WO2020040299A1 - 複動式摩擦攪拌接合システム及びその運転方法 - Google Patents

複動式摩擦攪拌接合システム及びその運転方法 Download PDF

Info

Publication number
WO2020040299A1
WO2020040299A1 PCT/JP2019/033071 JP2019033071W WO2020040299A1 WO 2020040299 A1 WO2020040299 A1 WO 2020040299A1 JP 2019033071 W JP2019033071 W JP 2019033071W WO 2020040299 A1 WO2020040299 A1 WO 2020040299A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
friction stir
stir welding
acting friction
robot
Prior art date
Application number
PCT/JP2019/033071
Other languages
English (en)
French (fr)
Inventor
将弘 三宅
健吾 前田
勝人 福嶋
陽平 石戸
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP19851354.1A priority Critical patent/EP3842174B1/en
Priority to US17/270,751 priority patent/US11938558B2/en
Priority to KR1020217007737A priority patent/KR102487272B1/ko
Priority to CN201980055396.0A priority patent/CN112601629B/zh
Priority to JP2020538494A priority patent/JP7307074B2/ja
Publication of WO2020040299A1 publication Critical patent/WO2020040299A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/125Rotary tool drive mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/126Workpiece support, i.e. backing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/328Cleaning of weld torches, i.e. removing weld-spatter; Preventing weld-spatter, e.g. applying anti-adhesives

Definitions

  • the present invention relates to a double-acting friction stir welding system and a method of operating the same.
  • the stroke of projecting the center pin into the shoulder pin and the stroke of immersing the center pin into the shoulder pin are compared with those during the joining operation of the workpiece. While rotating the joining tool, the center pin cleans the surface of the center pin when the center pin protrudes, and cleans the inner surface of the shoulder pin hole when the center pin sinks into the shoulder pin.
  • the present inventors provide a double-acting friction stir welding system capable of cleaning a double-acting friction stir welding device by a method different from the method of cleaning a welding tool of an FSW disclosed in Patent Document 1 and a method thereof. I came up with a driving method.
  • An object of the present invention is to provide a double-acting friction stir welding system that can clean a double-acting friction stir welding device with a novel configuration, and an operation method thereof.
  • a double-acting friction stir welding system includes a double-acting friction stir welding device, a cleaning mechanism having a dressing member, a robot, and a control device.
  • the dynamic friction stir welding apparatus is formed in a cylindrical shape, a pin member configured to be capable of rotating around an axis and moving forward and backward in a direction along the axis, and formed in a cylindrical shape, A pin member is inserted therein, a shoulder member configured to be capable of rotating around the axis and moving forward and backward in a direction along the axis, the pin member and the shoulder member, A first rotary driver for rotating about an axis, and a tool driver for moving the pin member and the shoulder member forward and backward along the axis, respectively, wherein the control device includes: Operating the tool driver so as to be immersed in the material (A); operating the first rotary driver so that the shoulder member rotates (B); And (C) operating the robot such that the dressing member comes into contact with
  • a double-acting friction stir welding system includes a double-acting friction stir welding device, a cleaning mechanism having a dressing member and a second rotation drive for rotating the dressing member, a robot, a stock mechanism, And a control device, wherein the double-acting friction stir welding device is formed in a cylindrical shape, and is configured to be rotatable around an axis and movable forward and backward in a direction along the axis.
  • a first rotation driver that rotates the pin member and the shoulder member around the axis
  • a tool driver that moves the pin member and the shoulder member forward and backward along the axis, respectively
  • the control device removes the pin member and / or the shoulder member, and operates the robot to dispose the pin member and / or the shoulder member on the stock mechanism so that the axis is oriented vertically.
  • H operating the second rotary driver so that the dressing member rotates
  • I holding the cleaning mechanism, and holding an outer peripheral surface of the pin member and an inner peripheral surface of the shoulder member.
  • J operating the robot so as to contact at least one of the outer peripheral surfaces of the shoulder member.
  • the double-acting friction stir welding system includes a double-acting friction stir welding device, a cleaning mechanism having a dressing member, and a robot.
  • the double-acting friction stir welding apparatus is formed in a cylindrical shape, and is formed in a cylindrical shape, with a pin member configured to be rotatable around an axis and movable forward and backward in a direction along the axis.
  • a shoulder member having the pin member inserted therein and configured to be capable of rotating about the axis and moving forward and backward in a direction along the axis, the pin member and the shoulder member A first rotary driver for rotating the pin member and the shoulder member along the axis, and a first rotary driver for rotating the pin member and the shoulder member along the axis.
  • the method of operating the double-acting friction stir welding system may be configured such that the double-acting friction stir welding system includes a double-acting friction stir welding device, a dressing member, and a second rotation drive for rotating the dressing member.
  • a double-acting friction stir welding apparatus having a cylindrical shape, wherein rotation around an axis and forward / backward movement in a direction along the axis are provided.
  • a pin member configured to be capable of being formed, and a cylindrical member formed so that the pin member is inserted therein, so that rotation around the axis and advance / retreat movement in a direction along the axis are possible.
  • a first rotation driver that rotates the pin member and the shoulder member around the axis, and the pin member and the shoulder member, respectively, along the axis.
  • the second rotation driver operates so that the dressing member rotates (I), the cleaning mechanism is held, and the outer peripheral surface of the pin member, (J) operating the robot so as to contact at least one of an inner peripheral surface of the shoulder member and an outer peripheral surface of the shoulder member.
  • the double-acting friction stir welding device can be cleaned with a simple configuration.
  • FIG. 1 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the double-acting friction stir welding apparatus shown in FIG.
  • FIG. 3 is a block diagram schematically showing a control configuration of the double-acting friction stir welding system shown in FIG.
  • FIG. 4 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the first modification of the first embodiment.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a robot in a double-acting friction stir welding system according to a second modification of the first embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the second modification of the first embodiment.
  • FIG. 8 is a schematic diagram illustrating a schematic configuration of a cleaning mechanism of a double-acting friction stir welding system according to Modification 3 of the first embodiment.
  • FIG. 9A is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the third modification.
  • FIG. 9B is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the third modification.
  • FIG. 10 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the second embodiment.
  • FIG. 11 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the second embodiment.
  • FIG. 12 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the first modification of the second embodiment.
  • FIG. 13 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the second modification of the second embodiment.
  • FIG. 14 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the third embodiment.
  • FIG. 15 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the third embodiment.
  • FIG. 16 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the fourth embodiment.
  • FIG. 17 is a schematic diagram illustrating a schematic configuration of an auxiliary member in the double-acting friction stir welding system illustrated in FIG. 16.
  • FIG. 18 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the fourth embodiment.
  • FIG. 19 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the fifth embodiment.
  • FIG. 20 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the fifth embodiment.
  • FIG. 21 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the sixth embodiment.
  • FIG. 22 is a schematic diagram illustrating an example of a dressing member.
  • FIG. 23 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the first modification of the sixth embodiment.
  • FIG. 24 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the second modification of the sixth embodiment.
  • FIG. 25 is a schematic diagram showing a schematic configuration of a double-acting friction stir welding system according to the seventh embodiment.
  • FIG. 26 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the seventh embodiment.
  • FIG. 27 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the first modification of the seventh embodiment.
  • FIG. 28 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the second modification of the seventh embodiment.
  • FIG. 29 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the eighth embodiment.
  • FIG. 30 is a schematic diagram showing a schematic configuration of the stock mechanism shown in FIG.
  • FIG. 31 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the eighth embodiment.
  • FIG. 32 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the ninth embodiment.
  • the double-acting friction stir welding system includes a double-acting friction stir welding device, a cleaning mechanism having a dressing member, a robot, and a control device. Is formed in a columnar shape, and is configured to be rotatable about an axis and movable forward and backward in a direction along the axis, and a cylindrical member, and the pin member is inserted through the inside. And a first rotation driver for rotating the pin member and the shoulder member around the axis, the shoulder member being configured to be able to rotate around the axis and advance and retreat in a direction along the axis.
  • a tool driver for moving the pin member and the shoulder member forward and backward along the axis, respectively, and the control device operates the tool driver such that the pin member is immersed inside the shoulder member.
  • FIG. 1 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the first embodiment.
  • the double-acting friction stir welding system 100 includes a double-acting friction stir welding device 101, a cleaning mechanism 110, a robot 120, and a control device 130.
  • the apparatus 130 is configured to control the double-acting friction stir welding apparatus 101 to friction stir weld the workpiece 60.
  • the configurations of the double-acting friction stir welding apparatus 101 and the control apparatus 130 will be described later.
  • the cleaning mechanism 110 has a dressing member 111.
  • the dressing member 111 is configured to remove the material of the workpiece 60 adhered to the inner peripheral surface of the shoulder member 12 of the double-acting friction stir welding apparatus 101 described later.
  • the dressing member 111 may be gripped by the robot 120, or may be erected on a base or the like, as described later.
  • a cutting tool and / or a wire brush may be used.
  • the cutting tool may be made of a material harder than the material of the workpiece 60.
  • a carbide cutter, a ceramic grindstone, a cutting fiber, a precision reamer, an end mill, a carbide bar, or the like may be used.
  • the cutting tool may be configured to suppress the adhesion (adhesion) of the material of the workpiece 60 by DLC coating or the like.
  • the dressing member 111 is composed of a plurality of members, one dressing member may be used, and then another dressing member may be used.
  • a wire member may be used after using a carbide bar.
  • the material constituting the brush may be stainless steel, steel, tungsten, phosphor bronze, or nylon containing abrasive grains.
  • the size of the brush may be larger than the inner diameter of the shoulder member 12, or may be larger by 0.2 to 0.5 mm than the inner diameter of the shoulder member 12.
  • its tip may be formed in a spherical shape.
  • the cleaning mechanism 110 may further include a suction device for preventing the removed material of the workpiece 60 from scattering.
  • the suction device may be composed of, for example, a vacuum pump or CONVUM (registered trademark), a suction member such as a nozzle, and a pipe connecting the vacuum pump and the suction member.
  • cleaning mechanism 110 may further include a heater that heats shoulder member 12. As the heater, for example, a heater or the like may be used.
  • the robot 120 various types of robots such as a horizontal articulated type and a vertical articulated type can be adopted.
  • a mode including one robot 120 may be adopted.
  • the robot 120 may hold the cleaning mechanism, and the double-acting friction stir welding apparatus 101 may adopt a fixed form.
  • a mode including a plurality of robots 120 may be adopted. In this case, a certain robot may hold the cleaning mechanism and another robot may hold the double-acting friction stir welding apparatus 101.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the double-acting friction stir welding apparatus shown in FIG. In FIG. 2, the vertical direction in the figure is represented as the vertical direction in the double-acting friction stir welding apparatus.
  • the double-acting friction stir welding apparatus 101 includes a welding tool 51 having a pin member 11 and a shoulder member 12, a welding tool fixing section 52, a tool driver 53, a clamp member 54, a C-shaped frame 55, And a backing member 56.
  • the pin member 11 and the shoulder member 12 are supported by the joining tool fixing portion 52, and are driven by a tool driver 53 to move up and down.
  • the pin member 11, the shoulder member 12, the joining tool fixing part 52, the tool driver 53, and the clamp member 54 are provided on the upper part of the C-shaped frame 55.
  • a backing member 56 is provided below the C-shaped frame 55.
  • the pin member 11, the shoulder member 12, and the backing member 56 are attached to the C-shaped frame 55 at positions facing each other.
  • the article 60 is disposed between the pin member 11 and the shoulder member 12 and the backing member 56.
  • the joining tool fixing part 52 is composed of a rotating body 521 and a movable body 522, and the tool driver 53 is composed of a pin driver 531 and a shoulder driver 532.
  • the clamp member 54 is fixed to the movable body 522 via the clamp driver 41. Note that the clamp driver 41 is configured by a spring.
  • the pin member 11 is formed in a substantially cylindrical shape or a substantially cylindrical shape, and is supported by the rotating body 521, though not shown in detail in FIG. In addition, the pin member 11 is configured to be rotated by the first rotation driver 57 around an axis Xr coinciding with the axis (center axis) of the pin member 11.
  • the pin member 11 is configured to be relatively movable with respect to the shoulder member 12 by the pin driver 531 in the direction of arrow P1, that is, in the direction of the axis Xr (the vertical direction in FIG. 2).
  • the pin driver 531 may be configured by, for example, a linear motion actuator.
  • the direct-acting actuator may be composed of, for example, a servo motor and a rack and pinion, a servo motor and a ball screw, or an air cylinder.
  • the shoulder member 12 is formed in a substantially cylindrical shape having a hollow, and is supported by the rotating body 521.
  • the pin member 11 is inserted in the hollow of the shoulder member 12.
  • the shoulder member 12 is arranged so as to surround the outer peripheral surface of the pin member 11.
  • the shoulder member 12 is configured to be rotated by the first rotation driver 57 around the same axis Xr as the pin member 11. Further, the shoulder member 12 is configured to be able to move forward and backward along the direction of arrow P2, that is, the direction of the axis Xr, by the shoulder driver 532.
  • the shoulder driver 532 may be constituted by, for example, a linear actuator.
  • the direct-acting actuator may be composed of, for example, a servo motor and a rack and pinion, a servo motor and a ball screw, or an air cylinder.
  • both the pin member 11 and the shoulder member 12 are supported by the same rotating body 521 in the present embodiment, and both rotate integrally around the axis Xr by the first rotation driver 57.
  • the first rotation driver 57 may be configured by, for example, a servomotor.
  • a sensor such as a rotary encoder may be configured to detect the rotation speed of the first rotation driver 57 and output the detected rotation speed to the control device 130.
  • the pin member 11 and the shoulder member 12 are rotated by one rotation driver (the first rotation driver 57)
  • the invention is not limited to this.
  • a configuration including a rotary driver for rotating the pin member 11, a rotary driver for rotating the shoulder member 12, and two rotary drivers may be adopted.
  • the rotating body 521 is supported by the movable body 522 via the first rotation driver 57.
  • the shoulder driver 532 is driven, the pin member 11 and the movable body 522 move forward and backward together with the shoulder member 12.
  • the clamp member 54 is formed in a cylindrical shape having a hollow like the shoulder member 12, and is provided so that its axis coincides with the axis Xr.
  • the shoulder member 12 is inserted into the hollow of the clamp member 54.
  • the substantially cylindrical shoulder member 12 is arranged so as to surround the outer peripheral surface of the pin member 11, and the substantially cylindrical clamp member 54 is arranged so as to surround the outer peripheral surface of the shoulder member 12.
  • the clamp member 54, the shoulder member 12, and the pin member 11 have a coaxial core-shaped nest structure.
  • the clamp member 54 is configured to press the article 60 from one surface (front surface). As described above, the clamp member 54 is supported by the movable body 522 via the clamp driver 41 in the first embodiment.
  • the clamp driver 41 is configured to bias the clamp member 54 toward the backing member 56 side.
  • the clamp member 54 (including the clamp driver 41 and the movable body 522) is configured to be able to advance and retreat in the direction of arrow P3 (the same direction as the arrows P1 and P2) by the shoulder driver 532.
  • the clamp driver 41 is constituted by a spring, but is not limited to this.
  • the clamp driver 41 only needs to be configured to apply an urging force or a pressing force to the clamp member 54.
  • a mechanism using a gas pressure, a hydraulic pressure, a servomotor, or the like can be suitably used.
  • the pin member 11, the shoulder member 12, and the clamp member 54 have a tip surface 11a, a tip surface 12a, and a tip surface 54a, respectively.
  • the pin member 11, the shoulder member 12, and the clamp member 54 are moved forward and backward by the tool driver 53, so that the tip surface 11a, the tip surface 12a, and the tip surface 54a are respectively attached to the surface of the workpiece 60.
  • the backing member 56 is configured to support a flat surface (the support surface 56a) so as to abut the back surface of the plate-shaped article 60.
  • the configuration of the backing member 56 is not particularly limited as long as it can appropriately support the article 60 so that friction stir welding can be performed.
  • the backing member 56 may be configured such that, for example, a backing member 56 having a plurality of types of shapes is separately prepared, and can be detached from the C-shaped frame 55 and replaced according to the type of the workpiece 60. .
  • the article 60 has two plate-shaped first and second members 61 and 62.
  • the first member 61 and the second member 62 may be made of a metal material (for example, aluminum, steel or the like) or a fiber-reinforced plastic (for example, carbon fiber-reinforced plastic).
  • the present invention is not limited to this.
  • the shape of the 60 (the first member 61 and the second member 62) is arbitrary, and may be, for example, a rectangular parallelepiped or an arc.
  • the article 60 may have three or more members.
  • the pin member 11, the shoulder member 12, the joining tool fixing portion 52, the tool driver 53, the clamp member 54, the C-shaped frame 55, and the backing member 56 in the first embodiment have been described above.
  • the configuration is not limited, and a configuration widely known in the field of friction stir welding can be suitably used.
  • the pin driver 531 and the shoulder driver 532 constituting the tool driver 53 are each configured by a motor and a gear mechanism known in the field of friction stir welding. Not limited.
  • the configuration including the clamp member 54 is employed, but the present invention is not limited to this, and a configuration without the clamp member 54 may be employed.
  • the clamp member 54 may be configured to be detachable from the C-shaped frame 55 as necessary.
  • the double-acting friction stir welding apparatus 101 employs a form provided in a friction stir welding robot apparatus (not shown). Specifically, a C-shaped frame 55 is attached to the tip of the robot arm.
  • the double-acting friction stir welding apparatus 101 (including the C-type frame 55) is not limited to the case where it is applied to a friction stir welding robot apparatus.
  • NC machine tools, large C frames, It can also be suitably applied to known processing equipment such as an automatic riveter.
  • the double-acting friction stir welding apparatus 101 may adopt a form in which the workpiece 60 is hand-held as long as the friction stir welding can be stably performed on the workpiece 60.
  • a mode in which a robot is used as a positioner for the workpiece 60 may be adopted.
  • FIG. 3 is a block diagram schematically showing a control configuration of the double-acting friction stir welding system shown in FIG.
  • the control device 130 includes an arithmetic processor 131, an input device 132, a storage device 133, and a clock device 134 having a calendar function.
  • the arithmetic processing unit 131 includes a microprocessor, a CPU, and the like.
  • the storage 133 stores information such as a basic program and various fixed data.
  • the storage device 133 does not need to be a single storage device, and may be configured as a plurality of storage devices (for example, a random access memory and a hard disk drive).
  • the arithmetic processor 131 and the like are configured by a microcomputer, at least a part of the storage device 133 may be configured as an internal memory of the microcomputer or may be configured as an independent memory.
  • the arithmetic processor 131 controls various operations of the double-acting friction stir welding apparatus 101 and the robot 120 by reading and executing software such as a basic program stored in the storage 133.
  • the input device 132 enables the input of various parameters related to control of friction stir welding or other data to the arithmetic processing device 131, and is a known input device such as a keyboard, a touch panel, and a button switch group. It is configured.
  • at least data such as the joining conditions of the article 60, for example, the thickness and material of the article 60 can be input by the input device 132.
  • the control device 130 may be configured by a single control device 130 that performs centralized control, or may be configured by a plurality of control devices 130 that perform distributed control in cooperation with each other. Further, the control device 130 may be constituted by a microcomputer, and may be constituted by an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
  • FIG. 4 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the first embodiment.
  • the control device 130 drives (operates) the tool driver 53 (pin driver 531) so that the pin member 11 is immersed inward with respect to the shoulder member 12 (step S101). At this time, the control device 130 controls the tool driver 53 (pin driver 531) until the position of the tip end surface 11a of the pin member 11 in the direction of the axis Xr reaches the preset first position or second position. It may be driven.
  • the first position is, for example, the position that is the most inward with respect to the shoulder member 12 (the position that is moved to the uppermost position) when the tip end surface 11a of the pin member 11 is joining the article 60 to be joined. It may be.
  • the second position can be set in advance by an experiment or the like. For example, for example, a position where the tip end surface 11a of the pin member 11 can be the most inward with respect to the shoulder member 12 (moves upward as an apparatus). Where it can be done).
  • control device 130 operates the first rotation driver 57 (step S102) to rotate the shoulder member 12.
  • the pin member 11 also rotates with the rotation of the shoulder member 12.
  • control device 130 causes the robot 120 to operate such that the double-acting friction stir welding device 101 is held and the dressing member 111 of the cleaning mechanism 110 contacts the inner peripheral surface of the shoulder member 12 (step S103).
  • control device 130 may operate the robot 120 so that the dressing member 111 advances and retreats in the inner space (inner space) of the shoulder member 12 along the axis Xr. Specifically, control device 130 causes robot 120 to operate such that shoulder member 12 advances and retreats along axis Xr.
  • the control device 130 causes the dressing member 111 of the cleaning mechanism 110 to contact the inner peripheral surface of the shoulder member 12. Then, the robot 120 is operated.
  • the control device 130 may operate the robot 120 so that the dressing member 111 contacts the inner peripheral surface of the shoulder member 12 while heating the shoulder member 12 using the heating device.
  • the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12 can be removed (cut off) by the dressing member 111.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the shoulder member 12 (step S104). Next, the control device 130 determines whether or not the time acquired in step S104 has exceeded a preset first time (step S105).
  • the first time can be obtained in advance by an experiment or the like.
  • the first time may be a time required for sufficiently removing the material of the article 60 to be bonded attached to the inner peripheral surface of the shoulder member 12.
  • the first time may be, for example, 30 seconds or more from the viewpoint of sufficiently removing the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12, and from the viewpoint of shortening the cleaning time. , 60 seconds or less.
  • step S104 determines whether the time acquired in step S104 has elapsed until the first time has elapsed. Steps S104 and S105 are repeated. On the other hand, when the control device 130 determines that the time acquired in step S104 has passed the first time (Yes in step S105), the control device 130 executes the process of step S106.
  • step S106 the control device 130 controls the robot to move the double-acting friction stir welding device 101 to a predetermined position (an initial position where the double-acting friction stir welding device 101 is installed). 120 is operated.
  • control device 130 drives the tool driver 53 (pin driver 531) such that the distal end surface 11a of the pin member 11 matches the distal end surface 12a of the shoulder member 12 (step S107).
  • control device 130 stops the first rotation driver 57 (step S108), and ends the program.
  • the dressing member 111 rotates the inner periphery of the shoulder member 12 while the control device 130 rotates the shoulder member 12.
  • the robot 120 is configured to operate so as to contact the surface.
  • the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12 can be removed by the dressing member 111.
  • the form including the clamp member 54 is employed, but the present invention is not limited to this, and a form without the clamp member 54 may be employed. .
  • the controller holds the cleaning mechanism so that the dressing member contacts the inner peripheral surface of the shoulder member. Operate the robot.
  • the configuration of the double-acting friction stir welding system according to the first modification of the first embodiment is the same as that of the double-acting friction stir welding system according to the first embodiment, and a detailed description thereof will be omitted.
  • FIG. 5 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the first modification of the first embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the first modification of the first embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the first embodiment. It is the same, except that steps S103A and S106A are executed instead of steps S103 and S106.
  • control device 130 causes robot 120 to hold cleaning mechanism 110 (dressing member 111), and causes robot 120 to hold dressing member 111 of cleaning mechanism 110 such that it contacts the inner peripheral surface of shoulder member 12. Is operated (step S103A). At this time, the double-acting friction stir welding apparatus 101 may be stationary or may be held by a robot other than the robot 120.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the shoulder member 12 (step S104). Next, the control device 130 determines whether or not the time acquired in step S104 has exceeded a preset first time (step S105).
  • step S104 when it is determined that the time acquired in step S104 has passed the first time (Yes in step S105), the control device 130 moves the cleaning mechanism 110 to a predetermined position (the cleaning mechanism 110).
  • the robot 120 is operated to move to the (initial position where is installed) (step S106A).
  • the double-acting friction stir welding system according to the second modification of the first embodiment is configured such that the robot can swing or rotate around the axis while holding the double-acting friction stir welding device.
  • the control device holds the double-acting friction stir welding device so that the dressing member contacts the inner peripheral surface of the shoulder member while swinging the double-acting friction stir welding device. , To operate the robot.
  • the double-acting friction stir welding system 100 according to the second modification of the first embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the first embodiment. Will be described with reference to FIG.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a robot in a double-acting friction stir welding system according to a second modification of the first embodiment.
  • the robot 120 in the double-acting friction stir welding system 100 of the second modification includes a plurality of links (here, the first link 21a to the sixth link 21f) and a plurality of joints. (Here, the first joint JT1 to the sixth joint JT6) and a base 25 supporting them are a multi-joint robot arm.
  • the base 25 and the base end of the first link 21a are rotatably connected around an axis extending in the vertical direction.
  • the distal end of the first link 21a and the proximal end of the second link 21b are rotatably connected around an axis extending in the horizontal direction.
  • the distal end of the second link 21b and the proximal end of the third link 21c are rotatably connected around an axis extending in the horizontal direction.
  • the distal end of the third link 21c and the proximal end of the fourth link 21d are rotatably connected around an axis extending in the longitudinal direction of the fourth link 21d.
  • the distal end of the fourth link 21d and the proximal end of the fifth link 21e are rotatably connected around an axis orthogonal to the longitudinal direction of the fourth link 21d.
  • the distal end of the fifth link 21e and the proximal end of the sixth link 21f are connected to be able to twist and rotate. This allows the robot 120 to swing or rotate around the axis Xr while holding the double-acting friction stir welding apparatus 101.
  • a mechanical interface is provided at the tip of the sixth link 21f.
  • An end effector 22 corresponding to the work content is detachably attached to the mechanical interface.
  • a hand for holding (gripping) the double-acting friction stir welding apparatus 101 is provided as the end effector 22.
  • each of the first joint JT1 to the sixth joint JT6 is provided with a drive motor as an example of an actuator for relatively rotating two members connected to each joint (not shown).
  • the drive motor may be, for example, a servomotor that is servo-controlled by the control device 130.
  • Each of the first to sixth joints JT1 to JT6 is provided with a rotation sensor for detecting the rotation position of the drive motor and a current sensor for detecting a current for controlling the rotation of the drive motor (respectively). , Not shown).
  • the rotation sensor may be, for example, an encoder.
  • a vertical articulated robot is used as the robot 120, but the robot 120 is not limited to this. If the robot 120 is configured to be swingable or rotatable around the axis Xr while holding the double-acting friction stir welding apparatus, a horizontal articulated robot may be employed.
  • FIG. 7 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the second modification of the first embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the second modification of the first embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the first embodiment.
  • the operations are the same, except that the operations (processes) of steps S102 and S108 are not executed, and the operations (processes) of steps S103A and S106A are executed instead of steps S103 and S106.
  • control device 130 drives (operates) tool driver 53 (pin driver 531) such that pin member 11 is immersed inward with respect to shoulder member 12 (step S101). .
  • the control device 130 holds the double-acting friction stir welding device 101 and swings or rotates the double-acting friction stir welding device 101 while the dressing member 111 of the cleaning mechanism 110
  • the robot 120 is operated so as to contact the inner peripheral surface of the robot (step S103A).
  • the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12 can be removed (cut off) by the dressing member 111.
  • a cutting tool may be used as the dressing member 111.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the shoulder member 12 (step S104). Next, the control device 130 determines whether or not the time acquired in step S104 has exceeded a preset first time (step S105).
  • step S106A When the control device 130 determines that the time acquired in step S104 has passed the first time (Yes in step S105), the control device 130 executes the process of step S106A.
  • step S106A the control device 130 stops the swing or rotation of the double-acting friction stir welding device 101, and moves the double-acting friction stir welding device 101 to a predetermined position set in advance. Then, the robot 120 is operated.
  • control device 130 drives the tool driver 53 (pin driver 531) such that the distal end surface 11a of the pin member 11 coincides with the distal end surface 12a of the shoulder member 12 (step S107). To end.
  • the double-acting friction stir welding system 100 according to the second modification of the first embodiment configured as described above has the same operation and effect as the double-acting friction stir welding system 100 according to the first embodiment. Play.
  • the dressing member includes a cutting tool and / or a wire brush.
  • the control device operates the robot such that the cutting tool contacts the inner peripheral surface of the shoulder member ((C)).
  • C1) and operating the robot so that the wire brush contacts the inner peripheral surface of the shoulder member (C2) may be configured to be executed.
  • the cleaning mechanism further has an air blow device, and the control device performs (C) before executing (C1) in (C). It may be configured to execute (C0) to operate the air blow device so as to blow air toward the cutting tool.
  • FIG. 8 is a schematic diagram illustrating a schematic configuration of a cleaning mechanism of a double-acting friction stir welding system according to Modification 3 of the first embodiment.
  • the vertical direction and the horizontal direction of the cleaning mechanism are shown as the vertical direction and the horizontal direction in the figure.
  • the double-acting friction stir welding system 100 according to the third modification of the first embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the first embodiment.
  • the configuration of the cleaning mechanism 110 is different.
  • the cleaning mechanism 110 has a box-shaped base 200, a plate-shaped base member 201, and a dressing member 111.
  • a base member 201 is disposed above the base 200, and a dressing member 111 is erected on the base member 201.
  • the dressing member 111 includes a cutting tool 211A and a wire brush 211B.
  • a cutting tool 211A a tool having a cutting blade and a groove may be used.
  • a carbide bar is used as the cutting tool 211A.
  • the cemented carbide bar may be made of a material harder than the material of the article 60 to be joined by the double-action friction stir welding apparatus 101.
  • a carbide bar for aluminum may be used.
  • the cutting tool 211A is disposed so that the axial direction thereof is oriented in the vertical direction, and is fixed by the chuck device 212A.
  • the chuck device 212A is connected to the second rotation driver 112A via a gear 213A and a shaft member 214A. Thereby, the cutting tool 211A can rotate.
  • the second rotation driver 112A, the chuck device 212A, the gear 213A, and the shaft member 214A are covered by an inner cover member 216A. Thereby, when the material of the article 60 to be bonded attached to the inner peripheral surface of the shoulder member 12 is shaved by the cutting tool 211A, it is possible to suppress the chips from entering the inner cover member 216A.
  • the second rotation driver 112A is fixed to the fixing member 217A via the plate member 215A and the inner cover member 216A.
  • the fixing member 217A is configured to be able to advance and retreat in the left-right direction by a linear motion actuator 219 and a linear guide (not shown).
  • a linear motion actuator 219 for example, an air cylinder or the like may be used.
  • the elastic member 220 is connected to the fixing member 217A.
  • a tension spring is used for the elastic member 220.
  • the elastic member 220 is connected to a fixing member 221 erected on the base member 201.
  • the fixing member 217A is provided with an outer cover member 218A so as to cover the inner cover member 216A.
  • An air blow device 300 (air blow gun 301) is disposed in a space between the outer cover member 218A and the inner cover member 216A.
  • the air blow gun 301 is configured to blow off the material of the workpiece 60 adhered to the cutting portion of the cutting tool 211A by air.
  • the air blow gun 301 is connected to an air supply 302 via a pipe 303.
  • An on-off valve (electromagnetic valve) 304 is arranged in the middle of the pipe 303. The opening and closing operation of the on-off valve 304 is controlled by the control device 130.
  • the air blow device 300 may be configured so that the pressure of the air jetted from the air blow gun 301 is 0.2 to 0.4 MPa.
  • the wire brush 211B is disposed so that the axial direction thereof is oriented in the vertical direction, and is fixed by the chuck device 212B.
  • the chuck device 212B is connected to the second rotation driver 112B via a gear 213B and a shaft member 214B. Thereby, the wire brush 211B can rotate.
  • the second rotation driver 112B, the chuck device 212B, the gear 213B, and the shaft member 214B are covered by an inner cover member 216B.
  • the second rotation driver 112B is fixed to a fixing member 217B via a plate member 215B and an inner cover member 216B. Further, an outer cover member 218B is provided on the fixing member 217B so as to cover the inner cover member 216B.
  • FIGS. 9A and 9B are flowcharts showing an example of the operation of the double-acting friction stir welding system according to the third modification.
  • the controller 130 drives (operates) the tool driver 53 (pin driver 531) so that the pin member 11 is immersed inward with respect to the shoulder member 12 (step S11).
  • the control device 130 operates the first rotation driver 57 and the second rotation drivers 112A and 112B (step S12), and causes the shoulder member 12 and the dressing member 111 (the cutting tool 211A and the wire brush 211B) to operate. Rotate.
  • the control device 130 may operate the first rotation driver 57 and the second rotation driver 112A so as to rotate the shoulder member 12 and the cutting tool 211A. In addition, after operating the first rotation driver 57 and / or the second rotation drivers 112A and 112B, the control device 130 causes the pin member 11 to enter the shoulder member 12 inwardly.
  • the tool driver 53 pin driver 531) may be driven. That is, the control device 130 may be configured to perform the processing of step S11 after executing the processing of step S12.
  • control device 130 causes the robot 120 to hold the double-acting friction stir welding device 101, and causes the robot 120 to operate such that the cutting tool 211A comes into contact with the inner peripheral surface of the shoulder member 12 (step S13).
  • the material of the workpiece 60 adhered to the inner peripheral surface of the shoulder member 12 can be removed (cut off) by the cutting tool 211A.
  • control device 130 operates the linear motion actuator 219 so that the fixing member 217A and the like advance rightward. As a result, the elastic member 220 is extended rightward.
  • control device 130 causes the robot 120 to hold the double-acting friction stir welding device 101 and operate the robot 120 so that the cutting tool 211A is located in the internal space of the shoulder member 12. Then, the control device 130 stops the operation of the linear actuator 219 so that the fixing member 217A can move freely.
  • the fixing member 217A and the like are returned to the left by the elastic deformation of the elastic member 220.
  • the inner peripheral surface of the shoulder member 12 and the cutting tool 211A can make line contact, and the cleaning range can be expanded.
  • the control device 130 Before operating the linear motion actuator 219, the control device 130 operates the air supply device 302, opens the valve body of the on-off valve 304, blows air from the air blow gun 301, and cuts the cutting tool. The material of the workpiece 60 attached to the cut portion of the portion 211A may be removed. At this time, the control device 130 may control the air supply device 302 and the on-off valve 304 such that the air blowing time is a predetermined time set in advance (for example, 1 to 5 seconds).
  • the control device 130 when operating the robot 120 so that the cutting tool 211A is located in the space inside the shoulder member 12, the control device 130 operates the robot 120 so that the axis of the shoulder member 12 is oriented in the vertical direction.
  • the robot 120 may be operated so as to be inclined with respect to the vertical direction.
  • the inclination angle may be, for example, 0.1 to 3 °.
  • control device 130 may cause robot 120 to operate such that shoulder member 12 advances and retreats along axis Xr.
  • control device 130 acquires from the clock 134 the time elapsed since the cutting tool 211A was brought into contact with the inner peripheral surface of the shoulder member 12 (step S14). Next, the control device 130 determines whether or not the time acquired in step S14 has passed a preset first time (step S15).
  • control device 130 determines whether the time acquired in step S14 has elapsed until the first time has elapsed. Steps S14 and S15 are repeated. On the other hand, when it is determined that the time acquired in step S14 has passed the first time (Yes in step S15), control device 130 executes the process of step S16.
  • step S16 the control device 130 stops the first rotation driver 57. Note that the control device 130 may also stop the second rotation driver 112A. If the second rotation driver 112B has not been operated in step S12, the control device 130 may operate the second rotation driver 112B here.
  • control device 130 operates the robot 120 such that the wire brush 211B contacts the inner peripheral surface of the shoulder member 12 (step S17). Thereby, the material of the article 60 to be bonded attached to the inner peripheral surface of the shoulder member 12 can be removed (cut off) by the wire brush 211B.
  • the control device 130 may be configured to stop the first rotary driver 57 in step S22 described later without stopping the first rotary driver 57 in step S16. That is, the control device 130 may be configured to operate the robot 120 such that the inner peripheral surface thereof contacts the wire brush 211B in a state where the shoulder member 12 is rotated.
  • control device 130 acquires from the clock 134 the time elapsed since the wire brush 211B was brought into contact with the inner peripheral surface of the shoulder member 12 (step S18). Next, the control device 130 determines whether or not the time acquired in step S18 has passed a preset second time (step S19).
  • the second time can be obtained in advance by an experiment or the like.
  • the second time may be a time required for sufficiently removing the material of the workpiece 60 adhered to the inner peripheral surface of the shoulder member 12. Good.
  • the second time may be, for example, 30 seconds or more from the viewpoint of sufficiently removing the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12, and from the viewpoint of shortening the cleaning time. , 60 seconds or less.
  • the second time may be the same as or different from the first time.
  • control device 130 waits until the time acquired in step S18 passes the second time. Steps S18 and S19 are repeated. On the other hand, when it is determined that the time acquired in step S18 has passed the second time (Yes in step S19), control device 130 executes the process of step S20.
  • step S20 the control device 130 causes the robot to move the double-acting friction stir welding device 101 to a predetermined position (an initial position where the double-acting friction stir welding device 101 is installed). 120 is operated.
  • the controller 130 drives the tool driver 53 (pin driver 531) such that the distal end surface 11a of the pin member 11 matches the distal end surface 12a of the shoulder member 12 (step S21).
  • the control device 130 stops the second rotation driver 112A and the second rotation driver 112B (step S22), and ends the program.
  • the double-acting friction stir welding system 100 according to Modification 3 configured as described above has the same operation and effect as the double-acting friction stir welding system 100 according to the first embodiment.
  • the control device 130 operates the first rotary driver 57 and the second rotary drivers 112A and 112B (step S12), and then the robot 120 In this embodiment, the robot 120 is operated so that the double-acting friction stir welding apparatus 101 is held and the cutting tool 211A comes into contact with the inner peripheral surface of the shoulder member 12 (step S13). Not done.
  • the first rotation is performed.
  • a mode in which the driver 57 and the second rotation drivers 112A and 112B are operated may be employed.
  • the double-acting friction stir welding system according to the second embodiment is the same as the double-acting friction stir welding system according to the first embodiment (including modifications), except that the cleaning mechanism rotates the dressing member in a second rotational drive.
  • the control device further includes: a second rotation driver configured to operate the tool driver such that the pin member is immersed inside the shoulder member (A), and to rotate the dressing member.
  • a second rotation driver configured to operate the tool driver such that the pin member is immersed inside the shoulder member (A), and to rotate the dressing member.
  • FIG. 10 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the second embodiment.
  • the double-acting friction stir welding system 100 according to the second embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the first embodiment, but a cleaning mechanism. 110 is different in that it further includes a second rotation driver 112.
  • the second rotation driver 112 is configured to rotate the dressing member 111, and may be, for example, a motor such as an electric motor.
  • a sensor such as a rotary encoder may be configured to detect the rotation speed of the second rotation driver 112 and output the detected rotation speed to the control device 130.
  • FIG. 11 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the second embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the second embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the first embodiment. However, the difference is that the processes of steps S102A and S108A are executed instead of steps S102 and S108.
  • step S102A the control device 130 operates the second rotation driver 112 to rotate the dressing member 111.
  • the control device 130 causes the robot 120 to operate such that the double-acting friction stir welding device 101 is held and the dressing member 111 of the cleaning mechanism 110 contacts the inner peripheral surface of the shoulder member 12 (step S103). ).
  • the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12 can be removed by the dressing member 111.
  • step S108A the control device 130 stops the second rotation driver 112, stops the rotation of the dressing member 111, and ends the present program.
  • the thus configured double-acting friction stir welding system 100 according to the second embodiment also has the same operation and effect as the double-acting friction stir welding system 100 according to the first embodiment.
  • the cleaning mechanism 110 employs the form having the second rotation driver 112 for rotating the dressing member 111, but is not limited thereto.
  • a mode in which a rotation driver for rotating the dressing member 111 is provided at the tip of the robot 120 may be adopted.
  • the controller holds the cleaning mechanism so that the dressing member contacts the inner peripheral surface of the shoulder member. Operate the robot.
  • the configuration of the double-acting friction stir welding system of the first modification is the same as that of the double-acting friction stir welding system according to the first embodiment, and a detailed description thereof will be omitted.
  • FIG. 12 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the first modification of the second embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the first modification of the second embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the second embodiment. It is the same, except that steps S103B and S106B are executed instead of steps S103 and S106.
  • control device 130 causes cleaning mechanism 110 (dressing member 111) to be held, and causes robot 120 to operate such that dressing member 111 of cleaning mechanism 110 abuts on the inner peripheral surface of shoulder member 12.
  • the double-acting friction stir welding apparatus 101 may be stationary or may be held by a robot other than the robot 120.
  • control device 130 causes the robot 120 to hold a plurality of types of dressing members 111 and May be cleaned.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the shoulder member 12 (step S104). Next, the control device 130 determines whether or not the time acquired in step S104 has exceeded a preset first time (step S105).
  • step S104 when it is determined that the time acquired in step S104 has passed the first time (Yes in step S105), the control device 130 moves the cleaning mechanism 110 to a predetermined position (the cleaning mechanism 110).
  • the robot 120 is operated so as to move to the initial position where is installed (step S106B).
  • the double-acting friction stir welding system according to the second modification of the second embodiment is configured such that the robot can swing or rotate around the axis while holding the double-acting friction stir welding device.
  • the control device holds the double-acting friction stir welding device so that the dressing member contacts the inner peripheral surface of the shoulder member while swinging the double-acting friction stir welding device. , To operate the robot.
  • FIG. 13 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the second modification of the second embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the second modification of the second embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the second embodiment.
  • the operations are the same, except that the operations (processes) of steps S103A and S106A are executed instead of steps S103 and S106.
  • control device 130 operates the second rotation driver 112 to rotate the dressing member 111 (step S102A).
  • control device 130 holds the double-acting friction stir welding device 101 and swings or rotates the double-acting friction stir welding device 101 while the dressing member 111 of the cleaning mechanism 110
  • the robot 120 is operated so as to contact the inner peripheral surface of the robot (step S103A).
  • the material of the article 60 adhered to the inner peripheral surface of the shoulder member 12 can be removed (cut off) by the dressing member 111.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the shoulder member 12 (step S104). Next, the control device 130 determines whether or not the time acquired in step S104 has exceeded a preset first time (step S105).
  • step S106A When the control device 130 determines that the time acquired in step S104 has passed the first time (Yes in step S105), the control device 130 executes the process of step S106A.
  • step S106A the control device 130 stops the swing or rotation of the double-acting friction stir welding device 101, and moves the double-acting friction stir welding device 101 to a predetermined position set in advance. Then, the robot 120 is operated.
  • control device 130 drives the tool driver 53 (pin driver 531) such that the distal end surface 11a of the pin member 11 matches the distal end surface 12a of the shoulder member 12 (step S107).
  • control device 130 stops the first rotation driver 57 (step S108), and ends the program.
  • the double-acting friction stir welding system 100 according to the second modification of the second embodiment configured as described above has the same operation and effect as the double-acting friction stir welding system 100 according to the second embodiment. Play.
  • the double-acting friction stir welding system according to the third embodiment is the same as the double-acting friction stir welding system according to the first or second embodiment (including modified examples), except that the control device is different from the pin member in (A).
  • the control device is different from the pin member in (A).
  • FIG. 14 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the third embodiment.
  • the double-acting friction stir welding system 100 according to the third embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the first embodiment.
  • the friction stir welding apparatus 101 has a position detector 58 configured to detect the position of the tip end surface 11a of the pin member 11 in the direction of the axis Xr and output the detected position information to the control device 130. Is different.
  • position detector 58 Various known position sensors can be used as the position detector 58.
  • an LVDT, an encoder, or the like can be used.
  • step S11 is executed according to the flow shown in FIG.
  • FIG. 15 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the third embodiment.
  • step S101 or step S11 the control device 130 first sets the tool driver 53 (pin driver 531) such that the pin member 11 is immersed inward with respect to the shoulder member 12. Is driven (operated) (step S1001).
  • control device 130 may operate the tool driver 53 (pin driver 531) so that the pin member 11 is pulled up with a constant load. Further, the control device 130 operates the tool driver 53 so that the current value supplied to the servomotor constituting the tool driver 53 does not become larger than a predetermined value (for example, 5 A) set in advance. Is also good.
  • a predetermined value for example, 5 A
  • control device 130 acquires, from the position detector 58, position information in the direction of the axis Xr of the distal end surface 11a of the pin member 11 detected by the position detector 58 (step S1002).
  • control device 130 determines whether or not the position in the direction of the axis Xr of the distal end surface 11a of the pin member 11 obtained in step S1002 has reached the first position (step S1003).
  • the first position can be set in advance by an experiment or the like, and the outer peripheral surface of the pin member 11 and / or the inner peripheral surface of the shoulder member 12 are made of a material of the article 60 to be bonded as compared with other portions. Is the part where the adhesion amount is large.
  • the first position is, for example, a position that is the most inward with respect to the shoulder member 12 (a position that has moved upward) when the distal end surface 11a of the pin member 11 is joining the article 60 to be joined. Is also good.
  • control device 130 determines that the position of the distal end surface 11a of the pin member 11 in the direction of the axis Xr acquired in step S1002 has not reached the first position (No in step S1003), the control device 130 Steps S1002 and S1003 are repeated until it is determined that the position of the distal end surface 11a in the direction of the axis Xr has reached the first position.
  • step S1004 executes
  • step S1004 the control device 130 operates the tool driver 53 (pin driver 531) so that the moving speed of the pin member 11 increases. Specifically, the control device 130 determines that the moving speed after the pin member 11 reaches the first position is higher than the moving speed until the pin member 11 reaches the first position. The tool driver 53 (pin driver 531) is operated. More specifically, the control device 130 increases the rotation speed of the servo motor that forms the tool driver 53.
  • control device 130 acquires, from the position detector 58, position information in the direction of the axis Xr of the tip end surface 11a of the pin member 11 detected by the position detector 58 (step S1005).
  • control device 130 determines whether or not the position in the axis Xr direction of the tip end surface 11a of the pin member 11 acquired in step S1005 has reached the second position (step S1006).
  • the second position can be set in advance by an experiment or the like, and, for example, a position where the distal end surface 11a of the pin member 11 can be most inward with respect to the shoulder member 12 (as the device, the uppermost position) Moveable position).
  • control device 130 determines that the position in the axis Xr direction of the tip end surface 11a of the pin member 11 acquired in step S1005 has not reached the second position (No in step S1006), the control device 130 determines Steps S1005 and S1006 are repeated until it is determined that the position of the distal end surface 11a in the direction of the axis Xr has reached the second position.
  • step S1006 determines that the position of the tip end surface 11a of the pin member 11 in the direction of the axis Xr acquired in step S1005 has reached the second position (Yes in step S1006), the tool driver 53 (Pin driver 531) is stopped (step S1007), and processing such as step S102 or step S12 is executed.
  • the thus configured double-acting friction stir welding system 100 according to the third embodiment also has the same operational effects as the double-acting friction stir welding system 100 according to the first embodiment.
  • the controller 130 determines that the moving speed after the pin member 11 has reached the first position is such that the pin member 11 is in the first position.
  • the tool driver 53 pin driver 531 is operated so as to be faster than the moving speed until the movement is reached.
  • control device 130 operates the tool driver 53 (pin driver 531) so that the moving speed of the pin member 11 decreases until the pin member 11 reaches the first position. Thereby, a large load is applied to the pin member 11, and damage to the pin member 11 can be suppressed.
  • control device 130 can reduce the time required for the processing in step S101 or step S11 by increasing the moving speed of the pin member 11, and by extension, The time required for cleaning the member 12 can be reduced.
  • the double-acting friction stir welding system according to the fourth embodiment is the same as the double-acting friction stir welding system according to any one of the first to third embodiments (including modifications), except that the cleaning mechanism is an internal space of the shoulder member. And an operating portion configured to be able to advance and retreat the auxiliary portion along the axis.
  • the control device according to (A) further includes: The robot is operated so that the distal end surface of the pin member comes into contact with the distal end of the auxiliary portion, and the operating portion is operated so as to synchronize with the tool driver. Is immersed inside the shoulder member.
  • FIG. 16 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the fourth embodiment.
  • the double-acting friction stir welding system 100 according to the fourth embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the first embodiment, but a cleaning mechanism. 110 is different in that it further has an auxiliary member 113.
  • the configuration of the auxiliary member 113 will be described with reference to FIG.
  • FIG. 17 is a schematic diagram showing a schematic configuration of an auxiliary member in the double-acting friction stir welding system shown in FIG. In FIG. 17, only a part (the pin member 11 and the shoulder member 12) of the double-acting friction stir welding apparatus 101 is shown. In FIG. 17, the vertical direction of the double-acting friction stir welding apparatus 101 is shown as the vertical direction in the figure.
  • the auxiliary member 113 includes an auxiliary portion 113A configured to be able to pass through the internal space of the shoulder member 12, and an operating portion configured to be able to move the auxiliary portion 113A forward and backward along the axis Xr. 113B.
  • Auxiliary portion 113A is formed in an L-shape here, and a bar portion extending in the vertical direction is configured to be able to pass through the internal space of shoulder member 12.
  • the operating unit 113B is configured by, for example, a linear motion actuator.
  • a linear motion actuator For example, an air cylinder or the like may be used as the linear actuator.
  • step S11 is executed according to the flow shown in FIG.
  • FIG. 18 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the fourth embodiment.
  • step S101 or step S11 the control device 130 first holds the double-acting friction stir welding device 101 and holds the distal end surface of the pin member 11 of the double-acting friction stir welding device 101.
  • the robot 120 is operated such that the (lower end surface) 11a contacts the distal end surface (upper end surface) of the auxiliary portion 113A of the auxiliary member 113 (step S1011).
  • the operator and / or another robot may arrange the auxiliary member 113 so that the distal end surface of the auxiliary portion 113A contacts the distal end surface 11a of the pin member 11.
  • control device 130 operates the tool driver 53 (pin driver 531) so that the pin member 11 is immersed inward with respect to the shoulder member 12, and controls the operating portion 113B with the tool driver. 53 (step S1012), and execute processing such as step S102 or step S12.
  • the movement of the pin member 11 can be assisted by the assisting portion 113A.
  • the thus configured double-acting friction stir welding system 100 according to the fourth embodiment also provides the same operational effects as the double-acting friction stir welding system 100 according to the first embodiment.
  • control device 130 controls the tool driver 53 (pin drive) so that the pin member 11 is immersed inward with respect to the shoulder member 12.
  • the device 531) is operated, and the operating unit 113B is operated so as to synchronize with the tool driver 53.
  • the movement of the pin member 11 can be assisted by the auxiliary portion 113A, and the breakage of the pin member 11 can be suppressed. Further, by assisting the movement of the pin member 11, the moving speed of the pin member 11 can be increased, and the time required for cleaning the shoulder member 12 can be reduced.
  • the control device 130 determines that the moving speed after the pin member 11 has reached the first position indicates that the pin member 11 is in the first position.
  • the tool driver 53 pin driver 531
  • the control device 130 may operate the operation unit 113B so as to synchronize with the moving speed of the pin member 11.
  • the double-acting friction stir welding system according to the fifth embodiment is the same as the double-acting friction stir welding system according to any one of the first to third embodiments (including modified examples), except that the cleaning mechanism is an internal space of the shoulder member.
  • An auxiliary member having an auxiliary member configured to be able to pass through, an operating unit configured to be able to advance and retreat the auxiliary unit along the axis, and a control unit that controls the operating unit, further comprising:
  • the control device operates the robot so that the distal end surface of the pin member comes into contact with the distal end of the auxiliary portion, and operates the tool driver so that the pin member is immersed inside the shoulder member.
  • the control unit operates the operating unit to synchronize with the tool driver to assist the movement of the pin member.
  • FIG. 19 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the fifth embodiment.
  • the double-acting friction stir welding system 100 according to the fifth embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the first embodiment, but a cleaning mechanism. 110 is different in that it further includes an auxiliary member 113 having a control unit 150.
  • the configuration of the auxiliary member 113 is similar to that of the auxiliary member 113 of the double-acting friction stir welding system 100 according to the fourth embodiment except that the auxiliary member 113 has the control unit 150, and thus a detailed description thereof is omitted. I do.
  • the control unit 150 includes an arithmetic unit such as a microprocessor and a CPU, and a storage unit such as a ROM and a RAM.
  • the storage device stores information such as a basic program and various fixed data.
  • the arithmetic unit controls various operations of the auxiliary member 113 by reading and executing software such as a basic program stored in the storage device.
  • the control unit 150 is configured to be able to communicate with the control device 110 by appropriate means (for example, a wireless LAN or the like).
  • the control unit 150 may be configured by a single control unit 150 that performs centralized control, or may be configured by a plurality of control units 150 that perform distributed control in cooperation with each other.
  • the control unit 150 may be configured by a microcomputer, or may be configured by an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
  • step S11 is executed according to the flow shown in FIG.
  • FIG. 20 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the fifth embodiment.
  • step S101 or step S11 the control device 130 first holds the double-acting friction stir welding device 101, and the distal end surface of the pin member 11 of the double-acting friction stir welding device 101
  • the robot 120 is operated such that the (lower end surface) 11a contacts the distal end surface (upper end surface) of the auxiliary portion 113A of the auxiliary member 113 (step S1011).
  • the operator and / or another robot may arrange the auxiliary member 113 so that the distal end surface of the auxiliary portion 113A contacts the distal end surface 11a of the pin member 11.
  • the controller 130 operates the tool driver 53 (pin driver 531) so that the pin member 11 is immersed inward with respect to the shoulder member 12, and the control unit 150 controls the operating unit 113B.
  • An operation is performed so as to synchronize with the tool driver 53 (step S1012A), and processing such as step S102 or step S12 is executed.
  • the movement of the pin member 11 can be assisted by the assisting portion 113A.
  • the thus configured double-acting friction stir welding system 100 according to the fifth embodiment also has the same operation and effect as the double-acting friction stir welding system 100 according to the first embodiment.
  • the controller 130 controls the tool driver 53 (pin drive) so that the pin member 11 is immersed inward with respect to the shoulder member 12.
  • the controller 531) is operated, and the control unit 150 is configured to operate the operating unit 113B in synchronization with the tool driver 53.
  • the movement of the pin member 11 can be assisted by the auxiliary portion 113A, and the breakage of the pin member 11 can be suppressed. Further, by assisting the movement of the pin member 11, the moving speed of the pin member 11 can be increased, and the time required for cleaning the shoulder member 12 can be reduced.
  • the double-acting friction stir welding system according to the sixth embodiment is the same as the double-acting friction stir welding system according to the first to fifth embodiments (including the modifications), except that the control device includes a pin member and a shoulder member.
  • the control device includes a pin member and a shoulder member.
  • the configuration of the double-acting friction stir welding system according to the sixth embodiment is the same as that of the double-acting friction stir welding system according to the first embodiment, and a detailed description thereof will be omitted.
  • FIG. 21 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the sixth embodiment.
  • the arithmetic processing unit 131 of the control device 130 executes the program stored in the storage device 133. By reading, the following operation (process) is performed.
  • the worker may remove the clamp member 54 from the double-acting friction stir welding apparatus 101 in advance.
  • the control device 130 drives (operates) the tool driver 53 (pin driver 531) so that the pin member 11 projects from the distal end of the shoulder member 12 (step S201).
  • the control device 130 operates the first rotation driver 57 (step S202) to rotate the pin member 11 and the shoulder member 12.
  • control device 130 holds the double-acting friction stir welding device 101 so that the dressing member 111 of the cleaning mechanism 110 contacts the outer peripheral surface of the pin member 11 and / or the outer peripheral surface of the shoulder member 12. Then, the robot 120 is operated (step S203).
  • control device 130 may operate the robot 120 so that the dressing member 111 advances and retreats along the axis Xr. Further, control device 130 may cause robot 120 to operate so as to orbit along the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12.
  • control device 130 causes the robot 120 to contact the dressing member 111 with one of the outer peripheral surfaces of the pin member 11 and the shoulder member 12 and then with the other outer peripheral surface. May be operated.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the outer peripheral surface of the pin member 11 and / or the outer peripheral surface of the shoulder member 12 (step S204). Next, the control device 130 determines whether or not the time acquired in step S204 has passed a preset third time (step S205).
  • the third time can be obtained in advance by an experiment or the like.
  • the material of the article 60 to be bonded adhered to the outer peripheral surface of the pin member 11 and / or the outer peripheral surface of the shoulder member 12 is sufficiently removed. It may be the time it takes to do so.
  • step S204 determines that the time acquired in step S204 has not passed the third time (No in step S205)
  • the control device 130 waits until the time acquired in step S204 passes the third time. Steps S204 and S205 are repeated.
  • the control device 130 determines that the time acquired in step S204 has passed the third time (Yes in step S205)
  • the control device 130 executes the process of step S206.
  • step S206 the control device 130 controls the robot to move the double-acting friction stir welding device 101 to a predetermined position (an initial position where the double-acting friction stir welding device 101 is installed). 120 is operated.
  • the controller 130 drives the tool driver 53 (pin driver 531) such that the distal end surface 11a of the pin member 11 matches the distal end surface 12a of the shoulder member 12 (step S207).
  • the control device 130 stops the first rotation driver 57 (step S208), and ends this program.
  • the dressing member 111 is rotated by the control device 130 while the pin member 11 and the shoulder member 12 are rotated.
  • the robot 120 is configured to operate such that the robot 120 is in contact with the outer peripheral surface of the shoulder member 11 and / or the outer peripheral surface of the shoulder member 12.
  • a mode in which the outer peripheral surface of the pin member 11 and / or the outer peripheral surface of the shoulder member 12 is cleaned under the control of the control device 130 is employed.
  • the present invention is not limited to this. Before the control device 130 performs cleaning of the inner peripheral surface of the shoulder member 12 or after performing cleaning of the inner peripheral surface of the shoulder member 12, the outer peripheral surface of the pin member 11 and / or the outer peripheral surface of the shoulder member 12 May be adopted.
  • control device 130 may execute the processing of steps S201 and S203 to S205 between the processing of steps S102 and S103 or between the processing of steps S105 and S106.
  • the controller 130 rotates the first rotary driver 57 to rotate the pin member 11 and the shoulder member 12.
  • the present invention is not limited to this.
  • the cleaning mechanism 110 has a second rotary driver 112, and the control device 130 operates the second rotary driver 112 to rotate the dressing member 111. May be.
  • FIG. 22 is a schematic diagram illustrating an example of a dressing member.
  • the dressing member 111 has a cylindrical tubular member 111A and a brush member 111B.
  • the brush member 111B is arranged on the inner peripheral surface of the tubular member 111A so as to extend in the radial direction toward the center axis thereof.
  • the cylindrical member 111A is formed in a cylindrical shape, the present invention is not limited to this.
  • the cylindrical member 111A only needs to be formed in a cylindrical shape, and its opening shape is arbitrary.
  • the control device causes the cleaning mechanism to be held, and the dressing member has an outer peripheral surface of the pin member and / or an outer peripheral surface of the shoulder member.
  • the robot is configured to operate so as to contact the surface.
  • the configuration of the double-acting friction stir welding system according to the first modification of the sixth embodiment is the same as that of the double-acting friction stir welding system according to the first embodiment, and a detailed description thereof will be omitted.
  • FIG. 23 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the first modification of the sixth embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the first modification of the sixth embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the sixth embodiment. It is the same, except that steps S203A and S206A are executed instead of steps S203 and S206.
  • control device 130 causes cleaning mechanism 110 (dressing member 111) to be held, so that dressing member 111 of cleaning mechanism 110 contacts the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12.
  • the robot 120 is operated as described above (step S203A).
  • the double-acting friction stir welding apparatus 101 may be stationary or may be held by a robot other than the robot 120.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the outer peripheral surface of the pin member 11 and / or the outer peripheral surface of the shoulder member 12 (step S204). Next, the control device 130 determines whether or not the time acquired in step S204 has passed a preset third time (step S205).
  • step S204 when it is determined that the time acquired in step S204 has passed the third time (Yes in step S205), the control device 130 moves the cleaning mechanism 110 to a predetermined position (the cleaning mechanism 110).
  • the robot 120 is operated so as to move to the initial position where is installed (step S206A).
  • the controller 130 rotates the first rotary driver 57 to rotate the pin member 11 and the shoulder member 12.
  • the present invention is not limited to this.
  • the cleaning mechanism 110 has a second rotary driver 112, and the control device 130 operates the second rotary driver 112 to rotate the dressing member 111. May be.
  • the double-acting friction stir welding system is configured such that the robot can swing or rotate around the axis while holding the double-acting friction stir welding device.
  • the control device controls the outer peripheral surface of the pin member and / or the outer peripheral surface of the shoulder member while swinging the double-acting friction stir welding device while holding the double-acting friction stir welding device.
  • the robot is configured to operate so as to contact the dressing member.
  • FIG. 24 is a flowchart illustrating an example of the operation of the double-acting friction stir welding system according to the second modification of the sixth embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the second modification of the sixth embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the sixth embodiment.
  • the operations are the same, except that the operations (processes) of steps S202 and S208 are not executed, and the operations (processes) of steps S203B and S206B are executed instead of steps S203 and S206.
  • control device 130 drives (operates) tool driver 53 (pin driver 531) such that pin member 11 protrudes from the tip of shoulder member 12 (step S201).
  • the control device 130 holds the double-acting friction stir welding device 101 and swings or rotates the double-acting friction stir welding device 101 while the dressing member 111 of the cleaning mechanism 110
  • the robot 120 is operated so as to contact the outer peripheral surface of the shoulder member 12 (step S103B).
  • the material of the workpiece 60 adhered to the outer peripheral surface of the pin member 11 and / or the shoulder member 12 can be removed (cut off) by the dressing member 111.
  • a cutting tool may be used as the dressing member 111.
  • control device 130 acquires from the clock 134 the time elapsed since the dressing member 111 was brought into contact with the outer peripheral surface of the pin member 11 and / or the shoulder member 12 (step S204). Next, the control device 130 determines whether or not the time acquired in step S204 has passed a preset third time (step S205).
  • step S206B If the control device 130 determines that the time acquired in step S204 has passed the third time (Yes in step S205), the control device 130 executes the process of step S206B.
  • step S206B the control device 130 stops the swing or rotation of the double-acting friction stir welding device 101 and moves the double-acting friction stir welding device 101 to a predetermined position set in advance. Then, the robot 120 is operated.
  • control device 130 drives the tool driver 53 (pin driver 531) such that the distal end surface 11a of the pin member 11 coincides with the distal end surface 12a of the shoulder member 12 (step S207). To end.
  • the double-acting friction stir welding system according to the seventh embodiment is the same as the double-acting friction stir welding system according to any of the first to sixth embodiments (including modified examples) except that
  • the cleaning device further includes a second rotation driver configured to rotate the dressing member, further comprising a clamp member formed into a cylindrical shape and having the pin member and the shoulder member inserted therein.
  • the double-acting friction stir welding system according to the seventh embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the second embodiment. Is different.
  • FIG. 25 is a schematic diagram showing a schematic configuration of a double-acting friction stir welding system according to the seventh embodiment.
  • the vertical direction in the figure is represented as the vertical direction in the double-acting friction stir welding apparatus.
  • the double-acting friction stir welding apparatus 101 in the double-acting friction stir welding system 100 according to the seventh embodiment is the same as the double-acting friction stir welding system 100 according to the first embodiment.
  • the basic configuration is the same as that of the friction stir welding apparatus 101 except that the tool driver 53 further includes a retracting mechanism 533 capable of retracting the pin member 11 and the shoulder member 12 with respect to the clamp member 54. different.
  • the retracting mechanism 533 is disposed so as to connect the movable body 522 and the first rotation driver 57, and is configured by a linear motion actuator.
  • the direct-acting actuator may be composed of, for example, a servo motor and a rack and pinion, a servo motor and a ball screw, or an air cylinder.
  • the operation of the retracting mechanism 533 allows the pin member 11 and the shoulder member 12 to move (retreat) with respect to the clamp member 54.
  • FIG. 26 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the seventh embodiment.
  • the control device 130 drives (operates) the tool driver 53 (the retracting mechanism 533) so that the pin member 11 and the shoulder member 12 enter the clamp member 54 inward (step S301).
  • the control device 130 operates the second rotation driver 112 (step S302) to rotate the dressing member 111.
  • control device 130 causes the robot 120 to operate such that the double-acting friction stir welding device 101 is held and the dressing member 111 of the cleaning mechanism 110 contacts the inner peripheral surface of the clamp member 54 (step S303).
  • control device 130 may operate the robot 120 so that the dressing member 111 advances and retreats in the space inside the clamp member 54 along the axis Xr. If the robot 120 already holds the double-acting friction stir welding apparatus 101, the control device 130 controls the dressing member 111 of the cleaning mechanism 110 to abut on the inner peripheral surface of the clamp member 54. Then, the robot 120 is operated.
  • the material of the workpiece 60 adhered to the inner peripheral surface of the clamp member 54 can be removed by the dressing member 111.
  • control device 130 acquires from the clock 134 the time that has elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the clamp member 54 (step S304). Next, the control device 130 determines whether or not the time acquired in step S304 has passed a preset fourth time (step S305).
  • the fourth time can be obtained in advance by an experiment or the like. For example, even if it is a time required to sufficiently remove the material of the article 60 to be bonded attached to the inner peripheral surface of the clamp member 54, Good.
  • step S304 determines whether the time acquired in step S304 has passed the fourth time. Steps S304 and S305 are repeated. On the other hand, when it is determined that the time acquired in step S304 has passed the fourth time (Yes in step S305), the control device 130 executes the process of step S306.
  • step S306 the control device 130 controls the robot to move the double-acting friction stir welding device 101 to a predetermined position (an initial position where the double-acting friction stir welding device 101 is installed). 120 is operated.
  • control device 130 drives the tool driver 53 (projection mechanism 533) such that the distal end surface 11a of the pin member 11 and the distal end surface 12a of the shoulder member 12 coincide with the distal end surface 54a of the clamp member 54. (Step S307). Next, the control device 130 stops the second rotation driver 112 (step S308), and ends this program.
  • the dressing member 111 rotates the inner periphery of the clamp member 54 while the control device 130 rotates the dressing member 111.
  • the robot 120 is configured to operate so as to contact the surface.
  • the material of the workpiece 60 adhered to the inner peripheral surface of the clamp member 54 can be removed by the dressing member 111.
  • a mode in which the inner peripheral surface of the clamp member 54 is cleaned under the control of the control device 130 is employed, but the present invention is not limited to this.
  • the control device 130 performs the cleaning of the inner peripheral surface of the clamp member 54 before performing the cleaning of the inner peripheral surface of the shoulder member 12 or after performing the cleaning of the inner peripheral surface of the shoulder member 12. May be.
  • control device 130 executes cleaning of the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12 or executes the cleaning of the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12. Later, a mode in which the inner peripheral surface of the clamp member 54 is cleaned may be adopted. In this case, the control device 130 may control the outer peripheral surface of the pin member 11 and / or the shoulder member 12 before cleaning the inner peripheral surface of the shoulder member 12 or after performing the cleaning of the inner peripheral surface of the shoulder member 12. May be performed, and then the inner peripheral surface of the clamp member 54 may be cleaned.
  • control device 130 executes cleaning of the inner peripheral surface of shoulder member 12, cleaning of the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12, and cleaning of the inner peripheral surface of clamp member 54.
  • the order of cleaning may be arbitrarily performed.
  • the double-acting friction stir welding device further includes a clamp member formed into a cylindrical shape and having a pin member and a shoulder member inserted therein.
  • the cleaning mechanism further includes a second rotary driver for rotating the dressing member, and the control device operates the second rotary driver so that the dressing member rotates (B1), the pin member and the shoulder.
  • the tool driver is operated so that the member is immersed inside the clamp member (F)
  • the robot is operated so that the cleaning mechanism is held and the dressing member contacts the inner peripheral surface of the clamp member.
  • (G1) is further executed.
  • the configuration of the double-acting friction stir welding system according to the first modification of the seventh embodiment is the same as that of the double-acting friction stir welding system according to the seventh embodiment, and a detailed description thereof will be omitted.
  • FIG. 27 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the first modification of the seventh embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the first modification of the seventh embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the seventh embodiment. It is the same, except that steps S303A and S306A are executed instead of steps S303 and S306.
  • control device 130 causes cleaning mechanism 110 (dressing member 111) to be held, and causes robot 120 to operate such that dressing member 111 of cleaning mechanism 110 abuts on the inner peripheral surface of clamp member 54. (Step S303A).
  • control device 130 acquires from the clock 134 the time that has elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the clamp member 54 (step S304). Next, the control device 130 determines whether or not the time acquired in step S304 has passed a preset fourth time (step S305).
  • step S304 when it is determined that the time acquired in step S304 has passed the fourth time (Yes in step S305), the control device 130 moves the cleaning mechanism 110 to a predetermined position (the cleaning mechanism 110).
  • the robot 120 is operated to move to the (initial position where is installed) (step S306A).
  • the double-acting friction stir welding system according to the second modification of the seventh embodiment is configured such that the robot can swing or rotate around the axis while holding the double-acting friction stir welding device.
  • the control device holds the double-acting friction stir welding device so that the dressing member comes into contact with the inner peripheral surface of the clamp member while swinging the double-acting friction stir welding device. , To operate the robot.
  • the double-acting friction stir welding system 100 of the second modification of the seventh embodiment has the same basic configuration as the double-acting friction stir welding system 100 of the second modification of the first embodiment. Detailed description is omitted.
  • FIG. 28 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the second modification of the seventh embodiment.
  • the operation of the double-acting friction stir welding system 100 according to the second modification of the seventh embodiment is basically the same as the operation of the double-acting friction stir welding system 100 according to the seventh embodiment.
  • the operations are the same, except that the operations (processes) of steps S303B and S306B are executed instead of steps S303 and S306.
  • control device 130 holds the double-acting friction stir welding device 101 and swings or rotates the double-acting friction stir welding device 101, while the dressing member 111 of the cleaning mechanism 110
  • the robot 120 is operated so as to contact the inner peripheral surface of the clamp member 54 (Step S303B).
  • the material of the article 60 adhered to the inner peripheral surface of the clamp member 54 can be removed (cut off) by the dressing member 111.
  • control device 130 acquires from the clock 134 the time that has elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the clamp member 54 (step S304). Next, the control device 130 determines whether or not the time acquired in step S304 has passed a preset fourth time (step S305).
  • step S306B executes the process of step S306B.
  • step S306B the control device 130 stops the swing or rotation of the double-acting friction stir welding device 101 and moves the double-acting friction stir welding device 101 to a predetermined position set in advance. Then, the robot 120 is operated.
  • control device 130 drives the tool driver 53 (projection mechanism 533) such that the distal end surface 11a of the pin member 11 and the distal end surface 12a of the shoulder member 12 coincide with the distal end surface 54a of the clamp member 54. (Step S307). Next, the control device 130 stops the second rotation driver 112 (step S308), and ends this program.
  • the double-acting friction stir welding system includes a double-acting friction stir welding device, a cleaning mechanism having a dressing member, a robot, a stock mechanism, and a control device.
  • the friction stir welding apparatus is formed in a cylindrical shape, and a pin member configured to be capable of rotation around an axis and advance / retreat in a direction along the axis, and a pin member formed in a cylindrical shape.
  • the robot is operated so that the material and / or the shoulder member is removed and the pin member and / or the shoulder member are arranged on the stock mechanism so that the axis is oriented vertically (H)
  • the dressing member rotates so that the dressing member rotates.
  • the second rotary driver is operated (I)
  • the cleaning mechanism is held so as to contact at least one of the outer peripheral surface of the pin member, the inner peripheral surface of the shoulder member, and the outer peripheral surface of the shoulder member.
  • the robot is operated (J).
  • FIG. 29 is a block diagram showing a schematic configuration of a double-acting friction stir welding system according to the eighth embodiment.
  • the double-acting friction stir welding system 100 according to the eighth embodiment has the same basic configuration as the double-acting friction stir welding system 100 according to the second embodiment, but has a stock mechanism. 140 is further provided.
  • FIG. 30 is a schematic diagram showing a schematic configuration of the stock mechanism shown in FIG. In FIG. 30, the vertical direction in the stock mechanism is represented as the vertical direction in the drawing.
  • the stock mechanism 140 has an outer cylinder 71, an inner cylinder 72, a first lid member 81, and a second lid member.
  • the outer cylinder 71 and the inner cylinder 72 are each formed in a cylindrical shape, and a first lid member 81 and a second lid member 82 are arranged on the lower end surfaces thereof.
  • the first lid member 81 is placed on a floor or the like, and the second lid member 82 is placed on the upper surface of the first lid member 81.
  • An elastic member 73 is provided in a cylindrical space between the outer cylinder 71 and the inner cylinder 72. Specifically, the elastic member 73 is provided so as to connect the inner peripheral surface of the outer cylinder 71 and the outer peripheral surface of the inner cylinder 72.
  • the elastic members 73 may be provided at a plurality of locations. As the elastic member 73, for example, a spring, rubber, or the like may be used.
  • a positioning member 74 for positioning the shoulder member 12 is provided at an appropriate position on the inner peripheral surface of the inner cylinder 72.
  • the shoulder member 12 may be hold
  • FIG. 31 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the eighth embodiment.
  • the arithmetic processing unit 131 of the control device 130 executes the program stored in the storage device 133. By reading, the following operation (process) is performed.
  • the controller 130 operates the robot 120 so that the pin member 11 and / or the shoulder member 12 are removed from the double-acting friction stir welding apparatus 101 and mounted on the stock mechanism 140 (step S401). At this time, the control device 130 operates the robot 120 such that the distal end surface 11a of the pin member 11 and / or the distal end surface 12a of the shoulder member 12 are located above.
  • control device 130 executes the process of step S401. Not configured.
  • control device 130 operates the second rotation driver 112 (step S402) to rotate the dressing member 111.
  • control device 130 causes the cleaning mechanism 110 to be held, and the dressing member 111 of the cleaning mechanism 110 is used for the outer peripheral surface of the pin member 11, the inner peripheral surface of the shoulder member 12, and the outer peripheral surface of the shoulder member 12.
  • the robot 120 is operated so as to contact at least one of the surfaces (step S403).
  • the material of the workpiece 60 adhered to at least one of the outer peripheral surface of the pin member 11, the inner peripheral surface of the shoulder member 12, and the outer peripheral surface of the shoulder member 12 is transferred to the dressing member 111. Can be removed.
  • control device 130 acquires from the clock 134 the time that has elapsed since the dressing member 111 was brought into contact with any surface (step S404). Next, the control device 130 determines whether or not the time acquired in step S404 has exceeded a preset fifth time (step S405).
  • the fifth time can be determined in advance by an experiment or the like, and may be, for example, a time required for sufficiently removing the material of the article 60 to be bonded to any surface.
  • step S404 determines whether the time acquired in step S404 has elapsed until the fifth time has elapsed. Steps S404 and S405 are repeated. On the other hand, when the control device 130 determines that the time acquired in step S404 has passed the fifth time (Yes in step S405), the control device 130 executes the process of step S406.
  • control device 130 may execute cleaning of another surface after cleaning of any surface is completed (Yes in step S405). That is, control device 130 may be configured to perform cleaning of two surfaces of the outer peripheral surface of pin member 11, the inner peripheral surface of shoulder member 12, and the outer peripheral surface of shoulder member 12. One surface may be configured to be cleaned.
  • step S406 the control device 130 operates the robot 120 to move the cleaning mechanism 110 to a predetermined position (an initial position where the cleaning mechanism 110 is installed).
  • control device 130 stops the second rotation driver 112 (step S407), and ends this program.
  • the dressing member 111 rotates the dressing member 111 while the control device 130 rotates the dressing member 111.
  • the robot 120 is configured to operate such that the robot 120 contacts at least one of the inner peripheral surface of the shoulder member 12 and the outer peripheral surface of the shoulder member 12.
  • the material of the workpiece 60 adhered to at least one of the outer peripheral surface of the pin member 11, the inner peripheral surface of the shoulder member 12, and the outer peripheral surface of the shoulder member 12 is transferred to the dressing member 111. Can be removed.
  • the cleaning mechanism 110 employs the form having the second rotation driver 112 for rotating the dressing member 111, but is not limited thereto.
  • a mode in which a rotation driver for rotating the dressing member 111 is provided at the tip of the robot 120 may be adopted.
  • the form including the clamp member 54 is employed, but the present invention is not limited to this, and a form without the clamp member 54 may be employed. .
  • the double-acting friction stir welding system according to the ninth embodiment is the same as the double-acting friction stir welding system according to the eighth embodiment, except that the double-acting friction stir welding device is formed in a cylindrical shape and includes a pin member and a shoulder.
  • the apparatus further includes a clamp member having the member inserted therein, and the control device operates the robot to remove the clamp member and arrange the clamp member on the stock mechanism so that the axis is oriented vertically in (H). Then, in (J), the robot is operated so as to hold the cleaning mechanism and contact the inner peripheral surface of the clamp member.
  • FIG. 32 is a flowchart showing an example of the operation of the double-acting friction stir welding system according to the ninth embodiment.
  • the control device 130 removes the clamp member 54 from the double-acting friction stir welding device 101, and operates the robot 120 so as to place the clamp member 54 on the stock mechanism 140 (step S501). At this time, the control device 130 operates the robot 120 such that the distal end surface 54a of the clamp member 54 is located above.
  • control device 130 When the worker removes the clamp member 54 from the double-acting friction stir welding apparatus 101 and places it on the stock mechanism 140, the control device 130 is configured not to execute the process of step S501. I have.
  • control device 130 operates the second rotation driver 112 (step S502) to rotate the dressing member 111.
  • control device 130 causes the robot 120 to operate such that the cleaning mechanism 110 is held and the dressing member 111 of the cleaning mechanism 110 contacts the inner peripheral surface of the clamp member 54 (step S503).
  • the material of the workpiece 60 adhered to the inner peripheral surface of the clamp member 54 can be removed by the dressing member 111.
  • control device 130 acquires from the timepiece 134 the time elapsed since the dressing member 111 was brought into contact with the inner peripheral surface of the clamp member 54 (step S504). Next, the control device 130 determines whether or not the time acquired in step S504 has passed a preset sixth time (step S505).
  • the sixth time can be obtained in advance by an experiment or the like, and may be, for example, a time required for sufficiently removing the material of the workpiece 60 adhered to the inner peripheral surface of the clamp member 54. Good.
  • step S504 When it is determined that the time acquired in step S504 has not elapsed the sixth time (No in step S505), the control device 130 determines whether the time acquired in step S504 has elapsed until the sixth time has elapsed. Steps S504 and S505 are repeated. On the other hand, when it is determined that the time acquired in step S504 has passed the sixth time (Yes in step S505), the control device 130 executes the process of step S506.
  • step S506 the control device 130 operates the robot 120 to move the cleaning mechanism 110 to a predetermined position (an initial position where the cleaning mechanism 110 is installed).
  • control device 130 stops the second rotation driver 112 (step S507), and ends this program.
  • the dressing member 111 rotates the inner periphery of the clamp member 54 while the control device 130 rotates the dressing member 111.
  • the robot 120 is configured to operate so as to contact the surface.
  • the material of the article 60 adhered to the inner peripheral surface of the clamp member 54 can be removed by the dressing member 111.
  • the present invention is not limited to this.
  • the control device 130 performs the cleaning of the inner peripheral surface of the clamp member 54 before performing the cleaning of the inner peripheral surface of the shoulder member 12 or after performing the cleaning of the inner peripheral surface of the shoulder member 12. May be.
  • control device 130 executes cleaning of the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12 or executes the cleaning of the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12. Later, a mode in which the inner peripheral surface of the clamp member 54 is cleaned may be adopted. In this case, the control device 130 may control the outer peripheral surface of the pin member 11 and / or the shoulder member 12 before cleaning the inner peripheral surface of the shoulder member 12 or after performing the cleaning of the inner peripheral surface of the shoulder member 12. May be performed, and then the inner peripheral surface of the clamp member 54 may be cleaned.
  • control device 130 executes cleaning of the inner peripheral surface of shoulder member 12, cleaning of the outer peripheral surface of pin member 11 and / or the outer peripheral surface of shoulder member 12, and cleaning of the inner peripheral surface of clamp member 54.
  • the order of cleaning may be arbitrarily performed.
  • the double-acting friction stir welding system and the operation method of the present invention are useful because the double-acting friction stir welding device can be cleaned with a simple configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manipulator (AREA)

Abstract

ピン部材(11)及びショルダ部材(12)を回転させる第1回転駆動器(57)と、ピン部材(11)及びショルダ部材(12)を進退移動させる工具駆動器(53)と、有する、複動式摩擦攪拌接合装置(101)と、ドレッシング部材(111)を有する清掃機構(110)と、ロボット(120)と、ピン部材(11)が、ショルダ部材(12)の内方に没入するように、工具駆動器(53)を動作させる(A)と、ショルダ部材(12)が回転するように、第1回転駆動器(57)を動作させる(B)と、複動式摩擦攪拌接合装置(101)を保持させて、ドレッシング部材(111)がショルダ部材(12)の内周面と当接するように、ロボット(120)を動作させる(C)と、を実行するように構成されている、制御装置(130)と、を備える、複動式摩擦攪拌接合システム。

Description

複動式摩擦攪拌接合システム及びその運転方法
 本発明は、複動式摩擦攪拌接合システム及びその運転方法に関する。
 ショルダーピンとセンターピンとの間に付着した粉塵を機械的に排除し易くして、撹拌接合時におけるセンターピンの動作が正確に行わされ得るようにしたFSWの接合ツールの清掃方法が知られている(例えば、特許文献1参照)。
 特許文献1に開示されているFSWの接合ツールの清掃方法では、ショルダーピンに対してセンターピンの突出ストロークおよびショルダーピン内へのセンターピンの没入ストロークを被接合物の接合動作時に比していずれも大きくし、接合ツールを回転させながら、センターピンが突出時にセンターピンの表面を、センターピンがショルダーピンに没入時にショルダーピンの孔内面を清掃している。
特開2007-216286号公報
 本発明者らは、上記特許文献1に開示されているFSWの接合ツールの清掃方法とは異なる方式により、複動式摩擦攪拌接合装置を清掃することができる複動式摩擦攪拌接合システム及びその運転方法を想到した。
 本発明は、新規な構成により、複動式摩擦攪拌接合装置を清掃することができる、複動式摩擦攪拌接合システム及びその運転方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置と、ドレッシング部材を有する清掃機構と、ロボットと、制御装置と、を備え、前記複動式摩擦攪拌接合装置は、円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、前記制御装置は、前記ピン部材が、前記ショルダ部材の内方に没入するように、前記工具駆動器を動作させる(A)と、前記ショルダ部材が回転するように、前記第1回転駆動器を動作させる(B)と、前記複動式摩攪拌接合装置を保持させて、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットを動作させる(C)と、を実行するように構成されている。
 これにより、ショルダ部材の内周面に付着(凝着)した、被接合物の材料を除去(清掃)することができる。
 また、本発明に係る複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置と、ドレッシング部材と前記ドレッシング部材を回転させる第2回転駆動器を有する清掃機構と、ロボットと、ストック機構と、制御装置と、を備え、前記複動式摩擦攪拌接合装置は、円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、前記制御装置は、前記ピン部材及び/又は前記ショルダ部材を取り外し、前記軸線が鉛直方向を向くように、前記ピン部材及び/又は前記ショルダ部材を前記ストック機構に配置するように前記ロボットを動作させる(H)と、前記ドレッシング部材が回転するように、前記第2回転駆動器を動作させる(I)と、前記清掃機構を保持させて、前記ピン部材の外周面、前記ショルダ部材の内周面、及び前記ショルダ部材の外周面のうち、少なくとも1つの面と当接するように、前記ロボットを動作させる(J)と、を実行するように構成されている。
 これにより、ピン部材の外周面、ショルダ部材の内周面、及びショルダ部材の外周面のうち、少なくとも1つの面に付着(凝着)した、被接合物の材料を除去(清掃)することができる。
 また、本発明に係る複動式摩擦攪拌接合システムの運転方法は、前記複動式摩擦攪拌接合システムが、複動式摩擦攪拌接合装置と、ドレッシング部材を有する清掃機構と、ロボットと、を備え、前記複動式摩擦攪拌接合装置は、円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、前記ピン部材を、前記ショルダ部材の内方に没入するように、前記工具駆動器が動作する(A)と、前記ショルダ部材が回転するように、前記第1回転駆動器が動作する(B)と、前記複動式摩攪拌接合装置を保持して、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットが動作する(C)と、を備える。
 これにより、ショルダ部材の内周面に付着(凝着)した、被接合物の材料を除去(清掃)することができる。
 さらに、本発明に係る複動式摩擦攪拌接合システムの運転方法は、前記複動式摩擦攪拌接合システムが、複動式摩擦攪拌接合装置と、ドレッシング部材と前記ドレッシング部材を回転させる第2回転駆動器を有する清掃機構と、ロボットと、ストック機構と、を備え、前記複動式摩擦攪拌接合装置は、円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、前記ピン部材及び/又は前記ショルダ部材を取り外し、前記軸線が鉛直方向を向くように、前記ピン部材及び/又は前記ショルダ部材を前記ストック機構に配置するように前記ロボットが動作する(H)と、前記ドレッシング部材が回転するように、前記第2回転駆動器が動作する(I)と、前記清掃機構を保持して、前記ピン部材の外周面、前記ショルダ部材の内周面、及び前記ショルダ部材の外周面のうち、少なくとも1つの面と当接するように、前記ロボットが動作する(J)と、を備える。
 これにより、ピン部材の外周面、ショルダ部材の内周面、及びショルダ部材の外周面のうち、少なくとも1つの面に付着(凝着)した、被接合物の材料を除去(清掃)することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施形態の詳細な説明から明らかにされる。
 本発明に係る複動式摩擦攪拌接合システム及びその運転方法によれば、簡易な構成により、複動式摩擦攪拌接合装置を清掃することができ得る。
図1は、本実施の形態1に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。 図2は、図1に示す複動式摩擦攪拌接合装置の概略構成を示す模式図である。 図3は、図1に示す複動式摩擦攪拌接合システムの制御構成を模式的に示すブロック図である。 図4は、本実施の形態1に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図5は、本実施の形態1における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図6は、本実施の形態1における変形例2の複動式摩擦攪拌接合システムにおけるロボットの概略構成を示す模式図である。 図7は、本実施の形態1における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図8は、本実施の形態1における変形例3の複動式摩擦攪拌接合システムの清掃機構の概略構成を示す模式図である。 図9Aは、本変形例3の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図9Bは、本変形例3の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図10は、本実施の形態2に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。 図11は、本実施の形態2に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図12は、本実施の形態2における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図13は、本実施の形態2における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図14は、本実施の形態3に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。 図15は、本実施の形態3に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図16は、本実施の形態4に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。 図17は、図16に示す複動式摩擦攪拌接合システムにおける補助部材の概略構成を示す模式図である。 図18は、本実施の形態4に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図19は、本実施の形態5に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。 図20は、本実施の形態5に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図21は、本実施の形態6に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図22は、ドレッシング部材の一例を示す模式図である。 図23は、本実施の形態6における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図24は、本実施の形態6における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図25は、本実施の形態7に係る複動式摩擦攪拌接合システムの概略構成を示す模式図である。 図26は、本実施の形態7に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図27は、本実施の形態7における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図28は、本実施の形態7における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図29は、本実施の形態8に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。 図30は、図29に示すストック機構の概略構成を示す模式図である。 図31は、本実施の形態8に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。 図32は、本実施の形態9に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、全ての図面において、本発明を説明するために必要となる構成要素を抜粋して図示しており、その他の構成要素については図示を省略している場合がある。さらに、本発明は以下の実施の形態に限定されない。
 (実施の形態1)
 本実施の形態1に係る複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置と、ドレッシング部材を有する清掃機構と、ロボットと、制御装置と、を備え、複動式摩擦攪拌接合装置は、円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、円筒状に形成され、前記ピン部材が内部に挿通されており、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、ピン部材及びショルダ部材を、軸線回りに回転させる第1回転駆動器と、ピン部材及びショルダ部材を、それぞれ軸線に沿って進退移動させる工具駆動器と、有し、制御装置は、ピン部材が、ショルダ部材の内方に没入するように、工具駆動器を動作させる(A)と、ショルダ部材が回転するように、第1回転駆動器を動作させる(B)と、複動式摩攪拌接合装置を保持させて、ドレッシング部材がショルダ部材の内周面と当接するように、ロボットを動作させる(C)と、を実行するように構成されている。
 以下、本実施の形態1に係る複動式摩擦攪拌接合システムの一例について、図1~図4を参照しながら詳細に説明する。
 [複動式摩擦攪拌接合システムの構成]
 図1は、本実施の形態1に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。
 図1に示すように、本実施の形態1に係る複動式摩擦攪拌接合システム100は、複動式摩擦攪拌接合装置101、清掃機構110、ロボット120、及び制御装置130を備えていて、制御装置130が複動式摩擦攪拌接合装置101を制御することにより、被接合物60を摩擦攪拌接合するように構成されている。なお、複動式摩擦攪拌接合装置101及び制御装置130の構成については、後述する。
 清掃機構110は、ドレッシング部材111を有している。ドレッシング部材111は、後述する複動式摩擦攪拌接合装置101のショルダ部材12の内周面に付着した被接合物60の材料を除去するように構成されている。なお、ドレッシング部材111は、後述するように、ロボット120に把持されていてもよく、基台等に立設されていてもよい。
 ドレッシング部材111としては、例えば、切削工具、及び/又はワイヤブラシを用いてもよい。切削工具は、被接合物60の材料よりも硬い材料で構成されていてもよい。また、切削工具としては、例えば、超硬カッター、セラミックス砥石、カッティングファイバー、精密リーマ、エンドミル、超硬バー等を用いてもよい。さらに、切削工具は、DLCコーティング等により、被接合物60の材料の付着(凝着)を抑制するように構成されていてもよい。
 なお、ドレッシング部材111が複数の部材で構成されている場合、あるドレッシング部材を用いた後に、別のドレッシング部材を用いてもよい。例えば、超硬バーを用いた後に、ワイヤ部材を用いてもよい。
 ドレッシング部材111として、ワイヤブラシを用いる場合には、ブラシ(刷毛部分)を構成する材質が、ステンレス、鋼、タングステン、リン青銅、砥粒入りナイロンであってもよい。また、ブラシの寸法は、ショルダ部材12の内径よりも大きくてもよく、ショルダ部材12の内径よりも0.2~0.5mm大きくてもよい。
 また、ドレッシング部材111として、超硬カッターを用いる場合には、その先端部が、球状に形成されていてもよい。
 なお、清掃機構110は、除去した被接合物60の材料が飛散するのを抑制するための吸引装置をさらに有していてもよい。吸引装置は、例えば、真空ポンプ又はCONVUM(登録商標)等と、ノズル等の吸引部材と、真空ポンプ等と吸引部材を接続する配管と、で構成されていてもよい。また、清掃機構110は、ショルダ部材12を加熱する加熱器をさらに有していてもよい。加熱器としては、例えば、ヒータ等を用いてもよい。
 ロボット120は、水平多関節型・垂直多関節型等の各種ロボットを採用することができる。なお、本実施の形態1に係る複動式摩擦攪拌接合システム100では、1台のロボット120を備えている形態を採用してもよい。この場合、ロボット120は、清掃機構を把持し、複動式摩擦攪拌接合装置101は、定置されている形態を採用してもよい。また、本実施の形態1に係る複動式摩擦攪拌接合システム100では、複数台のロボット120を備えている形態を採用してもよい。この場合、あるロボットが、清掃機構を把持し、他のロボットが、複動式摩擦攪拌接合装置101を把持するように構成されていてもよい。
 [複動式摩擦攪拌接合装置の構成]
 図2は、図1に示す複動式摩擦攪拌接合装置の概略構成を示す模式図である。なお、図2においては、図における上下方向を複動式摩擦攪拌接合装置における上下方向として表している。
 図2に示すように、複動式摩擦攪拌接合装置101は、ピン部材11及びショルダ部材12を有する接合ツール51、接合ツール固定部52、工具駆動器53、クランプ部材54、C型フレーム55、及び裏当て部材56を備えている。
 ピン部材11及びショルダ部材12は、接合ツール固定部52により支持されており、工具駆動器53によって、上下方向に進退駆動される。ピン部材11、ショルダ部材12、接合ツール固定部52、工具駆動器53及びクランプ部材54は、C型フレーム55の上部に設けられている。また、C型フレーム55の下部には、裏当て部材56が設けられている。ピン部材11及びショルダ部材12と、裏当て部材56と、は互いに対向する位置でC型フレーム55に取り付けられている。なお、ピン部材11及びショルダ部材12と、裏当て部材56と、の間には、被接合物60が配置される。
 接合ツール固定部52は、回転体521及び可動体522から構成されており、工具駆動器53は、ピン駆動器531、及びショルダ駆動器532から構成されている。また、クランプ部材54は、クランプ駆動器41を介して、可動体522に固定されている。なお、クランプ駆動器41は、スプリングにより構成されている。
 ピン部材11は、略円筒形又は略円柱形に形成されていて、図2には、詳細に図示されないが、回転体521により支持されている。また、ピン部材11は、第1回転駆動器57により、ピン部材11の軸心(中心軸)に一致する軸線Xr周りに回転するように構成されている。
 さらに、ピン部材11は、ピン駆動器531により、矢印P1方向、すなわち、軸線Xr方向(図2では上下方向)に沿って、ショルダ部材12に対して相対的に進退移動可能に構成されている。なお、ピン駆動器531としては、例えば、直動アクチュエータで構成されていてもよい。直動アクチュエータとしては、例えば、サーボモータとラックアンドピニオン、サーボモータとボールネジ、又はエアシリンダー等で構成されていてもよい。
 ショルダ部材12は、中空を有する略円筒状に形成されていて、回転体521により支持されている。ショルダ部材12の中空内には、ピン部材11が内挿されている。換言すると、ショルダ部材12は、ピン部材11の外周面を囲むように配置されている。また、ショルダ部材12は、第1回転駆動器57により、ピン部材11と同一の軸線Xr回りに回転するように構成されている。さらに、ショルダ部材12は、ショルダ駆動器532により、矢印P2方向、すなわち軸線Xr方向に沿って進退移動可能に構成されている。
 なお、ショルダ駆動器532としては、例えば、直動アクチュエータで構成されていてもよい。直動アクチュエータとしては、例えば、サーボモータとラックアンドピニオン、サーボモータとボールネジ、又はエアシリンダー等で構成されていてもよい。
 このように、ピン部材11及びショルダ部材12は、本実施の形態ではいずれも同一の回転体521によって支持され、いずれも第1回転駆動器57により軸線Xr周りに一体的に回転する。第1回転駆動器57は、例えば、サーボモータで構成されていてもよい。また、ロータリーエンコーダ等のセンサ(図示せず)が、第1回転駆動器57の回転数を検知して、検知した回転数を制御装置130に出力するように構成されていてもよい。
 なお、本実施の形態1においては、1つの回転駆動器(第1回転駆動器57)により、ピン部材11及びショルダ部材12が回転する形態を採用したが、これに限定されない。ピン部材11を回転させる回転駆動器と、ショルダ部材12を回転させる回転駆動器と、2つの回転駆動器を備える形態を採用してもよい。
 また、回転体521は、第1回転駆動器57を介して、可動体522に支持されている。これにより、ショルダ駆動器532が駆動すると、ショルダ部材12と共に、ピン部材11及び可動体522が進退する。
 クランプ部材54は、ショルダ部材12と同様に、中空を有する円筒状に形成されていて、その軸心が軸線Xrと一致するように設けられている。クランプ部材54の中空内には、ショルダ部材12が内挿されている。
 すなわち、ピン部材11の外周面を囲むように、略円筒状のショルダ部材12が配置されていて、ショルダ部材12の外周面を囲むように略円筒状のクランプ部材54が配置されている。換言すれば、クランプ部材54、ショルダ部材12及びピン部材11が、それぞれ同軸芯状の入れ子構造となっている。
 また、クランプ部材54は、被接合物60を一方の面(表面)から押圧するように構成されている。クランプ部材54は、上述したように、本実施の形態1においては、クランプ駆動器41を介して可動体522に支持されている。クランプ駆動器41は、クランプ部材54を裏当て部材56側に付勢するように構成されている。そして、クランプ部材54(クランプ駆動器41及び可動体522を含む)は、ショルダ駆動器532によって、矢印P3方向(矢印P1及び矢印P2と同方向)に進退可能に構成されている。
 なお、クランプ駆動器41は、本実施の形態1においては、スプリングで構成したが、これに限定されるものではない。クランプ駆動器41は、クランプ部材54に付勢を与えたり加圧力を与えたりする構成であればよく、例えば、ガス圧、油圧、サーボモータ等を用いた機構も好適に用いることができる。
 ピン部材11、ショルダ部材12、及びクランプ部材54は、それぞれ先端面11a、先端面12a、及び先端面54aを備えている。また、ピン部材11、ショルダ部材12、及びクランプ部材54は、工具駆動器53により進退移動することで、先端面11a、先端面12a、及び先端面54aは、それぞれ、被接合物60の表面に当接する。
 裏当て部材56は、本実施の形態1においては、平板状の被接合物60の裏面を当接するように平坦な面(支持面56a)により、支持するように構成されている。裏当て部材56は、摩擦攪拌接合を実施できるように被接合物60を適切に支持することができるものであれば、その構成は特に限定されない。裏当て部材56は、例えば、複数の種類の形状を有する裏当て部材56が別途準備され、被接合物60の種類に応じて、C型フレーム55から外して交換できるように構成されてもよい。
 被接合物60は、2枚の板状の第1部材61及び第2部材62を有する。第1部材61及び第2部材62としては、金属材料(例えば、アルミニウム、鋼等)、又は繊維強化プラスチック(例えば、炭素繊維強化プラスチック)で構成されていてもよい。
 なお、本実施の形態1においては、被接合物60を板状の第1部材61と板状の第2部材62で構成されている形態を採用したが、これに限定されず、被接合物60(第1部材61及び第2部材62)の形状は任意であり、例えば、直方体状であってもよく、円弧状に形成されていてもよい。また、被接合物60は、3つ以上の部材を有していてもよい。
 なお、本実施の形態1におけるピン部材11、ショルダ部材12、接合ツール固定部52、工具駆動器53、クランプ部材54、C型フレーム55、及び裏当て部材56の具体的な構成は、前述した構成に限定されず、広く摩擦攪拌接合の分野で公知の構成を好適に用いることができる。例えば、工具駆動器53を構成するピン駆動器531及びショルダ駆動器532は、本実施の形態では、いずれも摩擦攪拌接合の分野で公知のモータ及びギア機構等から構成されているが、これに限定されない。
 また、本実施の形態1においては、クランプ部材54を備える構成を採用したが、これに限定されず、クランプ部材54を備えていない構成を採用してもよい。この場合、例えば、クランプ部材54は、必要に応じてC型フレーム55から着脱可能に構成されていてもよい。
 さらに、本実施の形態1に係る複動式摩擦攪拌接合装置101は、摩擦攪拌接合用ロボット装置(図示せず)に配設される形態を採用している。具体的には、C型フレーム55が、ロボットのアームの先端に取り付けられている。
 また、複動式摩擦攪拌接合装置101(C型フレーム55を含む)は、摩擦攪拌接合用ロボット装置に適用される場合に限定されるものではなく、例えば、NC工作機械、大型のCフレーム、及びオートリベッター等の公知の加工用機器にも好適に適用することができる。
 さらに、本実施の形態1に係る複動式摩擦攪拌接合装置101は、二対以上のロボットが、複動式摩擦攪拌接合装置101における裏当て部材56以外の部分と、裏当て部材56と、を正対させるように構成されていてもよい。また、複動式摩擦攪拌接合装置101は、被接合物60に対して安定して摩擦攪拌接合を行うことが可能であれば、被接合物60を手持ち型にする形態を採用してもよく、ロボットを被接合物60のポジショナーとして用いる形態を採用してもよい。
 [複動式摩擦攪拌接合システムの制御構成]
 次に、本実施の形態1に係る複動式摩擦攪拌システムの制御構成について、図3を参照して具体的に説明する。
 図3は、図1に示す複動式摩擦攪拌接合システムの制御構成を模式的に示すブロック図である。
 図3に示すように、制御装置130は、演算処理器131、入力器132、記憶器133、カレンダー機能を有する時計器134と、を備えている。演算処理器131は、マイクロプロセッサ、CPU等で構成されている。
 記憶器133は、基本プログラム、各種固定データ等の情報が記憶されている。記憶器133は、単一である必要はなく、複数の記憶装置(例えば、ランダムアクセスメモリ及びハードディスクドライブ)として構成されてもよい。演算処理器131等がマイクロコンピュータで構成されている場合には、記憶器133の少なくとも一部がマイクロコンピュータの内部メモリとして構成されてもよいし、独立したメモリとして構成されてもよい。
 演算処理器131は、記憶器133に記憶されている基本プログラム等のソフトウェアを読み出して実行することにより、複動式摩擦攪拌接合装置101、及びロボット120の各種動作を制御する。
 これにより、ピン部材11及びショルダ部材12の進出移動又は後退移動の切り替え、進退移動時のピン部材11及びショルダ部材12における、先端位置の制御、移動速度、及び移動方向等を制御することができる。また、ピン部材11、ショルダ部材12及びクランプ部材54の被接合物60を押圧する押圧力を制御することができる。さらに、ピン部材11及びショルダ部材12の回転数を制御することができる。
 入力器132は、演算処理器131に対して、摩擦攪拌接合の制御に関する各種パラメータ、あるいはその他のデータ等を入力可能とするものであり、キーボード、タッチパネル、ボタンスイッチ群等の公知の入力装置で構成されている。本実施の形態1では、少なくとも、被接合物60の接合条件、例えば、被接合物60の厚み、材質等のデータが入力器132により入力可能となっている。
 なお、制御装置130は、集中制御する単独の制御装置130によって構成されていてもよいし、互いに協働して分散制御する複数の制御装置130によって構成されていてもよい。また、制御装置130は、マイクロコンピュータで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。
 [複動式摩擦攪拌接合システムの動作及びその作用効果]
 次に、本実施の形態1に係る複動式摩擦攪拌接合システムの動作及びその作用効果について、図1~図4を参照しながら説明する。
 図4は、本実施の形態1に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 まず、作業者(操作者)が、入力器132を操作して、ショルダ部材12の清掃(メンテナンス)を実行するように、演算処理器131に指示情報を入力した場合、又は、複動式摩擦攪拌接合装置101が、予め設定されている所定の回数、摩擦攪拌接合をした場合等に、制御装置130の演算処理器131は、記憶器133に格納されているプログラムを読み出すことにより、以下の動作(処理)を実行する。
 制御装置130は、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を駆動させる(動作させる)(ステップS101)。このとき、制御装置130は、ピン部材11の先端面11aの軸線Xr方向の位置が予め設定されている第1位置又は第2位置に到達するまで、工具駆動器53(ピン駆動器531)を駆動させてもよい。
 ここで、第1位置は、例えば、ピン部材11の先端面11aが、被接合物60を接合しているときに、ショルダ部材12に対して最も内方する位置(最も上方に移動した位置)であってもよい。また、第2位置は、予め実験等により設定することができ、例えば、ピン部材11の先端面11aが、ショルダ部材12に対して最も内方することができる位置(装置として、最も上方に移動できる位置)であってもよい。
 ついで、制御装置130は、第1回転駆動器57を動作させて(ステップS102)、ショルダ部材12を回転させる。なお、本実施の形態1においては、ピン部材11もショルダ部材12の回転と共に回転する。
 次に、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS103)。
 このとき、制御装置130は、ドレッシング部材111が、ショルダ部材12の内方空間(内部空間)を軸線Xrに沿って進退するように、ロボット120を動作させてもよい。具体的には、制御装置130は、ショルダ部材12が軸線Xrに沿って進退するように、ロボット120を動作させる。
 なお、ロボット120が既に、複動式摩擦攪拌接合装置101を保持している場合には、制御装置130は、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる。また、制御装置130は、加熱装置を用いて、ショルダ部材12を加熱しながら、ドレッシング部材111をショルダ部材12の内周面と当接するように、ロボット120を動作させてもよい。
 これにより、ショルダ部材12の内周面に付着している被接合物60の材料をドレッシング部材111により、除去する(削り取る)ことができる。
 次に、制御装置130は、ドレッシング部材111をショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS104)。ついで、制御装置130は、ステップS104で取得した時間が、予め設定されている第1時間を経過したか否かを判定する(ステップS105)。
 ここで、第1時間は、予め実験等により求めることができ、例えば、ショルダ部材12の内周面に付着している被接合物60の材料を充分に除去するためにかかる時間であってもよい。第1時間としては、例えば、ショルダ部材12の内周面に付着している被接合物60の材料を充分に除去する観点から、30秒以上であってもよく、清掃時間を短縮する観点から、60秒以下であってもよい。
 制御装置130は、ステップS104で取得した時間が、第1時間を経過していないと判定した場合(ステップS105でNo)には、ステップS104で取得した時間が、第1時間を経過するまで、ステップS104及びステップS105の処理を繰り返す。一方、制御装置130は、ステップS104で取得した時間が、第1時間を経過した判定した場合(ステップS105でYes)には、ステップS106の処理を実行する。
 ステップS106では、制御装置130は、複動式摩擦攪拌接合装置101を予め設定されている所定の位置(複動式摩擦攪拌接合装置101が設置されている初期位置)に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11aが、ショルダ部材12の先端面12aと一致するように、工具駆動器53(ピン駆動器531)を駆動する(ステップS107)。ついで、制御装置130は、第1回転駆動器57を停止させ(ステップS108)、本プログラムを終了する。
 このように構成された、本実施の形態1に係る複動式摩擦攪拌接合システム100では、制御装置130が、ショルダ部材12を回転させた状態で、ドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させるように構成されている。
 これにより、ショルダ部材12の内周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 なお、本実施の形態1に係る複動式摩擦攪拌接合システム100では、クランプ部材54を備える形態を採用したが、これに限定されず、クランプ部材54を備えていない形態を採用してもよい。
 [変形例1]
 次に、本実施の形態1に係る複動式摩擦攪拌接合システム100の変形例について、説明する。
 本実施の形態1における変形例1の複動式摩擦攪拌接合システムは、制御装置が、(C)において、清掃機構を保持させて、ドレッシング部材がショルダ部材の内周面と当接するように、ロボットを動作させる。
 以下、本実施の形態1における変形例1の複動式摩擦攪拌接合システムの一例について、図5を参照しながら説明する。なお、本実施の形態1における変形例1の複動式摩擦攪拌接合システムの構成は、実施の形態1に係る複動式摩擦攪拌接合システムと同じであるため、その詳細な説明を省略する。
 図5は、本実施の形態1における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図5に示すように、本実施の形態1における変形例1の複動式摩擦攪拌接合システム100の動作は、実施の形態1に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS103及びステップS106に代えて、ステップS103A及びステップS106Aが実行されている点が異なる。
 具体的には、制御装置130は、ロボット120に清掃機構110(ドレッシング部材111)を保持させて、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS103A)。このとき、複動式摩擦攪拌接合装置101は、定置されていてもよく、ロボット120以外のロボットに把持されていてもよい。
 次に、制御装置130は、ドレッシング部材111をショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS104)。ついで、制御装置130は、ステップS104で取得した時間が、予め設定されている第1時間を経過したか否かを判定する(ステップS105)。
 次に、制御装置130は、ステップS104で取得した時間が、第1時間を経過した判定した場合(ステップS105でYes)には、清掃機構110を予め設定されている所定の位置(清掃機構110が設置されている初期位置)に移動するように、ロボット120を動作させる(ステップS106A)。
 このように構成された、本実施の形態1における変形例1の複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 [変形例2]
 本実施の形態1における変形例2の複動式摩擦攪拌接合システムは、ロボットが、複動式摩擦攪拌接合装置を保持した状態で、軸線回りに揺動自在又は回動自在に構成されていて、制御装置は、(C)において、複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、ドレッシング部材がショルダ部材の内周面と当接するように、ロボットを動作させるように構成されている。
 以下、本実施の形態1における変形例2の複動式摩擦攪拌接合システムの一例について、図6及び図7を参照しながら説明する。なお、本実施の形態1における変形例2の複動式摩擦攪拌接合システム100は、実施の形態1に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、ロボット120の構成の一例について、図6を参照しながら説明する。
 [ロボットの構成]
 図6は、本実施の形態1における変形例2の複動式摩擦攪拌接合システムにおけるロボットの概略構成を示す模式図である。
 図6に示すように、本変形例2の複動式摩擦攪拌接合システム100におけるロボット120は、複数のリンク(ここでは、第1リンク21a~第6リンク21f)の連接体と、複数の関節(ここでは、第1関節JT1~第6関節JT6)と、これらを支持する基台25と、を有する多関節ロボットアームである。
 第1関節JT1では、基台25と、第1リンク21aの基端部とが、鉛直方向に延びる軸回りに回転可能に連結されている。第2関節JT2では、第1リンク21aの先端部と、第2リンク21bの基端部とが、水平方向に延びる軸回りに回転可能に連結されている。第3関節JT3では、第2リンク21bの先端部と、第3リンク21cの基端部とが、水平方向に延びる軸回りに回転可能に連結されている。
 また、第4関節JT4では、第3リンク21cの先端部と、第4リンク21dの基端部とが、第4リンク21dの長手方向に延びる軸回りに回転可能に連結されている。第5関節JT5では、第4リンク21dの先端部と、第5リンク21eの基端部とが、第4リンク21dの長手方向と直交する軸回りに回転可能に連結されている。第6関節JT6では、第5リンク21eの先端部と第6リンク21fの基端部とが、捻れ回転可能に連結されている。これにより、ロボット120は、複動式摩擦攪拌接合装置101を保持した状態で、軸線Xr回りに揺動自在又は回動自在に動作することができる。
 そして、第6リンク21fの先端部には、メカニカルインターフェースが設けられている。このメカニカルインターフェースには、作業内容に対応したエンドエフェクタ22が着脱可能に装着される。なお、本実施の形態1においては、エンドエフェクタ22として、複動式摩擦攪拌接合装置101を保持(把持)するためのハンドが設けられている。
 また、第1関節JT1~第6関節JT6には、それぞれ、各関節が連結する2つの部材を相対的に回転させるアクチュエータの一例としての駆動モータが設けられている(図示せず)。駆動モータは、例えば、制御装置130によってサーボ制御されるサーボモータであってもよい。また、第1関節JT1~第6関節JT6には、それぞれ、駆動モータの回転位置を検出する回転センサと、駆動モータの回転を制御する電流を検出する電流センサと、が設けられている(それぞれ、図示せず)。回転センサは、例えば、エンコーダであってもよい。
 なお、本変形例2においては、ロボット120として、垂直多関節型のロボットを採用したが、これに限定されない。ロボット120が、複動式摩擦攪拌接合装置を保持した状態で、軸線Xr回りに揺動自在又は回動自在に構成されていれば、水平多関節型のロボットを採用してもよい。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図7は、本実施の形態1における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図7に示すように、本実施の形態1における変形例2の複動式摩擦攪拌接合システム100の動作は、実施の形態1に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS102及びステップS108の動作(処理)を実行せず、かつ、ステップS103及びステップS106に代えて、ステップS103A及びステップS106Aの動作(処理)が実行される点が異なる。
 具体的には、制御装置130は、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を駆動させる(動作させる)(ステップS101)。ついで、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、当該複動式摩擦攪拌接合装置101を揺動又は回動させながら、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS103A)。
 これにより、ショルダ部材12の内周面に付着している被接合物60の材料をドレッシング部材111により、除去する(削り取る)ことができる。なお、ドレッシング部材111として、切削工具を用いてもよい。
 次に、制御装置130は、ドレッシング部材111をショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS104)。ついで、制御装置130は、ステップS104で取得した時間が、予め設定されている第1時間を経過したか否かを判定する(ステップS105)。
 制御装置130は、ステップS104で取得した時間が、第1時間を経過した判定した場合(ステップS105でYes)には、ステップS106Aの処理を実行する。
 ステップS106Aでは、制御装置130は、複動式摩擦攪拌接合装置101の揺動又は回動を停止させて、複動式摩擦攪拌接合装置101を予め設定されている所定の位置に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11aが、ショルダ部材12の先端面12aと一致するように、工具駆動器53(ピン駆動器531)を駆動し(ステップS107)、本プログラムを終了する。
 このように構成された、本実施の形態1における変形例2の複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 [変形例3]
 本実施の形態1における変形例3の複動式摩擦攪拌接合システムは、ドレッシング部材は、切削工具及び/又はワイヤブラシで構成されている。
 また、本実施の形態1における変形例3の複動式摩擦攪拌接合システムでは、制御装置は、(C)において、切削工具がショルダ部材の内周面と当接するように、ロボットを動作させる(C1)と、ワイヤブラシがショルダ部材の内周面と当接するように、ロボットを動作させる(C2)と、を実行するように構成されていてもよい。
 さらに、本実施の形態1における変形例3の複動式摩擦攪拌接合システムでは、清掃機構は、エアブロー装置をさらに有し、制御装置は、(C)において、(C1)を実行する前に、切削工具に向けて、エアを吹き付けるように、エアブロー装置を動作させる(C0)を実行するように構成されていてもよい。
 以下、本実施の形態1における変形例3の複動式摩擦攪拌接合システムの一例について、図8、図9A、及び図9Bを参照しながら説明する。
 [複動式摩擦攪拌接合システムの構成]
 図8は、本実施の形態1における変形例3の複動式摩擦攪拌接合システムの清掃機構の概略構成を示す模式図である。なお、図8においては、清掃機構の上下方向及び左右方向を図における上下方向及び左右方向として表している。
 図8に示すように、本実施の形態1における変形例3の複動式摩擦攪拌接合システム100は、実施の形態1に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、清掃機構110の構成が異なる。具体的には、清掃機構110は、箱状の基台200、板状のベース部材201、及びドレッシング部材111を有している。基台200の上部には、ベース部材201が配置されていて、ベース部材201には、ドレッシング部材111が立設されている。
 本変形例3においては、ドレッシング部材111は、切削工具211A及びワイヤブラシ211Bで構成されている。切削工具211Aは、切削用の刃と溝が形成されている工具を用いてもよい。ここでは、切削工具211Aとして、超硬バーを用いている。超硬バーは、複動式摩擦攪拌接合装置101が接合する被接合物60の材料よりも硬い材料で構成されていてもよい。被接合物60の材料がアルミニウムである場合には、アルミニウム用の超硬バーを用いてもよい。
 切削工具211Aは、その軸心方向が鉛直方向に向くように配置されていて、チャック装置212Aにより固定されている。チャック装置212Aは、ギア213A及び軸部材214Aを介して、第2回転駆動器112Aに接続されている。これにより、切削工具211Aは、回転することができる。
 第2回転駆動器112A、チャック装置212A、ギア213A、及び軸部材214Aは、インナーカバー部材216Aにより覆われている。これにより、ショルダ部材12の内周面に付着した被接合物60の材料を切削工具211Aで削り取るときに、切粉がインナーカバー部材216A内に進入することを抑制することができる。
 また、第2回転駆動器112Aは、板部材215A及びインナーカバー部材216Aを介して、固定部材217Aに固定されている。
 固定部材217Aは、直動アクチュエータ219及び図示されないリニアガイドにより、左右方向に進退可能に構成されている。直動アクチュエータ219としては、例えば、エアシリンダー等を用いてもよい。また、固定部材217Aには、弾性部材220が接続されている。弾性部材220は、ここでは、引っ張りバネを用いている。弾性部材220は、ベース部材201に立設されている固定部材221と接続されている。
 また、固定部材217Aには、インナーカバー部材216Aを覆うように、アウターカバー部材218Aが設けられている。アウターカバー部材218Aとインナーカバー部材216Aの間の空間には、エアブロー装置300(エアブローガン301)が配設されている。
 エアブローガン301は、切削工具211Aの切削部分に付着した被接合物60の材料をエアにより、吹き飛ばすように構成されている。エアブローガン301は、配管303を介して、エア供給器302に接続されている。また、配管303の途中には、開閉弁(電磁弁)304が配置されている。開閉弁304の開閉動作は、制御装置130により制御されている。なお、エアブロー装置300は、エアブローガン301から噴出されるエアの圧力が、0.2~0.4MPaとなるように構成されていてもよい。
 ワイヤブラシ211Bは、その軸心方向が鉛直方向に向くように配置されていて、チャック装置212Bにより固定されている。チャック装置212Bは、ギア213B及び軸部材214Bを介して、第2回転駆動器112Bに接続されている。これにより、ワイヤブラシ211Bは、回転することができる。
 第2回転駆動器112B、チャック装置212B、ギア213B、及び軸部材214Bは、インナーカバー部材216Bにより覆われている。また、第2回転駆動器112Bは、板部材215B及びインナーカバー部材216Bを介して、固定部材217Bに固定されている。さらに、固定部材217Bには、インナーカバー部材216Bを覆うように、アウターカバー部材218Bが設けられている。
 [複動式摩擦攪拌接合システムの動作]
 次に、本変形例3の複動式摩擦攪拌接合システム100の動作及びその作用効果について、図8~図9Bを参照しながら説明する。
 図9A及び図9Bは、本変形例3の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 まず、作業者(操作者)が、入力器132を操作して、ショルダ部材12の清掃(メンテナンス)を実行するように、演算処理器131に指示情報を入力した場合、又は、複動式摩擦攪拌接合装置101が、予め設定されている所定の回数、摩擦攪拌接合をした場合等に、制御装置130の演算処理器131は、記憶器133に格納されているプログラムを読み出すことにより、以下の動作(処理)を実行する。
 制御装置130は、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を駆動させる(動作させる)(ステップS11)。ついで、制御装置130は、第1回転駆動器57、及び第2回転駆動器112A、112Bを動作させて(ステップS12)、ショルダ部材12、及びドレッシング部材111(切削工具211A及びワイヤブラシ211B)を回転させる。
 なお、制御装置130は、ショルダ部材12と切削工具211Aを回転させるように、第1回転駆動器57及び第2回転駆動器112Aを動作させてもよい。また、制御装置130は、第1回転駆動器57、及び/又は第2回転駆動器112A、112Bを動作させた後に、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を駆動させてもよい。すなわち、制御装置130は、ステップS12の処理を実行した後に、ステップS11の処理を事項するように構成されていてもよい。
 次に、制御装置130は、ロボット120に複動式摩擦攪拌接合装置101を保持させて、切削工具211Aが、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS13)。これにより、ショルダ部材12の内周面に付着している被接合物60の材料を切削工具211Aにより、除去する(削り取る)ことができる。
 具体的には、制御装置130は、固定部材217A等が右側に進行するように、直動アクチュエータ219を作動させる。これにより、弾性部材220は、右側へ引き伸ばされる。
 ついで、制御装置130は、ロボット120に複動式摩擦攪拌接合装置101を保持させて、ショルダ部材12の内部空間に切削工具211Aが位置するように、ロボット120を動作させる。そして、制御装置130は、直動アクチュエータ219の動作を停止させ、固定部材217Aが自由に移動できるようにする。
 これにより、弾性部材220の弾性変形により、固定部材217A等が左側に戻される。これに伴い、ショルダ部材12の内周面と切削工具211Aが線接触することができ、清掃範囲を広げることができる。
 なお、制御装置130は、直動アクチュエータ219を動作させる前に、エア供給器302を動作させ、かつ、開閉弁304の弁体を開放させて、エアブローガン301からエアを吹き出させて、切削工具211Aの切削部分に付着している被接合物60の材料を除去させてもよい。このとき、制御装置130は、エアの吹き出し時間が、予め設定されている所定の時間(例えば、1~5秒)となるように、エア供給器302及び開閉弁304を制御してもよい。
 また、制御装置130は、ショルダ部材12の内方空間に切削工具211Aが位置するように、ロボット120を動作させるときに、ショルダ部材12の軸線が、鉛直方向に向くように、ロボット120を動作させてもよく、鉛直方向に対して傾斜するように、ロボット120を動作させてもよい。傾斜角度としては、例えば、0.1~3°であってもよい。
 さらに、制御装置130は、ショルダ部材12が軸線Xrに沿って進退するように、ロボット120を動作させてもよい。
 次に、制御装置130は、切削工具211Aをショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS14)。ついで、制御装置130は、ステップS14で取得した時間が、予め設定されている第1時間を経過したか否かを判定する(ステップS15)。
 制御装置130は、ステップS14で取得した時間が、第1時間を経過していないと判定した場合(ステップS15でNo)には、ステップS14で取得した時間が、第1時間を経過するまで、ステップS14及びステップS15の処理を繰り返す。一方、制御装置130は、ステップS14で取得した時間が、第1時間を経過した判定した場合(ステップS15でYes)には、ステップS16の処理を実行する。
 ステップS16では、制御装置130は、第1回転駆動器57を停止させる。なお、制御装置130は、第2回転駆動器112Aも停止させてもよい。また、制御装置130は、ステップS12で第2回転駆動器112Bを動作させていない場合には、ここで、第2回転駆動器112Bを動作させてもよい。
 次に、制御装置130は、ワイヤブラシ211Bが、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS17)。これにより、ショルダ部材12の内周面に付着している被接合物60の材料をワイヤブラシ211Bにより、除去する(削り取る)ことができる。
 なお、制御装置130は、ステップS16で第1回転駆動器57を停止させずに、後述するステップS22で第1回転駆動器57を停止させるように構成されていてもよい。すなわち、制御装置130は、ショルダ部材12が回転した状態で、その内周面がワイヤブラシ211Bと当接させるように、ロボット120を動作させるように構成されていてもよい。
 次に、制御装置130は、ワイヤブラシ211Bをショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS18)。ついで、制御装置130は、ステップS18で取得した時間が、予め設定されている第2時間を経過したか否かを判定する(ステップS19)。
 ここで、第2時間は、予め実験等により求めることができ、例えば、ショルダ部材12の内周面に付着している被接合物60の材料を充分に除去するためにかかる時間であってもよい。第2時間としては、例えば、ショルダ部材12の内周面に付着している被接合物60の材料を充分に除去する観点から、30秒以上であってもよく、清掃時間を短縮する観点から、60秒以下であってもよい。また、第2時間は、第1時間と時間の長さが同じであってもよく、異なってもよい。
 制御装置130は、ステップS18で取得した時間が、第2時間を経過していないと判定した場合(ステップS19でNo)には、ステップS18で取得した時間が、第2時間を経過するまで、ステップS18及びステップS19の処理を繰り返す。一方、制御装置130は、ステップS18で取得した時間が、第2時間を経過した判定した場合(ステップS19でYes)には、ステップS20の処理を実行する。
 ステップS20では、制御装置130は、複動式摩擦攪拌接合装置101を予め設定されている所定の位置(複動式摩擦攪拌接合装置101が設置されている初期位置)に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11aが、ショルダ部材12の先端面12aと一致するように、工具駆動器53(ピン駆動器531)を駆動する(ステップS21)。ついで、制御装置130は、第2回転駆動器112A及び第2回転駆動器112Bを停止させ(ステップS22)、本プログラムを終了する。
 このように構成された、本変形例3の複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 なお、本変形例3の複動式摩擦攪拌接合システム100では、制御装置130が、第1回転駆動器57、及び第2回転駆動器112A、112Bを動作させた(ステップS12)後に、ロボット120に複動式摩擦攪拌接合装置101を保持させて、切削工具211Aが、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS13)形態を採用したが、これに限定されない。
 制御装置130が、ロボット120に複動式摩擦攪拌接合装置101を保持させて、切削工具211Aが、ショルダ部材12の内周面と当接するように、ロボット120を動作させた後に、第1回転駆動器57、及び第2回転駆動器112A、112Bを動作させる形態を採用してもよい。
 (実施の形態2)
 本実施の形態2に係る複動式摩擦攪拌接合システムは、実施の形態1(変形例を含む)に係る複動式摩擦攪拌接合システムにおいて、清掃機構が、ドレッシング部材を回転させる第2回転駆動器をさらに有し、制御装置は、ピン部材が、ショルダ部材の内方に没入するように、工具駆動器を動作させる(A)と、ドレッシング部材が回転するように、第2回転駆動器を動作させる(B1)と、複動式摩攪拌接合装置を保持させて、ドレッシング部材がショルダ部材の内周面と当接するように、ロボットを動作させる(C)と、を実行するように構成されている。
 以下、本実施の形態2に係る複動式摩擦攪拌接合システムの一例について、図10及び図11を参照しながら説明する。
 [複動式摩擦攪拌接合システムの構成]
 図10は、本実施の形態2に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。
 図10に示すように、本実施の形態2に係る複動式摩擦攪拌接合システム100は、実施の形態1に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、清掃機構110が、第2回転駆動器112をさらに有する点が異なる。第2回転駆動器112は、ドレッシング部材111を回転するように構成されていて、例えば、電動モータ等のモータであってもよい。
 なお、ロータリーエンコーダ等のセンサ(図示せず)が、第2回転駆動器112の回転数を検知して、検知した回転数を制御装置130に出力するように構成されていてもよい。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図11は、本実施の形態2に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図11に示すように、本実施の形態2に係る複動式摩擦攪拌接合システム100の動作は、実施の形態1に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS102及びステップS108に代えて、ステップS102A及びステップS108Aの処理が実行される点が異なる。
 具体的には、ステップS102Aにおいて、制御装置130は、第2回転駆動器112を動作させて、ドレッシング部材111を回転させる。ついで、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS103)。
 これにより、ショルダ部材12の内周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 また、制御装置130は、ステップS108Aにおいて、第2回転駆動器112を停止させて、ドレッシング部材111の回転を停止させ、本プログラムを終了する。
 このように構成された、本実施の形態2に係る複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 なお、本実施の形態2に係る複動式摩擦攪拌接合システム100では、清掃機構110が、ドレッシング部材111を回転させる第2回転駆動器112を有する形態を採用したが、これに限定されない。例えば、ロボット120の先端部にドレッシング部材111を回転させる回転駆動器を設ける形態を採用してもよい。
 [変形例1]
 次に、本実施の形態2に係る複動式摩擦攪拌接合システム100の変形例について、説明する。
 本実施の形態2における変形例1の複動式摩擦攪拌接合システムは、制御装置が、(C)において、清掃機構を保持させて、ドレッシング部材がショルダ部材の内周面と当接するように、ロボットを動作させる。
 以下、本変形例1の複動式摩擦攪拌接合システムの一例について、図12を参照しながら説明する。なお、本変形例1の複動式摩擦攪拌接合システムの構成は、実施の形態1に係る複動式摩擦攪拌接合システムと同じであるため、その詳細な説明を省略する。
 図12は、本実施の形態2における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図12に示すように、本実施の形態2における変形例1の複動式摩擦攪拌接合システム100の動作は、実施の形態2に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS103及びステップS106に代えて、ステップS103B及びステップS106Bが実行されている点が異なる。
 具体的には、制御装置130は、清掃機構110(ドレッシング部材111)を保持させて、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS103B)。このとき、複動式摩擦攪拌接合装置101は、定置されていてもよく、ロボット120以外のロボットに把持されていてもよい。
 なお、制御装置130は、実施の形態1における変形例3の複動式摩擦攪拌接合システム100と同様に、複数の種類のドレッシング部材111をロボット120に保持させて、ショルダ部材12の内周面を清掃させてもよい。
 次に、制御装置130は、ドレッシング部材111をショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS104)。ついで、制御装置130は、ステップS104で取得した時間が、予め設定されている第1時間を経過したか否かを判定する(ステップS105)。
 次に、制御装置130は、ステップS104で取得した時間が、第1時間を経過した判定した場合(ステップS105でYes)には、清掃機構110を予め設定されている所定の位置(清掃機構110が設置されている初期位置)に移動するように、ロボット120を動作させる(ステップS106B)。
 このように構成された、本実施の形態2における変形例1の複動式摩擦攪拌接合システム100であっても、実施の形態2に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 [変形例2]
 本実施の形態2における変形例2の複動式摩擦攪拌接合システムは、ロボットが、複動式摩擦攪拌接合装置を保持した状態で、軸線回りに揺動自在又は回動自在に構成されていて、制御装置は、(C)において、複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、ドレッシング部材がショルダ部材の内周面と当接するように、ロボットを動作させるように構成されている。
 以下、本実施の形態2における変形例2の複動式摩擦攪拌接合システムの一例について、図13を参照しながら説明する。なお、本実施の形態2における変形例2の複動式摩擦攪拌接合システム100は、実施の形態1における変形例2の複動式摩擦攪拌接合システム100と基本的構成は同じであるため、その詳細な説明は省略する。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図13は、本実施の形態2における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図13に示すように、本実施の形態2における変形例2の複動式摩擦攪拌接合システム100の動作は、実施の形態2に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS103及びステップS106に代えて、ステップS103A及びステップS106Aの動作(処理)が実行される点が異なる。
 具体的には、制御装置130は、第2回転駆動器112を動作させて、ドレッシング部材111を回転させる(ステップS102A)。ついで、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、当該複動式摩擦攪拌接合装置101を揺動又は回動させながら、清掃機構110のドレッシング部材111が、ショルダ部材12の内周面と当接するように、ロボット120を動作させる(ステップS103A)。
 これにより、ショルダ部材12の内周面に付着している被接合物60の材料をドレッシング部材111により、除去する(削り取る)ことができる。
 次に、制御装置130は、ドレッシング部材111をショルダ部材12の内周面と当接させてから経過した時間を時計器134から取得する(ステップS104)。ついで、制御装置130は、ステップS104で取得した時間が、予め設定されている第1時間を経過したか否かを判定する(ステップS105)。
 制御装置130は、ステップS104で取得した時間が、第1時間を経過した判定した場合(ステップS105でYes)には、ステップS106Aの処理を実行する。
 ステップS106Aでは、制御装置130は、複動式摩擦攪拌接合装置101の揺動又は回動を停止させて、複動式摩擦攪拌接合装置101を予め設定されている所定の位置に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11aが、ショルダ部材12の先端面12aと一致するように、工具駆動器53(ピン駆動器531)を駆動する(ステップS107)。ついで、制御装置130は、第1回転駆動器57を停止させ(ステップS108)、本プログラムを終了する。
 このように構成された、本実施の形態2における変形例2の複動式摩擦攪拌接合システム100であっても、実施の形態2に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 (実施の形態3)
 本実施の形態3に係る複動式摩擦攪拌接合システムは、実施の形態1又は2(変形例を含む)に係る複動式摩擦攪拌接合システムにおいて、制御装置が、(A)において、ピン部材の先端面が、予め設定されている第1位置まで移動するように、工具駆動器を動作させる(A1)と、(A1)の後に、当該(A1)よりも大きい速度で、ピン部材の先端面が、予め設定されている第2位置まで移動するように、工具駆動器を動作させる(A2)と、を実行するように構成されている。
 以下、本実施の形態3に係る複動式摩擦攪拌接合システムの一例について、図14及び図15を参照しながら説明する。
 [複動式摩擦攪拌接合システムの構成]
 図14は、本実施の形態3に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。
 図14に示すように、本実施の形態3に係る複動式摩擦攪拌接合システム100は、実施の形態1に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、複動式摩擦攪拌接合装置101が、ピン部材11の先端面11aの軸線Xr方向の位置を検出し、検出した位置情報を制御装置130に出力するように構成されている、位置検出器58を有している点が異なる。
 位置検出器58としては、種々の公知の位置センサを用いることができ、例えば、LVDT、エンコーダ等を使用することができる。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 本実施の形態3に係る複動式摩擦攪拌接合システム100の動作は、実施の形態1又は2に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS101又はステップS11における動作が、図15に示すフローに従って、実行される点が異なる。
 図15は、本実施の形態3に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図15に示すように、制御装置130は、ステップS101又はステップS11において、まず、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を駆動させる(動作させる)(ステップS1001)。
 このとき、制御装置130は、ピン部材11を一定の荷重で引き上げるように、工具駆動器53(ピン駆動器531)を動作させてもよい。また、制御装置130は、工具駆動器53を構成するサーボモータに供給される電流値が、予め設定されている所定値(例えば、5A)より大きくならないように、工具駆動器53を動作させてもよい。
 次に、制御装置130は、位置検出器58から当該位置検出器58が検出したピン部材11の先端面11aの軸線Xr方向の位置情報を取得する(ステップS1002)。ついで、制御装置130は、ステップS1002で取得したピン部材11の先端面11aの軸線Xr方向の位置が、第1位置に到達したか否かを判定する(ステップS1003)。
 ここで、第1位置は、予め実験等により設定することができ、ピン部材11の外周面及び/又はショルダ部材12の内周面において、他の部分に比して、被接合物60の材料の凝着量が大きい部分である。第1位置は、例えば、ピン部材11の先端面11aが、被接合物60を接合しているときに、ショルダ部材12に対して最も内方する位置(最も上方に移動した位置)であってもよい。
 制御装置130は、ステップS1002で取得したピン部材11の先端面11aの軸線Xr方向の位置が、第1位置に到達していないと判定した場合(ステップS1003でNo)には、ピン部材11の先端面11aの軸線Xr方向の位置が、第1位置に到達したと判定するまで、ステップS1002及びステップS1003の処理を繰り返す。
 一方、制御装置130は、ステップS1002で取得したピン部材11の先端面11aの軸線Xr方向の位置が、第1位置に到達したと判定した場合(ステップS1003でYes)には、ステップS1004の処理を実行する。
 ステップS1004では、制御装置130は、ピン部材11の移動速度が大きくなるように、工具駆動器53(ピン駆動器531)を動作させる。具体的には、制御装置130は、ピン部材11が第1位置に到達した後の移動速度の方が、ピン部材11が第1位置に到達するまでの移動速度よりも、大きくなるように、工具駆動器53(ピン駆動器531)を動作させる。詳細には、制御装置130は、工具駆動器53を構成するサーボモータの回転速度を大きくする。
 次に、制御装置130は、位置検出器58から当該位置検出器58が検出したピン部材11の先端面11aの軸線Xr方向の位置情報を取得する(ステップS1005)。ついで、制御装置130は、ステップS1005で取得したピン部材11の先端面11aの軸線Xr方向の位置が、第2位置に到達したか否かを判定する(ステップS1006)。
 ここで、第2位置は、予め実験等により設定することができ、例えば、ピン部材11の先端面11aが、最もショルダ部材12に対して内方することができる位置(装置として、最も上方に移動できる位置)であってもよい。
 制御装置130は、ステップS1005で取得したピン部材11の先端面11aの軸線Xr方向の位置が、第2位置に到達していないと判定した場合(ステップS1006でNo)には、ピン部材11の先端面11aの軸線Xr方向の位置が、第2位置に到達したと判定するまで、ステップS1005及びステップS1006の処理を繰り返す。
 一方、制御装置130は、ステップS1005で取得したピン部材11の先端面11aの軸線Xr方向の位置が、第2位置に到達したと判定した場合(ステップS1006でYes)には、工具駆動器53(ピン駆動器531)を停止させ(ステップS1007)、ステップS102又はステップS12等の処理を実行する。
 このように構成された、本実施の形態3に係る複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 また、本実施の形態3に係る複動式摩擦攪拌接合システム100では、制御装置130が、ピン部材11が第1位置に到達した後の移動速度の方が、ピン部材11が第1位置に到達するまでの移動速度よりも、大きくなるように、工具駆動器53(ピン駆動器531)を動作させる。
 換言すると、制御装置130は、ピン部材11が第1位置に到達するまで、ピン部材11の移動速度が小さくなるように、工具駆動器53(ピン駆動器531)を動作させている。これにより、ピン部材11に大きな荷重がかかって、ピン部材11の破損を抑制することができる。
 また、制御装置130は、ピン部材11が第1位置に到達すると、ピン部材11の移動速度を大きくすることにより、ステップS101又はステップS11の処理に係る時間を短縮することができ、ひいては、ショルダ部材12の清掃に係る時間を短縮することができる。
 (実施の形態4)
 本実施の形態4に係る複動式摩擦攪拌接合システムは、実施の形態1~3(変形例を含む)のいずれかの複動式摩擦攪拌接合システムにおいて、清掃機構は、ショルダ部材の内部空間を挿通可能に構成されている補助部と、補助部を軸線に沿って進退移動可能に構成されている作動部と、を有する、補助部材をさらに有し、制御装置は、(A)において、ピン部材の先端面を補助部の先端に当接させるようにロボットを動作させ、作動部を工具駆動器と同期するように動作させて、補助部によりピン部材の移動を補助させながら、ピン部材をショルダ部材の内方に没入させる。
 以下、本実施の形態4に係る複動式摩擦攪拌接合システムの一例について、図16~図18を参照しながら説明する。
 [複動式摩擦攪拌接合システムの構成]
 図16は、本実施の形態4に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。
 図16に示すように、本実施の形態4に係る複動式摩擦攪拌接合システム100は、実施の形態1に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、清掃機構110が、補助部材113をさらに有する点が異なる。ここで、図17を参照しながら、補助部材113の構成について説明する。
 図17は、図16に示す複動式摩擦攪拌接合システムにおける補助部材の概略構成を示す模式図である。なお、図17においては、複動式摩擦攪拌接合装置101の一部分(ピン部材11及びショルダ部材12)のみを記載している。また、図17においては、複動式摩擦攪拌接合装置101の上下方向を図における上下方向として表している。
 図17に示すように、補助部材113は、ショルダ部材12の内部空間を挿通可能に構成されている補助部113Aと、補助部113Aを軸線Xrに沿って進退移動可能に構成されている作動部113Bと、を有している。
 補助部113Aは、ここでは、L字状に形成されていて、上下方向に延びる棒部分が、ショルダ部材12の内部空間を挿通可能に構成されている。また、作動部113Bは、例えば、直動アクチュエータで構成されている。直動アクチュエータとしては、例えば、エアシリンダー等を用いてもよい。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 本実施の形態4に係る複動式摩擦攪拌接合システム100の動作は、実施の形態1又は2に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS101又はステップS11における動作が、図18に示すフローに従って、実行される点が異なる。
 図18は、本実施の形態4に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図18に示すように、制御装置130は、ステップS101又はステップS11において、まず、複動式摩擦攪拌接合装置101を保持させて、当該複動式摩擦攪拌接合装置101のピン部材11の先端面(下端面)11aが、補助部材113の補助部113Aの先端面(上端面)と当接するように、ロボット120を動作させる(ステップS1011)。
 なお、作業者及び/又は他のロボットが、補助部113Aの先端面が、ピン部材11の先端面11aと当接するように、補助部材113を配置してもよい。
 次に、制御装置130は、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を動作させ、かつ、作動部113Bを工具駆動器53と同期するように動作させ(ステップS1012)、ステップS102又はステップS12等の処理を実行する。
 これにより、補助部113Aにより、ピン部材11の移動を補助させることができる。
 このように構成された、本実施の形態4に係る複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 また、本実施の形態4に係る複動式摩擦攪拌接合システム100では、制御装置130が、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を動作させ、かつ、作動部113Bを工具駆動器53と同期するように動作させるように構成されている。
 これにより、補助部113Aにより、ピン部材11の移動を補助させることができ、ピン部材11の破損を抑制することができる。また、ピン部材11の移動を補助させることにより、ピン部材11の移動速度を大きくすることができ、ひいては、ショルダ部材12の清掃に係る時間を短縮することができる。
 なお、制御装置130は、実施の形態3に係る複動式摩擦攪拌接合システム100と同様に、ピン部材11が第1位置に到達した後の移動速度の方が、ピン部材11が第1位置に到達するまでの移動速度よりも、大きくなるように、工具駆動器53(ピン駆動器531)を動作させてもよい。このとき、制御装置130は、ピン部材11の移動速度に同期するように、作動部113Bを動作させてもよい。
 (実施の形態5)
 本実施の形態5に係る複動式摩擦攪拌接合システムは、実施の形態1~3(変形例を含む)のいずれかの複動式摩擦攪拌接合システムにおいて、清掃機構は、ショルダ部材の内部空間を挿通可能に構成されている補助部と、補助部を軸線に沿って進退移動可能に構成されている作動部と、作動部を制御する制御部と、を有する、補助部材をさらに有し、制御装置は、(A)において、ピン部材の先端面を補助部の先端に当接させるようにロボットを動作させ、ピン部材が、ショルダ部材の内方に没入するように、工具駆動器を動作させ、制御部は、(A)において、作動部を工具駆動器と同期するように動作させて、ピン部材の移動を補助させる。
 以下、本実施の形態5に係る複動式摩擦攪拌接合システムの一例について、図19及び図20を参照しながら説明する。
 [複動式摩擦攪拌接合システムの構成]
 図19は、本実施の形態5に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。
 図19に示すように、本実施の形態5に係る複動式摩擦攪拌接合システム100は、実施の形態1に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、清掃機構110が、制御部150を有する補助部材113をさらに有する点が異なる。なお、補助部材113の構成は、制御部150を有する以外は、実施の形態4に係る複動式摩擦攪拌接合システム100の補助部材113と同様に構成されているため、その詳細な説明は省略する。
 制御部150は、マイクロプロセッサ、CPU等の演算器と、ROM、RAM等の記憶器と、を備えている。記憶器には、基本プログラム、各種固定データ等の情報が記憶されている。演算器は、記憶器に記憶された基本プログラム等のソフトウェアを読み出して実行することにより、補助部材113の各種動作を制御する。
 また、制御部150は、制御装置110と適宜な手段(例えば、無線LAN等)により、通信可能に構成されている。
 なお、制御部150は、集中制御する単独の制御部150によって構成されていてもよいし、互いに協働して分散制御する複数の制御部150によって構成されていてもよい。また、制御部150は、マイクロコンピュータで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 本実施の形態5に係る複動式摩擦攪拌接合システム100の動作は、実施の形態1又は2に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS101又はステップS11における動作が、図20に示すフローに従って、実行される点が異なる。
 図20は、本実施の形態5に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図20に示すように、制御装置130は、ステップS101又はステップS11において、まず、複動式摩擦攪拌接合装置101を保持させて、当該複動式摩擦攪拌接合装置101のピン部材11の先端面(下端面)11aが、補助部材113の補助部113Aの先端面(上端面)と当接するように、ロボット120を動作させる(ステップS1011)。
 なお、作業者及び/又は他のロボットが、補助部113Aの先端面が、ピン部材11の先端面11aと当接するように、補助部材113を配置してもよい。
 次に、制御装置130は、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を動作させ、制御部150は、作動部113Bを工具駆動器53と同期するように動作させ(ステップS1012A)、ステップS102又はステップS12等の処理を実行する。
 これにより、補助部113Aにより、ピン部材11の移動を補助させることができる。
 このように構成された、本実施の形態5に係る複動式摩擦攪拌接合システム100であっても、実施の形態1に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 また、本実施の形態5に係る複動式摩擦攪拌接合システム100では、制御装置130が、ピン部材11が、ショルダ部材12に対して内方に没入するように、工具駆動器53(ピン駆動器531)を動作させ、かつ、制御部150は、作動部113Bを工具駆動器53と同期するように動作させるように構成されている。
 これにより、補助部113Aにより、ピン部材11の移動を補助させることができ、ピン部材11の破損を抑制することができる。また、ピン部材11の移動を補助させることにより、ピン部材11の移動速度を大きくすることができ、ひいては、ショルダ部材12の清掃に係る時間を短縮することができる。
 (実施の形態6)
 本実施の形態6に係る複動式摩擦攪拌接合システムは、実施の形態1~5(変形例を含む)に係る複動式摩擦攪拌接合システムにおいて、制御装置が、ピン部材が、ショルダ部材の先端部に対して、突出するように、工具駆動器を動作させる(D)と、複動式摩攪拌接合装置を保持させて、ピン部材の外周面及び/又はショルダ部材の外周面が、ドレッシング部材と当接するように、ロボットを動作させる(E)と、をさらに実行するように構成されている。
 以下、本実施の形態6に係る複動式摩擦攪拌接合システムの一例について、図21を参照しながら説明する。なお、本実施の形態6に係る複動式摩擦攪拌接合システムの構成は、実施の形態1に係る複動式摩擦攪拌接合システムと同じであるため、その詳細な説明を省略する。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図21は、本実施の形態6に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 まず、作業者(操作者)が、入力器132を操作して、ピン部材11及び/又はショルダ部材12の清掃(メンテナンス)を実行するように、演算処理器131に指示情報を入力した場合、又は、複動式摩擦攪拌接合装置101が、予め設定されている所定の回数、摩擦攪拌接合をした場合等に、制御装置130の演算処理器131は、記憶器133に格納されているプログラムを読み出すことにより、以下の動作(処理)を実行する。
 なお、作業者等は、予めクランプ部材54を複動式摩擦攪拌接合装置101から取り外していてもよい。
 制御装置130は、ピン部材11が、ショルダ部材12の先端部に対して突出するように、工具駆動器53(ピン駆動器531)を駆動させる(動作させる)(ステップS201)。ついで、制御装置130は、第1回転駆動器57を動作させて(ステップS202)、ピン部材11及びショルダ部材12を回転させる。
 次に、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、清掃機構110のドレッシング部材111が、ピン部材11の外周面及び/又はショルダ部材12の外周面と当接するように、ロボット120を動作させる(ステップS203)。
 このとき、制御装置130は、ドレッシング部材111が、軸線Xrに沿って進退するように、ロボット120を動作させてもよい。また、制御装置130は、ピン部材11の外周面及び/又はショルダ部材12の外周面に沿って、周回するように、ロボット120を動作させてもよい。
 また、制御装置130は、ドレッシング部材111をピン部材11の外周面及びショルダ部材12の外周面のうち、一方の外周面と当接させた後、他方の外周面と当接するように、ロボット120を動作させてもよい。
 これにより、ピン部材11の外周面及び/又はショルダ部材12の外周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 次に、制御装置130は、ドレッシング部材111をピン部材11の外周面及び/又はショルダ部材12の外周面と当接させてから経過した時間を時計器134から取得する(ステップS204)。ついで、制御装置130は、ステップS204で取得した時間が、予め設定されている第3時間を経過したか否かを判定する(ステップS205)。
 ここで、第3時間は、予め実験等により求めることができ、例えば、ピン部材11の外周面及び/又はショルダ部材12の外周面に付着している被接合物60の材料を充分に除去するためにかかる時間であってもよい。
 制御装置130は、ステップS204で取得した時間が、第3時間を経過していないと判定した場合(ステップS205でNo)には、ステップS204で取得した時間が、第3時間を経過するまで、ステップS204及びステップS205の処理を繰り返す。一方、制御装置130は、ステップS204で取得した時間が、第3時間を経過した判定した場合(ステップS205でYes)には、ステップS206の処理を実行する。
 ステップS206では、制御装置130は、複動式摩擦攪拌接合装置101を予め設定されている所定の位置(複動式摩擦攪拌接合装置101が設置されている初期位置)に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11aが、ショルダ部材12の先端面12aと一致するように、工具駆動器53(ピン駆動器531)を駆動する(ステップS207)。ついで、制御装置130は、第1回転駆動器57を停止させ(ステップS208)、本プログラムを終了する。
 このように構成された、本実施の形態6に係る複動式摩擦攪拌接合システム100では、制御装置130が、ピン部材11及びショルダ部材12を回転させた状態で、ドレッシング部材111が、ピン部材11の外周面及び/又はショルダ部材12の外周面と当接するように、ロボット120を動作させるように構成されている。
 これにより、ピン部材11の外周面及び/又はショルダ部材12の外周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 なお、本実施の形態6に係る複動式摩擦攪拌接合システム100においては、制御装置130の制御により、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行する形態を採用したが、これに限定されない。制御装置130が、ショルダ部材12の内周面の清掃を実行する前に、又はショルダ部材12の内周面の清掃を実行した後に、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行する形態を採用してもよい。
 具体的には、制御装置130は、ステップS201、ステップS203~ステップS205の処理を、ステップS102とステップS103の処理の間、又はステップS105とステップS106の処理の間に実行してもよい。
 また、本実施の形態6に係る複動式摩擦攪拌接合システム100においては、制御装置130が、第1回転駆動器57を回転させて、ピン部材11及びショルダ部材12を回転させる形態を採用したが、これに限定されない。実施の形態2と同様に、清掃機構110が、第2回転駆動器112を有していて、制御装置130が、第2回転駆動器112を動作させて、ドレッシング部材111を回転させる形態を採用してもよい。
 さらに、ドレッシング部材111が、ピン部材11の外周面とショルダ部材12の外周面と当接するように形成されていてもよい。ここで、図22は、ドレッシング部材の一例を示す模式図である。
 図22に示すように、ドレッシング部材111は、円筒状の筒部材111Aと刷毛部材111Bを有している。刷毛部材111Bは、筒部材111Aの内周面にその中心軸に向かって、径方向に延びるように配置されている。なお、ここでは、筒部材111Aを円筒状に形成したが、これに限定されず、筒部材111Aは、筒状に形成されていればよく、その開口形状は任意である。
 [変形例1]
 次に、本実施の形態6に係る複動式摩擦攪拌接合システム100の変形例について、図23を参照しながら説明する。
 本実施の形態6における変形例1の複動式摩擦攪拌接合システムは、制御装置が、(E)において、清掃機構を保持させて、ドレッシング部材がピン部材の外周面及び/又はショルダ部材の外周面と当接するように、ロボットを動作させるように構成されている。
 以下、本実施の形態6における変形例1の複動式摩擦攪拌接合システムの一例について、説明する。なお、本実施の形態6における変形例1の複動式摩擦攪拌接合システムの構成は、実施の形態1に係る複動式摩擦攪拌接合システムと同じであるため、その詳細な説明を省略する。
 図23は、本実施の形態6における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図23に示すように、本実施の形態6における変形例1の複動式摩擦攪拌接合システム100の動作は、実施の形態6に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS203及びステップS206に代えて、ステップS203A及びステップS206Aが実行されている点が異なる。
 具体的には、制御装置130は、清掃機構110(ドレッシング部材111)を保持させて、清掃機構110のドレッシング部材111が、ピン部材11の外周面及び/又はショルダ部材12の外周面と当接するように、ロボット120を動作させる(ステップS203A)。このとき、複動式摩擦攪拌接合装置101は、定置されていてもよく、ロボット120以外のロボットに把持されていてもよい。
 次に、制御装置130は、ドレッシング部材111をピン部材11の外周面及び/又はショルダ部材12の外周面と当接させてから経過した時間を時計器134から取得する(ステップS204)。ついで、制御装置130は、ステップS204で取得した時間が、予め設定されている第3時間を経過したか否かを判定する(ステップS205)。
 次に、制御装置130は、ステップS204で取得した時間が、第3時間を経過した判定した場合(ステップS205でYes)には、清掃機構110を予め設定されている所定の位置(清掃機構110が設置されている初期位置)に移動するように、ロボット120を動作させる(ステップS206A)。
 このように構成された、本実施の形態6における変形例1の複動式摩擦攪拌接合システム100であっても、実施の形態6に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 なお、本実施の形態6における変形例1の複動式摩擦攪拌接合システム100においては、制御装置130が、第1回転駆動器57を回転させて、ピン部材11及びショルダ部材12を回転させる形態を採用したが、これに限定されない。実施の形態2と同様に、清掃機構110が、第2回転駆動器112を有していて、制御装置130が、第2回転駆動器112を動作させて、ドレッシング部材111を回転させる形態を採用してもよい。
 [変形例2]
 本実施の形態6における変形例2の複動式摩擦攪拌接合システムは、ロボットが、複動式摩擦攪拌接合装置を保持した状態で、軸線回りに揺動自在又は回動自在に構成されていて、制御装置は、(E)において、複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、ピン部材の外周面及び/又はショルダ部材の外周面が、ドレッシング部材と当接するように、ロボットを動作させるように構成されている。
 以下、本実施の形態6における変形例2の複動式摩擦攪拌接合システムの一例について、図24を参照しながら説明する。なお、本実施の形態6における変形例2の複動式摩擦攪拌接合システム100は、実施の形態1における変形例2の複動式摩擦攪拌接合システム100と基本的構成は同じであるため、その詳細な説明は省略する。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図24は、本実施の形態6における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図24に示すように、本実施の形態6における変形例2の複動式摩擦攪拌接合システム100の動作は、実施の形態6に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS202及びステップS208の動作(処理)を実行せず、かつ、ステップS203及びステップS206に代えて、ステップS203B及びステップS206Bの動作(処理)が実行される点が異なる。
 具体的には、制御装置130は、ピン部材11が、ショルダ部材12の先端部に対して突出するように、工具駆動器53(ピン駆動器531)を駆動させる(動作させる)(ステップS201)。ついで、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、当該複動式摩擦攪拌接合装置101を揺動又は回動させながら、清掃機構110のドレッシング部材111が、ピン部材11及び/又はショルダ部材12の外周面と当接するように、ロボット120を動作させる(ステップS103B)。
 これにより、ピン部材11及び/又はショルダ部材12の外周面に付着している被接合物60の材料をドレッシング部材111により、除去する(削り取る)ことができる。なお、ドレッシング部材111として、切削工具を用いてもよい。
 次に、制御装置130は、ドレッシング部材111をピン部材11及び/又はショルダ部材12の外周面と当接させてから経過した時間を時計器134から取得する(ステップS204)。ついで、制御装置130は、ステップS204で取得した時間が、予め設定されている第3時間を経過したか否かを判定する(ステップS205)。
 制御装置130は、ステップS204で取得した時間が、第3時間を経過した判定した場合(ステップS205でYes)には、ステップS206Bの処理を実行する。
 ステップS206Bでは、制御装置130は、複動式摩擦攪拌接合装置101の揺動又は回動を停止させて、複動式摩擦攪拌接合装置101を予め設定されている所定の位置に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11aが、ショルダ部材12の先端面12aと一致するように、工具駆動器53(ピン駆動器531)を駆動し(ステップS207)、本プログラムを終了する。
 このように構成された、本実施の形態6における変形例2の複動式摩擦攪拌接合システム100であっても、実施の形態6に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 (実施の形態7)
 本実施の形態7に係る複動式摩擦攪拌接合システムは、実施の形態1~6(変形例を含む)のいずれかの複動式摩擦攪拌接合システムにおいて、複動式摩擦攪拌接合装置が、円筒状に形成され、ピン部材及びショルダ部材が内部に挿通されているクランプ部材をさらに備え、清掃機構が、ドレッシング部材を回転させる第2回転駆動器をさらに有し、制御装置は、ピン部材及びショルダ部材が、クランプ部材の内方に没入するように、工具駆動器を動作させる(F)と、複動式摩攪拌接合装置を保持させて、ドレッシング部材がクランプ部材の内周面と当接するように、ロボットを動作させる(G)と、をさらに実行するように構成されている。
 以下、本実施の形態7に係る複動式摩擦攪拌接合システムの一例について、図25及び図26を参照しながら説明する。なお、本実施の形態7に係る複動式摩擦攪拌接合システムは、実施の形態2に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、複動式摩擦攪拌接合装置101の構成が異なる。
 [複動式摩擦攪拌接合装置の構成]
 図25は、本実施の形態7に係る複動式摩擦攪拌接合システムの概略構成を示す模式図である。なお、図25においては、図における上下方向を複動式摩擦攪拌接合装置における上下方向として表している。
 図25に示すように、本実施の形態7に係る複動式摩擦攪拌接合システム100における複動式摩擦攪拌接合装置101は、実施の形態1に係る複動式摩擦攪拌接合システム100の複動式摩擦攪拌接合装置101と基本的構成は同じであるが、工具駆動器53が、ピン部材11及びショルダ部材12をクランプ部材54に対して、出没させることができる出没機構533をさらに有する点が異なる。
 具体的には、出没機構533は、可動体522と第1回転駆動器57とを接続するように配置されていて、直動アクチュエータで構成されている。直動アクチュエータとしては、例えば、サーボモータとラックアンドピニオン、サーボモータとボールネジ、又はエアシリンダー等で構成されていてもよい。
 これにより、出没機構533が動作することにより、ピン部材11及びショルダ部材12は、クランプ部材54に対して、出没(進退)することができる。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図26は、本実施の形態7に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 まず、作業者(操作者)が、入力器132を操作して、クランプ部材54の清掃(メンテナンス)を実行するように、演算処理器131に指示情報を入力した場合、又は、複動式摩擦攪拌接合装置101が、予め設定されている所定の回数、摩擦攪拌接合をした場合等に、制御装置130の演算処理器131は、記憶器133に格納されているプログラムを読み出すことにより、以下の動作(処理)を実行する。
 制御装置130は、ピン部材11及びショルダ部材12がクランプ部材54に対して内方に没入するように、工具駆動器53(出没機構533)を駆動させる(動作させる)(ステップS301)。ついで、制御装置130は、第2回転駆動器112を動作させて(ステップS302)、ドレッシング部材111を回転させる。
 次に、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、清掃機構110のドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させる(ステップS303)。
 このとき、制御装置130は、ドレッシング部材111が、クランプ部材54の内方空間を軸線Xrに沿って進退するように、ロボット120を動作させてもよい。なお、ロボット120が既に、複動式摩擦攪拌接合装置101を保持している場合には、制御装置130は、清掃機構110のドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させる。
 これにより、クランプ部材54の内周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 次に、制御装置130は、ドレッシング部材111をクランプ部材54の内周面と当接させてから経過した時間を時計器134から取得する(ステップS304)。ついで、制御装置130は、ステップS304で取得した時間が、予め設定されている第4時間を経過したか否かを判定する(ステップS305)。
 ここで、第4時間は、予め実験等により求めることができ、例えば、クランプ部材54の内周面に付着している被接合物60の材料を充分に除去するためにかかる時間であってもよい。
 制御装置130は、ステップS304で取得した時間が、第4時間を経過していないと判定した場合(ステップS305でNo)には、ステップS304で取得した時間が、第4時間を経過するまで、ステップS304及びステップS305の処理を繰り返す。一方、制御装置130は、ステップS304で取得した時間が、第4時間を経過した判定した場合(ステップS305でYes)には、ステップS306の処理を実行する。
 ステップS306では、制御装置130は、複動式摩擦攪拌接合装置101を予め設定されている所定の位置(複動式摩擦攪拌接合装置101が設置されている初期位置)に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11a及びショルダ部材12の先端面12aが、クランプ部材54の先端面54aと一致するように、工具駆動器53(出没機構533)を駆動する(ステップS307)。ついで、制御装置130は、第2回転駆動器112を停止させ(ステップS308)、本プログラムを終了する。
 このように構成された、本実施の形態7に係る複動式摩擦攪拌接合システム100では、制御装置130が、ドレッシング部材111を回転させた状態で、ドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させるように構成されている。
 これにより、クランプ部材54の内周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 なお、本実施の形態7に係る複動式摩擦攪拌接合システム100においては、制御装置130の制御により、クランプ部材54の内周面の清掃を実行する形態を採用したが、これに限定されない。制御装置130が、ショルダ部材12の内周面の清掃を実行する前に、又はショルダ部材12の内周面の清掃を実行した後に、クランプ部材54の内周面の清掃を実行する形態を採用してもよい。
 また、制御装置130は、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行する前、又はピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行した後に、クランプ部材54の内周面の清掃を実行する形態を採用してもよい。この場合、制御装置130は、ショルダ部材12の内周面の清掃を実行する前に、又はショルダ部材12の内周面の清掃を実行した後に、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行し、その後、クランプ部材54の内周面の清掃を実行してもよい。
 すなわち、制御装置130は、ショルダ部材12の内周面の清掃と、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃と、クランプ部材54の内周面の清掃と、を実行してもよく、その清掃の順番は、任意に実行してもよい。
 [変形例1]
 次に、本実施の形態7に係る複動式摩擦攪拌接合システム100の変形例について、図27を参照しながら説明する。
 本実施の形態7における変形例1の複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置が、円筒状に形成され、ピン部材及びショルダ部材が内部に挿通されているクランプ部材をさらに備え、清掃機構が、ドレッシング部材を回転させる第2回転駆動器をさらに有し、制御装置は、ドレッシング部材が回転するように、第2回転駆動器を動作させる(B1)と、ピン部材及びショルダ部材が、クランプ部材の内方に没入するように、工具駆動器を動作させる(F)と、清掃機構を保持させて、ドレッシング部材がクランプ部材の内周面と当接するように、ロボットを動作させる(G1)と、をさらに実行するように構成されている。
 以下、本実施の形態7における変形例1の複動式摩擦攪拌接合システムの一例について、説明する。なお、本実施の形態7における変形例1の複動式摩擦攪拌接合システムの構成は、実施の形態7に係る複動式摩擦攪拌接合システムと同じであるため、その詳細な説明を省略する。
 図27は、本実施の形態7における変形例1の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図27に示すように、本実施の形態7における変形例1の複動式摩擦攪拌接合システム100の動作は、実施の形態7に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS303及びステップS306に代えて、ステップS303A及びステップS306Aが実行されている点が異なる。
 具体的には、制御装置130は、清掃機構110(ドレッシング部材111)を保持させて、清掃機構110のドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させる(ステップS303A)。
 次に、制御装置130は、ドレッシング部材111をクランプ部材54の内周面と当接させてから経過した時間を時計器134から取得する(ステップS304)。ついで、制御装置130は、ステップS304で取得した時間が、予め設定されている第4時間を経過したか否かを判定する(ステップS305)。
 次に、制御装置130は、ステップS304で取得した時間が、第4時間を経過した判定した場合(ステップS305でYes)には、清掃機構110を予め設定されている所定の位置(清掃機構110が設置されている初期位置)に移動するように、ロボット120を動作させる(ステップS306A)。
 このように構成された、本実施の形態7における変形例1の複動式摩擦攪拌接合システム100であっても、実施の形態7に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 [変形例2]
 本実施の形態7における変形例2の複動式摩擦攪拌接合システムは、ロボットが、複動式摩擦攪拌接合装置を保持した状態で、軸線回りに揺動自在又は回動自在に構成されていて、制御装置は、(G)において、複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、ドレッシング部材がクランプ部材の内周面と当接するように、ロボットを動作させるように構成されている。
 以下、本実施の形態7における変形例2の複動式摩擦攪拌接合システムの一例について、図28を参照しながら説明する。なお、本実施の形態7における変形例2の複動式摩擦攪拌接合システム100は、実施の形態1における変形例2の複動式摩擦攪拌接合システム100と基本的構成は同じであるため、その詳細な説明は省略する。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図28は、本実施の形態7における変形例2の複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 図28に示すように、本実施の形態7における変形例2の複動式摩擦攪拌接合システム100の動作は、実施の形態7に係る複動式摩擦攪拌接合システム100の動作と基本的には同じであるが、ステップS303及びステップS306に代えて、ステップS303B及びステップS306Bの動作(処理)が実行される点が異なる。
 具体的には、制御装置130は、複動式摩擦攪拌接合装置101を保持させて、当該複動式摩擦攪拌接合装置101を揺動又は回動させながら、清掃機構110のドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させる(ステップS303B)。
 これにより、クランプ部材54の内周面に付着している被接合物60の材料をドレッシング部材111により、除去する(削り取る)ことができる。
 次に、制御装置130は、ドレッシング部材111をクランプ部材54の内周面と当接させてから経過した時間を時計器134から取得する(ステップS304)。ついで、制御装置130は、ステップS304で取得した時間が、予め設定されている第4時間を経過したか否かを判定する(ステップS305)。
 制御装置130は、ステップS304で取得した時間が、第4時間を経過した判定した場合(ステップS305でYes)には、ステップS306Bの処理を実行する。
 ステップS306Bでは、制御装置130は、複動式摩擦攪拌接合装置101の揺動又は回動を停止させて、複動式摩擦攪拌接合装置101を予め設定されている所定の位置に移動するように、ロボット120を動作させる。
 次に、制御装置130は、ピン部材11の先端面11a及びショルダ部材12の先端面12aが、クランプ部材54の先端面54aと一致するように、工具駆動器53(出没機構533)を駆動する(ステップS307)。ついで、制御装置130は、第2回転駆動器112を停止させ(ステップS308)、本プログラムを終了する。
 このように構成された、本実施の形態7における変形例2の複動式摩擦攪拌接合システム100であっても、実施の形態7に係る複動式摩擦攪拌接合システム100と同様の作用効果を奏する。
 (実施の形態8)
 本実施の形態8に係る複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置と、ドレッシング部材を有する清掃機構と、ロボットと、ストック機構と、制御装置と、を備え、複動式摩擦攪拌接合装置は、円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、円筒状に形成され、ピン部材が内部に挿通されており、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、ピン部材及びショルダ部材を、軸線回りに回転させる第1回転駆動器と、ピン部材及びショルダ部材を、それぞれ軸線に沿って進退移動させる工具駆動器と、有し、清掃機構は、ドレッシング部材を回転させる第2回転駆動器をさらに有し、制御装置は、ピン部材及び/又はショルダ部材を取り外し、軸線が鉛直方向を向くように、ピン部材及び/又はショルダ部材をストック機構に配置するようにロボットを動作させる(H)と、ドレッシング部材が回転するように、第2回転駆動器を動作させる(I)と、清掃機構を保持させて、ピン部材の外周面、ショルダ部材の内周面、及びショルダ部材の外周面のうち、少なくとも1つの面と当接するように、ロボットを動作させる(J)と、を実行するように構成されている。
 以下、本実施の形態8に係る複動式摩擦攪拌接合システムの一例について、図29~図31を参照しながら詳細に説明する。
 [複動式摩擦攪拌接合システムの構成]
 図29は、本実施の形態8に係る複動式摩擦攪拌接合システムの概略構成を示すブロック図である。
 図29に示すように、本実施の形態8に係る複動式摩擦攪拌接合システム100は、実施の形態2に係る複動式摩擦攪拌接合システム100と基本的構成は同じであるが、ストック機構140をさらに備える点が異なる。
 [ストック機構の構成]
 図30は、図29に示すストック機構の概略構成を示す模式図である。なお、図30においては、ストック機構における上下方向を図における上下方向として表している。
 図30に示すように、ストック機構140は、外筒71、内筒72、第1蓋部材81、及び第2蓋部材82を有している。
 外筒71及び内筒72は、それぞれ、円筒状に形成されていて、それぞれの下端面には、第1蓋部材81及び第2蓋部材82が配置されている。第1蓋部材81は床面等に載置されていて、第1蓋部材81の上面に第2蓋部材82が載置されている。
 外筒71と内筒72の間の筒状空間には、弾性部材73が設けられている。具体的には、弾性部材73は、外筒71の内周面と内筒72の外周面を接続するように、配設されている。弾性部材73は、複数箇所に設けられていてもよい。弾性部材73としては、例えば、バネ、ゴム等を用いてもよい。
 これにより、ショルダ部材12にドレッシング部材111が衝突した場合等に、その衝撃を弾性部材73により、緩和することができる。
 また、内筒72の内周面の適所には、ショルダ部材12の位置決めをするための位置決め部材74が設けられている。なお、図30では、ショルダ部材12を保持するように構成されているが、これに限定されず、ピン部材11又はクランプ部材54を保持するように構成されていてもよい。
 [複動式摩擦攪拌接合システムの動作及び作用効果]
 図31は、本実施の形態8に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 まず、作業者(操作者)が、入力器132を操作して、ピン部材11及び/又はショルダ部材12の清掃(メンテナンス)を実行するように、演算処理器131に指示情報を入力した場合、又は、複動式摩擦攪拌接合装置101が、予め設定されている所定の回数、摩擦攪拌接合をした場合等に、制御装置130の演算処理器131は、記憶器133に格納されているプログラムを読み出すことにより、以下の動作(処理)を実行する。
 制御装置130は、ピン部材11及び/又はショルダ部材12を複動式摩擦攪拌接合装置101から取り外し、ストック機構140に載置するように、ロボット120を動作させる(ステップS401)。このとき、制御装置130は、ピン部材11の先端面11a及び/又はショルダ部材12の先端面12aが上方に位置するように、ロボット120を動作させる。
 なお、作業者が、ピン部材11及び/又はショルダ部材12を複動式摩擦攪拌接合装置101から取り外し、ストック機構140に載置する場合には、制御装置130は、当該ステップS401の処理を実行しないように構成されている。
 次に、制御装置130は、第2回転駆動器112を動作させて(ステップS402)、ドレッシング部材111を回転させる。
 次に、制御装置130は、清掃機構110を保持させて、清掃機構110のドレッシング部材111が、ピン部材11の外周面、ショルダ部材12の内周面、及びショルダ部材12の外周面のうち、少なくともいずれかの1つの面と当接するように、ロボット120を動作させる(ステップS403)。
 これにより、ピン部材11の外周面、ショルダ部材12の内周面、及びショルダ部材12の外周面のうち、少なくともいずれかの1つの面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 次に、制御装置130は、ドレッシング部材111をいずれかの面と当接させてから経過した時間を時計器134から取得する(ステップS404)。ついで、制御装置130は、ステップS404で取得した時間が、予め設定されている第5時間を経過したか否かを判定する(ステップS405)。
 ここで、第5時間は、予め実験等により求めることができ、例えば、いずれかの面に付着している被接合物60の材料を充分に除去するためにかかる時間であってもよい。
 制御装置130は、ステップS404で取得した時間が、第5時間を経過していないと判定した場合(ステップS405でNo)には、ステップS404で取得した時間が、第5時間を経過するまで、ステップS404及びステップS405の処理を繰り返す。一方、制御装置130は、ステップS404で取得した時間が、第5時間を経過した判定した場合(ステップS405でYes)には、ステップS406の処理を実行する。
 なお、制御装置130は、いずれかの面の清掃が終了した後(ステップS405でYes)に、他の面の清掃を実行してもよい。すなわち、制御装置130は、ピン部材11の外周面、ショルダ部材12の内周面、及びショルダ部材12の外周面のうち、2つの面の清掃を実行するように構成されていてもよく、3つの面を清掃するように構成されていてもよい。
 ステップS406では、制御装置130は、清掃機構110を予め設定されている所定の位置(清掃機構110が設置されている初期位置)に移動するように、ロボット120を動作させる。
 次に、制御装置130は、第2回転駆動器112を停止させ(ステップS407)、本プログラムを終了する。
 このように構成された、本実施の形態8に係る複動式摩擦攪拌接合システム100では、制御装置130が、ドレッシング部材111を回転させた状態で、ドレッシング部材111が、ピン部材11の外周面、ショルダ部材12の内周面、及びショルダ部材12の外周面のうち、少なくともいずれか1つの面と当接するように、ロボット120を動作させるように構成されている。
 これにより、ピン部材11の外周面、ショルダ部材12の内周面、及びショルダ部材12の外周面のうち、少なくともいずれかの1つの面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 なお、本実施の形態8に係る複動式摩擦攪拌接合システム100では、清掃機構110が、ドレッシング部材111を回転させる第2回転駆動器112を有する形態を採用したが、これに限定されない。例えば、ロボット120の先端部にドレッシング部材111を回転させる回転駆動器を設ける形態を採用してもよい。
 また、本実施の形態8に係る複動式摩擦攪拌接合システム100では、クランプ部材54を備える形態を採用したが、これに限定されず、クランプ部材54を備えていない形態を採用してもよい。
 (実施の形態9)
 本実施の形態9に係る複動式摩擦攪拌接合システムは、実施の形態8に係る複動式摩擦攪拌接合システムにおいて、複動式摩擦攪拌接合装置が、円筒状に形成され、ピン部材及びショルダ部材が内部に挿通されているクランプ部材をさらに備え、制御装置は、(H)において、クランプ部材を取り外し、軸線が鉛直方向を向くように、クランプ部材をストック機構に配置するようにロボットを動作させ、(J)において、清掃機構を保持させて、クランプ部材の内周面と当接するように、ロボットを動作させるように構成されている。
 以下、本実施の形態9に係る複動式摩擦攪拌接合システムの一例について、図32を参照しながら説明する。なお、本実施の形態9に係る複動式摩擦攪拌接合システムの構成は、実施の形態8に係る複動式摩擦攪拌接合システムと同じであるため、その詳細な説明を省略する。
 図32は、本実施の形態9に係る複動式摩擦攪拌接合システムの動作の一例を示すフローチャートである。
 まず、作業者(操作者)が、入力器132を操作して、クランプ部材54の清掃(メンテナンス)を実行するように、演算処理器131に指示情報を入力した場合、又は、複動式摩擦攪拌接合装置101が、予め設定されている所定の回数、摩擦攪拌接合をした場合等に、制御装置130の演算処理器131は、記憶器133に格納されているプログラムを読み出すことにより、以下の動作(処理)を実行する。
 制御装置130は、クランプ部材54を複動式摩擦攪拌接合装置101から取り外し、ストック機構140に載置するように、ロボット120を動作させる(ステップS501)。このとき、制御装置130は、クランプ部材54の先端面54aが上方に位置するように、ロボット120を動作させる。
 なお、作業者が、クランプ部材54を複動式摩擦攪拌接合装置101から取り外し、ストック機構140に載置する場合には、制御装置130は、当該ステップS501の処理を実行しないように構成されている。
 次に、制御装置130は、第2回転駆動器112を動作させて(ステップS502)、ドレッシング部材111を回転させる。
 次に、制御装置130は、清掃機構110を保持させて、清掃機構110のドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させる(ステップS503)。
 これにより、クランプ部材54の内周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 次に、制御装置130は、ドレッシング部材111をクランプ部材54の内周面と当接させてから経過した時間を時計器134から取得する(ステップS504)。ついで、制御装置130は、ステップS504で取得した時間が、予め設定されている第6時間を経過したか否かを判定する(ステップS505)。
 ここで、第6時間は、予め実験等により求めることができ、例えば、クランプ部材54の内周面に付着している被接合物60の材料を充分に除去するためにかかる時間であってもよい。
 制御装置130は、ステップS504で取得した時間が、第6時間を経過していないと判定した場合(ステップS505でNo)には、ステップS504で取得した時間が、第6時間を経過するまで、ステップS504及びステップS505の処理を繰り返す。一方、制御装置130は、ステップS504で取得した時間が、第6時間を経過した判定した場合(ステップS505でYes)には、ステップS506の処理を実行する。
 ステップS506では、制御装置130は、清掃機構110を予め設定されている所定の位置(清掃機構110が設置されている初期位置)に移動するように、ロボット120を動作させる。
 次に、制御装置130は、第2回転駆動器112を停止させ(ステップS507)、本プログラムを終了する。
 このように構成された、本実施の形態9に係る複動式摩擦攪拌接合システム100では、制御装置130が、ドレッシング部材111を回転させた状態で、ドレッシング部材111が、クランプ部材54の内周面と当接するように、ロボット120を動作させるように構成されている。
 これにより、クランプ部材54の内周面に付着している被接合物60の材料をドレッシング部材111により、除去することができる。
 なお、本実施の形態9に係る複動式摩擦攪拌接合システム100においては、制御装置130の制御により、クランプ部材54の内周面の清掃を実行する形態を採用したが、これに限定されない。制御装置130が、ショルダ部材12の内周面の清掃を実行する前に、又はショルダ部材12の内周面の清掃を実行した後に、クランプ部材54の内周面の清掃を実行する形態を採用してもよい。
 また、制御装置130は、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行する前、又はピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行した後に、クランプ部材54の内周面の清掃を実行する形態を採用してもよい。この場合、制御装置130は、ショルダ部材12の内周面の清掃を実行する前に、又はショルダ部材12の内周面の清掃を実行した後に、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃を実行し、その後、クランプ部材54の内周面の清掃を実行してもよい。
 すなわち、制御装置130は、ショルダ部材12の内周面の清掃と、ピン部材11の外周面及び/又はショルダ部材12の外周面の清掃と、クランプ部材54の内周面の清掃と、を実行してもよく、その清掃の順番は、任意に実行してもよい。
 上記説明から、当業者にとっては、本発明の多くの改良及び他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 本発明の複動式摩擦攪拌接合システム及びその運転方法は、簡易な構成により、複動式摩擦攪拌接合装置を清掃することができ得るため、有用である。
 11 ピン部材
 11a 先端面
 12 ショルダ部材
 12a 先端面
 21a 第1リンク
 21b 第2リンク
 21c 第3リンク
 21d 第4リンク
 21e 第5リンク
 21f 第6リンク
 22 エンドエフェクタ
 25 基台
 41 クランプ駆動器
 51 接合ツール
 52 接合ツール固定部
 53 工具駆動器
 54 クランプ部材
 54a 先端面
 55 C型フレーム
 56 裏当て部材
 56a 支持面
 57 第1回転駆動器
 58 位置検出器
 60 被接合物
 61 第1部材
 62 第2部材
 71 外筒
 72 内筒
 73 弾性部材
 74 位置決め部材
 81 第1蓋部材
 82 第2蓋部材
 100 複動式摩擦攪拌接合システム
 101 複動式摩擦攪拌接合装置
 110 清掃機構
 111 ドレッシング部材
 111A 筒部材
 111B 刷毛部材
 112 第2回転駆動器
 112A 第2回転駆動器
 112B 第2回転駆動器
 113 補助部材
 113A 補助部
 113B 作動部
 120 ロボット
 130 制御装置
 131 演算処理器
 132 入力器
 133 記憶器
 134 時計器
 140 ストック機構
 150 制御部
 200 基台
 201 ベース部材
 211A 切削工具
 211B ワイヤブラシ
 212A チャック装置
 212B チャック装置
 213A ギア
 213B ギア
 214A 軸部材
 214B 軸部材
 215A 板部材
 215B 板部材
 216A インナーカバー部材
 216B インナーカバー部材
 217A 固定部材
 217B 固定部材
 218A アウターカバー部材
 218B アウターカバー部材
 219 直動アクチュエータ
 220 弾性部材
 221 固定部材
 300 エアブロー装置
 301 エアブローガン
 302 エア供給器
 303 配管
 304 開閉弁
 521 回転体
 522 可動体
 531 ピン駆動器
 532 ショルダ駆動器
 533 出没機構
 JT1 第1関節
 JT2 第2関節
 JT3 第3関節
 JT4 第4関節
 JT5 第5関節
 JT6 第6関節
 P1 矢印
 P2 矢印
 P3 矢印
 Xr 軸線
 

Claims (35)

  1.  複動式摩擦攪拌接合装置と、
     ドレッシング部材を有する清掃機構と、
     ロボットと、
     制御装置と、を備え、
     前記複動式摩擦攪拌接合装置は、
     円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、
     円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、
     前記ピン部材及び前記ショルダ部材を、それぞれ、前記軸線回りに回転させる第1回転駆動器と、
     前記ピン部材及び前記ショルダ部材を、それぞれ、前記軸線に沿って進退移動させる工具駆動器と、有し、
     前記制御装置は、前記ピン部材が、前記ショルダ部材の内方に没入するように、前記工具駆動器を動作させる(A)と、前記ショルダ部材が回転するように、前記第1回転駆動器を動作させる(B)と、前記複動式摩攪拌接合装置を保持させて、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットを動作させる(C)と、を実行するように構成されている、複動式摩擦攪拌接合システム。
  2.  前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記制御装置は、前記ピン部材が、前記ショルダ部材の内方に没入するように、前記工具駆動器を動作させる(A)と、前記ドレッシング部材が回転するように、前記第2回転駆動器を動作させる(B1)と、前記複動式摩攪拌接合装置を保持させて、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットを動作させる(C)と、を実行するように構成されている、請求項1に記載の複動式摩擦攪拌接合システム。
  3.  前記制御装置は、前記(C)において、前記清掃機構を保持させて、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットを動作させる、請求項1又は2に記載の複動式摩擦攪拌接合システム。
  4.  前記ロボットは、前記複動式摩擦攪拌接合装置を保持した状態で、前記軸線回りに揺動自在又は回動自在に構成されていて、
     前記制御装置は、前記(C)において、前記複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットを動作させるように構成されている、請求項1又は2に記載の複動式摩擦攪拌接合システム。
  5.  前記ドレッシング部材は、切削工具及び/又はワイヤブラシで構成されている、請求項1~4のいずれか1項に記載の複動式摩擦攪拌接合システム。
  6.  前記制御装置は、前記(C)において、前記切削工具が前記ショルダ部材の内周面と当接するように、前記ロボットを動作させる(C1)と、前記ワイヤブラシが前記ショルダ部材の内周面と当接するように、前記ロボットを動作させる(C2)と、を実行するように構成されている、請求項5に記載の複動式摩擦攪拌接合システム。
  7.  前記清掃機構は、エアブロー装置をさらに有し、
     前記制御装置は、前記(C)において、前記(C1)を実行する前に、前記切削工具に向けて、エアを吹き付けるように、前記エアブロー装置を動作させる(C0)を実行するように構成されている、請求項6に記載の複動式摩擦攪拌接合システム。
  8.  前記制御装置は、前記ピン部材が、前記ショルダ部材の先端部に対して、突出するように、前記工具駆動器を動作させる(D)と、前記ピン部材及び/又は前記ショルダ部材が回転するように、前記第1回転駆動器を動作させる(B2)と、前記複動式摩攪拌接合装置を保持させて、前記ピン部材の外周面及び/又は前記ショルダ部材の外周面が、前記ドレッシング部材と当接するように、前記ロボットを動作させる(E)と、を実行するように構成されている、請求項1~7のいずれか1項に記載の複動式摩擦攪拌接合システム。
  9.  前記制御装置は、前記(E)において、前記清掃機構を保持させて、前記ドレッシング部材が前記ピン部材の外周面及び/又は前記ショルダ部材の外周面と当接するように、前記ロボットを動作させる、請求項8に記載の複動式摩擦攪拌接合システム。
  10.  前記ロボットは、前記複動式摩擦攪拌接合装置を保持した状態で、前記軸線回りに揺動自在又は回動自在に構成されていて、
     前記制御装置は、前記(E)において、前記複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、前記ピン部材の外周面及び/又は前記ショルダ部材の外周面が、前記ドレッシング部材と当接するように、前記ロボットを動作させるように構成されている、請求項8に記載の複動式摩擦攪拌接合システム。
  11.  前記複動式摩擦攪拌接合装置は、円筒状に形成され、前記ピン部材及び前記ショルダ部材が内部に挿通されているクランプ部材をさらに備え、
     前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記制御装置は、前記ドレッシング部材が回転するように、前記第2回転駆動器を動作させる(B1)と、前記ピン部材及び前記ショルダ部材が、前記クランプ部材の内方に没入するように、前記工具駆動器を動作させる(F)と、前記複動式摩攪拌接合装置を保持させて、前記ドレッシング部材が前記クランプ部材の内周面と当接するように、前記ロボットを動作させる(G)と、を実行するように構成されている、請求項1~10のいずれか1項に記載の複動式摩擦攪拌接合システム。
  12.  前記ロボットは、前記複動式摩擦攪拌接合装置を保持した状態で、前記軸線回りに揺動自在又は回動自在に構成されていて、
     前記制御装置は、前記(G)において、前記複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、前記ドレッシング部材が前記クランプ部材の内周面と当接するように、前記ロボットを動作させるように構成されている、請求項11に記載の複動式摩擦攪拌接合システム。
  13.  前記複動式摩擦攪拌接合装置は、円筒状に形成され、前記ピン部材及び前記ショルダ部材が内部に挿通されているクランプ部材をさらに備え、
     前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記制御装置は、前記ドレッシング部材が回転するように、前記第2回転駆動器を動作させる(B1)と、前記ピン部材及び前記ショルダ部材が、前記クランプ部材の内方に没入するように、前記工具駆動器を動作させる(F)と、前記清掃機構を保持させて、前記ドレッシング部材が前記クランプ部材の内周面と当接するように、前記ロボットを動作させる(G1)と、をさらに実行するように構成されている、請求項1~10のいずれか1項に記載の複動式摩擦攪拌接合システム。
  14.  前記制御装置は、前記(A)において、前記ピン部材の先端面が、予め設定されている第1位置まで移動するように、前記工具駆動器を動作させる(A1)と、前記(A1)の後に、当該(A1)よりも大きい速度で、前記ピン部材の先端面が、予め設定されている第2位置まで移動するように、前記工具駆動器を動作させる(A2)と、を実行するように構成されている、請求項1~13のいずれか1項に記載の複動式摩擦攪拌接合システム。
  15.  前記清掃機構は、前記ショルダ部材の内部空間を挿通可能に構成されている補助部と、前記補助部を前記軸線に沿って進退移動可能に構成されている作動部と、を有する、補助部材をさらに有し、
     前記制御装置は、前記(A)において、前記ピン部材の先端面を前記補助部の先端に当接させるように前記ロボットを動作させ、前記作動部を前記工具駆動器と同期するように動作させて、前記補助部により前記ピン部材の移動を補助させながら、前記ピン部材を前記ショルダ部材の内方に没入させる、請求項1~14のいずれか1項に記載の複動式摩擦攪拌接合システム。
  16.  前記清掃機構は、前記ショルダ部材の内部空間を挿通可能に構成されている補助部と、前記補助部を前記軸線に沿って進退移動可能に構成されている作動部と、前記作動部を制御する制御部と、を有する、補助部材をさらに有し、
     前記制御装置は、前記(A)において、前記ピン部材の先端面を前記補助部の先端に当接させるように前記ロボットを動作させ、前記ピン部材が、前記ショルダ部材の内方に没入するように、前記工具駆動器を動作させ、
     前記制御部は、前記(A)において、前記作動部を前記工具駆動器と同期するように動作させて、前記ピン部材の移動を補助させる、請求項1~14のいずれか1項に記載の複動式摩擦攪拌接合システム。
  17.  複動式摩擦攪拌接合装置と、
     ドレッシング部材を有する清掃機構と、
     ロボットと、
     ストック機構と、
     制御装置と、を備え、
     前記複動式摩擦攪拌接合装置は、
     円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、
     円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、
     前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、
     前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、
     前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記制御装置は、前記ピン部材及び/又は前記ショルダ部材を取り外し、前記軸線が鉛直方向を向くように、前記ピン部材及び/又は前記ショルダ部材を前記ストック機構に配置するように前記ロボットを動作させる(H)と、前記ドレッシング部材が回転するように、前記第2回転駆動器を動作させる(I)と、前記清掃機構を保持させて、前記ピン部材の外周面、前記ショルダ部材の内周面、及び前記ショルダ部材の外周面のうち、少なくとも1つの面と当接するように、前記ロボットを動作させる(J)と、を実行するように構成されている、複動式摩擦攪拌接合システム。
  18.  前記複動式摩擦攪拌接合装置は、円筒状に形成され、前記ピン部材及び前記ショルダ部材が内部に挿通されているクランプ部材をさらに備え、
     前記制御装置は、前記(H)において、前記クランプ部材を取り外し、前記軸線が鉛直方向を向くように、前記クランプ部材を前記ストック機構に配置するように前記ロボットを動作させ、前記(J)において、前記清掃機構を保持させて、前記クランプ部材の内周面と当接するように、前記ロボットを動作させるように構成されている、請求項17に記載の複動式摩擦攪拌接合システム。
  19.  複動式摩擦攪拌接合システムの運転方法であって、
     前記複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置と、ドレッシング部材を有する清掃機構と、ロボットと、を備え、
     前記複動式摩擦攪拌接合装置は、
     円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、
     円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、
     前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、
     前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、
     前記ピン部材を、前記ショルダ部材の内方に没入するように、前記工具駆動器が動作する(A)と、
     前記ショルダ部材が回転するように、前記第1回転駆動器が動作する(B)と、
     前記複動式摩攪拌接合装置を保持して、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットが動作する(C)と、を備える、複動式摩擦攪拌接合システムの運転方法。
  20.  前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記ピン部材を、前記ショルダ部材の内方に没入するように、前記工具駆動器が動作する(A)と、
     前記ドレッシング部材が回転するように、前記第2回転駆動器が動作する(B1)と、
     前記複動式摩攪拌接合装置を保持して、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットが動作する(C)と、を備える、請求項19に記載の複動式摩擦攪拌接合システムの運転方法。
  21.  前記(C)において、前記清掃機構を保持して、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットが動作する、請求項19又は20に記載の複動式摩擦攪拌接合システムの運転方法。
  22.  前記ロボットは、前記複動式摩擦攪拌接合装置を保持した状態で、前記軸線回りに揺動自在又は回動自在に構成されていて、
     前記(C)において、前記複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、前記ドレッシング部材が前記ショルダ部材の内周面と当接するように、前記ロボットが動作する、請求項19又は20に記載の複動式摩擦攪拌接合システムの運転方法。
  23.  前記ドレッシング部材は、切削工具及び/又はワイヤブラシで構成されている、請求項19~22のいずれか1項に記載の複動式摩擦攪拌接合システムの運転方法。
  24.  前記(C)は、前記切削工具が前記ショルダ部材の内周面と当接するように、前記ロボットを動作する(C1)と、前記ワイヤブラシが前記ショルダ部材の内周面と当接するように、前記ロボットが動作する(C2)と、を有する、請求項23に記載の複動式摩擦攪拌接合システムの運転方法。
  25.  前記清掃機構は、エアブロー装置をさらに有し、
     前記(C)は、前記(C1)が実行される前に、前記切削工具に向けて、エアを吹き付けるように、前記エアブロー装置が動作する(C0)をさらに有する、請求項24に記載の複動式摩擦攪拌接合システムの運転方法。
  26.  前記ピン部材を前記ショルダ部材の先端部に対して突出するように、前記工具駆動器が動作する(D)と、
     前記ピン部材及び/又は前記ショルダ部材が回転するように、前記第1回転駆動器が動作する(B2)と、
     前記複動式摩攪拌接合装置を保持して、前記ピン部材の外周面及び/又は前記ショルダ部材の外周面が、前記ドレッシング部材と当接するように、前記ロボットが動作する(E)と、をさらに備える、請求項19~22のいずれか1項に記載の複動式摩擦攪拌接合システムの運転方法。
  27.  前記(E)において、前記清掃機構を保持して、前記ドレッシング部材が前記ピン部材の外周面及び/又は前記ショルダ部材の外周面と当接するように、前記ロボットが動作する、請求項26に記載の複動式摩擦攪拌接合システムの運転方法。
  28.  前記ロボットは、前記複動式摩擦攪拌接合装置を保持した状態で、前記軸線回りに揺動自在又は回動自在に構成されていて、
     前記(E)において、前記複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、前記ピン部材の外周面及び/又は前記ショルダ部材の外周面が、前記ドレッシング部材と当接するように、前記ロボットが動作する、請求項26に記載の複動式摩擦攪拌接合システムの運転方法。
  29.  前記複動式摩擦攪拌接合装置は、円筒状に形成され、前記ピン部材及び前記ショルダ部材が内部に挿通されているクランプ部材をさらに備え、
     前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記ドレッシング部材が回転するように、前記第2回転駆動器が動作する(B1)と、
     前記ピン部材及び前記ショルダ部材が、前記クランプ部材の内方に没入するように、前記工具駆動器が動作する(F)と、
     前記複動式摩攪拌接合装置を保持させて、前記ドレッシング部材が前記クランプ部材の内周面と当接するように、前記ロボットが動作する(G)と、をさらに備える、請求項19~28のいずれか1項に記載の複動式摩擦攪拌接合システムの運転方法。
  30.  前記ロボットは、前記複動式摩擦攪拌接合装置を保持した状態で、前記軸線回りに揺動自在又は回動自在に構成されていて、
     前記(G)において、前記複動式摩攪拌接合装置を保持させて、当該複動式摩擦攪拌接合装置を揺動しながら、前記ドレッシング部材が前記クランプ部材の内周面と当接するように、前記ロボットが動作する、請求項29に記載の複動式摩擦攪拌接合システムの運転方法。
  31.  前記複動式摩擦攪拌接合装置は、円筒状に形成され、前記ピン部材及び前記ショルダ部材が内部に挿通されているクランプ部材をさらに備え、
     前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記ドレッシング部材が回転するように、前記第2回転駆動器が動作する(B1)と、
     前記ピン部材及び前記ショルダ部材が、前記クランプ部材の内方に没入するように、前記工具駆動器が動作する(F)と、
     前記清掃機構を保持して、前記ドレッシング部材が前記クランプ部材の内周面と当接するように、前記ロボットが動作する(G1)と、をさらに備える、請求項19~28のいずれか1項に記載の複動式摩擦攪拌接合システムの運転方法。
  32.  前記(A)は、前記ピン部材の先端面が、予め設定されている第1位置まで移動するように、前記工具駆動器が動作させる(A1)と、前記(A1)の後に、当該(A1)よりも大きい速度で、前記ピン部材の先端面が、予め設定されている第2位置まで移動するように、前記工具駆動器が動作する(A2)と、を有する、請求項19~31のいずれか1項に記載の複動式摩擦攪拌接合システムの運転方法。
  33.  前記清掃機構は、前記ショルダ部材の内部空間を挿通可能に構成されている補助部と、前記補助部を前記軸線に沿って進退移動可能に構成されている作動部と、を有する、補助部材をさらに有し、
     前記(A)において、前記ピン部材の先端面を前記補助部の先端に当接させるように前記ロボットが動作し、前記作動部と前記工具駆動器と同期するように動作して、前記補助部により前記ピン部材の移動を補助させながら、前記ピン部材を前記ショルダ部材の内方に没入させる、請求項19~32のいずれか1項に記載の複動式摩擦攪拌接合システムの運転方法。
  34.  複動式摩擦攪拌接合システムの運転方法であって、
     前記複動式摩擦攪拌接合システムは、複動式摩擦攪拌接合装置と、ドレッシング部材を有する清掃機構と、ロボットと、ストック機構と、を備え、
     前記複動式摩擦攪拌接合装置は、
     円柱状に形成され、軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているピン部材と、
     円筒状に形成され、前記ピン部材が内部に挿通されており、前記軸線回りの回転と該軸線に沿った方向への進退移動とが可能なように構成されているショルダ部材と、
     前記ピン部材及び前記ショルダ部材を、前記軸線回りに回転させる第1回転駆動器と、
     前記ピン部材及び前記ショルダ部材を、それぞれ前記軸線に沿って進退移動させる工具駆動器と、有し、
     前記清掃機構は、前記ドレッシング部材を回転させる第2回転駆動器をさらに有し、
     前記ピン部材及び/又は前記ショルダ部材を取り外し、前記軸線が鉛直方向を向くように、前記ピン部材及び/又は前記ショルダ部材を前記ストック機構に配置するように前記ロボットが動作する(H)と、
     前記ドレッシング部材が回転するように、前記第2回転駆動器が動作する(I)と、
     前記清掃機構を保持して、前記ピン部材の外周面、前記ショルダ部材の内周面、及び前記ショルダ部材の外周面のうち、少なくとも1つの面と当接するように、前記ロボットが動作する(J)と、を備える、複動式摩擦攪拌接合システムの運転方法。
  35.  前記複動式摩擦攪拌接合装置は、円筒状に形成され、前記ピン部材及び前記ショルダ部材が内部に挿通されているクランプ部材をさらに備え、
     前記(H)において、前記クランプ部材を取り外し、前記軸線が鉛直方向を向くように、前記クランプ部材を前記ストック機構に配置するように前記ロボットが動作し、
     前記(J)において、前記清掃機構を保持して、前記クランプ部材の内周面と当接するように、前記ロボットが動作する、請求項34に記載の複動式摩擦攪拌接合システムの運転方法。
PCT/JP2019/033071 2018-08-23 2019-08-23 複動式摩擦攪拌接合システム及びその運転方法 WO2020040299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19851354.1A EP3842174B1 (en) 2018-08-23 2019-08-23 Double-action friction-stir joining system and method for operating same
US17/270,751 US11938558B2 (en) 2018-08-23 2019-08-23 Double-action friction-stir joining system and method utilizing a cleaning mechanism
KR1020217007737A KR102487272B1 (ko) 2018-08-23 2019-08-23 복동식 마찰 교반 접합 시스템 및 그 운전 방법
CN201980055396.0A CN112601629B (zh) 2018-08-23 2019-08-23 复动式摩擦搅拌接合***及其运行方法
JP2020538494A JP7307074B2 (ja) 2018-08-23 2019-08-23 複動式摩擦攪拌接合システム及びその運転方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-156332 2018-08-23
JP2018156332 2018-08-23
JP2019036970 2019-02-28
JP2019-036970 2019-02-28
JP2019-072856 2019-04-05
JP2019072856 2019-04-05

Publications (1)

Publication Number Publication Date
WO2020040299A1 true WO2020040299A1 (ja) 2020-02-27

Family

ID=69593183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033071 WO2020040299A1 (ja) 2018-08-23 2019-08-23 複動式摩擦攪拌接合システム及びその運転方法

Country Status (6)

Country Link
US (1) US11938558B2 (ja)
EP (1) EP3842174B1 (ja)
JP (1) JP7307074B2 (ja)
KR (1) KR102487272B1 (ja)
CN (1) CN112601629B (ja)
WO (1) WO2020040299A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272812A (zh) * 2020-03-13 2020-06-12 南通大学 干燥机内部流道隔板脱焊缺陷检测与补焊的装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341824B2 (ja) * 2019-09-27 2023-09-11 川崎重工業株式会社 複動式摩擦攪拌点接合装置及び複動式摩擦攪拌点接合装置の運転方法
US20230211434A1 (en) * 2020-05-29 2023-07-06 Kawasaki Jukogyo Kabushiki Kaisha Friction stir spot welding apparatus and joint structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216287A (ja) * 2006-02-20 2007-08-30 Obara Corp Fswの接合ツ―ルの清掃方法
JP2007216286A (ja) 2006-02-20 2007-08-30 Obara Corp Fswの接合ツ―ルの清掃方法
JP2014128824A (ja) * 2012-12-28 2014-07-10 F Tech Inc 摩擦撹拌接合装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583257A (en) * 1985-02-14 1986-04-22 Cincinnati Milacron Inc. Welding torch cleaner for robotic welding
US5070568A (en) * 1990-03-05 1991-12-10 Orville L. Wilcox Cleaning device for cleaning nozzle and welding tip of a wire feed electrical arc welder
US5221826A (en) * 1992-03-02 1993-06-22 Lee John R MIG welding torch reconditioning apparatus
US5794835A (en) * 1996-05-31 1998-08-18 The Boeing Company Friction stir welding
US5845357A (en) * 1996-11-18 1998-12-08 Motoman, Inc. Nozzle cleaning device
JP3512328B2 (ja) * 1998-02-25 2004-03-29 ユニバーサル造船株式会社 溶接ロボット用トーチのノズルクリーニング・チップ交換装置
AT501021B1 (de) * 2003-05-13 2006-11-15 Fronius Int Gmbh Reinigungsvorrichtung für einen schweissbrenner
AT413668B (de) * 2003-05-13 2006-04-15 Fronius Int Gmbh Gasdüse für einen schweissbrenner und schweissbrenner mit einer derartigen gasdüse
JP2007029979A (ja) * 2005-07-26 2007-02-08 Sumitomo Light Metal Ind Ltd 摩擦撹拌点接合用複動式回転工具
US7641739B2 (en) * 2006-06-13 2010-01-05 The Boeing Company Friction stir welding tool cleaning method
JP4575472B2 (ja) * 2008-04-08 2010-11-04 株式会社チップマン ノズルクリーナ
JP5815961B2 (ja) 2011-03-18 2015-11-17 川崎重工業株式会社 摩擦攪拌点接合装置および摩擦攪拌点接合方法
CN102490018B (zh) * 2011-12-09 2014-04-16 重庆大学 一种浮动双轴肩双搅拌针的切削-搅拌摩擦焊接复合加工设备及其制造方法
WO2016063538A1 (ja) * 2014-10-23 2016-04-28 川崎重工業株式会社 摩擦攪拌点接合装置及び摩擦攪拌点接合方法
DE102014115535B3 (de) * 2014-10-24 2016-03-31 Universität Stuttgart Rührreibschweißwerkzeug sowie Verfahren zum Rührreibschweißen
WO2019045102A1 (ja) * 2017-09-04 2019-03-07 川崎重工業株式会社 複動式摩擦攪拌接合装置の運転方法及び複動式摩擦攪拌接合装置
PL4054788T3 (pl) * 2019-11-05 2024-05-06 Schunk Sonosystems Gmbh Urządzenie do zgrzewania ultradźwiękowego ze zintegrowanym układem kamer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216287A (ja) * 2006-02-20 2007-08-30 Obara Corp Fswの接合ツ―ルの清掃方法
JP2007216286A (ja) 2006-02-20 2007-08-30 Obara Corp Fswの接合ツ―ルの清掃方法
JP2014128824A (ja) * 2012-12-28 2014-07-10 F Tech Inc 摩擦撹拌接合装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842174A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272812A (zh) * 2020-03-13 2020-06-12 南通大学 干燥机内部流道隔板脱焊缺陷检测与补焊的装置及方法
CN111272812B (zh) * 2020-03-13 2021-11-26 南通大学 干燥机内部流道隔板脱焊缺陷检测与补焊的装置及方法

Also Published As

Publication number Publication date
EP3842174A4 (en) 2022-05-11
JP7307074B2 (ja) 2023-07-11
JPWO2020040299A1 (ja) 2021-08-10
KR102487272B1 (ko) 2023-01-11
EP3842174A1 (en) 2021-06-30
CN112601629A (zh) 2021-04-02
CN112601629B (zh) 2022-09-06
US11938558B2 (en) 2024-03-26
US20210316391A1 (en) 2021-10-14
KR20210038681A (ko) 2021-04-07
EP3842174B1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2020040299A1 (ja) 複動式摩擦攪拌接合システム及びその運転方法
JP6756539B2 (ja) 工作機械
US10632611B2 (en) Machine tool
KR102448070B1 (ko) 밴딩가공장치
JP2017205815A (ja) 工作機械
JP4851341B2 (ja) 曲げ加工装置
JP2009202332A (ja) 産業用ロボットのハンド装置
CN113226621B (zh) 摩擦搅拌点接合装置及摩擦搅拌点接合方法
JP6470336B2 (ja) 工作機械システムおよび移動方法
JPS6339366B2 (ja)
JP2007167896A (ja) シーム溶接機、シーム溶接装置、シーム溶接ロボットシステム、シーム溶接方法及びローラ電極の回転駆動制御プログラム作成方法
US20210039212A1 (en) Machine tool
JP6537546B2 (ja) 加工システム
JP2023155426A (ja) 複動式摩擦攪拌点接合装置及び複動式摩擦攪拌点接合装置の運転方法
JP2017035757A (ja) 工作機械およびワークを着脱するロボットを備える加工システム
JP2009072872A (ja) 交差穴のバリ取り方法およびバリ取り用ロボットシステム
JP7199073B2 (ja) 垂直多関節ロボットの教示データ作成システム
JP3852050B2 (ja) 工作機械におけるシャフト加工方法並びに同加工装置
JP2006231478A (ja) 皿取り加工装置
JP2009095965A (ja) 工具自動交換装置
JPH081761Y2 (ja) 主軸内蔵型ワークストッパ装置を備えた工作機械
JP2009039796A (ja) スカラロボット
JP2021084176A (ja) エンドエフェクタ
JP6162940B2 (ja) 旋盤
JP2006082089A (ja) ロボット・シーム溶接方法と装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217007737

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019851354

Country of ref document: EP

Effective date: 20210323