 본 발명에 개시된 단량체와는 다른 단량체를 이용하여 제2 폴리이미드 사슬을 구현한 것이다. 이들 비교예를 실시예 1 내지 3과 비교하면 제2 폴리이미드 사슬이 동일한 함량으로 함유될 때, 실시예의 결과가 더 우수한 것을 알 수 있다. 또한, 비교예 7 내지 9는 결정화도가 낮아 실시예와 비교하여 차폐, 차광 특성 개선 효과가 없음을 알 수 있다.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
본 발명에 따른 폴리이미드 필름은 제1 폴리이미드 사슬, 제2 폴리이미드 사슬 및 카본 블랙을 포함하고 있다. 이러한 폴리이미드 필름은, 각각의 폴리이미드 사슬이 가진 특성들이 상보적으로 작용함에 따라, 서로 양립되기 난해한 기계적 물성 및 내염기성을 소망하는 수준으로 내재할 수 있으며, 높은 결정화도를 가지면서 광투과율이 낮은 이점을 가진다.
특히, 본 발명의 폴리이미드 필름은 8 ㎛ 이하의 얇은 두께임에도 불구하고 내염기성 우수하여, 염기 성분 노출 시에도 카본 블랙 탈락이 상당히 억제될 수 있다.
본 발명에 따른 제조방법의 이점은 카본 블랙의 분산을 용이하게 할 수 있는 방법을 포함하는 것이다.
구체적으로, 본 발명의 제조방법은, 블랙 조액 형태의 카본 블랙을 상대적으로 저점도의 제2 폴리아믹산과 혼합함으로써, 카본 블랙의 분산을 일차적으로 손쉽게 유도할 수 있고, 이후 혼합액을 제1 폴리아믹산에 혼합하면, 제2 폴리아믹산이 제1 폴리아믹산과 쉽게 혼합됨에 따라 이미 분산되어 있던 카본 블랙이 제2 폴리아믹산과 함께 제1 폴리아믹산의 전반으로 빠르게 혼화 및/또는 분산될 수 있다.

Claims (15)

  1. 제1 디안하이드라이드 및 2 개 이하의 벤젠 고리를 함유하는 제1 디아민이 중합된 제1 폴리아믹산;
    제2 디안하이드라이드 및 3 개 이상의 벤젠 고리를 함유하는 제2 디아민이 중합된 제2 폴리아믹산; 및
    카본 블랙;
    을 포함하는 전구체 조성물을 이미드화하여 제조되고,
    결정화도가 65 % 이상이고, 광투과율이 0.09 이하이고, 염기 성분 노출 전후의 폴리이미드 필름 두께를 기준으로 평가한 내염기성 지수가 70 % 이상이며, 두께가 8.0 ㎛ 이하인 폴리이미드 필름.
  2. 제1항에 있어서,
    상기 제1 폴리아믹산은 이미드화를 통해 제1 폴리이미드 사슬을 형성하고,
    상기 제2 폴리아믹산은 이미드화를 통해 제2 폴리이미드 사슬을 형성하는 폴리이미드 필름.
  3. 제2항에 있어서,
    이미드화를 통해 상기 제1 폴리이미드 사슬 및 상기 제2 폴리이미드 사슬의 적어도 일부가 서로 가교되는 폴리이미드 필름.
  4. 제1항에 있어서,
    상기 제1 폴리아믹산은 고형분 함량이 15 중량%일 때 23℃에서 측정한 점도가 50,000 cP 내지 300,000 cP이고,
    상기 제2 폴리아믹산은 고형분 함량이 15 중량%일 때 23℃에서 측정한 점도가 5,000 cP 내지 30,000 cP인 폴리이미드 필름.
  5. 제1항에 있어서,
    폴리이미드 필름 총 중량에 대하여,
    80 내지 92 중량%의 제1 폴리이미드 사슬,
    3 내지 10 중량%의 제2 폴리이미드 사슬, 및
    5 내지 10 중량%의 평균입경이 0.1 내지 5 ㎛인 카본 블랙을 포함하고,
    필름의 두께가 7.5 ㎛ 이하인 폴리이미드 필름.
  6. 제5항에 있어서,
    폴리이미드 필름 총 중량에 대하여,
    83 내지 92 중량%의 제1 폴리이미드 사슬,
    5 내지 7 중량%의 제2 폴리이미드 사슬을 포함하는 폴리이미드 필름.
  7. 제1항에 있어서,
    상기 제1 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA)이고,
    상기 제2 디안하이드라이드는 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 s-BPDA) 및/또는 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 a-BPDA)인 폴리이미드 필름.
  8. 제1항에 있어서,
    상기 제1 디아민은,
    1) 벤젠 고리 1개를 갖는 디아민: 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA, PPD), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(DABA);
    2) 벤젠 고리 2개를 갖는 디아민: 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카르복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드 및 4,4'-디아미노디페닐설폭사이드으로 이루어진 군으로부터 선택되는 적어도 1종인 폴리이미드 필름.
  9. 제1항에 있어서,
    상기 제2 디아민은, 1,3-비스(4-아미노페녹시)벤젠(TPE-R) 및/또는 1,4-비스(3-아미노페녹시)벤젠(TPE-Q)인 폴리이미드 필름.
  10. 제1항에 있어서,
    광투과율이 0.07 이하이고, 염기 성분 노출 전후의 폴리이미드 필름 두께를 기준으로 평가한 내염기성 지수가 75 % 이상인 폴리이미드 필름.
  11. 제1항에 있어서,
    필름 상태에서의 고분자 결정화도가 70 % 이상이고,
    인장강도가 200 kgf/cm3 이상이고,
    모듈러스가 3 GPa 이상인 폴리이미드 필름.
  12. 제1항에 따른 폴리이미드 필름을 제조하는 방법으로서,
    제1 디안하이드라이드 및 제1 디아민으로부터 제1 폴리아믹산을 중합하는 단계;
    제2 디안하이드라이드 및 제2 디아민으로부터 제2 폴리아믹산을 중합하는 단계;
    밀링기를 이용하여 평균입경 0.1 내지 5 ㎛의 카본 블랙을 제조하고 이를 포함하는 블랙 조액을 제조하는 단계;
    상기 제2 폴리아믹산 및 상기 블랙 조액을 혼합하여 혼합액을 제조하는 단계;
    상기 제1 폴리아믹산에 상기 혼합액을 혼합하여 전구체 조성물을 제조하는 단계; 및
    상기 전구체 조성물을 이미드화하여 폴리이미드 필름을 수득하는 단계를 포함하는 제조방법.
  13. 제12항에 있어서,
    상기 폴리이미드 필름을 수득하는 단계는 상기 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조한 후, 상기 겔 필름을 이미드화하여 폴리이미드 필름을 형성하는 단계를 포함하는 제조방법.
  14. 제1항에 따른 폴리이미드 필름을 포함하는 커버레이(coverlay).
  15. 제14항에 따른 커버레이를 포함하는 전자 장치.
PCT/KR2018/011539 2018-08-22 2018-09-28 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법 WO2020040347A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880096720.9A CN112585195B (zh) 2018-08-22 2018-09-28 具有改善的耐碱性的聚酰亚胺薄膜及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0097930 2018-08-22
KR1020180097930A KR102153507B1 (ko) 2018-08-22 2018-08-22 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2020040347A1 true WO2020040347A1 (ko) 2020-02-27

Family

ID=69592872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011539 WO2020040347A1 (ko) 2018-08-22 2018-09-28 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR102153507B1 (ko)
CN (1) CN112585195B (ko)
WO (1) WO2020040347A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817196A (zh) * 2021-11-05 2021-12-21 江西有泽新材料科技有限公司 具有改善的耐碱性的聚酰亚胺薄膜及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450700B1 (ko) * 2020-11-13 2022-10-06 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839760B1 (ko) * 2006-02-06 2008-06-19 주식회사 엘지화학 칩 온 필름용 동장 적층판
KR20130003358A (ko) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 폴리아믹산,폴리아믹산 용액,폴리이미드 보호층 및 폴리이미드 필름
KR20130113778A (ko) * 2012-04-06 2013-10-16 에스케이씨코오롱피아이 주식회사 블랙 폴리이미드 필름
KR20170100792A (ko) * 2016-02-26 2017-09-05 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드 수지, 폴리이미드 필름 및 이를 포함하는 영상표시 소자
KR20170114366A (ko) * 2016-04-04 2017-10-16 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이로부터 제조된 투명 폴리이미드 필름

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521576B2 (ja) * 1995-10-27 2004-04-19 Jsr株式会社 ポリアミック酸の製造方法およびポリイミドの製造方法
KR101167011B1 (ko) * 2011-08-16 2012-07-24 에스케이씨코오롱피아이 주식회사 블랙 폴리이미드 필름 및 그 제조방법
KR101493595B1 (ko) * 2013-05-22 2015-02-13 에스케이씨코오롱피아이 주식회사 폴리이미드 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839760B1 (ko) * 2006-02-06 2008-06-19 주식회사 엘지화학 칩 온 필름용 동장 적층판
KR20130003358A (ko) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 폴리아믹산,폴리아믹산 용액,폴리이미드 보호층 및 폴리이미드 필름
KR20130113778A (ko) * 2012-04-06 2013-10-16 에스케이씨코오롱피아이 주식회사 블랙 폴리이미드 필름
KR20170100792A (ko) * 2016-02-26 2017-09-05 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드 수지, 폴리이미드 필름 및 이를 포함하는 영상표시 소자
KR20170114366A (ko) * 2016-04-04 2017-10-16 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이로부터 제조된 투명 폴리이미드 필름

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817196A (zh) * 2021-11-05 2021-12-21 江西有泽新材料科技有限公司 具有改善的耐碱性的聚酰亚胺薄膜及其制备方法

Also Published As

Publication number Publication date
KR102153507B1 (ko) 2020-09-09
KR20200022146A (ko) 2020-03-03
CN112585195A (zh) 2021-03-30
CN112585195B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2019164068A1 (ko) 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
WO2020017697A1 (ko) 불소-함유 실란 첨가제 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2019168245A1 (ko) 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2020096363A1 (ko) 유전특성이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020054912A1 (ko) 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
WO2020080598A1 (ko) 표면 품질이 개선된 고후도 폴리이미드 필름 및 이의 제조방법
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2021096245A2 (ko) 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2020040356A1 (ko) 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2020040347A1 (ko) 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2019182224A1 (ko) 무지향성 고분자 사슬을 포함하는 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트
WO2019139249A1 (ko) 내염기성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020017692A1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020096410A1 (ko) 금속층과의 접착력이 향상된 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020022564A1 (ko) 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2020122410A1 (ko) 열전도도가 향상된 폴리이미드 필름 및 이의 제조방법
WO2020096364A1 (ko) 전자파 차폐성능이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931018

Country of ref document: EP

Kind code of ref document: A1