WO2020040155A1 - Production method for prepreg, production method for prepreg tape, and production method for fiber reinforced composite material - Google Patents

Production method for prepreg, production method for prepreg tape, and production method for fiber reinforced composite material Download PDF

Info

Publication number
WO2020040155A1
WO2020040155A1 PCT/JP2019/032497 JP2019032497W WO2020040155A1 WO 2020040155 A1 WO2020040155 A1 WO 2020040155A1 JP 2019032497 W JP2019032497 W JP 2019032497W WO 2020040155 A1 WO2020040155 A1 WO 2020040155A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
reinforcing fiber
fiber sheet
matrix resin
application
Prior art date
Application number
PCT/JP2019/032497
Other languages
French (fr)
Japanese (ja)
Inventor
越智隆志
西野聡
青木惇一
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019546263A priority Critical patent/JP7163927B2/en
Publication of WO2020040155A1 publication Critical patent/WO2020040155A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length

Definitions

  • the present invention relates to a method for producing a prepreg, and more particularly to a method for uniformly impregnating a reinforcing fiber sheet with a matrix resin.
  • Fiber reinforced composite material which is a matrix resin containing thermoplastic resin and thermosetting resin reinforced with reinforcing fibers, is a material for aviation and space, automotive material, industrial material, pressure vessel, building material, housing, medical equipment. It is used in various fields such as applications and sports. Particularly when high mechanical properties and lightness are required, carbon fiber reinforced composite materials (CFRP) are widely and suitably used. On the other hand, when cost is prioritized over mechanical properties and light weight, a glass fiber reinforced composite material (GFRP) may be used. In the FRP, a reinforcing fiber bundle is impregnated with a matrix resin to obtain an intermediate base material, which is laminated and molded, and when a thermosetting resin is used, is thermoset to produce a member made of FRP.
  • CFRP carbon fiber reinforced composite materials
  • GFRP glass fiber reinforced composite material
  • the two-dimensional sheet-like material is more often used as an intermediate substrate of FRP than a one-dimensional strand or roving-like material when producing a member. It is widely used from the viewpoint of lamination efficiency and moldability.
  • narrow-width tape-like intermediate substrates are preferably used here.
  • the narrow tape-shaped intermediate substrate can be obtained by slicing a wide sheet-shaped intermediate substrate at a desired width, or by impregnating a narrow reinforcing fiber sheet directly with a matrix resin.
  • Prepreg is generally used as a two-dimensional sheet-like intermediate substrate.
  • the prepreg is prepared by applying and impregnating a matrix resin to a reinforcing fiber.
  • the reinforcing fiber sheet include a unidirectional material (UD base material) in which a plurality of reinforcing fibers are arranged on a surface in one direction, a reinforcing fiber in which reinforcing fibers are arranged in a multiaxial manner, or a sheet formed by random arrangement. There is a fabric.
  • Hot-melt method one of the prepreg manufacturing methods, is to melt the matrix resin, coat it on release paper, create a laminated structure sandwiched between the upper and lower surfaces of the reinforcing fiber sheet, and apply heat and pressure.
  • the matrix resin is impregnated inside the reinforcing fiber sheet.
  • Patent Document 2 a method for simultaneously forming a coating film on both sides of a sheet material is described in Patent Document 2.
  • the sheet material is passed through a web guide. After that, coating is performed with a pipe type doctor.
  • a strip-type reinforcing fiber bundle is conveyed in a horizontal direction (horizontal direction), passed through a die, and a thermoplastic resin is applied to and impregnated into the strip-shaped reinforcing fiber bundle.
  • Patent document 3 a plurality of band-shaped reinforcing fiber bundles are separately introduced into a die filled with a molten thermoplastic resin, and are opened, impregnated, and laminated by a fixed guide (for example, a squeeze bar). It is described that the sheet-shaped prepreg is pulled out from a die.
  • Patent Document 4 describes an apparatus that fills a manifold with a thermoplastic resin and applies ultrasonic vibration to an outlet in a pultrusion method of vertically pulling out a reinforcing fiber bundle.
  • Patent Document 5 describes that a thermoplastic resin is sprayed on a carbon fiber sheet using a so-called melt blow method. Furthermore, Comparative Example 1 of Patent Document 5 describes laminating PPS (polyphenylene sulfide), which is a thermoplastic resin, using a film slit die on a carbon fiber sheet.
  • PPS polyphenylene sulfide
  • Patent Document 1 can only produce strands or rovings, and cannot be applied to the production of sheet-like prepregs that are the subject of the present invention.
  • a fluid of a thermoplastic resin is applied to the strand or the side surface of the roving-like reinforcing fiber bundle to generate turbulent flow positively in the conical flow path. This is thought to be intended to partially disturb the arrangement of the reinforcing fiber bundle and allow the matrix resin to flow in.However, when this concept is applied to the reinforcing fiber sheet, the reinforcing fiber sheet is deformed, and the quality of the prepreg is reduced. It is thought that not only does the FRP decrease, but also the mechanical properties of the FRP decrease.
  • Patent Document 2 when the technique of Patent Document 2 is applied, it is considered that fluff is generated by rubbing with the web guide, and the running of the reinforcing fiber sheet becomes difficult. Further, the technique of Patent Document 2 is coating of a resin, and impregnation is not intended.
  • the air bubbles remaining inside the band-shaped reinforcing fiber bundle are buoyant to a direction orthogonal to the orientation direction of the reinforcing fiber bundle (band-shaped reinforcing fiber). Since the gas is discharged in the direction of the thickness of the fiber bundle (the thickness direction of the fiber bundle), the discharge of the bubbles proceeds as if the impregnated matrix resin is pushed away. Therefore, there is a problem that impregnation efficiency is poor because the movement of bubbles is inhibited by the liquid and the impregnation of the matrix resin is also inhibited by the bubbles. Further, it has been proposed to exhaust air bubbles from the vent, but only in the vicinity of the die outlet, and the effect is considered to be limited.
  • a nozzle portion not filled with resin is provided on the upper portion of the manifold, and the nozzle can be optimized with a strand or a roving-like material. It is difficult to cope with the shape, and when the reinforcing fiber sheet passes therethrough, fluff is generated, and when it is brought into the manifold, it is considered that it is likely to be clogged with a die.
  • An object of the present invention is to provide a method for producing a prepreg, which suppresses fluff generation, enables continuous production without clogging, and simultaneously applies a matrix resin to a reinforcing fiber sheet on both sides simultaneously, and impregnates efficiently. It is another object of the present invention to provide a method for producing a prepreg, which can increase the production speed, further suppresses breakage of the obtained prepreg, has a uniform basis weight, and is excellent in appearance and workability.
  • the method for producing a prepreg of the present invention that solves the above-mentioned problems, the inside of the application portion in which the matrix resin is stored, passing the reinforcing fiber sheet to impart the matrix resin to the reinforcing fiber sheet, and then, from the application portion What is claimed is: 1.
  • a method for manufacturing a prepreg comprising a portion having a cross-sectional area that continuously decreases along a running direction, wherein the constricted portion has a slit-shaped cross-section, and has a cross-sectional area smaller than an upper surface of a liquid reservoir.
  • a curtain that applies the matrix resin to the reinforcing fiber sheet by passing the reinforcing fiber sheet into the application section in which the matrix resin is stored, and then discharges the liquid further to the primary prepreg drawn out from the application section
  • the application unit includes a liquid reservoir and a constriction that are communicated with each other, and the liquid reservoir continuously decreases in cross-sectional area along a running direction of a reinforcing fiber sheet.
  • a method for manufacturing a prepreg comprising a portion, wherein the constricted portion has a slit-shaped cross-section and a cross-sectional area smaller than the upper surface of the liquid reservoir portion.
  • a method for producing a prepreg in which a matrix resin is applied to a reinforcing fiber sheet by passing a reinforcing fiber sheet inside an application part in which a matrix resin is stored, wherein the application part is a liquid reservoir part which is communicated with each other.
  • the liquid reservoir has a constricted portion, the liquid reservoir has a portion whose cross-sectional area is continuously reduced along the running direction of the reinforcing fiber sheet, the constricted portion has a slit-shaped cross section, and is higher than the liquid reservoir upper surface.
  • the reinforcing fiber sheet has at least one selected from the group consisting of a yarn breaking inhibitor, a toughness improver, a flame retardant, and a fluff sizing agent.
  • a method of manufacturing a prepreg tape according to the present invention is characterized in that a prepreg obtained by the above-described method of manufacturing a prepreg is slit.
  • the method for producing a fiber-reinforced composite material of the present invention is characterized in that the prepreg obtained by the above-described method for producing a prepreg or the prepreg tape obtained by the method for producing a prepreg tape is molded.
  • the prepreg manufacturing method of the present invention clogging due to fluff can be significantly suppressed and prevented. Further, the reinforced fiber sheet can be run continuously and at a high speed, and the productivity of the prepreg is improved.
  • the physical properties and functionality of the prepreg and the FRP obtained therefrom can be improved. Further, when the same resin as the matrix resin is used in place of the another substance, the process stability and quality can be improved.
  • the physical properties and functionality of the FRP can be improved, and the process stability and quality can be improved. Can be improved.
  • FIG. 1 is a schematic cross-sectional view showing a prepreg manufacturing method and a coating apparatus according to an embodiment of a first manufacturing method of the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating a prepreg manufacturing method and a coating apparatus according to an embodiment of the second manufacturing method of the present invention.
  • FIG. 2 is an enlarged detailed cross-sectional view of a portion of a coating unit 20 in FIGS. 1A and 1B.
  • FIG. 3 is a bottom view of the application unit 20 in FIG. 2 as viewed from a direction A in FIG. 2.
  • FIG. 3 is a cross-sectional view illustrating a structure inside the coating unit when the coating unit 20 in FIG. 2 is viewed from a direction B in FIG. 2.
  • FIG. 1 is a schematic cross-sectional view showing a prepreg manufacturing method and a coating apparatus according to an embodiment of a first manufacturing method of the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating a prepreg
  • FIG. 4C is a cross-sectional view illustrating the flow of the matrix resin 2 in the gap 26 in FIG. 4A. It is a figure showing an example of installation of a width regulation mechanism.
  • FIG. 4 is a detailed cross-sectional view of a coating unit 20b according to another embodiment different from FIG. 2.
  • FIG. 7 is a detailed cross-sectional view of a coating unit 20c according to another embodiment different from FIG. 6.
  • FIG. 7 is a detailed cross-sectional view of a coating unit 20d according to another embodiment different from FIG. 6.
  • FIG. 7 is a detailed cross-sectional view of a coating unit 20e according to another embodiment different from FIG.
  • FIG. 4 is a detailed cross-sectional view of a coating unit 30 according to an embodiment different from the present invention.
  • FIG. 5 is a side view when the coating angle is set to 90 ° in the curtain coating step used in the present invention.
  • FIG. 3 is a side view of the curtain coating step used in the present invention when the coating angle is set to ⁇ ° and the curtain coating device is tilted.
  • FIG. 4 is a front view for explaining a state of an end portion of the film (in a case where airflow control is performed) in a curtain coating step used in the present invention.
  • FIG. 2 is a top view of the vicinity of a curtain coating step used in the present invention as viewed from above.
  • FIG. 3 is a side view for explaining a state of a surface portion of a film in a curtain coating step used in the present invention (in a case where airflow control is not performed).
  • FIG. 5 is a side view for explaining a state of a surface portion of a film in a curtain coating step used in the present invention (when airflow control is performed). It is a side view which shows the example of the curtain coating device used by this invention provided with the control means by airflow. It is a side view in the case of apply
  • FIG. 29 is a schematic diagram showing an example in which spray coating is used as the modifier applying device in FIG. 29a.
  • FIG. 35B is a schematic view showing the state of the modifier being applied in FIG. 35a viewed from the direction of M in FIG. 35A.
  • FIG. 29 is a schematic view showing an example in which melt blowing is used as the modifier applying device in FIG. 29a.
  • FIG. 37B is a schematic view showing the state of the application of the modifying agent in FIG. 36a viewed from the direction of M in FIG. 36a.
  • FIG. 29 is a schematic view showing an example in which curtain coating is used as the modifier applying device in FIG. 29a.
  • FIG. 37B is a schematic view showing the state of applying the modifying agent in FIG. 37a viewed from the direction of M in FIG. 37A.
  • FIG. 37B is a schematic view showing an example in which a surface coating device is used as the modifier applying device in FIG. 29A of another embodiment different from FIG. 37A.
  • FIG. 38 is a schematic view of the state of applying the modifier in FIG. 38a viewed from the direction of M in FIG. 38a.
  • the method of applying the matrix resin to the reinforcing fiber sheet is characterized by, furthermore, to stabilize this process, to improve the functionality and quality of the resulting prepreg, before and after application and impregnation of the matrix resin, Further, a resin or a modifier is added.
  • FIG. 1a is a schematic sectional view showing a prepreg manufacturing method and apparatus according to an embodiment of the first manufacturing method of the present invention.
  • the coating device 100 is provided between the transport rolls 13 and 14, which are traveling mechanisms for traveling the reinforcing fiber sheet 1a substantially vertically downward Z, and the matrix resin 2 is stored therein.
  • Coating section 20 is provided. Further, before and after the coating apparatus 100, a plurality of creels 11 for unwinding the reinforcing fibers 1 and a reinforcing fiber sheet 1a in which the unwound reinforcing fibers 1 are arranged in one direction (in FIG.
  • the coating device 100 is provided with a matrix resin supply device (not shown). Further, supply devices 16a and 16b for supplying release sheets 3a and 3b are provided.
  • a spray coating device 41 and a curtain coating device 42 are arranged. Either one of the spray coating device 41 and the curtain coating device 42 may be used, or both may be used. When both are used, the order of the spray coating device 41 and the curtain coating device 42 can be changed according to the purpose. Further, in FIG. 1a, the spray coating device 41 and the curtain coating device 42 are drawn only on one side of the primary prepreg 1c. However, these can be arranged on both sides of the primary prepreg 1c and both sides can be simultaneously coated. is there.
  • FIG. 1b is a schematic cross-sectional view showing a prepreg manufacturing method when a UD base material is used as a reinforcing fiber sheet according to an embodiment of the second manufacturing method of the present invention.
  • the coating apparatus 100 is provided between a transport roll 13 and a transport roll 14, which are a traveling mechanism for traveling the reinforcing fiber sheet 1a substantially vertically downward Z, and stores a matrix resin 2 as an application mechanism.
  • An application unit 20 is provided.
  • a plurality of creels 11 for unwinding the reinforcing fibers 1 and a reinforcing fiber sheet 1a in which the unwound reinforcing fibers 1 are arranged in one direction and used as a UD base material in FIG. (An arrangement in the depth direction)
  • a modifier applying device 28 for obtaining the reinforcing fiber sheet 1b to which the modifier has been applied and a winding device 15 for the prepreg 1d, which are not shown.
  • the coating apparatus 100 is provided with a supply device of a matrix resin. Further, if necessary, a release sheet supply device 16 for supplying the release sheet 3 can be provided.
  • an unwinding device that unwinds the reinforcing fiber fabric in place of the creel 11 in FIGS. 1A and 1B and a nip roll that draws out the reinforcing fiber fabric in place of the arrangement device 12 are provided.
  • a prepreg in which a matrix resin is impregnated in a reinforcing fiber fabric can be manufactured.
  • FIG. 1a and FIG. 1b as an example of a direction in which the reinforcing fiber sheet passes through the application section, a vertically downward direction is shown, but this direction may be a horizontal direction, or a direction inclined from a horizontal plane. There may be. When passing in the horizontal direction, it is not always necessary to be strictly horizontal, and it can be selected from a range of a horizontal plane ⁇ 5 °.
  • examples of the reinforcing fibers include carbon fibers, glass fibers, metal fibers, metal oxide fibers, metal nitride fibers, and organic fibers (aramid fibers, polybenzoxazole fibers, polyvinyl alcohol fibers, polyethylene fibers, and the like). However, it is preferable to use carbon fibers from the viewpoint of the mechanical properties and light weight of the FRP.
  • the reinforcing fiber sheet examples include a unidirectional material (UD base material) in which a plurality of reinforcing fibers are arranged on a surface in one direction, a reinforcing fiber in which reinforcing fibers are arranged in a multiaxial manner, or a sheet formed by random arrangement.
  • UD base material unidirectional material
  • the reinforcing fiber sheet examples include a unidirectional material (UD base material) in which a plurality of reinforcing fibers are arranged on a surface in one direction, a reinforcing fiber in which reinforcing fibers are arranged in a multiaxial manner, or a sheet formed by random arrangement.
  • the method of forming the UD base material may be a known method, and is not particularly limited, but forms a reinforcing fiber bundle in which single fibers are arranged in advance, and further arranges the reinforcing fiber bundle to form a reinforcing fiber sheet. Forming is preferable from the viewpoint of process efficiency and uniform array.
  • a tow which is a tape-like reinforcing fiber bundle, is wound around a bobbin, and a reinforcing fiber sheet can be obtained by arranging the tape-like reinforcing fiber bundles drawn out from the bobbin.
  • the creel is preferably provided with a tension control mechanism when drawing out the reinforcing fibers.
  • a tension control mechanism a known mechanism can be used, and a brake mechanism or the like can be used. The tension can also be controlled by adjusting the thread guide.
  • the reinforcing fiber fabric include, in addition to woven fabric and knitted fabric, those in which reinforcing fibers are two-dimensionally arranged in a multiaxial manner, and those in which reinforcing fibers such as nonwoven fabric, mat, and paper are randomly oriented.
  • the reinforcing fibers can be formed into a sheet using a method such as binder application, entanglement, welding, or fusion.
  • a non-crimp woven fabric, a bias structure, an entangled woven fabric, a multiaxial woven fabric, a multiple woven fabric, or the like can be used in addition to the plain woven fabric, twill fabric, and satin woven fabric.
  • the woven fabric combining the bias structure and the UD substrate not only suppresses the deformation of the woven fabric due to the tension in the coating / impregnation process due to the UD structure, but also has the pseudo-isotropy due to the bias structure, which is a preferable form.
  • the multiple woven fabric has an advantage that the structure and characteristics of the upper and lower surfaces of the woven fabric and the inside of the woven fabric can be designed. In the case of a knitted fabric, warp knitting is preferred in consideration of the shape stability in the coating / impregnation step, but a blade which is a tubular knitted fabric may be used.
  • the UD substrate when giving priority to the mechanical properties of FRP, it is preferable to use a UD substrate, and the UD substrate can be produced by a known method in which reinforcing fibers are arranged in a sheet shape in one direction. .
  • the smoothing method is not particularly limited, and examples thereof include a method of physically pressing with a facing roll or the like, and a method of moving a reinforcing fiber using an air current.
  • the physical pressing method is preferred because it is simple and does not easily disturb the arrangement of the reinforcing fibers. More specifically, calendering or the like can be used.
  • the method using an air flow is preferable because it not only causes less abrasion but also has an effect of widening the reinforcing fiber sheet.
  • ⁇ Widening of reinforced fiber sheet> it is also preferable to guide the reinforcing fiber sheet to the liquid pool after widening the reinforcing fiber sheet from the viewpoint of efficiently producing a thin prepreg.
  • the widening method there is no particular limitation on the widening method, and examples thereof include a method of mechanically applying vibration and a method of expanding the reinforcing fiber bundle by an air current.
  • a method of mechanically applying vibration there is a method of bringing a reinforcing fiber sheet into contact with a vibrating roll as described in, for example, JP-A-2015-22799.
  • the vibration direction when the traveling direction of the reinforcing fiber sheet is the X axis, it is preferable to apply vibrations in the Y axis direction (horizontal direction) and the Z axis direction (vertical direction). It is also preferable to use them in combination. It is preferable that a plurality of projections are provided on the surface of the vibrating roll, because the abrasion of the reinforcing fibers by the roll can be suppressed.
  • SEN-I GAKKAISHI vol. 64, P-262-267 (2008). The described method can be used.
  • the preheating is preferably performed because the temperature decrease of the matrix resin can be suppressed and the viscosity uniformity of the matrix resin can be improved.
  • the reinforcing fiber sheet is preferably heated to a temperature close to the matrix resin temperature.
  • heating means include air heating, infrared heating, far infrared heating, laser heating, contact heating, and heating medium heating (such as steam). Means can be used. Above all, infrared heating is preferable because the apparatus is simple and the reinforcing fiber sheet can be directly heated, so that it can be efficiently heated to a desired temperature even at a high running speed.
  • the matrix resin used in the present invention can be used as a resin composition containing various resins and particles described below, a curing agent, and various additives.
  • the prepreg obtained by the present invention is in a state in which the matrix resin is impregnated in the reinforcing fiber sheet, and can be laminated and molded as a sheet-shaped prepreg to obtain a member made of FRP.
  • the degree of impregnation can be controlled by the design of the application section and the additional impregnation after application.
  • the matrix resin can be appropriately selected depending on the application, but it is common to use a thermoplastic resin or a thermosetting resin.
  • the matrix resin may be a molten resin heated and melted or a matrix resin at room temperature. Further, a solution or a varnish formed using a solvent may be used.
  • a resin generally used for FRP such as a thermoplastic resin, a thermosetting resin, and a photocurable resin can be used. Further, these may be used as they are if they are liquids at room temperature, or may be used as solids or viscous liquids at room temperature to reduce the viscosity by heating, or may be used as a melt by melting, or a solvent. May be used as a solution or varnish.
  • the thermoplastic resin is selected from a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a urea bond, a thioether bond, a sulfone bond, an imidazole bond, and a carbonyl bond in the main chain.
  • a polymer having a bond can be used.
  • PPS, PES, PI, PEI, PSU, PEEK, PEKK, PEAK, and the like are suitable.
  • polyolefins such as polypropylene (PP), PA, polyester, PPS, and the like are preferable in order to increase molding efficiency.
  • PP polypropylene
  • PA polypropylene
  • polyester polypropylene
  • PPS polypropylene
  • these may be polymers or oligomers or monomers for low viscosity and low temperature coating. Of course, these may be copolymerized depending on the purpose, or they may be mixed and used as a polymer blend or a polymer alloy.
  • thermosetting resin examples include an epoxy resin, a maleimide resin, a polyimide resin, a resin having an acetylene terminal, a resin having a vinyl terminal, a resin having an allyl terminal, a resin having a nadic acid terminal, and a resin having a cyanate ester terminal.
  • an epoxy resin a maleimide resin, a polyimide resin, a resin having an acetylene terminal, a resin having a vinyl terminal, a resin having an allyl terminal, a resin having a nadic acid terminal, and a resin having a cyanate ester terminal.
  • thermosetting resin suitable for the present invention an epoxy resin is preferably used because of its excellent heat resistance, chemical resistance, and mechanical properties.
  • an epoxy resin using an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor is preferable.
  • an epoxy resin having an amine as a precursor various isomers of tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, and triglycidylaminocresol, and phenols are used as precursors.
  • the epoxy resin include, but are not limited to, alicyclic epoxy resins. Brominated epoxy resins obtained by brominating these epoxy resins are also used.
  • An epoxy resin having an aromatic amine represented by tetraglycidyldiaminodiphenylmethane as a precursor has a good heat resistance and a good adhesion to a reinforcing fiber, and is most suitable for the present invention.
  • Thermosetting resin is preferably used in combination with a curing agent.
  • the curing agent may be a compound having an active group capable of reacting with an epoxy group.
  • a compound having an amino group, an acid anhydride group, or an azide group is suitable.
  • dicyandiamide, various isomers of diaminodiphenylsulfone, and aminobenzoic acid esters are suitable. More specifically, dicyandiamide is preferably used because of its excellent prepreg preservability. Further, various isomers of diaminodiphenyl sulfone are most suitable for the present invention because they give cured products having good heat resistance.
  • trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used.
  • the heat resistance is lower than that of diaminodiphenyl sulfone, the tensile strength is lower. Because it is excellent, it is selected and used according to the application. It is also possible to use a curing catalyst if necessary. From the viewpoint of improving the pot life of the matrix resin, it is also possible to use a complexing agent capable of forming a complex with a curing agent or a curing catalyst.
  • thermoplastic resin mixed with a thermosetting resin it is also preferable to use a thermoplastic resin mixed with a thermosetting resin.
  • a mixture of a thermosetting resin and a thermoplastic resin gives better results than using the thermosetting resin alone. This is because the thermosetting resin is generally capable of low pressure molding by an autoclave while having a brittle defect, whereas the thermoplastic resin is generally difficult to perform low pressure molding by an autoclave while having the advantage of being tough. This is because they exhibit a trade-off characteristic, that is, they can be used in combination to balance physical properties and moldability.
  • inorganic particles and organic particles can be contained in a matrix resin and a resin film described later.
  • the inorganic particles are not particularly limited, for example, carbon-based particles, boron nitride particles, titanium dioxide particles, silicon dioxide particles, and the like can be suitably used to impart conductivity, heat conductivity, thixotropy, and the like.
  • the organic particles are not particularly limited, the use of polymer particles is particularly preferable because the toughness, impact resistance, and vibration damping properties of the obtained FRP can be improved.
  • the glass transition temperature (Tg) or the melting point (Tm) of the polymer particles be higher than the matrix resin temperature by 20 ° C. or more, because the shape of the polymer particles can be easily maintained in the matrix resin.
  • the Tg of the polymer particles can be measured using a temperature-modulated DSC under the following conditions.
  • the temperature modulation DSC device Q1000 manufactured by TA Instruments or the like is suitable, and it can be used after being calibrated with high-purity indium in a nitrogen atmosphere.
  • the measurement conditions are as follows: the temperature rise rate is 2 ° C./min, and the temperature modulation condition is a cycle of 60 seconds and an amplitude of 1 ° C.
  • the reversible component is separated from the total heat flow obtained in this way, and the temperature at the middle point of the step signal can be set to Tg.
  • Tm is measured by a normal DSC at a heating rate of 10 ° C / min, and the peak top temperature of a peak-like signal corresponding to melting can be defined as Tm.
  • the polymer particles do not dissolve in the matrix resin.
  • polymer particles for example, appropriate ones can be used with reference to the description in WO2009 / 142231 pamphlet and the like.
  • polyamide or polyimide can be preferably used, and polyamide, which can greatly improve impact resistance due to excellent toughness, is most preferable.
  • Polyamides such as polyamide 12, polyamide 11, polyamide 6, polyamide 66, polyamide 6/12 copolymer, and the epoxy compound described in Example 1 of JP-A-01-104624 are semi-IPN (polymer interpenetrating network structure). Polyamide (semi-IPN polyamide) or the like can be suitably used.
  • the shape of the thermoplastic resin particles may be a spherical particle, a non-spherical particle, or a porous particle, but a spherical shape is particularly preferable in the production method of the present invention since the flow characteristics of the resin are not deteriorated. Further, a spherical shape is a preferable embodiment in that there is no starting point of stress concentration and high impact resistance is given.
  • polyamide particles include SP-500, SP-10, TR-1, TR-2, 842P-48, 842P-80 (all manufactured by Toray Industries, Inc.) and "Orgasol (registered trademark)" 1002D. , 2001UD, 2001EXD, 2002D, 3202D, 3501D, 3502D (all manufactured by Arkema Co., Ltd.), "Grillamide (registered trademark)” TR90 (manufactured by Mazaverke Co., Ltd.), "TROGAMID (registered trademark)” CX7323, CX9701 , CX9704 (manufactured by Degussa Co., Ltd.) and the like can be used. These polyamide particles may be used alone or in combination of two or more.
  • the number average particle size of the polymer particles is preferably in the range of 5 to 50 ⁇ m, more preferably in the range of 7 to 40 ⁇ m, and still more preferably in the range of 10 to 30 ⁇ m.
  • the number average particle diameter is 5 ⁇ m or more, the particles do not enter the bundle of the reinforcing fibers, and can remain in the reinforcing fiber interlayer resin layer of the obtained fiber-reinforced composite material.
  • the matrix resin used in the present invention it is preferable to select an optimum viscosity from the viewpoint of processability and stability. Specifically, when the viscosity is in the range of 1 to 60 Pa ⁇ s, the dripping at the constricted portion exit can be suppressed, and the high-speed running property and the stable running property of the reinforcing fiber sheet can be improved, which is preferable.
  • the viscosity refers to a value measured at a matrix resin temperature in a liquid reservoir at a strain rate of 3.14 s -1 .
  • a viscoelasticity measuring device such as a parallel disk type or a cone type can be used.
  • the viscosity of the matrix resin is more preferably from 10 to 30 Pa ⁇ s.
  • the application process of the matrix resin will be described with reference to FIG. 1A by taking a UD base material as an example.
  • the method of applying the matrix resin 2 to the reinforcing fiber sheet 1a in the coating apparatus 100 includes a plurality of the creels 11
  • the reinforcing fibers 1 are arranged in one direction (in the depth direction of the paper) by the arrangement device 12 to obtain a reinforcing fiber sheet 1a.
  • the reinforcing fiber sheet 1a is passed through the application section 20, and is applied to both sides of the reinforcing fiber sheet 1a.
  • a matrix resin 2 is provided. Thereby, the primary prepreg 1c can be obtained.
  • the modifying agent is applied before the reinforcing fiber sheet 1a is introduced into the application section 20.
  • FIG. 2 is an enlarged detailed cross-sectional view of the application section 20 in FIG. 1A.
  • the coating unit 20 includes wall members 21a and 21b facing each other with a predetermined gap D therebetween, and a cross-sectional area between the wall members 21a and 21b is continuous in a vertically downward Z (that is, a running direction of the reinforcing fiber sheet).
  • the liquid reservoir 22 which is gradually reduced, is located below the liquid reservoir 22 (the side where the reinforcing fiber sheet 1a is carried out), and is smaller than the cross-sectional area of the upper surface of the liquid reservoir 22 (the side where the reinforcing fiber sheet 1a is introduced).
  • a slit-shaped constriction 23 having a cross-sectional area is formed.
  • the reinforcing fiber sheets 1a are arranged in the depth direction of the paper surface.
  • the reinforcing fiber sheet 1a introduced into the liquid pool section 22 travels in the vertical downward direction Z with the surrounding matrix resin 2 accompanying it.
  • the accompanying matrix resin 2 is gradually compressed and moves toward the lower part of the liquid reservoir 22.
  • the pressure of the matrix resin 2 increases.
  • the accompanying liquid flow becomes more difficult to flow further downward, flows in the direction of the wall members 21a and 21b, and is then blocked by the wall members 21a and 21b and flows upward.
  • a circulating flow T is formed in the liquid reservoir 22 along the flat surface of the reinforcing fiber sheet 1a and the wall surfaces of the wall members 21a and 21b.
  • the increased liquid pressure has an effect that the matrix resin 2 is easily impregnated into the inside of the reinforcing fiber sheet 1a.
  • This is based on the property (Darcy's law) that when a matrix material is impregnated into a porous body such as a reinforcing fiber bundle, the degree of impregnation increases with the pressure of the matrix resin. Also in this case, when the reinforcing fiber sheet 1a is run at a higher speed, the hydraulic pressure is further increased, so that the impregnation effect can be further enhanced.
  • the matrix resin 2 is impregnated with air bubbles / liquid replacement with air bubbles remaining inside the reinforcing fiber sheet 1a.
  • the reinforcing fiber sheet 1a is automatically centered at the center of the gap D by the increased liquid pressure, and the reinforcing fiber sheet 1a does not directly rub against the wall surface of the liquid reservoir 22 or the narrowed portion 23. It also has the effect of suppressing the generation of fluff. This is because when the reinforcing fiber sheet 1a approaches one of the gaps D due to disturbance or the like, the matrix resin 2 is pushed into the narrower gap on the approaching side and is compressed, so that the hydraulic pressure increases on the approaching side. Then, the reinforcing fiber sheet 1a is pushed back to the center of the gap D.
  • the constriction 23 is designed to have a smaller cross-sectional area than the upper surface of the liquid reservoir 22.
  • the length of the pseudo plane made of the reinforcing fiber sheet in the perpendicular direction is small, that is, the space between the members is narrowed, so that the cross-sectional area is reduced. This is because the impregnation and the self-centering effect can be obtained by increasing the fluid pressure at the constricted portion as described above.
  • the cross-sectional shape of the uppermost surface of the constricted portion 23 should be made to match the cross-sectional shape of the lowermost surface of the liquid reservoir 22, from the viewpoint of the running property of the reinforcing fiber sheet 1a and the flow control of the matrix resin 2.
  • the constriction 23 may be slightly larger if necessary.
  • the reinforcing fiber sheet 1a runs completely downward in the vertical direction (90 degrees from the horizontal plane), but the present invention is not limited to this. It suffices if the obtained reinforcing fiber sheet 1a is substantially vertically downward as long as it can be stably and continuously driven.
  • the total amount of the matrix resin 2 applied to the reinforcing fiber sheet 1a can be controlled by the gap D of the narrowed portion 23.
  • the wall members 21a and 21b may be installed so that the gap D is widened.
  • FIG. 3 is a bottom view of the application unit 20 viewed from the direction of A in FIG.
  • the coating unit 20 is provided with side wall members 24a, 24b for preventing the matrix resin 2 from leaking from both ends in the arrangement direction of the reinforcing fiber sheet 1a, and is surrounded by the wall members 21a, 21b and the side wall members 24a, 24b.
  • An outlet 25 of the constricted portion 23 is formed in the closed space.
  • the outlet 25 has a slit shape, and the sectional aspect ratio (Y / D in FIG. 3) may be set according to the shape of the reinforcing fiber sheet 1a to which the matrix resin 2 is to be applied.
  • FIG. 4A is a cross-sectional view illustrating the structure inside the coating unit when the coating unit 20 is viewed from the direction B.
  • the wall member 21b is omitted for easy viewing
  • the reinforcing fiber sheet 1a depicts the reinforcing fibers 1 so as to be arranged with a gap therebetween. Arrangement without any gap is preferable from the viewpoint of the quality of the sheet prepreg and the mechanical properties of the FRP.
  • FIG. 4 b shows the flow of the matrix resin 2 in the gap 26.
  • a vortex flows in the matrix resin 2 in the direction of R. Since the vortex flow R becomes a flow (Ra) directed outward at the lower portion of the liquid pool 22, the reinforcing fiber sheet may be torn (breakage of the sheet-like fiber bundle occurs) or the spacing between the reinforcing fibers may be reduced. The prepregs may be spread, which may cause uneven arrangement of the reinforcing fibers when the prepreg is formed.
  • the reinforcing fiber sheet 1a is compressed in the width direction, and the end may be broken.
  • Patent Literature 2 Japanese Patent No. 3252278
  • the width L of the liquid reservoir 22, that is, the interval L between the side plate members 24a and 24b may be configured to satisfy the following relationship with the width W of the primary prepreg measured immediately below the narrowed portion 23. preferable. L ⁇ W + 10 (mm) Thereby, the generation of the vortex at the end is suppressed, the cracking and the end break of the reinforcing fiber sheet 1a can be suppressed, and the reinforcing fibers 1 are arranged uniformly over the entire width (W) of the primary prepreg 1c. Thus, a highly stable primary prepreg 1c can be obtained.
  • the lower limit of L is not less than W-5 (mm) from the viewpoint of improving the uniformity of the dimension in the width direction of the primary prepreg 1c.
  • the width regulation is performed at least at the lower part of the liquid reservoir 22 (the position G in FIG. 4A) from the viewpoint of suppressing the generation of the vortex R due to the high liquid pressure below the liquid reservoir 22. Further, more preferably, when this width regulation is performed in the entire area of the liquid pool 22, the generation of the vortex flow R can be almost completely suppressed, and as a result, cracks and end breaks of the reinforcing fiber sheet can be almost completely prevented. Can be suppressed.
  • the width regulation may be performed only on the liquid pool portion 22, but when the constriction portion 23 is similarly performed, excess matrix resin 2 is applied to the side surface of the primary prepreg 1c. It is preferable from the viewpoint of suppressing the occurrence of the above.
  • width regulation mechanisms 27a and 27b may be provided between the side wall members 24a and 24b, and the width regulation may be performed by such a mechanism. it can. This is preferable from the viewpoint that prepregs having various widths can be manufactured by one coating portion by allowing the width regulated by the width regulating mechanism to be freely changed.
  • the relationship between the width (W) of the reinforcing fiber sheet immediately below the constriction and the width (L2) regulated by the width regulating mechanism at the lower end of the width regulating mechanism is preferably L2 ⁇ W + 10 (mm), More preferably, L2 ⁇ W + 2 (mm). Further, it is preferable to adjust the lower limit of L2 to be not less than W-5 (mm), preferably not less than W (mm), from the viewpoint of improving the uniformity of the dimension in the width direction of the prepreg 1b.
  • a plate-shaped bush is simple and preferable.
  • the width is smaller than the distance between the wall members 21a and 21b (see FIG. 5; the vertical direction of the width regulating mechanism in the "view from the Z direction"). By having this, it is possible to prevent the matrix resin from flowing in the horizontal direction, which is preferable.
  • the shape from the middle part to the lower part of the width regulating mechanism conforms to the internal shape of the application part, because the stagnation of the matrix resin in the liquid pool part can be suppressed and the deterioration of the matrix resin can be suppressed. In this sense, it is preferable that the width regulating mechanism is inserted up to the constriction 23.
  • FIG. 5 shows an example of a plate-shaped bush as the width regulating mechanism, but shows an example in which the lower part from the middle of the bush follows the tapered shape of the liquid reservoir 22 and is inserted to the constriction 23.
  • FIG. 5 shows an example in which L2 is constant from the liquid level to the outlet.
  • the width regulating mechanism can be fixed to the application section 20 by an arbitrary method. In the case of a plate-shaped bush, by fixing the plate-shaped bush at a plurality of portions in the up-down direction, regulation by deformation of the plate-shaped bush due to high hydraulic pressure. Variation in width can be suppressed. For example, it is preferable to use a stay for the upper portion and to insert the lower portion into the application portion, since the width can be easily regulated by the width regulating mechanism.
  • the liquid pressure is increased in the running direction of the reinforcing fiber sheet by continuously decreasing the cross-sectional area in the running direction of the reinforcing fiber sheet in the liquid reservoir 22. It is important to note that the continuous decrease in the cross-sectional area in the running direction of the reinforcing fiber sheet is not particularly limited as long as the hydraulic pressure can be continuously increased in the running direction.
  • the liquid reservoir may have a curved shape such as a tapered shape (linear shape) or a trumpet shape.
  • cross-sectional area decreasing portion may be continuous over the entire length of the liquid pool portion, or may include a portion where the cross-sectional area does not decrease or a portion which expands conversely as long as the object and effects of the present invention can be obtained. You may go out. These will be described in detail below with reference to FIGS.
  • FIG. 6 is a detailed cross-sectional view of the application section 20b of another embodiment different from FIG. It is the same as the coating unit 20 of FIG. 2 except that the shapes of the wall members 21c and 21d constituting the liquid pool 22 are different.
  • the liquid reservoir 22 may be divided into a region 22a in which the cross-sectional area continuously decreases in the vertical direction Z downward, and a region 22b in which the cross-sectional area does not decrease.
  • the vertical height H at which the cross-sectional area is continuously reduced is preferably 10 mm or more.
  • the vertical height H at which the more preferable cross-sectional area is continuously reduced is 50 mm or more.
  • the opening angle ⁇ of the taper is smaller. More specifically, it is preferable to form an acute angle (90 ° or less). Thereby, the compression effect of the matrix resin 2 can be enhanced in the region 22a (tapered portion) where the cross-sectional area of the liquid reservoir 22 is continuously reduced, and a high liquid pressure can be easily obtained.
  • FIG. 7 is a detailed cross-sectional view of the application section 20c of another embodiment different from FIG. It is the same as the application section 20b of FIG. 6 except that the shape of the wall members 21e and 21f constituting the liquid pool section 22 is a two-step tapered shape.
  • the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced may be configured by a multi-stage taper portion of two or more stages. At this time, it is preferable to make the opening angle ⁇ of the tapered portion closest to the constricted portion 23 an acute angle from the viewpoint of enhancing the compression effect. Also in this case, it is preferable that the height H of the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced is 10 mm or more.
  • the vertical height H at which the more preferable cross-sectional area is continuously reduced is 50 mm or more.
  • the area 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced is formed as a multi-stage tapered portion, so that the volume of the matrix resin 2 that can be stored in the liquid reservoir 22 is maintained while the constricted portion 23 is maintained. Can be further reduced. As a result, the liquid pressure generated in the lower portion of the liquid reservoir 22 is further increased, and the effect of removing fluff and the effect of impregnating the matrix resin 2 can be further enhanced.
  • FIG. 8 is a detailed cross-sectional view of the application section 20d of another embodiment different from FIG. It is the same as the application section 20b in FIG. 6 except that the shape of the wall members 21g and 21h constituting the liquid pool section 22 is stepped.
  • the effect of increasing the hydraulic pressure which is the object of the present invention, can be obtained.
  • FIG. 9 is a detailed cross-sectional view of the application unit 20e of another embodiment different from FIG. It is the same as the application section 20b in FIG. 6, except that the shape of the wall members 21i and 21j forming the liquid pool section 22 is a trumpet shape (curved shape).
  • the area 22a where the cross-sectional area of the liquid pool section 22 is continuously reduced is tapered (straight), but is not limited to this.
  • the reinforcing fiber sheet 1a is caught by the step, and there is a concern that fluff is generated at this part.
  • the region where the cross-sectional area of the liquid reservoir 22 is continuously reduced is a trumpet-like shape, the opening of the virtual tangent line at the lowermost part of the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced. It is preferable that the angle ⁇ be an acute angle.
  • the cross-sectional area of the liquid reservoir does not necessarily have to be smoothly reduced unless the object of the present invention is impaired.
  • FIG. 10 is a detailed cross-sectional view of the application unit 30 according to another embodiment different from the present invention.
  • the liquid reservoir 32 in FIG. 10 does not include a region where the cross-sectional area continuously decreases in the vertical downward direction Z, and the cross-sectional area at the boundary 33 with the constriction 23 is discontinuous and sharp. It is a structure which reduces to. Therefore, the reinforcing fiber sheet 1a is easily clogged.
  • FIG. 11 shows an example in which three bars (35a, 35b and 35c) are used.
  • the impregnation rate can be 90% or more.
  • the means for improving the impregnation effect may be used in combination of plural kinds.
  • spray coating may be used as a means for applying the modifier, but in this case, the coating is performed on the reinforcing fiber sheet.
  • the spray application step referred to in the present invention is a step of discharging a liquid from a discharge unit, guiding the discharged liquid by an air current or lines of electric force, and collecting the discharged liquid on a continuously conveyed sheet. Say that. Examples of the method using an air flow include melt blowing and spun bonding.
  • the liquid to be ejected is solid at room temperature, it can be heated and melted, or dissolved in a solvent to become liquid. In addition, even if it is liquid at normal temperature, it can be diluted by adding a solvent. Further, the liquid may contain a solid such as the above-mentioned inorganic particles, organic particles, and polymer particles.
  • the base holes in one row it is preferable to arrange the base holes in one row to several rows in the width direction and to apply a heated airflow near the position where the liquid is discharged, as in the melt blow method.
  • the spinnability and cooling of the discharged liquid and the solidified product 46 thereof can be controlled.
  • the melt blow method is usually used for the production of short-fiber non-woven fabric of thermoplastic resin, in which high-speed airflow is applied to a low-viscosity resin to blow off the resin discharged from a die hole to shorten the fiber.
  • the fiber diameter of the resin fiber obtained here has a large variation of 1 ⁇ m to several tens ⁇ m.
  • the setting of the production conditions in the melt blow method adopted for ordinary polyester nonwoven fabrics is such that in order to obtain ultra-fine fibers, the resin viscosity is set to an extremely low viscosity, and the air flow velocity of the air accompanying the discharged polymer is also set high.
  • the discharge conditions, the accompanying airflow speed, and the like are adjusted. From such a viewpoint, it is preferable that the viscosity of the liquid in the spray coating device is 1 to 60 Pa ⁇ s.
  • the viscosity of the liquid a value measured at a strain rate of 3.14 sec -1 can be used.
  • the airflow velocity can be determined while observing the state of fiberization of the discharged liquid 19.
  • Whether the discharged liquid or the solidified material 46 is shaped in a fibrous form is determined by, for example, the path of the fibrous shaped liquid or the solidified matter 46 reaching the primary prepreg 1c from the spray coating device 41.
  • the movement of the (spinning line) can be judged by taking a picture with a high-speed video camera and observing it. In the case of continuous fiber formation, it is observed that the movement of the fibrous shaped liquid and its solidified material 46 are linked and oscillated upstream and downstream of the spinning line. Further, when the solidified liquid collected on the primary prepreg 1c is observed, it can be determined that continuous fibers are formed when the liquid is in the form of a long-fiber nonwoven fabric.
  • the solidified liquid collected on the primary prepreg 1c is observed, and it can be determined that the fibers are formed into a short fiber non-woven fabric.
  • the fiber length of the collected liquid solid formed into a fibrous form is preferably 1 cm or more, more preferably 10 cm or more, and further preferably continuous fiber.
  • the liquid collected on the primary prepreg 1c and the solidified product thereof have a droplet shape. Further, even when observed with the above-described high-speed video camera, it is difficult to observe that the image is moving while being linked upstream and downstream of the spinning line.
  • the discharged liquid or solidified product when the discharged liquid or solidified product is shaped into a fiber and collected on the primary prepreg, unevenness in the basis weight of the liquid or solidified product can be suppressed, and the quality of the prepreg can be improved. preferable.
  • the surroundings of the apparatus can be less polluted with a liquid or a solidified product thereof.
  • the discharged liquid or a solidified product thereof becomes droplets, particularly, in the case of minute droplets having a droplet size of several ⁇ m to several hundred ⁇ m, the droplets are small and easily scattered. Unlike the case (1), since there is no mechanism for stopping the scattering of droplets, it is considered that dirt is likely to occur.
  • the liquid when the liquid is heated, the liquid is discharged, then cooled toward the primary prepreg, and the viscosity and rigidity increase.
  • the viscosity and rigidity increase by cooling if the viscosity and rigidity increase by cooling, the path of the fibrous shaped liquid or its solidified product to the primary prepreg may be greatly affected by the airflow. become.
  • the coating height corresponding to the spinning length; hereinafter, referred to as the coating height
  • the shaped liquid or its solidified material 46 reaches the primary prepreg 1c in a state of low viscosity and low rigidity, and reaches the fibrous shaped liquid or its solidified material 46 by an air current (corresponding to a spinning line). Is hardly affected, so that the fibrous shaped liquid and the solidified material 46 are less likely to intersect and entangle in the middle of the spinning line or to flow horizontally on the primary prepreg 1c. Becomes linear. For this reason, the intervals between the fibrous shaped liquid and the solidification 46 thereof are substantially equal, and the uniformity of the liquid and the solidification 46 in the width direction is improved.
  • the coating height h is high as shown in FIG.
  • the liquid or solidified material 46 formed into a fibrous shape before reaching the primary prepreg 1 c becomes high in viscosity and high in rigidity, so that the air flow causes
  • the liquid or the solidified material 46 formed into a fibrous shape in the course of the spinning line may be crossed or entangled, or may be easily flowed horizontally on the primary prepreg 1c.
  • the coating height h is 1 to 100 mm, because the uniformity of the basis weight of the resin is improved. It is more preferably 70 mm or less.
  • the coating height h is 25 mm or more, since the turbulence of the air flow on the primary prepreg 1b is suppressed, the scattering of the liquid and the droplets and fibers of the solidified material 46 is suppressed, and the vicinity of the coating process is reduced. Resin contamination can be suppressed, which is more preferable.
  • the fibrous shaped liquid and its solidified material discharged as described above are less likely to be affected by airflow if they can maintain low viscosity and / or low rigidity even downstream of the spinning line. For this reason, the cooling rate of the fibrous shaped liquid or its solidified material may be controlled by the amount of the liquid or its solidified substance or the specific surface area of the fiber, and the influence of the air current may be reduced. For this reason, it is possible to adjust the single hole discharge amount and the single hole discharge area of the liquid. Further, even if the viscosity is lowered by using a low-viscosity liquid or by increasing the temperature of the liquid to be discharged, the influence of the air current may be reduced.
  • the resin temperature that can be applied to a thermosetting resin as a liquid
  • the resin viscosity when the resin viscosity is high, it is also effective to adjust the single hole discharge amount and the single hole discharge area as described above.
  • the cooling and thinning process of the fibrous resin can be adjusted by the temperature, flow rate, and flow rate of the airflow acting on the discharged resin, these process parameters can be appropriately combined.
  • the flow rate and flow rate of the air current may be adjusted by the pressure of supplied air in an industrial production device.
  • the reinforcing fiber sheet bends downward as described in Patent Document 5.
  • the region that is transported substantially in the form of a plane refers to a region in which the primary prepreg 1c is substantially linear in the longitudinal direction in the vicinity of the collection portion of the liquid or its solidified material 46 as shown in FIG. Refers to the area that is being conveyed. This is because, in FIG.
  • the primary prepreg 1c conveyed in the vicinity of the collection portion of the liquid or the solidified material 46 thereof looks substantially linear when viewed from the horizontal arrangement direction of the reinforcing fibers, that is, from the near side.
  • the primary prepreg 1c there is no particular limitation on a specific method for preventing the primary prepreg from curving downward even when there is a downward air flow in the spray coating process, but for example, as shown in FIG. In the process, it is effective to dispose an object capable of supporting the primary prepreg 1c below the primary prepreg 1c (the table 45 is illustrated in FIG. 12).
  • curtain coating means that a liquid is discharged in a planar shape, and a film is formed and applied in a space where the liquid is discharged, and the film is semi-solidified or solidified even in the liquid state. Is also good. For this reason, in the present invention, since non-contact coating is performed, various problems caused by abrasion can be solved as compared with the method of pressing the coating head. In the second production method, curtain coating can be used as a means for applying the modifier, but in this case, coating is performed on the reinforcing fiber sheet.
  • the angle between the liquid discharge direction and the primary prepreg transport direction (this angle is sometimes referred to as “application angle” for convenience) is 80 ° or less.
  • FIG. 15 shows a general application method when the transport direction of the primary prepreg 1c is the horizontal direction.
  • the angle between the liquid discharge direction and the transport direction of the primary prepreg 1c is 90 °. .
  • the present inventors conducted an experiment using a thermosetting resin (such as an epoxy resin). As a result, when the angle between the liquid discharge direction and the primary prepreg transport direction was 90 °, the transport speed was increased and the coating was performed. Sometimes it was difficult to do.
  • the film 47 is formed by discharging the liquid in a plane by setting the angle between the liquid discharge direction and the transport direction of the primary prepreg 1c to 80 ° or less.
  • the present inventors have found that coating can be performed stably at high speed.
  • the smaller the coating angle ⁇ the more stable and high-speed coating is possible, which is preferable.
  • the coating angle ⁇ is preferably set to 30 to 70 °.
  • the coating height h which is the distance between the center of the ejection line and the primary prepreg 1c, shown in FIG. 16 to be 3 mm or more, it is possible to suppress die contamination due to liquid accumulation in the die of the curtain coating device 42 and to stabilize coating. It is preferable because the property can be improved. Further, it is preferable that the thickness be 18 mm or less because the film formation is stabilized.
  • the curtain coating device may be any device that can discharge the liquid in a plane. More specifically, as a preferred example, there is provided a device capable of discharging a liquid having a uniform thickness in a width direction from a die for discharging the liquid to form a surface or a curtain-shaped film. Generally, what is called a die coater can be used, and a structure that can discharge liquid from a slit having a uniform thickness and no intermittents can be used. Further, it is preferable that the curtain coating apparatus has a heating mechanism that can heat the liquid immediately before the discharge and adjust the liquid to an arbitrary viscosity.
  • the viscosity of the liquid in the curtain coating device is preferably 1 to 60 Pa ⁇ s.
  • a value measured at a strain rate of 3.14 sec -1 can be used.
  • the film since the film has a free surface in the space where the liquid is discharged, the shape of the film is easily deformed. For example, the film formation becomes unstable because the end of the film is degenerated in the width direction due to a so-called “neck-in”, or the entire film is pulled when the primary prepreg is transported at a high speed. Or the uniformity of the basis weight of the film may be impaired. For this reason, it is preferable to apply an air current to the end of the film in the width direction to stabilize the film formation.
  • neck-in occurs in which the edge of the film is pulled in the direction of the center of the film in the direction perpendicular to the pulling direction, and the width of the film is reduced (see FIG. 17, N). , The width of the film 47 is reduced).
  • This phenomenon is considered to be particularly likely to occur when a high tension is applied to the film, such as when the viscosity of the liquid forming the film or a solidified product thereof is high, or when the pulling speed is high.
  • an air current (end air 48) is applied from the front surface of the film to the end, and the film is blown, for example (see FIGS. 17 and 18), so that the end of the film is expanded.
  • the airflow for this is called end air in the present invention.
  • a metal pipe or a nozzle can be used as a means for applying the end air.
  • the airflow velocity, flow rate, angle, position, and temperature of the end air be appropriately selected in consideration of, for example, whether neck-in or resin film formation is stably performed.
  • the end air can be used when applying the film.
  • the film may be excessively pulled in the film pulling direction, that is, in the prepreg transport direction.
  • the airflow surface air 47
  • the airflow for this purpose is called surface air.
  • the airflow velocity, flow rate, angle, position, and temperature of the surface air be appropriately selected in consideration of whether the film is formed stably.
  • a nozzle in which slits or holes are arranged in a line can be generally used.
  • both the end air and the surface air are provided in the curtain coating apparatus from the viewpoint of the compactness of the apparatus and the ease of handling (see FIG. 21).
  • the position at which the film contacts the primary prepreg can be made closer to the coating portion by sucking air from the back side of the film.
  • curtain coating can also be applied to the primary prepreg on a roll as shown in FIG.
  • the angle between the tangent when the film 47 and the primary prepreg 1b on the roll 50 come into contact with the discharge direction can be set as the “application angle”.
  • the liquid applied to the primary prepreg using spray coating or curtain coating is not particularly limited, and can be appropriately selected depending on the purpose.
  • the matrix resin described above can be used.
  • a thermosetting resin or a thermoplastic resin can be used alone, and a curing agent or various additives can be used alone.
  • solids such as the above-mentioned inorganic particles, organic particles, and polymer particles can be contained in the liquid. Further, these can be adjusted to a viscosity suitable for spray coating or curtain coating by heating or adding a solvent according to the purpose.
  • a substance capable of imparting tackiness such as a liquid epoxy resin, urethane resin, or rubber
  • a substance capable of imparting tackiness such as a liquid epoxy resin, urethane resin, or rubber
  • part or all of the curing agent can be extracted from the matrix resin used when forming the primary prepreg, and can be applied again by spray coating or curtain coating.
  • the viscosity of the matrix resin used when forming the primary prepreg can be reduced, the process stability can be improved, and the production speed can be increased.
  • some or all of the particles may be extracted from the matrix resin used for forming the primary prepreg, and the particles may be applied again by spray coating or curtain coating.
  • the particles can be used by forming a suspension with an appropriate liquid or by being contained in a thermosetting resin or a thermoplastic resin. Further, by doing so, it is possible to selectively arrange particles on the prepreg surface, and it is possible to selectively arrange particles between the reinforcing fiber layers. In addition, by using a liquid that becomes a solid at room temperature, it is also possible to adjust the unevenness (roughness) of the prepreg surface, thereby improving the vacuum pressure formability and the like.
  • a modifier is applied to the reinforcing fiber sheet 1a before being introduced into the application section.
  • the modifier is a generic term for a drug selected from the group consisting of a yarn breaking inhibitor, a toughness improver, a flame retardant, and a fluff sizing agent, and is a drug that can improve the quality and functionality of a prepreg. .
  • One modifier can be selected from these groups and applied, or a plurality of modifiers can be used in combination or mixed. Each modifier will be described in detail.
  • the yarn crack preventing agent is an agent for improving the uniformity of the basis weight in the width direction, which is an important quality of the prepreg.
  • the yarn crack will be described with reference to FIG.
  • the reinforcing fiber sheet 1a can be obtained by arranging the tows, and while the reinforcing fiber sheet 1a is conveyed from the arranging device 12 to the application section 20, the adjacent tow is formed. Cracks may occur between the tows. This is called a yarn crack.
  • the resulting prepreg 1c may have poor quality without reinforcing fibers in the width direction, and the uniformity in the weight in the width direction may be reduced.
  • the width of the portion of the prepreg 1c where there is no reinforcing fiber in the width direction with respect to the reinforcing fiber arrangement direction is 2 mm or more, it is determined to be defective.
  • This yarn crack can be improved or eliminated by applying a yarn crack preventing agent to the reinforcing fiber sheet 1a before passing through the application section 20.
  • the yarn breaking inhibitor is an agent applied to connect or bridge between tows.
  • the reinforcing fiber sheet By providing or suppressing the movement of the tow in the width direction by applying the yarn crack preventing agent, the reinforcing fiber sheet can be substantially integrated, and as a result, the yarn crack between the tow and the tow can be suppressed.
  • the component of the yarn crack preventing agent to be applied is not particularly limited as long as the yarn crack between tows can be suppressed.
  • the yarn cracking inhibitor is a matrix resin 2 to be applied in the application section 20 described later, a component contained in the matrix resin 2 or a combination of components selected from the components, the prepreg finally obtained is laminated and cured. This is preferable because the mechanical properties of the CFRP thus obtained do not significantly decrease.
  • an epoxy resin, a curing agent for the epoxy resin, and a mixture selected from thermoplastic resins are also preferable.
  • the obtained prepreg is laminated, and the heat resistance, chemical resistance, and mechanical properties of the cured CFRP are improved. Excellent.
  • a specific example of the component of the yarn crack preventing agent to be applied a low-viscosity resin is preferable, and heating required for melting at the time of application can be omitted or simplified, or the degree of impregnation at the time of application or additional impregnation can be increased. Can be.
  • low viscosity refers to a material having a viscosity of 4000 Pa ⁇ s or less when measured at a strain rate of 3.14 s ⁇ 1 at 40 ° C.
  • a viscoelasticity measuring device such as a parallel disk type or a cone type can be used.
  • the toughness improver is a chemical that can improve the toughness and impact resistance of CFRP obtained by laminating and curing a prepreg obtained by applying.
  • a toughness improving component can be provided to the surface layer of the reinforcing fiber sheet, the toughness of CFRP can be increased, and further as a yarn cracking inhibitor It is also possible to fulfill roles at the same time.
  • polyamide or polyimide is preferable, and impact resistance can be increased due to excellent toughness.
  • Tg is preferably 180 ° C.
  • polyether sulfone, polyether ether sulfone, polyetherimide, polyphenylene oxide, polysulfone and the like are preferably used.
  • these components can be applied by melting, or those in the form of particles can be kneaded with a resin and used.
  • the flame retardant is a chemical that can improve the flame retardancy of CFRP by being applied, and is a characteristic required particularly for structural members such as aircraft and vehicles, and building materials.
  • the flame retardant of the CFRP can be imparted by applying the flame retardant to the surface layer of the reinforcing fiber sheet.
  • a resin obtained by kneading a generally known flame retardant can be used as the flame retardant used in the present invention.
  • a resin obtained by kneading a metal hydroxide, a metal oxide, a phosphorus atom-containing compound such as red phosphorus, a phosphoric ester, a phosphate, a nitrogen-containing compound, antimony trioxide, or the like can be used.
  • the fluff sizing agent is an agent that, when applied, integrates fluff that has protruded out of the plane of the reinforcing fiber sheet into the reinforcing fiber sheet. If there are fluffs protruding in the out-of-plane direction of the reinforcing fiber sheet, the fluffs may be cut off when passing through the constricted part of the application part, and may be deposited in the matrix resin stored in the application part.
  • the fuzz sizing agent to be applied is not particularly limited, but the anti-fuzz agent is a matrix resin 2 to be applied in the application section 20 described later, a component contained in the matrix resin 2 or a combination of components selected from the components.
  • the mechanical properties of the CFRP obtained by laminating and curing the prepreg finally obtained are not significantly reduced, and the generation of fluff deposited on the application portion is preferably suppressed.
  • an epoxy resin, a curing agent for the epoxy resin, a mixture selected from thermoplastic resins is also preferable, and the obtained prepreg is laminated, and the heat resistance, chemical resistance, and mechanical properties of the cured CFRP are improved. Excellent.
  • a specific example of the component of the fuzz sizing agent to be applied a low-viscosity resin is preferable, and heating required for melting at the time of application can be omitted or simplified, or the degree of impregnation at the time of application or additional impregnation can be increased.
  • low viscosity refers to a material having a viscosity of 4000 Pa ⁇ s or less when measured at a strain rate of 3.14 s ⁇ 1 at 40 ° C.
  • a viscoelasticity measuring device such as a parallel disk type or a cone type can be used.
  • the method for applying the modifier is not particularly limited, and various methods can be used. However, a decrease in continuous productivity due to fluff caused by rubbing with the reinforcing fiber sheet, a disorder in the arrangement of the reinforcing fibers and in the straightness of the straightness. From the viewpoint of suppression, a coating method that does not contact the reinforcing fiber sheet is preferable. For example, the above-mentioned spray coating (including melt blowing) and curtain coating can be used.
  • the combined basis weight (the mass of the modifier per unit area applied to the reinforcing fiber sheet 1a) of the modifier to be applied is 20 g / m 2 or less.
  • the content is within this range, the process stability and the quality, quality, and functionality of the prepreg can be obtained, and the mechanical properties of CFRP obtained by laminating and curing the finally obtained prepreg can be suppressed.
  • the spray application head can be traversed in the width direction.
  • the application of the modifier may be intermittent in the running direction of the reinforcing fiber sheet.
  • the interval between application of the modifier in the longitudinal direction (also referred to as the spray application interval when the application of the modifier is performed by spray coating) is preferably within a maximum of 30 mm. Easy to get.
  • the maximum application interval of 30 mm or less means that the reinforcing sheet to which the modifier has been applied is observed at three locations near both ends and near the center of the reinforcing fiber sheet at 100 cm (running direction) ⁇ 10 cm (width direction). In any of the observation locations, there is no location where the portion to which the modifier has not been applied is more than 30 mm apart in the running direction.
  • the spray application interval can be reduced even if the running speed of the reinforcing fiber sheet is increased.
  • ⁇ Modifier applying step in the second manufacturing method> In the case where a UD base material is used as a reinforcing fiber sheet, a modifier applying step will be described with reference to FIG. 1B.
  • the plurality of reinforcing fibers 1 unwound from the creel 11 are arranged by the arranging device 12, and the obtained reinforcing fiber sheet is linearly passed through the modifier applying device to apply the modifying agent, thereby obtaining the obtained modified fiber.
  • This is an example in which the running direction of the reinforcing fiber sheet 1b to which the agent is applied is changed from the horizontal direction to the vertical direction by the transport roll 13 and is passed through the application unit 20.
  • the modifier applying device can be appropriately selected from various applying devices without any limitation as long as the object of the present invention is achieved.
  • Spray coating including melt-blowing
  • the melt blowing guides the modifying agent to the reinforcing fiber sheet by an air stream, the contamination around the apparatus is small, the loss of the modifying agent is small, and the uniformity of the basis weight is preferable.
  • Curtain cloth is preferable because the modifier can be applied without interruption.
  • the surface to which the modifier is applied may be one side or both sides with respect to the reinforcing fiber sheet 1a.
  • the place where the modifying agent is applied to the reinforcing fiber sheet 1a is located within the section where the reinforcing fiber sheet 1a obtained by the arraying device 12 is horizontally conveyed to the conveying roll 13 which changes the direction.
  • the application of the modifier is not particularly limited as long as it is between the reinforcing fiber arrangement device 12 and the application unit 20.
  • the section up to the section may be provided with a modifier applying device, and the modifier may be applied to the reinforcing fiber sheet traveling vertically downward.
  • a widening device for the reinforcing fiber sheet, a smoothing device, or a preheating device for the reinforcing fiber sheet may be appropriately used between the creel for unwinding the reinforcing fibers and the application section.
  • the order of the arrangement device, the widening device, the smoothing device, and the preheating device can be appropriately changed and used.
  • the creel 11 in FIG. 1b may be replaced with a reinforcing fiber fabric unwinding facility, and the arranging device 12 in FIG. 1 may be replaced with a nip roll to draw out the reinforcing fiber fabric.
  • a traveling mechanism for transporting the reinforcing fiber sheet or the prepreg of the present invention a known roller or the like can be suitably used.
  • the running path of the reinforcing fiber sheet is as straight as possible in order to suppress the arrangement disorder and the fluffing of the reinforcing fiber.
  • the prepreg is often a sheet-like integrated body that is a laminate with a release sheet, but in the conveying step of the prepreg, if there is a bent portion, wrinkles may occur due to a difference in circumference between the inner layer and the outer layer. Therefore, it is preferable that the traveling path of the sheet-shaped integrated object is as straight as possible. From this viewpoint, it is preferable to use a nip roll in the traveling path of the sheet-like integrated object.
  • Whether the S-shaped roll or the nip roll is used can be appropriately selected according to the manufacturing conditions and the characteristics of the product.
  • a high tension take-up device for drawing out the primary prepreg from the application section is disposed downstream of the application section in the process. This is because high frictional force and shear stress are generated between the reinforcing fiber sheet and the matrix resin in the application section, and it is preferable to generate a high take-up tension downstream of the process in order to overcome the drawback and draw out the prepreg. It is.
  • a nip roll or an S-shaped roll can be used, but by increasing the frictional force between the roll and the prepreg, slip can be prevented and stable running can be achieved. .
  • the S-shaped roll is preferable because the frictional force can be easily controlled by the roll diameter and the contact length.
  • a release sheet feeding device or a winder can be used as appropriate, and as such a device, a known device can be used. It is preferable to provide a mechanism capable of feeding back the winding tension or feeding back the winding speed from the viewpoint of stable running of the sheet.
  • Additional impregnation In order to adjust the degree of impregnation to a desired degree, it is also possible to combine a means for further increasing the degree of impregnation using an impregnating apparatus separately after coating with the present invention.
  • additional impregnation after application is referred to as additional impregnation
  • an apparatus therefor is referred to as an additional impregnation apparatus.
  • the device used as the additional impregnation device is not particularly limited, and can be appropriately selected from known devices according to the purpose.
  • a laminate of a sheet-like carbon fiber bundle and a resin is preheated by a hot plate to sufficiently soften the resin on the sheet-like carbon fiber bundle.
  • the impregnation can also be advanced by using a device that presses with a heated nip roll.
  • the temperature of the hot plate for preheating, the surface temperature of the nip roll, the linear pressure of the nip roll, and the diameter and number of the nip rolls can be appropriately selected so as to obtain a desired impregnation degree.
  • FIG. 1 shows an example in which the prepreg sheet runs in an S-shape, but if impregnation is possible, the contact length between the sheet and the roll, such as a U-shape, V-shape or ⁇ -shape, is described. May be adjusted.
  • the impregnation pressure is increased to increase the degree of impregnation, it is also possible to add an opposing contact roll. Further, as shown in FIG.
  • a heated nip roll or a heated S-shaped roll can be used, but the roll diameter, the set pressure, and the contact length between the primary prepreg and the roll can be reduced as compared with a normal impregnating device. This is preferable because not only the size can be reduced but also the power consumption and the like can be reduced.
  • a release sheet to the primary prepreg before the primary prepreg enters the simple additional impregnating apparatus, because the running property of the primary prepreg is improved.
  • FIG. 23 shows an example of a process including the additional impregnation device.
  • a simple additional impregnating device 453 is provided immediately below the application section 430.
  • the simple additional impregnation device 453 shows an example of a nip roll, but the nip roller preferably has a heating mechanism.
  • the number of nip roll stages can be appropriately selected depending on the purpose, but from the viewpoint of simplification of the process, three or less stages are preferable (FIG. 23 shows an example of two stages).
  • the nip roller is provided with a driving device from the viewpoint that tension control of prepreg conveyance is easy. The nip pressure can be appropriately adjusted according to the desired degree of impregnation.
  • the nip roll surface is subjected to an appropriate release treatment so that the primary prepreg does not stick, or a release sheet is inserted between the primary prepreg and the nip roll. 23 is not drawn).
  • a release sheet between the primary prepreg and the nip roll it is preferable to insert the release sheet from the application section 430 side and to separate the release sheet from the primary prepreg by the roll on the high tension take-up device 444 side.
  • the separated release sheet may be wound up as it is, or may be run again on the circuit so as to be inserted again from the application section 430 side.
  • the above-mentioned “S-wrap roll”, a fixed bar, or the like can be used as the additional impregnation device. Further, a non-contact heating device using infrared rays, a laser, or the like can also be used.
  • the impregnation ratio of the matrix resin is desirably 10% or more.
  • the state of impregnation of the matrix resin can be confirmed by tearing the collected prepreg and visually observing the inside, and more quantitatively, for example, by a peeling method.
  • the impregnation rate of the matrix resin by the peeling method can be measured as follows. That is, the collected prepreg is sandwiched between adhesive tapes, and the prepreg is peeled off to separate the reinforcing fibers to which the matrix resin has adhered from the reinforcing fibers to which the matrix resin has not adhered.
  • the ratio of the mass of the reinforcing fibers to which the matrix resin has adhered to the mass of the entire reinforcing fiber sheet put in can be taken as the impregnation rate of the matrix resin by the peeling method.
  • the degree of impregnation can also be evaluated based on the water absorption due to the capillary action of the prepreg. Specifically, in accordance with the method described in JP-T-2016-510077, the prepreg can be cut into 10 cm ⁇ 10 cm, one side of which is 5 mm, and can be calculated from the change in mass when immersed in water for 5 minutes. .
  • a reinforcing fiber sheet impregnated with a matrix resin derived from an application section is referred to as a primary prepreg, and as a term, the primary prepreg is a term belonging to the concept of a prepreg. Needless to say.
  • prepreg which is a kind of precursor of FRP, is one form of prepreg obtained in the present invention, a case where the present invention is applied to FRP will be described below.
  • the width of the prepreg is not particularly limited, and may be a wide width of about several tens cm to 2 m, or a tape having a width of several mm to several tens mm.
  • the width can be selected according to the application.
  • devices called ATL (Automated Tape Laying) and AFP (Automated Fiber Placement) for automatically laminating narrow prepregs and prepreg tapes have been widely used. Therefore, it is also preferable that the width is adjusted to this.
  • ATL often uses narrow prepregs having a width of about 7.5 cm, about 15 cm, or about 30 cm.
  • AFP often uses prepreg tapes having a width of about 3 mm to about 25 mm.
  • the width of the coating portion used in the present invention can be adjusted so as to have a desired width from the beginning. For example, when manufacturing a narrow prepreg having a width of 30 cm for ATL, the width of the application section outlet may be adjusted accordingly. In addition, in order to manufacture this efficiently, it is preferable to manufacture the product with a product width of 30 cm.
  • FIG. 24 shows an example in which five application sections are connected in a parallel direction.
  • the five reinforcing fiber sheets 416 may pass through the five independent reinforcing fiber preheating devices 420 and the application unit 430, respectively, so that five primary prepregs 471 may be obtained, or the reinforcing fiber preheating may be performed.
  • the device 420 and the application unit 430 may be integrated in a parallel direction.
  • the coating unit 430 may be provided with five independent width control mechanisms and five coating unit outlet widths.
  • a reinforcing fiber sheet in the form of a tape-shaped reinforcing fiber bundle having a length of about 1 to 3 threads is formed and passed through a coating section whose width has been adjusted so as to obtain a desired tape width. You can also get it.
  • the accuracy of the tape width is often required from the viewpoint of controlling the lateral overlap between the tapes. For this reason, it is preferable to more strictly control the outlet width of the application section.
  • the above L, L2, and W satisfy the relationship of L ⁇ W + 1 mm and / or L2 ⁇ W + 1 mm. .
  • the method of slitting the prepreg is not particularly limited, and a known slit device can be used. After winding the prepreg once, it may be installed in the slit device again to perform slitting, or for efficiency, a slitting step may be arranged continuously from the prepreg producing step without winding the prepreg once. Also, in the slitting step, a wide prepreg of 1 m or more may be directly slit to a desired width, or once cut and divided into narrow prepregs of about 30 cm, and then slit again to a desired width. good.
  • a release sheet may be supplied independently, or one wide release sheet may be supplied.
  • a plurality of prepregs may be stacked. The end in the width direction of the prepreg thus obtained can be cut off and supplied to an ATL or AFP device.
  • the matrix resin component resin in the case of FRP
  • adhering to the slit cutter blade can be reduced, and the cleaning cycle of the slit cutter blade is extended. There is also an advantage that you can do it.
  • FIG. 25 shows, as an example, an embodiment in which prepregs are stacked using two application sections.
  • the two primary prepregs 471 drawn from the first application unit 431 and the second application unit 432 pass through the direction change roll 445 and are laminated together with the resin film 443 on the laminating roll 447 below the primary prepreg 471. It is preferable to position the release sheet between the prepreg and the direction change roll, because it is possible to suppress the prepreg from sticking to the nip roll and to stabilize traveling.
  • FIG. 25 shows, as an example, an embodiment in which prepregs are stacked using two application sections.
  • the two primary prepregs 471 drawn from the first application unit 431 and the second application unit 432 pass through the direction change roll 445 and are laminated together with the resin film 443 on the laminating roll 447 below the primary prepreg 471. It is preferable to position the release sheet between the prepreg and the direction change roll, because it is possible to suppress the prepreg from sticking to the
  • the high tension take-up device 444 is arranged after the primary prepreg 471 is laminated, but it is of course possible to arrange it before the lamination.
  • the drawing of the spray coating device and the curtain coating device is omitted, but they can be arranged at any positions after the formation of the primary prepreg.
  • the efficiency of the prepreg laminating step can be improved, and this is effective, for example, when a thick FRP is manufactured. Further, it is expected that the toughness and impact resistance of the FRP will be improved by laminating thin prepregs in multiple layers, and by applying the present production method, thin multilayer prepregs can be efficiently obtained. Further, by easily laminating different types of prepregs, a hetero-bonded prepreg having added functionality can be easily obtained. In this case, it is possible to change the type and fineness of the reinforcing fiber, the number of filaments, mechanical properties, fiber surface characteristics, and the like.
  • a different matrix resin resin in the case of a prepreg.
  • a prepreg having different thicknesses or a hetero-bonded prepreg obtained by laminating prepregs having different mechanical properties can be used.
  • a resin having excellent mechanical properties is provided in the first application section, and a resin having excellent tack properties is provided in the second application section.
  • a prepreg that can achieve both mechanical properties and tackiness can be easily prepared.
  • Obtainable it is also possible to arrange a resin having no tackiness on the surface.
  • a resin without particles can be applied in the first application section, and a resin containing particles can be applied in the second application section.
  • a plurality of application sections are arranged in parallel to the running direction of the reinforcing fiber sheet, that is, a plurality of application sections are arranged in parallel in the width direction of the reinforcing fiber sheet.
  • FIG. 26 shows an example in which two application sections are arranged in series as an example. It is preferable to arrange a high tension take-up device 448 between the first application unit 431 and the second application unit 432 from the viewpoint of stabilizing the running of the reinforcing fiber sheet 416, but depending on the application conditions and the take-down conditions downstream of the process. Can be omitted. Further, when the release sheet is positioned between the primary prepreg pulled out from the first application section and the high tension take-up device 448, the primary prepreg can be prevented from sticking to the nip roll, and traveling can be stabilized. ,preferable. FIG. 26 illustrates an example in which the high tension take-up device 448 is a nip roll, and the release sheet 446 is caused to travel on a circuit by two rolls.
  • the type of matrix resin can be changed in the thickness direction of the primary prepreg. Even with the same type of matrix resin, running stability and high-speed running performance can be improved by changing the application conditions depending on the application section. For example, a resin having excellent mechanical properties is applied in the first application section, a resin having excellent tack properties is applied in the second application section, and a prepreg that can achieve both mechanical properties and tackiness by laminating them is easily provided. Obtainable. Conversely, it is also possible to arrange a resin having no tackiness on the surface. Alternatively, a resin without particles can be applied in the first application section, and a resin containing particles can be applied in the second application section. In FIG. 26, the drawing of the spray coating device and the curtain coating device is omitted, but they can be arranged at any positions after the formation of the primary prepreg.
  • the manufacturing method of the present invention is not only capable of improving the efficiency and stabilization of the manufacturing, but also is capable of improving the performance and functioning of the product, and is a manufacturing method excellent in scalability.
  • the matrix resin is stored in the coating section, but it is preferable to appropriately supply the matrix resin because the coating proceeds.
  • the mechanism for supplying the matrix resin to the application section is not particularly limited, and a known device can be used. It is preferable that the matrix resin be continuously supplied to the application section because the running of the reinforcing fiber sheet can be stabilized without disturbing the liquid level above the application section.
  • the self-weight can be supplied as a driving force from a tank storing the matrix resin, or can be supplied continuously using a pump or the like.
  • a pump, a gear pump, a tube pump, a pressure pump, or the like can be used as appropriate according to the properties of the matrix resin.
  • the matrix resin When the matrix resin is solid at room temperature, it is preferable to provide a melter above the reservoir. Further, a continuous extruder or the like can be used. Further, it is preferable to provide a mechanism capable of continuously supplying the matrix resin in accordance with the applied amount so that the liquid level above the application portion of the matrix resin is as constant as possible. For this purpose, for example, a mechanism that monitors the liquid level, the weight of the application section, and the like and feeds it back to the supply device is conceivable.
  • the liquid supply mechanism used for spray coating and curtain coating can also be provided like the matrix resin supply mechanism.
  • the online monitoring method is not particularly limited, and a known method can be used.
  • a device for measuring the thickness for example, a beta-ray meter or the like can be used.
  • the application amount monitored online is immediately fed back to the application unit, and can be used for adjusting the temperature of the application unit and the gap D (see FIG. 2) of the constricted portion 23.
  • Application amount monitoring can of course be used as defect monitoring.
  • As the thickness measurement position for example, in FIG.
  • the thickness of the reinforcing fiber sheet 416 can be measured in the vicinity of the direction change roll 419, and the thickness of the prepreg can be measured between the application section 430 and the direction change roll 441. It is also preferable to perform online defect monitoring using infrared rays, near infrared rays, a camera (image analysis), or the like.
  • FIG. 27 is a schematic diagram of an example of a prepreg manufacturing process / apparatus using the first manufacturing method of the present invention.
  • the plurality of reinforcing fiber bobbins 412 are hung on a creel 411, and are pulled out via a direction changing guide 413.
  • the reinforcing fiber bundle 414 can be pulled out with a constant tension by the brake mechanism provided to the creel.
  • the plurality of pulled out reinforcing fiber bundles 414 are orderly arranged by the reinforcing fiber arrangement device 415, and the reinforcing fiber sheet 416 is formed.
  • the sheet is conveyed vertically downward through a widening device 417, a smoothing device 418, and a direction change roll 419.
  • the reinforcing fiber sheet 416 is linearly conveyed between the reinforcing fiber arrangement device 415 and the direction change roll 419 between the devices. Note that the widening device 417 and the smoothing device 418 can be appropriately skipped or the devices can be omitted depending on the purpose.
  • the arrangement order of the reinforcing fiber arrangement device 415, the widening device 417, and the smoothing device 418 can be appropriately changed according to the purpose.
  • the reinforcing fiber sheet 416 travels vertically downward from the direction changing roll 419, and reaches the direction changing roll 441 via the reinforcing fiber preheating device 420 and the application unit 430.
  • the application section 430 can adopt any application section shape as long as the object of the present invention is achieved. For example, there are shapes as shown in FIGS. 2, 6 to 9. Further, a bush can be provided as shown in FIG. 5 as necessary. Further, as shown in FIG. 11, a bar can be provided in the application section.
  • FIG. 27 includes a spray coating device 481 and a curtain coating device 482 after the primary prepreg 471 is formed by the coating unit 430.
  • the spray coating device 481 and the curtain coating device 482 are drawn on both surfaces of the primary prepreg. However, either one of them may be used, or only one of the spray coating device 481 and the curtain coating device 482 is used. Or the order may be changed.
  • the release sheet 443 is applied, and the release sheet 443 can be taken out by the high tension take-up device 444.
  • a nip roll is drawn as the high tension take-up device 444.
  • the sheet-like integrated material passes through an additional impregnating device 450 provided with a hot plate 451 and a heating nip roll 452, is cooled by a cooling device 461, is taken off by a take-off device 462, and peels off the upper release sheet 446. Then, a sheet-like integrated body 472 composed of a prepreg / release sheet as a product can be obtained by winding with a winder 464. Since the sheet-like integrated object is conveyed in a basic straight line from the direction changing roll 441 to the winder 464, generation of wrinkles can be suppressed. In FIG. 27, illustration of the matrix resin supply device and the online monitoring device is omitted.
  • FIG. 28 is a schematic diagram of another example of a prepreg manufacturing process / apparatus using the first manufacturing method of the present invention.
  • the steps from the creel to the application unit 430 are the same as those in FIG. 27, and the drawing is omitted.
  • the release sheet 446 is applied, and is taken out by the high tension take-up device 444.
  • the high tension take-up device 444 shows an example of an S-shaped roll.
  • coating can be performed using the spray coating device 481 and the curtain coating device 482. Only one of the spray coating device 481 and the curtain coating device 482 may be used, or the order may be changed.
  • the upper release paper is peeled off, and the sheet-like integrated material of the prepreg / release sheet is wound up.
  • FIG. 29 a is a schematic view of an example of a manufacturing process of a prepreg using the present invention when a UD base material is used as a reinforcing fiber sheet.
  • the plurality of reinforcing fiber bobbins 412 are hung on a creel 411, and are pulled out upward through a direction changing guide 413.
  • the reinforcing fiber bundle 414 can be pulled out with a constant tension by the brake mechanism provided to the creel.
  • the plurality of pulled out reinforcing fiber bundles 414 are orderly arranged by the reinforcing fiber arrangement device 415, and the reinforcing fiber sheet 416 is formed.
  • FIG. 29 a is a schematic view of an example of a manufacturing process of a prepreg using the present invention when a UD base material is used as a reinforcing fiber sheet.
  • the plurality of reinforcing fiber bobbins 412 are hung on a creel 411, and are pulled out upward through a
  • the reinforcing fiber sheet 422 to which the modifying agent is applied is obtained through the widening device 417, the smoothing device 418, and the modifying agent applying device 421.
  • the reinforcing fiber sheet 422 to which the modifier has been applied is conveyed vertically downward via the direction change roll 419.
  • the modifier applying device can be appropriately selected and used from various applying methods without limitation as long as the object of the present invention is achieved.
  • spray coating including melt blowing
  • curtain coating and the like can be used.
  • FIG. 29a shows an example in which the reinforcing fiber sheet 416 is linearly conveyed between the reinforcing fiber arranging device 415 and the modifier applying device 421.
  • the widening device 417 and the smoothing device 418 may be known devices according to the purpose, may be appropriately skipped, or may not be provided.
  • the arrangement order of the reinforcing fiber arrangement device 415, the widening device 417, and the smoothing device 418 can be appropriately changed according to the purpose.
  • the reinforcing fiber sheet 422 to which the modifier has been applied travels vertically downward from the direction changing roll 419, and reaches the direction changing roll 441 via the reinforcing fiber preheating device 420 and the application section 430.
  • the reinforcing fiber preheating device 420 can be appropriately skipped depending on the purpose, or the device can be omitted.
  • the application section 430 can adopt any application section shape as long as the object of the present invention is achieved. For example, there are shapes as shown in FIGS. 2, 6 to 9. Further, a bush can be provided as shown in FIG. 5 as necessary. Further, as shown in FIG. 11, a bar can be provided in the application section.
  • the release sheet 446 unwound from the release sheet (upper) supply device 442 can be laminated on the prepreg 471 on the direction change roll 441 to form a sheet-like integrated body.
  • release sheet 446 unwound from the release sheet supply device 442 can be inserted into the lower surface of the sheet-like integrated body.
  • release paper, release film, or the like can be used as the release sheet. This can be taken off by the high tension take-up device 444.
  • a nip roll is drawn as the high tension take-up device 444.
  • the sheet-like integrated material passes through an additional impregnating device 450 provided with a hot plate 451 and a heating nip roll 452, is cooled by a cooling device 461, is taken off by a take-off device 462, and peels off the upper release sheet 446.
  • a sheet-like integrated body 472 composed of a prepreg / release sheet as a product can be obtained by winding with a winder 464. Since the sheet-like integrated object is conveyed in a basic straight line from the direction changing roll 441 to the winder 464, generation of wrinkles can be suppressed.
  • FIG. 29a illustrations of the matrix resin supply device and the online monitoring device are omitted.
  • FIG. 29b shows an example of a manufacturing process of a prepreg using the present invention when a UD base material is used as a reinforcing fiber sheet, as in the example shown in FIG. 29a.
  • a UD base material is used as a reinforcing fiber sheet
  • FIG. 29a shows an example of a manufacturing process of a prepreg using the present invention when a UD base material is used as a reinforcing fiber sheet, as in the example shown in FIG. 29a.
  • the modifier applying device 421 is installed after the reinforcing fiber preheating device 420.
  • the order of arrangement of the modifier applying device 421 and the reinforcing fiber preheating device 420 may be appropriately changed.
  • the widening device 417, the smoothing device 418, and the reinforcing fiber preheating device 420 It is preferable to arrange the modifier applying device 421 later.
  • FIGS. 29a and 29b show an example in which the modifying agent is applied to the reinforcing fiber sheet that is conveyed horizontally or vertically downward
  • the modifying agent may be applied on a roll that changes the direction.
  • FIG. 30 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention when a UD substrate is used as a reinforcing fiber sheet.
  • the reinforcing fiber bundle 414 is pulled out from the creel 411, the reinforcing fiber sheet 416 is formed as it is by the reinforcing fiber arranging device 415, and then is linearly conveyed to the widening device 417 and the smoothing device 418.
  • the difference from FIG. 29b is that the sheet 416 is guided upward. With such a configuration, it is not necessary to install the device above, and the installation of a scaffold or the like can be greatly simplified.
  • FIG. 31 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention when a UD substrate is used as a reinforcing fiber sheet.
  • the creel 411 is installed on the floor, and the traveling path of the reinforcing fiber sheet 416 is further linearized.
  • FIG. 32 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention when a UD base material is used as a reinforcing fiber sheet.
  • the simple additional impregnating device 453 is installed immediately below the coating section 430, the prepreg 471 is guided to the simple additional impregnating device 453 in a high temperature state, so that the impregnating device can be simplified and downsized.
  • the heating nip roll 454 is illustrated as an example, but a small heating S-shaped roll or a non-contact heating device may be used depending on the purpose.
  • the use of the simple additional impregnation apparatus is also advantageous in that the entire prepreg manufacturing apparatus can be made very compact.
  • FIGS. 30, 31, and 32 are schematic diagrams of another example of a prepreg manufacturing process / apparatus when a unidirectional array reinforcing fiber bundle is used as a reinforcing fiber sheet as in FIG. 29b.
  • the use of the reinforcing fiber fabric rolls for the unwinding device 412 and the nip rolls for the 413 makes it possible to apply the devices shown in the drawings even when the reinforcing fiber fabric is used.
  • FIG. 33 shows an example in which a high tension take-off S-shaped roll 449 is used as a high tension take-off device, and two S-2 rolls 455 of "S-wrap roll” type are used as the additional impregnating device (two in total).
  • the drawing is performed, the number of rolls can of course be increased or decreased according to the purpose.
  • a contact roll 456 for improving the impregnation effect is also drawn, but it is of course possible to omit it according to the purpose.
  • FIG. 34 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention.
  • an example is shown in which a heated S-shaped roll of the "S-wrap roll" type is also used as a high tension take-up device.
  • a heated S-shaped roll of the "S-wrap roll” type is also used as a high tension take-up device.
  • an apparatus in which the widening device 417, the smoothing device 418, and the additional impregnation device 450 are removed from the device having the configuration shown in FIG. 29A (the resin supply unit is omitted from the drawing) can be used.
  • the plurality of reinforcing fiber bobbins 412 can be hung on the creel 411 and can be pulled upward through the direction changing guide 413.
  • the plurality of pulled out reinforcing fiber bundles 414 can be arranged neatly by the reinforcing fiber arrangement device 415, and the reinforcing fiber sheet 416 can be formed.
  • a yarn crack preventing agent can be applied to the formed reinforcing fiber sheet 416, and a reinforcing fiber sheet 422 to which the yarn crack preventing agent has been applied can be obtained.
  • the reinforcing fiber sheet 422 to which the yarn breakage preventing agent has been applied can be run by changing the running direction from a horizontal direction to a vertically downward direction via a direction change roll 419, and passes through a coating section 430 via a reinforcing fiber preheating device 420. Can be done.
  • reinforcing fiber carbon fiber (manufactured by Toray, “Treca (registered trademark)” T800S (24K)) or the like can be used. Although the number of reinforcing fiber bobbins can be changed according to the basis weight of the prepreg to be produced, a prepreg having a general basis weight can be obtained with 56 yarns.
  • Method of applying yarn cracking inhibitor As a method of applying the yarn cracking inhibitor, an arbitrary applying device can be appropriately selected and used without any limitation as long as the object of the present invention is achieved. For example, spray coating, curtain coating, or the like can be used.
  • a yarn cracking inhibitor can be applied as shown in FIGS. 35a and 35b.
  • the spray nozzle 510 is installed on the reinforcing fiber sheet 416 so as to be in non-contact with the upper part, and the modifying agent 500, which is a droplet breaking inhibitor, is horizontally discharged from the installed spray nozzle 510.
  • the reinforcing fiber sheet 416 can be applied to one side of the running reinforcing fiber sheet 416, and the yarn breaking inhibitor can be applied to the reinforcing fiber sheet 416 as fine droplets by a spray nozzle 510 as shown in FIG. 35b.
  • any material can be used as long as the agent can be formed into droplets and sprayed.
  • the modifier 500 which is a yarn crack preventing agent, is applied to one side of the reinforcing fiber sheet 416.
  • the spray nozzle 510 may be arranged on both sides of the reinforcing fiber sheet 416 and applied to both sides.
  • the spray nozzle 510 may be provided with a mechanism for continuously supplying the modifier, and the basis weight of the modifier may be supplied to the spray nozzle 510. Can be adjusted by the amount.
  • the modifying agent to be supplied may be heated and melted.
  • a yarn crack preventing agent can be applied as shown in FIGS. 36a and 36b.
  • the application head 520 having a discharge unit is installed on the reinforcing fiber sheet 416 so as to be in non-contact with the upper part thereof, and the installed coating head 520 discharges the modifying agent 500 for preventing yarn breakage.
  • the yarn crack preventing agent can be applied to one side of the reinforcing fiber sheet 416 after being formed into a fibrous shape. As shown in FIG.
  • the yarn crack preventing agent discharged by the application head 520 is guided by an air flow, and is formed into a fibrous shape after fibrous shaping and before reaching the reinforcing fiber sheet. Can be crossed and entangled to give the reinforcing fiber sheet. More specifically, as a melt blow method, a method described in Japanese Patent Application No. 2018-511189 can be used.
  • the coating head may have a plurality of flow paths for distributing the yarn crack preventing agent supplied therein in the width direction, and may have a structure in which the yarn breaking preventing agent is guided to the discharge portion.
  • the discharge section of the coating head has a plurality of holes in the width direction, and by adjusting the area of the holes, the diameter of the fiber formed by the discharge can be adjusted.
  • the interval of application can also be adjusted.
  • the modifying agent 500 which is a yarn breaking inhibitor
  • the application head 520 can be arranged on both sides of the reinforcing fiber sheet 416 and applied to both sides.
  • the coating head is provided with a mechanism for continuously supplying the yarn crack preventing agent, and the basis weight of the yarn crack preventing agent is determined by the amount of the yarn breaking preventing agent supplied to the coating head. By adjusting the value, it is possible to impart a targeted yarn cracking inhibitor.
  • a gear pump can be used as the supply mechanism, and the supply amount can be adjusted by adjusting the gear pump to be used and the number of rotations thereof, and the basis weight of the applied yarn crack preventing agent can be adjusted.
  • the yarn crack preventing agent can be supplied by heating and melting.
  • a yarn cracking inhibitor can be applied as shown in FIGS. 37a, 37b, 38a and 38b.
  • the application head 530 is installed so as to be in non-contact with the reinforcing fiber sheet 416 at the upper portion, and the modifier 500, which discharges the anti-thread cracking agent in a plane from the installed application head 530, runs horizontally
  • the reinforcing fiber sheet 416 can be provided on one side.
  • the application head can be installed so that the angle formed between the direction in which the yarn breakage preventing agent is discharged and the direction in which the reinforcing fiber sheet 416 is conveyed is 80 ° or less, as disclosed in Japanese Patent Application No. 2018-511188.
  • the coating head may be any as long as it can discharge the supplied yarn breakage preventing agent in a planar shape, and can discharge a resin having a uniform thickness in the width direction and can form a planar or curtain-shaped film. . More specifically, a structure in which the resin can be discharged from a slit having a uniform thickness and no intermittent slits can be used. Also, in FIG. 37a, the modifying agent 500, which is a yarn crack preventing agent, is applied to one side of the reinforcing fiber sheet 416. However, the application head 530 may be arranged on both sides of the reinforcing fiber sheet 416 and applied to both sides. it can. By installing the coating head 530 on the direction change roll 419 as shown in FIG.
  • the angle between the discharge direction of the coating head and the conveying direction of the reinforcing fiber sheet can be made 80 ° or less.
  • the direction changing roll 419 may be formed to have a large diameter to improve the workability at the start of applying the modifying agent and the stability of application.
  • the coating head 530 is provided with a mechanism for continuously supplying the modifier, and the basis weight of the modifier is supplied to the coating head. By adjusting the amount of the modifying agent to be added, the desired modifying agent of the basis weight can be provided.
  • a gear pump can also be used as the supply mechanism, and the weight per unit area can be adjusted by adjusting the supply amount based on the gear pump to be used and its rotation speed.
  • the modifier may be supplied by heating and melting.
  • the basis weight of the yarn crack preventing agent to be applied can be 20 g / m 2 or less.
  • the application interval of the applied yarn crack preventing agent in the longitudinal direction can be up to 30 mm or less.
  • thermosetting resin a curing agent for the thermosetting resin, a thermoplastic resin, polymer particles, and a combination thereof
  • a yarn crack preventing agent a molten resin heated and melted can be used as a liquid at room temperature.
  • a solution or a varnished one using a solvent can also be used.
  • Epoxy resin can also be used as the thermosetting resin.
  • the resin is a resin having fluidity at room temperature
  • a heating device for melting with a modifier applying device can be simplified and simplified, and the resin impregnation into a reinforcing fiber sheet easily proceeds.
  • liquid bisphenol F type epoxy resins include “jER (registered trademark)” 806, “jER (registered trademark)” 807, “jER (registered trademark)” 1750, and “epichrome”. (Registered trademark) “830 (manufactured by DIC Corporation),” Epototo (registered trademark) "YDF-170 (manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd.), etc., and commercially available liquid triglycidylaminophenol Examples of the product include “Araldite (registered trademark)” MY0500 and “Araldite (registered trademark)” MY0510 (both manufactured by Huntsman Advanced Materials Co., Ltd.) and “jER (registered trademark)” 630 (Mitsubishi Chemical) having p-aminophenol as a precursor. And “Araldite (registered trademark)” MY0600 having m-aminophenol as a precursor, and "Araldite (registere
  • a toughness improver can also be mixed with these, and specifically, polyamide, polyimide, polyethersulfone, polyetherethersulfone, polyetherimide, polyphenylene oxide, polysulfone and the like can be used.
  • polyether sulfone “Sumika Excel (registered trademark)” PES5003P (manufactured by Sumitomo Chemical Co., Ltd.), “Virantage (registered trademark)” VW10700 (manufactured by Solvay Advanced Polymers), and “Sumika Excel (registered trademark)” ) "PES7600P” (manufactured by Sumitomo Chemical Co., Ltd.); “Ultem (registered trademark)” 1010 (manufactured by Sabic Strategic Plastics Co., Ltd.) as a commercially available product of polyetherimide; and "Virantage (registered trademark)” as a commercially available product of polysulfone.
  • VW30500 manufactured by Solvay Advanced Polymers Co., Ltd.
  • the polymer particles described above can be mixed.
  • the yarn cracking inhibitor is kneaded with a flame retardant such as a metal hydroxide, a metal oxide, a phosphorus atom-containing compound such as red phosphorus, a phosphate ester, a phosphate, a nitrogen-containing compound, and antimony trioxide. It can also be used.
  • a flame retardant such as a metal hydroxide, a metal oxide, a phosphorus atom-containing compound such as red phosphorus, a phosphate ester, a phosphate, a nitrogen-containing compound, and antimony trioxide. It can also be used.
  • a prepreg coated with a matrix resin on both sides is obtained by passing a reinforcing fiber sheet 422 to which a modifier has been applied through an application section 430.
  • an application unit of the application unit 20c type shown in FIG. 7 can be used.
  • the application part is made of stainless steel, and furthermore, a plate heater is attached to the outer periphery of the application part to heat the matrix resin, and the temperature and viscosity of the matrix resin can be adjusted while measuring the temperature with a thermocouple. .
  • the traveling direction of the reinforcing fiber sheet in the liquid reservoir is vertically downward, and the liquid reservoir has a two-stage taper shape.
  • the first-stage taper has an opening angle of 15 to 20 ° and the taper length (ie, H) is The opening angle of the second-stage taper can be set to 5 to 10 °.
  • a plate-shaped bush adapted to the inner shape of the application section as shown in FIG.
  • the installation position of the plate-shaped bush can be freely changed so that L2 can be appropriately adjusted.
  • a prepreg having a general basis weight can be obtained by setting L2 to 300 mm and the gap D of the constricted portion to about 0.2 mm.
  • the stenotic portion outlet surface can be used with the outside of the bush closed.
  • a matrix resin which is a thermosetting epoxy resin composition can be used as the matrix resin applied in the application section 430.
  • This is a mixture of an epoxy resin (a mixture of an aromatic amine type epoxy resin and a bisphenol type epoxy resin), a curing agent (diaminodiphenyl sulfone), and a polyether sulfone, and does not contain polymer particles.
  • the viscosity of this matrix resin can be measured using ARES-G2 manufactured by TA Instruments, measuring frequency 0.5 Hz, heating rate 1.5 ° C./min, 3675 Pa ⁇ s at 40 ° C., 50 Pa ⁇ s at 75 ° C., 90 15 Pa ⁇ s at 105 ° C.
  • a prepreg can be produced by setting the matrix resin temperature of the application section to 75 to 105 ° C. and the running speed of the reinforcing fiber sheet and prepreg to 5 to 25 m / min.
  • a yarn breaking inhibitor was used as a modifier, and as a method of applying the yarn breaking inhibitor, a melt blow method was used as shown in FIG. 36A with reference to the description of Japanese Patent Application No. 2018-511189, and the reinforcing fiber sheet 416 was used.
  • a modifier 500 which is a yarn cracking inhibitor, can be provided.
  • An application head having a plurality of discharge holes in the width direction can be arranged in a non-contact state on the reinforcing fiber sheet 416 that is conveyed in the horizontal direction.
  • the number of rotations of the gear pump for supplying the yarn crack preventing agent to the coating head is adjusted, the weight per unit area of the yarn crack preventing agent is set to 10 g / m 2, and the application interval of the yarn crack preventing agent in the longitudinal direction is set to a maximum of 30 mm.
  • the reinforcing fiber sheet When the running speed of the reinforcing fiber sheet, the reinforcing fiber sheet to which the modifier has been added, and the prepreg is set to 20 m / min, the reinforcing fiber sheet can be continuously run for 30 minutes or more without thread clogging or thread breakage in the application section.
  • the yarn crack preventing agent When the yarn crack preventing agent is not applied to the reinforced fiber sheet, there is a yarn crack having a width of 2 mm or more and the quality is poor. Can be obtained.
  • the obtained prepreg For yarn cracking of the prepreg, the obtained prepreg is unwound by 10 m, and the maximum width of the yarn cracking portion where there is no reinforcing fiber is measured with a vernier caliper.
  • the impregnation rate of the obtained prepreg by the peeling method can be set to 50% or more.
  • the impregnation rate by the peeling method is as follows: The collected prepreg is sandwiched between adhesive tapes, peeled off, and the reinforcing fiber with matrix resin and the reinforcing fiber without matrix resin are separated. The ratio is calculated from the ratio of the mass of the reinforcing fiber to which the matrix resin adheres to the ratio
  • the basis weight of the prepreg in the width direction of 100 mm square can be kept within the range of ⁇ 3% by mass for both carbon fibers and resin, and excellent uniformity in basis weight in the width direction can be obtained.
  • CFRP can be obtained by laminating six layers of this prepreg and curing it at 180 ° C. and 6 kgf / cm 2 (0.588 MPa) for 2 hours using an autoclave.
  • the tensile strength is about 2.9 GPa
  • a prepreg obtained by applying a conventional hot melt method using a carbon fiber and a matrix resin A using a prepreg obtained without imparting a yarn cracking inhibitor and laminating and curing the same.
  • the tensile strength of the CFRP obtained in the above is about the same as about 2.9 GPa.
  • the CFRP tensile strength is measured in the same manner as in WO2011 / 118106 pamphlet, and a value obtained by standardizing the volume% of the reinforcing fibers in the prepreg to 56.5% is used.
  • the yarn crack preventing agent applied to the reinforcing fiber sheet is prevented from adhering to and contaminating the transport roll 419. Can be.
  • FIG. 28 An application unit shown in FIG. 28 was used as a prepreg manufacturing apparatus using an application unit of the application unit 20c type shown in FIG. In FIG. 28, illustrations of devices such as creels are omitted, and the illustration after the reinforcing fiber preheating device is illustrated.
  • a stainless steel block was used for the wall member forming the liquid pool part and the constricted part, and a stainless steel plate was used for the side plate member.
  • a plate heater was attached to the outer periphery of the wall member and the side plate member, and the temperature and viscosity of the matrix resin were adjusted while measuring the temperature with a thermocouple.
  • the running direction of the reinforcing fiber sheet is vertically downward, and the liquid pool portion has a two-step taper shape.
  • the upper taper has an opening angle of 17 °
  • the taper height (ie, H) is 100 mm
  • the lower taper has an opening angle of 7 °. there were.
  • a plate-shaped bush adapted to the inner shape of the application section as shown in FIG. 5 is provided as a width regulating mechanism, and the installation position of the plate-shaped bush is changed freely so that L2 can be appropriately adjusted.
  • the width Y of the constricted portion was set to 300 mm when L2 was set to 300 mm.
  • the gap D at the stenosis was 0.18 mm.
  • the aspect ratio of the exit slit is 1500.
  • the lower surface of the narrowed portion outlet was used so that the outside of the bush was closed so that the matrix resin did not leak from the narrowed portion outlet.
  • the prepreg was prepared by using a carbon fiber ("Torayca” (registered trademark) "T800S (24K) manufactured by Toray) as a reinforcing fiber, using a thermosetting epoxy resin composition described later as a matrix resin, and using the above apparatus to form an FRP sheet.
  • a prepreg was prepared. The number of the reinforcing fiber bobbins was changed according to the prepreg to be produced, but was set to 56 unless otherwise specified.
  • the reinforcing fiber bundle was pulled out from the plurality of reinforcing fiber bobbins hung on the creel, the reinforcing fiber sheet was formed by the reinforcing fiber arrangement device, and once guided upward by the direction changing roll. Thereafter, the reinforcing fiber sheet was conveyed vertically downward via a direction change roll, heated to a temperature equal to or higher than the application unit temperature by a reinforcing fiber preheating device, guided to the application unit, and coated with a matrix resin. Thereafter, the primary prepreg was pulled out from the application section, a release sheet was provided, and then the sheet was taken out by a high tension take-off device, and the upper release sheet was peeled off.
  • Matrix resin thermosetting epoxy resin composition
  • It is a mixture of an epoxy resin (a mixture of an aromatic amine type epoxy resin and a bisphenol type epoxy resin), a curing agent (diaminodiphenyl sulfone), and a polyether sulfone, and does not contain polymer particles.
  • the viscosity of the thermosetting epoxy resin was measured using ARES-G2 manufactured by TA Instruments at a measurement frequency of 0.5 Hz and a heating rate of 1.5 ° C./min. It was 15 Pa ⁇ s and 4 Pa ⁇ s at 105 ° C.
  • ⁇ Liquid for spray application> A bisphenol-type liquid epoxy resin was used. The viscosity of the liquid epoxy resin was measured using ARES-G2 manufactured by TA Instruments at a measurement frequency of 0.5 Hz and a temperature of 25 ° C. and found to be 10 Pa ⁇ s.
  • the coating head temperature was 25 ° C.
  • the single hole area of the die was 0.025 mm 2
  • the single hole discharge amount was 0.16 g / min
  • the number of die holes in the width direction was 220.
  • Air was supplied at an air flow of 0.15 MPa, and the coating height h from the carbon fiber sheet to the lower surface of the coating head (base surface) was 50 mm.
  • the coating portion was disassembled after continuous running for 60 minutes and 120 minutes, and the liquid contact surface of the wall member was visually observed to check for the presence of fuzz.
  • the fuzz-preventing property “Poor” is used for the case where fuzz is attached near the constriction after continuous running, and the case where fuzz is attached to the portion far from the constriction 23 (near the upper part of the liquid reservoir 22) after continuous running.
  • the fuzz-preventing property was evaluated as “Fair”, and the fuzz-preventing property “Good” was evaluated when no fuzz was attached to the liquid contact surface of the wall member 21 after continuous running.
  • the fiber was continuously run at a running speed of 20 m / min for 60 minutes, and the fiber bundle was broken (a portion where the sheet-like carbon fiber bundle was torn in a vertical streak) or the end of the fiber bundle was broken in the reinforcing fiber sheet immediately above the liquid pool.
  • the time during which there was no (the portion where the carbon fiber bundles overlapped) running uniformly was measured.
  • “Excellent” means that the ratio of the time during which the fiber bundle is running uniformly without cracks and end breaks of the fiber bundle is 90% or more of the total running time, and “Good” means that the ratio is 50% or more and less than 90%. "10% or more and less than 50% were designated as" Fair ", and those less than 10% were designated as" Poor ".
  • a prepreg was prepared using the thermosetting epoxy resin composition (matrix resin) in the application section and the liquid epoxy resin by spray application. However, in this example, additional impregnation after spray application was not performed.
  • the matrix resin temperature in the liquid reservoir was 90 ° C. (corresponding to 15 Pa ⁇ s).
  • the running speed of the reinforcing fiber sheet and the prepreg was set to 20 m / min.
  • Running of the primary prepreg in the coating section when the relationship L2-W between the width L2 of the lower end of the width regulating mechanism and the width W of the primary prepreg and the height H at which the cross-sectional area of the coating section continuously decreases are variously changed.
  • Table 1 shows the results of evaluating the stability. From this, it can be seen that the smaller L2-W and the larger H, the more stable the running of the primary prepreg.
  • the primary prepreg was sampled at the lower part of the simple additional impregnation apparatus without performing the simple additional impregnation, and the impregnation rate was examined by a peeling method, all were 50 to 60%, and the impregnation was progressing in the application part. It was confirmed.
  • the uniformity of the basis weight in the width direction of the primary prepreg collected as described above was evaluated as follows.
  • the mass of the carbon fiber was measured as a residue obtained by eluting the resin from the prepreg with a solvent. From this, the average value at each sampling position was calculated, and the average values at each sampling position were compared with each other. As a result, both carbon fibers and resins were within the range of ⁇ 2% by mass. Met. Further, the tackiness of the prepreg surface was excellent due to the effect of the liquid applied by spraying.
  • Example 5 After applying the matrix resin under the conditions of Example 1, spray application was performed, and the mixture was guided to an additional impregnation device to perform additional impregnation. When the water absorption of this prepreg was examined, it was 5%, which was a sufficient impregnation degree.
  • CFRP CFRP tensile strength of 3.0 GPa, and had mechanical properties suitable as structural materials for aerospace.
  • the CFRP tensile strength was measured in the same manner as in WO2011 / 118106, and the value obtained by standardizing the volume% of the reinforcing fibers in the prepreg to 56.5% was used.
  • the prepreg obtained by the production method of the present invention is a FRP typified by CFRP, and is a structural material or interior material for aerospace applications, automobiles, trains, ships, etc., a pressure vessel, an industrial material application, a sports material application, a medical device. It can be widely used for applications, housing applications, civil engineering and construction applications.

Abstract

Regarding a method for producing a prepreg that is obtained by applying a matrix resin to a fiber reinforced sheet, the present invention addresses the problem of providing a prepreg production method by which continuously travel can be performed without involving jamming of a generated fluff even when the travel speed is high, and by which a fiber reinforced sheet can be efficiently impregnated with a matrix resin. The production method for a prepreg comprises applying a matrix resin (2) to a fiber reinforced sheet (1a) by causing the fiber reinforced sheet (1a) to pass through the inside of a coating part (20) in which the matrix resin (2) is reserved, and further performing spray coating or curtain coating of discharging a liquid to a primary prepreg (1c) drawn out from the coating part (20), wherein: the coating part (20) is provided with a liquid reservoir section and a constriction section which are connected to each other; the liquid reservoir section has a portion the cross-sectional area of which continuously decreases along the travel direction of the fiber reinforced sheet (1a); and the constriction section has a slit-shaped cross section, and has a cross-sectional area smaller than that of the upper surface of the liquid reservoir section.

Description

プリプレグの製造方法、プリプレグテープの製造方法および繊維強化複合材料の製造方法Method for producing prepreg, method for producing prepreg tape, and method for producing fiber-reinforced composite material
 本発明は、プリプレグの製造方法に関し、特に、強化繊維シートにマトリックス樹脂を均一に含浸する方法に関する。 The present invention relates to a method for producing a prepreg, and more particularly to a method for uniformly impregnating a reinforcing fiber sheet with a matrix resin.
 熱可塑性樹脂や熱硬化性樹脂を含むマトリックス樹脂を強化繊維で補強した繊維強化複合材料(FRP)は、航空・宇宙用材料、自動車材料、産業用材料、圧力容器、建築材料、筐体、医療用途、スポーツ用途など様々な分野で用いられている。特に高い力学特性と軽量性が必要な場合には、炭素繊維強化複合材料(CFRP)が幅広く好適に用いられている。一方、力学特性や軽量性よりもコストが優先される場合にはガラス繊維強化複合材料(GFRP)が用いられる場合がある。FRPは強化繊維束にマトリックス樹脂を含浸し中間基材を得、これを積層、成形し、さらに熱硬化樹脂を用いた場合には熱硬化させて、FRPからなる部材を製造している。前記用途では平面状物やそれを折り曲げた形態のものが多く、FRPの中間基材としても1次元のストランドやロービング状物よりも、2次元のシート状物の方が部材を作製する際の積層効率や成形性の観点から幅広く使用されている。 Fiber reinforced composite material (FRP), which is a matrix resin containing thermoplastic resin and thermosetting resin reinforced with reinforcing fibers, is a material for aviation and space, automotive material, industrial material, pressure vessel, building material, housing, medical equipment. It is used in various fields such as applications and sports. Particularly when high mechanical properties and lightness are required, carbon fiber reinforced composite materials (CFRP) are widely and suitably used. On the other hand, when cost is prioritized over mechanical properties and light weight, a glass fiber reinforced composite material (GFRP) may be used. In the FRP, a reinforcing fiber bundle is impregnated with a matrix resin to obtain an intermediate base material, which is laminated and molded, and when a thermosetting resin is used, is thermoset to produce a member made of FRP. In the above-mentioned applications, there are many planar objects and those obtained by bending the same, and the two-dimensional sheet-like material is more often used as an intermediate substrate of FRP than a one-dimensional strand or roving-like material when producing a member. It is widely used from the viewpoint of lamination efficiency and moldability.
 また、最近、FRPからなる部材の生産効率を向上させるため、シート状中間基材の積層の機械化・自動化が推進されており、ここでは細幅テープ状中間基材が好適に使用されている。細幅テープ状中間基材は広幅シート状中間基材を所望の幅でスライスしたり、細幅の強化繊維シートに直接マトリックス樹脂を含浸させたりして得ることができる。 最近 In recent years, in order to improve the production efficiency of members made of FRP, mechanization and automation of lamination of sheet-like intermediate substrates have been promoted, and narrow-width tape-like intermediate substrates are preferably used here. The narrow tape-shaped intermediate substrate can be obtained by slicing a wide sheet-shaped intermediate substrate at a desired width, or by impregnating a narrow reinforcing fiber sheet directly with a matrix resin.
 2次元のシート状中間基材としては、プリプレグが一般的に用いられている。プリプレグは強化繊維にマトリックス樹脂を付与・含浸して作製する。強化繊維シートとしては、複数本の強化繊維を一方向に面上で配列させた一方向材(UD基材)や、強化繊維を多軸で配列させる、またはランダム配置してシート化した強化繊維ファブリックがある。 プ リ Prepreg is generally used as a two-dimensional sheet-like intermediate substrate. The prepreg is prepared by applying and impregnating a matrix resin to a reinforcing fiber. Examples of the reinforcing fiber sheet include a unidirectional material (UD base material) in which a plurality of reinforcing fibers are arranged on a surface in one direction, a reinforcing fiber in which reinforcing fibers are arranged in a multiaxial manner, or a sheet formed by random arrangement. There is a fabric.
 プリプレグの製造方法の一つであるホットメルト法は、マトリックス樹脂を溶融した後、離型紙上にコーティングし、これを強化繊維シートの上面、下面でサンドイッチした積層構造を作製後、熱と圧力でマトリックス樹脂を強化繊維シート内部に含浸するものである。本方法は工程数が多く、また生産速度も上げられず、高コストとなる問題があった。 Hot-melt method, one of the prepreg manufacturing methods, is to melt the matrix resin, coat it on release paper, create a laminated structure sandwiched between the upper and lower surfaces of the reinforcing fiber sheet, and apply heat and pressure. The matrix resin is impregnated inside the reinforcing fiber sheet. This method has a problem that the number of steps is large, the production speed cannot be increased, and the cost is high.
 含浸の効率化としては、例えば特許文献1のような提案があった。これはガラス繊維を溶融紡糸し、それを集束してストランドやロービング状としたものを熱可塑性樹脂を満たした円錐状の流路を有する液溜り部に通過させる方法であった。 提案 There has been a proposal for improving the efficiency of impregnation, for example, as in Patent Document 1. In this method, a glass fiber is melt-spun and then bundled into a strand or roving to pass through a liquid reservoir having a conical flow path filled with a thermoplastic resin.
 他方、シート状物の両面に同時に塗膜形成する方法が特許文献2に記載されているが、これは塗膜形成時のシート状物の揺らぎを防止するため、ウエブガイドにシート状物を通し、その後、パイプ型ドクターで塗工するものである。 On the other hand, a method for simultaneously forming a coating film on both sides of a sheet material is described in Patent Document 2. However, in order to prevent the fluctuation of the sheet material at the time of forming the coating film, the sheet material is passed through a web guide. After that, coating is performed with a pipe type doctor.
 熱可塑性樹脂を用いた帯状プリプレグの製造方法として、帯状強化繊維束を水平方向(横方向)に搬送し、ダイに通過させ、帯状強化繊維束に熱可塑性樹脂を付与・含浸する横型引き抜き方式(特許文献3)が知られている。特許文献3には、複数の帯状強化繊維束を別々に溶融熱可塑樹脂が満たされたダイ内へ導入し、固定ガイド(例えばスクイーズバー)により、開繊、含浸、積層し、最終的に1枚のシート状プリプレグとしてダイから引き抜くことが記載されている。 As a method for producing a strip-shaped prepreg using a thermoplastic resin, a strip-type reinforcing fiber bundle is conveyed in a horizontal direction (horizontal direction), passed through a die, and a thermoplastic resin is applied to and impregnated into the strip-shaped reinforcing fiber bundle. Patent document 3) is known. In Patent Document 3, a plurality of band-shaped reinforcing fiber bundles are separately introduced into a die filled with a molten thermoplastic resin, and are opened, impregnated, and laminated by a fixed guide (for example, a squeeze bar). It is described that the sheet-shaped prepreg is pulled out from a die.
 特許文献4には、マニホールドに熱可塑性樹脂を満たし、強化繊維束を縦に引き抜くプルトルージョン方法において出口に超音波振動を与える装置が記載されている。 Patent Document 4 describes an apparatus that fills a manifold with a thermoplastic resin and applies ultrasonic vibration to an outlet in a pultrusion method of vertically pulling out a reinforcing fiber bundle.
 また、特許文献5にはいわゆるメルトブロー法を用いて、炭素繊維シートに熱可塑性樹脂を吹きつけることが記載されている。さらに、特許文献5の比較例1には炭素繊維シートにフィルムスリットダイを用い、熱可塑性樹脂であるPPS(ポリフェニレンスルフィド)を積層することが記載されている。 特許 Further, Patent Document 5 describes that a thermoplastic resin is sprayed on a carbon fiber sheet using a so-called melt blow method. Furthermore, Comparative Example 1 of Patent Document 5 describes laminating PPS (polyphenylene sulfide), which is a thermoplastic resin, using a film slit die on a carbon fiber sheet.
国際公開WO2001/028951号パンフレットInternational Publication WO2001 / 028951 pamphlet 特開平10-337516号公報JP-A-10-337516 国際公開WO2012/002417号パンフレットInternational Publication WO2012 / 002417 pamphlet 特開平1-178412号公報JP-A-1-178412 国際公開WO2003/091015号パンフレットInternational Publication WO2003 / 091015 pamphlet
 しかしながら、特許文献1の方法ではストランドやロービング状物しか製造できず、本発明の対象とするシート状プリプレグの製造には適用できない。また、特許文献1では含浸効率を向上させるため、ストランドやロービング状強化繊維束側面に熱可塑性樹脂の流体を当て円錐状流路内で乱流を積極的に発生させている。これは強化繊維束の配列を一部乱してマトリックス樹脂を流入させることを意図していると考えられるが、この思想を強化繊維シートに適用すると、強化繊維シートが変形し、プリプレグの品位が低下するばかりか、FRPの力学特性が低下してしまうと考えられる。 However, the method of Patent Document 1 can only produce strands or rovings, and cannot be applied to the production of sheet-like prepregs that are the subject of the present invention. Further, in Patent Literature 1, in order to improve the impregnation efficiency, a fluid of a thermoplastic resin is applied to the strand or the side surface of the roving-like reinforcing fiber bundle to generate turbulent flow positively in the conical flow path. This is thought to be intended to partially disturb the arrangement of the reinforcing fiber bundle and allow the matrix resin to flow in.However, when this concept is applied to the reinforcing fiber sheet, the reinforcing fiber sheet is deformed, and the quality of the prepreg is reduced. It is thought that not only does the FRP decrease, but also the mechanical properties of the FRP decrease.
 また、特許文献2の技術を適用した場合には、ウエブガイドでの擦過により毛羽が発生し、強化繊維シートが走行困難になると考えられる。また、特許文献2の技術は樹脂の塗工であり、含浸は意図されていない。 In addition, when the technique of Patent Document 2 is applied, it is considered that fluff is generated by rubbing with the web guide, and the running of the reinforcing fiber sheet becomes difficult. Further, the technique of Patent Document 2 is coating of a resin, and impregnation is not intended.
 また、特許文献3の方法では連続生産時に液溜り部に毛羽が滞留し易く、引き抜き部で毛羽が詰まり易い。特に、帯状強化繊維束を高速で連続走行させると、毛羽が詰まる頻度が非常に高まるため、非常に遅い速度でしか生産ができず、生産性が上がらない問題点があった。また、横型引き抜き方式の場合、ダイ部は液漏れ防止のため密閉する必要があり、連続生産中に毛羽を回収することも十分ではない。さらに、横型引き抜き方式においては、強化繊維シートの内部にマトリックス樹脂が含浸する際、帯状強化繊維束の内部に残留していた気泡は、浮力により強化繊維束の配向方向と直交する方向(帯状強化繊維束の厚み方向)に排出されるため、含浸してくるマトリックス樹脂を押しのけるようにして気泡の排出が進む。そのため、気泡の移動が液によって阻害される上に、マトリックス樹脂の含浸も気泡によって阻害されるため、含浸効率が悪いという問題点があった。更に、気泡をベントから排気することも提案されているが、ダイ出口付近のみであり、その効果は限定的と考えられる。 で は In addition, in the method of Patent Document 3, fluff is likely to stay in the liquid pool during continuous production, and fluff is likely to be clogged in the withdrawn part. In particular, when the band-shaped reinforcing fiber bundle is continuously run at a high speed, the frequency of clogging of the fluff is extremely increased, so that production can be performed only at a very low speed, and there is a problem that productivity is not improved. Further, in the case of the horizontal drawing method, it is necessary to seal the die portion to prevent liquid leakage, and it is not sufficient to collect fluff during continuous production. Furthermore, in the horizontal drawing method, when the matrix resin is impregnated inside the reinforcing fiber sheet, the air bubbles remaining inside the band-shaped reinforcing fiber bundle are buoyant to a direction orthogonal to the orientation direction of the reinforcing fiber bundle (band-shaped reinforcing fiber). Since the gas is discharged in the direction of the thickness of the fiber bundle (the thickness direction of the fiber bundle), the discharge of the bubbles proceeds as if the impregnated matrix resin is pushed away. Therefore, there is a problem that impregnation efficiency is poor because the movement of bubbles is inhibited by the liquid and the impregnation of the matrix resin is also inhibited by the bubbles. Further, it has been proposed to exhaust air bubbles from the vent, but only in the vicinity of the die outlet, and the effect is considered to be limited.
 また、特許文献4記載の方法では、マニホールド上部に樹脂で満たされていないノズル部が設けられており、ノズルはストランドやロービング状物で最適化することができるが、強化繊維シートのような平面形状には対応が難しく、強化繊維シートがここを通過する際、毛羽が発生し、それがマニホールドに持ち込まれるとダイで詰まり易いと考えられる。 Further, in the method described in Patent Document 4, a nozzle portion not filled with resin is provided on the upper portion of the manifold, and the nozzle can be optimized with a strand or a roving-like material. It is difficult to cope with the shape, and when the reinforcing fiber sheet passes therethrough, fluff is generated, and when it is brought into the manifold, it is considered that it is likely to be clogged with a die.
 特許文献5で開示されている方法では、炭素繊維シートの片面にしかマトリックス樹脂塗布ができないため、効率が低いものであった。 In the method disclosed in Patent Document 5, the efficiency is low because the matrix resin can be applied only to one side of the carbon fiber sheet.
 このように、強化繊維シートへの効率的なマトリックス樹脂付与方法、特にUD基材を用いたプリプレグの効率的な製造方法は未だ確立されていなかった。 Thus, an efficient method of applying a matrix resin to a reinforcing fiber sheet, particularly an efficient method of producing a prepreg using a UD substrate, has not yet been established.
 本発明の課題は、プリプレグの製造方法に関して、毛羽発生を抑制し、かつ毛羽が詰まることなく連続生産が可能であり、さらに強化繊維シートにマトリックス樹脂を両面同時に塗布するとともに、効率よく含浸させ、生産速度の高速化が可能で、さらには、得られたプリプレグの折れなどが抑制され目付量が均一で外観および加工性に優れる、プリプレグの製造方法を提供することにある。 An object of the present invention is to provide a method for producing a prepreg, which suppresses fluff generation, enables continuous production without clogging, and simultaneously applies a matrix resin to a reinforcing fiber sheet on both sides simultaneously, and impregnates efficiently. It is another object of the present invention to provide a method for producing a prepreg, which can increase the production speed, further suppresses breakage of the obtained prepreg, has a uniform basis weight, and is excellent in appearance and workability.
 前記の課題を解決する本発明のプリプレグの製造方法は、マトリックス樹脂が貯留された塗布部の内部に、強化繊維シートを通過させてマトリックス樹脂を強化繊維シートに付与し、その後、前記塗布部から引き出された1次プリプレグにさらに液体を吐出するスプレー塗布を行うプリプレグの製造方法であって、前記塗布部は互いに連通された液溜り部と狭窄部を備え、前記液溜り部は強化繊維シートの走行方向に沿って断面積が連続的に減少する部分を有し、前記狭窄部はスリット状の断面を有し、かつ液溜り部上面よりも小さい断面積を有する、プリプレグの製造方法である。 The method for producing a prepreg of the present invention that solves the above-mentioned problems, the inside of the application portion in which the matrix resin is stored, passing the reinforcing fiber sheet to impart the matrix resin to the reinforcing fiber sheet, and then, from the application portion What is claimed is: 1. A method for producing a prepreg in which spraying is performed by discharging a liquid further to a drawn-out primary prepreg, wherein the application section includes a liquid reservoir section and a constriction section which are communicated with each other, and the liquid reservoir section is formed of a reinforcing fiber sheet. A method for manufacturing a prepreg, comprising a portion having a cross-sectional area that continuously decreases along a running direction, wherein the constricted portion has a slit-shaped cross-section, and has a cross-sectional area smaller than an upper surface of a liquid reservoir.
 また、マトリックス樹脂が貯留された塗布部の内部に、強化繊維シートを通過させてマトリックス樹脂を強化繊維シートに付与し、その後、前記塗布部から引き出された1次プリプレグにさらに液体を吐出するカーテン塗布を行うプリプレグの製造方法であって、前記塗布部は互いに連通された液溜り部と狭窄部を備え、前記液溜り部は強化繊維シートの走行方向に沿って断面積が連続的に減少する部分を有し、前記狭窄部はスリット状の断面を有し、かつ液溜り部上面よりも小さい断面積を有する、プリプレグの製造方法である。 In addition, a curtain that applies the matrix resin to the reinforcing fiber sheet by passing the reinforcing fiber sheet into the application section in which the matrix resin is stored, and then discharges the liquid further to the primary prepreg drawn out from the application section A method for producing a prepreg for performing application, wherein the application unit includes a liquid reservoir and a constriction that are communicated with each other, and the liquid reservoir continuously decreases in cross-sectional area along a running direction of a reinforcing fiber sheet. A method for manufacturing a prepreg, comprising a portion, wherein the constricted portion has a slit-shaped cross-section and a cross-sectional area smaller than the upper surface of the liquid reservoir portion.
 また、マトリックス樹脂が貯留された塗布部の内部に、強化繊維シートを通過させてマトリックス樹脂を強化繊維シートに付与するプリプレグの製造方法であって、前記塗布部は互いに連通された液溜り部と狭窄部を備え、前記液溜り部は強化繊維シートの走行方向に沿って断面積が連続的に減少する部分を有し、前記狭窄部はスリット状の断面を有し、かつ液溜り部上面よりも小さい断面積を有し、強化繊維シートを塗布部の内部に通過させる前に、強化繊維シートに糸割れ防止剤、靭性向上剤、難燃剤および毛羽集束剤からなる群から選ばれる少なくとも一つの改質剤を付与するプリプレグの製造方法である。 Also, a method for producing a prepreg in which a matrix resin is applied to a reinforcing fiber sheet by passing a reinforcing fiber sheet inside an application part in which a matrix resin is stored, wherein the application part is a liquid reservoir part which is communicated with each other. The liquid reservoir has a constricted portion, the liquid reservoir has a portion whose cross-sectional area is continuously reduced along the running direction of the reinforcing fiber sheet, the constricted portion has a slit-shaped cross section, and is higher than the liquid reservoir upper surface. Has a small cross-sectional area, and before the reinforcing fiber sheet is passed through the interior of the application section, the reinforcing fiber sheet has at least one selected from the group consisting of a yarn breaking inhibitor, a toughness improver, a flame retardant, and a fluff sizing agent. This is a method for producing a prepreg to which a modifier is applied.
 また、本発明のプリプレグテープの製造方法は、前記のプリプレグの製造方法により得られたプリプレグをスリットすることを特徴とする。 Further, a method of manufacturing a prepreg tape according to the present invention is characterized in that a prepreg obtained by the above-described method of manufacturing a prepreg is slit.
 さらに、本発明の繊維強化複合材料の製造方法は、前記のプリプレグの製造方法により得られたプリプレグまたは前記のプリプレグテープの製造方法により得られたプリプレグテープを成形することを特徴とする。 Furthermore, the method for producing a fiber-reinforced composite material of the present invention is characterized in that the prepreg obtained by the above-described method for producing a prepreg or the prepreg tape obtained by the method for producing a prepreg tape is molded.
 本発明のプリプレグの製造方法によれば、毛羽による詰まりを大幅に抑制、防止できる。さらに、強化繊維シートを連続かつ高速で走行させることが可能となりプリプレグの生産性が向上する。 According to the prepreg manufacturing method of the present invention, clogging due to fluff can be significantly suppressed and prevented. Further, the reinforced fiber sheet can be run continuously and at a high speed, and the productivity of the prepreg is improved.
 さらに、本発明の実施形態の一つでは、プリプレグの表面に別の物質が付与されたものとすることができるため、プリプレグ、またこれから得られるFRPの物性や機能性を向上することができる。また前記別の物質に代えてマトリックス樹脂と同じ樹脂を用いた場合には、工程安定性や品位を向上することができる。 In addition, in one of the embodiments of the present invention, since another substance can be applied to the surface of the prepreg, the physical properties and functionality of the prepreg and the FRP obtained therefrom can be improved. Further, when the same resin as the matrix resin is used in place of the another substance, the process stability and quality can be improved.
 また、他の実施形態では、マトリックス樹脂を塗布する前の強化繊維シートに改質剤を付与することができるため、FRPの物性や機能性を向上することができるとともに、工程安定性や品位を向上することができる。 In another embodiment, since a modifier can be added to the reinforcing fiber sheet before the application of the matrix resin, the physical properties and functionality of the FRP can be improved, and the process stability and quality can be improved. Can be improved.
本発明の第1の製造方法の一実施形態に係るプリプレグの製造方法および塗工装置を示す概略横断面図である。FIG. 1 is a schematic cross-sectional view showing a prepreg manufacturing method and a coating apparatus according to an embodiment of a first manufacturing method of the present invention. 本発明の第2の製造方法の一実施形態に係るプリプレグの製造方法および塗工装置を示す概略横断面図である。FIG. 4 is a schematic cross-sectional view illustrating a prepreg manufacturing method and a coating apparatus according to an embodiment of the second manufacturing method of the present invention. 図1a、図1bにおける塗布部20の部分を拡大した詳細横断面図である。FIG. 2 is an enlarged detailed cross-sectional view of a portion of a coating unit 20 in FIGS. 1A and 1B. 図2における塗布部20を、図2のAの方向から見た下面図である。FIG. 3 is a bottom view of the application unit 20 in FIG. 2 as viewed from a direction A in FIG. 2. 図2における塗布部20を、図2のBの方向から見た場合の塗布部内部の構造を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a structure inside the coating unit when the coating unit 20 in FIG. 2 is viewed from a direction B in FIG. 2. 図4aにおける隙間26でのマトリックス樹脂2の流れを表す断面図である。FIG. 4C is a cross-sectional view illustrating the flow of the matrix resin 2 in the gap 26 in FIG. 4A. 幅規制機構の設置例を示す図であるIt is a figure showing an example of installation of a width regulation mechanism. 図2とは別の実施形態の塗布部20bの詳細横断面図である。FIG. 4 is a detailed cross-sectional view of a coating unit 20b according to another embodiment different from FIG. 2. 図6とは別の実施形態の塗布部20cの詳細横断面図である。FIG. 7 is a detailed cross-sectional view of a coating unit 20c according to another embodiment different from FIG. 6. 図6とは別の実施形態の塗布部20dの詳細横断面図である。FIG. 7 is a detailed cross-sectional view of a coating unit 20d according to another embodiment different from FIG. 6. 図6とは別の実施形態の塗布部20eの詳細横断面図である。FIG. 7 is a detailed cross-sectional view of a coating unit 20e according to another embodiment different from FIG. 本発明とは異なる実施形態の塗布部30の詳細横断面図である。FIG. 4 is a detailed cross-sectional view of a coating unit 30 according to an embodiment different from the present invention. 本発明の実施形態の一例である液溜まり部内にバーを具備した態様を示す図である。It is a figure showing the mode provided with the bar in the liquid pool part which is an example of an embodiment of the present invention. 本発明で用いるスプレー塗布工程の例を示す概略図である。It is the schematic which shows the example of the spray application process used by this invention. 本発明で用いるスプレー塗布工程において、塗布高さhを低くした場合の吐出された液体やその固化物の紡糸挙動を説明する模式図である。It is a schematic diagram explaining the spinning behavior of the discharged liquid and its solidified material when the coating height h is reduced in the spray coating step used in the present invention. 本発明で用いるスプレー塗布工程において、塗布高さhを高くした場合の吐出された液体やその固化物の紡糸挙動を説明する模式図である。It is a schematic diagram explaining the spinning behavior of the discharged liquid and its solidified product when the coating height h is increased in the spray coating step used in the present invention. 本発明で用いるカーテン塗布工程において、塗布角を90°とした場合の側面図である。FIG. 5 is a side view when the coating angle is set to 90 ° in the curtain coating step used in the present invention. 本発明で用いるカーテン塗布工程において、塗布角をα°としてカーテン塗布装置を傾けた場合の側面図である。FIG. 3 is a side view of the curtain coating step used in the present invention when the coating angle is set to α ° and the curtain coating device is tilted. 本発明で用いるカーテン塗布工程において、膜の端部の様子(気流制御有りの場合)を説明するための前面図である。FIG. 4 is a front view for explaining a state of an end portion of the film (in a case where airflow control is performed) in a curtain coating step used in the present invention. 本発明で用いるカーテン塗布工程近傍を上から見た上面図である。FIG. 2 is a top view of the vicinity of a curtain coating step used in the present invention as viewed from above. 本発明で用いるカーテン塗布工程の膜の面部の様子(気流制御無しの場合)を説明するための側面図である。FIG. 3 is a side view for explaining a state of a surface portion of a film in a curtain coating step used in the present invention (in a case where airflow control is not performed). 本発明で用いるカーテン塗布工程の膜の面部の様子(気流制御有りの場合)を説明するための側面図である。FIG. 5 is a side view for explaining a state of a surface portion of a film in a curtain coating step used in the present invention (when airflow control is performed). 気流による制御手段が具備された本発明で用いるカーテン塗布装置の例を示す側面図である。It is a side view which shows the example of the curtain coating device used by this invention provided with the control means by airflow. 本発明で用いるカーテン塗布工程において、ロール上に塗布する場合の側面図である。It is a side view in the case of apply | coating on a roll in the curtain application process used by this invention. 本発明の一実施形態に係る簡易含浸装置を具備する態様の例を示す図である。It is a figure showing the example of the mode provided with the simple impregnation device concerning one embodiment of the present invention. 本発明の一実施形態に係る複数の塗布部を具備する態様の例を示す図である。It is a figure showing the example of the mode provided with a plurality of application parts concerning one embodiment of the present invention. 本発明の一実施形態に係る複数のプリプレグを積層する態様の例を示す図である。It is a figure showing the example of the mode of laminating a plurality of prepregs concerning one embodiment of the present invention. 本発明の一実施形態に係る複数の塗布部を具備する別の態様の例を示す図である。It is a figure showing an example of another mode provided with a plurality of application parts concerning one embodiment of the present invention. 本発明の第1の製造方法を用いたプリプレグ製造工程・装置の例を示す概略図である。It is a schematic diagram showing an example of a prepreg manufacturing process / apparatus using the first manufacturing method of the present invention. 本発明の第1の製造方法を用いた別のプリプレグ製造工程・装置の例の概略図である。It is the schematic of an example of another prepreg manufacturing process and apparatus using the 1st manufacturing method of this invention. 本発明の第2の製造方法を用いたプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of the prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 本発明の第2の製造方法を用いたプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of the prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 本発明の第2の製造方法を用いた別のプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of another prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 本発明の第2の製造方法を用いた別のプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of another prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 本発明の第2の製造方法を用いた別のプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of another prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 本発明の第2の製造方法を用いた別のプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of another prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 本発明の第2の製造方法を用いた別のプリプレグ製造工程・装置の例を示す概略図である。It is the schematic which shows the example of another prepreg manufacturing process and apparatus using the 2nd manufacturing method of this invention. 図29aにおける改質剤付与装置としてスプレー塗布を用いた例を示す概略図である。FIG. 29 is a schematic diagram showing an example in which spray coating is used as the modifier applying device in FIG. 29a. 図35aの改質剤付与の様子を図35aのMの方向から見た概略図である。FIG. 35B is a schematic view showing the state of the modifier being applied in FIG. 35a viewed from the direction of M in FIG. 35A. 図29aにおける改質剤付与装置としてメルトブローを用いた例を示す概略図である。FIG. 29 is a schematic view showing an example in which melt blowing is used as the modifier applying device in FIG. 29a. 図36aの改質剤付与の様子を図36aのMの方向から見た概略図である。FIG. 37B is a schematic view showing the state of the application of the modifying agent in FIG. 36a viewed from the direction of M in FIG. 36a. 図29aにおける改質剤付与装置としてカーテン塗布を用いた例を示す概略図である。FIG. 29 is a schematic view showing an example in which curtain coating is used as the modifier applying device in FIG. 29a. 図37aの改質剤付与の様子を図37aのMの方向から見た概略図である。FIG. 37B is a schematic view showing the state of applying the modifying agent in FIG. 37a viewed from the direction of M in FIG. 37A. 図37aとは別の実施形態の図29aにおける改質剤付与装置として面塗布装置を用いた例を示す概略図である。FIG. 37B is a schematic view showing an example in which a surface coating device is used as the modifier applying device in FIG. 29A of another embodiment different from FIG. 37A. 図38aの改質剤付与の様子を図38aのMの方向から見た概略図である。FIG. 38 is a schematic view of the state of applying the modifier in FIG. 38a viewed from the direction of M in FIG. 38a.
 本発明の望ましい実施形態について、図面に基づいて説明する。なお、以下の説明は発明の実施形態を例示するものであり、本発明はこれに限定して解釈されるものではなく、本発明の目的・効果を逸脱しない範囲で種々の変更が可能である。 望 ま し い Preferred embodiments of the present invention will be described with reference to the drawings. Note that the following description exemplifies embodiments of the present invention, and the present invention is not construed as being limited thereto, and various modifications can be made without departing from the objects and effects of the present invention. .
 <プリプレグの製造方法の概略>
 本発明では、強化繊維シートへのマトリックス樹脂の付与方法に特徴があるが、さらに、この工程の安定化、得られるプリプレグの機能性や品位向上のため、マトリックス樹脂の塗布・含浸の前後に、さらに樹脂や改質剤などを付与するものである。
<Outline of prepreg manufacturing method>
In the present invention, the method of applying the matrix resin to the reinforcing fiber sheet is characterized by, furthermore, to stabilize this process, to improve the functionality and quality of the resulting prepreg, before and after application and impregnation of the matrix resin, Further, a resin or a modifier is added.
 まず、図1aを参照して、マトリックス樹脂付与後に更に塗布を行う本発明の第1の製造方法の概略を述べる。図1aは本発明の第1の製造方法の一実施形態に係るプリプレグの製造方法および装置を示す概略断面図である。塗工装置100には、強化繊維シート1aを実質的に鉛直方向下向きZに走行させる走行機構である搬送ロール13、14と、搬送ロール13、14の間に設けられ、マトリックス樹脂2が溜められた塗布部20が具備されている。また、塗工装置100の前後には、強化繊維1を巻き出す複数のクリール11と、巻き出された強化繊維1を一方向に配列した強化繊維シート1a(図1aでは紙面奥行き方向に配列)を得る配列装置12とプリプレグ1cの巻取り装置15を備えることができ、また、図示していないが塗工装置100にはマトリックス樹脂の供給装置が具備されている。さらに、離型シート3aおよび3bを供給する供給装置16aおよび16bを備える。そして、1次プリプレグ1c形成後に、スプレー塗布装置41およびカーテン塗布装置42が配置されている。スプレー塗布装置41、カーテン塗布装置42はどちらか一方のみを使用してもよいし、両方を使用することもできる。また、両方を使用する場合には、スプレー塗布装置41とカーテン塗布装置42の順序は目的に応じて入れ替えが可能である。また、図1aにはスプレー塗布装置41、カーテン塗布装置42は1次プリプレグ1cの片面にしか描画していないが、これらは1次プリプレグ1cの両面に配置し、両面同時塗布することも可能である。 First, referring to FIG. 1A, an outline of a first manufacturing method of the present invention in which coating is further performed after application of a matrix resin will be described. FIG. 1a is a schematic sectional view showing a prepreg manufacturing method and apparatus according to an embodiment of the first manufacturing method of the present invention. The coating device 100 is provided between the transport rolls 13 and 14, which are traveling mechanisms for traveling the reinforcing fiber sheet 1a substantially vertically downward Z, and the matrix resin 2 is stored therein. Coating section 20 is provided. Further, before and after the coating apparatus 100, a plurality of creels 11 for unwinding the reinforcing fibers 1 and a reinforcing fiber sheet 1a in which the unwound reinforcing fibers 1 are arranged in one direction (in FIG. 1a, arranged in the depth direction of the paper). And a winding device 15 for the prepreg 1c. The coating device 100 is provided with a matrix resin supply device (not shown). Further, supply devices 16a and 16b for supplying release sheets 3a and 3b are provided. After the formation of the primary prepreg 1c, a spray coating device 41 and a curtain coating device 42 are arranged. Either one of the spray coating device 41 and the curtain coating device 42 may be used, or both may be used. When both are used, the order of the spray coating device 41 and the curtain coating device 42 can be changed according to the purpose. Further, in FIG. 1a, the spray coating device 41 and the curtain coating device 42 are drawn only on one side of the primary prepreg 1c. However, these can be arranged on both sides of the primary prepreg 1c and both sides can be simultaneously coated. is there.
 次に、図1bを参照して、マトリックス樹脂の付与の前に改質剤の付与を行う本発明の第2の製造方法の概略を述べる。図1bは本発明の第2の製造方法の一実施形態に係る強化繊維シートとしてUD基材を用いた時のプリプレグの製造方法を示す概略断面図である。塗工装置100には、強化繊維シート1aを実質的に鉛直方向下向きZに走行させる走行機構である搬送ロール13と搬送ロール14の間に設けられ、塗布機構であるマトリックス樹脂2が溜められた塗布部20が具備されている。また、塗工装置100の前後には、強化繊維1を巻き出す複数のクリール11と、巻き出された強化繊維1を一方向に配列しUD基材とした強化繊維シート1a(図1bでは紙面奥行き方向に配列)を得る配列装置12と、改質剤を付与した強化繊維シート1bを得る改質剤付与装置28とプリプレグ1dの巻取り装置15を備えることができ、また、図示していないが塗工装置100にはマトリックス樹脂の供給装置が具備されている。さらに、必要に応じ、離型シート3を供給する離型シート供給装置16を備えることもできる。 Next, referring to FIG. 1b, an outline of a second production method of the present invention in which a modifier is applied before applying a matrix resin will be described. FIG. 1b is a schematic cross-sectional view showing a prepreg manufacturing method when a UD base material is used as a reinforcing fiber sheet according to an embodiment of the second manufacturing method of the present invention. The coating apparatus 100 is provided between a transport roll 13 and a transport roll 14, which are a traveling mechanism for traveling the reinforcing fiber sheet 1a substantially vertically downward Z, and stores a matrix resin 2 as an application mechanism. An application unit 20 is provided. Further, before and after the coating apparatus 100, a plurality of creels 11 for unwinding the reinforcing fibers 1 and a reinforcing fiber sheet 1a in which the unwound reinforcing fibers 1 are arranged in one direction and used as a UD base material (in FIG. (An arrangement in the depth direction), a modifier applying device 28 for obtaining the reinforcing fiber sheet 1b to which the modifier has been applied, and a winding device 15 for the prepreg 1d, which are not shown. However, the coating apparatus 100 is provided with a supply device of a matrix resin. Further, if necessary, a release sheet supply device 16 for supplying the release sheet 3 can be provided.
 また、強化繊維シートとして強化繊維ファブリックを用いる場合、図1a、図1bのクリール11に代えて強化繊維ファブリックを巻き出す巻出し装置、配列装置12に代えて強化繊維ファブリックを引き出すニップロールを備えることで強化繊維ファブリックにマトリックス樹脂が含浸されたプリプレグを製造することができる。 When a reinforcing fiber fabric is used as the reinforcing fiber sheet, an unwinding device that unwinds the reinforcing fiber fabric in place of the creel 11 in FIGS. 1A and 1B and a nip roll that draws out the reinforcing fiber fabric in place of the arrangement device 12 are provided. A prepreg in which a matrix resin is impregnated in a reinforcing fiber fabric can be manufactured.
 なお、図1a、図1bでは、強化繊維シートを塗布部に通過させる方向として、鉛直下向きの例を示したが、この方向は、水平方向であっても良く、また、水平面から傾斜した方向であってもよい。水平方向に通過させる場合は、必ずしも厳密に水平である必要は無く、水平面±5°の範囲から選択できる。 In addition, in FIG. 1a and FIG. 1b, as an example of a direction in which the reinforcing fiber sheet passes through the application section, a vertically downward direction is shown, but this direction may be a horizontal direction, or a direction inclined from a horizontal plane. There may be. When passing in the horizontal direction, it is not always necessary to be strictly horizontal, and it can be selected from a range of a horizontal plane ± 5 °.
 <強化繊維シート>
 ここで、強化繊維としては、炭素繊維、ガラス繊維、金属繊維、金属酸化物繊維、金属窒化物繊維、有機繊維(アラミド繊維、ポリベンゾオキサゾール繊維、ポリビニルアルコール繊維、ポリエチレン繊維など)などを例示することができるが、炭素繊維を用いることが、FRPの力学特性、軽量性の観点から好ましい。
<Reinforced fiber sheet>
Here, examples of the reinforcing fibers include carbon fibers, glass fibers, metal fibers, metal oxide fibers, metal nitride fibers, and organic fibers (aramid fibers, polybenzoxazole fibers, polyvinyl alcohol fibers, polyethylene fibers, and the like). However, it is preferable to use carbon fibers from the viewpoint of the mechanical properties and light weight of the FRP.
 強化繊維シートとしては、複数本の強化繊維を一方向に面上で配列させた一方向材(UD基材)や、強化繊維を多軸で配列させる、またはランダム配置してシート化した強化繊維ファブリックが挙げられる。 Examples of the reinforcing fiber sheet include a unidirectional material (UD base material) in which a plurality of reinforcing fibers are arranged on a surface in one direction, a reinforcing fiber in which reinforcing fibers are arranged in a multiaxial manner, or a sheet formed by random arrangement. Fabric.
 UD基材を形成する方法は公知の方法を用いることができ、特に制限は無いが、単繊維をあらかじめ配列させた強化繊維束を形成し、この強化繊維束を更に配列させて強化繊維シートを形成させることが、工程効率化、配列均一化の観点から好ましい。例えば炭素繊維では、テープ状の強化繊維束である「トウ」がボビンに巻かれているが、ここから引き出されたテープ状の強化繊維束を配列させて強化繊維シートを得ることができる。また、クリールにかけられたボビンから引き出された強化繊維束を整然と並べ、強化繊維シート中で強化繊維束の望ましくない重なりや折りたたみ、強化繊維束間の隙間を無くするための強化繊維配列機構を有することが好ましい。強化繊維配列機構としては公知のローラーやくし型配列装置などを用いることができる。また、予め配列した強化繊維シートを複数枚重ねることも強化繊維間の隙間を減じる観点から有用である。なお、クリールには強化繊維を引き出す際に張力制御機構が付与されていることが好ましい。張力制御機構としては、公知のものを使用可能であるが、ブレーキ機構などが挙げられる。また、糸道ガイドの調整などによっても張力を制御することができる。 The method of forming the UD base material may be a known method, and is not particularly limited, but forms a reinforcing fiber bundle in which single fibers are arranged in advance, and further arranges the reinforcing fiber bundle to form a reinforcing fiber sheet. Forming is preferable from the viewpoint of process efficiency and uniform array. For example, in the case of carbon fibers, a tow, which is a tape-like reinforcing fiber bundle, is wound around a bobbin, and a reinforcing fiber sheet can be obtained by arranging the tape-like reinforcing fiber bundles drawn out from the bobbin. It also has a reinforcing fiber arrangement mechanism for orderly arranging reinforcing fiber bundles drawn from creeled bobbins, eliminating undesirable overlapping and folding of reinforcing fiber bundles in reinforcing fiber sheets, and gaps between reinforcing fiber bundles. Is preferred. As the reinforcing fiber arranging mechanism, a known roller or comb-type arranging device can be used. It is also useful to stack a plurality of pre-arranged reinforcing fiber sheets from the viewpoint of reducing the gap between the reinforcing fibers. The creel is preferably provided with a tension control mechanism when drawing out the reinforcing fibers. As the tension control mechanism, a known mechanism can be used, and a brake mechanism or the like can be used. The tension can also be controlled by adjusting the thread guide.
 一方、強化繊維ファブリックの具体例としては、織物や編物などの他、強化繊維を2次元で多軸配置したものや、不織布やマット、紙など強化繊維をランダム配向させたものを挙げることができる。この場合、強化繊維はバインダー付与、交絡、溶着、融着などの方法を利用してシート化することもできる。織物としては、平織、ツイル、サテンの基本織組織の他、ノンクリンプ織物やバイアス構造、絡み織、多軸織物、多重織物などを用いることができる。バイアス構造とUD基材を組み合わせた織物は、UD構造により塗布・含浸工程での引っ張りでの織物の変形を抑制するだけでなく、バイアス構造による擬似等方性も併せ持っており、好ましい形態である。また、多重織物では織物上面または下面、また織物内部の構造や特性をそれぞれ設計できる利点がある。編物では塗布・含浸工程での形状安定性を考慮すると経編が好ましいが、筒状編み物であるブレードを用いることもできる。 On the other hand, specific examples of the reinforcing fiber fabric include, in addition to woven fabric and knitted fabric, those in which reinforcing fibers are two-dimensionally arranged in a multiaxial manner, and those in which reinforcing fibers such as nonwoven fabric, mat, and paper are randomly oriented. . In this case, the reinforcing fibers can be formed into a sheet using a method such as binder application, entanglement, welding, or fusion. As the woven fabric, a non-crimp woven fabric, a bias structure, an entangled woven fabric, a multiaxial woven fabric, a multiple woven fabric, or the like can be used in addition to the plain woven fabric, twill fabric, and satin woven fabric. The woven fabric combining the bias structure and the UD substrate not only suppresses the deformation of the woven fabric due to the tension in the coating / impregnation process due to the UD structure, but also has the pseudo-isotropy due to the bias structure, which is a preferable form. . In addition, the multiple woven fabric has an advantage that the structure and characteristics of the upper and lower surfaces of the woven fabric and the inside of the woven fabric can be designed. In the case of a knitted fabric, warp knitting is preferred in consideration of the shape stability in the coating / impregnation step, but a blade which is a tubular knitted fabric may be used.
 これらの中で、FRPの力学特性を優先させる場合には、UD基材を用いることが好ましく、UD基材は、強化繊維を一方向にシート状に配列させる既知の方法により作製することができる。 Among these, when giving priority to the mechanical properties of FRP, it is preferable to use a UD substrate, and the UD substrate can be produced by a known method in which reinforcing fibers are arranged in a sheet shape in one direction. .
 <強化繊維シートの平滑化>
 本発明においては、強化繊維シートの表面平滑性を高くすることで、塗布部での塗布量の均一性を向上させることができる。このため、強化繊維シートを平滑化処理した後、液溜り部に導くことが好ましい。平滑化処理法は特に制限は無いが、対向ロールなどで物理的に押しつける方法や気流を用いて強化繊維を動かす方法などを例示できる。物理的に押しつける方法は簡便かつ、強化繊維の配列を乱しにくいため好ましい。より具体的にはカレンダー加工などを用いることができる。気流を用いる方法は擦過が起こりにくいだけでなく、強化繊維シートを拡幅する効果もあり好ましい。
<Smoothing of reinforcing fiber sheet>
In the present invention, by increasing the surface smoothness of the reinforcing fiber sheet, it is possible to improve the uniformity of the application amount in the application section. For this reason, it is preferable to guide the reinforcing fiber sheet to the liquid pool after performing the smoothing treatment. The smoothing method is not particularly limited, and examples thereof include a method of physically pressing with a facing roll or the like, and a method of moving a reinforcing fiber using an air current. The physical pressing method is preferred because it is simple and does not easily disturb the arrangement of the reinforcing fibers. More specifically, calendering or the like can be used. The method using an air flow is preferable because it not only causes less abrasion but also has an effect of widening the reinforcing fiber sheet.
 <強化繊維シートの拡幅>
 また、本発明において、強化繊維シートを拡幅処理した後、液溜り部に導くことも、薄いプリプレグを効率的に製造できる観点から好ましい。拡幅処理方法は特に制限は無いが、機械的に振動を付与する方法、気流により強化繊維束を拡げる方法などを例示できる。機械的に振動を付与する方法としては、例えば特開2015-22799号公報記載のように、振動するロールに強化繊維シートを接触させる方法がある。振動方向としては、強化繊維シートの進行方向をX軸とすると、Y軸方向(水平方向)、Z軸方向(垂直方向)の振動を与えることが好ましく、水平方向振動ロールと垂直方向振動ロールを組み合わせて用いることも好ましい。また振動ロール表面は複数の突起を設けておくと、ロールでの強化繊維の擦過を抑制でき、好ましい。気流を用いる方法としては、例えば、SEN-I GAKKAISHI,vol.64,P-262-267(2008).記載の方法を用いることができる。
<Widening of reinforced fiber sheet>
In the present invention, it is also preferable to guide the reinforcing fiber sheet to the liquid pool after widening the reinforcing fiber sheet from the viewpoint of efficiently producing a thin prepreg. There is no particular limitation on the widening method, and examples thereof include a method of mechanically applying vibration and a method of expanding the reinforcing fiber bundle by an air current. As a method of mechanically applying vibration, there is a method of bringing a reinforcing fiber sheet into contact with a vibrating roll as described in, for example, JP-A-2015-22799. As the vibration direction, when the traveling direction of the reinforcing fiber sheet is the X axis, it is preferable to apply vibrations in the Y axis direction (horizontal direction) and the Z axis direction (vertical direction). It is also preferable to use them in combination. It is preferable that a plurality of projections are provided on the surface of the vibrating roll, because the abrasion of the reinforcing fibers by the roll can be suppressed. As a method using an air flow, for example, see SEN-I GAKKAISHI, vol. 64, P-262-267 (2008). The described method can be used.
 <強化繊維シートの予熱>
 また、本発明において、強化繊維シートを加熱した後、液溜り部に導くと、マトリックス樹脂の温度低下を抑制し、マトリックス樹脂の粘度均一性を向上させられるため予熱を行うことが好ましい。強化繊維シートはマトリックス樹脂温度近傍まで加熱されることが好ましいが、このための加熱手段としては、空気加熱、赤外線加熱、遠赤外線加熱、レーザー加熱、接触加熱、熱媒加熱(スチームなど)など多様な手段を用いることができる。中でも赤外線加熱は装置が簡便であり、また強化繊維シートシートを直接加熱できるため、走行速度が速くても所望の温度まで効率よく加熱が可能であり、好ましい。
<Preheating of reinforced fiber sheet>
In the present invention, if the reinforcing fiber sheet is heated and then guided to the liquid reservoir, the preheating is preferably performed because the temperature decrease of the matrix resin can be suppressed and the viscosity uniformity of the matrix resin can be improved. The reinforcing fiber sheet is preferably heated to a temperature close to the matrix resin temperature. Examples of heating means for this include air heating, infrared heating, far infrared heating, laser heating, contact heating, and heating medium heating (such as steam). Means can be used. Above all, infrared heating is preferable because the apparatus is simple and the reinforcing fiber sheet can be directly heated, so that it can be efficiently heated to a desired temperature even at a high running speed.
 <マトリックス樹脂>
 本発明で用いるマトリックス樹脂は、後述する各種樹脂や粒子、硬化剤、更に各種添加剤を含む、樹脂組成物として用いることができる。本発明により得られるプリプレグは、強化繊維シートにマトリックス樹脂が含浸した状態となり、そのままシート状プリプレグとして積層、成形してFRPからなる部材を得ることができる。含浸度は、塗布部の設計や、塗布以降の追含浸により制御することができる。マトリックス樹脂としては、用途に応じ適宜選択可能であるが、熱可塑性樹脂や熱硬化性樹脂を用いることが一般的である。マトリックス樹脂は、加熱し溶融させた溶融樹脂でも室温でマトリックス樹脂のものでも良い。また、溶媒を用いて溶液やワニス化したものでも良い。
<Matrix resin>
The matrix resin used in the present invention can be used as a resin composition containing various resins and particles described below, a curing agent, and various additives. The prepreg obtained by the present invention is in a state in which the matrix resin is impregnated in the reinforcing fiber sheet, and can be laminated and molded as a sheet-shaped prepreg to obtain a member made of FRP. The degree of impregnation can be controlled by the design of the application section and the additional impregnation after application. The matrix resin can be appropriately selected depending on the application, but it is common to use a thermoplastic resin or a thermosetting resin. The matrix resin may be a molten resin heated and melted or a matrix resin at room temperature. Further, a solution or a varnish formed using a solvent may be used.
 マトリックス樹脂としては、熱可塑性樹脂や熱硬化性樹脂、光硬化性樹脂などFRPに一般的に使用されるものを用いることができる。また、これらは室温で液体であればそのまま用いても良いし、室温で固体や粘稠液体であれば、加温して低粘度化する、あるいは溶融し融液として用いても良いし、溶媒に溶解し溶液やワニス化して用いても良い。 As the matrix resin, a resin generally used for FRP such as a thermoplastic resin, a thermosetting resin, and a photocurable resin can be used. Further, these may be used as they are if they are liquids at room temperature, or may be used as solids or viscous liquids at room temperature to reduce the viscosity by heating, or may be used as a melt by melting, or a solvent. May be used as a solution or varnish.
 熱可塑性樹脂としては、主鎖に、炭素・炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルホン結合、イミダゾール結合、カルボニル結合から選ばれる結合を有するポリマーを用いることができる。具体的には、ポリアクリレート、ポリオレフィン、ポリアミド(PA)、アラミド、ポリエステル、ポリカーボネート(PC)、ポリフェニレンスルフィド(PPS)、ポリベンゾイミダゾール(PBI)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリールエーテルケトン(PAEK)、ポリアミドイミド(PAI)などを例示できる。航空機用途などの耐熱性が要求される分野では、PPS、PES、PI、PEI、PSU、PEEK、PEKK、PEAKなどが好適である。一方、産業用途や自動車用途などでは、成形効率を上げるため、ポリプロピレン(PP)などのポリオレフィンやPA、ポリエステル、PPSなどが好適である。これらはポリマーでも良いし、低粘度、低温塗布のため、オリゴマーやモノマーを用いても良い。もちろん、これらは目的に応じ、共重合されていても良いし、各種を混合しポリマーブレンドやポリマーアロイとして用いることもできる。 The thermoplastic resin is selected from a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a urea bond, a thioether bond, a sulfone bond, an imidazole bond, and a carbonyl bond in the main chain. A polymer having a bond can be used. Specifically, polyacrylate, polyolefin, polyamide (PA), aramid, polyester, polycarbonate (PC), polyphenylene sulfide (PPS), polybenzimidazole (PBI), polyimide (PI), polyetherimide (PEI), polysulfone (PSU), polyether sulfone (PES), polyether ketone (PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyaryl ether ketone (PAEK), polyamide imide (PAI), etc. it can. In fields requiring heat resistance such as aircraft applications, PPS, PES, PI, PEI, PSU, PEEK, PEKK, PEAK, and the like are suitable. On the other hand, for industrial applications and automotive applications, polyolefins such as polypropylene (PP), PA, polyester, PPS, and the like are preferable in order to increase molding efficiency. These may be polymers or oligomers or monomers for low viscosity and low temperature coating. Of course, these may be copolymerized depending on the purpose, or they may be mixed and used as a polymer blend or a polymer alloy.
 熱硬化性樹脂としては、エポキシ樹脂、マレイミド樹脂、ポリイミド樹脂、アセチレン末端を有する樹脂、ビニル末端を有する樹脂、アリル末端を有する樹脂、ナジック酸末端を有する樹脂、シアン酸エステル末端を有する樹脂があげられる。これらは、一般に硬化剤や硬化触媒と組合せて用いることができる。また、適宜、これらの熱硬化性樹脂を混合して用いることも可能である。 Examples of the thermosetting resin include an epoxy resin, a maleimide resin, a polyimide resin, a resin having an acetylene terminal, a resin having a vinyl terminal, a resin having an allyl terminal, a resin having a nadic acid terminal, and a resin having a cyanate ester terminal. Can be These can be generally used in combination with a curing agent or a curing catalyst. In addition, these thermosetting resins can be appropriately used in combination.
 本発明に適した熱硬化性樹脂として、耐熱性、耐薬品性、力学特性に優れていることからエポキシ樹脂が好適に用いられる。特に、アミン類、フェノール類、炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂が好ましい。具体的には、アミン類を前駆体とするエポキシ樹脂として、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール、トリグリシジルアミノクレゾールの各種異性体、フェノール類を前駆体とするエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂としては脂環式エポキシ樹脂等があげられるが、これに限定されない。またこれらのエポキシ樹脂をブロモ化したブロモ化エポキシ樹脂も用いられる。テトラグリシジルジアミノジフェニルメタンに代表される芳香族アミンを前駆体とするエポキシ樹脂は耐熱性が良好で強化繊維との接着性が良好なため本発明に最も適している。 エ ポ キ シ As a thermosetting resin suitable for the present invention, an epoxy resin is preferably used because of its excellent heat resistance, chemical resistance, and mechanical properties. In particular, an epoxy resin using an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor is preferable. Specifically, as an epoxy resin having an amine as a precursor, various isomers of tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, and triglycidylaminocresol, and phenols are used as precursors. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, a compound having a carbon-carbon double bond as a precursor Examples of the epoxy resin include, but are not limited to, alicyclic epoxy resins. Brominated epoxy resins obtained by brominating these epoxy resins are also used. An epoxy resin having an aromatic amine represented by tetraglycidyldiaminodiphenylmethane as a precursor has a good heat resistance and a good adhesion to a reinforcing fiber, and is most suitable for the present invention.
 熱硬化性樹脂は硬化剤と組合せて、好ましく用いられる。例えばエポキシ樹脂の場合には、硬化剤はエポキシ基と反応しうる活性基を有する化合物であればこれを用いることができる。好ましくは、アミノ基、酸無水物基、アジド基を有する化合物が適している。具体的には、ジシアンジアミド、ジアミノジフェニルスルホンの各種異性体、アミノ安息香酸エステル類が適している。具体的に説明すると、ジシアンジアミドはプリプレグの保存性に優れるため好んで用いられる。またジアミノジフェニルスルホンの各種異性体は、耐熱性の良好な硬化物を与えるため本発明には最も適している。アミノ安息香酸エステル類としては、トリメチレングリコールジ-p-アミノベンゾエートやネオペンチルグリコールジ-p-アミノベンゾエートが好んで用いられ、ジアミノジフェニルスルホンに比較して、耐熱性に劣るものの、引張強度に優れるため、用途に応じて選択して用いられる。また、もちろん必要に応じ硬化触媒を用いることも可能である。また、マトリックス樹脂のポットライフを向上させる意味から、硬化剤や硬化触媒と錯体形成可能な錯化剤を併用することも可能である。 Thermosetting resin is preferably used in combination with a curing agent. For example, in the case of an epoxy resin, the curing agent may be a compound having an active group capable of reacting with an epoxy group. Preferably, a compound having an amino group, an acid anhydride group, or an azide group is suitable. Specifically, dicyandiamide, various isomers of diaminodiphenylsulfone, and aminobenzoic acid esters are suitable. More specifically, dicyandiamide is preferably used because of its excellent prepreg preservability. Further, various isomers of diaminodiphenyl sulfone are most suitable for the present invention because they give cured products having good heat resistance. As the aminobenzoic acid esters, trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used. Although the heat resistance is lower than that of diaminodiphenyl sulfone, the tensile strength is lower. Because it is excellent, it is selected and used according to the application. It is also possible to use a curing catalyst if necessary. From the viewpoint of improving the pot life of the matrix resin, it is also possible to use a complexing agent capable of forming a complex with a curing agent or a curing catalyst.
 また本発明では、熱硬化性樹脂に熱可塑性樹脂を混合して用いることも好適である。熱硬化性樹脂と熱可塑性樹脂の混合物は、熱硬化性樹脂を単独で用いた場合より良好な結果を与える。これは、熱硬化性樹脂が、一般に脆い欠点を有しながらオートクレーブによる低圧成型が可能であるのに対して、熱可塑性樹脂が、一般に強靭である利点を有しながらオートクレーブによる低圧成型が困難であるという二律背反した特性を示すため、これらを混合して用いることで物性と成形性のバランスをとることができるためである。混合して用いる場合は、プリプレグを硬化させてなるFRPの力学特性の観点から熱硬化性樹脂を50質量%より多く含むことが好ましい。 In the present invention, it is also preferable to use a thermoplastic resin mixed with a thermosetting resin. A mixture of a thermosetting resin and a thermoplastic resin gives better results than using the thermosetting resin alone. This is because the thermosetting resin is generally capable of low pressure molding by an autoclave while having a brittle defect, whereas the thermoplastic resin is generally difficult to perform low pressure molding by an autoclave while having the advantage of being tough. This is because they exhibit a trade-off characteristic, that is, they can be used in combination to balance physical properties and moldability. When mixed and used, it is preferable to contain the thermosetting resin in an amount of more than 50% by mass from the viewpoint of the mechanical properties of the FRP obtained by curing the prepreg.
 <無機粒子、有機粒子、ポリマー粒子>
 また、本発明では、無機粒子や有機粒子をマトリックス樹脂や後述する樹脂フィルムに含有させることができる。無機粒子は特に制限されないが、例えば、導電性、伝熱性、チクソトロピー性などを付与するために、カーボン系粒子や窒化ホウ素粒子、二酸化チタン粒子、二酸化珪素粒子などを好適に用いることができる。有機粒子も特に制限されないが、特に、ポリマー粒子を用いると、得られるFRPの靱性や耐衝撃性、制振性などを向上させることができ、好ましい。この時、ポリマー粒子のガラス転移温度(Tg)または融点(Tm)はマトリックス樹脂温度よりも20℃以上高くすると、マトリックス樹脂中でポリマー粒子の形態を保持し易く、好ましい。ポリマー粒子のTgは温度変調DSCを用い、以下の条件で測定することができる。温度変調DSC装置としては、TA Instrments社製 Q1000などが好適であり、窒素雰囲気下、高純度インジウムで校正して用いることができる。測定条件は、昇温速度は2℃/分、温度変調条件は周期60秒、振幅1℃とすることができる。これで得られた全熱流から可逆成分を分離し、階段状シグナルの中点の温度をTgとすることができる。
<Inorganic particles, organic particles, polymer particles>
Further, in the present invention, inorganic particles and organic particles can be contained in a matrix resin and a resin film described later. Although the inorganic particles are not particularly limited, for example, carbon-based particles, boron nitride particles, titanium dioxide particles, silicon dioxide particles, and the like can be suitably used to impart conductivity, heat conductivity, thixotropy, and the like. Although the organic particles are not particularly limited, the use of polymer particles is particularly preferable because the toughness, impact resistance, and vibration damping properties of the obtained FRP can be improved. At this time, it is preferable that the glass transition temperature (Tg) or the melting point (Tm) of the polymer particles be higher than the matrix resin temperature by 20 ° C. or more, because the shape of the polymer particles can be easily maintained in the matrix resin. The Tg of the polymer particles can be measured using a temperature-modulated DSC under the following conditions. As the temperature modulation DSC device, Q1000 manufactured by TA Instruments or the like is suitable, and it can be used after being calibrated with high-purity indium in a nitrogen atmosphere. The measurement conditions are as follows: the temperature rise rate is 2 ° C./min, and the temperature modulation condition is a cycle of 60 seconds and an amplitude of 1 ° C. The reversible component is separated from the total heat flow obtained in this way, and the temperature at the middle point of the step signal can be set to Tg.
 また、Tmは通常のDSCで昇温速度10℃/分で測定し、融解に相当するピーク状シグナルのピークトップ温度をTmとすることができる。 T Further, Tm is measured by a normal DSC at a heating rate of 10 ° C / min, and the peak top temperature of a peak-like signal corresponding to melting can be defined as Tm.
 また、ポリマー粒子としては、マトリックス樹脂に溶けないことが好ましく、このようなポリマー粒子としては、例えば、WO2009/142231パンフレット記載などを参照し、適切なものを用いることができる。より、具体的には、ポリアミドやポリイミドを好ましく用いることができ、優れた靭性のため耐衝撃性を大きく向上できる、ポリアミドは最も好ましい。ポリアミドとしてはポリアミド12、ポリアミド11、ポリアミド6、ポリアミド66やポリアミド6/12共重合体、特開平01-104624号公報の実施例1記載のエポキシ化合物にてセミIPN(高分子相互侵入網目構造)化されたポリアミド(セミIPNポリアミド)などを好適に用いることができる。この熱可塑性樹脂粒子の形状としては、球状粒子でも非球状粒子でも、また多孔質粒子でもよいが、球状の方が樹脂の流動特性を低下させないため、本発明の製造法では特に好ましい。また、球状であれば応力集中の起点がなく、高い耐衝撃性を与えるという点でも好ましい態様である。 Further, it is preferable that the polymer particles do not dissolve in the matrix resin. As such polymer particles, for example, appropriate ones can be used with reference to the description in WO2009 / 142231 pamphlet and the like. More specifically, polyamide or polyimide can be preferably used, and polyamide, which can greatly improve impact resistance due to excellent toughness, is most preferable. Polyamides such as polyamide 12, polyamide 11, polyamide 6, polyamide 66, polyamide 6/12 copolymer, and the epoxy compound described in Example 1 of JP-A-01-104624 are semi-IPN (polymer interpenetrating network structure). Polyamide (semi-IPN polyamide) or the like can be suitably used. The shape of the thermoplastic resin particles may be a spherical particle, a non-spherical particle, or a porous particle, but a spherical shape is particularly preferable in the production method of the present invention since the flow characteristics of the resin are not deteriorated. Further, a spherical shape is a preferable embodiment in that there is no starting point of stress concentration and high impact resistance is given.
 ポリアミド粒子の市販品としては、SP-500、SP-10、TR-1、TR-2、842P-48、842P-80(以上、東レ(株)製)、“オルガソール(登録商標)”1002D、2001UD、2001EXD、2002D、3202D、3501D,3502D、(以上、アルケマ(株)製)、“グリルアミド(登録商標)”TR90(エムザベルケ(株)社製)、“TROGAMID(登録商標)”CX7323、CX9701、CX9704、(デグサ(株)社製)等を使用することができる。これらのポリアミド粒子は、単独で使用しても複数を併用してもよい。 Commercially available polyamide particles include SP-500, SP-10, TR-1, TR-2, 842P-48, 842P-80 (all manufactured by Toray Industries, Inc.) and "Orgasol (registered trademark)" 1002D. , 2001UD, 2001EXD, 2002D, 3202D, 3501D, 3502D (all manufactured by Arkema Co., Ltd.), "Grillamide (registered trademark)" TR90 (manufactured by Mazaverke Co., Ltd.), "TROGAMID (registered trademark)" CX7323, CX9701 , CX9704 (manufactured by Degussa Co., Ltd.) and the like can be used. These polyamide particles may be used alone or in combination of two or more.
 また、FRPの強化繊維層間樹脂層を高靭性化するためには、ポリマー粒子を強化繊維層間樹脂層に留めておくことが好ましい。そのため、ポリマー粒子の数平均粒径は5~50μmの範囲であることが好ましく、より好ましくは7~40μmの範囲、さらに好ましくは10~30μmの範囲である。数平均粒径を5μm以上とすることで、粒子が強化繊維の束の中に侵入せず、得られる繊維強化複合材料の強化繊維層間樹脂層に留まることができる。数平均粒径を50μm以下とすることで、プリプレグ表面のマトリックス樹脂層の厚みを適正化し、ひいては得られるFRPにおいて、繊維質量含有率を適正化することができる。 ポ リ マ ー Further, in order to increase the toughness of the FRP interlayer resin layer, it is preferable to keep the polymer particles in the reinforcing fiber interlayer resin layer. Therefore, the number average particle size of the polymer particles is preferably in the range of 5 to 50 μm, more preferably in the range of 7 to 40 μm, and still more preferably in the range of 10 to 30 μm. When the number average particle diameter is 5 μm or more, the particles do not enter the bundle of the reinforcing fibers, and can remain in the reinforcing fiber interlayer resin layer of the obtained fiber-reinforced composite material. By setting the number average particle size to 50 μm or less, the thickness of the matrix resin layer on the prepreg surface can be optimized, and the fiber content in the obtained FRP can be optimized.
 <マトリックス樹脂の粘度>
 本発明で用いるマトリックス樹脂としては、工程通過性・安定性の観点から最適な粘度を選択することが好ましい。具体的には、粘度を1~60Pa・sの範囲とすると、狭窄部出口での液垂れを抑制するとともに強化繊維シートの高速走行性、安定走行性を向上させることができ、好ましい。ここで、粘度は歪み速度3.14s-1で液溜り部でのマトリックス樹脂温度で測定したものを言う。測定装置としては平行円盤型やコーン型などの粘弾性測定装置を用いることができる。マトリックス樹脂の粘度はより好ましくは10~30Pa・sである。
<Viscosity of matrix resin>
As the matrix resin used in the present invention, it is preferable to select an optimum viscosity from the viewpoint of processability and stability. Specifically, when the viscosity is in the range of 1 to 60 Pa · s, the dripping at the constricted portion exit can be suppressed, and the high-speed running property and the stable running property of the reinforcing fiber sheet can be improved, which is preferable. Here, the viscosity refers to a value measured at a matrix resin temperature in a liquid reservoir at a strain rate of 3.14 s -1 . As the measuring device, a viscoelasticity measuring device such as a parallel disk type or a cone type can be used. The viscosity of the matrix resin is more preferably from 10 to 30 Pa · s.
 <マトリックス樹脂の塗布工程>
 UD基材を例として、図1aを参照してマトリックス樹脂の塗布工程を説明すると、塗工装置100におけるマトリックス樹脂2を強化繊維シート1aに付与する方法は、クリール11から巻き出された複数本の強化繊維1を、配列装置12によって一方向(紙面奥行き方向)に配列して強化繊維シート1aを得た後、強化繊維シート1aを塗布部20に通過させて、強化繊維シート1aの両面にマトリックス樹脂2を付与するものである。これにより、1次プリプレグ1cを得ることができる。なお、本発明の第2の製造方法では、強化繊維シート1aを塗布部20に導入する前に改質剤の付与が行われている。
<Matrix resin application process>
The application process of the matrix resin will be described with reference to FIG. 1A by taking a UD base material as an example. The method of applying the matrix resin 2 to the reinforcing fiber sheet 1a in the coating apparatus 100 includes a plurality of the creels 11 The reinforcing fibers 1 are arranged in one direction (in the depth direction of the paper) by the arrangement device 12 to obtain a reinforcing fiber sheet 1a. Then, the reinforcing fiber sheet 1a is passed through the application section 20, and is applied to both sides of the reinforcing fiber sheet 1a. A matrix resin 2 is provided. Thereby, the primary prepreg 1c can be obtained. In the second manufacturing method of the present invention, the modifying agent is applied before the reinforcing fiber sheet 1a is introduced into the application section 20.
 次に図2~4により、強化繊維シート1aあるいは改質剤が付与された強化繊維シート1bへのマトリックス樹脂2の付与工程について詳述する。これは第1の製造方法と第2の製造方法で共通する工程であるため、第1の製造方法を例にとり記載する。図2は、図1aにおける塗布部20を拡大した詳細横断面図である。塗布部20は、所定の隙間Dを開けて対向する壁面部材21a、21bを備え、壁面部材21a、21bの間には、鉛直方向下向きZ(すなわち強化繊維シートの走行方向)に断面積が連続的に減少する液溜り部22と、液溜り部22の下方(強化繊維シート1aの搬出側)に位置し、液溜り部22の上面(強化繊維シート1aの導入側)の断面積よりも小さい断面積を有するスリット状の狭窄部23が形成されている。図2において、強化繊維シート1aは、紙面の奥行き方向に配列されている。 Next, a process of applying the matrix resin 2 to the reinforcing fiber sheet 1a or the reinforcing fiber sheet 1b to which the modifier has been added will be described in detail with reference to FIGS. Since this is a step common to the first manufacturing method and the second manufacturing method, the first manufacturing method will be described as an example. FIG. 2 is an enlarged detailed cross-sectional view of the application section 20 in FIG. 1A. The coating unit 20 includes wall members 21a and 21b facing each other with a predetermined gap D therebetween, and a cross-sectional area between the wall members 21a and 21b is continuous in a vertically downward Z (that is, a running direction of the reinforcing fiber sheet). The liquid reservoir 22 which is gradually reduced, is located below the liquid reservoir 22 (the side where the reinforcing fiber sheet 1a is carried out), and is smaller than the cross-sectional area of the upper surface of the liquid reservoir 22 (the side where the reinforcing fiber sheet 1a is introduced). A slit-shaped constriction 23 having a cross-sectional area is formed. In FIG. 2, the reinforcing fiber sheets 1a are arranged in the depth direction of the paper surface.
 塗布部20において、液溜り部22に導入された強化繊維シート1aは、その周囲のマトリックス樹脂2を随伴しながら、鉛直方向下向きZに走行する。その際、液溜り部22の断面積は鉛直方向下向きZ(強化繊維シート1aの走行方向)に向かって減少するため、随伴するマトリックス樹脂2は徐々に圧縮され、液溜り部22の下部に向かうにつれてマトリックス樹脂2の圧力が増大する。液溜り部22の下部の圧力が高くなると、前記随伴液流がそれ以上は下部に流動し難くなり、壁面部材21a、21b方向に流れ、その後、壁面部材21a、21bに阻まれ、上方へ流れるようになる。結果、液溜り部22内では強化繊維シート1aの平面と、壁面部材21a、21b壁面に沿った循環流Tを形成する。これにより、仮にシート状強化繊維1aが毛羽を液溜り部22に持ち込んだとしても毛羽は循環流Tに沿って運動し、液圧の大きな液溜り部22下部や狭窄部23に近づくことができない。さらに下で述べるとおり、気泡が毛羽に付着することにより毛羽が循環流Tから上方に移動し、液溜り部22の上部液面付近を通過する。そのため、毛羽が液溜り部22の下部および狭窄部23に詰まることが防止されるだけでなく、滞留する毛羽は液溜り部22の上部液面から容易に回収することも可能となる。さらに、強化繊維シート1aを高速で走行させた場合、前記の液圧はさらに増大するため、毛羽の排除効果がより高くなる。その結果、強化繊維シート1aにより高速でマトリックス樹脂2を付与することが可能となり、生産性が大きく向上する。 (4) In the application section 20, the reinforcing fiber sheet 1a introduced into the liquid pool section 22 travels in the vertical downward direction Z with the surrounding matrix resin 2 accompanying it. At this time, since the cross-sectional area of the liquid reservoir 22 decreases in the downward Z direction (the running direction of the reinforcing fiber sheet 1a), the accompanying matrix resin 2 is gradually compressed and moves toward the lower part of the liquid reservoir 22. As the pressure increases, the pressure of the matrix resin 2 increases. When the pressure in the lower part of the liquid reservoir 22 becomes higher, the accompanying liquid flow becomes more difficult to flow further downward, flows in the direction of the wall members 21a and 21b, and is then blocked by the wall members 21a and 21b and flows upward. Become like As a result, a circulating flow T is formed in the liquid reservoir 22 along the flat surface of the reinforcing fiber sheet 1a and the wall surfaces of the wall members 21a and 21b. Thereby, even if the sheet-like reinforcing fiber 1a brings the fluff into the liquid reservoir 22, the fluff moves along the circulating flow T and cannot approach the lower part of the liquid reservoir 22 or the narrowed portion 23 where the hydraulic pressure is large. . As described further below, the air bubbles adhere to the fluff, and the fluff moves upward from the circulating flow T and passes near the upper liquid level of the liquid reservoir 22. Therefore, not only is it possible to prevent the fluff from clogging the lower portion of the liquid reservoir 22 and the narrowed portion 23, but also it is possible to easily collect the retained fluff from the upper liquid surface of the liquid reservoir 22. Furthermore, when the reinforcing fiber sheet 1a is run at a high speed, the above-mentioned liquid pressure is further increased, so that the effect of eliminating fluff becomes higher. As a result, it becomes possible to apply the matrix resin 2 at a high speed to the reinforcing fiber sheet 1a, and productivity is greatly improved.
 また、前記の増大した液圧により、マトリックス樹脂2が強化繊維シート1aの内部に含浸しやすくなる効果がある。これは、強化繊維束のような多孔質体にマトリックス樹脂が含浸される際、その含浸度がマトリックス樹脂の圧力で増大する性質(ダルシーの法則)に基づく。これについても、強化繊維シート1aをより高速で走行させた場合、液圧がより増大することから、含浸効果をより高めることができる。なお、マトリックス樹脂2は強化繊維シート1aの内部に残留する気泡と気/液置換で含浸されるが、気泡は前記の液圧と浮力により強化繊維シート1aの内部の隙間を通って、繊維の配向方向(鉛直方向上向き)に排出される。このとき、気泡は含浸してくるマトリックス樹脂2を押しのけずに排出されるため、含浸を阻害しない効果もある。また、気泡の一部は強化繊維シート1aの表面から面外方向(法線方向)に排出されるが、この気泡も前記の液圧と浮力により速やかに鉛直方向上向きに排除されるため、含浸効果の高い液溜り部22の下部に留まらず、効率よく気泡の排出が進む効果もある。これらの効果により、強化繊維シート1aにマトリックス樹脂2を効率よく含浸させることが可能となり、その結果、マトリックス樹脂2が均一に含浸された高品質の1次プリプレグ1cを得ることが可能となる。 {Circle around (4)} The increased liquid pressure has an effect that the matrix resin 2 is easily impregnated into the inside of the reinforcing fiber sheet 1a. This is based on the property (Darcy's law) that when a matrix material is impregnated into a porous body such as a reinforcing fiber bundle, the degree of impregnation increases with the pressure of the matrix resin. Also in this case, when the reinforcing fiber sheet 1a is run at a higher speed, the hydraulic pressure is further increased, so that the impregnation effect can be further enhanced. Note that the matrix resin 2 is impregnated with air bubbles / liquid replacement with air bubbles remaining inside the reinforcing fiber sheet 1a. It is discharged in the orientation direction (vertically upward). At this time, since the bubbles are discharged without pushing the impregnated matrix resin 2, there is also an effect of not impairing the impregnation. Some of the air bubbles are discharged out of the surface of the reinforcing fiber sheet 1a in the out-of-plane direction (normal direction). However, the air bubbles are also quickly eliminated vertically upward by the above-mentioned liquid pressure and buoyancy. There is also an effect that the discharge of air bubbles proceeds efficiently without staying at the lower part of the liquid reservoir 22 having a high effect. By these effects, the reinforcing fiber sheet 1a can be impregnated with the matrix resin 2 efficiently, and as a result, a high-quality primary prepreg 1c in which the matrix resin 2 is uniformly impregnated can be obtained.
 さらに、前記の増大した液圧により、強化繊維シート1aが隙間Dの中央に自動的に調心され、強化繊維シート1aが液溜り部22や狭窄部23の壁面に直接擦過せず、ここでの毛羽発生を抑制する効果もある。これは、外乱などにより強化繊維シート1aが隙間Dのどちらかに接近した場合、接近した側ではより狭い隙間にマトリックス樹脂2が押し込まれて圧縮されるため、接近した側で液圧がより増大し、強化繊維シート1aを隙間Dの中央に押し戻すためである。 Further, the reinforcing fiber sheet 1a is automatically centered at the center of the gap D by the increased liquid pressure, and the reinforcing fiber sheet 1a does not directly rub against the wall surface of the liquid reservoir 22 or the narrowed portion 23. It also has the effect of suppressing the generation of fluff. This is because when the reinforcing fiber sheet 1a approaches one of the gaps D due to disturbance or the like, the matrix resin 2 is pushed into the narrower gap on the approaching side and is compressed, so that the hydraulic pressure increases on the approaching side. Then, the reinforcing fiber sheet 1a is pushed back to the center of the gap D.
 狭窄部23は、液溜り部22の上面よりも断面積が小さく設計される。図2や図4から理解されるとおり専ら強化繊維シートによる疑似平面の垂線方向の長さが小さい、すなわち部材間の間隔が狭くなる、ことで断面積は小さくなる。これは、前記のように狭窄部で液圧を高くすることで、含浸や自動調心効果を得るためである。また、狭窄部23の最上部の面の断面形状は、液溜り部22の最下部の面の断面形状と一致させることが、強化繊維シート1aの走行性やマトリックス樹脂2の流れ制御の観点から好ましいが、必要に応じ狭窄部23の方を若干大きくしてもよい。 The constriction 23 is designed to have a smaller cross-sectional area than the upper surface of the liquid reservoir 22. As understood from FIG. 2 and FIG. 4, the length of the pseudo plane made of the reinforcing fiber sheet in the perpendicular direction is small, that is, the space between the members is narrowed, so that the cross-sectional area is reduced. This is because the impregnation and the self-centering effect can be obtained by increasing the fluid pressure at the constricted portion as described above. The cross-sectional shape of the uppermost surface of the constricted portion 23 should be made to match the cross-sectional shape of the lowermost surface of the liquid reservoir 22, from the viewpoint of the running property of the reinforcing fiber sheet 1a and the flow control of the matrix resin 2. Although preferred, the constriction 23 may be slightly larger if necessary.
 ここで、図2の塗布部20では、強化繊維シート1aが完全に鉛直方向下向き(水平面から90度)に走行しているが、これに限定されず、前記の毛羽回収、気泡の排出効果が得られ、強化繊維シート1aが安定して連続走行可能な範囲で、実質的に鉛直方向下向きであればよい。 Here, in the application section 20 in FIG. 2, the reinforcing fiber sheet 1a runs completely downward in the vertical direction (90 degrees from the horizontal plane), but the present invention is not limited to this. It suffices if the obtained reinforcing fiber sheet 1a is substantially vertically downward as long as it can be stably and continuously driven.
 また、強化繊維シート1aに付与されるマトリックス樹脂2の総量は、狭窄部23の隙間Dで制御可能であり、例えば、強化繊維シート1aに付与するマトリックス樹脂2の総量を多くしたい(目付けを大きくしたい)場合は、隙間Dが広くなるよう、壁面部材21a、21bを設置すればよい。 Further, the total amount of the matrix resin 2 applied to the reinforcing fiber sheet 1a can be controlled by the gap D of the narrowed portion 23. For example, it is desired to increase the total amount of the matrix resin 2 applied to the reinforcing fiber sheet 1a (to increase the basis weight). In this case, the wall members 21a and 21b may be installed so that the gap D is widened.
 図3は、塗布部20を、図2のAの方向から見た下面図である。塗布部20には、強化繊維シート1aの配列方向両端からマトリックス樹脂2が漏れるのを防ぐための側壁部材24a、24bが設けられており、壁面部材21a、21bと側壁部材24a、24bに囲われた空間に狭窄部23の出口25が形成されている。ここで、出口25はスリット状をしており、断面アスペクト比(図3のY/D)はマトリックス樹脂2を付与したい強化繊維シート1aの形状に合わせて設定すればよい。 FIG. 3 is a bottom view of the application unit 20 viewed from the direction of A in FIG. The coating unit 20 is provided with side wall members 24a, 24b for preventing the matrix resin 2 from leaking from both ends in the arrangement direction of the reinforcing fiber sheet 1a, and is surrounded by the wall members 21a, 21b and the side wall members 24a, 24b. An outlet 25 of the constricted portion 23 is formed in the closed space. Here, the outlet 25 has a slit shape, and the sectional aspect ratio (Y / D in FIG. 3) may be set according to the shape of the reinforcing fiber sheet 1a to which the matrix resin 2 is to be applied.
 図4aは塗布部20を、Bの方向から見た場合の塗布部内部の構造を説明する断面図である。なお、図を見やすくするため壁面部材21bは省略してあるほか、強化繊維シート1aは強化繊維1を、隙間を開けて配列しているように描画しているが、実際には強化繊維1を隙間無く配列することが、シート状プリプレグの品位、FRPの力学特性の観点から好ましい。 FIG. 4A is a cross-sectional view illustrating the structure inside the coating unit when the coating unit 20 is viewed from the direction B. In addition, the wall member 21b is omitted for easy viewing, and the reinforcing fiber sheet 1a depicts the reinforcing fibers 1 so as to be arranged with a gap therebetween. Arrangement without any gap is preferable from the viewpoint of the quality of the sheet prepreg and the mechanical properties of the FRP.
 図4bは隙間26でのマトリックス樹脂2の流れを示している。隙間26が大きいとマトリックス樹脂2には、Rの向きに渦流れが発生する。この渦流れRは、液溜り部22の下部では外側に向かう流れ(Ra)となるため、強化繊維シートを引き裂いてしまう(シート状繊維束の割れが発生する)場合や強化繊維間の間隔を拡げてしまい、そのためにプリプレグとしたときに強化繊維の配列ムラを発生する可能性がある。一方、液溜り部22の上部では、内側に向かう流れ(Rb)となるため、強化繊維シート1aが幅方向に圧縮され、その端部が折れてしまう場合がある。特許文献2(特許第3252278号公報)に代表されるような、一体物のシート状基材(特にフィルム)にマトリックス樹脂を両面塗布する装置ではこのような隙間26での渦流れが発生しても品質への影響が少ないため、注意がされていなかった。 FIG. 4 b shows the flow of the matrix resin 2 in the gap 26. If the gap 26 is large, a vortex flows in the matrix resin 2 in the direction of R. Since the vortex flow R becomes a flow (Ra) directed outward at the lower portion of the liquid pool 22, the reinforcing fiber sheet may be torn (breakage of the sheet-like fiber bundle occurs) or the spacing between the reinforcing fibers may be reduced. The prepregs may be spread, which may cause uneven arrangement of the reinforcing fibers when the prepreg is formed. On the other hand, in the upper part of the liquid reservoir 22, since the flow becomes inward (Rb), the reinforcing fiber sheet 1a is compressed in the width direction, and the end may be broken. In an apparatus represented by Patent Literature 2 (Japanese Patent No. 3252278) for applying a matrix resin on both sides of an integrated sheet-like base material (especially a film), a vortex flow in the gap 26 occurs. Also had little attention to quality.
 そこで、本発明においては、隙間26を小さくする幅規制を行い、端部での渦流れの発生を抑制することが好ましい。具体的には、液溜り部22の幅L、すなわち、側板部材24aと24bの間隔Lは、狭窄部23の直下で測定した1次プリプレグの幅Wと以下の関係を満たすよう構成することが好ましい。
L≦W+10(mm)
 これにより、端部での渦流れ発生が抑制され、強化繊維シート1aの割れや端部折れを抑制でき、1次プリプレグ1cの全幅(W)にわたって均一に強化繊維1が配列された、高品位で安定性の高い1次プリプレグ1cを得ることができる。さらに、この技術をプリプレグに適用した場合には、プリプレグの品位、品質を向上させるのみならず、これを用いて得られるFRPの力学特性や品質を向上させることができる。LとWの関係はより好ましくは、L≦W+2(mm)とすると、さらに強化繊維シートの割れや端部折れを抑制することができる。
Therefore, in the present invention, it is preferable to restrict the width of the gap 26 so as to suppress the generation of the vortex at the end. Specifically, the width L of the liquid reservoir 22, that is, the interval L between the side plate members 24a and 24b may be configured to satisfy the following relationship with the width W of the primary prepreg measured immediately below the narrowed portion 23. preferable.
L ≦ W + 10 (mm)
Thereby, the generation of the vortex at the end is suppressed, the cracking and the end break of the reinforcing fiber sheet 1a can be suppressed, and the reinforcing fibers 1 are arranged uniformly over the entire width (W) of the primary prepreg 1c. Thus, a highly stable primary prepreg 1c can be obtained. Furthermore, when this technology is applied to a prepreg, not only can the quality and quality of the prepreg be improved, but also the mechanical properties and quality of the FRP obtained using the prepreg can be improved. More preferably, when the relationship between L and W is L ≦ W + 2 (mm), cracks and end breaks in the reinforcing fiber sheet can be further suppressed.
 また、Lの下限は、W-5(mm)以上となるよう調整することが、1次プリプレグ1cの幅方向寸法の均一性を向上させる観点から好ましい。 Further, it is preferable to adjust the lower limit of L to be not less than W-5 (mm) from the viewpoint of improving the uniformity of the dimension in the width direction of the primary prepreg 1c.
 なお、この幅規制は、液溜り部22下部の高い液圧による渦流れR発生を抑制する観点から、少なくとも液溜り部22の下部(図4aのGの位置)で行うことが好ましい。さらに、この幅規制はより好ましくは、液溜り部22の全域で行うと、渦流れRの発生をほぼ完全に抑制することができ、その結果、強化繊維シートの割れや端部折れをほぼ完全に抑制することが可能となる。 In addition, it is preferable that the width regulation is performed at least at the lower part of the liquid reservoir 22 (the position G in FIG. 4A) from the viewpoint of suppressing the generation of the vortex R due to the high liquid pressure below the liquid reservoir 22. Further, more preferably, when this width regulation is performed in the entire area of the liquid pool 22, the generation of the vortex flow R can be almost completely suppressed, and as a result, cracks and end breaks of the reinforcing fiber sheet can be almost completely prevented. Can be suppressed.
 また、前記幅規制は、前記隙間26の渦流れ抑制の観点からは、液溜り部22だけでもよいが、狭窄部23も同様に行うと1次プリプレグ1cの側面に過剰なマトリックス樹脂2が付与されることを抑制する観点から好ましい。 In addition, from the viewpoint of suppressing the vortex flow in the gap 26, the width regulation may be performed only on the liquid pool portion 22, but when the constriction portion 23 is similarly performed, excess matrix resin 2 is applied to the side surface of the primary prepreg 1c. It is preferable from the viewpoint of suppressing the occurrence of the above.
 <幅規制機構>
 前記では幅規制を側壁部材24a、24bが担う場合を示したが、図5に示すように、側壁部材24a、24b間に幅規制機構27a、27bを設け、かかる機構で幅規制を行うこともできる。これにより、幅規制機構によって規制される幅を自在に変更可能とすることで一つの塗布部により、種々の幅のプリプレグを製造できる観点から好ましい。ここで、狭窄部の直下における強化繊維シートの幅(W)と該幅規制機構下端において幅規制機構により規制される幅(L2)との関係はL2≦W+10(mm)とすることが好ましく、より好ましくは、L2≦W+2(mm)である。また、L2の下限は、W-5(mm)以上、好ましくはW(mm)以上となるよう調整することが、プリプレグ1bの幅方向寸法の均一性を向上させる観点から好ましい。幅規制機構の形状および材質に特に制限は無いが、板形状のブッシュであると簡便であり、好ましい。また、上部、すなわち液面に近い場所では壁面部材21a、21bとの間隔よりも小さい幅(図5参照。「Z方向からみた図」中、幅規制機構の上下方向の長さを指す)を有することで、マトリックス樹脂の水平方向の流れを妨げないようにでき、好ましい。一方、幅規制機構の中間部から下部にかけては塗布部の内部形状に沿った形状とすることが液溜り部でのマトリックス樹脂の滞留を抑制でき、マトリックス樹脂の劣化を抑制できることから好ましい。この意味から、幅規制機構は狭窄部23まで挿入されることが好ましい。図5は、幅規制機構として板形状ブッシュの例を示しているが、ブッシュの中間より下部が液溜り部22のテーパー形状に沿い、狭窄部23まで挿入される例を示している。図5にはL2が液面から出口まで一定の例を示しているが、幅規制機構の目的を達成する範囲で部位によって規制する幅を変更してもよい。幅規制機構は任意の方法で塗布部20に固定することができるが、板形状ブッシュの場合には、上下方向で複数の部位で固定することで、高液圧による板形状ブッシュの変形による規制幅の変動を抑制することができる。例えば、上部はステーを用い、下部は塗布部に差し込むようにすると、幅規制機構による幅の規制が容易であり、好ましい。
<Width regulation mechanism>
In the above description, the case where the side wall members 24a and 24b play the width regulation is shown. However, as shown in FIG. 5, width regulation mechanisms 27a and 27b may be provided between the side wall members 24a and 24b, and the width regulation may be performed by such a mechanism. it can. This is preferable from the viewpoint that prepregs having various widths can be manufactured by one coating portion by allowing the width regulated by the width regulating mechanism to be freely changed. Here, the relationship between the width (W) of the reinforcing fiber sheet immediately below the constriction and the width (L2) regulated by the width regulating mechanism at the lower end of the width regulating mechanism is preferably L2 ≦ W + 10 (mm), More preferably, L2 ≦ W + 2 (mm). Further, it is preferable to adjust the lower limit of L2 to be not less than W-5 (mm), preferably not less than W (mm), from the viewpoint of improving the uniformity of the dimension in the width direction of the prepreg 1b. There is no particular limitation on the shape and material of the width regulating mechanism, but a plate-shaped bush is simple and preferable. In the upper part, that is, at a place close to the liquid surface, the width is smaller than the distance between the wall members 21a and 21b (see FIG. 5; the vertical direction of the width regulating mechanism in the "view from the Z direction"). By having this, it is possible to prevent the matrix resin from flowing in the horizontal direction, which is preferable. On the other hand, it is preferable that the shape from the middle part to the lower part of the width regulating mechanism conforms to the internal shape of the application part, because the stagnation of the matrix resin in the liquid pool part can be suppressed and the deterioration of the matrix resin can be suppressed. In this sense, it is preferable that the width regulating mechanism is inserted up to the constriction 23. FIG. 5 shows an example of a plate-shaped bush as the width regulating mechanism, but shows an example in which the lower part from the middle of the bush follows the tapered shape of the liquid reservoir 22 and is inserted to the constriction 23. FIG. 5 shows an example in which L2 is constant from the liquid level to the outlet. However, the width regulated by the portion may be changed within a range that achieves the purpose of the width regulating mechanism. The width regulating mechanism can be fixed to the application section 20 by an arbitrary method. In the case of a plate-shaped bush, by fixing the plate-shaped bush at a plurality of portions in the up-down direction, regulation by deformation of the plate-shaped bush due to high hydraulic pressure. Variation in width can be suppressed. For example, it is preferable to use a stay for the upper portion and to insert the lower portion into the application portion, since the width can be easily regulated by the width regulating mechanism.
 <液溜り部の形状>
 前記で詳述したように、本発明においては、液溜り部22で強化繊維シートの走行方向に断面積が連続的に減少することで、強化繊維シートの走行方向に液圧を増大させることが重要であるが、ここで強化繊維シートの走行方向に断面積が連続的に減少するとは、走行方向に連続的に液圧を増大可能であれば、その形状には特に制限は無い。液溜り部の横断面図において、テーパー状(直線状)であったり、ラッパ状などのように曲線的な形態を示してもよい。また、断面積減少部は液溜り部全長にわたって連続してもよいし、本発明の目的、効果が得られる範囲であれば、一部に断面積が減少しない部分や逆に拡大する部分を含んでいてもよい。これらについて、以下に図6~9で例を挙げて詳述する。
<Shape of liquid pool>
As described in detail above, in the present invention, the liquid pressure is increased in the running direction of the reinforcing fiber sheet by continuously decreasing the cross-sectional area in the running direction of the reinforcing fiber sheet in the liquid reservoir 22. It is important to note that the continuous decrease in the cross-sectional area in the running direction of the reinforcing fiber sheet is not particularly limited as long as the hydraulic pressure can be continuously increased in the running direction. In the cross-sectional view of the liquid reservoir, the liquid reservoir may have a curved shape such as a tapered shape (linear shape) or a trumpet shape. In addition, the cross-sectional area decreasing portion may be continuous over the entire length of the liquid pool portion, or may include a portion where the cross-sectional area does not decrease or a portion which expands conversely as long as the object and effects of the present invention can be obtained. You may go out. These will be described in detail below with reference to FIGS.
 図6は、図2とは別の実施形態の塗布部20bの詳細横断面図である。液溜り部22を構成する壁面部材21c、21dの形状が異なる以外は、図2の塗布部20と同じである。図6の塗布部20bのように、液溜り部22が、鉛直方向下向きZに断面積が連続的に減少する領域22aと、断面積が減少しない領域22bに分かれていてもよい。このとき、断面積が連続的に減少する鉛直方向高さHは10mm以上であることが好ましい。さらに好ましい断面積が連続的に減少する鉛直方向高さHは50mm以上である。これにより、強化繊維シート1aによって随伴されたマトリックス樹脂2が、液溜まり部22の断面積が連続的に減少する領域22aで圧縮される距離が確保され、液溜り部22の下部で発生する液圧を十分に増大させることができる。その結果、液圧により毛羽が狭窄部23に詰まるのを防止し、また液圧によりマトリックス樹脂2が強化繊維シート1aに含浸する効果を得ることができる。なお、塗布部において強化繊維シートが水平方向あるいは傾斜方向に通過される場合にあっては、「鉛直方向」は「水平方向」あるいは「傾斜方向」と読み替え、「高さ」は「液溜まり部出口(すなわち、液溜まり部と狭窄部との境界面)からの距離」と読み替えるものとする。 FIG. 6 is a detailed cross-sectional view of the application section 20b of another embodiment different from FIG. It is the same as the coating unit 20 of FIG. 2 except that the shapes of the wall members 21c and 21d constituting the liquid pool 22 are different. As in the application part 20b of FIG. 6, the liquid reservoir 22 may be divided into a region 22a in which the cross-sectional area continuously decreases in the vertical direction Z downward, and a region 22b in which the cross-sectional area does not decrease. At this time, the vertical height H at which the cross-sectional area is continuously reduced is preferably 10 mm or more. The vertical height H at which the more preferable cross-sectional area is continuously reduced is 50 mm or more. As a result, the distance by which the matrix resin 2 entrained by the reinforcing fiber sheet 1a is compressed in the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced is secured, and the liquid generated in the lower portion of the liquid reservoir 22 is secured. The pressure can be increased sufficiently. As a result, it is possible to prevent the fluff from clogging the constricted portion 23 due to the liquid pressure, and to obtain the effect that the matrix resin 2 impregnates the reinforcing fiber sheet 1a with the liquid pressure. In the case where the reinforcing fiber sheet is passed in the horizontal direction or the inclined direction in the application section, “vertical direction” is read as “horizontal direction” or “inclination direction”, and “height” is referred to as “liquid pool section”. Distance from the outlet (that is, the boundary surface between the liquid pool portion and the constriction portion).
 ここで、図2の塗布部20や図6の塗布部20bのように、液溜り部22の断面積が連続的に減少する領域22aをテーパー状とする場合、テーパーの開き角度θは小さい方が好ましく、具体的には鋭角(90°以下)にすることが好ましい。これにより、液溜り部22の断面積が連続的に減少する領域22a(テーパー部)でマトリックス樹脂2の圧縮効果を高め、高い液圧を得やすくすることができる。 Here, when the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced is tapered like the coating portion 20 in FIG. 2 or the coating portion 20b in FIG. 6, the opening angle θ of the taper is smaller. More specifically, it is preferable to form an acute angle (90 ° or less). Thereby, the compression effect of the matrix resin 2 can be enhanced in the region 22a (tapered portion) where the cross-sectional area of the liquid reservoir 22 is continuously reduced, and a high liquid pressure can be easily obtained.
 図7は、図6とは別の実施形態の塗布部20cの詳細横断面図である。液溜り部22を構成する壁面部材21e、21fの形状が2段テーパー状となっている以外は、図6の塗布部20bと同じである。このように、液溜り部22の断面積が連続的に減少する領域22aを2段以上の多段テーパー部で構成してもよい。このとき、狭窄部23に最も近いテーパー部の開き角度θを鋭角にするのが、前記の圧縮効果を高める観点から好ましい。またこの場合も、液溜り部22の断面積が連続的に減少する領域22aの高さHを10mm以上にすることが好ましい。さらに好ましい断面積が連続的に減少する鉛直方向高さHは50mm以上である。図7のように液溜り部22の断面積が連続的に減少する領域22aを多段のテーパー部にすることで、液溜り部22に貯留できるマトリックス樹脂2の体積を維持しつつ、狭窄部23に最も近いテーパー部の角度θをより小さくすることができる。これにより液溜り部22の下部で発生する液圧がより高くなり、毛羽の排除効果やマトリックス樹脂2の含浸効果をさらに高めることが可能となる。 FIG. 7 is a detailed cross-sectional view of the application section 20c of another embodiment different from FIG. It is the same as the application section 20b of FIG. 6 except that the shape of the wall members 21e and 21f constituting the liquid pool section 22 is a two-step tapered shape. As described above, the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced may be configured by a multi-stage taper portion of two or more stages. At this time, it is preferable to make the opening angle θ of the tapered portion closest to the constricted portion 23 an acute angle from the viewpoint of enhancing the compression effect. Also in this case, it is preferable that the height H of the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced is 10 mm or more. The vertical height H at which the more preferable cross-sectional area is continuously reduced is 50 mm or more. As shown in FIG. 7, the area 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced is formed as a multi-stage tapered portion, so that the volume of the matrix resin 2 that can be stored in the liquid reservoir 22 is maintained while the constricted portion 23 is maintained. Can be further reduced. As a result, the liquid pressure generated in the lower portion of the liquid reservoir 22 is further increased, and the effect of removing fluff and the effect of impregnating the matrix resin 2 can be further enhanced.
 図8は、図6とは別の実施形態の塗布部20dの詳細横断面図である。液溜り部22を構成する壁面部材21g、21hの形状が階段状となっている以外は、図6の塗布部20bと同じである。このように、液溜り部22の最下部に断面積が連続的に減少する領域22aがあれば、本発明の目的である液圧の増大効果は得られるため、液溜り部22の他の部分に断面積が断続的に減少する領域22cを含んでいてもよい。液溜り部22を図8のような形状にすることで、断面積が連続的に減少する領域22aの形状を維持しつつ、液溜り部22の奥行きBを拡大して貯留できるマトリックス樹脂2の体積を大きくすることができる。その結果、塗布部20dにマトリックス樹脂2を連続して供給できない場合でも、長時間強化繊維シート1aにマトリックス樹脂2を付与し続けることが可能となり、プリプレグの生産性がより向上する。 FIG. 8 is a detailed cross-sectional view of the application section 20d of another embodiment different from FIG. It is the same as the application section 20b in FIG. 6 except that the shape of the wall members 21g and 21h constituting the liquid pool section 22 is stepped. As described above, if there is a region 22a in which the cross-sectional area is continuously reduced at the lowermost portion of the liquid reservoir 22, the effect of increasing the hydraulic pressure, which is the object of the present invention, can be obtained. May include a region 22c in which the cross-sectional area decreases intermittently. By forming the liquid reservoir 22 in a shape as shown in FIG. 8, the depth B of the liquid reservoir 22 can be increased and stored while maintaining the shape of the region 22 a where the cross-sectional area is continuously reduced. The volume can be increased. As a result, even when the matrix resin 2 cannot be continuously supplied to the application section 20d, the matrix resin 2 can be continuously applied to the reinforcing fiber sheet 1a for a long time, and the prepreg productivity is further improved.
 図9は、図6とは別の実施形態の塗布部20eの詳細横断面図である。液溜り部22を構成する壁面部材21i、21jの形状がラッパ状(曲線状)となっている以外は、図6の塗布部20bと同じである。図6の塗布部20bでは、液溜り部22の断面積が連続的に減少する領域22aはテーパー状(直線状)だが、これに限定されず、例えば図9のようにラッパ状(曲線状)でもよい。ただし、液溜り部22の下部と、狭窄部23の上部は滑らかに接続することが好ましい。これは、液溜り部22の下部と、狭窄部23の上部の境界に段差があると、強化繊維シート1aが段差に引っ掛かり、この部分で毛羽が発生する懸念があるためである。また、このように液溜り部22の断面積が連続的に減少する領域をラッパ状とする場合は、液溜り部22の断面積が連続的に減少する領域22aの最下部における仮想接線の開き角度θを鋭角にするのが好ましい。 FIG. 9 is a detailed cross-sectional view of the application unit 20e of another embodiment different from FIG. It is the same as the application section 20b in FIG. 6, except that the shape of the wall members 21i and 21j forming the liquid pool section 22 is a trumpet shape (curved shape). In the application section 20b of FIG. 6, the area 22a where the cross-sectional area of the liquid pool section 22 is continuously reduced is tapered (straight), but is not limited to this. For example, as shown in FIG. May be. However, it is preferable that the lower part of the liquid pool part 22 and the upper part of the narrow part 23 are connected smoothly. This is because if there is a step at the boundary between the lower part of the liquid pool part 22 and the upper part of the narrow part 23, the reinforcing fiber sheet 1a is caught by the step, and there is a concern that fluff is generated at this part. When the region where the cross-sectional area of the liquid reservoir 22 is continuously reduced is a trumpet-like shape, the opening of the virtual tangent line at the lowermost part of the region 22a where the cross-sectional area of the liquid reservoir 22 is continuously reduced. It is preferable that the angle θ be an acute angle.
 なお、上記は滑らかに断面積が減少する例をあげて説明したが、本発明の目的を損なわない限り、本発明において液溜まり部の断面積は必ずしも滑らかに減少しなくともよい。 In the above description, an example in which the cross-sectional area is smoothly reduced has been described. However, in the present invention, the cross-sectional area of the liquid reservoir does not necessarily have to be smoothly reduced unless the object of the present invention is impaired.
 図10は本発明とは別の実施形態の塗布部30の詳細横断面図である。本発明の実施形態とは異なり、図10の液溜り部32は鉛直方向下向きZに断面積が連続的に減少する領域を含まず、狭窄部23との境界33で断面積が不連続で急激に減少する構成である。このため、強化繊維シート1aが詰まり易い。 FIG. 10 is a detailed cross-sectional view of the application unit 30 according to another embodiment different from the present invention. Unlike the embodiment of the present invention, the liquid reservoir 32 in FIG. 10 does not include a region where the cross-sectional area continuously decreases in the vertical downward direction Z, and the cross-sectional area at the boundary 33 with the constriction 23 is discontinuous and sharp. It is a structure which reduces to. Therefore, the reinforcing fiber sheet 1a is easily clogged.
 また、塗布部内で強化繊維シートを複数本のバーに接触させることで含浸効果を向上させることも可能である。図11にバー(35a、35bおよび35c)を3本用いた例を示しているが、バーは本数が大きいほど、強化繊維シートとバーの接触長が長いほど、接触角が大きいほど、含浸率を向上させることができる。図11の例では含浸率を90%以上とすることが可能である。なお、係る含浸効果の向上手段は複数種を組み合わせて用いても良い。 It is also possible to improve the impregnation effect by contacting the reinforcing fiber sheet with a plurality of bars in the application section. FIG. 11 shows an example in which three bars (35a, 35b and 35c) are used. The greater the number of bars, the longer the contact length between the reinforcing fiber sheet and the bars, the larger the contact angle, the greater the impregnation rate. Can be improved. In the example of FIG. 11, the impregnation rate can be 90% or more. The means for improving the impregnation effect may be used in combination of plural kinds.
 <スプレー塗布工程>
 次に、第1の製造方法において用いられる、1次プリプレグ形成後のスプレー塗布を行う工程について詳述する。なお、第2の製造方法において、改質剤を付与する手段としてスプレー塗布を用いることもできるが、このときは、強化繊維シート上に塗布することになる。本発明で言うスプレー塗布工程とは、液体を吐出部から吐出し、吐出された液体を気流または電気力線により導き、連続的に搬送されるシート上で吐出された液体を捕集する工程のことを言う。気流を用いる方法としてはメルトブローやスパンボンド等を挙げることができる。これらの方法については、例えば、「最新の紡糸技術」、繊維学会編集、高分子刊行会、p123~p127(メルトブロー法)、p118~123(スパンボンド法)、(1992年)に記載されている。本塗布法では、装置が比較的簡便である。また、電気力線を用いる方法としては、エレクトロスピニング法やエレクトロスプレー法を挙げることができる。これらの方法については、例えば、「ナノファイバーテクノロジー」、CMC出版、p113~118に記載されている。本塗布法では、塗布方向は電気力線によって決められるため、上から下のみならず、下から上や水平方向にも塗布可能であり、塗布面の選択や1次プリプレグの搬送方向(上から下、水平方向、下から上など)の設定に自由度が生まれる。
<Spray coating process>
Next, the step of performing the spray coating after the formation of the primary prepreg used in the first manufacturing method will be described in detail. In the second production method, spray coating may be used as a means for applying the modifier, but in this case, the coating is performed on the reinforcing fiber sheet. The spray application step referred to in the present invention is a step of discharging a liquid from a discharge unit, guiding the discharged liquid by an air current or lines of electric force, and collecting the discharged liquid on a continuously conveyed sheet. Say that. Examples of the method using an air flow include melt blowing and spun bonding. These methods are described, for example, in "Latest Spinning Technology", edited by The Society of Fiber Science, Polymer Publishing Association, p123-p127 (melt blow method), p118-123 (spunbond method), (1992). . In this coating method, the apparatus is relatively simple. In addition, examples of the method using the lines of electric force include an electrospinning method and an electrospray method. These methods are described, for example, in "Nanofiber Technology", CMC Publishing Co., pp. 113-118. In this coating method, since the coating direction is determined by the lines of electric force, the coating can be performed not only from the top to the bottom, but also from the bottom to the top and in the horizontal direction. The selection of the coating surface and the transport direction of the primary prepreg (from the top) There is a degree of freedom in setting (bottom, horizontal, bottom to top, etc.).
 吐出する液体は常温で固体であれば、加熱をして溶融させたり、溶媒に溶解して液体化することができる。また、常温で液体であっても溶媒を加えて希釈することも可能である。さらに、液体には前記した無機粒子や有機粒子、ポリマー粒子などの固形物を含有させることもできる。 液体 If the liquid to be ejected is solid at room temperature, it can be heated and melted, or dissolved in a solvent to become liquid. In addition, even if it is liquid at normal temperature, it can be diluted by adding a solvent. Further, the liquid may contain a solid such as the above-mentioned inorganic particles, organic particles, and polymer particles.
 以下、気流を用いたスプレー塗布方法について詳述する。 ス プ レ ー Hereinafter, a spray coating method using an airflow will be described in detail.
 本スプレー塗布方法では、メルトブロー法のように、口金孔を幅方向に1列から数列並べ、液体を吐出する箇所付近で、加温された気流を作用させることが好ましい。この時、図12に示したように、幅方向に並べた口金孔列の前後から気流44を作用させることが塗布安定性の観点から好ましい。また、気流の温度、流量、流速、方向を調整することにより、吐出された液体やその固化物46の紡糸性や冷却を制御可能である。メルトブロー法は通常、熱可塑性樹脂の短繊維不織布の製造に用いられており、低粘度樹脂に高速気流を作用させ、口金孔から吐出した樹脂を吹き飛ばして短繊維化している。ここで得られる樹脂繊維の繊維直径は1μm~数十μmとばらつきが大きいものである。本発明では樹脂の目付け均一性を向上させる観点から、なるべく繊維直径ばらつきも小さくし、さらに短繊維ではなく連続繊維化、すなわち長繊維化することが好ましい。通常のポリエステル不織布において採用されるメルトブロー法での製造条件の設定は超極細繊維を得るために、樹脂粘度を超低粘度とし、かつ吐出したポリマーに随伴させる空気の気流速度も高く設定しているが、本発明においては1次プリプレグ1b上に均一に液体やその固化物46を付与することを目的として吐出条件や随伴させる気流速度等が調整される。かかる観点から、スプレー塗布装置での液体の粘度は1~60Pa・sとすることが好ましい。液体の粘度は歪み速度3.14sec-1で測定した値を使用できる。一方、気流速度については、吐出された液体19の繊維化状況を見ながら決定することができる。 In the present spray coating method, it is preferable to arrange the base holes in one row to several rows in the width direction and to apply a heated airflow near the position where the liquid is discharged, as in the melt blow method. At this time, as shown in FIG. 12, it is preferable from the viewpoint of coating stability to apply the airflow 44 from before and after the row of die holes arranged in the width direction. Further, by adjusting the temperature, flow rate, flow velocity, and direction of the airflow, the spinnability and cooling of the discharged liquid and the solidified product 46 thereof can be controlled. The melt blow method is usually used for the production of short-fiber non-woven fabric of thermoplastic resin, in which high-speed airflow is applied to a low-viscosity resin to blow off the resin discharged from a die hole to shorten the fiber. The fiber diameter of the resin fiber obtained here has a large variation of 1 μm to several tens μm. In the present invention, from the viewpoint of improving the uniformity of the basis weight of the resin, it is preferable to reduce the fiber diameter variation as much as possible, and to form continuous fibers, that is, long fibers instead of short fibers. The setting of the production conditions in the melt blow method adopted for ordinary polyester nonwoven fabrics is such that in order to obtain ultra-fine fibers, the resin viscosity is set to an extremely low viscosity, and the air flow velocity of the air accompanying the discharged polymer is also set high. However, in the present invention, for the purpose of uniformly applying the liquid or its solidified material 46 on the primary prepreg 1b, the discharge conditions, the accompanying airflow speed, and the like are adjusted. From such a viewpoint, it is preferable that the viscosity of the liquid in the spray coating device is 1 to 60 Pa · s. As the viscosity of the liquid, a value measured at a strain rate of 3.14 sec -1 can be used. On the other hand, the airflow velocity can be determined while observing the state of fiberization of the discharged liquid 19.
 なお、吐出された液体やその固化物46が繊維状に賦形されているかは、例えば、スプレー塗布装置41から1次プリプレグ1cに達する繊維状に賦形された液体やその固化物46の経路(紡糸線)の動きを高速度ビデオカメラで撮影し、それを観察することで判断することができる。連続繊維化している場合には、繊維状に賦形された液体やその固化物46の動きが紡糸線上流と下流でリンクして揺動しているように観察される。また、1次プリプレグ1c上で捕集された液体の固化物を観察すると長繊維不織布状になっていると、連続繊維化していると判断することができる。また、短繊維の場合にも1次プリプレグ1c上で捕集された液体の固化物を観察し、短繊維不織布状になっていると繊維化していると判断できる。本発明においては捕集された繊維状に賦形された液体の固化物の繊維長が1cm以上であることが好ましく、10cm以上であるとより好ましく、連続繊維化されていることが更に好ましい。また、前記したように一方、連続繊維化せず液滴として飛び散っている場合には1次プリプレグ1c上で捕集された液体やその固化物は液滴形状となる。また、前記した高速度ビデオカメラで観察してもが紡糸線上流と下流でリンクして動いているように観察され難い。 Whether the discharged liquid or the solidified material 46 is shaped in a fibrous form is determined by, for example, the path of the fibrous shaped liquid or the solidified matter 46 reaching the primary prepreg 1c from the spray coating device 41. The movement of the (spinning line) can be judged by taking a picture with a high-speed video camera and observing it. In the case of continuous fiber formation, it is observed that the movement of the fibrous shaped liquid and its solidified material 46 are linked and oscillated upstream and downstream of the spinning line. Further, when the solidified liquid collected on the primary prepreg 1c is observed, it can be determined that continuous fibers are formed when the liquid is in the form of a long-fiber nonwoven fabric. Also, in the case of short fibers, the solidified liquid collected on the primary prepreg 1c is observed, and it can be determined that the fibers are formed into a short fiber non-woven fabric. In the present invention, the fiber length of the collected liquid solid formed into a fibrous form is preferably 1 cm or more, more preferably 10 cm or more, and further preferably continuous fiber. On the other hand, as described above, on the other hand, when the fibers are scattered as droplets without being formed into continuous fibers, the liquid collected on the primary prepreg 1c and the solidified product thereof have a droplet shape. Further, even when observed with the above-described high-speed video camera, it is difficult to observe that the image is moving while being linked upstream and downstream of the spinning line.
 本発明では吐出された液体やその固化物は繊維状に賦形されて1次プリプレグ上に捕集すると、液体やその固化物の目付のムラを抑制でき、プリプレグとしての品位を良好にできるため好ましい。また、装置の周囲を液体やその固化物によって汚すことも少なくできるメリットもある。なお、吐出された液体やその固化物が液滴となる場合、特に液滴サイズが数μm~数百μmの微小液滴の場合には、液滴質量が小さいため飛散し易く、また連続繊維の場合とは異なり液滴の飛散を繋ぎとめる機構が無いため、汚れが発生し易くなると考えられる。 In the present invention, when the discharged liquid or solidified product is shaped into a fiber and collected on the primary prepreg, unevenness in the basis weight of the liquid or solidified product can be suppressed, and the quality of the prepreg can be improved. preferable. There is also an advantage that the surroundings of the apparatus can be less polluted with a liquid or a solidified product thereof. In addition, when the discharged liquid or a solidified product thereof becomes droplets, particularly, in the case of minute droplets having a droplet size of several μm to several hundred μm, the droplets are small and easily scattered. Unlike the case (1), since there is no mechanism for stopping the scattering of droplets, it is considered that dirt is likely to occur.
 本発明において、液体が加温されている場合には、液体は吐出された後、1次プリプレグに向けて冷却され、粘度、剛性が増加していく。特に連続繊維化される場合には、冷却により粘度、剛性が増加すると、繊維状に賦形された液体やその固化物が1次プリプレグに到達するまでの経路が、気流により大きく影響を受けるようになる。図13において、1次プリプレグ1bから液体の吐出部であるスプレー塗布装置41の下面(口金)までの高さh(紡糸長に相当。以下、塗布高さと呼ぶ)が低いと、繊維状に賦形された液体やその固化物46が低粘度・低剛性の状態で1次プリプレグ1cに到達し、気流により繊維状に賦形された液体やその固化物46の到達経路(紡糸線に相当)が影響を受け難いので、繊維状に賦形された液体やその固化物46が紡糸線途中で交差・交絡したり、1次プリプレグ1c上で水平方向に流されたりすることが少なく、紡糸線が直線状となる。このため、繊維状に賦形された液体やその固化46同士の間隔がほぼ等間隔となり、液体やその固化物46の幅方向の目付け均一性が向上する。一方、図14のように塗布高さhが高い場合には、1次プリプレグ1cに到達する前に繊維状に賦形された液体やその固化物46が高粘度・高剛性化するため気流により流され易くなり、紡糸線の途中で繊維状に賦形された液体やその固化物46が交差・交絡したり、1次プリプレグ1c上で水平方向に流され易くなったりする場合がある。このため、塗布高さhは1~100mmとすると樹脂の目付け均一性が向上し、好ましい。より好ましくは70mm以下である。一方、塗布高さhは25mm以上であると、1次プリプレグ1b上での気流の乱れが抑制されるため、液体やその固化物46の液滴や繊維の飛散が抑制され、塗布工程付近の樹脂汚れを抑制でき、より好ましい。 In the present invention, when the liquid is heated, the liquid is discharged, then cooled toward the primary prepreg, and the viscosity and rigidity increase. In particular, when a continuous fiber is formed, if the viscosity and rigidity increase by cooling, the path of the fibrous shaped liquid or its solidified product to the primary prepreg may be greatly affected by the airflow. become. In FIG. 13, when the height h (corresponding to the spinning length; hereinafter, referred to as the coating height) from the primary prepreg 1b to the lower surface (the die) of the spray coating device 41, which is the liquid discharge portion, is low, the fiber is applied. The shaped liquid or its solidified material 46 reaches the primary prepreg 1c in a state of low viscosity and low rigidity, and reaches the fibrous shaped liquid or its solidified material 46 by an air current (corresponding to a spinning line). Is hardly affected, so that the fibrous shaped liquid and the solidified material 46 are less likely to intersect and entangle in the middle of the spinning line or to flow horizontally on the primary prepreg 1c. Becomes linear. For this reason, the intervals between the fibrous shaped liquid and the solidification 46 thereof are substantially equal, and the uniformity of the liquid and the solidification 46 in the width direction is improved. On the other hand, when the coating height h is high as shown in FIG. 14, the liquid or solidified material 46 formed into a fibrous shape before reaching the primary prepreg 1 c becomes high in viscosity and high in rigidity, so that the air flow causes In some cases, the liquid or the solidified material 46 formed into a fibrous shape in the course of the spinning line may be crossed or entangled, or may be easily flowed horizontally on the primary prepreg 1c. For this reason, it is preferable that the coating height h is 1 to 100 mm, because the uniformity of the basis weight of the resin is improved. It is more preferably 70 mm or less. On the other hand, when the coating height h is 25 mm or more, since the turbulence of the air flow on the primary prepreg 1b is suppressed, the scattering of the liquid and the droplets and fibers of the solidified material 46 is suppressed, and the vicinity of the coating process is reduced. Resin contamination can be suppressed, which is more preferable.
 また、吐出された液体は繊維化、特に連続繊維化されると、気流による飛散が抑制され、塗布工程付近の液体やその固化物汚れを抑制でき、好ましい。 液体 Furthermore, when the discharged liquid is formed into fibers, particularly continuous fibers, scattering by an air current can be suppressed, and the liquid near the application step and the solidified product can be suppressed, which is preferable.
 また、上記したように吐出された繊維状に賦形された液体やその固化物は紡糸線下流でも低粘度および/または低剛性を保持できる方が気流の影響を受け難い。このため、液体やその固化物質量や繊維比表面積により繊維状に賦形された液体やその固化物の冷却速度を制御し、気流の影響を受け難くできる場合がある。このため、液体の単孔吐出量や単孔吐出面積を調整することができる。また、低粘度液体の使用、吐出する液体温度の高温化により低粘度化しても、気流の影響を受け難くできる場合がある。液体として熱硬化性樹脂では適用できる樹脂温度上限に制約があるので、樹脂粘度が高い場合には、上記したように、単孔吐出量や単孔吐出面積を調整することも有効である。また、吐出された樹脂に作用させる気流の温度、流量、流速によっても繊維状に賦形された樹脂の冷却や細化過程を調整できるため、これらの工程パラメータも適宜組み合わせることができる。気流の流速や流量は、工業的な生産装置では供給する空気の圧力で調整する場合がある。 繊 維 Furthermore, the fibrous shaped liquid and its solidified material discharged as described above are less likely to be affected by airflow if they can maintain low viscosity and / or low rigidity even downstream of the spinning line. For this reason, the cooling rate of the fibrous shaped liquid or its solidified material may be controlled by the amount of the liquid or its solidified substance or the specific surface area of the fiber, and the influence of the air current may be reduced. For this reason, it is possible to adjust the single hole discharge amount and the single hole discharge area of the liquid. Further, even if the viscosity is lowered by using a low-viscosity liquid or by increasing the temperature of the liquid to be discharged, the influence of the air current may be reduced. Since there is a restriction on the upper limit of the resin temperature that can be applied to a thermosetting resin as a liquid, when the resin viscosity is high, it is also effective to adjust the single hole discharge amount and the single hole discharge area as described above. In addition, since the cooling and thinning process of the fibrous resin can be adjusted by the temperature, flow rate, and flow rate of the airflow acting on the discharged resin, these process parameters can be appropriately combined. The flow rate and flow rate of the air current may be adjusted by the pressure of supplied air in an industrial production device.
 また、本発明では、1次プリプレグが実質的に平面状に搬送されている領域において吐出された液体やその固化物を捕集すると、特許文献5記載のように強化繊維シートが下方に湾曲することに起因する種々の問題を解決することができる。なお、ここで、実質的に平面状に搬送されている領域とは、図12に示されるように液体やその固化物46の捕集部付近で1次プリプレグ1cが長手方向に実質的に直線状に搬送されている領域をいう。これは図12においては、強化繊維の水平配列方向、すなわち手前から奥から見た時に、液体やその固化物46の捕集部付近で搬送される1次プリプレグ1cが実質的に直線状に見えることを意味している。本発明において、スプレー塗布工程で下向き空気流が有っても1次プリプレグが下方向に湾曲しないようにする具体的方法については、特に制限は無いが、例えば図12に示したように、塗布工程で1次プリプレグ1c下部に、これを支持できる物(図12ではテーブル45を例示)を配置することが有効である。また、1次プリプレグに適切な張力をかけて搬送することが強化繊維の配列を保持する観点から好ましい。 Further, in the present invention, when the discharged liquid and its solidified material are collected in a region where the primary prepreg is transported in a substantially planar shape, the reinforcing fiber sheet bends downward as described in Patent Document 5. Various problems resulting from the above can be solved. Note that, here, the region that is transported substantially in the form of a plane refers to a region in which the primary prepreg 1c is substantially linear in the longitudinal direction in the vicinity of the collection portion of the liquid or its solidified material 46 as shown in FIG. Refers to the area that is being conveyed. This is because, in FIG. 12, the primary prepreg 1c conveyed in the vicinity of the collection portion of the liquid or the solidified material 46 thereof looks substantially linear when viewed from the horizontal arrangement direction of the reinforcing fibers, that is, from the near side. Means that. In the present invention, there is no particular limitation on a specific method for preventing the primary prepreg from curving downward even when there is a downward air flow in the spray coating process, but for example, as shown in FIG. In the process, it is effective to dispose an object capable of supporting the primary prepreg 1c below the primary prepreg 1c (the table 45 is illustrated in FIG. 12). In addition, it is preferable to transport the primary prepreg with an appropriate tension from the viewpoint of maintaining the arrangement of the reinforcing fibers.
 <カーテン塗布工程>
 次に、1次プリプレグ形成後のカーテン塗布工程について詳述する。ここで、カーテン塗布とは液体を面状に吐出して、これが吐出された空間において膜状物を形成し、塗布されることを意味し、膜は液体のままでも半固化や固化されていても良い。このため、本発明では非接触塗布であるため、塗布ヘッドを押し付ける方法に比べ、擦過に起因する種々の問題を解決することができる。なお、第2の製造方法において、改質剤を付与する手段としてカーテン塗布を用いることもできるが、このときは、強化繊維シート上に塗布することになる。
<Curtain coating process>
Next, the curtain coating step after the formation of the primary prepreg will be described in detail. Here, curtain coating means that a liquid is discharged in a planar shape, and a film is formed and applied in a space where the liquid is discharged, and the film is semi-solidified or solidified even in the liquid state. Is also good. For this reason, in the present invention, since non-contact coating is performed, various problems caused by abrasion can be solved as compared with the method of pressing the coating head. In the second production method, curtain coating can be used as a means for applying the modifier, but in this case, coating is performed on the reinforcing fiber sheet.
 次に本発明では、液体の吐出方向と1次プリプレグの搬送方向の成す角度(この角度を便宜的に「塗布角」と称することがある)を80°以下とすることが好ましい。図15には、1次プリプレグ1cの搬送方向を水平方向とした時の一般的な塗布方法を示しているが、液体の吐出方向と1次プリプレグ1cの搬送方向の成す角度は90°である。本発明者らが、熱硬化性樹脂(エポキシ樹脂など)を用いて実験を行ったところ、液体の吐出方向と1次プリプレグの搬送方向の成す角度を90°とすると搬送速度を高くして塗布することが難しい場合があった。なお、塗布装置を1次プリプレグに押し付けている場合には、空中での膜の形成がないため、このような問題は発生しないと考えられる。しかしながら、図16に示したように液体の吐出方向と1次プリプレグ1cの搬送方向の成す角度を80°以下とすることで、液体を面状に吐出して膜47を形成させる場合であっても、安定して高速で塗布できることを本発明者らは見出したのである。塗布角αは小さい方が安定して高速で塗布でき、好ましい。ただし、塗布角αが小さくなると塗布ヘッドの大きさが1次プリプレグの搬送工程に干渉し易くなるため、装置上の制約が生じる場合がある。この観点から、塗布角αは30~70°とすることが好ましい。 (5) In the present invention, it is preferable that the angle between the liquid discharge direction and the primary prepreg transport direction (this angle is sometimes referred to as “application angle” for convenience) is 80 ° or less. FIG. 15 shows a general application method when the transport direction of the primary prepreg 1c is the horizontal direction. The angle between the liquid discharge direction and the transport direction of the primary prepreg 1c is 90 °. . The present inventors conducted an experiment using a thermosetting resin (such as an epoxy resin). As a result, when the angle between the liquid discharge direction and the primary prepreg transport direction was 90 °, the transport speed was increased and the coating was performed. Sometimes it was difficult to do. When the coating device is pressed against the primary prepreg, it is considered that such a problem does not occur because no film is formed in the air. However, as shown in FIG. 16, the film 47 is formed by discharging the liquid in a plane by setting the angle between the liquid discharge direction and the transport direction of the primary prepreg 1c to 80 ° or less. The present inventors have found that coating can be performed stably at high speed. The smaller the coating angle α, the more stable and high-speed coating is possible, which is preferable. However, when the coating angle α is small, the size of the coating head tends to interfere with the primary prepreg conveying process, and thus there may be restrictions on the apparatus. From this viewpoint, the coating angle α is preferably set to 30 to 70 °.
 図16に示した、吐出線中心と1次プリプレグ1cとの距離である塗布高さhは3mm以上とすることで、カーテン塗布装置42の口金への液溜りによる口金汚れを抑制し、塗布安定性を向上できるため好ましい。また、18mm以下とすることで膜の形成が安定化するため好ましい。 By setting the coating height h, which is the distance between the center of the ejection line and the primary prepreg 1c, shown in FIG. 16 to be 3 mm or more, it is possible to suppress die contamination due to liquid accumulation in the die of the curtain coating device 42 and to stabilize coating. It is preferable because the property can be improved. Further, it is preferable that the thickness be 18 mm or less because the film formation is stabilized.
 カーテン塗布装置は、面状に液体の吐出が可能な装置であればよい。より詳細に説明すると、好適な例として、液体を吐出する口金から、幅方向に厚みが均一な液体が吐出され、面あるいはカーテン状の膜を形成できる装置である。一般的には、ダイコーターとよばれるものを使用可能であり、厚みが均一で間欠のないスリットから液体を吐出できる構造を用いることができる。また、カーテン塗布装置は吐出直前に液体を加熱し、任意の粘度に調整できる加熱機構を有することが好ましい。特に液体として硬化性樹脂を用いる場合、保管時の樹脂の熱履歴による劣化、粘度上昇、暴走反応の危険性があることから、樹脂の加温時間を短くし、かつ適切な温度管理を行うことが好ましい。なお、カーテン塗布装置での液体の粘度は1~60Pa・sとすることが好ましい。液体の粘度は歪み速度3.14sec-1で測定した値を使用できる。 The curtain coating device may be any device that can discharge the liquid in a plane. More specifically, as a preferred example, there is provided a device capable of discharging a liquid having a uniform thickness in a width direction from a die for discharging the liquid to form a surface or a curtain-shaped film. Generally, what is called a die coater can be used, and a structure that can discharge liquid from a slit having a uniform thickness and no intermittents can be used. Further, it is preferable that the curtain coating apparatus has a heating mechanism that can heat the liquid immediately before the discharge and adjust the liquid to an arbitrary viscosity. In particular, when using curable resin as the liquid, there is a risk of deterioration due to heat history of the resin during storage, increase in viscosity, and runaway reaction, so shorten the heating time of the resin and perform appropriate temperature control. Is preferred. The viscosity of the liquid in the curtain coating device is preferably 1 to 60 Pa · s. As the viscosity of the liquid, a value measured at a strain rate of 3.14 sec -1 can be used.
 また、本発明では、液体が吐出された空間において膜は自由表面を有することとなるので、膜形状が変形し易い。例えば、膜の端部がいわゆる「ネックイン」により幅方向での縮退を発生したり、1次プリプレグが高速で搬送された際に膜全体が引っ張られる等により、膜の形成が不安定になったり、膜の目付けの均一性が損なわれる場合がある。このため、気流を膜の幅方向の端部に作用させ、膜形成を安定化することが好ましい。 According to the present invention, since the film has a free surface in the space where the liquid is discharged, the shape of the film is easily deformed. For example, the film formation becomes unstable because the end of the film is degenerated in the width direction due to a so-called “neck-in”, or the entire film is pulled when the primary prepreg is transported at a high speed. Or the uniformity of the basis weight of the film may be impaired. For this reason, it is preferable to apply an air current to the end of the film in the width direction to stabilize the film formation.
 膜は、引っ張り方向に対して垂直方向に膜の端部が膜の中心方向に引き込まれて膜の幅が縮小する「ネックイン」という現象が発生する(図17参照。Nで示された分、膜47の幅が減少している)。この現象は特に、膜を形成する液体やその固化物の粘度が高いときや、引っ張り速度が速いときなど、膜に高張力がかかる時に発生し易いと考えられる。特に本発明のプリプレグの製造方法によって高速で膜の形成を行う場合にはネックインを抑制することが好ましい。このため、本発明では、膜前面から端部に向けて気流(端部エア48)を作用させて、例えば吹き付けて(図17、図18参照)、膜端部を拡げるにようにすることが好ましい。このための気流を本発明では端部エアと呼ぶ。端部エアを作用させる手段としては一般的に金属管やノズルを用いることができる。端部エアの気流速度、流量、角度、位置、温度はネックインや樹脂膜の形成が安定して行われるかなどを考慮し、適切に選ぶことが好ましい。また、端部エアは膜を塗布する際に用いることができる。塗布する際とは、口金から液体を吐出し始める前、口金から液体の吐出を開始するとき、口金から液体を吐出する間、膜が形成され、膜が1次プリプレグに塗布される間など適宜選択して適用することができる。 In the film, a phenomenon called “neck-in” occurs in which the edge of the film is pulled in the direction of the center of the film in the direction perpendicular to the pulling direction, and the width of the film is reduced (see FIG. 17, N). , The width of the film 47 is reduced). This phenomenon is considered to be particularly likely to occur when a high tension is applied to the film, such as when the viscosity of the liquid forming the film or a solidified product thereof is high, or when the pulling speed is high. In particular, when a film is formed at high speed by the prepreg manufacturing method of the present invention, it is preferable to suppress neck-in. For this reason, in the present invention, an air current (end air 48) is applied from the front surface of the film to the end, and the film is blown, for example (see FIGS. 17 and 18), so that the end of the film is expanded. preferable. The airflow for this is called end air in the present invention. Generally, a metal pipe or a nozzle can be used as a means for applying the end air. It is preferable that the airflow velocity, flow rate, angle, position, and temperature of the end air be appropriately selected in consideration of, for example, whether neck-in or resin film formation is stably performed. Also, the end air can be used when applying the film. When applying the liquid, the film is formed before the liquid is discharged from the die, when the liquid is started to be discharged from the die, when the liquid is discharged from the die, and when the film is applied to the primary prepreg. Can be selected and applied.
 また、図19に示したように膜の引っ張り方向、すなわちプリプレグ搬送方向へ膜が過度に引っ張られる場合が有るが、この時には、例えば、図20のように膜前面から膜47の全面またはほぼ全面に向けて気流(面部エア47)を吹き付け、膜47が1次プリプレグ1cに接触する位置をカーテン塗布装置側に近づけることが好ましい。このための気流を本発明では面部エアと呼ぶ。面部エアの気流速度、流量、角度、位置、温度は膜の形成が安定して行われるかなどを考慮し、適切に選ぶことが好ましい。面部エアを付与する手段としては一般的にスリット状または線上に多孔が配列されたノズルを用いることができる。また、端部エア、面部エアとも付与装置はカーテン塗布装置に備えることが、装置をコンパクトにでき、また、取り扱い性の観点から好ましい(図21参照)。また、膜の面部への作用については、膜の背面側から空気を吸引することによっても膜が1次プリプレグに接触する位置を塗布部側に近づけることができる。 Also, as shown in FIG. 19, the film may be excessively pulled in the film pulling direction, that is, in the prepreg transport direction. At this time, for example, as shown in FIG. It is preferable that the airflow (surface air 47) is blown toward the surface to make the position where the film 47 contacts the primary prepreg 1c closer to the curtain coating apparatus side. In the present invention, the airflow for this purpose is called surface air. It is preferable that the airflow velocity, flow rate, angle, position, and temperature of the surface air be appropriately selected in consideration of whether the film is formed stably. As a means for applying the surface air, a nozzle in which slits or holes are arranged in a line can be generally used. In addition, it is preferable that both the end air and the surface air are provided in the curtain coating apparatus from the viewpoint of the compactness of the apparatus and the ease of handling (see FIG. 21). Regarding the action on the surface of the film, the position at which the film contacts the primary prepreg can be made closer to the coating portion by sucking air from the back side of the film.
 以上は1次プリプレグが水平に搬送される場合を示したが、図22に示すように、カーテン塗布はロール上の1次プリプレグに施すこともできる。この時には、膜47とロール50上の1次プリプレグ1bが接する時の接線と吐出方向の成す角を「塗布角」とすることができる。 Although the case where the primary prepreg is transported horizontally has been described above, curtain coating can also be applied to the primary prepreg on a roll as shown in FIG. At this time, the angle between the tangent when the film 47 and the primary prepreg 1b on the roll 50 come into contact with the discharge direction can be set as the “application angle”.
 <第1の製造方法における、スプレー塗布、カーテン塗布で塗布する液体>
 本発明の第1の製造方法において、スプレー塗布、カーテン塗布を用いて1次プリプレグに塗布する液体については、特に制限は無く、目的に合わせて適宜選択することができる。例えば、前記したマトリックス樹脂を用いることができる。また、熱硬化性樹脂や熱可塑性樹脂を単独で用いることもできるし、硬化剤や各種添加剤を単独で用いることもできる。さらに、前記した無機粒子や有機粒子、ポリマー粒子などの固形物を液体に含有させることもできる。また、これらのものは目的に応じて、加温や溶媒を加えることでスプレー塗布やカーテン塗布に適切な粘度に調整することができる。
<Liquid to be applied by spray coating and curtain coating in the first manufacturing method>
In the first production method of the present invention, the liquid applied to the primary prepreg using spray coating or curtain coating is not particularly limited, and can be appropriately selected depending on the purpose. For example, the matrix resin described above can be used. Further, a thermosetting resin or a thermoplastic resin can be used alone, and a curing agent or various additives can be used alone. Further, solids such as the above-mentioned inorganic particles, organic particles, and polymer particles can be contained in the liquid. Further, these can be adjusted to a viscosity suitable for spray coating or curtain coating by heating or adding a solvent according to the purpose.
 例えば、プリプレグ表面にタック性を付与したい場合には、液状エポキシ樹脂やウレタン樹脂、ゴム等のタック性を付与できる物質を所望のタック性になるよう適宜調整して用いることができる。また、1次プリプレグを形成させる時に用いるマトリックス樹脂から硬化剤の一部または全部を抜き出し、改めてスプレー塗布やカーテン塗布で付与することもできる。こうすることで、1次プリプレグを形成させる時に用いるマトリックス樹脂を低粘度化でき、工程安定性を向上させたり、製造速度を高速化することができる。また、1次プリプレグを形成させる時に用いるマトリックス樹脂から粒子の一部または全部を抜き出し、改めてスプレー塗布やカーテン塗布で付与することもできる。こうすることで、1次プリプレグを形成させる時に用いるマトリックス樹脂を低粘度化でき、工程安定性を向上させたり、製造速度を高速化することができる。このとき粒子は、適切な液体とサスペンジョンを形成させたり、熱硬化性樹脂や熱可塑性樹脂に含有させて用いることができる。また、こうすることでプリプレグ表面に選択的に粒子を配置することが可能となり、強化繊維層と強化繊維層の層間に粒子を選択的に配置することができる。また、常温で固体となる液体を用いることで、プリプレグ表面の凹凸(粗度)を調整することも可能であり、これにより真空圧成形性などを向上することもできる。 For example, when it is desired to impart tackiness to the prepreg surface, a substance capable of imparting tackiness, such as a liquid epoxy resin, urethane resin, or rubber, can be appropriately adjusted and used so as to have a desired tackiness. Alternatively, part or all of the curing agent can be extracted from the matrix resin used when forming the primary prepreg, and can be applied again by spray coating or curtain coating. By doing so, the viscosity of the matrix resin used when forming the primary prepreg can be reduced, the process stability can be improved, and the production speed can be increased. Alternatively, some or all of the particles may be extracted from the matrix resin used for forming the primary prepreg, and the particles may be applied again by spray coating or curtain coating. By doing so, the viscosity of the matrix resin used when forming the primary prepreg can be reduced, the process stability can be improved, and the production speed can be increased. At this time, the particles can be used by forming a suspension with an appropriate liquid or by being contained in a thermosetting resin or a thermoplastic resin. Further, by doing so, it is possible to selectively arrange particles on the prepreg surface, and it is possible to selectively arrange particles between the reinforcing fiber layers. In addition, by using a liquid that becomes a solid at room temperature, it is also possible to adjust the unevenness (roughness) of the prepreg surface, thereby improving the vacuum pressure formability and the like.
 <第2の製造方法における、改質剤の付与>
 本発明の第2の製造方法においては、塗布部に導入する前の強化繊維シート1aに対し、改質剤を付与する。
<Applying a modifier in the second production method>
In the second production method of the present invention, a modifier is applied to the reinforcing fiber sheet 1a before being introduced into the application section.
 (改質剤)
 改質剤とは、糸割れ防止剤、靭性向上剤、難燃剤および毛羽集束剤からなる群から選ばれる薬剤を総称したものであり、プリプレグの品位や機能性を向上させることができる薬剤である。付与する改質剤はこれらの群から一つの改質剤を選択して付与することもできるし、複数の改質剤を併用して用いることや、混合して用いることももちろん可能である。各改質剤について詳細に説明する。
(Modifier)
The modifier is a generic term for a drug selected from the group consisting of a yarn breaking inhibitor, a toughness improver, a flame retardant, and a fluff sizing agent, and is a drug that can improve the quality and functionality of a prepreg. . One modifier can be selected from these groups and applied, or a plurality of modifiers can be used in combination or mixed. Each modifier will be described in detail.
 (糸割れ防止剤)
 糸割れ防止剤とは、プリプレグの重要な品位である幅方向の目付け均一性を高める薬剤である。糸割れについて図1bを用い説明する。炭素繊維を強化繊維1として用いる場合、強化繊維シート1aはトウを配列させて得ることができるが、この強化繊維シート1aが配列装置12から塗布部20まで搬送される間に、隣接するトウとトウの間が割れることがある。これを糸割れと称する。この糸割れした強化繊維シートをマトリックス樹脂2に通すと、得られるプリプレグ1cは幅方向に強化繊維がない品位不良が生じ、幅方向の目付け均一性が低下することがある。特にプリプレグ1cの強化繊維配列方向に対し幅方向に強化繊維がない部分の幅が2mm以上であるとき、品位不良と判定する。この糸割れは、塗布部20を通過する前の強化繊維シート1aに糸割れ防止剤を付与することで、改善または解消することができる。糸割れ防止剤はトウとトウの間を繋ぐ、あるいは掛け渡すように付与する薬剤のことである。糸割れ防止剤の付与により、トウの幅方向への移動を拘束あるいは抑制することで、強化繊維シートを実質的に一体化でき、結果としてトウとトウの間の糸割れを抑制できるものである。付与する糸割れ防止剤の成分は、トウとトウの間の糸割れを抑制できるものであれば特に限定されない。糸割れ防止剤は後に説明する塗布部20で塗布するマトリックス樹脂2、マトリックス樹脂2に含まれる成分またはその成分から選択されたものの組み合わせたものであるとき、最終的に得られるプリプレグを積層、硬化させたCFRPの機械特性が大きく低下せず好ましい。具体的な成分としては、エポキシ樹脂、エポキシ樹脂の硬化剤、熱可塑性樹脂から選択され混合された混合物も好ましく、得られるプリプレグを積層、硬化させたCFRPの耐熱性、耐薬品性、力学特性に優れる。付与する糸割れ防止剤の成分の具体例としては、低粘度な樹脂が好ましく、付与する際の溶融に必要な加熱を省略・簡略化できたり、塗布時あるいは追含浸時の含浸度を高めることができる。ここでいう低粘度とは、40℃において歪み速度3.14s-1で測定したときの粘度が4000Pa・s以下のものをいう。測定装置としては平行円盤型やコーン型などの粘弾性測定装置を用いることができる。
(Yarn cracking inhibitor)
The yarn crack preventing agent is an agent for improving the uniformity of the basis weight in the width direction, which is an important quality of the prepreg. The yarn crack will be described with reference to FIG. When carbon fiber is used as the reinforcing fiber 1, the reinforcing fiber sheet 1a can be obtained by arranging the tows, and while the reinforcing fiber sheet 1a is conveyed from the arranging device 12 to the application section 20, the adjacent tow is formed. Cracks may occur between the tows. This is called a yarn crack. If the thread-reinforced reinforcing fiber sheet is passed through the matrix resin 2, the resulting prepreg 1c may have poor quality without reinforcing fibers in the width direction, and the uniformity in the weight in the width direction may be reduced. In particular, when the width of the portion of the prepreg 1c where there is no reinforcing fiber in the width direction with respect to the reinforcing fiber arrangement direction is 2 mm or more, it is determined to be defective. This yarn crack can be improved or eliminated by applying a yarn crack preventing agent to the reinforcing fiber sheet 1a before passing through the application section 20. The yarn breaking inhibitor is an agent applied to connect or bridge between tows. By providing or suppressing the movement of the tow in the width direction by applying the yarn crack preventing agent, the reinforcing fiber sheet can be substantially integrated, and as a result, the yarn crack between the tow and the tow can be suppressed. . The component of the yarn crack preventing agent to be applied is not particularly limited as long as the yarn crack between tows can be suppressed. When the yarn cracking inhibitor is a matrix resin 2 to be applied in the application section 20 described later, a component contained in the matrix resin 2 or a combination of components selected from the components, the prepreg finally obtained is laminated and cured. This is preferable because the mechanical properties of the CFRP thus obtained do not significantly decrease. As a specific component, an epoxy resin, a curing agent for the epoxy resin, and a mixture selected from thermoplastic resins are also preferable. The obtained prepreg is laminated, and the heat resistance, chemical resistance, and mechanical properties of the cured CFRP are improved. Excellent. As a specific example of the component of the yarn crack preventing agent to be applied, a low-viscosity resin is preferable, and heating required for melting at the time of application can be omitted or simplified, or the degree of impregnation at the time of application or additional impregnation can be increased. Can be. The term “low viscosity” as used herein refers to a material having a viscosity of 4000 Pa · s or less when measured at a strain rate of 3.14 s −1 at 40 ° C. As the measuring device, a viscoelasticity measuring device such as a parallel disk type or a cone type can be used.
 (靭性向上剤)
 靭性向上剤とは、付与することで得られるプリプレグを積層、硬化してなるCFRPの靭性や耐衝撃性を高めることができる薬剤である。靭性向上剤をマトリックス樹脂に進入する前の強化繊維シートに付与することで、強化繊維シート表層に靭性向上成分を付与することができ、CFRPの靭性を高められ、さらには糸割れ防止剤としての役割を同時に達成することも可能である。付与する靭性向上剤の成分としては、ポリアミドやポリイミドが好ましく、優れた靭性のため耐衝撃性を高めることができる。また、高い耐熱性を付与するという観点からは、Tgは180℃以上のものが好ましく、分子内に芳香環を有することが好ましい。具体的にはポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルイミド、ポリフェニレンオキシド、ポリスルホンなどが好ましく用いられる。靭性向上剤としては、これら成分を溶融して付与することもできるし、粒子状としたものを樹脂に混練し用いることも可能である。
(Toughness improver)
The toughness improver is a chemical that can improve the toughness and impact resistance of CFRP obtained by laminating and curing a prepreg obtained by applying. By providing the toughness improver to the reinforcing fiber sheet before entering the matrix resin, a toughness improving component can be provided to the surface layer of the reinforcing fiber sheet, the toughness of CFRP can be increased, and further as a yarn cracking inhibitor It is also possible to fulfill roles at the same time. As a component of the toughness improver to be provided, polyamide or polyimide is preferable, and impact resistance can be increased due to excellent toughness. Further, from the viewpoint of imparting high heat resistance, Tg is preferably 180 ° C. or higher, and preferably has an aromatic ring in the molecule. Specifically, polyether sulfone, polyether ether sulfone, polyetherimide, polyphenylene oxide, polysulfone and the like are preferably used. As the toughness improver, these components can be applied by melting, or those in the form of particles can be kneaded with a resin and used.
 (難燃材)
 難燃剤とは、付与することでCFRPの難燃性を向上させることができる薬剤であり、特に航空機や車両等の構造部材、建築材料で必要とされる特性である。難燃剤をマトリックス樹脂に進入する前の強化繊維シートに付与することで、強化繊維シート表層に難燃剤を付与することで、CFRPの難燃性を付与することができる。本発明で用いる難燃剤としては、一般に公知の難燃剤を混練した樹脂を用いることができる。例えば金属水酸化物、金属酸化物、赤リン、リン酸エステル、リン酸塩などのリン原子含有化合物、窒素含有化合物、三酸化アンチモンなどを混練した樹脂を用いることができる。
(Flame retardant)
The flame retardant is a chemical that can improve the flame retardancy of CFRP by being applied, and is a characteristic required particularly for structural members such as aircraft and vehicles, and building materials. By applying the flame retardant to the reinforcing fiber sheet before entering the matrix resin, the flame retardant of the CFRP can be imparted by applying the flame retardant to the surface layer of the reinforcing fiber sheet. As the flame retardant used in the present invention, a resin obtained by kneading a generally known flame retardant can be used. For example, a resin obtained by kneading a metal hydroxide, a metal oxide, a phosphorus atom-containing compound such as red phosphorus, a phosphoric ester, a phosphate, a nitrogen-containing compound, antimony trioxide, or the like can be used.
 (毛羽集束剤)
 毛羽集束剤とは、付与することで強化繊維シートの面外方向に飛び出た毛羽を強化繊維シートに一体化させる薬剤である。強化繊維シートの面外方向に飛び出た毛羽がある場合、塗布部の狭窄部を通過する際、毛羽が切れ、塗布部に貯留するマトリックス樹脂中に堆積することがある。あらかじめ塗布部に進入する前の強化繊維シートに毛羽集束剤を付与することで、塗布部内で強化繊維シートから飛び出た毛羽が狭窄部で切れ、塗布部に貯留するマトリックス樹脂中に毛羽が滞留することを抑制でき、さらには糸割れ防止剤としての役割を同時に達成することも可能である。付与する毛羽集束剤の成分は特に問わないが、毛羽防止剤は後に説明する塗布部20で塗布するマトリックス樹脂2、マトリックス樹脂2に含まれる成分またはその成分から選択されたものの組み合わせたものであるとき、最終的に得られるプリプレグを積層、硬化させたCFRPの機械特性が大きく低下せず、塗布部に堆積する毛羽の発生を抑制でき好ましい。具体的な成分としては、エポキシ樹脂、エポキシ樹脂の硬化剤、熱可塑性樹脂から選択され混合された混合物も好ましく、得られるプリプレグを積層、硬化させたCFRPの耐熱性、耐薬品性、力学特性に優れる。付与する毛羽集束剤の成分の具体例としては、低粘度な樹脂が好ましく、付与する際の溶融に必要な加熱を省略・簡略化できたり、塗布時あるいは追含浸時の含浸度を高めることができる。ここでいう低粘度とは、40℃において歪み速度3.14s-1で測定したときの粘度が4000Pa・s以下のものをいう。測定装置としては平行円盤型やコーン型などの粘弾性測定装置を用いることができる。
(Fuzz sizing agent)
The fluff sizing agent is an agent that, when applied, integrates fluff that has protruded out of the plane of the reinforcing fiber sheet into the reinforcing fiber sheet. If there are fluffs protruding in the out-of-plane direction of the reinforcing fiber sheet, the fluffs may be cut off when passing through the constricted part of the application part, and may be deposited in the matrix resin stored in the application part. By applying the fuzz sizing agent to the reinforcing fiber sheet before entering the application section in advance, the fluff that has jumped out of the reinforcing fiber sheet in the application section is cut at the narrowed portion, and the fuzz stays in the matrix resin stored in the application section. This can be suppressed, and the role as a yarn crack preventing agent can be simultaneously achieved. The component of the fuzz sizing agent to be applied is not particularly limited, but the anti-fuzz agent is a matrix resin 2 to be applied in the application section 20 described later, a component contained in the matrix resin 2 or a combination of components selected from the components. At this time, the mechanical properties of the CFRP obtained by laminating and curing the prepreg finally obtained are not significantly reduced, and the generation of fluff deposited on the application portion is preferably suppressed. As a specific component, an epoxy resin, a curing agent for the epoxy resin, a mixture selected from thermoplastic resins is also preferable, and the obtained prepreg is laminated, and the heat resistance, chemical resistance, and mechanical properties of the cured CFRP are improved. Excellent. As a specific example of the component of the fuzz sizing agent to be applied, a low-viscosity resin is preferable, and heating required for melting at the time of application can be omitted or simplified, or the degree of impregnation at the time of application or additional impregnation can be increased. it can. The term “low viscosity” as used herein refers to a material having a viscosity of 4000 Pa · s or less when measured at a strain rate of 3.14 s −1 at 40 ° C. As the measuring device, a viscoelasticity measuring device such as a parallel disk type or a cone type can be used.
 (改質剤の付与方法)
 改質剤の付与方法としては、特に限定されず種々の方法を用いることができるが、強化繊維シートとの擦過で生じる毛羽による連続生産性の低下、強化繊維の配列性や直進性の乱れを抑制できることから、強化繊維シートに対し非接触の塗布方法が好ましい。例えば、前記したスプレー塗布(メルトブローを含む)、カーテン塗布を用いることができる。
(Method of applying modifier)
The method for applying the modifier is not particularly limited, and various methods can be used. However, a decrease in continuous productivity due to fluff caused by rubbing with the reinforcing fiber sheet, a disorder in the arrangement of the reinforcing fibers and in the straightness of the straightness. From the viewpoint of suppression, a coating method that does not contact the reinforcing fiber sheet is preferable. For example, the above-mentioned spray coating (including melt blowing) and curtain coating can be used.
 (付与する改質剤の目付)
 付与する改質剤の両面合わせた目付(強化繊維シート1aに付与される単位面積あたりの改質剤の質量)は、20g/m以下であることが好ましい。この範囲であるとき、工程安定性やプリプレグの品質、品位、機能性が得られるとともに、最終的に得られるプリプレグを積層、硬化させたCFRPの機械特性の大きな低下を抑制することができる。
(Weight of modifier to be applied)
It is preferable that the combined basis weight (the mass of the modifier per unit area applied to the reinforcing fiber sheet 1a) of the modifier to be applied is 20 g / m 2 or less. When the content is within this range, the process stability and the quality, quality, and functionality of the prepreg can be obtained, and the mechanical properties of CFRP obtained by laminating and curing the finally obtained prepreg can be suppressed.
 (改質剤の長手方向の付与間隔)
 スプレー塗布ヘッドの幅が強化繊維シート幅方向の幅に比べて狭い場合、スプレー塗布ヘッドを幅方向にトラバースさせることもできる。この場合、スプレー塗布が強化繊維シート上でジグザグ形状となることがあるため、強化繊維シートの走行方向に対し、改質剤の付与が間欠的になる場合がある。このとき、改質剤の長手方向の付与間隔(改質剤の付与がスプレー塗布による場合はスプレー塗布間隔ともいう)は最大30mm以内であることが好ましく、この範囲であるとき改質剤による効果を得やすい。なお、付与間隔が最大30mm以内とは、改質剤が付与された強化シートを100cm(走行方向)×10cm(幅方向)で強化繊維シートの両端付近および中央付近の3箇所で観察した時に、いずれの観察箇所でも、改質剤が付与されていない部分が走行方向において30mmを超える距離が開いている箇所が存在していないことをいう。広幅スプレー塗布ヘッドを用いたり複数のスプレ塗布ヘッドを用いると、強化繊維シートの走行速度を速くしてもスプレー塗布間隔を減じることができる。
(Applied interval in the longitudinal direction of the modifier)
When the width of the spray application head is narrower than the width in the width direction of the reinforcing fiber sheet, the spray application head can be traversed in the width direction. In this case, since the spray application may form a zigzag shape on the reinforcing fiber sheet, the application of the modifier may be intermittent in the running direction of the reinforcing fiber sheet. At this time, the interval between application of the modifier in the longitudinal direction (also referred to as the spray application interval when the application of the modifier is performed by spray coating) is preferably within a maximum of 30 mm. Easy to get. Note that the maximum application interval of 30 mm or less means that the reinforcing sheet to which the modifier has been applied is observed at three locations near both ends and near the center of the reinforcing fiber sheet at 100 cm (running direction) × 10 cm (width direction). In any of the observation locations, there is no location where the portion to which the modifier has not been applied is more than 30 mm apart in the running direction. When a wide spray application head or a plurality of spray application heads are used, the spray application interval can be reduced even if the running speed of the reinforcing fiber sheet is increased.
 <第2の製造方法における、改質剤付与工程>
 強化繊維シートとしてUD基材を用いた場合について、改質剤付与工程を図1bを参照して説明する。クリール11から巻き出された複数本の強化繊維1は配列装置12により配列され、得られた強化繊維シートを直線的に改質剤付与装置を通し改質剤を付与し、得られた改質剤を付与した強化繊維シート1bを搬送ロール13で走行方向を水平方向から鉛直方向下向きに方向転換させ塗布部20に通過させる例である。
<Modifier applying step in the second manufacturing method>
In the case where a UD base material is used as a reinforcing fiber sheet, a modifier applying step will be described with reference to FIG. 1B. The plurality of reinforcing fibers 1 unwound from the creel 11 are arranged by the arranging device 12, and the obtained reinforcing fiber sheet is linearly passed through the modifier applying device to apply the modifying agent, thereby obtaining the obtained modified fiber. This is an example in which the running direction of the reinforcing fiber sheet 1b to which the agent is applied is changed from the horizontal direction to the vertical direction by the transport roll 13 and is passed through the application unit 20.
 改質剤付与装置としては本発明の目的を達成する範囲で制限なく種々の付与装置から適宜選択し用いることができる。スプレー塗布(メルトブローを含む)であると低目付けの塗布が容易であり好ましい。さらにメルトブローは改質剤を空気流により強化繊維シートへ導くため、装置周辺の汚染が少なく、改質剤のロスも少なく、目付け均一性が高く好ましい。カーテン布は間欠なく改質剤の付与が可能であり好ましい。 The modifier applying device can be appropriately selected from various applying devices without any limitation as long as the object of the present invention is achieved. Spray coating (including melt-blowing) is preferred because low-weight coating is easy. Further, since the melt blowing guides the modifying agent to the reinforcing fiber sheet by an air stream, the contamination around the apparatus is small, the loss of the modifying agent is small, and the uniformity of the basis weight is preferable. Curtain cloth is preferable because the modifier can be applied without interruption.
 改質剤を付与する面は強化繊維シート1aに対し片面でも両面でもよい。なお、図1bでは強化繊維シート1aに対し改質剤を付与する場所は、配列装置12で得られた強化繊維シート1aを方向転換する搬送ロール13までの水平搬送する区間内に改質剤付与装置28を具備し改質剤を付与する例を示したが、もちろん改質剤の付与は強化繊維の配列装置12から塗布部20までの間であれば特に限定されず、搬送ロール13から塗布部までの区間内に改質剤付与装置を具備し、鉛直方向下向きに走行する強化繊維シートに対し改質剤を付与してもよい。なお、図1bでは省略したが、強化繊維を巻き出すクリールから塗布部までの間において、適宜強化繊維シートの拡幅装置、平滑化装置、また、強化繊維シートの予熱装置を用いることもできる。また、かかる配列装置、拡幅装置、平滑化装置、予熱装置は適宜順番を変更し用いることもできる。 The surface to which the modifier is applied may be one side or both sides with respect to the reinforcing fiber sheet 1a. In FIG. 1b, the place where the modifying agent is applied to the reinforcing fiber sheet 1a is located within the section where the reinforcing fiber sheet 1a obtained by the arraying device 12 is horizontally conveyed to the conveying roll 13 which changes the direction. Although the example in which the device 28 is provided and the modifier is applied is shown, the application of the modifier is not particularly limited as long as it is between the reinforcing fiber arrangement device 12 and the application unit 20. The section up to the section may be provided with a modifier applying device, and the modifier may be applied to the reinforcing fiber sheet traveling vertically downward. Although not shown in FIG. 1B, a widening device for the reinforcing fiber sheet, a smoothing device, or a preheating device for the reinforcing fiber sheet may be appropriately used between the creel for unwinding the reinforcing fibers and the application section. The order of the arrangement device, the widening device, the smoothing device, and the preheating device can be appropriately changed and used.
 なお、強化繊維ファブリックを用いる場合は、図1bのクリール11を強化繊維ファブリックの巻きだし設備に置き換え、図1の配列装置12をニップロールに置き換えて、強化繊維ファブリックを引き出せばよい。 When using a reinforcing fiber fabric, the creel 11 in FIG. 1b may be replaced with a reinforcing fiber fabric unwinding facility, and the arranging device 12 in FIG. 1 may be replaced with a nip roll to draw out the reinforcing fiber fabric.
 <走行機構>
 強化繊維シートや本発明のプリプレグを搬送するための走行機構としては、公知のローラー等を好適に用いることができる。
<Travel mechanism>
As a traveling mechanism for transporting the reinforcing fiber sheet or the prepreg of the present invention, a known roller or the like can be suitably used.
 また、本発明では、強化繊維の配列乱れや毛羽立ちを抑制するため、強化繊維シートの走行経路はなるべく直線状であることが好ましい。また、プリプレグは離型シートとの積層体であるシート状一体物とすることが多いが、これの搬送工程において、屈曲部を有すると、内層と外層の周長差による皺が発生する場合が有るため、シート状一体物の走行経路もなるべく直線状であることが好ましい。この観点からは、シート状一体物の走行経路中では、ニップロールを用いる方が好ましい。 In the present invention, it is preferable that the running path of the reinforcing fiber sheet is as straight as possible in order to suppress the arrangement disorder and the fluffing of the reinforcing fiber. In addition, the prepreg is often a sheet-like integrated body that is a laminate with a release sheet, but in the conveying step of the prepreg, if there is a bent portion, wrinkles may occur due to a difference in circumference between the inner layer and the outer layer. Therefore, it is preferable that the traveling path of the sheet-shaped integrated object is as straight as possible. From this viewpoint, it is preferable to use a nip roll in the traveling path of the sheet-like integrated object.
 S字ロールとニップロールのどちらを用いるかは、製造条件や製造物の特性に応じ、適宜選択することが可能である。 Whether the S-shaped roll or the nip roll is used can be appropriately selected according to the manufacturing conditions and the characteristics of the product.
 <高張力引き取り装置>
 本発明では、塗布部から1次プリプレグを引き出すための高張力引き取り装置を塗布部より工程下流に配置することが好ましい。これは、塗布部で、強化繊維シートとマトリックス樹脂の間で高い摩擦力、せん断応力が発生するため、それに打ち勝ってプリプレグを引き出すためには、工程下流で高い引き取り張力を発生させることが好ましいためである。高張力引き取り装置としては、ニップロールやS字ロールなどを用いることができるが、いずれもロールとプリプレグの間の摩擦力を高めることで、スリップを防止し、安定した走行を可能とすることができる。このためには、摩擦係数の高い材料をロール表面に配したり、ニップ圧力やS字ロールへのプリプレグの押し付け圧を高くすることが好ましい。スリップを防止する観点からは、S字ロールの方がロール径や接触長などで容易に摩擦力を制御でき、好ましい。
<High tension take-up device>
In the present invention, it is preferable that a high tension take-up device for drawing out the primary prepreg from the application section is disposed downstream of the application section in the process. This is because high frictional force and shear stress are generated between the reinforcing fiber sheet and the matrix resin in the application section, and it is preferable to generate a high take-up tension downstream of the process in order to overcome the drawback and draw out the prepreg. It is. As the high tension take-up device, a nip roll or an S-shaped roll can be used, but by increasing the frictional force between the roll and the prepreg, slip can be prevented and stable running can be achieved. . For this purpose, it is preferable to arrange a material having a high coefficient of friction on the roll surface or to increase the nip pressure or the pressing pressure of the prepreg against the S-shaped roll. From the viewpoint of preventing the slip, the S-shaped roll is preferable because the frictional force can be easily controlled by the roll diameter and the contact length.
 <離型シート供給装置、ワインダー>
 本発明を用いてのプリプレグやFRPの製造においては適宜離型シート供給装置やワインダーを用いることができ、そのようなものとしては公知のものを使用することができるが、いずれも巻き出し、あるいは巻き取り張力を巻き出しあるいは巻き取り速度にフィードバックできる機構を備えていることがシートの安定走行の観点から好ましい。
<Release sheet feeding device, winder>
In the production of a prepreg or FRP using the present invention, a release sheet feeding device or a winder can be used as appropriate, and as such a device, a known device can be used. It is preferable to provide a mechanism capable of feeding back the winding tension or feeding back the winding speed from the viewpoint of stable running of the sheet.
 <追含浸>
 所望の含浸度に調整するために、本発明にさらに塗布後に別途、含浸装置を用いて更に含浸度を高める手段を組み合わせることも可能である。ここでは、塗布部での含浸と区別するために、塗布後に追加で含浸することを追含浸、そのための装置を追含浸装置と称することとする。追含浸装置として用いられる装置には特に制限は無く、目的に応じて公知のものから適宜選択することができる。例えば、特開2011-132389号公報やWO2015/060299パンフレット記載のように、シート状炭素繊維束と樹脂の積層体を、熱板で予熱しシート状炭素繊維束上の樹脂を十分軟化させた後、やはり加熱されたニップロールで加圧する装置を用いることで含浸を進めることができる。予熱のための熱板温度やニップロール表面温度、ニップロールの線圧、ニップロールの直径・数は所望の含浸度になるように適宜選択することができる。また、WO2010/150022パンフレット記載のようなプリプレグシートがS字型に走行する“S-ラップロール”を用いることも可能である。本発明では“S-ラップロール”を単に“S字ロール”と称することとする。WO2010/150022パンフレット図1ではプリプレグシートがS字型に走行する例が記載されているが、含浸が可能であれば、U字型や、V型またはΛ型のようにシートとロールの接触長を調整してもよい。また、含浸圧を高め含浸度を上げる場合には、対向するコンタクトロールを付加することも可能である。さらにWO2015/076981パンフレット図4記載のように、“S-ラップロール”に対向してコンベヤーベルトを配することで含浸効率を向上させ、プリプレグの製造速度の高速化をはかることも可能である。また、WO2017/068159パンフレットや特開2016-203397号公報などに記載のように、含浸前にプリプレグに超音波を付与し、プリプレグを急速昇温することで、含浸効率を向上させることも可能である。また、特開2017-154330号公報記載のように、超音波発生装置で複数の“しごき刃”振動させる含浸装置を用いることも可能である。また、特開2013-22868号公報記載のようにプリプレグを折り畳んで含浸することも可能である。
<Addition impregnation>
In order to adjust the degree of impregnation to a desired degree, it is also possible to combine a means for further increasing the degree of impregnation using an impregnating apparatus separately after coating with the present invention. Here, in order to distinguish it from the impregnation in the application section, additional impregnation after application is referred to as additional impregnation, and an apparatus therefor is referred to as an additional impregnation apparatus. The device used as the additional impregnation device is not particularly limited, and can be appropriately selected from known devices according to the purpose. For example, as described in JP-A-2011-132389 and WO2015 / 060299, a laminate of a sheet-like carbon fiber bundle and a resin is preheated by a hot plate to sufficiently soften the resin on the sheet-like carbon fiber bundle. The impregnation can also be advanced by using a device that presses with a heated nip roll. The temperature of the hot plate for preheating, the surface temperature of the nip roll, the linear pressure of the nip roll, and the diameter and number of the nip rolls can be appropriately selected so as to obtain a desired impregnation degree. It is also possible to use an "S-wrap roll" in which a prepreg sheet runs in an S-shape as described in WO 2010/150022 pamphlet. In the present invention, “S-wrap roll” is simply referred to as “S-shaped roll”. WO 2010/150022 Pamphlet FIG. 1 shows an example in which the prepreg sheet runs in an S-shape, but if impregnation is possible, the contact length between the sheet and the roll, such as a U-shape, V-shape or Λ-shape, is described. May be adjusted. When the impregnation pressure is increased to increase the degree of impregnation, it is also possible to add an opposing contact roll. Further, as shown in FIG. 4 of the pamphlet of WO2015 / 076981, it is possible to improve the impregnation efficiency and increase the production speed of the prepreg by arranging the conveyor belt opposite to the “S-wrap roll”. Further, as described in WO 2017/068159 pamphlet or JP-A-2016-20397, it is also possible to improve the impregnation efficiency by applying ultrasonic waves to the prepreg before the impregnation and rapidly raising the temperature of the prepreg. is there. Further, as described in JP-A-2017-154330, it is also possible to use an impregnation device that vibrates a plurality of "ironing blades" with an ultrasonic generator. It is also possible to fold and impregnate the prepreg as described in JP-A-2013-22868.
 <簡易追含浸>
 上記では、従来の追含浸装置を適用する例を示したが、塗布部直下では未だ1次プリプレグの温度が高い場合があり、そのような場合には塗布部を出て後、あまり時間が経っていない段階で追含浸操作を加えると、1次プリプレグを再昇温するための熱板などの加熱装置を省略あるいは簡略化し、含浸装置を大幅に簡略化・小型化することも可能である。このように塗布部直下に位置させる含浸装置を簡易追含浸装置と称することとする。簡易追含浸装置としては加熱ニップロールや加熱S字ロールを用いることができるが、通常の含浸装置に比較し、ロール径や設定圧力、1次プリプレグとロールの接触長を減じることができ、装置を小型化できるだけでなく消費電力なども減じることができ、好ましい。
<Simple additional impregnation>
In the above description, an example in which the conventional additional impregnation apparatus is applied has been described. However, the temperature of the primary prepreg may be still high immediately below the application section, and in such a case, it takes a long time after leaving the application section. If an additional impregnation operation is added at a stage where the primary prepreg is not heated, a heating device such as a hot plate for reheating the primary prepreg can be omitted or simplified, and the impregnation device can be greatly simplified and downsized. Such an impregnating device located immediately below the coating section is referred to as a simple additional impregnating device. As a simple additional impregnating device, a heated nip roll or a heated S-shaped roll can be used, but the roll diameter, the set pressure, and the contact length between the primary prepreg and the roll can be reduced as compared with a normal impregnating device. This is preferable because not only the size can be reduced but also the power consumption and the like can be reduced.
 また、1次プリプレグが簡易追含浸装置に入る前に、1次プリプレグに離形シートを付与すると、1次プリプレグの走行性が向上し好ましい。 Also, it is preferable to apply a release sheet to the primary prepreg before the primary prepreg enters the simple additional impregnating apparatus, because the running property of the primary prepreg is improved.
 図23には、追含浸装置を具備した工程の一例を示している。塗布部430の直下に簡易追含浸装置453を備えている。ここでは、簡易追含浸装置453はニップロールの例を示しているが、ニップローラーは加熱機構を備えていることが好ましい。また、ニップロールの段数は目的により適宜選択可能であるが、工程簡略化の観点からは3段以下が好ましい(図23では2段の例を示している)。また、ニップローラーは駆動装置を備えていることがプリプレグ搬送の張力制御が容易である観点から好ましい。ニップ圧力は所望の含浸度に合わせ、適宜調整可能である。 FIG. 23 shows an example of a process including the additional impregnation device. A simple additional impregnating device 453 is provided immediately below the application section 430. Here, the simple additional impregnation device 453 shows an example of a nip roll, but the nip roller preferably has a heating mechanism. Further, the number of nip roll stages can be appropriately selected depending on the purpose, but from the viewpoint of simplification of the process, three or less stages are preferable (FIG. 23 shows an example of two stages). Further, it is preferable that the nip roller is provided with a driving device from the viewpoint that tension control of prepreg conveyance is easy. The nip pressure can be appropriately adjusted according to the desired degree of impregnation.
 また、ニップロール表面は1次プリプレグが貼りつかないように適切な離型処理が施されていたり、1次プリプレグとニップロールの間に離型シートを挿入したりすることが好ましい(簡略化のため図23には描画していない)。1次プリプレグとニップロールの間に離型シートを挿入する場合には、塗布部430側から挿入し、高張力引き取り装置444側のロールで離型シートを1次プリプレグから引き離すことが好ましい。引き離された離型シートはそのまま巻き取ってもよいし、そのまま再度、塗布部430側から挿入するようサーキット走行させてもよい。 It is preferable that the nip roll surface is subjected to an appropriate release treatment so that the primary prepreg does not stick, or a release sheet is inserted between the primary prepreg and the nip roll. 23 is not drawn). When inserting a release sheet between the primary prepreg and the nip roll, it is preferable to insert the release sheet from the application section 430 side and to separate the release sheet from the primary prepreg by the roll on the high tension take-up device 444 side. The separated release sheet may be wound up as it is, or may be run again on the circuit so as to be inserted again from the application section 430 side.
 また、追含浸装置としてはニップロールのほか、前記した“S-ラップロール”や固定バー等を用いることもできる。また、赤外線やレーザーなどによる非接触加熱装置を用いることもできる。 追 In addition to the nip roll, the above-mentioned “S-wrap roll”, a fixed bar, or the like can be used as the additional impregnation device. Further, a non-contact heating device using infrared rays, a laser, or the like can also be used.
 <プリプレグ>
 本発明の製造方法で得られるプリプレグにおいてマトリックス樹脂の含浸率は10%以上であることが望ましい。マトリックス樹脂の含浸の様子は、採取したプリプレグを裂き、内部を目視することで含浸の有無を確認することができ、より定量的には例えば剥離法で評価することが可能である。剥離法によるマトリックス樹脂の含浸率は以下のようにして測定することができる。すなわち、採取したプリプレグを粘着テープで挟み、これを剥離し、マトリックス樹脂が付着した強化繊維とマトリックス樹脂が付着していない強化繊維を分離する。そして、投入した強化繊維シート全体の質量に対するマトリックス樹脂が付着した強化繊維の質量の比率を剥離法によるマトリックス樹脂の含浸率とすることができる。また、含浸度が高いプリプレグでは、プリプレグの毛細管現象による吸水率により含浸度を評価することもできる。具体的には、特表2016-510077号公報に記載の方法にならい、プリプレグを10cm×10cmにカットし、その1辺を5mm、水に5分間浸漬した時の質量変化から計算することができる。
<Prepreg>
In the prepreg obtained by the production method of the present invention, the impregnation ratio of the matrix resin is desirably 10% or more. The state of impregnation of the matrix resin can be confirmed by tearing the collected prepreg and visually observing the inside, and more quantitatively, for example, by a peeling method. The impregnation rate of the matrix resin by the peeling method can be measured as follows. That is, the collected prepreg is sandwiched between adhesive tapes, and the prepreg is peeled off to separate the reinforcing fibers to which the matrix resin has adhered from the reinforcing fibers to which the matrix resin has not adhered. Then, the ratio of the mass of the reinforcing fibers to which the matrix resin has adhered to the mass of the entire reinforcing fiber sheet put in can be taken as the impregnation rate of the matrix resin by the peeling method. In the case of a prepreg having a high degree of impregnation, the degree of impregnation can also be evaluated based on the water absorption due to the capillary action of the prepreg. Specifically, in accordance with the method described in JP-T-2016-510077, the prepreg can be cut into 10 cm × 10 cm, one side of which is 5 mm, and can be calculated from the change in mass when immersed in water for 5 minutes. .
 なお、本発明を説明するにおいて、塗布部から導出されたマトリックス樹脂が含浸された強化繊維シートを1次プリプレグと称しているが、用語として、1次プリプレグはプリプレグの概念に属する用語であることはいうまでもない。 In the description of the present invention, a reinforcing fiber sheet impregnated with a matrix resin derived from an application section is referred to as a primary prepreg, and as a term, the primary prepreg is a term belonging to the concept of a prepreg. Needless to say.
 <プリプレグ幅>
 FRPの前駆体の一種であるプリプレグは本発明で得られるプリプレグの一形態であるため、本発明をFRP用途に適用する場合について、以下説明する。
<Prepreg width>
Since prepreg, which is a kind of precursor of FRP, is one form of prepreg obtained in the present invention, a case where the present invention is applied to FRP will be described below.
 プリプレグの幅には、特に制限は無く、幅が数十cm~2m程度の広幅でも良いし、幅数mm~数十mmのテープ状でも良く、用途に応じ幅を選択することができる。近年では、プリプレグの積層工程を効率化するため、細幅プリプレグやプリプレグテープを自動積層していくATL(Automated Tape Laying)やAFP(Automated Fiber Placement)と呼ばれる装置が広く用いられるようになってきており、これに適合した幅とすることも好ましい。ATLでは幅が約7.5cm、約15cm、約30cm程度の細幅プリプレグが用いられることが多く、AFPでは約3mm~約25mm程度のプリプレグテープが用いられることが多い。 幅 The width of the prepreg is not particularly limited, and may be a wide width of about several tens cm to 2 m, or a tape having a width of several mm to several tens mm. The width can be selected according to the application. In recent years, in order to increase the efficiency of the prepreg laminating process, devices called ATL (Automated Tape Laying) and AFP (Automated Fiber Placement) for automatically laminating narrow prepregs and prepreg tapes have been widely used. Therefore, it is also preferable that the width is adjusted to this. ATL often uses narrow prepregs having a width of about 7.5 cm, about 15 cm, or about 30 cm. AFP often uses prepreg tapes having a width of about 3 mm to about 25 mm.
 所望の幅のプリプレグを得る方法には特に制限は無く、幅1m~2m程度の広幅プリプレグを細幅にスリットする方法を用いることができる。また、スリット工程を簡略化あるいは省略するため、最初から所望の幅となるよう本発明で用いる塗布部の幅を調整することもできる。例えば、ATL用に30cm幅の細幅プリプレグを製造する場合には、塗布部出口の幅をそれに応じて調整すればよい。また、これを効率的に製造するためには、製品幅を30cmとして製造することが好ましく、係る製造装置を複数個並列させると、同一の走行装置・搬送装置、各種ロール、ワインダーを用いて複数ラインのプリプレグを製造することができる。図24には一例として、塗布部を5つ並列方向に連結した例を示している。この時、5枚の強化繊維シート416は、それぞれ独立した5つの強化繊維予熱装置420、塗布部430を通過し、5枚の1次プリプレグ471が得られるようにしても良いし、強化繊維予熱装置420、塗布部430は並列方向に一体化されていてもよい。この場合には、塗布部430中で幅規制機構、塗布部出口幅を独立に5つ備えればよい。 There is no particular limitation on the method of obtaining a prepreg having a desired width, and a method of slitting a wide prepreg having a width of about 1 to 2 m into a narrow width can be used. Further, in order to simplify or omit the slitting step, the width of the coating portion used in the present invention can be adjusted so as to have a desired width from the beginning. For example, when manufacturing a narrow prepreg having a width of 30 cm for ATL, the width of the application section outlet may be adjusted accordingly. In addition, in order to manufacture this efficiently, it is preferable to manufacture the product with a product width of 30 cm. When a plurality of such manufacturing devices are arranged in parallel, the same traveling device / transport device, various rolls, and a winder are used. The prepreg of the line can be manufactured. FIG. 24 shows an example in which five application sections are connected in a parallel direction. At this time, the five reinforcing fiber sheets 416 may pass through the five independent reinforcing fiber preheating devices 420 and the application unit 430, respectively, so that five primary prepregs 471 may be obtained, or the reinforcing fiber preheating may be performed. The device 420 and the application unit 430 may be integrated in a parallel direction. In this case, the coating unit 430 may be provided with five independent width control mechanisms and five coating unit outlet widths.
 また、プリプレグテープの場合には、テープ状の強化繊維束が1糸条~3糸状程度で強化繊維シートを形成させ、これを所望のテープ幅が得られるように幅を調整した塗布部に通すことで得ることもできる。プリプレグテープの場合はテープ同士の横方向の重なりを制御する観点から、特にテープ幅の精度が求められる場合が多い。このため、塗布部出口幅をより厳密に管理することが好ましく、この場合には、前記のL、L2およびWが、L≦W+1mmおよび/またはL2≦W+1mm、の関係を満たすようすることが好ましい。 In the case of a prepreg tape, a reinforcing fiber sheet in the form of a tape-shaped reinforcing fiber bundle having a length of about 1 to 3 threads is formed and passed through a coating section whose width has been adjusted so as to obtain a desired tape width. You can also get it. In the case of a prepreg tape, in particular, the accuracy of the tape width is often required from the viewpoint of controlling the lateral overlap between the tapes. For this reason, it is preferable to more strictly control the outlet width of the application section. In this case, it is preferable that the above L, L2, and W satisfy the relationship of L ≦ W + 1 mm and / or L2 ≦ W + 1 mm. .
 <スリット>
 プリプレグのスリット方法にも特に制限は無く、公知のスリット装置を用いることができる。プリプレグを一旦巻き取った後、改めてスリット装置に設置し、スリットを行っても良いし、効率化のため、プリプレグ一旦巻き取ることなくプリプレグ作製工程から連続してスリット工程を配置しても良い。また、スリット工程は1m以上の広幅プリプレグを直接、所望の幅にスリットしても良いし、一旦、30cm程度の細幅プリプレグにカット・小分けした後、これを改めて所望の幅にスリットしても良い。
<Slit>
The method of slitting the prepreg is not particularly limited, and a known slit device can be used. After winding the prepreg once, it may be installed in the slit device again to perform slitting, or for efficiency, a slitting step may be arranged continuously from the prepreg producing step without winding the prepreg once. Also, in the slitting step, a wide prepreg of 1 m or more may be directly slit to a desired width, or once cut and divided into narrow prepregs of about 30 cm, and then slit again to a desired width. good.
 なお、上記の細幅プリプレグ、プリプレグテープを複数の塗布部を並列させた場合には、それぞれ独立に離型シートを供給しても良いし、1枚の広幅離型シートを供給し、これに複数枚のプリプレグを積層させても良い。このようにして得られるプリプレグの幅方向の端部を切り落とし、ATLやAFPの装置に供給することができる。この場合には切り落とす端部の大部分が離型シートとなるため、スリットカッター刃に付着するマトリックス樹脂成分(FRPの場合には樹脂成分)を減じることができ、スリットカッター刃の清掃周期を延長できるというメリットもある。 In addition, when the above-mentioned narrow prepreg and prepreg tape are arranged in a plurality of coating portions in parallel, a release sheet may be supplied independently, or one wide release sheet may be supplied. A plurality of prepregs may be stacked. The end in the width direction of the prepreg thus obtained can be cut off and supplied to an ATL or AFP device. In this case, since most of the cut edge is a release sheet, the matrix resin component (resin component in the case of FRP) adhering to the slit cutter blade can be reduced, and the cleaning cycle of the slit cutter blade is extended. There is also an advantage that you can do it.
 <本発明の変形態様(バリエーション)および応用態様>
 本発明においては、塗布部を複数個用い、更なる製造工程の効率化やの高機能化を図ることができる。
<Modifications and Variations of the Present Invention>
In the present invention, by using a plurality of coating sections, it is possible to further improve the efficiency of the manufacturing process and to enhance the functions.
 例えば、複数枚のプリプレグを積層させるように複数の塗布部を配置することができる。図25には一例として、2つの塗布部を用いてプリプレグの積層を行う態様の例を示している。第1の塗布部431と第2の塗布部432から引き出された2枚の1次プリプレグ471は方向転換ロール445を経て、その下方の積層ロール447で樹脂フィルム443とともに積層される。プリプレグと方向転換ロール間に離型シートを位置させると、プリプレグがニップロールに貼りつくことを抑制し、走行を安定化することができ、好ましい。図16では、2つの方向転換ロール445に離型シート446をサーキット走行させている装置を例示している。なお、方向転換ロールは、離型処理の施された方向転換ガイド等で代用することも可能である。図25では高張力引き取り装置444は1次プリプレグ471の積層後に配置しているが、積層前に配置することももちろん可能である。なお、図25ではスプレー塗布装置、カーテン塗布装置の描画は省略しているが、1次プリプレグ形成後の任意の位置に配置することができる。 For example, a plurality of application sections can be arranged so that a plurality of prepregs are stacked. FIG. 25 shows, as an example, an embodiment in which prepregs are stacked using two application sections. The two primary prepregs 471 drawn from the first application unit 431 and the second application unit 432 pass through the direction change roll 445 and are laminated together with the resin film 443 on the laminating roll 447 below the primary prepreg 471. It is preferable to position the release sheet between the prepreg and the direction change roll, because it is possible to suppress the prepreg from sticking to the nip roll and to stabilize traveling. FIG. 16 exemplifies an apparatus in which a release sheet 446 is caused to travel on a circuit by two directional change rolls 445. Note that the direction changing roll can be replaced with a direction changing guide or the like that has been subjected to release processing. In FIG. 25, the high tension take-up device 444 is arranged after the primary prepreg 471 is laminated, but it is of course possible to arrange it before the lamination. In FIG. 25, the drawing of the spray coating device and the curtain coating device is omitted, but they can be arranged at any positions after the formation of the primary prepreg.
 このような積層型のプリプレグとすることで、プリプレグ積層工程の効率化を図ることができ、例えば厚ものFRPを作製する場合に有効である。また、薄ものプリプレグを多層積層することで、FRPの靱性や耐衝撃性が向上することが期待でき、本製造方法を適用することで、薄もの多層積層プリプレグを効率的に得ることができる。さらに、異なる種類のプリプレグを容易に積層することで、機能性を付加したヘテロ結合プリプレグを容易に得ることができる。この場合、強化繊維の種類や繊度、フィラメント数、力学物性、繊維表面特性などを変更することが可能である。また、マトリックス樹脂(プリプレグの場合は樹脂)も異なるものを用いることが可能である。例えば、厚みの異なるプリプレグや力学物性が異なるものを積層したヘテロ結合プリプレグとすることができる。また、第1の塗布部で力学物性の優れる樹脂を付与し、第2の塗布部でタック性に優れる樹脂を付与し、これらを積層することで力学物性とタック性を両立できるプリプレグを容易に得ることができる。また、逆に表面にタック性の無い樹脂を配置することも可能である。また、第1の塗布部で粒子なしの樹脂を付与し、第2の塗布部で粒子含有樹脂を付与することもできる。 積 層 By using such a laminated prepreg, the efficiency of the prepreg laminating step can be improved, and this is effective, for example, when a thick FRP is manufactured. Further, it is expected that the toughness and impact resistance of the FRP will be improved by laminating thin prepregs in multiple layers, and by applying the present production method, thin multilayer prepregs can be efficiently obtained. Further, by easily laminating different types of prepregs, a hetero-bonded prepreg having added functionality can be easily obtained. In this case, it is possible to change the type and fineness of the reinforcing fiber, the number of filaments, mechanical properties, fiber surface characteristics, and the like. It is also possible to use a different matrix resin (resin in the case of a prepreg). For example, a prepreg having different thicknesses or a hetero-bonded prepreg obtained by laminating prepregs having different mechanical properties can be used. In addition, a resin having excellent mechanical properties is provided in the first application section, and a resin having excellent tack properties is provided in the second application section. By laminating these, a prepreg that can achieve both mechanical properties and tackiness can be easily prepared. Obtainable. Conversely, it is also possible to arrange a resin having no tackiness on the surface. Alternatively, a resin without particles can be applied in the first application section, and a resin containing particles can be applied in the second application section.
 別の様態としては、図24で例示し前記したように、塗布部を強化繊維シートの走行方向に対し、複数個並列させる、すなわち複数個の塗布部を強化繊維シートの幅方向に並列させることができる。これにより、細幅やテープ状のプリプレグの製造を効率化することができる。また、塗布部毎に、強化繊維やマトリックス樹脂を変更すると幅方向に性質の異なるプリプレグを得ることもできる。 As another mode, as illustrated in FIG. 24 and described above, a plurality of application sections are arranged in parallel to the running direction of the reinforcing fiber sheet, that is, a plurality of application sections are arranged in parallel in the width direction of the reinforcing fiber sheet. Can be. This makes it possible to efficiently manufacture narrow or tape-shaped prepregs. Further, by changing the reinforcing fibers and the matrix resin for each application section, it is possible to obtain prepregs having different properties in the width direction.
 また、別の様態としては、強化繊維シートの走行方向に対して塗布部を直列に複数個配置させることができる。図26には一例として、2つの塗布部を直列に配置させた例を示している。第1の塗布部431と第2の塗布部432の間には高張力引き取り装置448を配置させると強化繊維シート416の走行を安定化させる観点から好ましいが、塗布条件、工程下流の引き取り条件によっては省略することも可能である。また、第1の塗布部から引き出した1次プリプレグと高張力引き取り装置448間に離型シートを位置させると、1次プリプレグがニップロールに貼りつくことを抑制し、走行を安定化することができ、好ましい。図26では、高張力引き取り装置448をニップロールとし、また、2つのロールに離型シート446をサーキット走行させている装置を例示している。 As another mode, a plurality of application portions can be arranged in series in the running direction of the reinforcing fiber sheet. FIG. 26 shows an example in which two application sections are arranged in series as an example. It is preferable to arrange a high tension take-up device 448 between the first application unit 431 and the second application unit 432 from the viewpoint of stabilizing the running of the reinforcing fiber sheet 416, but depending on the application conditions and the take-down conditions downstream of the process. Can be omitted. Further, when the release sheet is positioned between the primary prepreg pulled out from the first application section and the high tension take-up device 448, the primary prepreg can be prevented from sticking to the nip roll, and traveling can be stabilized. ,preferable. FIG. 26 illustrates an example in which the high tension take-up device 448 is a nip roll, and the release sheet 446 is caused to travel on a circuit by two rolls.
 このような直列型の配置とすることで、1次プリプレグの厚み方向にマトリックス樹脂種類を変えることができる。また、同じ種類のマトリックス樹脂であっても、塗布部によって塗布条件を変えることで、走行安定性や高速走行性などを向上することもできる。例えば、第1の塗布部で力学物性の優れる樹脂を付与し、第2の塗布部でタック性に優れる樹脂を付与し、これらを積層することで力学物性とタック性を両立できるプリプレグを容易に得ることができる。また、逆に表面にタック性の無い樹脂を配置することも可能である。また、第1の塗布部で粒子なしの樹脂を付与し、第2の塗布部で粒子含有樹脂を付与することもできる。なお、図26ではスプレー塗布装置、カーテン塗布装置の描画は省略しているが、1次プリプレグ形成後の任意の位置に配置することができる。 こ と By adopting such a series type arrangement, the type of matrix resin can be changed in the thickness direction of the primary prepreg. Even with the same type of matrix resin, running stability and high-speed running performance can be improved by changing the application conditions depending on the application section. For example, a resin having excellent mechanical properties is applied in the first application section, a resin having excellent tack properties is applied in the second application section, and a prepreg that can achieve both mechanical properties and tackiness by laminating them is easily provided. Obtainable. Conversely, it is also possible to arrange a resin having no tackiness on the surface. Alternatively, a resin without particles can be applied in the first application section, and a resin containing particles can be applied in the second application section. In FIG. 26, the drawing of the spray coating device and the curtain coating device is omitted, but they can be arranged at any positions after the formation of the primary prepreg.
 以上のように、複数の塗布部を配置させる様態をいくつか示したが、塗布部の数に特に制限は無く、目的に応じ種々、適用することができる。また、これらの配置を複合させることももちろん可能である。更に、塗布部の各種サイズ・形状や塗布条件(温度など)も混合して用いることもできる。 い く つ か As described above, several modes for disposing a plurality of application sections have been described. However, the number of application sections is not particularly limited, and various applications can be applied according to purposes. Of course, these arrangements can be combined. Furthermore, various sizes and shapes of the application section and application conditions (temperature, etc.) can be mixed and used.
 以上述べてきたように、本発明の製造方法は製造効率化・安定化のみならず、製品の高性能化・機能化も可能であり、拡張性にも優れた製造方法である。 As described above, the manufacturing method of the present invention is not only capable of improving the efficiency and stabilization of the manufacturing, but also is capable of improving the performance and functioning of the product, and is a manufacturing method excellent in scalability.
 <マトリックス樹脂供給機構>
 本発明において塗布部内にマトリックス樹脂は貯留されているが、塗工が進行するのでマトリックス樹脂を適宜補給することが好ましい。マトリックス樹脂を塗布部に供給する機構には特に制限は無く、公知の装置を使用することができる。マトリックス樹脂は連続的に塗布部に供給することが、塗布部の上部液面を乱さず、強化繊維シートの走行を安定化でき、好ましい。例えば、マトリックス樹脂を貯留する槽から自重を駆動力として供給したり、ポンプなどを用いて連続的に供給することができる。ポンプとしては、ギヤポンプやチューブポンプ、圧力ポンプなどマトリックス樹脂の性質に応じ適宜使用することができる。また、マトリックス樹脂が室温で固体の場合には、貯留層上部にメルターを備えておくことが好ましい。また、連続押し出し機などを用いることもできる。また、マトリックス樹脂供給量はマトリックス樹脂の塗布部上部の液面がなるべく一定となるよう、塗布量に応じ連続供給できる機構を備えることが好ましい。このためには、例えば液面高さや塗布部重量などをモニタリングし、それを供給装置にフィードバックするような機構が考えられる。
<Matrix resin supply mechanism>
In the present invention, the matrix resin is stored in the coating section, but it is preferable to appropriately supply the matrix resin because the coating proceeds. The mechanism for supplying the matrix resin to the application section is not particularly limited, and a known device can be used. It is preferable that the matrix resin be continuously supplied to the application section because the running of the reinforcing fiber sheet can be stabilized without disturbing the liquid level above the application section. For example, the self-weight can be supplied as a driving force from a tank storing the matrix resin, or can be supplied continuously using a pump or the like. As the pump, a gear pump, a tube pump, a pressure pump, or the like can be used as appropriate according to the properties of the matrix resin. When the matrix resin is solid at room temperature, it is preferable to provide a melter above the reservoir. Further, a continuous extruder or the like can be used. Further, it is preferable to provide a mechanism capable of continuously supplying the matrix resin in accordance with the applied amount so that the liquid level above the application portion of the matrix resin is as constant as possible. For this purpose, for example, a mechanism that monitors the liquid level, the weight of the application section, and the like and feeds it back to the supply device is conceivable.
 なお、スプレー塗布、カーテン塗布に用いる液体供給機構も上記マトリックス樹脂供給機構のように備えることができる。 The liquid supply mechanism used for spray coating and curtain coating can also be provided like the matrix resin supply mechanism.
 <オンラインモニタリング>
 また、塗布量のモニタリングのために、塗布量をオンラインモニタリングできる機構を備えることが好ましい。オンラインモニタリング方法についても特に制限は無く、公知のものを使用可能である。例えば、厚みを計測する装置として、例えばベータ線計などを用いることができる。この場合は、強化繊維シート厚みとプリプレグの厚みを計測し、その差分を解析することで塗布量を見積もることが可能である。オンラインモニタリングされた塗布量は、直ぐに塗布部にフィードバックされ、塗布部の温度や狭窄部23の隙間D(図2参照)の調整に利用することができる。塗布量モニタリングは、もちろん欠点モニタリングとしても使用可能である。厚み計測位置としては、例えば図27で言えば、方向転換ロール419近傍で強化繊維シート416の厚みを計測し、塗布部430から方向転換ロール441の間でプリプレグの厚みを計測することができる。また、赤外線、近赤外線、カメラ(画像解析)などを用いたオンライン欠点モニタリングを行うことも好ましい。
<Online monitoring>
Further, it is preferable to provide a mechanism capable of online monitoring of the application amount for monitoring the application amount. The online monitoring method is not particularly limited, and a known method can be used. For example, as a device for measuring the thickness, for example, a beta-ray meter or the like can be used. In this case, it is possible to estimate the coating amount by measuring the thickness of the reinforcing fiber sheet and the thickness of the prepreg and analyzing the difference. The application amount monitored online is immediately fed back to the application unit, and can be used for adjusting the temperature of the application unit and the gap D (see FIG. 2) of the constricted portion 23. Application amount monitoring can of course be used as defect monitoring. As the thickness measurement position, for example, in FIG. 27, the thickness of the reinforcing fiber sheet 416 can be measured in the vicinity of the direction change roll 419, and the thickness of the prepreg can be measured between the application section 430 and the direction change roll 441. It is also preferable to perform online defect monitoring using infrared rays, near infrared rays, a camera (image analysis), or the like.
 以下では、本発明によるプリプレグの製造例を具体的に挙げて本発明をより詳細に説明する。なお、以下は例示であり、本発明は以下に説明される態様に限定して解釈されるものではない。 本 Hereinafter, the present invention will be described in more detail with specific examples of the production of a prepreg according to the present invention. Note that the following is an example, and the present invention is not construed as being limited to the embodiments described below.
 図27は本発明の第1の製造方法を用いたプリプレグの製造工程・装置の例の概略図である。複数個の強化繊維ボビン412はクリール411に掛けられ、方向転換ガイド413を経て、引き出される。この時、クリールに付与されたブレーキ機構により一定張力で強化繊維束414を引き出すことができる。引き出された複数本の強化繊維束414は強化繊維配列装置415により整然と配列され、強化繊維シート416が形成される。なお、図27では強化繊維束は3糸条しか描画されていないが、実際には、1糸条~数百糸条とすることができ、所望のプリプレグ幅、繊維目付けとするよう調整可能である。その後、拡幅装置417、平滑化装置418を経て、方向転換ロール419を経て、鉛直下向きに搬送される。図27では、強化繊維配列装置415~方向転換ロール419まで強化繊維シート416は装置間を直線状に搬送される。なお、拡幅装置417、平滑化装置418は、目的に応じ、適宜スキップすることもできるし、装置を配置しないこともできる。また、強化繊維配列装置415、拡幅装置417、平滑化装置418の配列順序は目的に応じ適宜変更することもできる。強化繊維シート416は方向転換ロール419から鉛直下向きに走行し、強化繊維予熱装置420、塗布部430を経て方向転換ロール441に到達する。塗布部430は本発明の目的を達成する範囲で任意の塗布部形状を採用することができる。例えば、図2、図6~図9のような形状が挙げられる。また、必要に応じ図5のようにブッシュを備えることもできる。さらに、図11のように、塗布部内にバーを備えることもできる。図27の装置では、塗布部430で1次プリプレグ471を形成させた後、スプレー塗布装置481、カーテン塗布装置482を備えている。図27では、スプレー塗布装置481、カーテン塗布装置482は1次プリプレグの両面に描画されているが、どちらか片面でもよいし、スプレー塗布装置481、カーテン塗布装置482のどちらか一方のみを使用してもよいし、順番を入れ替えてもよい。そして、スプレー塗布および/またはカーテン塗布を施した後、離型シート443を付与し、高張力引取り装置444で引き取ることができる。図27では高張力引き取り装置444としてニップロールを描画している。その後、シート状一体物は熱板451と加熱ニップロール452を備えた追含浸装置450を経て、冷却装置461で冷却された後、引き取り装置462で引き取られ、上側の離型シート446を剥がした後、ワインダー464で巻き取り、製品となるプリプレグ/離型シートからなるシート状一体物472を得ることができる。方向転換ロール441からワインダー464までシート状一体物は基本直線状に搬送されるため、皺の発生を抑制することができる。なお、図27では、マトリックス樹脂供給装置、オンラインモニタリング装置の描画は省略してある。 FIG. 27 is a schematic diagram of an example of a prepreg manufacturing process / apparatus using the first manufacturing method of the present invention. The plurality of reinforcing fiber bobbins 412 are hung on a creel 411, and are pulled out via a direction changing guide 413. At this time, the reinforcing fiber bundle 414 can be pulled out with a constant tension by the brake mechanism provided to the creel. The plurality of pulled out reinforcing fiber bundles 414 are orderly arranged by the reinforcing fiber arrangement device 415, and the reinforcing fiber sheet 416 is formed. In FIG. 27, only three yarns are drawn on the reinforcing fiber bundle, but in practice, it can be one yarn to several hundred yarns, and can be adjusted to have a desired prepreg width and fiber weight. is there. Thereafter, the sheet is conveyed vertically downward through a widening device 417, a smoothing device 418, and a direction change roll 419. In FIG. 27, the reinforcing fiber sheet 416 is linearly conveyed between the reinforcing fiber arrangement device 415 and the direction change roll 419 between the devices. Note that the widening device 417 and the smoothing device 418 can be appropriately skipped or the devices can be omitted depending on the purpose. The arrangement order of the reinforcing fiber arrangement device 415, the widening device 417, and the smoothing device 418 can be appropriately changed according to the purpose. The reinforcing fiber sheet 416 travels vertically downward from the direction changing roll 419, and reaches the direction changing roll 441 via the reinforcing fiber preheating device 420 and the application unit 430. The application section 430 can adopt any application section shape as long as the object of the present invention is achieved. For example, there are shapes as shown in FIGS. 2, 6 to 9. Further, a bush can be provided as shown in FIG. 5 as necessary. Further, as shown in FIG. 11, a bar can be provided in the application section. 27 includes a spray coating device 481 and a curtain coating device 482 after the primary prepreg 471 is formed by the coating unit 430. In FIG. 27, the spray coating device 481 and the curtain coating device 482 are drawn on both surfaces of the primary prepreg. However, either one of them may be used, or only one of the spray coating device 481 and the curtain coating device 482 is used. Or the order may be changed. Then, after applying the spray coating and / or the curtain coating, the release sheet 443 is applied, and the release sheet 443 can be taken out by the high tension take-up device 444. In FIG. 27, a nip roll is drawn as the high tension take-up device 444. Thereafter, the sheet-like integrated material passes through an additional impregnating device 450 provided with a hot plate 451 and a heating nip roll 452, is cooled by a cooling device 461, is taken off by a take-off device 462, and peels off the upper release sheet 446. Then, a sheet-like integrated body 472 composed of a prepreg / release sheet as a product can be obtained by winding with a winder 464. Since the sheet-like integrated object is conveyed in a basic straight line from the direction changing roll 441 to the winder 464, generation of wrinkles can be suppressed. In FIG. 27, illustration of the matrix resin supply device and the online monitoring device is omitted.
 図28は本発明の第1の製造方法を用いたプリプレグの製造工程・装置の別の例の概略図である。図28では、クリール~塗布部430までは図27と同様であるため、描画を省略している。図28では、1次プリプレグ471形成後に離型シート446を付与し、高張力引取り装置444で引き取る。ここでは高張力引取り装置444はS字ロールの例を示している。そして、上側の離型シートを剥がした後、スプレー塗布装置481、カーテン塗布装置482を用いて塗布を行うことができる。スプレー塗布装置481、カーテン塗布装置482は、どちらか一方のみを使用してもよいし、順番を入れ替えてもよい。その後、上側の離型シートを付与した後、追含浸が施され、上側離型紙を剥がし、プリプレグ/離型シートのシート状一体物が巻き取られる。 FIG. 28 is a schematic diagram of another example of a prepreg manufacturing process / apparatus using the first manufacturing method of the present invention. In FIG. 28, the steps from the creel to the application unit 430 are the same as those in FIG. 27, and the drawing is omitted. In FIG. 28, after the primary prepreg 471 is formed, the release sheet 446 is applied, and is taken out by the high tension take-up device 444. Here, the high tension take-up device 444 shows an example of an S-shaped roll. Then, after peeling off the upper release sheet, coating can be performed using the spray coating device 481 and the curtain coating device 482. Only one of the spray coating device 481 and the curtain coating device 482 may be used, or the order may be changed. Then, after applying the upper release sheet, additional impregnation is performed, the upper release paper is peeled off, and the sheet-like integrated material of the prepreg / release sheet is wound up.
 次に第2の製造方法について、製造例を具体的に挙げて本発明をより詳細に説明する。 Next, the present invention will be described in more detail with respect to the second production method, with specific examples of production.
 図29aは強化繊維シートとして、UD基材を用いた時の本発明を用いたプリプレグの製造工程の例の概略図である。複数個の強化繊維ボビン412はクリール411に掛けられ、方向転換ガイド413を経て、上方に引き出される。この時、クリールに付与されたブレーキ機構により一定張力で強化繊維束414を引き出すことができる。引き出された複数本の強化繊維束414は強化繊維配列装置415により整然と配列され、強化繊維シート416が形成される。なお、図29aでは強化繊維束は3糸条しか描画されていないが、実際には、2糸条~数百糸条とすることができ、所望のプリプレグ幅、繊維目付とするよう調整可能である。その後、拡幅装置417、平滑化装置418、改質剤付与装置421を経て、改質剤を付与した強化繊維シート422が得られる。改質剤を付与した強化繊維シート422は方向転換ロール419を経て、鉛直下向きに搬送される。 FIG. 29 a is a schematic view of an example of a manufacturing process of a prepreg using the present invention when a UD base material is used as a reinforcing fiber sheet. The plurality of reinforcing fiber bobbins 412 are hung on a creel 411, and are pulled out upward through a direction changing guide 413. At this time, the reinforcing fiber bundle 414 can be pulled out with a constant tension by the brake mechanism provided to the creel. The plurality of pulled out reinforcing fiber bundles 414 are orderly arranged by the reinforcing fiber arrangement device 415, and the reinforcing fiber sheet 416 is formed. In FIG. 29a, only three yarns are drawn on the reinforcing fiber bundle, but in practice, it can be made from two yarns to several hundred yarns, and can be adjusted to have a desired prepreg width and fiber weight. is there. After that, the reinforcing fiber sheet 422 to which the modifying agent is applied is obtained through the widening device 417, the smoothing device 418, and the modifying agent applying device 421. The reinforcing fiber sheet 422 to which the modifier has been applied is conveyed vertically downward via the direction change roll 419.
 改質剤付与装置としては本発明の目的を達成する範囲で制限なく種々の付与方式から適宜選択し用いることができる。例えばスプレー塗布(メルトブローを含む)、カーテン塗布などを用いることができる。 The modifier applying device can be appropriately selected and used from various applying methods without limitation as long as the object of the present invention is achieved. For example, spray coating (including melt blowing), curtain coating, and the like can be used.
 図29aは、強化繊維配列装置415~改質剤付与装置421まで強化繊維シート416は装置間を直線状に搬送させる例を示した。なお、拡幅装置417、平滑化装置418は目的に応じ公知のものを使用したり適宜スキップすることもできるし、装置を配置しないこともできる。また、強化繊維配列装置415、拡幅装置417、平滑化装置418の配列順序は目的に応じ適宜変更することもできる。改質剤を付与した強化繊維シート422は方向転換ロール419から鉛直下向きに走行し、強化繊維予熱装置420、塗布部430を経て方向転換ロール441に到達する。強化繊維予熱装置420は目的に応じ適宜スキップすることもできるし、装置を配置しないこともできる。塗布部430は本発明の目的を達成する範囲で任意の塗布部形状を採用することができる。例えば、図2、図6~図9のような形状が挙げられる。また、必要に応じ図5のようにブッシュを備えることもできる。さらに、図11のように、塗布部内にバーを備えることもできる。図12aでは、離型シート(上)供給装置442から巻き出された離型シート446を方向転換ロール441上でプリプレグ471に積層し、シート状一体物とすることができる。さらに、離型シート供給装置442から巻き出された離型シート446を前記シート状一体物の下面に挿入することができる。ここでは、離型シートは離型紙や離型フィルムなどを用いることができる。これを高張力引取り装置444で引き取ることができる。図29aでは高張力引き取り装置444としてニップロールを描画している。その後、シート状一体物は熱板451と加熱ニップロール452を備えた追含浸装置450を経て、冷却装置461で冷却された後、引き取り装置462で引き取られ、上側の離型シート446を剥がした後、ワインダー464で巻き取り、製品となるプリプレグ/離型シートからなるシート状一体物472を得ることができる。方向転換ロール441からワインダー464までシート状一体物は基本直線状に搬送されるため、皺の発生を抑制することができる。なお、図29aでは、マトリックス樹脂供給装置、オンラインモニタリング装置の描画は省略してある。 FIG. 29a shows an example in which the reinforcing fiber sheet 416 is linearly conveyed between the reinforcing fiber arranging device 415 and the modifier applying device 421. It should be noted that the widening device 417 and the smoothing device 418 may be known devices according to the purpose, may be appropriately skipped, or may not be provided. The arrangement order of the reinforcing fiber arrangement device 415, the widening device 417, and the smoothing device 418 can be appropriately changed according to the purpose. The reinforcing fiber sheet 422 to which the modifier has been applied travels vertically downward from the direction changing roll 419, and reaches the direction changing roll 441 via the reinforcing fiber preheating device 420 and the application section 430. The reinforcing fiber preheating device 420 can be appropriately skipped depending on the purpose, or the device can be omitted. The application section 430 can adopt any application section shape as long as the object of the present invention is achieved. For example, there are shapes as shown in FIGS. 2, 6 to 9. Further, a bush can be provided as shown in FIG. 5 as necessary. Further, as shown in FIG. 11, a bar can be provided in the application section. In FIG. 12A, the release sheet 446 unwound from the release sheet (upper) supply device 442 can be laminated on the prepreg 471 on the direction change roll 441 to form a sheet-like integrated body. Further, the release sheet 446 unwound from the release sheet supply device 442 can be inserted into the lower surface of the sheet-like integrated body. Here, release paper, release film, or the like can be used as the release sheet. This can be taken off by the high tension take-up device 444. In FIG. 29a, a nip roll is drawn as the high tension take-up device 444. Thereafter, the sheet-like integrated material passes through an additional impregnating device 450 provided with a hot plate 451 and a heating nip roll 452, is cooled by a cooling device 461, is taken off by a take-off device 462, and peels off the upper release sheet 446. Then, a sheet-like integrated body 472 composed of a prepreg / release sheet as a product can be obtained by winding with a winder 464. Since the sheet-like integrated object is conveyed in a basic straight line from the direction changing roll 441 to the winder 464, generation of wrinkles can be suppressed. In FIG. 29a, illustrations of the matrix resin supply device and the online monitoring device are omitted.
 図29bは図29aに示した例と同様、強化繊維シートとしてUD基材を用いた時の本発明を用いたプリプレグの製造工程の例であるが、強化繊維シートが方向転換ロール419により走行方向が水平方向から鉛直方向下向きとした後に改質剤を付与する場所とした点が異なる。また、改質剤付与装置421は強化繊維予熱装置420の後に設置した例を示す。改質剤付与装置421と強化繊維予熱装置420は適宜配列順序を変えてもよいが、改質剤として低粘度樹脂を用いる場合は、拡幅装置417、平滑化装置418、強化繊維予熱装置420の後に改質剤付与装置421を配置するのが好ましい。これにより強化繊維シートに付与した改質剤との接触による装置やロールの汚染を防止できたり、改質剤が強化繊維予熱装置420で熱せられ、改質剤の流動性が高まることで塗布部430に貯留されたマトリックス樹脂中に改質剤が溶解するのを抑制することができる。図29bでは改質剤を付与する際の強化繊維シートの走行方向が水平方向から鉛直方向下向きになるが、改質剤付与装置の向きを90度変更し付与すればよい。なお、図29bでは、マトリックス樹脂供給装置、オンラインモニタリング装置の描画は省略してある。 FIG. 29b shows an example of a manufacturing process of a prepreg using the present invention when a UD base material is used as a reinforcing fiber sheet, as in the example shown in FIG. 29a. Are different from the horizontal direction in that they are directed downward in the vertical direction. Further, an example is shown in which the modifier applying device 421 is installed after the reinforcing fiber preheating device 420. The order of arrangement of the modifier applying device 421 and the reinforcing fiber preheating device 420 may be appropriately changed. However, when a low-viscosity resin is used as the modifying agent, the widening device 417, the smoothing device 418, and the reinforcing fiber preheating device 420 It is preferable to arrange the modifier applying device 421 later. As a result, contamination of the device or roll due to contact with the modifier applied to the reinforcing fiber sheet can be prevented, or the modifier is heated by the reinforcing fiber preheating device 420, and the fluidity of the modifier is increased, so that the coating section is improved. The dissolution of the modifying agent in the matrix resin stored in 430 can be suppressed. In FIG. 29b, the running direction of the reinforcing fiber sheet when applying the modifier is downward from the horizontal direction to the vertical direction, but the orientation of the modifier applying device may be changed by 90 degrees and applied. In FIG. 29b, the illustration of the matrix resin supply device and the on-line monitoring device is omitted.
 図29a、図29bでは水平または鉛直方向下向きに搬送されている強化繊維シートに対し改質剤を付与する例を示したが、方向転換をするロール上で付与することもできる。 Although FIGS. 29a and 29b show an example in which the modifying agent is applied to the reinforcing fiber sheet that is conveyed horizontally or vertically downward, the modifying agent may be applied on a roll that changes the direction.
 図30は強化繊維シートとして、UD基材を用いた時の本発明を用いたプリプレグの製造工程・装置の別の例の概略図である。図30では、クリール411から強化繊維束414を引き出し、そのまま強化繊維配列装置415で強化繊維シート416を形成し、その後、拡幅装置417、平滑化装置418まで直線状に搬送され、その後、強化繊維シート416を上方に導く点が図29bとは異なる。このような構成とすることで、上方に装置を設置することが不要となり、足場などの設置を大幅に簡略化することができる。 FIG. 30 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention when a UD substrate is used as a reinforcing fiber sheet. In FIG. 30, the reinforcing fiber bundle 414 is pulled out from the creel 411, the reinforcing fiber sheet 416 is formed as it is by the reinforcing fiber arranging device 415, and then is linearly conveyed to the widening device 417 and the smoothing device 418. The difference from FIG. 29b is that the sheet 416 is guided upward. With such a configuration, it is not necessary to install the device above, and the installation of a scaffold or the like can be greatly simplified.
 図31は強化繊維シートとして、UD基材を用いた時の本発明を用いたプリプレグの製造工程・装置の別の例の概略図である。図31では、階上にクリール411を設置し、強化繊維シート416の走行経路を更に直線化している。 FIG. 31 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention when a UD substrate is used as a reinforcing fiber sheet. In FIG. 31, the creel 411 is installed on the floor, and the traveling path of the reinforcing fiber sheet 416 is further linearized.
 図32は強化繊維シートとして、UD基材を用いた時の本発明を用いたプリプレグの製造工程・装置の別の例の概略図である。図29bで示した通常の追含浸装置の代わりに、簡易追含浸装置を用いた例を示している。32においては、簡易追含浸装置453は塗布部430の直下に設置されているため、プリプレグ471が高温状態で簡易追含浸装置453に導かれるため、含浸装置を簡略化・小型化できる。図32では、一例として加熱ニップロール454を描画しているが、目的によっては、もちろん小型の加熱S字ロールや非接触加熱装置でも良い。簡易追含浸装置を用いるとプリプレグ製造装置全体を非常にコンパクトにすることができることもメリットである。 FIG. 32 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention when a UD base material is used as a reinforcing fiber sheet. An example in which a simple additional impregnation device is used instead of the normal additional impregnation device shown in FIG. 29B is shown. In 32, since the simple additional impregnating device 453 is installed immediately below the coating section 430, the prepreg 471 is guided to the simple additional impregnating device 453 in a high temperature state, so that the impregnating device can be simplified and downsized. In FIG. 32, the heating nip roll 454 is illustrated as an example, but a small heating S-shaped roll or a non-contact heating device may be used depending on the purpose. The use of the simple additional impregnation apparatus is also advantageous in that the entire prepreg manufacturing apparatus can be made very compact.
 図30、図31、図32は、図29bと同様に強化繊維シートとして、一方向配列強化繊維束を用いた時のプリプレグの製造工程・装置の別の例の概略図であるが、411に巻出し装置、412に強化繊維ファブリックロール、413にニップロールを用いていることで、強化繊維ファブリックを用いた場合であっても各図に示した装置を適用することができる。 FIGS. 30, 31, and 32 are schematic diagrams of another example of a prepreg manufacturing process / apparatus when a unidirectional array reinforcing fiber bundle is used as a reinforcing fiber sheet as in FIG. 29b. The use of the reinforcing fiber fabric rolls for the unwinding device 412 and the nip rolls for the 413 makes it possible to apply the devices shown in the drawings even when the reinforcing fiber fabric is used.
 図33では、高張力引き取り装置として高張力引取りS字ロール449、追含浸装置として“S-ラップロール”型の加熱S字ロール455を2ロール-2セット(合計4個)用いた例を描画しているが、ロール数は目的に応じ、もちろん増減できる。また、図33では含浸効果を高めるためのコンタクトロール456も描画しているが、目的により省略することももちろん可能である。 FIG. 33 shows an example in which a high tension take-off S-shaped roll 449 is used as a high tension take-off device, and two S-2 rolls 455 of "S-wrap roll" type are used as the additional impregnating device (two in total). Although the drawing is performed, the number of rolls can of course be increased or decreased according to the purpose. Further, in FIG. 33, a contact roll 456 for improving the impregnation effect is also drawn, but it is of course possible to omit it according to the purpose.
 図34は本発明を用いたプリプレグの製造工程・装置の別の例の概略図である。この例では“S-ラップロール”型の加熱S字ロールを高張力引き取り装置と兼用する例を示している。プリプレグ製造装置全体を非常にコンパクトにすることができるメリットがある。 FIG. 34 is a schematic view of another example of a prepreg manufacturing process / apparatus using the present invention. In this example, an example is shown in which a heated S-shaped roll of the "S-wrap roll" type is also used as a high tension take-up device. There is an advantage that the entire prepreg manufacturing apparatus can be made very compact.
 以下に、より具体的な例として糸割れ防止剤を用いる例を記載する。 Hereinafter, a more specific example using a yarn breakage inhibitor will be described.
 プリプレグの製造装置としては、図29a記載の構成の装置(樹脂供給部は描写から省略)から、拡幅装置417、平滑化装置418、追含浸装置450を除いた装置を用いることができる。 As a prepreg manufacturing apparatus, an apparatus in which the widening device 417, the smoothing device 418, and the additional impregnation device 450 are removed from the device having the configuration shown in FIG. 29A (the resin supply unit is omitted from the drawing) can be used.
 (糸割れ防止剤の付与)
 複数個の強化繊維ボビン412はクリール411に掛けることができ、方向転換ガイド413を経て、上方に引き出すことができる。引き出された複数本の強化繊維束414は強化繊維配列装置415により整然と配列することができ、強化繊維シート416を形成することができる。形成された強化繊維シート416に対し改質剤付与装置421を用い、糸割れ防止剤を付与することができ、糸割れ防止剤を付与した強化繊維シート422を得ることができる。糸割れ防止剤を付与した強化繊維シート422は、方向転換ロール419を経て走行方向を水平方向から鉛直下向きに向きを変えて走行させることができ、強化繊維予熱装置420を経て塗布部430を通過させることができる。
(Applying a yarn cracking inhibitor)
The plurality of reinforcing fiber bobbins 412 can be hung on the creel 411 and can be pulled upward through the direction changing guide 413. The plurality of pulled out reinforcing fiber bundles 414 can be arranged neatly by the reinforcing fiber arrangement device 415, and the reinforcing fiber sheet 416 can be formed. Using the modifier imparting device 421, a yarn crack preventing agent can be applied to the formed reinforcing fiber sheet 416, and a reinforcing fiber sheet 422 to which the yarn crack preventing agent has been applied can be obtained. The reinforcing fiber sheet 422 to which the yarn breakage preventing agent has been applied can be run by changing the running direction from a horizontal direction to a vertically downward direction via a direction change roll 419, and passes through a coating section 430 via a reinforcing fiber preheating device 420. Can be done.
 強化繊維としては、炭素繊維(東レ製、“トレカ(登録商標)”T800S(24K))などを用いることができる。強化繊維ボビンの数は作製するプリプレグの目付に応じて変更可能だが、56糸条とすると一般的な目付のプリプレグが得られる。 炭素 As the reinforcing fiber, carbon fiber (manufactured by Toray, “Treca (registered trademark)” T800S (24K)) or the like can be used. Although the number of reinforcing fiber bobbins can be changed according to the basis weight of the prepreg to be produced, a prepreg having a general basis weight can be obtained with 56 yarns.
 (糸割れ防止剤の付与方法)
 糸割れ防止剤の付与方法としては本発明の目的を達成する範囲で制限なく任意の付与装置を適宜選択し用いることができる。例えばスプレー塗布、カーテン塗布などを用いることができる。
(Method of applying yarn cracking inhibitor)
As a method of applying the yarn cracking inhibitor, an arbitrary applying device can be appropriately selected and used without any limitation as long as the object of the present invention is achieved. For example, spray coating, curtain coating, or the like can be used.
 スプレー塗布を用いる場合、図35a、図35bに示すように糸割れ防止剤を付与することができる。図35aのように、スプレーノズル510を強化繊維シート416に対し上部に非接触となるよう設置し、設置したスプレーノズル510から液滴化した糸割れ防止剤である改質剤500を水平方向に走行する強化繊維シート416に対し片面に付与することができ、図35bに示すようにスプレーノズル510により糸割れ防止剤を微細な液滴にして強化繊維シート416に付与することができる。スプレーノズル以外にも糸割れ防止剤を液滴化し噴霧できるものであれば用いることができる。図35aでは強化繊維シート416に糸割れ防止剤である改質剤500を片面に付与しているが、もちろんスプレーノズル510を強化繊維シート416の両面に配置し、両面に付与することもできる。なお、図35a、図35bでは省略したが、スプレーノズル510には改質剤を連続的に供給する機構を具備することができ、改質剤の付与目付はスプレーノズル510に供給する改質剤の量で調節することができる。供給する改質剤は加熱し溶融したものを供給することもできる。 When spray coating is used, a yarn cracking inhibitor can be applied as shown in FIGS. 35a and 35b. As shown in FIG. 35 a, the spray nozzle 510 is installed on the reinforcing fiber sheet 416 so as to be in non-contact with the upper part, and the modifying agent 500, which is a droplet breaking inhibitor, is horizontally discharged from the installed spray nozzle 510. The reinforcing fiber sheet 416 can be applied to one side of the running reinforcing fiber sheet 416, and the yarn breaking inhibitor can be applied to the reinforcing fiber sheet 416 as fine droplets by a spray nozzle 510 as shown in FIG. 35b. In addition to the spray nozzle, any material can be used as long as the agent can be formed into droplets and sprayed. In FIG. 35a, the modifier 500, which is a yarn crack preventing agent, is applied to one side of the reinforcing fiber sheet 416. However, the spray nozzle 510 may be arranged on both sides of the reinforcing fiber sheet 416 and applied to both sides. Although omitted in FIGS. 35a and 35b, the spray nozzle 510 may be provided with a mechanism for continuously supplying the modifier, and the basis weight of the modifier may be supplied to the spray nozzle 510. Can be adjusted by the amount. The modifying agent to be supplied may be heated and melted.
 メルトブロー方式を用いる場合、図36a、図36bに示すように糸割れ防止剤を付与することができる。図36aのように、吐出部を有する塗布ヘッド520を強化繊維シート416に対し上部に非接触となるよう設置し、設置した塗布ヘッド520から糸割れ防止である改質剤500を吐出させ、吐出させた改質剤500を空気流521により導くことで、糸割れ防止剤を繊維状に賦形した後、強化繊維シート416に対し片面に付与することができる。図36bに示すように塗布ヘッド520により吐出された糸割れ防止剤は空気流により導かれ、繊維状賦形された後強化繊維シートに到達する前に繊維状に賦形された糸割れ防止剤が交差・交絡し強化繊維シートに付与することができる。メルトブロー方式としては、より具体的には特願2018-511189号に記載のような手法を用いることができる。塗布ヘッドは内部に供給される糸割れ防止剤を幅方向に分配する複数の流路を持ち、吐出部に糸割れ防止剤を導く構造のものを用いることができる。塗布ヘッドの吐出部としては幅方向に複数の孔を有し、孔の面積を調整することで吐出により賦形される繊維径を調整することができ、糸割れ防止剤の強化繊維長手方向の塗布の間隔を調整することもできる。図36aでは強化繊維シート416に糸割れ防止剤である改質剤500を片面に付与しているが、もちろん塗布ヘッド520を強化繊維シート416の両面に配置し、両面に付与することもできる。なお、図36a、図36bでは省略したが、塗布ヘッドには糸割れ防止剤を連続的に供給する機構を具備し、糸割れ防止剤の付与目付は塗布ヘッドに供給する糸割れ防止剤の量を調整することで、目的とする目付の糸割れ防止剤の付与が可能である。供給する機構としてギアポンプを用いることもでき、使用するギアポンプとその回転数で供給量を調整し付与する糸割れ防止剤の目付を調整することができる。糸割れ防止剤は加熱し溶融したものを供給することができる。 In the case of using a melt blow method, a yarn crack preventing agent can be applied as shown in FIGS. 36a and 36b. As shown in FIG. 36 a, the application head 520 having a discharge unit is installed on the reinforcing fiber sheet 416 so as to be in non-contact with the upper part thereof, and the installed coating head 520 discharges the modifying agent 500 for preventing yarn breakage. By guiding the modified modifier 500 by the air stream 521, the yarn crack preventing agent can be applied to one side of the reinforcing fiber sheet 416 after being formed into a fibrous shape. As shown in FIG. 36b, the yarn crack preventing agent discharged by the application head 520 is guided by an air flow, and is formed into a fibrous shape after fibrous shaping and before reaching the reinforcing fiber sheet. Can be crossed and entangled to give the reinforcing fiber sheet. More specifically, as a melt blow method, a method described in Japanese Patent Application No. 2018-511189 can be used. The coating head may have a plurality of flow paths for distributing the yarn crack preventing agent supplied therein in the width direction, and may have a structure in which the yarn breaking preventing agent is guided to the discharge portion. The discharge section of the coating head has a plurality of holes in the width direction, and by adjusting the area of the holes, the diameter of the fiber formed by the discharge can be adjusted. The interval of application can also be adjusted. In FIG. 36a, the modifying agent 500, which is a yarn breaking inhibitor, is applied to one side of the reinforcing fiber sheet 416. However, the application head 520 can be arranged on both sides of the reinforcing fiber sheet 416 and applied to both sides. Although omitted in FIGS. 36a and 36b, the coating head is provided with a mechanism for continuously supplying the yarn crack preventing agent, and the basis weight of the yarn crack preventing agent is determined by the amount of the yarn breaking preventing agent supplied to the coating head. By adjusting the value, it is possible to impart a targeted yarn cracking inhibitor. A gear pump can be used as the supply mechanism, and the supply amount can be adjusted by adjusting the gear pump to be used and the number of rotations thereof, and the basis weight of the applied yarn crack preventing agent can be adjusted. The yarn crack preventing agent can be supplied by heating and melting.
 カーテン塗布を用いる場合、図37a、図37bや図38a図38bに示すように糸割れ防止剤を付与することができる。図37aのように塗布ヘッド530を強化繊維シート416に対し上部に非接触となるよう設置し、設置した塗布ヘッド530から糸割れ防止剤を面状に吐出した改質剤500を水平方向に走行する強化繊維シート416に対し片面に付与することができる。なお、塗布ヘッドは特願2018-511188号のように、糸割れ防止剤の吐出方向と強化繊維シート416の搬送方向なす角が80°以下となるよう設置することもできる。塗布ヘッドは供給される糸割れ防止剤を面状に吐出できるものであればよく、幅方向に厚みが均一な樹脂が吐出され、面状あるいはカーテン状の膜を形成できるものを用いることができる。より詳細には厚みが均一で間欠のないスリットから樹脂を吐出できる構造を用いることができる。また、図37aでは強化繊維シート416に糸割れ防止剤である改質剤500を片面に付与しているが、もちろん塗布ヘッド530を強化繊維シート416の両面に配置し、両面に付与することもできる。図38aに示すように方向転換ロール419上に塗布ヘッド530を設置することにより、塗布ヘッドの吐出方向と強化繊維シートの搬送方向のなす角を80°以下とすることもできる。図38aに示すように改質剤を付与する場合、方向転換ロール419の直径を大きいロールとし改質剤付与スタート時の作業性や塗布の安定性を向上させることもできる。なお、図37a、図37b、図38a、図38bでは省略したが、塗布ヘッド530には改質剤を連続的に供給する機構を具備しており、改質剤の付与目付は塗布ヘッドに供給する改質剤の量を調整することで、目的とする目付の改質剤の付与ができる。供給する機構としてギアポンプを用いることもでき、使用するギアポンプとその回転数で供給量を調整することで付与する目付の調整ができる。また改質剤は加熱し溶融したものを供給することもできる。 When curtain coating is used, a yarn cracking inhibitor can be applied as shown in FIGS. 37a, 37b, 38a and 38b. As shown in FIG. 37 a, the application head 530 is installed so as to be in non-contact with the reinforcing fiber sheet 416 at the upper portion, and the modifier 500, which discharges the anti-thread cracking agent in a plane from the installed application head 530, runs horizontally The reinforcing fiber sheet 416 can be provided on one side. The application head can be installed so that the angle formed between the direction in which the yarn breakage preventing agent is discharged and the direction in which the reinforcing fiber sheet 416 is conveyed is 80 ° or less, as disclosed in Japanese Patent Application No. 2018-511188. The coating head may be any as long as it can discharge the supplied yarn breakage preventing agent in a planar shape, and can discharge a resin having a uniform thickness in the width direction and can form a planar or curtain-shaped film. . More specifically, a structure in which the resin can be discharged from a slit having a uniform thickness and no intermittent slits can be used. Also, in FIG. 37a, the modifying agent 500, which is a yarn crack preventing agent, is applied to one side of the reinforcing fiber sheet 416. However, the application head 530 may be arranged on both sides of the reinforcing fiber sheet 416 and applied to both sides. it can. By installing the coating head 530 on the direction change roll 419 as shown in FIG. 38a, the angle between the discharge direction of the coating head and the conveying direction of the reinforcing fiber sheet can be made 80 ° or less. In the case where the modifying agent is applied as shown in FIG. 38a, the direction changing roll 419 may be formed to have a large diameter to improve the workability at the start of applying the modifying agent and the stability of application. Although omitted in FIGS. 37a, 37b, 38a, and 38b, the coating head 530 is provided with a mechanism for continuously supplying the modifier, and the basis weight of the modifier is supplied to the coating head. By adjusting the amount of the modifying agent to be added, the desired modifying agent of the basis weight can be provided. A gear pump can also be used as the supply mechanism, and the weight per unit area can be adjusted by adjusting the supply amount based on the gear pump to be used and its rotation speed. The modifier may be supplied by heating and melting.
 (糸割れ防止剤)
 付与する糸割れ防止剤の目付は20g/m以下とすることができる。糸割れ防止剤の付与が間欠的である場合、付与する糸割れ防止剤の長手方向の付与間隔としては最大30mm以内とすることができる。
(Yarn cracking inhibitor)
The basis weight of the yarn crack preventing agent to be applied can be 20 g / m 2 or less. When the application of the yarn crack preventing agent is intermittent, the application interval of the applied yarn crack preventing agent in the longitudinal direction can be up to 30 mm or less.
 糸割れ防止剤の成分としては種々の樹脂を用いることができ、前記した熱硬化性樹脂、熱硬化樹脂の硬化剤、熱可塑性樹脂、ポリマー粒子やこれらを組み合わせたものを用いることもできる。糸割れ防止剤は、加熱し溶融させた溶融樹脂でも室温で液体のもの用いることができる。溶媒を用いて溶液やワニス化したものも用いることができる。 樹脂 Various resins can be used as a component of the yarn breaking inhibitor, and the above-described thermosetting resin, a curing agent for the thermosetting resin, a thermoplastic resin, polymer particles, and a combination thereof can also be used. As the yarn crack preventing agent, a molten resin heated and melted can be used as a liquid at room temperature. A solution or a varnished one using a solvent can also be used.
 熱硬化性樹脂としてはエポキシ樹脂を用いることもできる。特に、室温で流動性がある樹脂であると改質剤付与装置で溶融するための加熱装置が簡略・簡易化でき、強化繊維シートへの樹脂含浸が進みやすいため好ましく用いることができ、具体的にはエポキシ樹脂の市販品として、液状のビスフェノールA型エポキシ樹脂であれば、“jER(登録商標)”825、“jER(登録商標)”827、“jER(登録商標)”828、“エピクロン(登録商標)”850(DIC(株)製)、“エポトート(登録商標)”YD-128(新日鐵住金化学(株)製)、DER-331(ダウケミカル社製)などを用いることができ、液状のビスフェノールF型エポキシ樹脂の市販品としては“jER(登録商標)”806、“jER(登録商標)”807、“jER(登録商標)”1750、“エピクロン(登録商標)”830(DIC(株)製)、“エポトート(登録商標)”YDF-170(新日鐵住金化学(株)製)などを用いることができ、液状のトリグリシジルアミノフェノールの市販品としては、p-アミノフェノールを前駆体としてもつ“アラルダイト(登録商標)”MY0500、“アラルダイト(登録商標)”MY0510(以上ハンツマンアドバンストマテリアル社製)や“jER(登録商標)”630(三菱ケミカル(株)製)などを用いることができ、m-アミノフェノールを前駆体としてもつ“アラルダイト(登録商標)”MY0600、“アラルダイト(登録商標)”MY0610(以上ハンツマンアドバンストマテリアル社製)などを用いることができる。 エ ポ キ シ Epoxy resin can also be used as the thermosetting resin. In particular, when the resin is a resin having fluidity at room temperature, a heating device for melting with a modifier applying device can be simplified and simplified, and the resin impregnation into a reinforcing fiber sheet easily proceeds. As a commercially available epoxy resin, if it is a liquid bisphenol A type epoxy resin, “jER (registered trademark)” 825, “jER (registered trademark)” 827, “jER (registered trademark)” 828, and “epiclone ( (Registered trademark) "850 (manufactured by DIC Corporation)," Epototo (registered trademark) "YD-128 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), DER-331 (manufactured by Dow Chemical Company), and the like. Commercially available liquid bisphenol F type epoxy resins include “jER (registered trademark)” 806, “jER (registered trademark)” 807, “jER (registered trademark)” 1750, and “epichrome”. (Registered trademark) "830 (manufactured by DIC Corporation)," Epototo (registered trademark) "YDF-170 (manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd.), etc., and commercially available liquid triglycidylaminophenol Examples of the product include “Araldite (registered trademark)” MY0500 and “Araldite (registered trademark)” MY0510 (both manufactured by Huntsman Advanced Materials Co., Ltd.) and “jER (registered trademark)” 630 (Mitsubishi Chemical) having p-aminophenol as a precursor. And "Araldite (registered trademark)" MY0600 having m-aminophenol as a precursor, and "Araldite (registered trademark)" MY0610 (all manufactured by Huntsman Advanced Materials). Can be.
 これらに、靭性向上剤を混合することもでき、具体的にはポリアミド、ポリイミド、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルイミド、ポリフェニレンオキシド、ポリスルホンなどを用いることができる。ポリエーテルスルホンの市販品としては、“スミカエクセル(登録商標)”PES5003P(住友化学(株)製)や、“Virantage(登録商標)”VW10700(Solvay Advanced Polymers社製)、“スミカエクセル(登録商標)”PES7600P(住友化学(株)製)、ポリエーテルイミドの市販品としては“Ultem(登録商標)”1010(Sabicイノベーティブプラスチックス(株)製)、ポリスルホンの市販品としては“Virantage(登録商標)”VW30500(Solvay Advanced Polymers(株)製)などを用いることができる。なお、これらを溶融したものだけでなく、粒子状としたものを混練し用いることもできる。また、先に述べたポリマー粒子を混合することもできる。 A toughness improver can also be mixed with these, and specifically, polyamide, polyimide, polyethersulfone, polyetherethersulfone, polyetherimide, polyphenylene oxide, polysulfone and the like can be used. As commercially available products of polyether sulfone, “Sumika Excel (registered trademark)” PES5003P (manufactured by Sumitomo Chemical Co., Ltd.), “Virantage (registered trademark)” VW10700 (manufactured by Solvay Advanced Polymers), and “Sumika Excel (registered trademark)” ) "PES7600P" (manufactured by Sumitomo Chemical Co., Ltd.); "Ultem (registered trademark)" 1010 (manufactured by Sabic Innovative Plastics Co., Ltd.) as a commercially available product of polyetherimide; and "Virantage (registered trademark)" as a commercially available product of polysulfone. ) "VW30500 (manufactured by Solvay Advanced Polymers Co., Ltd.) or the like. In addition, not only those in which these are melted, but also those in the form of particles can be kneaded and used. Further, the polymer particles described above can be mixed.
 また、糸割れ防止剤には、金属水酸化物、金属酸化物、赤リン、リン酸エステル、リン酸塩などのリン原子含有化合物、窒素含有化合物、三酸化アンチモンなどの難燃剤を混練して用いることもできる。 In addition, the yarn cracking inhibitor is kneaded with a flame retardant such as a metal hydroxide, a metal oxide, a phosphorus atom-containing compound such as red phosphorus, a phosphate ester, a phosphate, a nitrogen-containing compound, and antimony trioxide. It can also be used.
 (マトリックス樹脂の塗布)
 図29aに示すように改質剤を付与した強化繊維シート422を塗布部430を通過させることで両面にマトリックス樹脂を塗布したプリプレグが得られる。
(Application of matrix resin)
As shown in FIG. 29a, a prepreg coated with a matrix resin on both sides is obtained by passing a reinforcing fiber sheet 422 to which a modifier has been applied through an application section 430.
 塗布部としては、図7の形態の塗布部20cタイプの塗布部を用いることができる。 As the application unit, an application unit of the application unit 20c type shown in FIG. 7 can be used.
 塗布部はステンレス製とし、さらにマトリックス樹脂を加温するため、塗布部外周にプレートヒーターを貼り付け、熱電対で温度測定を行いながら、マトリックス樹脂の温度および粘度を調整できるようにすることができる。また、液溜り部での強化繊維シートの走行方向は鉛直方向下向き、液溜り部は2段テーパー状であるが、1段目テーパーは開き角度15~20°、テーパー長さ(すなわちH)は10~70mm、2段目テーパーは開き角度5~10°とすることができる。また、幅規制機構として、図5記載のような塗布部内部形状に合わせた板状ブッシュを備えており、さらにこの板状ブッシュの設置位置自在に変更し、L2を適宜調整できるようにできる。所望の目付に応じ調整可能であるがL2を300mm、さらに狭窄部の隙間Dは0.2mm程度とすると一般的な目付のプリプレグが得られる。また、狭窄部出口からマトリックス樹脂が漏れないように、狭窄部出口面においてブッシュより外側は塞いで使用することができる。 The application part is made of stainless steel, and furthermore, a plate heater is attached to the outer periphery of the application part to heat the matrix resin, and the temperature and viscosity of the matrix resin can be adjusted while measuring the temperature with a thermocouple. . In addition, the traveling direction of the reinforcing fiber sheet in the liquid reservoir is vertically downward, and the liquid reservoir has a two-stage taper shape. The first-stage taper has an opening angle of 15 to 20 ° and the taper length (ie, H) is The opening angle of the second-stage taper can be set to 5 to 10 °. Further, as the width regulating mechanism, a plate-shaped bush adapted to the inner shape of the application section as shown in FIG. 5 is provided, and the installation position of the plate-shaped bush can be freely changed so that L2 can be appropriately adjusted. Although it can be adjusted according to the desired basis weight, a prepreg having a general basis weight can be obtained by setting L2 to 300 mm and the gap D of the constricted portion to about 0.2 mm. In order to prevent the matrix resin from leaking from the stenotic portion outlet, the stenotic portion outlet surface can be used with the outside of the bush closed.
 (マトリックス樹脂)
 塗布部430で塗布するマトリックス樹脂としては、熱硬化性エポキシ樹脂組成物であるマトリックス樹脂を用いることができる。これは、エポキシ樹脂(芳香族アミン型エポキシ樹脂+ビスフェノール型エポキシ樹脂の混合物)、硬化剤(ジアミノジフェニルスルホン)、ポリエーテルスルホンの混合物であり、ポリマー粒子は含有していない。このマトリックス樹脂の粘度はTA Instruments社製ARES-G2を用いて測定でき、測定周波数0.5Hz、昇温速度1.5℃/分、40℃で3675Pa・s、75℃で50Pa・s、90℃で15Pa・s、105℃で4Pa・sである。このマトリックス樹脂を用い、塗布部のマトリックス樹脂温度を75~105℃とし、強化繊維シート、プリプレグの走行速度を5~25m/分としてプリプレグを作製することができる。
(Matrix resin)
As the matrix resin applied in the application section 430, a matrix resin which is a thermosetting epoxy resin composition can be used. This is a mixture of an epoxy resin (a mixture of an aromatic amine type epoxy resin and a bisphenol type epoxy resin), a curing agent (diaminodiphenyl sulfone), and a polyether sulfone, and does not contain polymer particles. The viscosity of this matrix resin can be measured using ARES-G2 manufactured by TA Instruments, measuring frequency 0.5 Hz, heating rate 1.5 ° C./min, 3675 Pa · s at 40 ° C., 50 Pa · s at 75 ° C., 90 15 Pa · s at 105 ° C. and 4 Pa · s at 105 ° C. Using this matrix resin, a prepreg can be produced by setting the matrix resin temperature of the application section to 75 to 105 ° C. and the running speed of the reinforcing fiber sheet and prepreg to 5 to 25 m / min.
 改質剤として糸割れ防止剤を使用し、糸割れ防止剤の付与方式としては、特願2018-511189号の記載を参考にして、図36aに示すようにメルトブロー方式を用い、強化繊維シート416に対し糸割れ防止剤である改質剤500を付与することができる。幅方向に複数の吐出孔を有する塗布ヘッドを、水平方向に搬送する強化繊維シート416の上に非接触な状態で配置することができる。塗布ヘッドに糸割れ防止剤を供給するギアポンプの回転数を調整し、糸割れ防止剤の付与目付は10g/mとし、付与する糸割れ防止剤の長手方向の付与間隔は最大30mmとし、糸割れ防止剤の成分としてはマトリックス樹脂と同じものを用い、塗布部のマトリックス樹脂の温度を90℃とし、塗布部1段目のテーパーは開き角度17°、H=70mm、2段目テーパーは開き角度7°とすることができる。強化繊維シート、改質剤を付与した強化繊維シート、プリプレグの走行速度を20m/分とすると、塗布部での糸詰まりや糸切れなく強化繊維シートを30分間以上連続走行させることができる。 A yarn breaking inhibitor was used as a modifier, and as a method of applying the yarn breaking inhibitor, a melt blow method was used as shown in FIG. 36A with reference to the description of Japanese Patent Application No. 2018-511189, and the reinforcing fiber sheet 416 was used. , A modifier 500, which is a yarn cracking inhibitor, can be provided. An application head having a plurality of discharge holes in the width direction can be arranged in a non-contact state on the reinforcing fiber sheet 416 that is conveyed in the horizontal direction. The number of rotations of the gear pump for supplying the yarn crack preventing agent to the coating head is adjusted, the weight per unit area of the yarn crack preventing agent is set to 10 g / m 2, and the application interval of the yarn crack preventing agent in the longitudinal direction is set to a maximum of 30 mm. The same components as the matrix resin were used as the components of the crack preventing agent, the temperature of the matrix resin in the application section was 90 ° C., the taper in the first step of the application section was 17 ° open angle, H = 70 mm, and the taper in the second step was open. The angle can be 7 °. When the running speed of the reinforcing fiber sheet, the reinforcing fiber sheet to which the modifier has been added, and the prepreg is set to 20 m / min, the reinforcing fiber sheet can be continuously run for 30 minutes or more without thread clogging or thread breakage in the application section.
 糸割れ防止剤を強化繊維シートに付与しない場合、幅2mm以上の糸割れが存在し品位不良であり、糸割れ防止処理をしたプリプレグの糸割れは2mm以下とすることができ、品位良好なプリプレグを得ることができる。プリプレグの糸割れは、得られたプリプレグを10m分巻き出し、強化繊維がない糸割れの部分の最大幅をノギスで測定する。 When the yarn crack preventing agent is not applied to the reinforced fiber sheet, there is a yarn crack having a width of 2 mm or more and the quality is poor. Can be obtained. For yarn cracking of the prepreg, the obtained prepreg is unwound by 10 m, and the maximum width of the yarn cracking portion where there is no reinforcing fiber is measured with a vernier caliper.
 また得られるプリプレグの剥離法による含浸率を50%以上とすることができる。剥離法による含浸率は、採取したプリプレグを粘着テープで挟み、これを剥離し、マトリックス樹脂が付着した強化繊維とマトリックス樹脂が付着していない強化繊維を分離し、投入した強化繊維シート全体の質量に対するマトリックス樹脂が付着した強化繊維の質量の比率から計算する。 (4) The impregnation rate of the obtained prepreg by the peeling method can be set to 50% or more. The impregnation rate by the peeling method is as follows: The collected prepreg is sandwiched between adhesive tapes, peeled off, and the reinforcing fiber with matrix resin and the reinforcing fiber without matrix resin are separated. The ratio is calculated from the ratio of the mass of the reinforcing fiber to which the matrix resin adheres to the ratio
 また、プリプレグの幅方向100mm四方角の目付は、炭素繊維、樹脂ともプラスマイナス3質量%の範囲に収めることができ、優れた幅方向の目付均一性を得ることができる。なお、プリプレグの幅方向の目付均一性は以下のように評価できる。幅300mmのプリプレグを幅方向に100mm四方で右端部、中央、左端部で切り出し、プリプレグの質量、炭素繊維の質量をそれぞれn=3で測定する。炭素繊維の質量はプリプレグから樹脂を溶剤で溶出した残渣として測定する。これから、各サンプリング位置での平均値をそれぞれ算出し、各サンプリング位置での平均値同士を比較する。 Further, the basis weight of the prepreg in the width direction of 100 mm square can be kept within the range of ± 3% by mass for both carbon fibers and resin, and excellent uniformity in basis weight in the width direction can be obtained. The uniformity of the basis weight in the width direction of the prepreg can be evaluated as follows. A prepreg having a width of 300 mm is cut out at the right end, center, and left end in a width of 100 mm in the width direction, and the mass of the prepreg and the mass of the carbon fiber are measured at n = 3. The mass of the carbon fiber is measured as a residue obtained by eluting the resin from the prepreg with a solvent. From this, the average value at each sampling position is calculated, and the average values at each sampling position are compared.
 また、このプリプレグを6層積層し、オートクレーブを用いて180℃、6kgf/cm(0.588MPa)で2時間硬化させることでCFRPを得ることができる。引っ張り強度は2.9GPa程度であり、糸割れ防止剤付与をせずに得たプリプレグと、炭素繊維およびマトリックス樹脂Aを用い、従来のホットメルト法で作製したプリプレグを同様に積層、硬化させることで得たCFRPの引っ張り強度も2.9GPa程度と同程度である。なお、CFRP引っ張り強度は、WO2011/118106パンフレットと同様に測定を行い、プリプレグ中の強化繊維の体積%を56.5%に規格化した値を用いる。 Moreover, CFRP can be obtained by laminating six layers of this prepreg and curing it at 180 ° C. and 6 kgf / cm 2 (0.588 MPa) for 2 hours using an autoclave. The tensile strength is about 2.9 GPa, and a prepreg obtained by applying a conventional hot melt method using a carbon fiber and a matrix resin A using a prepreg obtained without imparting a yarn cracking inhibitor and laminating and curing the same. The tensile strength of the CFRP obtained in the above is about the same as about 2.9 GPa. The CFRP tensile strength is measured in the same manner as in WO2011 / 118106 pamphlet, and a value obtained by standardizing the volume% of the reinforcing fibers in the prepreg to 56.5% is used.
 また、強化繊維シート1aに対し糸割れ防止剤を付与する面は上面の片面のみとすることで、強化繊維シートに付与した糸割れ防止剤が搬送ロール419に付着し汚染するのを防止することができる。 In addition, by providing only one side of the upper surface of the reinforcing fiber sheet 1a with the yarn crack preventing agent, the yarn crack preventing agent applied to the reinforcing fiber sheet is prevented from adhering to and contaminating the transport roll 419. Can be.
 糸割れ防止剤を付与することで、工程安定性を損なうことなく最終的に得られるプリプレグの糸割れを改善できる、品位良好かつ積層、硬化してなるCFRPの引っ張り強度の大きな低下もないプリプレグを得ることができる。 By adding a yarn cracking inhibitor, it is possible to improve the yarn cracking of the prepreg finally obtained without impairing the process stability, to provide a prepreg of good quality and without significant decrease in the tensile strength of the laminated and cured CFRP. Obtainable.
 <プリプレグ製造装置>
 図7の形態の塗布部20cタイプの塗布部を用い、プリプレグ製造装置として図28記載の装置を用いた。図28にはクリールなどの装置などの描画は省略してあり、強化繊維予熱装置以降を描画してある。
<Prepreg manufacturing equipment>
An application unit shown in FIG. 28 was used as a prepreg manufacturing apparatus using an application unit of the application unit 20c type shown in FIG. In FIG. 28, illustrations of devices such as creels are omitted, and the illustration after the reinforcing fiber preheating device is illustrated.
 <塗布部>
 塗布部は、液溜り部および狭窄部を形成する壁面部材にはステンレス製のブロックを用い、また側板部材にはステンレス製のプレートを用いた。さらにマトリックス樹脂を加温するため、壁面部材および側板部材の外周にプレートヒーターを貼り付け、熱電対で温度計測を行いながら、マトリックス樹脂の温度および粘度を調整した。また強化繊維シートの走行方向は鉛直方向下向き、液溜り部は2段テーパー状であるが、上部テーパーは開き角度17°、テーパー高さ(すなわちH)は100mm、下部テーパは開き角度7°であった。また、幅規制機構として、図5記載のような塗布部内部形状に合わせた板状ブッシュを備えており、さらにこの板状ブッシュの設置位置自在に変更し、L2を適宜調整できるようにした。狭窄部の幅Yは、L2を300mmとした場合、300mmとなるようにした。狭窄部の隙間Dは0.18mmとした。この場合、出口スリットのアスペクト比は1500となる。また、狭窄部出口からマトリックス樹脂が漏れないように、狭窄部出口下面においてブッシュより外側は塞いで使用した。
<Coating part>
In the application part, a stainless steel block was used for the wall member forming the liquid pool part and the constricted part, and a stainless steel plate was used for the side plate member. To further heat the matrix resin, a plate heater was attached to the outer periphery of the wall member and the side plate member, and the temperature and viscosity of the matrix resin were adjusted while measuring the temperature with a thermocouple. Further, the running direction of the reinforcing fiber sheet is vertically downward, and the liquid pool portion has a two-step taper shape. The upper taper has an opening angle of 17 °, the taper height (ie, H) is 100 mm, and the lower taper has an opening angle of 7 °. there were. Further, a plate-shaped bush adapted to the inner shape of the application section as shown in FIG. 5 is provided as a width regulating mechanism, and the installation position of the plate-shaped bush is changed freely so that L2 can be appropriately adjusted. The width Y of the constricted portion was set to 300 mm when L2 was set to 300 mm. The gap D at the stenosis was 0.18 mm. In this case, the aspect ratio of the exit slit is 1500. In addition, the lower surface of the narrowed portion outlet was used so that the outside of the bush was closed so that the matrix resin did not leak from the narrowed portion outlet.
 <強化繊維シート>
 プリプレグの作製は、強化繊維として炭素繊維(東レ製、“トレカ(登録商標)”T800S(24K))を用い、マトリックス樹脂として後記する熱硬化性エポキシ樹脂組成物を用い、上記装置によりFRP用シート状プリプレグの作製を行った。また、強化繊維ボビンの数は作製するプリプレグに応じて変更を行ったが、特に断らない限り、56とした。
<Reinforced fiber sheet>
The prepreg was prepared by using a carbon fiber ("Torayca" (registered trademark) "T800S (24K) manufactured by Toray) as a reinforcing fiber, using a thermosetting epoxy resin composition described later as a matrix resin, and using the above apparatus to form an FRP sheet. A prepreg was prepared. The number of the reinforcing fiber bobbins was changed according to the prepreg to be produced, but was set to 56 unless otherwise specified.
 <プリプレグ製造工程>
 クリールに掛けられた複数の強化繊維ボビンから強化繊維束を引き出し、強化繊維配列装置で強化繊維シートを形成させ、方向転換ロールで一旦上方に導いた。その後、強化繊維シートは方向転換ロールを経て、鉛直下向きに搬送され、強化繊維予熱装置で塗布部温度以上に加熱され、塗布部に導かれ、マトリックス樹脂が塗布された。その後、塗布部から1次プリプレグが引き出され、離型シートが付与された後、高張力引き取り装置で引き取られ、さらに上側の離型シートが剥がされた。そして、テーブル上でスプレー塗布を行った。この後、上側の離型シートが付与され、これが熱板と加熱ニップロールを備えた追含浸装置に導かれ、場合により追含浸を行った。その後、冷却装置を経て、上側離型紙を剥がし、プリプレグ/離型シートのシート状一体物が巻き取られた。
<Prepreg manufacturing process>
The reinforcing fiber bundle was pulled out from the plurality of reinforcing fiber bobbins hung on the creel, the reinforcing fiber sheet was formed by the reinforcing fiber arrangement device, and once guided upward by the direction changing roll. Thereafter, the reinforcing fiber sheet was conveyed vertically downward via a direction change roll, heated to a temperature equal to or higher than the application unit temperature by a reinforcing fiber preheating device, guided to the application unit, and coated with a matrix resin. Thereafter, the primary prepreg was pulled out from the application section, a release sheet was provided, and then the sheet was taken out by a high tension take-off device, and the upper release sheet was peeled off. Then, spray coating was performed on the table. Thereafter, the upper release sheet was applied, and this was led to a re-impregnation device equipped with a hot plate and a heated nip roll, and was optionally re-impregnated. Thereafter, the upper release paper was peeled off through a cooling device, and the sheet-like integrated material of the prepreg / release sheet was wound up.
 <マトリックス樹脂>
 マトリックス樹脂(熱硬化性エポキシ樹脂組成物):
 エポキシ樹脂(芳香族アミン型エポキシ樹脂+ビスフェノール型エポキシ樹脂の混合物)、硬化剤(ジアミノジフェニルスルホン)、ポリエーテルスルホンの混合物であり、ポリマー粒子は含有していない。この熱硬化性エポキシ樹脂の粘度をTA Instruments社製ARES-G2を用いて、測定周波数0.5Hz、昇温速度1.5℃/分で測定したところ、75℃で50Pa・s、90℃で15Pa・s、105℃で4Pa・sであった。
<Matrix resin>
Matrix resin (thermosetting epoxy resin composition):
It is a mixture of an epoxy resin (a mixture of an aromatic amine type epoxy resin and a bisphenol type epoxy resin), a curing agent (diaminodiphenyl sulfone), and a polyether sulfone, and does not contain polymer particles. The viscosity of the thermosetting epoxy resin was measured using ARES-G2 manufactured by TA Instruments at a measurement frequency of 0.5 Hz and a heating rate of 1.5 ° C./min. It was 15 Pa · s and 4 Pa · s at 105 ° C.
 <スプレー塗布に供する液体>
 ビスフェノール型の液状エポキシ樹脂を用いた。この液状エポキシ樹脂の粘度をTA Instruments社製ARES-G2を用いて、測定周波数0.5Hz、温度25℃で測定したところ10Pa・sであった。
<Liquid for spray application>
A bisphenol-type liquid epoxy resin was used. The viscosity of the liquid epoxy resin was measured using ARES-G2 manufactured by TA Instruments at a measurement frequency of 0.5 Hz and a temperature of 25 ° C. and found to be 10 Pa · s.
 <スプレー塗布条件>
 塗布ヘッド温度は25℃、口金の単孔面積を0.025mm、単孔吐出量を0.16g/分、幅方向の口金孔数を220とした。また、空気流を0.15MPaで空気を供給し、炭素繊維シートから塗布ヘッド下面(口金面)までの塗布高さhは50mmとした。
<Spray application conditions>
The coating head temperature was 25 ° C., the single hole area of the die was 0.025 mm 2 , the single hole discharge amount was 0.16 g / min, and the number of die holes in the width direction was 220. Air was supplied at an air flow of 0.15 MPa, and the coating height h from the carbon fiber sheet to the lower surface of the coating head (base surface) was 50 mm.
 <連続走行性の評価>
 強化繊維シートの塗布部での連続走行性を評価するため、30分間連続走行させ、毛羽詰まり・糸切れが無いものを「Good」、毛羽が詰まり糸切れしたものを「Bad」とした。
<Evaluation of continuous running performance>
In order to evaluate the continuous running property in the application section of the reinforcing fiber sheet, the running was continuously performed for 30 minutes, and those having no fuzz clogging and thread break were designated as "Good", and those having fuzz clogged and thread broken were designated as "Bad".
 また、毛羽詰まりの兆候を評価するため、60分間および120分間の連続走行後に塗布部を分解して壁面部材の接液面を目視で観察し、毛羽の有無を調べた。連続走行後に狭窄部の付近に毛羽が付着しているものを毛羽防止性「Poor」、連続走行後に狭窄部23から遠い部分(液溜り部22の上部付近)に毛羽が付着しているものを毛羽防止性「Fair」、連続走行後に壁面部材21の接液面に毛羽が付着していないものを毛羽防止性「Good」として、毛羽防止性を評価した。 Also, in order to evaluate the signs of fuzz clogging, the coating portion was disassembled after continuous running for 60 minutes and 120 minutes, and the liquid contact surface of the wall member was visually observed to check for the presence of fuzz. The fuzz-preventing property “Poor” is used for the case where fuzz is attached near the constriction after continuous running, and the case where fuzz is attached to the portion far from the constriction 23 (near the upper part of the liquid reservoir 22) after continuous running. The fuzz-preventing property was evaluated as “Fair”, and the fuzz-preventing property “Good” was evaluated when no fuzz was attached to the liquid contact surface of the wall member 21 after continuous running.
 また、走行速度20m/分で60分間連続走行させ、液溜まり部直上の強化繊維シートに繊維束の割れ(縦スジ状にシート状炭素繊維束が裂けている部分)や繊維束の端部折れ(炭素繊維束が重なっている部分)がなく均一に走行している時間を測定した。繊維束の割れ、および繊維束の端部折れがなく均一に走行している時間の割合が全走行時間の90%以上を占めるものを「Excellent」、50%以上90%未満のものを「Good」、10%以上50%未満のものを「Fair」、10%未満のものを「Poor」とした。 Further, the fiber was continuously run at a running speed of 20 m / min for 60 minutes, and the fiber bundle was broken (a portion where the sheet-like carbon fiber bundle was torn in a vertical streak) or the end of the fiber bundle was broken in the reinforcing fiber sheet immediately above the liquid pool. The time during which there was no (the portion where the carbon fiber bundles overlapped) running uniformly was measured. "Excellent" means that the ratio of the time during which the fiber bundle is running uniformly without cracks and end breaks of the fiber bundle is 90% or more of the total running time, and "Good" means that the ratio is 50% or more and less than 90%. "10% or more and less than 50% were designated as" Fair ", and those less than 10% were designated as" Poor ".
 <含浸度の評価>
 ・剥離法(含浸度が低い場合)
 採取したプリプレグを粘着テープで挟み、これを剥離し、マトリックス樹脂が付着した強化繊維とマトリックス樹脂が付着していない強化繊維を分離した。そして、投入した強化繊維シート全体の質量に対するマトリックス樹脂が付着した強化繊維の質量の比率を剥離法によるマトリックス樹脂の含浸率とした。
<Evaluation of impregnation degree>
・ Peeling method (when impregnation degree is low)
The collected prepreg was sandwiched between adhesive tapes and peeled off to separate the reinforcing fibers to which the matrix resin had adhered and the reinforcing fibers to which the matrix resin had not adhered. Then, the ratio of the mass of the reinforcing fibers to which the matrix resin adhered to the mass of the entire reinforcing fiber sheet charged was defined as the matrix resin impregnation rate by the peeling method.
 ・吸水率(含浸度が高い場合)
 特表2016-510077号公報に記載の方法にならい、プリプレグを10cm×10cmにカットし、その1辺を5mm、水に5分間浸漬した時の質量変化から計算した。
・ Water absorption (when impregnation degree is high)
In accordance with the method described in JP-T-2016-510077, the prepreg was cut into 10 cm × 10 cm, and one side of the prepreg was calculated to be 5 mm and immersed in water for 5 minutes to calculate the mass.
 [実施例1~4] 
 塗布部で前記熱硬化性エポキシ樹脂組成物(マトリックス樹脂)を用い、スプレー塗布で前記液状エポキシ樹脂を用い、プリプレグを作製した。ただし、本実施例では、スプレー塗布後の追含浸は行わなかった。なお、液溜り部のマトリックス樹脂温度は90℃(15Pa・s相当)とした。また、強化繊維シート、プリプレグの走行速度は20m/分とした。
[Examples 1 to 4]
A prepreg was prepared using the thermosetting epoxy resin composition (matrix resin) in the application section and the liquid epoxy resin by spray application. However, in this example, additional impregnation after spray application was not performed. The matrix resin temperature in the liquid reservoir was 90 ° C. (corresponding to 15 Pa · s). The running speed of the reinforcing fiber sheet and the prepreg was set to 20 m / min.
 幅規制機構下端部の幅L2と1次プリプレグの幅Wの関係L2-Wと塗布部の断面積が連続的に減少する高さHを種々変更した時の塗布部での1次プリプレグの走行安定性の評価結果を表1に示す。これよりL2-Wが小さく、Hが大きい方が1次プリプレグの安定走行性が向上することが分かる。なお、簡易追含浸を行わず、簡易追含浸装置下部で1次プリプレグを採取し、含浸率を剥離法で調べたところ、いずれも50~60%であり、塗布部で含浸が進んでいることを確認した。また、前記のように採取した1次プリプレグの幅方向の目付け均一性を以下のように評価した。幅300mmのプリプレグを幅方向に100mm四方で右端部、中央、左端部で切り出し、プリプレグの質量、炭素繊維の質量をそれぞれn=3で測定した。炭素繊維の質量はプリプレグから樹脂を溶剤で溶出した残渣として測定した。これから、各サンプリング位置での平均値をそれぞれ算出し、各サンプリング位置での平均値同士を比較したしたところ、炭素繊維、樹脂ともプラスマイナス2質量%の範囲に収まっており、優れた目付け均一性であった。また、スプレー塗布した液体の効果により、プリプレグ表面のタック性も優れていた。 Running of the primary prepreg in the coating section when the relationship L2-W between the width L2 of the lower end of the width regulating mechanism and the width W of the primary prepreg and the height H at which the cross-sectional area of the coating section continuously decreases are variously changed. Table 1 shows the results of evaluating the stability. From this, it can be seen that the smaller L2-W and the larger H, the more stable the running of the primary prepreg. In addition, when the primary prepreg was sampled at the lower part of the simple additional impregnation apparatus without performing the simple additional impregnation, and the impregnation rate was examined by a peeling method, all were 50 to 60%, and the impregnation was progressing in the application part. It was confirmed. Further, the uniformity of the basis weight in the width direction of the primary prepreg collected as described above was evaluated as follows. A prepreg having a width of 300 mm was cut out at the right end, the center, and the left end in a width of 100 mm in the width direction, and the mass of the prepreg and the mass of the carbon fiber were measured at n = 3. The mass of the carbon fiber was measured as a residue obtained by eluting the resin from the prepreg with a solvent. From this, the average value at each sampling position was calculated, and the average values at each sampling position were compared with each other. As a result, both carbon fibers and resins were within the range of ± 2% by mass. Met. Further, the tackiness of the prepreg surface was excellent due to the effect of the liquid applied by spraying.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 塗布部として、図10に示す断面積が連続的に減少する部分の無いもの(H=0)を用い、表1記載の条件で実施例1と同様にプリプレグを作製しようとしたが、20m/分で走行開始後、すぐに強化繊維シートが詰まり、連続走行性が不良であった。
[Comparative Example 1]
A prepreg was prepared in the same manner as in Example 1 under the conditions shown in Table 1 by using a coating portion having no portion where the cross-sectional area shown in FIG. 10 continuously decreases (H = 0). Minutes after the start of running, the reinforcing fiber sheet was immediately clogged, and the continuous running performance was poor.
 [実施例5]
 実施例1の条件でマトリックス樹脂を塗布した後、スプレー塗布を行い、さらに追含浸装置に導き、追含浸を行った。このプリプレグの吸水率を調べたところ、5%と十分な含浸度であった。
[Example 5]
After applying the matrix resin under the conditions of Example 1, spray application was performed, and the mixture was guided to an additional impregnation device to perform additional impregnation. When the water absorption of this prepreg was examined, it was 5%, which was a sufficient impregnation degree.
 次に、得られたプリプレグを6層積層し、オートクレーブを用いて180℃、6kgf/cm(0.588MPa)で2時間硬化させ、CFRPを得た。得られたCFRPは何れも引っ張り強度が3.0GPaであり、航空・宇宙用の構造材料として好適な機械特性を有していた。なお、CFRP引っ張り強度は、WO2011/118106パンフレットと同様に測定を行い、プリプレグ中の強化繊維の体積%を56.5%に規格化した値を用いた。 Next, six layers of the obtained prepregs were laminated, and cured at 180 ° C. and 6 kgf / cm 2 (0.588 MPa) for 2 hours using an autoclave to obtain CFRP. Each of the obtained CFRPs had a tensile strength of 3.0 GPa, and had mechanical properties suitable as structural materials for aerospace. The CFRP tensile strength was measured in the same manner as in WO2011 / 118106, and the value obtained by standardizing the volume% of the reinforcing fibers in the prepreg to 56.5% was used.
 [参考例1]
 炭素繊維および熱硬化性エポキシ樹脂(マトリックス樹脂)を用い、従来のホットメルト法で作製したプリプレグをオートクレーブを用いて180℃、6kgf/cm(0.588MPa)で2時間硬化させたCFRPの引っ張り強度2.9GPaであった。
[Reference Example 1]
A prepreg prepared by a conventional hot melt method using a carbon fiber and a thermosetting epoxy resin (matrix resin) was cured at 180 ° C. and 6 kgf / cm 2 (0.588 MPa) for 2 hours using an autoclave. The strength was 2.9 GPa.
 本発明の製造方法で得られるプリプレグは、CFRPに代表されるFRPとして、航空・宇宙用途や自動車・列車・船舶などの構造材や内装材、圧力容器、産業資材用途、スポーツ材料用途、医療機器用途、筐体用途、土木・建築用途など広く適用することができる。 The prepreg obtained by the production method of the present invention is a FRP typified by CFRP, and is a structural material or interior material for aerospace applications, automobiles, trains, ships, etc., a pressure vessel, an industrial material application, a sports material application, a medical device. It can be widely used for applications, housing applications, civil engineering and construction applications.
1   強化繊維
1a  強化繊維シート
1b  改質剤が付与された強化繊維シート
1c  1次プリプレグ
1d  プリプレグ
2   マトリックス樹脂
3、3a、3b   離型シート
11  クリール
12  配列装置
13、14  搬送ロール
15  巻取り装置
16、16a、16b  供給装置
20  塗布部
20b 別の実施形態の塗布部
20c 別の実施形態の塗布部
20d 別の実施形態の塗布部
20e 別の実施形態の塗布部
21a、21b 壁面部材
21c、21d 別の形状の壁面部材
21e、21f 別の形状の壁面部材
21g、21h 別の形状の壁面部材
21i、21j 別の形状の壁面部材
22  液溜り部
22a 液溜り部のうち断面積が連続的に減少する領域
22b 液溜り部のうち断面積が減少しない領域
22c 液溜り部のうち断面積が断続的に減少する領域
23  狭窄部
24a、24b 側板部材
25  出口
26  隙間
27、27a、27b 幅規制機構
28  改質剤付与装置
30  比較例1の塗布部
31a、31b 比較例1の壁面部材
32  比較例1の液溜り部
33  比較例1の液溜り部のうち断面積が断続的に減少する領域
35a、35b、35c  バー
41  スプレー塗布装置
42  カーテン塗布装置
43  液体
44  気流
45  テーブル
46  液体もしくはその固化物またはそれらの混合物
47  膜
48  端部エア
49  面部エア
50  ロール
100 塗工装置
B   液溜り部22の奥行き
C   液溜り部22の上部液面までの高さ
D   狭窄部の隙間
G   幅規制を行う位置
H   液溜り部22の断面積が連続的に減少する鉛直方向高さ
L   液溜り部22の幅
R、Ra、Rb  渦流れ
T   循環流
W   狭窄部23の直下で測定した1次プリプレグ1bの幅
Y   狭窄部23の幅
Z   強化繊維シート、1次プリプレグ、プリプレグの搬送方向
θ   テーパー部の開き角度
E   端部エアの吹き付け方向
F   面部エアの吹き付け方向
N   ネックイン
h   塗布高さ
α   塗布角
411 クリール
412 強化繊維ボビン
413 方向転換ガイド
414 強化繊維束
415 強化繊維配列装置
416 強化繊維シート
416’ 改質剤が付与された強化繊維シート
417 拡幅装置
418 平滑化装置
419 方向転換ロール
420 強化繊維予熱装置
421 改質剤付与装置
422 改質剤を付与した強化繊維シート
430 塗布部
431 テーブル
441 方向転換ロール
442 離型シート供給機構
443 離型シート
444 高張力引取り装置
445 方向転換ロール
446 離型シート
447 積層ロール
448 高張力引取り装置
449 高張力引取りS字ロール
450 追含浸装置
451 熱板
452 加熱ニップロール
453 簡易追含浸装置
454 加熱ニップロール
455 加熱S字ロール
456 コンタクトロール
461 冷却装置
462 引き取り装置
463 離型シート(上)巻取装置
464 ワインダー
471 1次プリプレグ/プリプレグ
472 シート状一体物
481 スプレー塗布装置
482 カーテン塗布装置
500 改質剤
510 スプレーノズル
520 塗布ヘッド
521 空気流
530 塗布ヘッド
REFERENCE SIGNS LIST 1 reinforced fiber 1a reinforced fiber sheet 1b reinforced fiber sheet 1c to which modifier is added primary prepreg 1d prepreg 2 matrix resin 3, 3a, 3b release sheet 11 creel 12 arranging device 13, 14 transport roll 15 winding device 16 , 16a, 16b Supply device 20 Coating unit 20b Coating unit 20c of another embodiment Coating unit 20d of another embodiment Coating unit 20e of another embodiment Coating units 21a, 21b of another embodiment Wall surface members 21c, 21d The wall members 21e, 21f having different shapes The wall members 21g, 21h having different shapes The wall members 21i, 21j having different shapes 22 The liquid reservoir 22a The cross-sectional area of the liquid reservoir continuously decreases. Region 22b Region of the liquid reservoir where the cross-sectional area does not decrease 22c Region of the liquid reservoir where the cross-sectional area decreases intermittently 23 narrowing portions 24a, 24b side plate member 25 outlet 26 gaps 27, 27a, 27b width regulating mechanism 28 modifier applying device 30 coating portions 31a, 31b of comparative example 1 wall member 32 of comparative example 1 liquid reservoir of comparative example 1 33 Areas 35a, 35b, 35c of the liquid reservoir of Comparative Example 1 where the cross-sectional area decreases intermittently Bar 41 Spray coating device 42 Curtain coating device 43 Liquid 44 Air flow 45 Table 46 Liquid or solidified product thereof or a mixture thereof 47 Film 48 End air 49 Surface air 50 Roll 100 Coating device B Depth of liquid reservoir 22 Height D to upper liquid surface of liquid reservoir 22 Gap of constricted portion G Position for regulating width H Liquid reservoir 22 The height in the vertical direction L where the cross-sectional area is continuously reduced The widths R, Ra, Rb of the liquid reservoir 22 The vortex flow T The circulating flow W The width Y of the primary prepreg 1b measured in the step Y The width Z of the constricted portion 23 The conveying direction θ of the reinforcing fiber sheet, the primary prepreg, and the prepreg The opening angle E of the tapered portion E The blowing direction of the end air F The blowing direction of the surface air N Neck-in h Application height α Application angle 411 Creel 412 Reinforcement fiber bobbin 413 Redirection guide 414 Reinforcement fiber bundle 415 Reinforcement fiber arrangement device 416 Reinforcement fiber sheet 416 'Reinforcement fiber sheet 417 with modifier added 417 Widening device 418 Smoothing device 419 Direction change roll 420 Reinforcement fiber preheating device 421 Modifier application device 422 Reinforcement fiber sheet 430 applied with a modifier 431 Table 441 Direction change roll 442 Release sheet supply mechanism 443 Release sheet 444 High tension take-off device 445 Direction change roll 446 Release sheet 447 Lamination 448 High tension take-up device 449 High tension take-off S-shaped roll 450 Additional impregnating device 451 Hot plate 452 Heating nip roll 453 Simple additional impregnating device 454 Heating nip roll 455 Heating S-shaped roll 456 Contact roll 461 Cooling device 462 Pulling device 463 Separation Mold sheet (upper) winding device 464 Winder 471 Primary prepreg / prepreg 472 Sheet-like integrated material 481 Spray coating device 482 Curtain coating device 500 Modifier 510 Spray nozzle 520 Coating head 521 Air flow 530 Coating head

Claims (14)

  1.  マトリックス樹脂が貯留された塗布部の内部に、強化繊維シートを通過させてマトリックス樹脂を強化繊維シートに付与し、その後、前記塗布部から引き出された1次プリプレグにさらに液体を吐出するスプレー塗布を行うプリプレグの製造方法であって、前記塗布部は互いに連通された液溜り部と狭窄部を備え、前記液溜り部は強化繊維シートの走行方向に沿って断面積が連続的に減少する部分を有し、前記狭窄部はスリット状の断面を有し、かつ液溜り部上面よりも小さい断面積を有する、プリプレグの製造方法。 Inside the application section where the matrix resin is stored, the reinforcing fiber sheet is passed through to apply the matrix resin to the reinforcing fiber sheet, and thereafter, spray application is performed to further discharge the liquid to the primary prepreg drawn out from the application section. In the prepreg manufacturing method to be performed, the application section includes a liquid reservoir and a constricted portion that are communicated with each other, and the liquid reservoir includes a portion where a cross-sectional area continuously decreases along a running direction of a reinforcing fiber sheet. A method for manufacturing a prepreg, wherein the constricted portion has a slit-shaped cross section and a cross-sectional area smaller than the upper surface of the liquid reservoir portion.
  2.  マトリックス樹脂が貯留された塗布部の内部に、強化繊維シートを通過させてマトリックス樹脂を強化繊維シートに付与し、その後、前記塗布部から引き出された1次プリプレグにさらに液体を吐出するカーテン塗布を行うプリプレグの製造方法であって、前記塗布部は互いに連通された液溜り部と狭窄部を備え、前記液溜り部は強化繊維シートの走行方向に沿って断面積が連続的に減少する部分を有し、前記狭窄部はスリット状の断面を有し、かつ液溜り部上面よりも小さい断面積を有する、プリプレグの製造方法。 Inside the application section where the matrix resin is stored, the reinforcing fiber sheet is passed through to apply the matrix resin to the reinforcing fiber sheet, and thereafter, curtain coating is performed to further discharge the liquid to the primary prepreg drawn from the application section. In the prepreg manufacturing method to be performed, the application section includes a liquid reservoir and a constricted portion that are communicated with each other, and the liquid reservoir includes a portion where a cross-sectional area continuously decreases along a running direction of a reinforcing fiber sheet. A method for manufacturing a prepreg, wherein the constricted portion has a slit-shaped cross section and a cross-sectional area smaller than the upper surface of the liquid reservoir portion.
  3.  マトリックス樹脂が貯留された塗布部の内部に、強化繊維シートを通過させてマトリックス樹脂を強化繊維シートに付与するプリプレグの製造方法であって、前記塗布部は互いに連通された液溜り部と狭窄部を備え、前記液溜り部は強化繊維シートの走行方向に沿って断面積が連続的に減少する部分を有し、前記狭窄部はスリット状の断面を有し、かつ液溜り部上面よりも小さい断面積を有し、強化繊維シートを塗布部の内部に通過させる前に、強化繊維シートに糸割れ防止剤、靭性向上剤、難燃剤および毛羽集束剤からなる群から選ばれる少なくとも一つの改質剤を付与するプリプレグの製造方法。 A method for producing a prepreg in which a matrix resin is applied to a reinforcing fiber sheet by passing a reinforcing fiber sheet inside an application part in which a matrix resin is stored, wherein the application part is a liquid reservoir part and a constriction part which are communicated with each other. The liquid reservoir has a portion where the cross-sectional area is continuously reduced along the running direction of the reinforcing fiber sheet, and the narrowed portion has a slit-shaped cross section, and is smaller than the liquid reservoir upper surface. Before passing the reinforcing fiber sheet into the interior of the application section, the reinforcing fiber sheet has at least one modification selected from the group consisting of a yarn breakage inhibitor, a toughness improver, a flame retardant, and a fluff sizing agent. A method for producing a prepreg to which an agent is applied.
  4.  付与後の強化繊維シートにおいて、改質剤の目付が20g/m以下となるように改質剤を付与する請求項3に記載のプリプレグの製造方法。 In the reinforcing fiber sheet after applying method of the prepreg according to claim 3, basis weight of the modifying agent imparts a modifier such that 20 g / m 2 or less.
  5.  強化繊維長手方向に間欠なく、または、塗布間隔が最大30mm以内となるように改質剤を付与する請求項3または4に記載のプリプレグの製造方法。 (5) The method for producing a prepreg according to (3) or (4), wherein the modifying agent is applied such that the reinforcing fiber is intermittently in the longitudinal direction of the reinforcing fiber or the application interval is within 30 mm at the maximum.
  6.  前記改質剤が糸割れ防止剤である請求項3~5のいずれか1項に記載のプリプレグの製造方法。 (6) The method for producing a prepreg according to any one of (3) to (5), wherein the modifier is a yarn cracking inhibitor.
  7.  強化繊維の配列方向における液溜り部の下部の幅(L)と、狭窄部の直下における一次プリプレグの幅(W)との関係が、L≦W+10(mm)を満たす、請求項1~6のいずれか1項に記載のプリプレグの製造方法。 7. The method according to claim 1, wherein a relationship between a width (L) of the lower part of the liquid reservoir in the arrangement direction of the reinforcing fibers and a width (W) of the primary prepreg immediately below the constriction satisfies L ≦ W + 10 (mm). A method for producing a prepreg according to any one of the preceding claims.
  8.  液溜り部内に強化繊維シートの幅を規制するための幅規制機構を備え、狭窄部の直下における一次プリプレグの幅(W)と該幅規制機構下端において幅規制機構により規制される幅(L2)との関係が、L2≦W+10(mm)を満たす、請求項1~7のいずれか1項に記載のプリプレグの製造方法。 A width regulating mechanism for regulating the width of the reinforcing fiber sheet is provided in the liquid reservoir. The width (W) of the primary prepreg immediately below the constriction and the width (L2) regulated by the width regulating mechanism at the lower end of the width regulating mechanism. The method for producing a prepreg according to any one of claims 1 to 7, wherein the relationship with L satisfies L2 ≦ W + 10 (mm).
  9.  液溜り部における断面積が連続的に減少する部分の鉛直方向高さが10mm以上である、請求項1~8のいずれか1項に記載のプリプレグの製造方法。 The method for producing a prepreg according to any one of claims 1 to 8, wherein a vertical height of a portion of the liquid reservoir where the cross-sectional area is continuously reduced is 10 mm or more.
  10.  前記塗布部の内部に、強化繊維シートを実質的に鉛直方向下向きに通過させる、請求項1~9のいずれか1項に記載のプリプレグの製造方法。 (10) The method for producing a prepreg according to any one of (1) to (9), wherein the reinforcing fiber sheet is allowed to pass through the inside of the application portion substantially vertically downward.
  11.  前記塗布部の内部に、強化繊維シートを水平方向または傾斜方向に通過させる、請求項1~9のいずれか1項に記載のプリプレグの製造方法。 (10) The method for producing a prepreg according to any one of (1) to (9), wherein the reinforcing fiber sheet is passed through the inside of the application section in a horizontal direction or an inclined direction.
  12.  請求項1~11のいずれか1項に記載のプリプレグの製造方法により得られたプリプレグに更に追含浸を行うプリプレグの製造方法。 A method for producing a prepreg, wherein the prepreg obtained by the method for producing a prepreg according to any one of claims 1 to 11 is further impregnated.
  13.  請求項1~12のいずれか1項に記載のプリプレグの製造方法により得られたプリプレグをスリットするプリプレグテープの製造方法。 A method for producing a prepreg tape for slitting a prepreg obtained by the method for producing a prepreg according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか1項に記載のプリプレグの製造方法により得られたプリプレグまたは請求項13に記載のプリプレグテープの製造方法により得られたプリプレグテープを成形する繊維強化複合材料の製造方法。 A method for producing a prepreg obtained by the method for producing a prepreg according to any one of claims 1 to 12, or a method for producing a fiber-reinforced composite material for molding a prepreg tape obtained by a method for producing a prepreg tape according to claim 13. .
PCT/JP2019/032497 2018-08-22 2019-08-20 Production method for prepreg, production method for prepreg tape, and production method for fiber reinforced composite material WO2020040155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019546263A JP7163927B2 (en) 2018-08-22 2019-08-20 Prepreg manufacturing method, prepreg tape manufacturing method, and fiber reinforced composite material manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018155080 2018-08-22
JP2018-155080 2018-08-22
JP2018174737 2018-09-19
JP2018-174737 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020040155A1 true WO2020040155A1 (en) 2020-02-27

Family

ID=69593245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032497 WO2020040155A1 (en) 2018-08-22 2019-08-20 Production method for prepreg, production method for prepreg tape, and production method for fiber reinforced composite material

Country Status (2)

Country Link
JP (1) JP7163927B2 (en)
WO (1) WO2020040155A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885113A1 (en) * 2020-03-25 2021-09-29 Subaru Corporation Composite material manufacturing apparatus
CN114108185A (en) * 2021-12-03 2022-03-01 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of flame-retardant non-woven fabric and product thereof
JP2022087205A (en) * 2017-02-03 2022-06-09 ユーエスビー アイ, エルエルシー Method for producing composite fiber and fiber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178412A (en) * 1988-01-06 1989-07-14 Toyobo Co Ltd Manufacture of fiber-reinforced resin molding material and device therefor
JPH01178411A (en) * 1988-01-06 1989-07-14 Toyobo Co Ltd Manufacture of fiber-reinforced resin molding material and device therefor
JPH05200747A (en) * 1992-01-27 1993-08-10 Matsushita Electric Works Ltd Production of resin impregnated base material
EP0976515A1 (en) * 1998-07-31 2000-02-02 Valeo Method and apparatus for impregnating a textile element for the fabrication of a friction material as well as textile element, wire and fricton material
JP2005066962A (en) * 2003-08-22 2005-03-17 Sumitomo Bakelite Co Ltd Method of manufacturing prepreg and laminated sheet and apparatus for manufacturing prepreg
JP2008050587A (en) * 2006-07-25 2008-03-06 Toray Ind Inc Prepreg and composite material
JP2010540297A (en) * 2007-10-02 2010-12-24 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Impregnation die for production of long fiber reinforced thermoplastic resin molding material
JP2011144213A (en) * 2010-01-12 2011-07-28 Toray Ind Inc Epoxy resin composition for carbon fiber-reinforced composite material, prepreg and carbon fiber-reinforced composite material
WO2013008720A1 (en) * 2011-07-11 2013-01-17 東レ株式会社 Thermoplastic resin pre-preg, molded preform and molded composite using same, and method for producing molded preform and molded composite
JP2016147925A (en) * 2015-02-10 2016-08-18 東レ株式会社 Prepreg and fiber-reinforced composite material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178412A (en) * 1988-01-06 1989-07-14 Toyobo Co Ltd Manufacture of fiber-reinforced resin molding material and device therefor
JPH01178411A (en) * 1988-01-06 1989-07-14 Toyobo Co Ltd Manufacture of fiber-reinforced resin molding material and device therefor
JPH05200747A (en) * 1992-01-27 1993-08-10 Matsushita Electric Works Ltd Production of resin impregnated base material
EP0976515A1 (en) * 1998-07-31 2000-02-02 Valeo Method and apparatus for impregnating a textile element for the fabrication of a friction material as well as textile element, wire and fricton material
JP2005066962A (en) * 2003-08-22 2005-03-17 Sumitomo Bakelite Co Ltd Method of manufacturing prepreg and laminated sheet and apparatus for manufacturing prepreg
JP2008050587A (en) * 2006-07-25 2008-03-06 Toray Ind Inc Prepreg and composite material
JP2010540297A (en) * 2007-10-02 2010-12-24 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Impregnation die for production of long fiber reinforced thermoplastic resin molding material
JP2011144213A (en) * 2010-01-12 2011-07-28 Toray Ind Inc Epoxy resin composition for carbon fiber-reinforced composite material, prepreg and carbon fiber-reinforced composite material
WO2013008720A1 (en) * 2011-07-11 2013-01-17 東レ株式会社 Thermoplastic resin pre-preg, molded preform and molded composite using same, and method for producing molded preform and molded composite
JP2016147925A (en) * 2015-02-10 2016-08-18 東レ株式会社 Prepreg and fiber-reinforced composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087205A (en) * 2017-02-03 2022-06-09 ユーエスビー アイ, エルエルシー Method for producing composite fiber and fiber
JP7311925B2 (en) 2017-02-03 2023-07-20 ユーエスビー アイ, エルエルシー Composite fibers and methods of producing fibers
EP3885113A1 (en) * 2020-03-25 2021-09-29 Subaru Corporation Composite material manufacturing apparatus
US11260609B2 (en) 2020-03-25 2022-03-01 Subaru Corporation Composite manufacturing apparatus
CN114108185A (en) * 2021-12-03 2022-03-01 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of flame-retardant non-woven fabric and product thereof

Also Published As

Publication number Publication date
JPWO2020040155A1 (en) 2021-08-10
JP7163927B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6451891B1 (en) Coating device and sheet-like material manufacturing device
WO2020040155A1 (en) Production method for prepreg, production method for prepreg tape, and production method for fiber reinforced composite material
KR102300301B1 (en) Coating solution-impregnated reinforced fiber fabric, sheet-like integral body, prepreg, prepreg tape, and manufacturing method of fiber-reinforced composite material
JP6696630B1 (en) Prepreg manufacturing method, coating apparatus, and prepreg manufacturing apparatus
JP6680410B1 (en) Prepreg, prepreg tape, fiber-reinforced composite material manufacturing method, and coating apparatus
JP7144756B2 (en) Method for producing prepreg, prepreg tape and fiber-reinforced composite material, and prepreg production apparatus
JP7243629B2 (en) Prepreg manufacturing method and manufacturing apparatus
WO2020040152A1 (en) Release sheet-provided multilayer structure prepreg, prepreg roll, prepreg tape, and composite material
JP6455631B1 (en) Method for producing prepreg and method for producing fiber-reinforced composite material
JP2020028844A (en) Manufacturing method for reinforcement fiber sheet impregnated with coating liquid and sheet-like integrated product, and coating device
JP2020028845A (en) Manufacturing method for reinforcement fiber sheet impregnated with coating liquid and sheet-like integrated product, and coating device
JP2020028843A (en) Manufacturing method for reinforcement fiber sheet impregnated with coating liquid and sheet-like integrated product, and coating device
JP2020029014A (en) Manufacturing method for prepreg and sheet-like integrated product, and coating device
JP6708311B1 (en) Coating liquid containing reinforcing fiber tape and coating liquid containing reinforcing fiber tape package manufacturing method
JP2020028846A (en) Manufacturing method for reinforcement fiber sheet impregnated with coating liquid and sheet-like integrated product, and coating device
JP2020029016A (en) Manufacturing method for prepreg, prepreg tape and fiber-reinforced composite material, and manufacturing device for prepreg
JP2020029015A (en) Manufacturing device and manufacturing method for prepreg and sheet-like integrated product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019546263

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851955

Country of ref document: EP

Kind code of ref document: A1