WO2020039980A1 - 角形鋼管およびその製造方法並びに建築構造物 - Google Patents

角形鋼管およびその製造方法並びに建築構造物 Download PDF

Info

Publication number
WO2020039980A1
WO2020039980A1 PCT/JP2019/031668 JP2019031668W WO2020039980A1 WO 2020039980 A1 WO2020039980 A1 WO 2020039980A1 JP 2019031668 W JP2019031668 W JP 2019031668W WO 2020039980 A1 WO2020039980 A1 WO 2020039980A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
present
bainite
ferrite
Prior art date
Application number
PCT/JP2019/031668
Other languages
English (en)
French (fr)
Inventor
晃英 松本
昌士 松本
井手 信介
岡部 能知
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019565032A priority Critical patent/JP6693606B1/ja
Priority to KR1020217004892A priority patent/KR102498954B1/ko
Priority to CN201980055210.1A priority patent/CN112601831B/zh
Publication of WO2020039980A1 publication Critical patent/WO2020039980A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a rectangular steel pipe excellent in strength, deformation performance and toughness, and a method for producing the same, and a building structure using the rectangular steel pipe, which is suitably used particularly for building structural members of large buildings.
  • building structural members used for large buildings such as factories, warehouses, and commercial facilities are increasing in strength in order to reduce construction costs by reducing weight.
  • buildings such as factories, warehouses, and commercial facilities
  • mechanical properties such that the flat portion has a yield strength of 385 MPa or more and the flat portion has a tensile strength of 520 MPa or more are required.
  • it is also required to have high plastic deformability and excellent toughness.
  • the square steel pipe is generally manufactured by using a hot-rolled steel sheet (hot-rolled steel strip) or a thick steel sheet as a material, and cold-forming this material.
  • a method of cold forming there is a method of cold press bending or a method of cold roll forming.
  • a square steel pipe manufactured by roll forming a material (hereinafter, also referred to as a roll-formed square steel pipe) is formed by cold-rolling a hot-rolled steel sheet into a cylindrical open pipe, and abutting a portion of the pipe with an electric joint. Stitch weld. Thereafter, the cylindrical open pipe (round steel pipe) is drawn down by several percent in the pipe axis direction by rolls arranged on the upper, lower, left and right sides of the open pipe, and is subsequently formed into a square to produce a square steel pipe. .
  • a square steel pipe manufactured by press-bending a material (hereinafter sometimes referred to as a press-formed square steel pipe) is formed by cold bending a thick steel plate to form a square cross section (square shape). ) Or a U-shape (U-shape) and joining them by submerged arc welding.
  • the method of manufacturing a roll-formed square steel pipe has the advantages of higher productivity and a shorter manufacturing time than the method of manufacturing a press-formed square steel pipe.
  • the flat part is not cold-formed and only the corner is work-hardened
  • the pipe is formed around the entire circumference of the steel pipe, especially when cold-formed into a cylindrical shape. Large working strain is introduced in the axial direction. For this reason, the roll-formed square steel pipe has a problem that the yield ratio in the tube axis direction is high and the toughness is low not only at the corners but also at the flat portions.
  • Patent Document 1 proposes a square steel pipe having a bainite structure area fraction of 40% or more in the microstructure of a flat plate portion.
  • Patent Literature 2 proposes a square steel pipe having a steel composition and cleanliness within a predetermined range and having excellent weldability and plastic deformation ability of a cold-worked portion.
  • Patent Document 3 proposes a square steel pipe having a low yield ratio and a high toughness by subjecting a whole pipe to strain relief annealing after pipe forming by cold forming.
  • Patent Documents 1 and 2 are based on the premise that a rectangular steel pipe is manufactured by press bending. Therefore, when applying the techniques described in Patent Literatures 1 and 2 to a roll-formed rectangular steel pipe whose mechanical properties are significantly deteriorated during cold forming, there is a problem that the yield ratio and the toughness cannot be achieved at the same time.
  • the present invention has been made in view of the above circumstances, and is suitable for building structural members, a square steel pipe excellent in strength, deformation performance and toughness, a method for manufacturing the same, and a building structure using the square steel pipe.
  • the purpose is to provide.
  • excellent in strength means that the yield strength of a flat plate portion of a rectangular steel pipe manufactured by cold roll forming (hereinafter, also referred to as a cold roll-formed rectangular steel pipe) is 385 MPa. As described above, it indicates that the flat plate portion has a tensile strength of 520 MPa or more. Further, “excellent in deformation performance” in the present invention means that the cumulative plastic deformation ratio in the member bending test of the rectangular steel pipe is 28 or more. Further, “excellent in toughness” in the present invention means that the flat portion of the rectangular steel pipe has a Charpy absorbed energy at 0 ° C. of 70 J or more.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, the following findings (1) to (3) were obtained.
  • the content of C needs to be 0.04% by mass or more.
  • the main structure at a position (a surface layer portion) of 1 / 4t of the plate thickness t from the outer surface of the rectangular steel pipe is a mixed structure of ferrite and bainite, and a region surrounded by a boundary having an orientation difference of 15 ° or more between adjacent crystals is defined as a crystal grain.
  • the average equivalent circle diameter of the crystal grains needs to be less than 7.0 ⁇ m.
  • the yield ratio of the flat portion is set to 0.90 or less, and the difference between the yield ratio YRf of the flat portion and the yield ratio YRc of the corner portion. (YRc ⁇ YRf) needs to be 0.09 or less.
  • the remaining structure at a position 1 / t of the plate thickness t from the outer surface of the rectangular steel pipe is selected from hard pearlite, martensite, and austenite. Alternatively, it is necessary to use two or more types.
  • the average of the crystal grains of the above (1) is required.
  • the volume fraction of crystal grains having a circle equivalent diameter of 40.0 ⁇ m or more needs to be 30% or less.
  • a square steel pipe having a flat plate portion and a corner portion The component composition is in mass%, C: 0.04% or more and 0.50% or less, Si: 2.0% or less, Mn: 0.5% or more and 3.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 0.005% or more and 0.10% or less, N: contains 0.010% or less, the balance being Fe and inevitable impurities,
  • the steel structure at 1 / 4t position of the plate thickness t from the pipe outer surface is as follows: By volume percentage, ferrite is more than 30%, bainite is 10% or more, The sum of the ferrite and the bainite is 70% or more and 95% or less with respect to the entire steel structure at a position 1 / 4t of the thickness t from the outer surface of the tube;
  • the balance consists of one or more selected from pearlite, martensite, and austenite, When a region surrounded by
  • the yield strength of the flat part is 385 MPa or more
  • the tensile strength of the flat part is 520 MPa or more
  • the rectangular steel pipe according to [1] wherein the flat plate portion has a yield ratio of 0.90 or less
  • the flat plate portion has a Charpy absorbed energy at 0 ° C. of 70 J or more.
  • FIG. 1 (a) and 1 (b) are schematic diagrams of a bending test of a square steel pipe performed in the present invention.
  • FIG. 2 is a graph showing the results of performing the bending test shown in FIG. 1A on a roll-formed rectangular steel pipe and a press-formed rectangular steel pipe having a yield strength of a flat plate portion of 385 MPa or more and a tensile strength of 520 MPa or more. is there.
  • FIG. 3 is a perspective view schematically showing an example of a building structure using the rectangular steel pipe of the present invention.
  • FIG. 4 is a schematic diagram showing the sampling positions of a flat plate tensile test piece and a corner tensile test piece implemented in the present invention.
  • FIG. 5 is a diagram showing a detailed sampling position of a corner tensile test piece implemented in the present invention.
  • FIG. 6 is a schematic diagram showing a sampling position of a Charpy test piece implemented in the present invention.
  • the present invention is a square steel pipe having a flat portion and a corner portion, and has a component composition in mass% of C: 0.04% or more and 0.50% or less, Si: 2.0% or less, and Mn: 0.1% or less. 5% or more and 3.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 0.005% or more and 0.10% or less, N: 0.010% or less, with the balance being Fe and unavoidable impurities, the steel structure at a position 1 / 4t of the plate thickness t from the tube outer surface has a ferrite content of more than 30% and a bainite content of 10% or more by volume ratio, and the total of the ferrite and the bainite is 70% or more and 95% or less with respect to the entire steel structure at a position 1 / 4t of the plate thickness t from the pipe outer surface, and the balance is one or more selected from pearlite, martensite, and austenite.
  • the misorientation of the matching crystal is 15 ° or more
  • the average grain equivalent diameter of the crystal grain is less than 7.0 ⁇ m
  • the total of the crystal grains having a circle equivalent diameter of 40.0 ⁇ m or more is the entire steel structure at the 1 / 4t position.
  • the difference between the yield ratio YRf of the flat portion and the yield ratio YRc of the corner portion satisfies the expression (1). YRc ⁇ YRf ⁇ 0.09 (1)
  • the press-formed rectangular steel pipe and the roll-formed rectangular steel pipe harden work harder at the corners than at the flat part, regardless of the manufacturing method. Therefore, when the yield ratio of the flat portion is YRf and the yield ratio of the corner portion is YRc, the relationship is YRc ⁇ YRf.
  • FIG. 1 is a schematic view for explaining a bending test of a rectangular steel pipe 1.
  • FIG. 1 (a) shows a side view of a test body
  • FIG. 1 (b) shows an AA shown in FIG. 1 (a). 'Shows a cross-sectional view of the line.
  • a press-formed square steel pipe and a roll-formed square steel pipe each having a yield strength of the flat plate part of 385 MPa or more and a tensile strength of the flat part of 520 MPa or more are prepared, and as shown in FIG. Specimens were produced by welding the diaphragm 2 through the center position.
  • the test body was pin-supported (rotated and supported) by the support members 3 provided at both ends of the test body so that the movement in the horizontal direction and the vertical direction was fixed.
  • the test piece was repeatedly subjected to a bending test at a position indicated by an arrow shown in FIG. 1A under a load of 45 ° (a diagonal direction of the rectangular cross section shown in FIG. 1B) to determine the cumulative plastic deformation ratio. .
  • the cumulative plastic deformation ratio is a value obtained by dividing the sum of the plastic rotation angles until the proof stress decreases rapidly due to local buckling or breakage of the specimen by the reference rotation angle corresponding to the total plastic moment. The larger this value is, the more excellent the deformation performance when used as a column material (column member), and the higher the energy absorption capacity at the time of an earthquake.
  • FIG. 2 is a graph showing the test results.
  • the cumulative plastic deformation ratio in the roll-formed rectangular steel pipe and the press-formed rectangular steel pipe having the yield strength of the flat portion of 385 MPa or more and the tensile strength of 520 MPa or more is arranged by the yield ratio difference between the flat portion and the corner portion.
  • the horizontal axis is “Yield ratio difference (YRc ⁇ YRf) between the flat portion and the corner portion in the rectangular steel pipe”
  • the vertical axis is “cumulative plastic deformation ratio”.
  • the deformation performance (cumulative plastic deformation ratio) required for the column material decreases.
  • the deformation performance (cumulative plastic deformation ratio: 28 or more) required for the column material was stably obtained.
  • “cumulative plastic deformation magnification: 28 or more” is a deformation performance required as a column material shown in Reference Document 1 below.
  • Reference 1 The Architectural Institute of Japan: Retention Strength and Deformation Performance in Building Seismic Design (1990), 1990
  • YRc-YRf The Architectural Institute of Japan: Retention Strength and Deformation Performance in Building Seismic Design (1990), 1990
  • C 0.04% or more and 0.50% or less
  • C is an element that increases the strength of steel by solid solution strengthening.
  • C is an element that promotes generation of pearlite, enhances hardenability, contributes to generation of martensite, and contributes to stabilization of austenite, and thus contributes to formation of a hard phase.
  • it is necessary to contain 0.04% or more of C.
  • the C content is set to 0.04% or more and 0.50% or less.
  • the C content is preferably at least 0.08%, more preferably more than 0.12%, and even more preferably at least 0.14%. Further, the C content is preferably 0.30% or less, more preferably 0.25% or less, and still more preferably 0.22% or less.
  • Si 2.0% or less Si is an element that increases the strength of steel by solid solution strengthening, and can be contained as necessary. In order to obtain such effects, it is desirable to contain 0.01% or more of Si. However, when the Si content exceeds 2.0%, an oxide is easily generated in the electric resistance welded portion, and the characteristics of the welded portion deteriorate. Further, the toughness of the base material other than the electric resistance welded portion also decreases. Therefore, the Si content is set to 2.0% or less.
  • the Si content is preferably at least 0.01%, more preferably at least 0.10%. Further, the Si content is preferably 0.5% or less, more preferably 0.4% or less, and even more preferably 0.3% or less.
  • Mn 0.5% or more and 3.0% or less
  • Mn is an element that increases the strength of steel by solid solution strengthening.
  • Mn is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature.
  • it is necessary to contain 0.5% or more of Mn.
  • the Mn content is set to 0.5% or more and 3.0% or less.
  • the Mn content is preferably at least 0.7%, more preferably at least 0.9%, and even more preferably at least 1.0%. Further, the Mn content is preferably 2.5% or less, more preferably 2.0% or less.
  • P 0.10% or less P segregates at the grain boundary and causes inhomogeneity of the material. Therefore, it is preferable to reduce P as an inevitable impurity as much as possible, but the content of 0.10% or less is acceptable. Therefore, the P content is in the range of 0.10% or less.
  • the P content is preferably 0.03% or less, more preferably 0.020% or less, and even more preferably 0.015% or less.
  • P is preferably set to 0.002% or more because excessive reduction leads to an increase in smelting cost.
  • S 0.05% or less S is usually present as MnS in steel, but MnS is thinly stretched in the hot rolling step and adversely affects ductility. For this reason, in the present invention, it is preferable to reduce S as much as possible, but a content of 0.05% or less is acceptable. Therefore, the S content is set to 0.05% or less.
  • the S content is preferably 0.015% or less, more preferably 0.010% or less, and even more preferably 0.008% or less.
  • S is preferably set to 0.0002% or more.
  • Al 0.005% or more and 0.10% or less
  • Al is an element that acts as a strong deoxidizing agent. In order to obtain such an effect, it is necessary to contain 0.005% or more of Al. However, when the Al content exceeds 0.10%, the weldability deteriorates, and the amount of alumina-based inclusions increases, and the surface properties deteriorate. Also, the toughness of the weld decreases. Therefore, the Al content is set to 0.005% or more and 0.10% or less.
  • the Al content is preferably at least 0.01%, more preferably at least 0.027%. Further, the Al content is preferably 0.07% or less, more preferably 0.04% or less.
  • N 0.010% or less
  • N is an unavoidable impurity, and is an element having an effect of reducing toughness by firmly fixing dislocation motion.
  • the N content is set to 0.010% or less.
  • the N content is preferably 0.0080% or less, more preferably 0.0040% or less, and even more preferably 0.0035% or less.
  • the N content is preferably set to 0.0010% or more, more preferably 0.0015% or more.
  • the balance is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, it does not refuse to contain O at 0.005% or less.
  • the above components are the basic component compositions of the steel material of the rectangular steel pipe according to the present invention. Although the properties required in the present invention can be obtained with the above essential elements, the following elements can be contained as necessary.
  • Nb at least 0.15%
  • Ti at most 0.15%
  • V at least one selected from the group consisting of at most 0.15%
  • Ti and V are all fine carbides in steel .
  • Nb, Ti, and V it is preferable that Nb: 0.005% or more, Ti: 0.005% or more, and V: 0.005% or more, respectively.
  • an excessive content may cause an increase in the yield ratio and a decrease in toughness.
  • Nb, Ti, and V when Nb, Ti, and V are contained, it is preferable to set Nb: 0.15% or less, Ti: 0.15% or less, and V: 0.15% or less, respectively. More preferably, Nb: 0.008% to 0.10%, Ti: 0.008% to 0.10%, V: 0.008% to 0.10%. Even more preferably, Nb: 0.010% or more and 0.035% or less, Ti: 0.010% or more and 0.040% or less, and V: 0.010% or more and 0.035% or less.
  • the total yield (the amount of Nb + Ti + V) may be set to 0.15% or less because the yield ratio may be increased and the toughness may be decreased. Is preferred.
  • Cr 1.0% or less
  • Mo 1.0% or less
  • Cu 0.5% or less
  • Ni 0.3% or less
  • Ca 0.010% or less
  • B 0.010% or less
  • Mo: 1.0% or less Cr and Mo are elements that increase the hardenability of steel and increase the strength of steel. Can be contained.
  • Cr and Mo it is preferable that Cr: 0.01% or more and Mo: 0.01% or more, respectively.
  • an excessive content may cause a decrease in toughness and a deterioration in weldability. Therefore, when Cr and Mo are contained, it is preferable to make Cr: 1.0% or less and Mo: 1.0% or less, respectively.
  • Cr and Mo when Cr and Mo are contained, it is preferable to make Cr: 1.0% or less and Mo: 1.0% or less, respectively. It is preferable that Cr: 0.01% or more and Mo: 0.01% or more. More preferably, Cr: 0.10% to 0.50%, Mo: 0.10% to 0.50%.
  • Cu: 0.5% or less, Ni: 0.3% or less Cu and Ni are elements that increase the strength of steel by solid solution strengthening, and can be contained as necessary.
  • an excessive content may cause a decrease in toughness and a deterioration in weldability. Therefore, when Cu and Ni are contained, it is preferable that Cu: 0.5% or less and Ni: 0.3% or less, respectively. Therefore, when Cu and Ni are contained, it is preferable that Cu: 0.5% or less and Ni: 0.3% or less, respectively.
  • Cu: 0.5% or less and Ni: 0.3% or less respectively.
  • Ca 0.010% or less
  • Ca is an element that contributes to improving the toughness of steel by spheroidizing a sulfide such as MnS that is thinly stretched in the hot rolling step, and can be contained as necessary.
  • the Ca content exceeds 0.010%, Ca oxide clusters are formed in the steel, and the toughness may deteriorate.
  • the Ca content is preferably set to 0.010% or less.
  • the Ca content is preferably set to 0.0005% or more. More preferably, the Ca content is 0.0010% or more and 0.0050% or less.
  • B 0.010% or less
  • B is an element that contributes to refinement of the structure by lowering the ferrite transformation start temperature.
  • the content is preferably set to 0.010% or less.
  • the B content is preferably 0.0003% or more. More preferably, the B content is 0.0005% or more and 0.0050% or less.
  • the steel structure at a position 1 / 4t of the thickness t from the outer surface of the steel pipe to the steel pipe has a ferrite content of more than 30% and a bainite content of 10% or more by volume ratio, and the total of the ferrite and the bainite. Is 70% or more and 95% or less with respect to the entire steel structure at a position 1 / 4t of the plate thickness t from the outer surface of the tube, and the balance is one or more selected from pearlite, martensite, and austenite.
  • the average equivalent circle diameter (average crystal grain size) of the crystal grain is less than 7.0 ⁇ m and the equivalent circle diameter.
  • the total of the crystal grains having a crystal grain size of 40.0 ⁇ m or more is 30% or less by volume ratio with respect to the entire steel structure at a position 1 / t of the thickness t from the outer surface of the tube.
  • the equivalent circle diameter is the diameter of a circle having the same area as the target crystal grain.
  • the steel structure is at a position 1 / t of the plate thickness t from the outer surface of the flat plate portion of the rectangular steel pipe except for the electric resistance welded portion.
  • the steel structure at the 1 / 4t position of the sheet thickness t from the outer surface of the pipe is the same at both the corner and the flat plate. Therefore, here, the steel structure of the flat plate portion is specified.
  • volume ratio of ferrite more than 30%, volume ratio of bainite: 10% or more, total volume ratio of ferrite and bainite with respect to the entire steel structure: 70% to 95%
  • Ferrite is a soft structure, and has another hard structure. And lowering the yield ratio of the steel. In order to obtain the low yield ratio intended in the present invention by such an effect, the volume ratio of ferrite needs to exceed 30%.
  • the volume fraction of ferrite is preferably at least 40%, more preferably at least 43%, and even more preferably at least 45%.
  • the upper limit is not particularly defined, but the volume ratio of ferrite is preferably less than 75%, more preferably less than 70%, and still more preferably 60% or less in order to secure a desired yield ratio. .
  • Bainite is a structure having intermediate hardness and increases the strength of steel. Since the yield strength and tensile strength intended in the present invention cannot be obtained only with the above ferrite, the volume ratio of bainite must be 10% or more.
  • the volume fraction of bainite is preferably at least 15%, more preferably at least 20%, and even more preferably at least 25%. Although the upper limit is not particularly defined, the volume ratio of bainite is preferably 55% or less, more preferably 50% or less, and even more preferably 45% or less, in order to secure a desired yield ratio. , Even more preferably less than 40%.
  • the yield ratio or Charpy absorbed energy intended in the present invention cannot be obtained.
  • the sum of the volume fractions of ferrite and bainite exceeds 95%, the yield strength and the yield ratio intended in the present invention cannot be obtained.
  • One or more selected from pearlite, martensite, and austenite are hard structures, and in particular, increase the tensile strength of steel and mix it with soft ferrite. The yield ratio of steel decreases. In order to obtain such an effect, it is preferable that pearlite, martensite, and austenite have a total volume ratio of 5% or more and 30% or less. More preferably, it is 7% or more and 25% or less. Still more preferably, it is 10% or more and 20% or less.
  • volume fraction of ferrite, bainite, pearlite, martensite, and austenite can be measured by a method described in Examples described later.
  • the steel structure of the present invention comprises a soft structure and a hard structure.
  • the mixed steel hereinafter, referred to as “composite structure steel”.
  • the composite structure steel has lower toughness than the single structure steel.
  • the average crystal grain size of the crystal grain is defined.
  • the average grain size of the crystal grains is preferably 6.5 ⁇ m or less, more preferably 6.0 ⁇ m or less.
  • the grain size distribution in a single-structure steel or a steel close to a single-structure steel follows a normal logarithmic distribution having one peak and having a large value on a large variable side and a limited variable on a small variable side.
  • a new peak of bainite appeared on the coarse grain side.
  • the steel structure of the present invention that is, in the composite structure steel in which the volume ratio of ferrite is more than 30% and the volume ratio of bainite is 10% or more, a peak of bainite is newly found on the coarse grain side in the crystal grain size distribution. Appears in This indicates that coarse bainite is mixed.
  • the mixture of coarse bainite causes the toughness to be greatly deteriorated.
  • the proportion of coarse bainite cannot be suppressed low. Therefore, in order to obtain good toughness, it is necessary to define the upper limit of the ratio of the presence of coarse crystal grains.
  • Bainite does not grow beyond boundaries with large misorientation (austenite grain boundaries and subboundaries formed by accumulation of dislocations). Therefore, in order to suppress the formation of the coarse bainite, the finish rolling in hot rolling is performed at a temperature as low as possible, a large amount of dislocations are introduced into austenite, the sub-boundary area is increased, and the fine sub-grain structure ( In the following, it is particularly effective to form the structure.
  • the toughness of the rectangular steel pipe according to the present invention is improved by increasing the total area of the grain boundaries that is resistant to brittle fracture.
  • preliminary experiments have shown that if the volume fraction of coarse crystal grains having a crystal grain size of 40.0 ⁇ m or more exceeds 30%, it is not possible to secure a sufficient grain boundary area to obtain necessary toughness. I learned. Therefore, in the present invention, in addition to specifying the upper limit of the average crystal grain size of the crystal grains to be less than 7.0 ⁇ m, the volume ratio of crystal grains having a crystal grain size of 40.0 ⁇ m or more is set to 30% or less. It is stipulated that The volume fraction of crystal grains having a crystal grain size of 40.0 ⁇ m or more is preferably 20% or less, more preferably 15% or less.
  • the crystal orientation difference, the average crystal grain size, and the volume ratio of the crystal grains having a crystal grain size of 40.0 ⁇ m or more can be measured by the SEM / EBSD method. Here, it can be measured by the method described in Examples described later.
  • the above-described effects are similarly obtained even when the above-described steel structure is present within a range of ⁇ 1.0 mm in the thickness direction from the outer surface of the steel pipe to a position 1 / t of the thickness t in the thickness direction.
  • the steel structure at a position 1 / 4t of the thickness t from the outer surface of the steel pipe means " ⁇ 1.0 mm in the thickness direction around the 1 / 4t position of the thickness t from the outer surface of the steel pipe.
  • the square steel pipe of the present invention is obtained, for example, by heating a steel material having the above-described composition to a heating temperature of 1100 ° C. or more and 1300 ° C. or less, and thereafter, a rough rolling end temperature: 850 ° C.
  • Hot rolling at 750 ° C or higher and 850 ° C or lower and 930 ° C or lower and a total draft of 65% or higher is performed, and then an average cooling rate at a thickness center temperature: 10 ° C / s or higher and 30 ° C / s or lower
  • Cooling stop temperature Cooling is performed at 450 ° C or more and 650 ° C or less, then rolled at 450 ° C or more and 650 ° C or less to form a hot-rolled steel sheet, and then formed into a cylindrical shape by cold roll forming. It is obtained by performing a pipe-forming step of forming a square steel pipe by forming it into a square shape.
  • ° C.” regarding temperature is the surface temperature of a steel material or a steel plate (hot rolled plate) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. Further, the temperature at the thickness center of the steel sheet can be obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis, and correcting the result by the surface temperature of the steel sheet.
  • the “hot-rolled steel sheet” includes a hot-rolled steel sheet and a hot-rolled steel strip.
  • the method of smelting a steel material is not particularly limited, and any known smelting method such as a converter, an electric furnace, and a vacuum melting furnace is suitable.
  • the casting method is also not particularly limited, but is manufactured to a desired size by a known casting method such as a continuous casting method. It should be noted that there is no problem even if the ingot-bulking rolling method is applied instead of the continuous casting method.
  • the molten steel may be further subjected to secondary refining such as ladle refining.
  • Heating temperature 1100 ° C. or more and 1300 ° C. or less If the heating temperature is less than 1100 ° C., the deformation resistance of the material to be rolled becomes large and rolling becomes difficult. On the other hand, when the heating temperature exceeds 1300 ° C., the austenite grains become coarse, and fine austenite grains cannot be obtained in the subsequent rolling (rough rolling, finish rolling), and the average of the steel structure of the square steel pipe intended in the present invention is obtained. It is difficult to secure a crystal grain size. Further, it is difficult to suppress the formation of coarse bainite, and it is difficult to control the volume ratio of crystal grains having a crystal grain size of 40.0 ⁇ m or more to a range intended in the present invention. For this reason, the heating temperature in the hot rolling step is 1100 ° C. or more and 1300 ° C. or less. More preferably, it is 1120 ° C or more and 1280 ° C or less.
  • Rough rolling end temperature 850 ° C. or higher and 1150 ° C. or lower If the rough rolling end temperature is lower than 850 ° C., during the subsequent finish rolling, the steel sheet surface temperature becomes lower than the ferrite transformation start temperature, a large amount of ferrite is generated, and bainite is formed. The volume ratio is less than 10%. On the other hand, when the rough rolling end temperature exceeds 1150 ° C., the amount of reduction in the austenite non-recrystallization temperature region is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the rectangular steel pipe intended in the present invention. Further, it becomes difficult to suppress the generation of coarse bainite.
  • the rough rolling end temperature is set to 850 ° C or higher and 1150 ° C or lower. It is more preferably 860 ° C or more and 1000 ° C or less. It is even more preferably 870 ° C or more and 980 ° C or less.
  • Finish rolling finish temperature 750 ° C. or more and 850 ° C. or less
  • the finish rolling finish temperature is less than 750 ° C.
  • the surface temperature of the steel sheet becomes lower than the ferrite transformation start temperature during finish rolling, a large amount of ferrite is formed, and the volume fraction of bainite is increased. Is less than 10%.
  • the finish rolling end temperature exceeds 850 ° C.
  • the amount of reduction in the austenite non-recrystallization temperature region is insufficient, and fine austenite grains cannot be obtained.
  • the finish rolling end temperature is 750 ° C. or more and 850 ° C. or less. It is more preferably 770 ° C or higher and 830 ° C or lower. It is even more preferably 780 ° C or higher and 820 ° C or lower.
  • the ferrite, bainite and residual structure generated in the subsequent cooling step and winding step are refined by making the sub-grains in austenite fine in the hot rolling step.
  • a steel structure of a square steel pipe having the strength and toughness desired in the present invention can be obtained.
  • the total rolling reduction from 930 ° C. to the finish rolling end temperature is 65% or more.
  • the total rolling reduction from 930 ° C. to the finish rolling end temperature is more preferably 70% or more, and even more preferably 71% or more. There is no particular upper limit, but if it exceeds 80%, the effect of improving the toughness against an increase in the rolling reduction decreases, and only the equipment load increases. For this reason, the total rolling reduction from 930 ° C. to the finish rolling end temperature is preferably 80% or less. It is more preferably at most 75%, even more preferably at most 74%.
  • the reason why the temperature is set to 930 ° C. or lower is that if the temperature exceeds 930 ° C., austenite is recrystallized in the rolling step, dislocations introduced by rolling disappear, and fine austenite cannot be obtained.
  • the above-mentioned total rolling reduction refers to the total rolling reduction of each rolling pass in a temperature range of 930 ° C or lower and up to the finish rolling end temperature.
  • hot rolling may be performed so that the total reduction from 930 ° C. to the finish rolling end temperature is 65% or more in both the rough rolling and the finish rolling.
  • hot rolling may be performed such that the total reduction from 930 ° C. or less to the finish rolling end temperature is 65% or more only by finish rolling.
  • the slab is cooled during the rough rolling to reduce the temperature to 930 ° C. or less.
  • the total rolling reduction from 930 ° C. to the finish rolling end temperature in both the rough rolling and the finish rolling is 65% or more.
  • the upper limit of the finished plate thickness is not particularly specified, but from the viewpoint of securing the required draft and controlling the steel plate temperature, the finished plate thickness is preferably more than 20 mm and 32 mm or less.
  • the hot rolled sheet is subjected to a cooling step.
  • cooling is performed at an average cooling rate up to the cooling stop temperature: 10 ° C./s to 30 ° C./s, and at a cooling stop temperature: 450 ° C. to 650 ° C.
  • Average cooling rate from the start of cooling to the stop of cooling (end of cooling) 10 ° C./s or more and 30 ° C./s or less
  • the average cooling rate in the temperature range from the start of cooling to the stop of cooling described later If it is less than 10 ° C./s, the frequency of ferrite nucleation decreases and the ferrite grains become coarse, so that the average crystal grain size cannot be less than 7.0 ⁇ m.
  • the average cooling rate exceeds 30 ° C./s, a large amount of martensite is generated at a position 1 / t of the plate thickness t from the outer surface of the steel structure of the obtained square steel pipe, and the volume fraction of ferrite and bainite is reduced.
  • the total is less than 70%.
  • the average cooling rate is preferably at least 15 ° C./s, more preferably at least 17 ° C./s. It is preferably at most 25 ° C / s, more preferably at most 23 ° C / s.
  • Cooling stop temperature 450 ° C. or more and 650 ° C. or less
  • the cooling stop temperature is less than 450 ° C.
  • a large amount is obtained at a position 1 / t of the thickness t from the outer surface of the steel structure of the obtained square steel pipe.
  • the total volume fraction of ferrite and bainite may be less than 70%. Further, the volume ratio of ferrite may be 30% or less.
  • the cooling stop temperature exceeds 650 ° C., the nucleation frequency of ferrite decreases, the ferrite grains become coarse, and the bainite volume ratio cannot be increased to 10% or more because the temperature exceeds the bainite transformation start temperature.
  • the cooling stop temperature is preferably 480 ° C or higher, and more preferably 490 ° C or higher. Preferably it is 620 ° C or lower, more preferably 600 ° C or lower.
  • the average cooling rate is a value obtained by ((thickness center temperature of hot rolled sheet before cooling ⁇ thickness center temperature of hot rolled sheet after cooling) / cooling time).
  • (Cooling rate) examples include water cooling such as injection of water from a nozzle and cooling by injection of a cooling gas.
  • a winding step of winding the hot rolled sheet and then allowing it to cool is performed.
  • winding is performed at a winding temperature of 450 ° C. or more and 650 ° C. or less from the viewpoint of the steel sheet structure. If the winding temperature is lower than 450 ° C., a large amount of martensite is generated, and the total volume ratio of ferrite and bainite may be lower than 70%. Further, the volume ratio of ferrite may be 30% or less.
  • the winding temperature is more preferably 480 ° C or more and 620 ° C or less, and even more preferably 490-590 ° C.
  • a tube forming process is performed.
  • a hot rolled steel sheet is roll-formed into a cylindrical open pipe (round steel pipe), and the butted portions are welded by electric resistance welding. Thereafter, the roll is placed vertically, horizontally, and horizontally with respect to the round steel pipe, and while the cylindrical shape is kept, several percent of the drawing is applied in the pipe axis direction to form a square steel pipe.
  • the rectangular steel pipe in the present invention is not limited to a rectangular steel pipe having all equal side lengths (the value of (long side length / short side length) is 1.0). Also included are rectangular steel pipes having a value of (length) exceeding 1.0. However, if the value of (long side length / short side length) of the rectangular steel pipe exceeds 2.5, local buckling is likely to occur on the long side, and the compressive strength in the pipe axis direction decreases. Therefore, the value of (long side length / short side length) of the rectangular steel pipe is preferably set to 1.0 or more and 2.5 or less. The value of (long side length / short side length) is more preferably 1.0 or more and 2.0 or less.
  • the square steel pipe of the present invention is manufactured.
  • the yield strength of the flat portion is 385 MPa or more
  • the tensile strength of the flat portion is 520 MPa or more
  • the yield ratio of the flat portion is 0.90 or less
  • the Charpy absorbed energy at 0 ° C. of the flat portion is 70 J or more.
  • a square steel pipe can be obtained. This makes it possible to produce a high-strength roll-formed square steel pipe with high productivity and short delivery time (short term) as compared with cold press bending.
  • the roll-formed rectangular steel pipe can be suitably used particularly for building members of large buildings such as factories, warehouses, commercial facilities, and the like, and can greatly contribute to reduction of construction costs.
  • the present invention can be suitably used particularly for thick-walled rectangular steel pipes.
  • thickness means that the thickness of the flat plate portion of the rectangular steel pipe is more than 20 mm.
  • FIG. 3 schematically shows an example of a building structure using the above-described square steel pipe of the present invention.
  • a plurality of square steel pipes 1 of the present invention are erected and used as pillars.
  • a plurality of girders 4 made of a steel material such as an H-section steel are provided between adjacent rectangular steel pipes 1.
  • a plurality of small beams 5 made of a steel material such as an H-section steel are provided between the adjacent large beams 4.
  • the H-shaped steel to be the square steel pipe 1 and the girder 4 is welded and joined via a through-diaphragm 6 so that the girder 4 made of a steel material such as an H-shaped steel is erected between the adjacent square steel pipes 1. Further, a stud 7 is provided as needed for mounting a wall or the like.
  • the rectangular steel pipe 1 of the present invention is excellent in strength, deformation performance and toughness, even when used in a large building, the deformation performance of the entire structure can be sufficiently ensured. Therefore, the building structure of the present invention exhibits more excellent seismic performance than a building structure using a conventional rectangular steel pipe.
  • ⁇ Molten steel having the component composition shown in Table 1 was smelted in a converter and made into a slab (steel material: wall thickness 250 mm) by a continuous casting method.
  • the obtained slab was subjected to a hot rolling step, a cooling step, and a winding step under the conditions shown in Table 2 to obtain a hot-rolled steel sheet for a rectangular steel pipe.
  • Some of the hot-rolled steel sheets for square steel pipes were formed into cylindrical round steel pipes by roll forming, and the butted portions were subjected to ERW welding. After that, several percent of drawing is performed in the axial direction of the pipe by means of rolls arranged at the top, bottom, left and right of the round steel pipe to form a square shape, and a roll-formed square steel pipe having a side length (mm) and a plate thickness (mm) shown in Table 2 I got
  • the cross-sectional shape was formed into a square shape or a U-shape by press bending, and these were joined by submerged arc welding, and the side length (mm) and sheet thickness shown in Table 2 were obtained. (Mm) was obtained.
  • test piece was sampled from the obtained square steel pipe (roll-formed square steel pipe, press-formed square steel pipe), and the following structure observation, tensile test, and Charpy impact test were performed.
  • test piece for structure observation was taken from the side (the 3 o'clock or 9 o'clock side when the welded portion was in the 12 o'clock direction) next to the side including the welded portion of the rectangular steel pipe.
  • the test piece for structure observation was collected from the flat plate portion serving as the adjacent side portion such that the observation surface was a cross section in the tube axis direction at the time of hot rolling and a position 1 / t of the plate thickness t from the tube outer surface, After polishing, it was produced by nital corrosion.
  • Microstructure observation was performed using an optical microscope (magnification: 1000 times) or a scanning electron microscope (SEM, magnification: 1000 times) to observe the structure at the 1 / 4t position of the plate thickness t from the outer surface of the flat portion of the rectangular steel tube. Then, an image was taken. From the obtained optical microscope image and SEM image, the area ratio of ferrite, pearlite, bainite and the remaining structure was determined. The area ratio of each tissue was observed in five or more visual fields using a test piece collected from one representative flat plate portion, and calculated as an average value obtained in each visual field. Here, the area ratio obtained by observing the tissue was defined as the volume ratio of each tissue.
  • ferrite is a product by diffusion transformation, and exhibits a structure with low dislocation density and almost recovered. This includes polygonal ferrite and pseudopolygonal ferrite. Bainite has a double phase structure of lath-like ferrite and cementite having a high dislocation density.
  • the measurement of the volume fraction of austenite was performed by X-ray diffraction.
  • the test piece for structure observation was prepared by grinding the diffraction surface from the outer surface of the flat plate portion of the steel tube to a position of 1 / 4t of the plate thickness t, and then performing chemical polishing to remove the surface processed layer.
  • the K ⁇ line of Mo was used for the measurement, and the volume fraction of austenite was determined from the integrated intensity of the (200), (220), and (311) faces of fcc iron and the (200) and (211) faces of bcc iron.
  • the average equivalent circle diameter (average crystal grain diameter) and the volume fraction of crystal grains having an equivalent circle diameter (crystal grain diameter) of 40.0 ⁇ m or more were measured using the SEM / EBSD method.
  • the crystal grain size was obtained by determining the azimuth difference between adjacent crystal grains, and setting a boundary where the azimuth difference was 15 ° or more as a crystal grain boundary.
  • the arithmetic mean of the particle size was determined from the obtained crystal grain boundaries, and the result was defined as the average crystal particle size.
  • the measurement area was 500 ⁇ m ⁇ 500 ⁇ m, and the measurement step size was 0.5 ⁇ m. In the crystal grain size analysis, those having a crystal grain size of 2.0 ⁇ m or less were excluded from the analysis as measurement noise, and the obtained area ratio was assumed to be equal to the volume ratio.
  • FIG. 4 is a schematic diagram showing the sampling positions of the tensile test piece in the flat plate portion and the tensile test piece in the corner portion.
  • FIG. 5 is a schematic diagram showing a detailed sampling position of a tensile test piece at a corner.
  • the tensile test piece of a flat plate part is a flat plate in the side part other than the side part including the welded part of a square steel pipe (side part at the 3 o'clock, 6 o'clock, or 9 o'clock side when the welded part is 12 o'clock direction).
  • the sample was taken from the position at the center of the width of the part (see FIG. 4).
  • the corner tensile test pieces were taken from the corners of the square steel pipe at 45 ° corners (see FIG. 5). The number of test pieces was two each, and their average values were calculated to obtain YS, TS, and yield ratio.
  • FIG. 6 is a schematic diagram showing a sampling position of a Charpy test piece.
  • the Charpy impact test was conducted at a position 1 / 4t of the plate thickness t from the outer surface of the square steel pipe so that the longitudinal direction of the test piece was parallel to the pipe axis direction.
  • a V-notch standard test piece conforming to the standard was used.
  • a Charpy impact test was conducted at a test temperature of 0 ° C. in accordance with JIS Z 2242 to determine the absorbed energy (J). The number of test pieces was three, and the average value was calculated to determine the absorbed energy (J).
  • steel No. 1 5, 13, 14, 17, 19, 22, 27 to 34, 36 to 46, and 48 are examples of the present invention, and steel Nos. 2 to 4, 6 to 12, 15, 16, 18, 20, 21, 23 to 26, 35, 47, and 49 are comparative examples.
  • the steel structure includes ferrite with a volume ratio of more than 30% and bainite of 10% or more, the total volume ratio of ferrite and bainite is 70% or more and 95% or less, and the balance is When a region composed of one or more selected from pearlite, martensite, and austenite and surrounded by a boundary having a misorientation of 15 ° or more is defined as a crystal grain, the average equivalent circle diameter of the crystal grain is less than 7.0 ⁇ m. And the volume fraction of crystal grains having an equivalent circle diameter of 40.0 ⁇ m or more was 30% or less.
  • the yield strength in the flat part is 385 MPa or more
  • the tensile strength in the flat part is 520 MPa or more
  • the yield ratio in the flat part is 0.90 or less
  • the Charpy absorbed energy at 0 ° C. in the flat part is 70 J or more.
  • the difference in yield ratio between the parts was 0.09 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

角形鋼管およびその製造方法を提供する。本発明は平板部と角部を有する角形鋼管であって、成分組成は、質量%で、C:0.04%以上0.50%以下、Si:2.0%以下、Mn:0.5%以上3.0%以下、P:0.10%以下、S:0.05%以下、Al:0.005%以上0.10%以下、N:0.010%以下を含有し、残部がFeおよび不可避的不純物からなり、管外面から板厚tの1/4t位置における鋼組織は、体積率で、フェライトが30%超、ベイナイトが10%以上であり、フェライトおよびベイナイトの合計が、管外面から板厚tの1/4t位置における鋼組織全体に対して70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、結晶粒の平均円相当径が7.0μm未満であり、かつ円相当径で40.0μm以上の結晶粒の合計が1/4t位置における鋼組織全体に対して体積率で30%以下であり、平板部の降伏比YRfと角部の降伏比YRcが(1)式を満足する。 YRc-YRf≦0.09 ・・・(1)

Description

角形鋼管およびその製造方法並びに建築構造物
 本発明は、特に大型建築物の建築構造部材に好適に用いられる、強度、変形性能および靱性に優れた角形鋼管およびその製造方法、並びにこの角形鋼管を使用した建築構造物に関する。
 近年、例えば工場、倉庫、商業施設などの大型建築物(以下、建築物と称する)に用いられる建築構造部材は、軽量化による施工コスト削減のため、高強度化が進んでいる。特に建築物の柱材として用いられる平板部と角部を有する角形鋼管(角コラム)では、平板部の降伏強度が385MPa以上、平板部の引張強度が520MPa以上の機械的特性を求められている。同時に、耐震性の観点から、高い塑性変形能と優れた靱性を備えることも求められる。
 角形鋼管は、一般に熱延鋼板(熱延鋼帯)または厚鋼板を素材とし、この素材を冷間で成形することにより製造される。冷間で成形する方法としては、冷間でプレス曲げ成形する方法あるいは冷間でロール成形する方法がある。
 素材をロール成形して製造される角形鋼管(以下、ロール成形角形鋼管と称する場合もある。)は、熱延鋼板を冷間でロール成形して円筒状のオープン管とし、その突合せ部分を電縫溶接する。その後、オープン管の上下左右に配置されたロールにより、円筒状のオープン管(丸型鋼管)に対して管軸方向に数%の絞りを加え、続けて角形に成形して角形鋼管を製造する。一方、素材をプレス曲げ成形して製造される角形鋼管(以下、プレス成形角形鋼管と称する場合もある。)は、厚鋼板を冷間でプレス曲げ成形して断面形状をロの字型(四角形状)あるいはコの字型(U字形状)とし、これらをサブマージアーク溶接により接合して製造する。
 ロール成形角形鋼管の製造方法は、プレス成形角形鋼管の製造方法と比較して生産性が高く、短期間での製造が可能であるという利点がある。しかし、プレス成形角形鋼管では、平板部には冷間成形が加わらず角部のみが加工硬化するのに対し、ロール成形角形鋼管では、特に円筒状に冷間成形する際に鋼管全周にわたり管軸方向に大きな加工ひずみが導入される。そのため、ロール成形角形鋼管は角部だけでなく平板部においても管軸方向の降伏比が高く、靱性が低いという問題がある。
 さらに、ロール成形角形鋼管は、板厚が大きいほどロール成形時の加工硬化が大きくなるため、降伏比はより高くなり、靱性はより低下する。そのため、特に厚肉のロール成形角形鋼管を製造する場合には、ロール成形による降伏比の上昇および靱性の低下にも耐えうるような素材を選択する必要がある。
 このような要求に対し、例えば、特許文献1には、平板部のミクロ組織において、ベイナイト組織の面積分率を40%以上とする角形鋼管が提案されている。
 特許文献2には、鋼成分および清浄度を所定の範囲内とした溶接性および冷間加工部の塑性変形能力に優れた角形鋼管が提案されている。
 特許文献3には、冷間成形により造管した後に全管ひずみ取り焼鈍を施すことで、低降伏比および高靱性を有する角形鋼管が提案されている。
特許第5385760号公報 特許第4611250号公報 特許第4957671号公報
 しかしながら、特許文献1および2に記載の技術は、プレス曲げ成形による角形鋼管の製造を前提としたものである。そのため、冷間成形時に機械的特性が大きく劣化するロール成形角形鋼管に特許文献1および2に記載の技術を適用する場合には、降伏比と靱性を同時に達成できないという問題がある。
 また、特許文献3に記載の技術では、低降伏比および高靱性を得るためには、造管後に角形鋼管に熱処理を施す必要がある。そのため、冷間加工ままの角形鋼管と比較して製造コストが非常に高くなる。
 本発明は、上記の事情を鑑みてなされたものであって、建築構造部材に好適な、強度、変形性能および靱性に優れた角形鋼管およびその製造方法、並びにこの角形鋼管を使用した建築構造物を提供することを目的とする。
 なお、本発明でいう「強度に優れた」とは、冷間でロール成形して製造される角形鋼管(以下、冷間ロール成形角形鋼管と称する場合もある)の平板部の降伏強度が385MPa以上、平板部の引張強度が520MPa以上の強度を有することを指す。また、本発明でいう「変形性能に優れた」とは、上記角形鋼管の部材曲げ試験における累積塑性変形倍率が28以上であることを指す。また、本発明でいう「靱性に優れた」とは、上記角形鋼管の平板部の0℃におけるシャルピー吸収エネルギーが70J以上であることを指す。
 本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、以下の知見(1)~(3)を得た。
 (1)角形鋼管が、本発明で目的とする平板部の降伏強度および引張強度を満足するためには、Cの含有量を0.04質量%以上とする必要がある。さらに、角形鋼管の管外面から板厚tの1/4t位置(表層部)における主体組織をフェライトとベイナイトの混合組織とし、隣り合う結晶の方位差15°以上の境界によって囲まれる領域を結晶粒としたとき、結晶粒の平均円相当径を7.0μm未満とする必要がある。
 (2)角形鋼管が、本発明で目的とする変形性能を満足するためには、平板部の降伏比を0.90以下とし、かつ平板部の降伏比YRfと角部の降伏比YRcの差(YRc-YRf)を0.09以下とする必要がある。平板部の降伏比を0.90以下とするためには、角形鋼管の管外面から板厚tの1/4t位置における残部組織を硬質なパーライト、マルテンサイト、オーステナイトの中から選択される1種または2種以上とする必要がある。
 (3)角形鋼管が、上記(1)および(2)の両方を満足する鋼組織において、さらに本発明で目的とする平板部の靱性を得るためには、上記(1)の結晶粒の平均円相当径を7.0μm未満とするのに加えて、円相当径40.0μm以上の結晶粒の体積率を30%以下とする必要がある。
 本発明は、これらの知見に基づいて完成されたものであり、下記の要旨からなる。
[1] 平板部と角部を有する角形鋼管であって、
 成分組成は、質量%で、
C :0.04%以上0.50%以下、
Si:2.0%以下、
Mn:0.5%以上3.0%以下、
P :0.10%以下、
S :0.05%以下、
Al:0.005%以上0.10%以下、
N :0.010%以下
を含み、残部がFeおよび不可避的不純物からなり、
 管外面から板厚tの1/4t位置における鋼組織は、
体積率で、フェライトが30%超、ベイナイトが10%以上であり、
該フェライトおよび該ベイナイトの合計が、管外面から板厚tの1/4t位置における鋼組織全体に対して70%以上95%以下であり、
残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、
隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
該結晶粒の平均円相当径が7.0μm未満であり、かつ円相当径で40.0μm以上の該結晶粒の合計が1/4t位置における鋼組織全体に対して体積率で30%以下であり、
 前記平板部の降伏比YRfと前記角部の降伏比YRcが(1)式を満足する、角形鋼管。
YRc-YRf≦0.09    ・・・(1)
[2] 平板部の降伏強度が385MPa以上、平板部の引張強度が520MPa以上、
平板部の降伏比が0.90以下、平板部の0℃におけるシャルピー吸収エネルギーが70J以上である、[1]に記載の角形鋼管。
[3] 前記成分組成に加えてさらに、質量%で、下記A群およびB群のうちから選ばれた1群または2群を含有する、[1]または[2]に記載の角形鋼管。
        記
A群:Nb:0.15%以下、Ti:0.15%以下、V:0.15%以下のうちから選ばれた1種または2種以上
B群:Cr:1.0%以下、Mo:1.0%以下、Cu:0.5%以下、Ni:0.3%以下、Ca:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上
[4] 前記鋼組織は、体積率で、ベイナイトが10%以上40%未満である、[1]~[3]のいずれか1つに記載の角形鋼管。
[5] [1]または[3]に記載の成分組成を有する鋼素材を、
加熱温度:1100℃以上1300℃以下に加熱した後、
粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ930℃以下での合計圧下率:65%以上である熱間圧延を施し、
 次いで、板厚中心温度で平均冷却速度:10℃/s以上30℃/s以下、冷却停止温度:450℃以上650℃以下で冷却を施し、
 次いで、450℃以上650℃以下で巻取り熱延鋼板とし、
 次いで、冷間ロール成形により、前記熱延鋼板を円筒状に成形した後、角形状に成形して角形の鋼管とする造管工程を施す、角形鋼管の製造方法。
[6] [1]~[4]のいずれか1つに記載の角形鋼管が、柱材として使用されている、建築構造物。
 本発明によれば、強度、変形性能および靱性に優れた角形鋼管およびその製造方法を提供することができる。
図1(a)及び図1(b)は、本発明で実施した角形鋼管の曲げ試験の概要図である。 図2は、平板部の降伏強度が385MPa以上、引張強度が520MPa以上であるロール成形角形鋼管およびプレス成形角形鋼管に、図1(a)に示した曲げ試験を行った結果を示したグラフである。 図3は、本発明の角形鋼管を使用した建築構造物の一例を模式的に示す斜視図である。 図4は、本発明で実施した平板部引張試験片および角部引張試験片の採取位置を示す概略図である。 図5は、本発明で実施した角部引張試験片の詳細な採取位置を示す図である。 図6は、本発明で実施したシャルピー試験片の採取位置を示す概略図である。
 以下、本発明について詳細に説明する。
 本発明は、平板部と角部を有する角形鋼管であって、成分組成は、質量%で、C:0.04%以上0.50%以下、Si:2.0%以下、Mn:0.5%以上3.0%以下、P:0.10%以下、S:0.05%以下、Al:0.005%以上0.10%以下、N:0.010%以下を含み、残部がFeおよび不可避的不純物からなり、管外面から板厚tの1/4t位置における鋼組織は、体積率で、フェライトが30%超、ベイナイトが10%以上であり、該フェライトおよび該ベイナイトの合計が、管外面から板厚tの1/4t位置における鋼組織全体に対して70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、該結晶粒の平均円相当径が7.0μm未満であり、かつ円相当径で40.0μm以上の該結晶粒の合計が1/4t位置における鋼組織全体に対して体積率で30%以下であり、前記平板部の降伏比YRfと前記角部の降伏比YRcの差が(1)式を満足する。
YRc-YRf≦0.09    ・・・(1)
 まず、本発明の角形鋼管の降伏比を限定した理由について説明する。
 上述のように、プレス成形角形鋼管およびロール成形角形鋼管は、いずれの製造方法であっても、平板部より角部の方がより大きく加工硬化する。そのため、平板部の降伏比をYRf、角部の降伏比をYRcとしたとき、YRc≧YRfの関係となる。
 そこで、本発明では、角形鋼管における平板部および角部の降伏比差(YRc-YRf)と変形性能の関係について調べた。この降伏比差と変形性能の関係を調べるにあたり、本発明では、図1に示した角形鋼管の曲げ試験の結果を用いた。図1は角形鋼管1の曲げ試験を説明する概略図であり、図1(a)には試験体の側面図を示し、図1(b)には図1(a)に示したA-A’線断面図を示す。
 平板部の降伏強度が385MPa以上、平板部の引張強度が520MPa以上であるプレス成形角形鋼管およびロール成形角形鋼管をそれぞれ準備し、図1(a)に示すように、角形鋼管1の長手方向の中央位置に通しダイアフラム2を溶接して試験体をそれぞれ作製した。試験体は、水平方向と垂直方向の移動が固定されるようにして、試験体の両端に設けた支持材3でピン支持(回転支持)した。試験体は、図1(a)中に示した矢印の位置において、45°方向(図1(b)に示す四角形断面の対角線方向)載荷で繰り返し曲げ試験を行い、累積塑性変形倍率を求めた。
 なお、累積塑性変形倍率とは、試験体が局部座屈または破断して急激に耐力が低下するまでの塑性回転角の総和を、全塑性モーメントに対応する基準回転角で除した値である。この値が大きいほど柱材(柱部材)として用いた場合の変形性能に優れており、地震時のエネルギー吸収能力が高いことを意味する。
 図2はその試験結果を示すグラフである。図2に示すグラフでは、平板部の降伏強度が385MPa以上、引張強度が520MPa以上であるロール成形角形鋼管およびプレス成形角形鋼管における累積塑性変形倍率を、平板部と角部の降伏比差で整理した。図2中、横軸は「角形鋼管における平板部および角部の降伏比差(YRc-YRf)」であり、縦軸は「累積塑性変形倍率」である。図2に示されるように、(YRc-YRf)の値が大きくなると、柱材として要求される変形性能(累積塑性変形倍率)が低下した。さらに、(YRc-YRf)の値が0.09以下であれば、柱材として必要な変形性能(累積塑性変形倍率:28以上)が安定して得られることがわかった。
 なお、「累積塑性変形倍率:28以上」は、下記の参考文献1で示されている柱材として必要な変形性能である。
参考文献1: 日本建築学会:建築耐震設計における保有耐力と変形性能(1990)、1990年
 上記の曲げ試験では、変形量が大きい角部の変形性能が試験結果に大きく影響すると考えられる。(YRc-YRf)の値が大きい角形鋼管は、相対的に角部の降伏比YRcが高く伸びが小さいので、結果として変形性能が低くなったと推定される。ロール成形角形鋼管の場合には、(YRc-YRf)の値が0.09以下になるため、角部の降伏比YRcが相対的に低く、上記の曲げ試験において十分な変形性能を示したものと考えられる。
 以上のことより、本発明で目標とする特性を確保するためには、平板部の降伏比YRfと角部の降伏比YRcの差が以下に示す(1)式を満足することが必要であることがわかった。
YRc-YRf≦0.09    ・・・(1)
 この(1)式を満足するためには、得られるロール成形角形鋼管の成分組成、鋼組織および製造条件を後述のように適切に制御することが重要である。
 以下に、本発明の角形鋼管およびその製造方法について説明する。
 本発明において、角形鋼管の成分組成を限定した理由について説明する。本明細書において、特に断りがない限り、鋼組成を示す「%」は「質量%」である。
 C:0.04%以上0.50%以下
 Cは固溶強化により鋼の強度を上昇させる元素である。また、Cは、パーライトの生成を促進し、焼入れ性を高めてマルテンサイトの生成に寄与し、オーステナイトの安定化に寄与することから、硬質相の形成にも寄与する元素である。本発明で目的とする強度および降伏比を確保するためには、0.04%以上のCを含有することが必要である。しかしながら、C含有量が0.50%を超えると、硬質相の割合が高くなり靱性が低下し、また溶接性も悪化する。このため、C含有量は0.04%以上0.50%以下とする。C含有量は、好ましくは0.08%以上であり、より好ましくは0.12%超であり、より一層好ましくは0.14%以上ある。また、C含有量は、好ましくは0.30%以下であり、より好ましくは0.25%以下であり、より一層好ましくは0.22%以下である。
 Si:2.0%以下
 Siは固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、0.01%以上のSiを含有することが望ましい。しかし、Si含有量が2.0%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下する。また電縫溶接部以外の母材部の靱性も低下する。このため、Si含有量は2.0%以下とする。Si含有量は、好ましくは0.01%以上であり、より好ましくは0.10%以上である。また、Si含有量は、好ましくは0.5%以下であり、より好ましくは0.4%以下であり、より一層好ましくは0.3%以下である。
 Mn:0.5%以上3.0%以下
 Mnは固溶強化により鋼の強度を上昇させる元素である。また、Mnはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。本発明で目的とする強度および組織を確保するためには、0.5%以上のMnを含有することが必要である。しかしながら、Mn含有量が3.0%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下する。また、固溶強化および組織の微細化のため、降伏強度が高くなり、所望の降伏比が得られなくなる。このため、Mn含有量は0.5%以上3.0%以下とする。Mn含有量は、好ましくは0.7%以上であり、より好ましくは0.9%以上であり、より一層好ましくは1.0%以上である。また、Mn含有量は、好ましくは2.5%以下であり、より好ましくは2.0%以下である。
 P:0.10%以下
 Pは、粒界に偏析し材料の不均質を招くため、不可避的不純物としてできるだけ低減することが好ましいが、0.10%以下の含有量までは許容できる。このため、P含有量は0.10%以下の範囲内とする。P含有量は、好ましくは0.03%以下であり、より好ましくは0.020%以下であり、より一層好ましくは0.015%以下である。なお、特にPの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Pは0.002%以上とすることが好ましい。
 S:0.05%以下
 Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性に悪影響を及ぼす。このため、本発明ではSをできるだけ低減することが好ましいが、0.05%以下の含有量までは許容できる。このため、S含有量は0.05%以下とする。S含有量は、好ましくは0.015%以下であり、より好ましくは0.010%以下であり、より一層好ましくは0.008%以下である。なお、特にSの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。
 Al:0.005%以上0.10%以下
 Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、0.005%以上のAlを含有することが必要である。しかし、Al含有量が0.10%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。また溶接部の靱性も低下する。このため、Al含有量は0.005%以上0.10%以下とする。Al含有量は、好ましくは0.01%以上であり、より好ましくは0.027%以上である。また、Al含有量は、好ましくは0.07%以下であり、より好ましくは0.04%以下である。
 N:0.010%以下
 Nは、不可避的不純物であり、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましいが、Nの含有量は0.010%までは許容できる。このため、N含有量は0.010%以下とする。N含有量は、好ましくは0.0080%以下であり、より好ましくは0.0040%以下であり、より一層好ましくは0.0035%以下である。なお、過度の低減は製錬コストの高騰を招くため、N含有量は0.0010%以上とすることが好ましく、0.0015%以上とすることがより好ましい。
 残部はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲においては、Oを0.005%以下含有することを拒むものではない。
 上記の成分が本発明における角形鋼管の鋼素材の基本の成分組成である。上記した必須元素で本発明で目的とする特性は得られるが、必要に応じて下記の元素を含有することができる。
 Nb:0.15%以下、Ti:0.15%以下、V:0.15%以下のうちから選ばれた1種または2種以上
 Nb、Ti、Vは、いずれも鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るため、Nb、Ti、Vを含有する場合には、それぞれNb:0.005%以上、Ti:0.005%以上、V:0.005%以上とすることが好ましい。一方、過度の含有は、降伏比の上昇および靱性の低下を招く恐れがある。よって、Nb、Ti、Vを含有する場合には、それぞれNb:0.15%以下、Ti:0.15%以下、V:0.15%以下とすることが好ましい。より好ましくは、Nb:0.008%以上0.10%以下、Ti:0.008%以上0.10%以下、V:0.008%以上0.10%以下である。より一層好ましくは、Nb:0.010%以上0.035%以下、Ti:0.010%以上0.040%以下、V:0.010%以上0.035%以下である。
 なお、Nb、Ti、Vのうちから選ばれた2種以上を含有する場合、降伏比の上昇および靱性の低下を招く恐れがあるため、合計量(Nb+Ti+Vの量)を0.15%以下とすることが好ましい。
 Cr:1.0%以下、Mo:1.0%以下、Cu:0.5%以下、Ni:0.3%以下、Ca:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上
 Cr:1.0%以下、Mo:1.0%以下
 Cr、Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cr、Moを含有する場合には、それぞれCr:0.01%以上、Mo:0.01%以上とすることが好ましい。一方、過度の含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cr、Moを含有する場合には、それぞれCr:1.0%以下、Mo:1.0%以下とすることが好ましい。このため、Cr、Moを含有する場合には、それぞれCr:1.0%以下、Mo:1.0%以下とすることが好ましい。なお、Cr:0.01%以上、Mo:0.01%以上とすることが好ましい。より好ましくは、Cr:0.10%以上0.50%以下、Mo:0.10%以上0.50%以下である。
 Cu:0.5%以下、Ni:0.3%以下
 Cu、Niは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cu、Niを含有する場合には、それぞれCu:0.01%以上、Ni:0.01%以上とすることが好ましい。一方、過度の含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cu、Niを含有する場合には、それぞれCu:0.5%以下、Ni:0.3%以下とすることが好ましい。このため、Cu、Niを含有する場合には、それぞれCu:0.5%以下、Ni:0.3%以下とすることが好ましい。なお、Cu:0.01%以上、Ni:0.01%以上とすることが好ましい。より好ましくは、Cu:0.10%以上0.40%以下、Ni:0.10%以上0.20%以下である。
 Ca:0.010%以下
 Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るため、Caを含有する場合は、0.0005%以上のCaを含有することが好ましい。しかし、Ca含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する場合がある。このため、Caを含有する場合は、Ca含有量は0.010%以下とすることが好ましい。なお、Ca含有量は0.0005%以上とすることが好ましい。より好ましくは、Ca含有量は0.0010%以上0.0050%以下である。
 B:0.010%以下
 Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るため、Bを含有する場合は、0.0003%以上のBを含有することが好ましい。しかし、B含有量が0.010%を超えると、降伏比が上昇する場合がある。このため、Bを含有する場合は、0.010%以下とすることが好ましい。なお、B含有量は、0.0003%以上とすることが好ましい。より好ましくは、B含有量は0.0005%以上0.0050%以下である。
 次に、本発明の角形鋼管の鋼組織を限定した理由について説明する。
 本発明の角形鋼管における、鋼管の管外面から板厚tの1/4t位置における鋼組織は、体積率で、フェライトが30%超、ベイナイトが10%以上であり、該フェライトおよび該ベイナイトの合計が、管外面から板厚tの1/4t位置における鋼組織全体に対して70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなる。隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、該結晶粒の平均円相当径(平均結晶粒径)が7.0μm未満であり、かつ円相当径(結晶粒径)で40.0μm以上の該結晶粒の合計が管外面から板厚tの1/4t位置における鋼組織全体に対して体積率で30%以下である。
 なお、本発明において、円相当径(結晶粒径)とは、対象となる結晶粒と面積が等しい円の直径とする。また、鋼組織は、電縫溶接部を除く、角形鋼管の平板部の管外面から板厚tの1/4t位置におけるものとする。一般的に、熱延鋼板を素材とするロール成形角形鋼管では、角部および平板部ともに管外面から板厚tの1/4t位置の鋼組織が同じとなる。そのため、ここでは平板部の鋼組織について規定している。
 フェライトの体積率:30%超、ベイナイトの体積率:10%以上、鋼組織全体に対するフェライトおよびベイナイトの体積率の合計:70%以上95%以下
 フェライトは軟質な組織であり、他の硬質な組織と混合させることで、鋼の降伏比を低くする。このような効果により本発明で目的とする低降伏比を得るためには、フェライトの体積率は30%を超える必要がある。フェライトの体積率は、好ましくは40%以上であり、より好ましくは43%以上であり、より一層好ましくは45%以上である。なお、特に上限は規定しないが、所望の降伏比を確保するため、フェライトの体積率は、好ましくは75%未満であり、より好ましくは70%未満であり、より一層好ましくは60%以下である。
 ベイナイトは中間的な硬さを有する組織であり、鋼の強度を上昇させる。上記したフェライトだけでは本発明で目的とする降伏強度および引張強度が得られないため、ベイナイトの体積率は10%以上とすることが必要である。ベイナイトの体積率は、好ましくは15%以上であり、より好ましくは20%以上であり、より一層好ましくは25%以上である。なお、特に上限は規定しないが、所望の降伏比を確保するため、ベイナイトの体積率は、好ましくは55%以下であり、より好ましくは50%以下であり、より一層好ましくは45%以下であり、さらに一層好ましくは40%未満である。
 なお、フェライトとベイナイトの体積率の合計が70%未満であると、本発明で目的とする降伏比またはシャルピー吸収エネルギーが得られない。一方、フェライトとベイナイトの体積率の合計が95%を超えると、本発明で目的とする降伏強度および降伏比が得られない。このため、上記した条件に加えて、フェライトとベイナイトの体積率の合計を70%以上95%以下とすることが必要である。好ましくは、75%以上93%以下である。より好ましくは、80%以上90%以下である。
 残部:パーライト、マルテンサイト、オーステナイトから選択される1種または2種以上
 パーライト、マルテンサイト、およびオーステナイトは硬質な組織であり、特に鋼の引張強度を上昇させるとともに、軟質なフェライトと混合させることで鋼の降伏比が低くなる。このような効果を得るためには、パーライト、マルテンサイト、およびオーステナイトは、各体積率の合計で5%以上30%以下とすることが好ましい。より好ましくは、7%以上25%以下である。より一層好ましくは、10%以上20%以下である。
 なお、フェライト、ベイナイト、パーライト、マルテンサイト、およびオーステナイトの体積率は、後述する実施例に記載の方法で測定することができる。
 隣り合う結晶の方位差(結晶方位差)が15°以上の境界で囲まれた領域を結晶粒としたとき、結晶粒の平均結晶粒径:7.0μm未満、結晶粒径で40.0μm以上の結晶粒の合計の体積率:30%以下
 上述のとおり、本発明の鋼組織は、本発明で目的とする低降伏比、降伏強度、および引張強度を得るために、軟質組織と硬質組織を混合させた鋼(以下、「複合組織鋼」と称する)とする。しかし、複合組織鋼は、単一組織鋼と比較して靱性が悪い。そこで、本発明では、上記の機械特性と優れた靱性を両立するため、結晶方位差が15°以上の境界によって囲まれた領域を結晶粒としたとき、結晶粒の平均結晶粒径を規定する。結晶粒の平均結晶粒径が7.0μm以上の場合、フェライト粒が十分に微細でないため、所望の降伏強度および靱性が得られない。このため、結晶粒の平均結晶粒径を7.0μm未満とすることにより、本発明で目的とする降伏強度を得るとともに靱性を確保する。結晶粒の平均結晶粒径は、好ましくは6.5μm以下とし、より好ましくは6.0μm以下とする。
 一般に、単一組織鋼または単一組織鋼に近い鋼における結晶粒径分布は、1つのピークを持ち、かつ変数の大きい側に大きく広がり変数の小さい側に限りがある正規対数分布に従う。しかし、本発明のように、フェライトとベイナイトを含む複合組織鋼における結晶粒径分布では、粗大粒側にベイナイトのピークが新たに出現することが分かった。
 具体的には、本発明の鋼組織、すなわちフェライトの体積率が30%超、ベイナイトの体積率が10%以上である複合組織鋼では、結晶粒径分布において粗大粒側にベイナイトのピークが新たに出現する。これは、粗大なベイナイトが混在することを示す。粗大なベイナイトが混在することは、靱性を大きく悪化させる原因となる。その結果、複合組織鋼において、最大結晶粒径の上限を規定しても、粗大なベイナイトが存在する割合を低く抑えることができない。そのため、良好な靱性を得るためには、粗大な結晶粒が存在する割合の上限も規定する必要がある。
 ベイナイトは、方位差の大きい境界(オーステナイト粒界や、転位の集積により形成されたサブバウンダリー)を超えて成長しない。そのため、上記の粗大なベイナイトの生成を抑制するには、熱間圧延における仕上圧延をできるだけ低温で行い、オーステナイトに多量の転位を導入してサブバウンダリー面積を増加させ、微細なサブグレイン構造(以下、「微細化」とも呼ぶ。)を形成することが特に有効である。
 本発明における角形鋼管の靱性は、脆性破壊の抵抗となる粒界の総面積を増加させることで向上する。本発明では、予備実験により、結晶粒径が40.0μm以上の粗大な結晶粒が体積率で30%を超えると、必要な靱性を得るのに十分な粒界面積を確保できないことを新たに知見した。よって、本発明では、上記した結晶粒の平均結晶粒径の上限を7.0μm未満に規定することに加えて、さらに、結晶粒径が40.0μm以上の結晶粒の体積率を30%以下とすることを規定する。結晶粒径が40.0μm以上の結晶粒の体積率は、好ましくは20%以下とし、より好ましくは15%以下とする。
 なお、結晶方位差、平均結晶粒径、および結晶粒径が40.0μm以上の結晶粒の体積率は、SEM/EBSD法によって測定することが可能である。ここでは、後述する実施例に記載の方法で測定することができる。
 本発明では、鋼管の管外面から板厚tの1/4t位置を中心として板厚方向に±1.0mmの範囲内に、上述の鋼組織が存在していても同様に上述の効果は得られる。そのため、本発明において「鋼管の管外面から板厚tの1/4t位置における鋼組織」とは、鋼管の管外面から板厚tの1/4t位置を中心として板厚方向に±1.0mmの範囲のいずれかにおいて、上述の鋼組織が存在していることを意味する。
 次に、本発明の一実施形態における角形鋼管の製造方法を説明する。
 本発明の角形鋼管は、例えば、上記した成分組成を有する鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ930℃以下での合計圧下率:65%以上である熱間圧延を施し、次いで、板厚中心温度で平均冷却速度:10℃/s以上30℃/s以下、冷却停止温度:450℃以上650℃以下で冷却を施し、次いで、450℃以上650℃以下で巻取り熱延鋼板とし、次いで、冷間ロール成形により、熱延鋼板を円筒状に成形した後、角形状に成形して角形の鋼管とする造管工程を施すことで得られる。
 なお、以下の製造方法の説明において、温度に関する「℃」表示は、特に断らない限り、鋼素材や鋼板(熱延板)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。また、鋼板板厚中心の温度は、鋼板断面内の温度分布を伝熱解析により計算し、その結果を鋼板の表面温度によって補正することで求めることができる。また、「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。
 本発明において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉等の公知の溶製方法のいずれもが適合する。鋳造方法も特に限定されないが、連続鋳造法等の公知の鋳造方法により、所望寸法に製造される。なお、連続鋳造法に代えて、造塊-分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。
 次いで、得られた鋼素材(鋼スラブ)を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下とする粗圧延を施し、仕上圧延終了温度:750℃以上850℃以下とする仕上げ圧延を施し、かつ、930℃以下での合計圧下率:65%以上である熱間圧延工程を施して熱延板とする。
 加熱温度:1100℃以上1300℃以下
 加熱温度が1100℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、本発明で目的とする角形鋼管の鋼組織の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となり、結晶粒径が40.0μm以上の結晶粒の体積率を、本発明で目的とする範囲に制御することが難しい。このため、熱間圧延工程における加熱温度は、1100℃以上1300℃以下とする。より好ましくは1120℃以上1280℃以下である。
 なお、本発明では、鋼スラブ(スラブ)を製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいは、わずかの保熱を行った後に直ちに圧延する、これらの直送圧延の省エネルギープロセスも問題なく適用できる。
 粗圧延終了温度:850℃以上1150℃以下
 粗圧延終了温度が850℃未満である場合、後の仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量のフェライトが生成し、ベイナイトの体積率が10%未満となる。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、本発明で目的とする角形鋼管の鋼組織の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となる。このため、粗圧延終了温度は、850℃以上1150℃以下とする。より好ましくは860℃以上1000℃以下である。より一層好ましくは870℃以上980℃以下である。
 仕上圧延終了温度:750℃以上850℃以下
 仕上圧延終了温度が750℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量のフェライトが生成し、ベイナイトの体積率が10%未満となる。一方、仕上圧延終了温度が850℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、本発明で目的とする角形鋼管の鋼組織の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となる。このため、仕上圧延終了温度は、750℃以上850℃以下とする。より好ましくは770℃以上830℃以下である。より一層好ましくは780℃以上820℃以下である。
 930℃以下の合計圧下率:65%以上
 本発明では、熱間圧延工程においてオーステナイト中のサブグレインを微細化することで、続く冷却工程、巻取工程で生成するフェライト、ベイナイトおよび残部組織を微細化し、本発明で目的とする強度および靱性を有する角形鋼管の鋼組織を得られる。熱間圧延工程においてオーステナイト中のサブグレインを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。これを達成するため、本発明では、930℃以下仕上圧延終了温度までの合計圧下率を65%以上とした。
 930℃以下仕上圧延終了温度までの合計圧下率が65%未満である場合、熱間圧延工程において十分な加工ひずみを導入することができないため、本発明で目的とする結晶粒径を有する組織が得られない。930℃以下仕上圧延終了温度までの合計圧下率は、より好ましくは70%以上であり、より一層好ましくは71%以上である。特に上限は規定しないが、80%を超えると圧下率の上昇に対する靱性向上の効果が小さくなり、設備負荷が増大するのみとなる。このため、930℃以下仕上圧延終了温度までの合計圧下率は80%以下が好ましい。より好ましくは75%以下であり、より一層好ましくは74%以下である。
 なお、930℃以下としたのは、930℃超では圧延工程においてオーステナイトが再結晶し、圧延により導入された転位が消失してしまい、微細化したオーステナイトが得られないためである。
 上記した合計圧下率とは、930℃以下仕上圧延終了温度までの温度域における各圧延パスの圧下率の合計をさす。
 なお、スラブを熱間圧延するに際し、上記した粗圧延および仕上圧延の両方において930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする熱間圧延としても良い。あるいは、仕上圧延のみで930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする熱間圧延としても良い。後者において、仕上圧延のみで930℃以下仕上圧延終了温度までの合計圧下率を65%以上とすることができない場合には、粗圧延の途中でスラブを冷却して温度を930℃以下とした後、粗圧延と仕上圧延の両方における930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする。
 本発明では、仕上板厚の上限は特に規定しないが、必要圧下率の確保や鋼板温度管理の観点より、仕上板厚は20mm超32mm以下とすることが好ましい。
 熱間圧延工程後、熱延板に冷却工程を施す。冷却工程では、冷却停止温度までの平均冷却速度:10℃/s以上30℃/s以下、冷却停止温度:450℃以上650℃以下で冷却する。
 冷却開始から冷却停止(冷却終了)までの平均冷却速度:10℃/s以上30℃/s以下
 熱延板の板厚中心温度で、冷却開始から後述する冷却停止までの温度域における平均冷却速度が10℃/s未満では、フェライトの核生成頻度が減少し、フェライト粒が粗大化するため、平均結晶粒径を7.0μm未満とすることができない。また、本発明で目的とする結晶粒径が40.0μm以上の体積率の範囲に制御することが困難である。一方で、平均冷却速度が30℃/sを超えると、得られる角形鋼管の鋼組織の管外面から板厚tの1/4t位置において多量のマルテンサイトが生成し、フェライトとベイナイトの体積率の合計が70%未満となる。平均冷却速度は、好ましくは15℃/s以上であり、より好ましくは17℃/s以上である。好ましくは25℃/s以下であり、より好ましくは23℃/s以下である。
 なお、本発明では、冷却前の鋼板表面におけるフェライト生成抑制の観点より、仕上圧延終了後直ちに冷却を開始することが好ましい。
 冷却停止温度:450℃以上650℃以下
 熱延板の板厚中心温度で、冷却停止温度が450℃未満では、得られる角形鋼管の鋼組織の管外面から板厚tの1/4t位置において多量のマルテンサイトが生成し、フェライトとベイナイトの体積率の合計が70%未満となる場合がある。また、フェライトの体積率が30%以下となる場合がある。一方で、冷却停止温度が650℃を超えると、フェライトの核生成頻度が減少し、フェライト粒が粗大化するとともに、ベイナイト変態開始温度を上回るためベイナイトの体積率を10%以上とすることができない。冷却停止温度は、好ましくは480℃以上であり、より好ましくは490℃以上である。好ましくは620℃以下であり、より好ましくは600℃以下である。
 なお、本発明において、平均冷却速度は、特に断らない限り、((冷却前の熱延板の板厚中心温度-冷却後の熱延板の板厚中心温度)/冷却時間)で求められる値(冷却速度)とする。冷却方法は、ノズルからの水の噴射等の水冷や、冷却ガスの噴射による冷却等が挙げられる。本発明では、熱延板の両面が同条件で冷却されるように、熱延板両面に冷却操作(処理)を施すことが好ましい。
 冷却工程後に、熱延板を巻取り、その後放冷する巻取工程を施す。
巻取工程では、鋼板組織の観点より、巻取温度:450℃以上650℃以下で巻取る。巻取温度が450℃未満では、多量のマルテンサイトが生成し、フェライトとベイナイトの体積率の合計が70%未満となる場合がある。また、フェライトの体積率が30%以下となる場合がある。巻取温度が650℃超えでは、フェライトの核生成頻度が減少し、フェライト粒が粗大化するとともに、ベイナイト変態開始温度を上回るためベイナイトの体積率を10%以上とすることができない場合がある。巻取温度は、より好ましくは480℃以上620℃以下であり、より一層好ましくは490~590℃である。
 巻取工程後に、造管工程を施す。造管工程では、熱延鋼板をロール成形により円筒状のオープン管(丸型鋼管)とし、その突合せ部分を電縫溶接する。その後、丸型鋼管に対して上下左右に配置されたロールにより、円筒状のまま管軸方向に数%の絞りを加え、角形状に成形して角形鋼管を得る。
 なお、本発明における角形鋼管には、各々の辺長がすべて等しい((長辺長さ/短辺長さ)の値が1.0)角形鋼管に限られず、(長辺長さ/短辺長さ)の値が1.0超の角形鋼管も含まれる。ただし、角形鋼管の(長辺長さ/短辺長さ)の値が2.5を超えると、長辺側で局部座屈が生じやすくなり管軸方向の圧縮強度が低下する。そのため、角形鋼管の(長辺長さ/短辺長さ)の値は、1.0以上2.5以下とするのが好ましい。(長辺長さ/短辺長さ)の値は、より好ましくは1.0以上2.0以下である。
 以上により、本発明の角形鋼管が製造される。本発明によれば、平板部の降伏強度が385MPa以上、平板部の引張強度が520MPa以上、平板部の降伏比が0.90以下、平板部の0℃におけるシャルピー吸収エネルギーが70J以上である、角形鋼管を得られる。これにより、冷間プレス曲げ成形と比較して、生産性が高く短納期(短期間)で、高強度ロール成形角形鋼管を製造することが可能となる。このロール成形角形鋼管は、特に工場、倉庫、商業施設などの大型建築物の建築部材に好適に用いることができるため、施工コスト削減に大きく貢献することができる。
 このため、本発明は、特に厚肉の角形鋼管に好適に用いることができる。なお、ここでいう「厚肉」とは、角形鋼管の平板部の板厚が20mm超であることを指す。
 次に、本発明の一実施形態における角形鋼管を使用した建築構造物を説明する。
 図3には、上述した本発明の角形鋼管を使用した建築構造物の一例を模式的に示す。図3に示すように、本実施形態の建築構造物は、本発明の角形鋼管1が複数立設され、柱材として用いられている。隣り合う角形鋼管1の間には、H形鋼等の鋼材からなる大梁4が複数架設されている。また、隣り合う大梁4の間には、H形鋼等の鋼材からなる小梁5が複数架設されている。角形鋼管1と大梁4となるH形鋼は、通しダイアフラム6を介して溶接接合することによって、隣り合う角形鋼管1の間にH形鋼等の鋼材からなる大梁4が架設されている。また、壁等の取り付けのため、必要に応じて間柱7が設けられる。
 本発明の角形鋼管1は、強度、変形性能および靱性に優れているため、大型の建築物に使用した場合でも構造物全体の変形性能を十分に確保することができる。そのため、本発明の建築構造物は、従来の角形鋼管を使用した建築構造物と比べて、より優れた耐震性能を発揮する。
 以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す成分組成を有する溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚250mm)とした。得られたスラブを表2に示す条件の熱間圧延工程、冷却工程、巻取工程を施して、角形鋼管用熱延鋼板とした。
 巻取工程後、以下に示す造管工程を行った。
 一部の角形鋼管用熱延鋼板については、ロール成形により円筒状の丸型鋼管に成形し、その突合せ部分を電縫溶接した。その後、丸型鋼管の上下左右に配置したロールにより管軸方向に数%の絞りを加え、角形状に成形し、表2に示す辺長(mm)および板厚(mm)のロール成形角形鋼管を得た。
 残りの角形鋼管用熱延鋼板については、プレス曲げ成形により断面形状をロの字型あるいはコの字型とし、これらをサブマージアーク溶接により接合し、表2に示す辺長(mm)、板厚(mm)のプレス成形角形鋼管を得た。
 得られた角形鋼管(ロール成形角形鋼管、プレス成形角形鋼管)から試験片を採取して、以下に示す組織観察、引張試験、シャルピー衝撃試験を実施した。
 〔組織観察〕
 組織観察用の試験片は、角形鋼管の溶接部を含む辺部の隣の辺部(溶接部を12時方向としたときの3時または9時側の辺部)から採取した。組織観察用の試験片は、この隣の辺部となる平板部から、観察面が熱間圧延時の管軸方向断面かつ管外面から板厚tの1/4t位置となるように採取し、研磨した後、ナイタール腐食して作製した。
 組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、角形鋼管の平板部の管外面から板厚tの1/4t位置における組織を観察し、撮像した。得られた光学顕微鏡像およびSEM像から、フェライト、パーライト、ベイナイトおよび残部組織の面積率を求めた。
各組織の面積率は、代表の1つの平板部から採取した試験片を用いて5視野以上で観察を行い、各視野で得られた値の平均値として算出した。ここでは、組織観察により得られた面積率を、各組織の体積率とした。
 ここで、フェライトは拡散変態による生成物のことであり、転位密度が低くほぼ回復した組織を呈する。ポリゴナルフェライトおよび擬ポリゴナルフェライトがこれに含まれる。また、ベイナイトは転位密度が高いラス状のフェライトとセメンタイトの複相組織である。
 なお、光学顕微鏡像およびSEM像ではマルテンサイトとオーステナイトの識別が難しい。このため、得られたSEM像からマルテンサイトあるいはオーステナイトとして観察された組織の面積率を測定し、それから後述する方法で測定したオーステナイトの体積率を差し引いた値をマルテンサイトの体積率とした。
 オーステナイトの体積率の測定は、X線回折により行った。組織観察用の試験片は、回折面が鋼管平板部の管外面から板厚tの1/4t位置となるように研削した後、化学研磨をして表面加工層を除去して作製した。測定にはMoのKα線を使用し、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)面の積分強度からオーステナイトの体積率を求めた。
 また、平均円相当径(平均結晶粒径)および円相当径(結晶粒径)が40.0μm以上の結晶粒の体積率は、SEM/EBSD法を用いて測定した。結晶粒径は、隣接する結晶粒の間の方位差を求め、方位差が15°以上の境界を結晶粒界として測定した。得られた結晶粒界から粒径の算術平均を求めて、平均結晶粒径とした。測定領域は500μm×500μm、測定ステップサイズは0.5μmとした。なお、結晶粒径解析においては、結晶粒径が2.0μm以下のものは測定ノイズとして解析対象から除外し、得られた面積率が体積率と等しいとした。
 〔引張試験〕
 図4は、平板部の引張試験片および角部の引張試験片の採取位置をそれぞれ示す概略図である。図5は、角部の引張試験片の詳細な採取位置を示す概略図である。
 引張試験は、図4に示すように、引張方向が管軸方向と平行になるように、角形鋼管の平板部および角部からJIS5号引張試験片およびJIS12B号引張試験片をそれぞれ採取した。これらを用いてJIS Z 2241の規定に準拠して実施し、降伏強度YS、引張強度TSを測定し、(降伏強度)/(引張強度)で定義される降伏比を算出した。なお、平板部の引張試験片は、角形鋼管の溶接部を含む辺部以外の辺部(溶接部を12時方向としたときの3時、6時または9時側の辺部)における、平板部の幅中央部の位置(図4を参照)から採取した。角部の引張試験片は、角形鋼管の角部の角部45°の位置(図5を参照)から採取した。なお、試験片本数は各2本とし、それらの平均値を算出してYS、TS、降伏比を求めた。
 〔シャルピー衝撃試験〕
 図6は、シャルピー試験片の採取位置を示す概略図である。
 シャルピー衝撃試験は、図6に示すように、角形鋼管の管外面から板厚tの1/4t位置において、試験片長手方向が管軸方向と平行となるように採取した、JIS Z 2242の規定に準拠したVノッチ標準試験片を用いた。JIS Z 2242の規定に準拠して、試験温度:0℃でシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片本数は各3本とし、それらの平均値を算出して吸収エネルギー(J)を求めた。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3中、鋼No.1、5、13、14、17、19、22、27~34、36~46、48は本発明例であり、鋼No.2~4、6~12、15、16、18、20、21、23~26、35、47、49は比較例である。
 本発明例の角形鋼管は、いずれも鋼組織が体積率で30%超のフェライト、10%以上のベイナイトを含み、フェライトとベイナイトの体積率の合計が70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、かつ方位差15°以上の境界によって囲まれる領域を結晶粒としたとき、結晶粒の平均円相当径が7.0μm未満であり、かつ円相当径が40.0μm以上の結晶粒の体積率が30%以下であった。さらに、平板部における降伏強度が385MPa以上、平板部における引張強度が520MPa以上、平板部における降伏比が0.90以下、平板部における0℃におけるシャルピー吸収エネルギーが70J以上であり、平板部と角部の降伏比の差が0.09以下であった。
 一方、比較例のNo.2、6、18、20は、いずれもプレス曲げ成形により角形鋼管を成形したため、平板部と角部の降伏比の差が0.09超となった。
 比較例のNo.3は、Cの含有量が本発明の範囲を下回っていたため、平板部の降伏強度および引張強度が本発明の範囲外となった。
 比較例のNo.4は、Mnの含有量が本発明の範囲を下回っていたため、結晶粒が粗大化し、平均結晶粒径および結晶粒径40.0μm以上の結晶粒の体積率が、本発明の範囲外となった。その結果、平板部の降伏強度、引張強度および0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.7は、スラブ加熱温度が本発明の範囲を上回っており、結晶粒が粗大化し、平均結晶粒径および結晶粒径40.0μm以上の結晶粒の体積率が、本発明の範囲外となった。その結果、平板部の引張強度および0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.8は、930℃以下での合計圧下率が本発明の範囲を下回っており、粗大なベイナイトの生成を抑制できず、結晶粒径40.0μm以上の結晶粒の体積率が本発明の範囲外となった。その結果、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.9は、仕上圧延終了温度が本発明の範囲を下回っており、熱間圧延途中に多量のフェライトが生成し、ベイナイトの体積率が10%未満となった。その結果、平板部の降伏強度および引張強度が所望の値に達しなかった。
 比較例のNo.10は、仕上圧延終了温度が本発明の範囲を上回ったため、930℃以下での合計圧下率が本発明の範囲を下回り、粗大なベイナイトの生成を抑制できず、結晶粒径40.0μm以上の結晶粒の体積率が本発明の範囲外となった。その結果、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.11は、平均冷却速度が本発明の範囲を下回ったため、結晶粒が粗大化し、平均結晶粒径および結晶粒径40.0μm以上の結晶粒の体積率が、本発明の範囲外となった。その結果、平板部の降伏強度、引張強度および0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.12は、平均冷却速度が本発明の範囲を上回ったため、フェライトの体積率が本発明の範囲外となった。その結果、平板部の降伏比が所望の値に達しなかった。
 比較例のNo.15は、冷却停止温度が本発明の範囲を上回ったため、ベイナイトの体積率が本発明の範囲外となった。その結果、平板部の降伏強度および引張強度が所望の値に達しなかった。
 比較例のNo.16は、冷却停止温度および巻取温度が本発明の範囲を下回ったため、フェライトとベイナイトの体積率の合計が本発明の範囲外となった。その結果、平板部の降伏比が所望の値に達しなかった。
 比較例のNo.21は、Cの含有量が本発明の範囲を上回ったため、フェライトとベイナイトの体積率の合計が本発明の範囲外となった。その結果、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.23は、Siの含有量が本発明の範囲を上回ったため、組織の微細化を伴わずに、固溶強化により降伏強度が過度に上昇した。その結果、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.24は、Mnの含有量が本発明の範囲を上回ったため、固溶強化により降伏強度が過度に上昇した。その結果、平板部の降伏比が所望の値に達しなかった。
 比較例のNo.25は、Pの含有量が本発明の範囲を上回ったため、粒界強度が低下したと考えられる。その結果、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.26は、Sの含有量が本発明の範囲を上回ったため、MnS等の破壊の起点となる粗大な介在物が生成したと考えられる。その結果、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例のNo.35は、Cの含有量が本発明の範囲を下回ったため、平板部の降伏強度および引張強度が本発明の範囲外となった。また、硬質相であるパーライトの生成が抑制され、フェライトとベイナイト体積率の合計が本発明の範囲外となった。その結果、平板部の降伏比が所望の値に達しなかった。
 比較例のNo.47は、冷却停止温度と巻取温度が本発明の範囲を下回ったため、フェライトの体積率が本発明の範囲外となり、平板部の降伏比が所望の値に達しなかった。
 比較例のNo.49は、冷却速度が本発明の範囲を下回ったため、平均結晶粒径が本発明の範囲外となり、平板部の0℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 1   角形鋼管
 2   通しダイアフラム
 3   支持材
 4   大梁
 5   小梁
 6   ダイアフラム
 7   間柱

Claims (6)

  1.  平板部と角部を有する角形鋼管であって、
     成分組成は、質量%で、
    C :0.04%以上0.50%以下、
    Si:2.0%以下、
    Mn:0.5%以上3.0%以下、
    P :0.10%以下、
    S :0.05%以下、
    Al:0.005%以上0.10%以下、
    N :0.010%以下
    を含有し、残部がFeおよび不可避的不純物からなり、
     管外面から板厚tの1/4t位置における鋼組織は、
    体積率で、フェライトが30%超、ベイナイトが10%以上であり、
    該フェライトおよび該ベイナイトの合計が、管外面から板厚tの1/4t位置における鋼組織全体に対して70%以上95%以下であり、
    残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、
    隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
    該結晶粒の平均円相当径が7.0μm未満であり、
    かつ円相当径で40.0μm以上の該結晶粒の合計が1/4t位置における鋼組織全体に対して体積率で30%以下であり、
     前記平板部の降伏比YRfと前記角部の降伏比YRcが(1)式を満足する、角形鋼管。
    YRc-YRf≦0.09    ・・・(1)
  2.  平板部の降伏強度が385MPa以上、平板部の引張強度が520MPa以上、平板部の降伏比が0.90以下、平板部の0℃におけるシャルピー吸収エネルギーが70J以上である、請求項1に記載の角形鋼管。
  3.  前記成分組成に加えてさらに、質量%で、下記A群およびB群のうちから選ばれた1群または2群を含有する、請求項1または2に記載の角形鋼管。
            記
    A群:Nb:0.15%以下、Ti:0.15%以下、V:0.15%以下のうちから選ばれた1種または2種以上
    B群:Cr:1.0%以下、Mo:1.0%以下、Cu:0.5%以下、Ni:0.3%以下、Ca:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上
  4.  前記鋼組織は、体積率で、ベイナイトが10%以上40%未満である、請求項1~3のいずれか1項に記載の角形鋼管。
  5.  請求項1または3に記載の成分組成を有する鋼素材を、
    加熱温度:1100℃以上1300℃以下に加熱した後、
    粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ930℃以下での合計圧下率:65%以上である熱間圧延を施し、
     次いで、板厚中心温度で平均冷却速度:10℃/s以上30℃/s以下、冷却停止温度:450℃以上650℃以下で冷却を施し、
     次いで、450℃以上650℃以下で巻取り熱延鋼板とし、
     次いで、冷間ロール成形により、前記熱延鋼板を円筒状に成形した後、角形状に成形して角形の鋼管とする造管工程を施す、角形鋼管の製造方法。
  6.  請求項1~4のいずれか1項に記載の角形鋼管が、柱材として使用されている、建築構造物。
PCT/JP2019/031668 2018-08-23 2019-08-09 角形鋼管およびその製造方法並びに建築構造物 WO2020039980A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019565032A JP6693606B1 (ja) 2018-08-23 2019-08-09 角形鋼管およびその製造方法並びに建築構造物
KR1020217004892A KR102498954B1 (ko) 2018-08-23 2019-08-09 각형 강관 및 그 제조 방법 그리고 건축 구조물
CN201980055210.1A CN112601831B (zh) 2018-08-23 2019-08-09 方形钢管及其制造方法以及建筑构造物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-155941 2018-08-23
JP2018155941 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020039980A1 true WO2020039980A1 (ja) 2020-02-27

Family

ID=69593213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031668 WO2020039980A1 (ja) 2018-08-23 2019-08-09 角形鋼管およびその製造方法並びに建築構造物

Country Status (5)

Country Link
JP (1) JP6693606B1 (ja)
KR (1) KR102498954B1 (ja)
CN (1) CN112601831B (ja)
TW (1) TWI707958B (ja)
WO (1) WO2020039980A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209060A1 (ja) * 2019-04-08 2020-10-15 Jfeスチール株式会社 角形鋼管およびその製造方法ならびに建築構造物
JP2021188104A (ja) * 2020-06-03 2021-12-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7396552B1 (ja) * 2022-09-20 2023-12-12 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) * 2022-09-20 2024-03-28 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495181B1 (ko) * 2020-12-21 2023-02-06 현대제철 주식회사 충격인성이 우수한 강관용 고강도 열연강판 및 그 제조방법
CN117980519A (zh) * 2021-09-29 2024-05-03 杰富意钢铁株式会社 方形钢管及其制造方法、热轧钢板及其制造方法、以及建筑结构物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153963A (ja) * 2011-01-28 2012-08-16 Jfe Steel Corp 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法
JP2016011439A (ja) * 2014-06-27 2016-01-21 新日鐵住金株式会社 冷間プレス成形角形鋼管用厚鋼板、冷間プレス成形角形鋼管、及び溶接継手
JP2018053281A (ja) * 2016-09-27 2018-04-05 新日鐵住金株式会社 角形鋼管
WO2018110152A1 (ja) * 2016-12-12 2018-06-21 Jfeスチール株式会社 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
JP2018095904A (ja) * 2016-12-12 2018-06-21 Jfeスチール株式会社 低降伏比角形鋼管用熱延鋼板の製造方法および低降伏比角形鋼管の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611250B2 (ja) 2006-06-30 2011-01-12 住友金属工業株式会社 冷間加工成形鋼管
JP4957671B2 (ja) 2008-07-10 2012-06-20 住友金属工業株式会社 建築用低降伏比コラム用鋼管とそれに用いる鋼板とそれらの製造方法
JP5385760B2 (ja) 2009-10-30 2014-01-08 株式会社神戸製鋼所 耐震性に優れた冷間成形角形鋼管
CN104220619B (zh) * 2012-04-12 2016-08-24 杰富意钢铁株式会社 用于面向建筑结构构件的方形钢管的厚壁热轧钢板及其制造方法
US20160076124A1 (en) * 2013-04-15 2016-03-17 Jfe Steel Corporation High strength hot rolled steel sheet and method for manufacturing the same (as amended)
JP6068314B2 (ja) * 2013-10-22 2017-01-25 株式会社神戸製鋼所 冷間加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP5783229B2 (ja) * 2013-11-28 2015-09-24 Jfeスチール株式会社 熱延鋼板およびその製造方法
CN105463324B (zh) * 2016-01-15 2017-09-22 宝山钢铁股份有限公司 一种厚规格高韧性管线钢及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153963A (ja) * 2011-01-28 2012-08-16 Jfe Steel Corp 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法
JP2016011439A (ja) * 2014-06-27 2016-01-21 新日鐵住金株式会社 冷間プレス成形角形鋼管用厚鋼板、冷間プレス成形角形鋼管、及び溶接継手
JP2018053281A (ja) * 2016-09-27 2018-04-05 新日鐵住金株式会社 角形鋼管
WO2018110152A1 (ja) * 2016-12-12 2018-06-21 Jfeスチール株式会社 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法
JP2018095904A (ja) * 2016-12-12 2018-06-21 Jfeスチール株式会社 低降伏比角形鋼管用熱延鋼板の製造方法および低降伏比角形鋼管の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209060A1 (ja) * 2019-04-08 2020-10-15 Jfeスチール株式会社 角形鋼管およびその製造方法ならびに建築構造物
JP2021188104A (ja) * 2020-06-03 2021-12-13 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7314862B2 (ja) 2020-06-03 2023-07-26 Jfeスチール株式会社 角形鋼管およびその製造方法、並びに建築構造物
JP7396552B1 (ja) * 2022-09-20 2023-12-12 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) * 2022-09-20 2024-03-28 Jfeスチール株式会社 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Also Published As

Publication number Publication date
CN112601831A (zh) 2021-04-02
KR102498954B1 (ko) 2023-02-10
TW202014531A (zh) 2020-04-16
TWI707958B (zh) 2020-10-21
JPWO2020039980A1 (ja) 2020-08-27
KR20210032494A (ko) 2021-03-24
JP6693606B1 (ja) 2020-05-13
CN112601831B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2020039980A1 (ja) 角形鋼管およびその製造方法並びに建築構造物
JP6874913B2 (ja) 角形鋼管およびその製造方法ならびに建築構造物
KR102498956B1 (ko) 열연 강판 및 그 제조 방법
JP6690788B1 (ja) 電縫鋼管およびその製造方法、並びに鋼管杭
JP7088417B2 (ja) 電縫鋼管およびその製造方法
WO2021085036A1 (ja) 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物
WO2020170774A1 (ja) 角形鋼管およびその製造方法、並びに建築構造物
JP6690787B1 (ja) 電縫鋼管およびその製造方法、並びに鋼管杭
WO2020170775A1 (ja) 角形鋼管およびその製造方法並びに建築構造物
JP5176847B2 (ja) 低降伏比低温用鋼、およびその製造方法
JP4161679B2 (ja) 高強度高靭性低降伏比鋼管素材およびその製造方法
JP6123734B2 (ja) 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法
WO2023053837A1 (ja) 角形鋼管およびその製造方法、熱延鋼板およびその製造方法、並びに建築構造物
JP7424551B1 (ja) 熱延鋼板、角形鋼管、それらの製造方法および建築構造物
JP7396552B1 (ja) 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565032

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004892

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852063

Country of ref document: EP

Kind code of ref document: A1