WO2020037944A1 - 一种铁路车辆三维定位*** - Google Patents

一种铁路车辆三维定位*** Download PDF

Info

Publication number
WO2020037944A1
WO2020037944A1 PCT/CN2019/071957 CN2019071957W WO2020037944A1 WO 2020037944 A1 WO2020037944 A1 WO 2020037944A1 CN 2019071957 W CN2019071957 W CN 2019071957W WO 2020037944 A1 WO2020037944 A1 WO 2020037944A1
Authority
WO
WIPO (PCT)
Prior art keywords
railway
vehicle
distance
line
information
Prior art date
Application number
PCT/CN2019/071957
Other languages
English (en)
French (fr)
Inventor
黄瑞
石玉莹
刘谦
蔡家军
龚雪
刘少健
李�瑞
顾闻
黄泽星
方亚非
Original Assignee
中铁武汉勘察设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁武汉勘察设计研究院有限公司 filed Critical 中铁武汉勘察设计研究院有限公司
Priority to EP19851483.8A priority Critical patent/EP3778346A4/en
Publication of WO2020037944A1 publication Critical patent/WO2020037944A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/028Determination of vehicle position and orientation within a train consist, e.g. serialisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/04Indicating or recording train identities
    • B61L25/045Indicating or recording train identities using reradiating tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector

Definitions

  • the invention relates to the technical field of passive vehicle positioning, in particular to a three-dimensional positioning system for railway vehicles.
  • Rail transportation is a method of transporting goods by using railway trains. It is characterized by large volume, high speed, and low cost.
  • the types of railway transportation can be divided into three types: vehicle transportation, less-than-truckload transportation and container transportation. Among them, the use of container transportation can reduce the loss and loss of goods and ensure the quality of transportation, which is an important direction for the development of freight transportation.
  • railway vehicle positioning systems mostly use the track circuit positioning method, but this method can only locate the track section where the rail vehicle is located, so it cannot locate the specific position of the rail vehicle in this track section, so the error range is large. Low accuracy. Therefore, it is necessary to design a new railway vehicle positioning system to overcome the above problems.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a three-dimensional positioning system for railway vehicles to achieve improved positioning accuracy.
  • the invention is implemented as follows:
  • the invention provides a three-dimensional positioning system for a railway vehicle.
  • the system is applied to a station.
  • the system includes a monitoring subsystem, a vehicle number recognition subsystem, and a three-dimensional rangefinder.
  • the vehicle number recognition subsystem includes a vehicle number ground recognition device.
  • the station is provided with a plurality of strand lines, and each end of each strand line is provided with a vehicle number ground recognition device, and a three-dimensional rangefinder is provided above the station;
  • the vehicle number recognition subsystem is configured to obtain vehicle information of each railway vehicle passing the vehicle number ground identification device, and send the obtained vehicle information of each railway vehicle to a monitoring subsystem; the vehicle information includes a detection time And the number of the strand route where it is located;
  • the three-dimensional range finder is configured to obtain distance information of an object to be positioned on the route line for each track line in the station, and send the distance information to a monitoring subsystem;
  • the monitoring subsystem is used to determine the standard length of the object to be positioned on the strand line using the obtained to-be-monitored information for each strand line in the station, based on The standard length and the distance information of the object to be located on the strand line, calculating the railway mileage coordinates of the object to be located on the strand line, and completing the positioning of the object to be located on the strand line, wherein the strand line
  • the corresponding to-be-monitored information is obtained by integrating the vehicle information in the vehicle information at the same detection time and having the number of the track line.
  • the system further includes a station existing vehicle subsystem, and the vehicle number identification subsystem sends the obtained vehicle information of each railway vehicle to the monitoring subsystem, specifically:
  • the integration obtains the information to be monitored corresponding to each track line, and sends the information to be monitored corresponding to each track line to the monitoring subsystem.
  • obtaining the distance information of the object to be positioned on the strand line by the three-dimensional rangefinder is specifically:
  • the separation distance between each vehicle group and the actual length of each vehicle group is detected, and the separation distance between each vehicle group, the actual length of each vehicle group, and the detected lateral distance are taken as Distance information of the object to be positioned on the strand route;
  • the actual length of the object to be positioned is detected, and the actual length and the detected lateral distance are used as distance information for the object to be positioned on the strand line.
  • the monitoring subsystem determines the standard length of the object to be positioned on the strand line by using the obtained to-be-monitored information corresponding to each strand line in the station, Specifically:
  • the standard length of a single railway vehicle with the vehicle number in the information to be monitored is determined to stop at the unit
  • the total length is the standard length of the object to be positioned on the track line.
  • a reference point is provided at both ends of the strand line, and the three-dimensional rangefinder is disposed outside the reference point, and the outside is a side far from the station, and the objects to be positioned on the strand line are separated into
  • the object to be located is a railway train
  • the monitoring subsystem calculates the railway mileage coordinates of the object to be located on the strand line based on the standard length and the distance information of the object to be located on the strand line.
  • the railway mileage coordinates of the two reference points, the lateral distance of the railway train on the track line, and the train trains on the track line are used.
  • the separation distance between them and the modified length of the railway vehicle calculate the railway mileage coordinates of the railway vehicle; after calculating the railway mileage coordinates of each railway vehicle in the railway train, positioning of the railway train on the track line is completed.
  • the to-be-monitored information corresponding to the track line further includes an arrangement order of each railway vehicle in the railway train stopped on the track line, and the monitoring subsystem uses the following formula to calculate the Corrected length:
  • li ′ represents the corrected length of the railway vehicle at the ith position behind the front of the railway train
  • li represents the standard length of the railway vehicle at the ith position behind the front of the railway train
  • represents the correction amount
  • L1 represents the actual amount of the railway train.
  • Length L2 represents the standard length of the railway train
  • lt represents the standard length of the head of the train
  • n represents the total number of railway vehicles other than the head of the railway train.
  • the larger one of the two reference points and the smaller one of the railway mileage coordinates are the first reference point and the second reference point, respectively, when the locomotive of the railway train stopping on the strand line is close to the three-dimensional
  • the monitoring subsystem uses the coordinates of the railway mileage of the two reference points, the lateral distance of the railway train on the railway line, for each railway vehicle on the railway line, The separation distance between the train groups of the railway train on the unit line and the modified length of the railway vehicle, and the coordinates of the railway mileage of the railway vehicle are calculated as follows:
  • d1 and d2 respectively indicate the distance between the head of the vehicle and the first reference point and the distance between the head of the vehicle and the second reference point
  • LT indicates the lateral distance of the railway train on the track
  • r1 and r2 respectively indicate the first The distance between a reference point and the three-dimensional rangefinder and the distance between the second reference point and the three-dimensional rangefinder
  • D represents the distance between the railway vehicles
  • M1 and M2 respectively represent the first reference point and the second The railway mileage coordinates of the reference point
  • x represents the railway mileage coordinates of the railway vehicle.
  • the monitoring subsystem uses the following formula to calculate the vehicle distance:
  • D ij represents the inter-vehicle distance of the railway vehicle at the i-th position behind the head and the j-th train
  • lt represents the standard length of the head
  • lr ′ represents the corrected length of the rail vehicle at the r-th position behind the head
  • li ′ represents The corrected length of the railway vehicle at the ith position behind the head
  • kj represents the separation distance between the j-1th car group and the jth car group.
  • reference points are provided at both ends of each strand line, and the three-dimensional rangefinder is disposed outside the reference point, and the outside side is away from the station; when it is docked on the strand line, the object to be positioned
  • the monitoring subsystem calculates the railway mileage coordinates of the object to be located on the strand line based on the standard length and the distance information of the object to be located on the strand line, and completes the alignment on the strand line.
  • the positioning of the object to be positioned is as follows:
  • the first reference point and the second reference point are respectively the larger railway mileage coordinate and the smaller railway mileage coordinate among the two reference points
  • d1 and d2 represent the distance between a single railway vehicle and the first reference point, respectively.
  • LT characterizes the lateral distance of a single rail vehicle on the track
  • r1 and r2 respectively characterize the distance between the first reference point and the three-dimensional rangefinder and the distance between them.
  • M1 and M2 represent the railway mileage coordinates of the first reference point and the second reference point, respectively
  • w1 and w2 represent the actual and standard length of a single railway vehicle
  • x Characterizes the railway mileage coordinates of the railway vehicle.
  • the monitoring subsystem is further configured to:
  • the railway mileage coordinates of the object to be located are converted into geographic coordinates.
  • vehicle information of each railway vehicle passing through a vehicle number ground identification device can be obtained, and the obtained vehicle information has the same detection time and is located on the road.
  • the information of each vehicle with the same line number is integrated to obtain the information to be monitored corresponding to each lane. Then, for each lane in the station, the information to be monitored corresponding to the lane is used to determine where to stop.
  • the standard length of the object to be positioned on the track line based on the standard length and the distance information of the object to be positioned on the track line, calculate the railway mileage coordinates of the object to be positioned on the track line, and complete the track line. Position the object to be positioned.
  • the calculated railway mileage coordinates of the object to be located are also specific values, thereby improving the positioning accuracy of the object to be located, and one with multiple strands Stations on railway lines only need to set up a three-dimensional rangefinder to complete the positioning of objects to be positioned on all strand lines, thus saving costs, simplifying system complexity, and separating railway trains into multiple trains In the case of the vehicle, it is still possible to detect the positioning of each railway vehicle in each train group, which further improves the positioning accuracy.
  • FIG. 1 is a schematic structural diagram of a three-dimensional positioning system for a railway vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an application scenario to which a three-dimensional positioning system of a railway vehicle according to an embodiment of the present invention is applied;
  • FIG. 3 is a schematic diagram of an application scenario to which a three-dimensional positioning system of a railway vehicle according to an embodiment of the present invention is applied;
  • FIG. 4 is a schematic diagram of distance information measured by applying a three-dimensional rangefinder provided by an embodiment of the present invention.
  • FIG. 5 is another schematic diagram of distance information measured by applying a three-dimensional rangefinder provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a three-dimensional positioning system for railway vehicles.
  • the following describes a three-dimensional positioning system for railway vehicles provided by the present invention.
  • FIG. 1 is a three-dimensional positioning system for a railway vehicle according to an embodiment of the present invention.
  • the system is applied to a station.
  • the system includes a monitoring subsystem, a vehicle number recognition subsystem, and a three-dimensional rangefinder.
  • the number identification subsystem includes a vehicle number ground identification device.
  • the station is provided with a plurality of strand lines. Each end of each strand line is provided with a vehicle number ground identification device.
  • a three-dimensional rangefinder is provided above the station.
  • the vehicle number recognition subsystem is configured to obtain vehicle information of each railway vehicle passing the vehicle number ground identification device, and send the obtained vehicle information of each railway vehicle to a monitoring subsystem; the vehicle information includes a detection time And the number of the strand route where it is located;
  • the three-dimensional range finder is configured to obtain distance information of an object to be positioned on the route line for each track line in the station, and send the distance information to a monitoring subsystem;
  • the monitoring subsystem is used to determine the standard length of the object to be positioned on the strand line using the obtained to-be-monitored information for each strand line in the station, based on The standard length and the distance information of the object to be located on the strand line, calculating the railway mileage coordinates of the object to be located on the strand line, and completing the positioning of the object to be located on the strand line, wherein the strand line
  • the corresponding to-be-monitored information is obtained by integrating the vehicle information in the vehicle information at the same detection time and having the number of the track line.
  • Electronic tags can be installed on railway vehicles. Electronic tags can be used to uniquely identify railway vehicles. To facilitate identification of railway vehicles, electronic tags for railway vehicles can be installed on the bottom edge.
  • the electronic tag can be composed of a microstrip antenna, a virtual power supply, a reflective modulator, an encoder, a microprocessor, and a memory. By identifying the electronic tag, information such as the vehicle model and number of the railway vehicle can be obtained.
  • Stations can include section stations, marshalling stations, large freight stations, and demarcation stations. Stations can be equipped with one or more strand lines, which can be divided into arrival, departure, marshalling, and loading and unloading lines. Vehicle identification ground identification equipment can be installed at both ends of each strand line. Vehicle identification ground identification equipment can be placed on the strand line, beside the strand line, or at the entrance of the station; To avoid the impact on the moving vehicles, the vehicle number ground identification device can be installed beside the strand line. Each track line corresponds to two vehicle number ground identification devices. Two track number ground identification devices corresponding to one track line can be used to collect vehicle information of railway vehicles traveling on the track line.
  • the number of the ground identification device can determine the number of the track line where the railway vehicle collected by the vehicle number ground identification device, and vice versa.
  • a railway vehicle may exist as a bicycle, or it may be a railway vehicle in a railway train.
  • Railway trains can also be called railway trains.
  • the vehicle number ground identification device can be composed of a ground antenna installed between the strand lines, a wheel sensor, an RF (Radio Frequency) radio frequency device installed in a detection room, and a readout computer (industrial computer).
  • the device can accurately identify the electronic tag installed on the railway vehicle passing by it, and can collect the model, number and running direction of the railway vehicle, and record the detection time.
  • the running direction can determine the incoming railway vehicle, The outbound railway vehicles and the arrangement order of each railway vehicle.
  • the number of the ground line where the railway vehicle is located is determined by collecting the vehicle identification number of the railway vehicle ground identification equipment, so that the vehicle identification system can obtain a single railway vehicle / railway.
  • the vehicle information of each railway vehicle in the train realizes that the system provides accurate and real-time basic information for the subsequent process of locating railway vehicles.
  • the system can also include a video acquisition subsystem.
  • the video acquisition system can be composed of fiber channels, towers, image acquisition equipment, vehicle number ground recognition equipment, intelligent light control and other equipment.
  • the use of image acquisition equipment can realize real-time monitoring throughout the day, and can clearly collect the vehicle operating conditions at various monitoring points during the day and night.
  • the collected image / video data can be transmitted to the monitoring subsystem through optical fiber channels.
  • the clarity of the video image so that the integrity of the doors and windows of the compartment can be clearly observed through the monitoring subsystem, and the integrity and binding status of the tarpaulin, roof and rope can be easily identified.
  • Monitoring points can be reasonably deployed to ensure full coverage of the monitoring area and no blind spots.
  • the monitoring subsystem may integrate the vehicle information in the obtained vehicle information with the same detection time and has the number of the road line to obtain the information to be monitored; or, in one implementation, the system further includes a station existing vehicle subsystem
  • the vehicle number recognition subsystem can be set at the station entrance.
  • the vehicle number recognition subsystem sends the obtained vehicle information of each railway vehicle to the monitoring subsystem, specifically:
  • the integration obtains the information to be monitored corresponding to each track line, and sends the information to be monitored corresponding to each track line to the monitoring subsystem. Therefore, the monitoring subsystem can obtain the information to be monitored sent by the existing vehicle subsystem of the station.
  • the three-dimensional rangefinder can scan downwards and is used for continuously and uninterruptedly measuring the distance information of the object to be positioned stopped on each leg line on the station line.
  • the three-dimensional rangefinder can be: a three-dimensional laser rangefinder or a three-dimensional radar rangefinder.
  • the vehicle number ground recognition device is provided outside the reference points (starting points) at both ends of the strand line.
  • the reference point can be one of: a signal, a police red flag, an insulation section, etc.
  • the three-dimensional rangefinder is located outside the vehicle number ground recognition device, and is at a sufficiently high position above the perimeter of the station, and the outside is far away. The side of the station. In FIG.
  • 101 indicates a three-dimensional range finder
  • 102 indicates a vehicle number ground recognition device
  • 103 indicates a branch line
  • 104 indicates a turnout
  • 105 indicates a signal
  • 106 indicates a head
  • 107 indicates a railway vehicle
  • 108 indicates a gantry crane
  • 1081 Represents the traveling line of the gantry crane
  • 109 represents the detection range of the three-dimensional rangefinder, and the entire station can be covered within the detection range.
  • multiple three-dimensional rangefinders can also be set so that the detection range can cover the entire station.
  • the specific scene is shown in Figure 3.
  • the average value of the distances measured by each 3D rangefinder can be calculated as distance information.
  • the railway train can be separated, that is, it can be separated into multiple trains, and each train can include one or more railway vehicles. It should be noted that the railway train is based on the entire train. After entering the station in the form, after entering the station, it can be separated into various car groups, but the order of the railway vehicles in the railway train does not change.
  • the three-dimensional rangefinder obtains the distance information of the object to be positioned docked on the track line, which is specifically:
  • the separation distance between each vehicle group and the actual length of each vehicle group is detected, and the separation distance between each vehicle group, the actual length of each vehicle group, and the detected lateral distance are taken as Distance information of the object to be positioned on the strand route;
  • the actual length of the object to be positioned is detected, and the actual length and the detected lateral distance are used as distance information for the object to be positioned on the strand line.
  • the three-dimensional rangefinder can detect the lateral distance between the end of the object to be positioned on the strand line near the three-dimensional rangefinder and the three-dimensional rangefinder.
  • the specific detection method can be:
  • the three-dimensional rangefinder sends out laser pulses, which are sequentially scanned across the lanes. Based on the reflection intensity, it is determined whether the laser pulse is scanned to a railway vehicle. If it is a railway vehicle, the time at which the laser pulse is issued and the time at which it is returned To calculate the distance between the 3D rangefinder and the measured railway vehicle. At the same time, the 3D rangefinder has a built-in precision clock controller that can simultaneously measure the horizontal scanning angle observation value and vertical scanning angle observation value of the laser pulse. The distance and the two angle observations can calculate the lateral distance between the scanning point of the railway vehicle under test and the three-dimensional rangefinder, and can determine the track line where the railway vehicle is located.
  • the lateral distance between the end of the object to be positioned close to the three-dimensional rangefinder and the three-dimensional rangefinder may be: the horizontal distance between the point of the object to be positioned closest to the three-dimensional rangefinder and the three-dimensional rangefinder. Lateral distance refers to the distance between the two along the direction of the strand line.
  • the three-dimensional rangefinder can use image recognition technology to determine whether the object to be located is separated into multiple vehicle groups; or, it can also determine whether the object to be located is separated into multiple vehicle groups based on the reflection intensity.
  • the three-dimensional rangefinder detects the separation distance between each car group, which can be: using image ranging technology to measure the separation distance between each car group, and the track line where the measured car group is located; or, if the current laser If the pulse scan is not a railway vehicle, the current laser pulse emission time point is recorded. When the next railway vehicle is detected, the next laser pulse emission time point is recorded, and the difference between the two emission time points is used to calculate two The distance between each vehicle group.
  • the way for the three-dimensional rangefinder to detect the actual length of each car group can be: for each continuous scan to the railway vehicle, using the minimum lateral scanning angle observation value and the maximum lateral scanning in each laser pulse issued by the continuous scanning
  • the actual length of each vehicle group was calculated by the angle difference of the angle observations, the distance measured by the laser pulse with the smallest lateral scanning angle observation value, and the distance measured by the laser pulse with the largest lateral scanning angle observation value.
  • the 3D rangefinder can also use image ranging technology to detect the actual length of each vehicle group, the actual length of the object to be positioned, and so on.
  • the measurement data of the three-dimensional rangefinder may be a three-dimensional image, and the three-dimensional image may include the parking positions of the objects to be located on all strand lines of the station within the detection range and the positions of the reference points.
  • Reference points can include signalers, insulation sections, police red flags, etc.
  • the three-dimensional rangefinder can exist in the form of a ranging system, which can include a digital image collector (including a synchronization controller, an analog-to-digital converter, and a frame memory), an image processing computer, and an image display terminal.
  • the ranging system can be composed of many uniprocessors and form an array processor to achieve parallel operations to improve processing speed and real-time detection.
  • the 3D rangefinder can detect the distance information of the object to be positioned on the track line in real time.
  • the 3D rangefinder measures The distance information of the 3D rangefinder is in a changing state; if the object to be positioned stops at the straight section / curve section of the strand line, the distance information measured by the 3D rangefinder is stable for a period of time, and the 3D rangefinder can be in the The steady state distance information is sent to the monitoring subsystem.
  • the distance information measured by the three-dimensional rangefinder 101 may include: LT, T1, T2, and k1, where T1 represents the actual length of the first vehicle group, and LT represents a railway train on the strand line
  • T2 represents a railway train on the strand line
  • k1 represents the separation distance between the first car group and the second car group.
  • the parking signal may be sent to the station's existing vehicle subsystem, and the parking signal may include the number of the strand line on which the object to be positioned is parked, so that the station's existing vehicle subsystem can report to the station
  • the three-dimensional rangefinder sends a start signal. After receiving the start signal, the three-dimensional rangefinder starts scanning in the sector scanning area corresponding to the track line, thereby detecting the distance information of the object to be positioned on the track line. .
  • Container loading and unloading operations need to unload the container destined for this station.
  • Containers that do not arrive at this station are kept on the railway vehicle.
  • the railway vehicle can be loaded with containers and run on the strand line. Both are identified by the vehicle number, so the container number of the container and the vehicle number of the railway vehicle on which the container is loaded can be associated in advance, that is, during the container loading and unloading operation, the container can be loaded by the container number Because the railway vehicle is a passive object in a non-train state, it does not have the positioning and information exchange capabilities.
  • the existing container loading and unloading operations cannot obtain the positioning information of the railway vehicle, so it can pass
  • the positioning of the railway vehicle by the railway vehicle positioning system provided by the present invention can obtain the parking position of the railway vehicle, realize the automatic container loading and unloading operation of the railway vehicle, and save the automatic container loading and unloading operation time.
  • the vehicle information may include the running direction of the railway vehicle, the detection time, the number of the railway line where the railway vehicle is located, the vehicle model, the vehicle number, the arrangement order of the group, and the like.
  • the running direction can be divided into the incoming direction and the outgoing direction.
  • the detection time of the railway vehicle is the time when the vehicle number ground identification device detects the railway vehicle. Since all railway vehicles in the railway train are continuously and closely connected, the detection of each railway vehicle The time difference is small and can be ignored, so it can be considered that the detection time of all railway vehicles in a railway train is the same.
  • the grouping arrangement order may be the arrangement order of each railway vehicle in the railway train.
  • the existing vehicle subsystem at the station integrates the vehicle information of the obtained vehicle information with the running direction being the pit stop direction, the same detection time, and the same number of the lane line, to obtain the information to be monitored corresponding to each lane line.
  • the to-be-monitored information may only include the strand line, arrangement order and vehicle number of each railway vehicle in a single railway vehicle / rail train, or the to-be-monitored information may also be vehicle information of all railway vehicles in a single railway vehicle / rail train ;
  • the object to be located can be either a single railway vehicle or a railway train. When the object to be located is a railway train, each railway vehicle in the railway train needs to be positioned.
  • the object to be positioned on the strand line is a single railway vehicle with the vehicle number in the information to be monitored.
  • the to-be-monitored information corresponding to the strand line includes a plurality of vehicle numbers
  • the object to be positioned on the stranded line is a railway train formed by a plurality of railway vehicles with the vehicle numbers in the to-be-monitored information.
  • a railway vehicle When a railway vehicle is traveling alone, it can be called shunting or locomotive.
  • the railway vehicle in the front position of the railway train is not used for loading containers, but is used to tow other loading containers.
  • the railway vehicle running can be called a traction locomotive or a locomotive, and the rear end is the railway vehicle in the last position among the railway trains.
  • the monitoring subsystem determines the standard of an object to be positioned on the strand line by using the obtained to-be-monitored information corresponding to the strand line for each lane line in the station.
  • Length specifically:
  • the standard length of a single railway vehicle with the vehicle number in the information to be monitored is determined to stop at the lane
  • the standard length of railway vehicles of different models and different vehicle numbers can be the same or different.
  • the monitoring subsystem can store the standard length of all types of railway vehicles and their corresponding vehicle numbers in advance, so that the information to be monitored can be used to determine the positioning.
  • the vehicle number of the object to obtain the standard length of the railway vehicle corresponding to the vehicle number. If there is only one vehicle number in the information to be monitored, the standard length of a single railway vehicle with the vehicle number in the information to be monitored is determined as the standard length of the object to be located; if there are multiple vehicle numbers in the information to be monitored, each vehicle number is calculated The sum of the corresponding standard length of each railway vehicle is used as the standard length of the object to be located.
  • reference points are provided at both ends of the strand line, and the three-dimensional rangefinder may be disposed outside the reference point, the outside side being away from the station, and the objects to be positioned on the strand line are separated into a plurality of objects.
  • the object to be located is a railway train
  • the monitoring subsystem calculates the railway mileage coordinates of the object to be located on the strand line based on the standard length and the distance information of the object to be located on the strand line, and completes the alignment.
  • the positioning of the object to be positioned on the strand line is as follows:
  • the railway mileage coordinates of the two reference points, the lateral distance of the railway train on the track line, and the train trains on the track line are used.
  • the separation distance between them and the modified length of the railway vehicle calculate the railway mileage coordinates of the railway vehicle; after calculating the railway mileage coordinates of each railway vehicle in the railway train, positioning of the railway train on the track line is completed.
  • the monitoring subsystem can store the station's electronic map of the station in advance.
  • the electronic map of the station contains various figure data of the station (such as passages, culverts, bridges, flyovers, etc.), and the railway mileage of each device on the road line. Coordinates (errors are in centimeters, meters, etc.), ancillary facilities and stock roads, turnouts, semaphores, insulation joints, police red flags, other relevant attribute data of car stops and platforms, where vehicle identification equipment is located
  • the position of the measurement point, three-dimensional rangefinder, etc., and a reference point can be set in advance.
  • the reference point can be one of the devices on the femoral line, such as a semaphore, an insulation section, and a warning mark. Therefore, the monitoring subsystem can Get railway mileage coordinates for pre-stored reference points.
  • the to-be-monitored information corresponding to the strand line may further include an arrangement order of each railway vehicle in a railway train stopped on the strand line, and the monitoring subsystem uses the following formula to calculate the railway train Corrected length of each railway vehicle in:
  • li ′ represents the corrected length of the railway vehicle at the ith position behind the front of the railway train
  • li represents the standard length of the railway vehicle at the ith position behind the front of the railway train
  • represents the correction amount
  • L1 represents the actual amount of the railway train.
  • Length L2 represents the standard length of the railway train
  • lt represents the standard length of the head of the train
  • n represents the total number of railway vehicles other than the head of the railway train.
  • the railway vehicles in the railway train are connected by couplers.
  • the couplers have buffering and telescopic functions.
  • the measured length inside the coupler is changed from the standard length. This change is within a known limit. .
  • the difference between the actual length and the standard length can be calculated to obtain the length error, and the length error is evenly distributed to all railway vehicles within the measurement range, and the distribution error of each railway vehicle is obtained, thereby correcting the positioning accuracy.
  • the monitoring subsystem can calculate the railway mileage coordinates of the railway vehicle based on the railway mileage coordinates of the two reference points and the modified length of the railway vehicle.
  • the railway mileage coordinates of the railway vehicle may be the railway mileage coordinates of the geometric center point of the railway vehicle.
  • the larger one of the two railway reference points and the smaller one of the two railway reference points are the first reference point and the second reference point, respectively, when parked on a railway train on a strand line.
  • the monitoring subsystem uses the railway mileage coordinates of the two reference points of the railway line and the railway unit for each railway vehicle in the railway line parked on the railway line.
  • the lateral distance of the railway train on the track line, the separation distance between the trains of the railway train on the track line, and the modified length of the railway vehicle to calculate the railway mileage coordinates of the railway vehicle are as follows:
  • d1 and d2 respectively indicate the distance between the head of the vehicle and the first reference point and the distance between the head of the vehicle and the second reference point
  • LT indicates the lateral distance of the railway train on the track
  • r1 and r2 respectively indicate the first The distance between a reference point and the three-dimensional rangefinder and the distance between the second reference point and the three-dimensional rangefinder
  • D represents the distance between the railway vehicles
  • M1 and M2 respectively represent the first reference point and the second The railway mileage coordinates of the reference point
  • x represents the railway mileage coordinates of the railway vehicle.
  • the distance between the first reference point and the three-dimensional rangefinder and the distance between the second reference point and the three-dimensional rangefinder are also lateral distances.
  • the monitoring subsystem obtains the distance between the first reference point and the three-dimensional rangefinder.
  • the distance between the second reference point and the three-dimensional rangefinder can be: directly obtain the distance between the first reference point and the three-dimensional rangefinder stored by itself and the distance between the second reference point and the three-dimensional rangefinder.
  • the three-dimensional rangefinder may send the distance between the first reference point measured in real time and the three-dimensional rangefinder to the monitoring subsystem, and the second reference point obtained in real-time measurement and the three-dimensional rangefinder The distance between them is sent to the monitoring subsystem, so that the monitoring subsystem receives the distance between the first reference point and the three-dimensional rangefinder and the distance between the second reference point and the three-dimensional rangefinder.
  • the railway mileage coordinates of the railway vehicle may also be the railway mileage coordinates of the geometric center point of the railway vehicle.
  • the distance between the vehicles may be the distance from the geometric center point of the railway vehicle to the outermost edge point of the vehicle head. The outside is the side far from the station.
  • the monitoring subsystem uses the following formula to calculate the vehicle distance:
  • D ij represents the inter-vehicle distance of the railway vehicle at the i-th position behind the head and the j-th train
  • lt represents the standard length of the head
  • lr ′ represents the corrected length of the rail vehicle at the r-th position behind the head
  • li ′ represents The corrected length of the railway vehicle at the ith position behind the head
  • kj represents the separation distance between the j-1th car group and the jth car group.
  • the monitoring subsystem when a tail of a railway train docked on a strand line approaches a three-dimensional rangefinder, the monitoring subsystem is directed to each rail vehicle in a railway train docked on a strand line,
  • the railway mileage coordinates of the two reference points, the lateral distance of the railway train on the strand line, the separation distance between the train trains on the strand line, and the corrected length of the railway vehicle are used to calculate the railway of the railway vehicle Mileage coordinates, specifically:
  • d1 and d2 respectively indicate the distance between the head of the vehicle and the first reference point and the distance between the head of the vehicle and the second reference point
  • LT indicates the lateral distance of the railway train on the track
  • r1 and r2 respectively indicate the first The distance between a reference point and the three-dimensional rangefinder and the distance between the second reference point and the three-dimensional rangefinder
  • LZ represents the total length occupied by the railway train (the separation distance between each train group and each The sum of the actual length of the vehicle group)
  • D represents the distance between the railway vehicles
  • M1 and M2 represent the railway mileage coordinates of the first reference point and the second reference point
  • x represents the railway mileage coordinates of the railway vehicle.
  • the monitoring subsystem calculates the standard length based on the standard length and distance information of the object to be located on the strand line.
  • the railway mileage coordinates of the object to be positioned on the track line, and the positioning of the object to be positioned on the track line is completed as follows:
  • d1 and d2 represent the distance between a single railway vehicle and the first reference point and the distance between a single railway vehicle and the second reference point, respectively, and LT represents the lateral distance of a single railway vehicle on the strand line
  • r1 and r2 Characterize the distance between the first reference point and the three-dimensional rangefinder and the distance between the second reference point and the three-dimensional rangefinder, respectively.
  • M1 and M2 respectively characterize the railway of the first reference point and the second reference point.
  • Mileage coordinates, w1 and w2 represent the actual and standard lengths of a single railway vehicle, respectively, and x represents the railway mileage coordinates of the railway vehicle.
  • the standard length of the object to be located may not be modified, and the railway mileage coordinates of the railway vehicle may also be the railway mileage coordinates of the geometric center point of the railway vehicle.
  • vehicle information of each railway vehicle passing through a vehicle number ground identification device can be obtained, and the obtained vehicle information has the same detection time and the same number of the strand line.
  • the information of each vehicle is integrated to obtain the to-be-monitored information corresponding to each lane.
  • the to-be-monitored information corresponding to the lane is used to determine the pending stop on the lane.
  • the standard length of the position object based on the standard length and the distance information of the object to be positioned on the track line, calculate the railway mileage coordinates of the object to be positioned on the track line, and complete the positioning of the object to be positioned on the track line.
  • the calculated railway mileage coordinates of the object to be located are also specific values, thereby improving the positioning accuracy of the object to be located, and one with multiple strands Stations on railway lines only need to set up a three-dimensional rangefinder to complete the positioning of objects to be positioned on all strand lines, thus saving costs, simplifying system complexity, and separating railway trains into multiple trains In the case of the vehicle, it is still possible to detect the positioning of each railway vehicle in each train group, which further improves the positioning accuracy.
  • the monitoring subsystem is further configured to convert the railway mileage coordinates of the object to be located into geographic coordinates through the electronic map or other coordinate conversion algorithms inside the monitoring subsystem after calculating the railway mileage coordinates of the object to be located.
  • Geographical coordinates include GPS (Global Positioning System, Global Positioning System), Beidou coordinates, etc., so as to obtain information such as the vehicle number, arrangement order, and precise position of each railway vehicle on the tested track line.
  • the monitoring subsystem obtains the precise position coordinates of the railway vehicle corresponding to each vehicle number
  • the precise position coordinates of all railway vehicles in a railway train are formed into a set of data information and uploaded to the railway station automated loading and unloading system. So that the railway station automatic loading and unloading system can automatically load and unload containers of railway vehicles, and save the time of automatic loading and unloading of containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种铁路车辆三维定位***,***应用于车站,***包括:车号识别子***,用于将每一铁路车辆的车辆信息发送给监控子***;三维测距仪,用于获得停靠于每一股道线路上的待定位物体的距离信息,将距离信息发送给监控子***;监控子***,用于针对每一股道线路,利用该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,基于标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,其中,该股道线路对应的待监控信息由车辆信息中检测时间相同且具有该股道线路的编号的各车辆信息整合所得。应用本发明实施例,提高了对待定位物体的定位精度。

Description

一种铁路车辆三维定位*** 技术领域
本发明涉及无源车辆定位技术领域,尤其涉及一种铁路车辆三维定位***。
背景技术
铁路运输是使用铁路列车运送货物的一种运输方式,其特点是运送量大,速度快,成本较低。铁路运输种类可以分为整车运输、零担运输和集装箱运输三种。其中,采用集装箱运输方式,可以减少货物的损耗和损失,保证运输质量,是货物运输发展的重要方向。
在集装箱运输过程中,需要对集装箱进行装卸作业,为了实现装卸作业的自动化,需要对装载集装箱的铁路车辆进行精确定位。由于装载集装箱的铁路车辆是一个无源的、且能够移动的物体,故需要采用铁路车辆定位***对其进行定位。
目前,铁路车辆定位***大多采用轨道电路定位方法,但是这种方法只能定位出铁路车辆所在轨道区间,所以无法定位出铁路车辆在这段轨道区间上的具***置,故误差范围较大,定位精度较低。因此有必要设计一种新的铁路车辆定位***,以克服上述问题。
发明内容
本发明的目的在于克服现有技术之缺陷,提供了一种铁路车辆三维定位***,以实现提高定位精度。
本发明是这样实现的:
本发明提供一种铁路车辆三维定位***,所述***应用于车站,***包括 监控子***、车号识别子***和三维测距仪,其中,所述车号识别子***包括车号地面识别设备,所述车站设有多条股道线路,每一股道线路的两端均设有车号地面识别设备,所述车站上方设有三维测距仪;
所述车号识别子***,用于获得经过车号地面识别设备的每一铁路车辆的车辆信息,将所获得的每一铁路车辆的车辆信息发送给监控子***;所述车辆信息包括检测时间和所处股道线路的编号;
所述三维测距仪,用于针对所述车站内每一股道线路,获得停靠于该股道线路上的待定位物体的距离信息,将该距离信息发送给监控子***;
所述监控子***,用于针对所述车站内每一股道线路,利用所获得的该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,其中,该股道线路对应的待监控信息由车辆信息中检测时间相同且具有该股道线路的编号的各车辆信息整合所得。
可选的,所述***还包括车站现车子***,所述车号识别子***将所获得的每一铁路车辆的车辆信息发送给监控子***,具体为:
将所获得的每一铁路车辆的车辆信息发送给车站现车子***,以使所述车站现车子***将所获得的车辆信息中检测时间相同且所处股道线路的编号相同的各车辆信息进行整合,得到各股道线路对应的待监控信息,并将各股道线路对应的待监控信息发送给监控子***。
可选的,所述三维测距仪获得停靠于该股道线路上的待定位物体的距离信息,具体为:
检测停靠于该股道线路上的待定位物体靠近该三维测距仪的一端与该三维 测距仪之间的横向距离;判断待定位物体是否被分离成多个车组;
若被分离成多个车组,则检测各车组之间的分隔距离和各车组的实际长度,将各车组之间的分隔距离、各车组的实际长度以及所检测的横向距离作为停靠于该股道线路上待定位物体的距离信息;
若未被分离成多个车组,则检测所述待定位物体的实际长度,将所述实际长度以及所检测的横向距离作为停靠于该股道线路上待定位物体的距离信息。
可选的,所述监控子***针对所述车站内每一股道线路,利用所获得的该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,具体为:
针对所述车站内每一股道线路,当该股道线路对应的待监控信息仅包括一个车号时,将具有该待监控信息中车号的单个铁路车辆的标准长度确定为停靠于该股道线路上的待定位物体的标准长度;当该股道线路对应的待监控信息包括多个车号时,获得具有该待监控信息中车号的多个铁路车辆的标准长度,计算各标准长度的总和,作为停靠于该股道线路上的待定位物体的标准长度。
可选的,股道线路两端设有参考点,所述三维测距仪设置于参考点外侧,所述外侧为远离车站的一侧,当停靠于股道线路上的待定位物体被分离成多个车组时,待定位物体为铁路列车,所述监控子***基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,具体为:
获得处于该股道线路两端的两个参考点的铁路里程坐标;
计算所述各车组的实际长度之和,得到该股道线路上铁路列车的实际长度;
利用所述实际长度和所述标准长度,计算停靠于该股道线路上的铁路列车中每一铁路车辆的修正长度;
针对停靠于该股道线路上的铁路列车中每一铁路车辆,用所述两个参考点的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标;在计算出铁路列车中各铁路车辆的铁路里程坐标后,完成对该股道线路上铁路列车的定位。
可选的,股道线路对应的待监控信息还包括停靠于该股道线路上的铁路列车中每一铁路车辆的排列顺序,所述监控子***利用以下公式计算铁路列车中每一铁路车辆的修正长度:
li′=li+Δε;
Figure PCTCN2019071957-appb-000001
Figure PCTCN2019071957-appb-000002
其中,li′表征处于铁路列车的车头后方第i位的铁路车辆的修正长度,li表征处于铁路列车的车头后方第i位的铁路车辆的标准长度,Δε表征修正量,L1表征铁路列车的实际长度,L2表征铁路列车的标准长度,lt表征车头的标准长度,n表征铁路列车中除车头以外的铁路车辆的总数。
可选的,两个参考点中的铁路里程坐标较大者和铁路里程坐标较小者分别为第一参考点和第二参考点,当停靠于股道线路上的铁路列车中的车头靠近三维测距仪时,所述监控子***针对停靠于该股道线路上的铁路列车中每一铁路车辆,用所述两个参考点的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标,具体为:
针对停靠于该股道线路上的铁路列车中每一铁路车辆,基于该铁路车辆的修正长度以及该铁路车辆所处的位置,计算该铁路车辆与车头之间的距离,作 为该铁路车辆的车间距;当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-D;当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+D;
其中,d1和d2分别表征车头与第一参考点之间的距离以及车头与第二参考点之间的距离,LT表征该股道线路上铁路列车的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,D表征该铁路车辆的车间距,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,x表征该铁路车辆的铁路里程坐标。
可选的,当所述监控子***利用以下公式计算车间距:
Figure PCTCN2019071957-appb-000003
其中,D ij表征处于车头后方第i位且在第j车组的铁路车辆的车间距,lt表征车头的标准长度,lr′表征处于车头后方第r位的铁路车辆的修正长度,li′表征处于车头后方第i位的铁路车辆的修正长度,kj表征第j-1车组与第j车组之间的分隔距离。
可选的,每一股道线路的两端均设有参考点,所述三维测距仪设置于参考点的外侧,外侧为远离车站的一侧;当停靠于股道线路上的待定位物体为单个铁路车辆时,所述监控子***基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,具体为:
获得处于该股道线路两端的两个参考点的铁路里程坐标;
当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间 的距离,并采用以下公式,计算该单个铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-(w1+w2)/2;当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该单个铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+(w1+w2)/2;
其中,第一参考点和第二参考点分别为两个参考点中的铁路里程坐标较大者和铁路里程坐标较小者,d1和d2分别表征单个铁路车辆与第一参考点之间的距离以及单个铁路车辆与第二参考点之间的距离,LT表征该股道线路上单个铁路车辆的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,w1和w2分别表示单个铁路车辆的实际长度和标准长度,x表征该铁路车辆的铁路里程坐标。
可选的,所述监控子***还用于:
在计算待定位物体的铁路里程坐标后,将待定位物体的铁路里程坐标转换为地理坐标。
本发明具有以下有益效果:应用本发明实施例提供的技术方案,可以获得经过车号地面识别设备的每一铁路车辆的车辆信息,并将所获得的车辆信息中检测时间相同且所处股道线路的编号相同的各车辆信息进行整合,得到各股道线路对应的待监控信息,进而针对所述车站内每一股道线路,利用该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,基于标准长度和该股道线路上待定位物体的距离信息,计算停靠于该股道线路上的待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位。由于标准长度和距离信息包含与待定位物***置相关的具体值,故,计算出的待定位物体的铁路里程坐标也是具体值,从而提高了对待定位物体的定位精度,并且 一个设有多条股道线路的车站只需要设置一个三维测距仪,就可以完成对所有股道线路上待定位物体的定位,故节约了成本,简化了***复杂度,并且在铁路列车被分离成多个车组的情况下,仍可以检测对各车组中每一铁路车辆的定位,进一步提高了定位精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种铁路车辆三维定位***的结构示意图;
图2为应用本发明实施例提供的铁路车辆三维定位***的一种应用场景示意图;
图3为应用本发明实施例提供的铁路车辆三维定位***的一种应用场景示意图;
图4为应用本发明实施例提供的三维测距仪测量的距离信息的一种示意图;
图5为应用本发明实施例提供的三维测距仪测量的距离信息的另一种示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
为解决现有技术问题,本发明实施例提供了一种铁路车辆三维定位***。 下面对本发明所提供的一种铁路车辆三维定位***进行说明。
参见图1,图1为本发明实施例提供的一种铁路车辆三维定位***,所述***应用于车站,***包括监控子***、车号识别子***和三维测距仪,其中,所述车号识别子***包括车号地面识别设备,所述车站设有多条股道线路,每一股道线路的两端均设有车号地面识别设备,所述车站上方设有三维测距仪;
所述车号识别子***,用于获得经过车号地面识别设备的每一铁路车辆的车辆信息,将所获得的每一铁路车辆的车辆信息发送给监控子***;所述车辆信息包括检测时间和所处股道线路的编号;
所述三维测距仪,用于针对所述车站内每一股道线路,获得停靠于该股道线路上的待定位物体的距离信息,将该距离信息发送给监控子***;
所述监控子***,用于针对所述车站内每一股道线路,利用所获得的该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,其中,该股道线路对应的待监控信息由车辆信息中检测时间相同且具有该股道线路的编号的各车辆信息整合所得。
可以在铁路车辆上安装电子标签,电子标签可以用于唯一标识铁路车辆,为了便于对铁路车辆的识别,铁路车辆的电子标签可以安装于在底部边缘。电子标签可以由微带天线、虚拟电源、反射调制器、编码器、微处理器和存储器组成,通过识别电子标签,可以得到铁路车辆的车辆型号和车号等信息。
车站可以包括区段站、编组站、大型货运站和分界站等,车站可以设有一条或多条股道线路,股道线路可以分为到发线、编组线、装卸线等。每一股道线路的两端均可以设置车号地面识别设备,车号地面识别设备可以设置于股道 线路上,也可以设置于股道线路旁,还可以设置于车站的各入口端;为了避免对行驶车辆的影响,车号地面识别设备可以设置于股道线路旁。每一股道线路均对应有两个车号地面识别设备,一个股道线路对应的两个车号地面识别设备可以用于采集在该股道线路上行驶的铁路车辆的车辆信息,通过车号地面识别设备的编号可以确定该车号地面识别设备所采集的铁路车辆所处股道线路的编号,反之亦然。铁路车辆可以是以单车形式存在,也可以是铁路列车中某个铁路车辆。铁路列车也可以称之为铁路车列。
车号地面识别设备可以由安装在股道线路间的地面天线、车轮传感器及安装在探测机房的RF(Radio Frequency,射频)微波射频装置、读出计算机(工控机)等组成,车号地面识别设备可以对经过它的铁路车辆所安装的电子标签进行准确地识别、并可以采集该铁路车辆的车型、车号和运行方向,并记录检测时间,可以通过运行方向,确定进站的铁路车辆、出站的铁路车辆以及各铁路车辆的排列顺序,用采集该铁路车辆的车号地面识别设备的编号确定铁路车辆所处股道线的编号,从而车号识别子***可以得到单个铁路车辆/铁路列车中各铁路车辆的车辆信息,实现了***为后续的定位铁路车辆的过程提供准确的、实时的基础信息。
***还可以包括视频采集子***,视频采集***可以由光纤通道、塔架、图像采集设备、车号地面识别设备、智能灯控等设备组成。采用图像采集设备可以实现全天实时监控、昼夜均能清晰采集各监控点的车辆运行情况,并可以通过光纤通道将采集的图像/视频数据传送给监控子***,可以采用高清图像采集设备来提供视频图像的清晰度,从而通过监控子***可以清晰观测到车厢门窗的完好程度,并能容易的识别篷布、顶盖及绳索的完整和捆绑状态。并可以合理部署监控点,以保证监控区域全覆盖、无盲区。
监控子***可以对所获得的车辆信息中检测时间相同且具有该股道线路的编号的各车辆信息进行整合,从而得到待监控信息;或者,一种实现方式中,***还包括车站现车子***,车号识别子***可以设置于车站入口端,车号识别子***将所获得的每一铁路车辆的车辆信息发送给监控子***,具体为:
将所获得的每一铁路车辆的车辆信息发送给车站现车子***,以使所述车站现车子***将所获得的车辆信息中检测时间相同且所处股道线路的编号相同的各车辆信息进行整合,得到各股道线路对应的待监控信息,并将各股道线路对应的待监控信息发送给监控子***。从而,监控子***可以获得车站现车子***发送的待监控信息。
三维测距仪可以向下扫描,用于连续不间断测量车站线路上各股道线路上所停靠的待定位物体的距离信息。三维测距仪可以为:三维激光测距仪或三维雷达测距仪等。
为了减少三维测距仪和车号地面识别设备对铁路列车/单个铁路车辆的运行干扰,如图2所示,车号地面识别设备设置于所述股道线路两端的参考点(起始点)外侧,参考点可以为:信号机、警冲标、绝缘节等中的一种,所述三维测距仪设置于车号地面识别设备外侧,且处于在车站周边上方足够高的位置,外侧为远离车站的一侧。图2中,101表示三维测距仪,102表示车号地面识别设备,103表示股道线路,104表示道岔转线,105表示信号机,106表示车头,107表示铁路车辆,108表示龙门吊,1081表示龙门吊走行线,109表示三维测距仪的检测范围,检测范围内可以覆盖整个车站。另外,当车站较大时,也可以设置多个三维测距仪以使检测范围可以覆盖整个车站,具体场景如图3所示。当设置多个三维测距仪时,对于重复覆盖区域,可以计算各三维测距仪所测距离的平均值,来作为距离信息。
待定位物体为铁路列车时,铁路列车可以是分离状态,即可以被分离成多个车组,每个车组可以包括一个或多个铁路车辆,需要说明的是,铁路列车是以整列车的形式进入车站,在进入车站后,可以被分离成各个车组,但铁路列车中各铁路车辆的排列顺序并不改变。
一种实现方式中,三维测距仪获得停靠于该股道线路上的待定位物体的距离信息,具体为:
检测停靠于该股道线路上的待定位物体靠近该三维测距仪的一端与该三维测距仪之间的横向距离;判断待定位物体是否被分离成多个车组;
若被分离成多个车组,则检测各车组之间的分隔距离和各车组的实际长度,将各车组之间的分隔距离、各车组的实际长度以及所检测的横向距离作为停靠于该股道线路上待定位物体的距离信息;
若未被分离成多个车组,则检测所述待定位物体的实际长度,将所述实际长度以及所检测的横向距离作为停靠于该股道线路上待定位物体的距离信息。
三维测距仪可以检测停靠于股道线路上的待定位物体靠近该三维测距仪的一端与该三维测距仪之间的横向距离,具体检测方法可以为:
三维测距仪发出激光脉冲,激光脉冲依次扫过各股道线路,根据反射强度,确定激光脉冲扫描到是否为铁路车辆,若为铁路车辆,则用该激光脉冲的发出时间点与返回时间点的差值,来计算三维测距仪与被测铁路车辆之间的距离,同时三维测距仪内置精密时钟控制器,可以同步测量激光脉冲的横向扫描角度观测值和纵向扫描角度观测值,根据距离和两个角度观测值,可以计算出被测铁路车辆的扫描点与该三维测距仪之间的横向距离,并可以确定铁路车辆所处的股道线路。
待定位物体靠近该三维测距仪的一端与该三维测距仪之间的横向距离可以 为:待定位物体最靠近三维测距仪的点与三维测距仪之间的横向距离。横向距离是指两者沿着股道线路方向的距离。
三维测距仪可以利用图像识别技术,判断待定位物体是否被分离成多个车组;或者,也可以根据反射强度,确定待定位物体是否被分离成多个车组。三维测距仪检测各车组之间的分隔距离,可以为:利用图像测距技术,测量各车组之间的分隔距离,以及被测车组所处的股道线路;或者,若当前激光脉冲扫描到的不为铁路车辆,则记录当前激光脉冲的发出时间点,在下次检测到铁路车辆时,记录下个激光脉冲的发出时间点,用两个发出时间点的差值,来计算两个车组之间的距离。
三维测距仪检测各车组的实际长度的方式可以为:对于每次连续扫描到铁路车辆的情况,用该次连续扫描所发出的各激光脉冲中的最小横向扫描角度观测值与最大横向扫描角度观测值的角度差、具有最小横向扫描角度观测值的激光脉冲所测得的距离以及具有最大横向扫描角度观测值的激光脉冲所测得的距离,计算出各车组的实际长度。
另外,三维测距仪也可以用图像测距技术,检测各车组的实际长度,待定位物体的实际长度等。
三维测距仪的测量数据可以是一个三维图像,该三维图像可以包括检测范围内车站所有股道线路上待定位物体的停车位置和各参考点的位置。参考点可以包括信号机、绝缘节、警冲标等。三维测距仪可以以测距***的形式存在,该测距***可以包括数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端,通过图像处理软件来处理测距任务,测距***可以由许多单处理器组成阵列式处理机,从而实现并行操作,以提高处理速度,提高检测的实时性。
三维测距仪可以实时检测停靠于股道线路上的待定位物体的距离信息,当待定位物体进入三维测距仪的检测区域时,若待定位物体仍在运行,则三维测距仪测得的距离信息处于变化状态;若待定位物体停靠于股道线路的直线区段/曲线区段,则三维测距仪测得的距离信息在一段时间内处于稳定状态,三维测距仪可以将处于稳定状态的距离信息发送给监控子***。
示例性的,如图4所示,三维测距仪101测量的距离信息可以包括:LT、T1、T2、k1,其中,T1表征第一车组的实际长度,LT表示股道线路上铁路列车的横向距离,T2第二车组的实际长度,k1表示第一车组和第二车组之间的分隔距离。
或者,在一种实现方式中,待定位物体在停稳后,可以向车站现车子***发送停车信号,停车信号可以包括该待定位物体所停靠股道线路的编号,从而车站现车子***可以向三维测距仪发送启动信号,进而,三维测距仪在接收到启动信号后,开始在该股道线路所对应扇形扫描区域内扫描,从而检测出该股道线路上的待定位物体的距离信息。
集装箱装卸车作业需要将目的地为本车站的集装箱卸车,目的地非到达本站集装箱保留在铁路车辆上,铁路车辆作为一个承载体,可以装载集装箱在股道线路上运行,每一铁路车辆事先均用车号进行标识,故,集装箱的箱号与装载该集装箱的铁路车辆的车号可以事先进行关联,也就是,在集装箱装卸车作业的过程中,可以通过集装箱的箱号得到装载该集装箱的铁路车辆的车号,由于铁路车辆在非列车的状态下是无源物体,自身没有定位和信息交换能力,也就是,现有的集装箱装卸车作业无法获得铁路车辆的定位信息,故可以通过本发明提供的铁路车辆定位***对该铁路车辆的定位,从而可以得到该铁路车辆的停留位置,实现了对铁路车辆的集装箱自动化装卸作业,节约了集装箱自动 化装卸作业时间。
车辆信息可以包括铁路车辆的运行方向、检测时间,铁路车辆所处股道线路的编号、车辆型号、车号、编组排列顺序等。运行方向可以分为进站方向和出站方向,铁路车辆的检测时间为车号地面识别设备检测到该铁路车辆的时间,由于铁路列车中的所有铁路车辆是连续紧密连接,各铁路车辆的检测时间相差很小,可以忽略不计,故可以认为铁路列车中的所有铁路车辆的检测时间相同。编组排列顺序可以为铁路列车中各铁路车辆的排列顺序。
车站现车子***将所获得的车辆信息中运行方向为进站方向、检测时间相同且所处股道线路的编号相同的各车辆信息进行整合,得到各股道线路对应的待监控信息。待监控信息可以仅包括单个铁路车辆/铁路列车中各铁路车辆所处的股道线路、排列顺序及车号,或者,待监控信息也可以为单个铁路车辆/铁路列车中所有铁路车辆的车辆信息;待定位物体既可以为单个铁路车辆,也可以为铁路列车,当待定位物体为铁路列车时,需要对铁路列车中的每一铁路车辆进行定位。
对于任一股道线路而言,当该股道线路对应的待监控信息仅包括一个车号时,停靠于该股道线路上的待定位物体为具有待监控信息中车号的单个铁路车辆,当该股道线路对应的待监控信息包括多个车号时,停靠于该股道线路上的待定位物体为由具有待监控信息中车号的多个铁路车辆共同形成的铁路列车。
当铁路车辆单独行驶时,可以称其为调车或机车,当多个铁路车辆以铁路列车的形式行驶时,处于铁路列车中车头位置的铁路车辆不用于装载集装箱,而用于牵引其他装载集装箱的铁路车辆行驶,可以称其为牵引机车或车头,车尾为铁路列车中处于最后位置的铁路车辆。
一种实现方式中,所述监控子***针对所述车站内每一股道线路,利用所 获得的该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,具体为:
针对所述车站内每一股道线路,当该股道线路对应的待监控信息仅包括一个车号时,将具有待监控信息中车号的单个铁路车辆的标准长度确定为停靠于该股道线路上的待定位物体的标准长度;当该股道线路对应的待监控信息包括多个车号时,获得具有待监控信息中车号的多个铁路车辆的标准长度,计算各标准长度的总和,作为停靠于该股道线路上的待定位物体的标准长度。
不同型号、不同车号的铁路车辆的标准长度可以相同,也可以不同,监控子***可以预先存储所有型号的铁路车辆的标准长度以及其对应的车号,从而可以利用待监控信息,确定待定位物体的车号,获得该车号对应的铁路车辆的标准长度。若待监控信息中只有一个车号,将具有待监控信息中车号的单个铁路车辆的标准长度确定为待定位物体的标准长度;若待监控信息中有多个车号,则计算各车号对应的各铁路车辆的标准长度之和,作为待定位物体的标准长度。
具体的,股道线路两端设有参考点,三维测距仪可以设置于参考点外侧,所述外侧为远离车站的一侧,当停靠于股道线路上的待定位物体被分离成多个车组时,待定位物体为铁路列车,所述监控子***基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,具体为:
获得处于该股道线路两端的两个参考点的铁路里程坐标;
计算各车组的实际长度之和,得到该股道线路上铁路列车的实际长度;
利用所述实际长度和所述标准长度,计算停靠于该股道线路上的铁路列车中每一铁路车辆的修正长度;
针对停靠于该股道线路上的铁路列车中每一铁路车辆,用所述两个参考点 的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标;在计算出铁路列车中各铁路车辆的铁路里程坐标后,完成对该股道线路上铁路列车的定位。
监控子***可以预先存储车站的站场电子地图,站场电子地图包含了车站的各种地物图形数据(如通道、涵洞、桥梁、天桥等)、各处于股道线路路上的设备的铁路里程坐标(误差为厘米级、米级等)、附属设施以及股道线路、道岔转线、信号机、绝缘节、警冲标、车挡和站台其它相关属性数据、车号地面识别设备所处的测量点、三维测距仪等的位置,并且可以预先设置参考点,参考点可以为信号机、绝缘节、警冲标等处于股道线路上的设备中的一种,从而,监控子***可以获得预先存储的参考点的铁路里程坐标。
对于任一股道线路而言,股道线路对应的待监控信息还可以包括停靠于该股道线路上的铁路列车中每一铁路车辆的排列顺序,所述监控子***利用以下公式计算铁路列车中每一铁路车辆的修正长度:
li′=li+Δε;
Figure PCTCN2019071957-appb-000004
Figure PCTCN2019071957-appb-000005
其中,li′表征处于铁路列车的车头后方第i位的铁路车辆的修正长度,li表征处于铁路列车的车头后方第i位的铁路车辆的标准长度,Δε表征修正量,L1表征铁路列车的实际长度,L2表征铁路列车的标准长度,lt表征车头的标准长度,n表征铁路列车中除车头以外的铁路车辆的总数。当铁路列车被分离成多个车组时,铁路列车的实际长度为各车组的实际长度之和;当铁路列车未被分离成多个车组时,铁路列车的实际长度为整列列车的实际长度。
铁路列车中各铁路车辆通过车钩连接,车钩有缓冲和伸缩功能,铁路列车在挤压状态和拉伸状态时,车钩内侧的测量长度较标准长度有所变化,这个变化在一个已知的限制范围。具体的,可以认为,当L1>L2时,铁路列车处于拉伸状态;当测量长度L1<计算长度L2,铁路列车处于压缩状态;当测量长度L1=计算长度L2(或者差值在允许误差范围内),铁路列车处于正常状态。
监控子***根据待监控信息提供的被测股道线路上的铁路列车中所有铁路车辆型号、车号和排列顺序,查询车头的标准长度lt和车头后方第i位的铁路车辆的标准长度li(i=1,2,3…n),从而计算出被测股道线路上停留的铁路列车的标准长度
Figure PCTCN2019071957-appb-000006
为了提高定位精度,可以计算出实际长度和标准长度的差值,得到长度误差,并将长度误差平均分摊至测量范围内的所有铁路车辆,得到每一铁路车辆的分摊误差,从而修正了定位精度。
监控子***基于两个参考点的铁路里程坐标以及铁路车辆的修正长度,可以计算出铁路车辆的铁路里程坐标,
具体的,铁路车辆的铁路里程坐标可以为铁路车辆的几何中心点的铁路里程坐标。在一种实现方式中,假设两个参考点中的铁路里程坐标较大者和铁路里程坐标较小者分别为第一参考点和第二参考点,当停靠于股道线路上的铁路列车中的车头靠近三维测距仪时,所述监控子***针对停靠于该股道线路上的铁路列车中每一铁路车辆,用设置于该股道线路的两个参考点的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标,具体为:
针对停靠于该股道线路上的铁路列车中每一铁路车辆,基于该铁路车辆的修正长度以及该铁路车辆所处的位置,计算该铁路车辆与车头之间的距离,作 为该铁路车辆的车间距;当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-D;当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+D;
其中,d1和d2分别表征车头与第一参考点之间的距离以及车头与第二参考点之间的距离,LT表征该股道线路上铁路列车的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,D表征该铁路车辆的车间距,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,x表征该铁路车辆的铁路里程坐标。
第一参考点与三维测距仪之间的距离以及第二参考点与三维测距仪之间的距离也均为横向距离,监控子***获得第一参考点与三维测距仪之间的距离以及第二参考点与三维测距仪之间的距离的方式可以为:直接获得自身存储的第一参考点与三维测距仪之间的距离以及第二参考点与三维测距仪之间的距离;或者,也可以为:三维测距仪将实时测量所得的第一参考点与三维测距仪之间的距离发送给监控子***,将实时测量所得的第二参考点与三维测距仪之间的距离发送给监控子***,从而监控子***接收得到第一参考点与三维测距仪之间的距离以及第二参考点与三维测距仪之间的距离。
具体的,如图4和图5所示,图4中,三维测距仪靠近第一参考点1051,故自第一参考点1051至第二参考点1052方向的铁路里程坐标递减,故x=M1-d1-D;图5中,三维测距仪靠近第二参考点1052,故自第二参考点1052至第一参考点1051方向的铁路里程坐标递增,故x=M2+d2+D。
铁路车辆的铁路里程坐标也可以为铁路车辆的几何中心点的铁路里程坐标, 车间距可以为铁路车辆的几何中心点到车头最外侧边缘点的距离,外侧为远离车站的一侧,具体的,所述监控子***利用以下公式计算车间距:
Figure PCTCN2019071957-appb-000007
其中,D ij表征处于车头后方第i位且在第j车组的铁路车辆的车间距,lt表征车头的标准长度,lr′表征处于车头后方第r位的铁路车辆的修正长度,li′表征处于车头后方第i位的铁路车辆的修正长度,kj表征第j-1车组与第j车组之间的分隔距离。
在另一种实现方式中,当停靠于股道线路上的铁路列车中的车尾靠近三维测距仪时,所述监控子***针对停靠于股道线路上的铁路列车中每一铁路车辆,用两个参考点的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标,具体为:
针对停靠于该股道线路上的铁路列车中每一铁路车辆,基于该铁路车辆的修正长度以及该铁路车辆所处的位置,计算该铁路车辆与车头之间的距离,作为该铁路车辆的车间距;当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-(LZ-D);当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+(LZ-D);
其中,d1和d2分别表征车头与第一参考点之间的距离以及车头与第二参考点之间的距离,LT表征该股道线路上铁路列车的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,LZ表征铁路列车所占的总长度(为各车组之间的分隔距离和各车组的 实际长度之和),D表征该铁路车辆的车间距,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,x表征该铁路车辆的铁路里程坐标。
在又一种实现方式中,当停靠于股道线路上的待定位物体为单个铁路车辆时,所述监控子***基于所述标准长度、该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,具体为:
获得处于该股道线路两端的两个参考点的铁路里程坐标;
当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间的距离,并采用以下公式,计算该单个铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-(w1+w2)/2;当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该单个铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+(w1+w2)/2;
其中,d1和d2分别表征单个铁路车辆与第一参考点之间的距离以及单个铁路车辆与第二参考点之间的距离,LT表征该股道线路上单个铁路车辆的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,w1和w2分别表示单个铁路车辆的实际长度和标准长度,x表征该铁路车辆的铁路里程坐标。
可以理解的是,当待定位物体为单个铁路车辆时,可以不对待定位物体的标准长度进行修正,铁路车辆的铁路里程坐标也可以为铁路车辆的几何中心点的铁路里程坐标。
可见,应用本发明实施例提供的技术方案,可以获得经过车号地面识别设备的每一铁路车辆的车辆信息,并将所获得的车辆信息中检测时间相同且所处 股道线路的编号相同的各车辆信息进行整合,得到各股道线路对应的待监控信息,进而针对所述车站内每一股道线路,利用该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,基于标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位。由于标准长度和距离信息包含与待定位物***置相关的具体值,故,计算出的待定位物体的铁路里程坐标也是具体值,从而提高了对待定位物体的定位精度,并且一个设有多条股道线路的车站只需要设置一个三维测距仪,就可以完成对所有股道线路上待定位物体的定位,故节约了成本,简化了***复杂度,并且在铁路列车被分离成多个车组的情况下,仍可以检测对各车组中每一铁路车辆的定位,进一步提高了定位精度。
一种实现方式中,监控子***还用于在计算待定位物体的铁路里程坐标后,通过监测子***内部的电子地图或其他坐标换算算法,将待定位物体的铁路里程坐标转换为地理坐标,地理坐标包括GPS(Global Positioning System,全球定位***)、北斗坐标等,从而得到被测股道线路上各铁路车辆的车号、排列顺序、精确位置等信息。
进一步的,监控子***在得到每个车号所对应的铁路车辆的精确位置坐标后,将一列铁路列车中所有铁路车辆的精确位置坐标形成一组数据信息,并上传至铁路车站自动化装卸***,以便铁路车站自动化装卸***对铁路车辆的集装箱自动化装卸作业,节约了集装箱自动化装卸作业时间。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种铁路车辆三维定位***,其特征在于,所述***应用于车站,***包括监控子***、车号识别子***和三维测距仪,其中,所述车号识别子***包括车号地面识别设备,所述车站设有多条股道线路,每一股道线路的两端均设有车号地面识别设备,所述车站上方设有三维测距仪;
    所述车号识别子***,用于获得经过车号地面识别设备的每一铁路车辆的车辆信息,将所获得的每一铁路车辆的车辆信息发送给监控子***;所述车辆信息包括检测时间和所处股道线路的编号;
    所述三维测距仪,用于针对所述车站内每一股道线路,获得停靠于该股道线路上的待定位物体的距离信息,将该距离信息发送给监控子***;
    所述监控子***,用于针对所述车站内每一股道线路,利用所获得的该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,其中,该股道线路对应的待监控信息由车辆信息中检测时间相同且具有该股道线路的编号的各车辆信息整合所得。
  2. 根据权利要求1所述的***,其特征在于,所述***还包括车站现车子***,所述车号识别子***将所获得的每一铁路车辆的车辆信息发送给监控子***,具体为:
    将所获得的每一铁路车辆的车辆信息发送给车站现车子***,以使所述车站现车子***将所获得的车辆信息中检测时间相同且所处股道线路的编号相同的各车辆信息进行整合,得到各股道线路对应的待监控信息,并将各股道线路对应的待监控信息发送给监控子***。
  3. 根据权利要求1所述的***,其特征在于,所述三维测距仪获得停靠于 该股道线路上的待定位物体的距离信息,具体为:
    检测停靠于该股道线路上的待定位物体靠近该三维测距仪的一端与该三维测距仪之间的横向距离;判断待定位物体是否被分离成多个车组;
    若被分离成多个车组,则检测各车组之间的分隔距离和各车组的实际长度,将各车组之间的分隔距离、各车组的实际长度以及所检测的横向距离作为停靠于该股道线路上待定位物体的距离信息;
    若未被分离成多个车组,则检测所述待定位物体的实际长度,将所述实际长度以及所检测的横向距离作为停靠于该股道线路上待定位物体的距离信息。
  4. 根据权利要求3所述的***,其特征在于,所述监控子***针对所述车站内每一股道线路,利用所获得的该股道线路对应的待监控信息,确定停靠于该股道线路上的待定位物体的标准长度,具体为:
    针对所述车站内每一股道线路,当该股道线路对应的待监控信息仅包括一个车号时,将具有该待监控信息中车号的单个铁路车辆的标准长度确定为停靠于该股道线路上的待定位物体的标准长度;当该股道线路对应的待监控信息包括多个车号时,获得具有该待监控信息中车号的多个铁路车辆的标准长度,计算各标准长度的总和,作为停靠于该股道线路上的待定位物体的标准长度。
  5. 根据权利要求3所述的***,其特征在于,股道线路两端设有参考点,所述三维测距仪设置于参考点外侧,所述外侧为远离车站的一侧,当停靠于股道线路上的待定位物体被分离成多个车组时,待定位物体为铁路列车,所述监控子***基于所述标准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,具体为:
    获得处于该股道线路两端的两个参考点的铁路里程坐标;
    计算所述各车组的实际长度之和,得到该股道线路上铁路列车的实际长度;
    利用所述实际长度和所述标准长度,计算停靠于该股道线路上的铁路列车中每一铁路车辆的修正长度;
    针对停靠于该股道线路上的铁路列车中每一铁路车辆,用所述两个参考点的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标;在计算出铁路列车中各铁路车辆的铁路里程坐标后,完成对该股道线路上铁路列车的定位。
  6. 根据权利要求5所述的***,其特征在于,股道线路对应的待监控信息还包括停靠于该股道线路上的铁路列车中每一铁路车辆的排列顺序,所述监控子***利用以下公式计算铁路列车中每一铁路车辆的修正长度:
    li′=li+Δε;
    Figure PCTCN2019071957-appb-100001
    Figure PCTCN2019071957-appb-100002
    其中,li′表征处于铁路列车的车头后方第i位的铁路车辆的修正长度,li表征处于铁路列车的车头后方第i位的铁路车辆的标准长度,Δε表征修正量,L1表征铁路列车的实际长度,L2表征铁路列车的标准长度,lt表征车头的标准长度,n表征铁路列车中除车头以外的铁路车辆的总数。
  7. 根据权利要求5所述的***,其特征在于,两个参考点中的铁路里程坐标较大者和铁路里程坐标较小者分别为第一参考点和第二参考点,当停靠于股道线路上的铁路列车中的车头靠近三维测距仪时,所述监控子***针对停靠于该股道线路上的铁路列车中每一铁路车辆,用所述两个参考点的铁路里程坐标、该股道线路上铁路列车的横向距离、该股道线路上铁路列车各车组之间的分隔 距离以及该铁路车辆的修正长度,计算该铁路车辆的铁路里程坐标,具体为:
    针对停靠于该股道线路上的铁路列车中每一铁路车辆,基于该铁路车辆的修正长度以及该铁路车辆所处的位置,计算该铁路车辆与车头之间的距离,作为该铁路车辆的车间距;当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-D;当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+D;
    其中,d1和d2分别表征车头与第一参考点之间的距离以及车头与第二参考点之间的距离,LT表征该股道线路上铁路列车的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,D表征该铁路车辆的车间距,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,x表征该铁路车辆的铁路里程坐标。
  8. 根据权利要求7所述的***,其特征在于,当所述监控子***利用以下公式计算车间距:
    Figure PCTCN2019071957-appb-100003
    其中,D ij表征处于车头后方第i位且在第j车组的铁路车辆的车间距,lt表征车头的标准长度,lr′表征处于车头后方第r位的铁路车辆的修正长度,li′表征处于车头后方第i位的铁路车辆的修正长度,kj表征第j-1车组与第j车组之间的分隔距离。
  9. 根据权利要求1所述的***,其特征在于,每一股道线路的两端均设有参考点,所述三维测距仪设置于参考点的外侧,外侧为远离车站的一侧;当停靠于股道线路上的待定位物体为单个铁路车辆时,所述监控子***基于所述标 准长度和该股道线路上待定位物体的距离信息,计算该股道线路上待定位物体的铁路里程坐标,完成对该股道线路上待定位物体的定位,具体为:
    获得处于该股道线路两端的两个参考点的铁路里程坐标;
    当三维测距仪靠近第一参考点时,获得所述第一参考点与三维测距仪之间的距离,并采用以下公式,计算该单个铁路车辆的铁路里程坐标:d1=LT-r1,x=M1-d1-(w1+w2)/2;当三维测距仪靠近第二参考点时,获得所述第二参考点与三维测距仪之间的距离,并采用以下公式,计算该单个铁路车辆的铁路里程坐标:d2=LT-r2,x=M2+d2+(w1+w2)/2;
    其中,第一参考点和第二参考点分别为两个参考点中的铁路里程坐标较大者和铁路里程坐标较小者,d1和d2分别表征单个铁路车辆与第一参考点之间的距离以及单个铁路车辆与第二参考点之间的距离,LT表征该股道线路上单个铁路车辆的横向距离,r1和r2分别表征所述第一参考点与三维测距仪之间的距离以及所述第二参考点与三维测距仪之间的距离,M1和M2分别表征第一参考点和第二参考点的铁路里程坐标,w1和w2分别表示单个铁路车辆的实际长度和标准长度,x表征该铁路车辆的铁路里程坐标。
  10. 根据权利要求1所述的***,其特征在于,所述监控子***还用于:
    在计算待定位物体的铁路里程坐标后,将待定位物体的铁路里程坐标转换为地理坐标。
PCT/CN2019/071957 2018-08-24 2019-01-16 一种铁路车辆三维定位*** WO2020037944A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19851483.8A EP3778346A4 (en) 2018-08-24 2019-01-16 THREE-DIMENSIONAL POSITIONING SYSTEM FOR A RAIL VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810973414.0A CN109229156B (zh) 2018-08-24 2018-08-24 一种铁路车辆三维定位***
CN201810973414.0 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020037944A1 true WO2020037944A1 (zh) 2020-02-27

Family

ID=65068249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071957 WO2020037944A1 (zh) 2018-08-24 2019-01-16 一种铁路车辆三维定位***

Country Status (3)

Country Link
EP (1) EP3778346A4 (zh)
CN (1) CN109229156B (zh)
WO (1) WO2020037944A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111612109A (zh) * 2020-05-14 2020-09-01 中国铁建高新装备股份有限公司 一种轨道设备走行距离和速度的自动校验***及方法
CN113954932A (zh) * 2021-11-01 2022-01-21 中国铁道科学研究院集团有限公司通信信号研究所 一种基于工程线路数据的电子地图自动生成方法
CN114114245A (zh) * 2022-01-27 2022-03-01 成都工航科技有限公司 一种高速列车定位方法及***
CN114802358A (zh) * 2022-05-25 2022-07-29 武汉大学 一种基于视觉识别的轨道检查车定位方法及定位***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803200B (zh) * 2019-11-05 2021-07-06 武汉市市政建设集团有限公司 一种基于cpiii控制点的轨道里程定位方法及装置
CN112462359A (zh) * 2020-11-30 2021-03-09 北京博途智控科技有限公司 一种基于二次雷达的线路识别方法和***
CN113919021B (zh) * 2021-12-13 2022-04-05 中铁第五勘察设计院集团有限公司 一种既有铁路车站股道线位重构方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201494472U (zh) * 2009-08-28 2010-06-02 山东科沐华信息技术有限公司 铁路机车调车用测距仪
CN101786461A (zh) * 2010-02-06 2010-07-28 合肥安迅铁道应用技术有限公司 动车组位置跟踪***
CN201604666U (zh) * 2010-02-06 2010-10-13 合肥安迅铁道应用技术有限公司 动车组位置跟踪***
CN102762430A (zh) * 2009-12-21 2012-10-31 西门子公司 用于监测轨道列车组的完整性的方法和装置
CN104228884A (zh) * 2014-08-29 2014-12-24 深圳市远望谷信息技术股份有限公司 在铁路站场内实现车辆自动识别及追踪定位的方法及装置
CN107097813A (zh) * 2017-06-12 2017-08-29 武汉黎赛科技有限责任公司 一种整备场机车定位***
CN206475890U (zh) * 2017-02-23 2017-09-08 北京铁龙恒通车辆装备有限公司 一种检查库内动车组位置实时判断***
CN207078155U (zh) * 2017-06-12 2018-03-09 武汉黎赛科技有限责任公司 一种整备场机车定位***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826938B2 (en) * 2005-12-22 2010-11-02 Mitsubishi Electric Research Laboratories, Inc. System for tracking railcars in a railroad environment
US7428453B2 (en) * 2005-12-23 2008-09-23 General Electric Company System and method for monitoring train arrival and departure latencies
DE102007040165A1 (de) * 2007-08-21 2009-02-26 Siemens Ag Verfahren zum Betreiben eines Fahrzeugverbands, Kommunikationseinrichtungen, Triebfahrzeug, Fahrzeug sowie Fahrzeugverband
DE102010031910A1 (de) * 2010-07-22 2012-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Füllstandbestimmung einer Schienen- oder Fahrweggebundenen Logistikanlage
CN103063141A (zh) * 2011-10-21 2013-04-24 东莞富强电子有限公司 基于激光测距的零件高度的测量方法
JP6090190B2 (ja) * 2014-02-06 2017-03-08 オムロン株式会社 移動体管理装置
US10077061B2 (en) * 2015-03-12 2018-09-18 Mi-Jack Products, Inc. Profile detection system and method
JP6475113B2 (ja) * 2015-07-06 2019-02-27 日本信号株式会社 列車車種識別システム及び列車車種識別方法
CN105966424A (zh) * 2016-06-02 2016-09-28 绵阳天眼激光科技有限公司 一种基于激光定位与高清铁路沿线安全监控***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201494472U (zh) * 2009-08-28 2010-06-02 山东科沐华信息技术有限公司 铁路机车调车用测距仪
CN102762430A (zh) * 2009-12-21 2012-10-31 西门子公司 用于监测轨道列车组的完整性的方法和装置
CN101786461A (zh) * 2010-02-06 2010-07-28 合肥安迅铁道应用技术有限公司 动车组位置跟踪***
CN201604666U (zh) * 2010-02-06 2010-10-13 合肥安迅铁道应用技术有限公司 动车组位置跟踪***
CN104228884A (zh) * 2014-08-29 2014-12-24 深圳市远望谷信息技术股份有限公司 在铁路站场内实现车辆自动识别及追踪定位的方法及装置
CN206475890U (zh) * 2017-02-23 2017-09-08 北京铁龙恒通车辆装备有限公司 一种检查库内动车组位置实时判断***
CN107097813A (zh) * 2017-06-12 2017-08-29 武汉黎赛科技有限责任公司 一种整备场机车定位***
CN207078155U (zh) * 2017-06-12 2018-03-09 武汉黎赛科技有限责任公司 一种整备场机车定位***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778346A4 *
WANG, QILONG: "Position Tracking and Positioning System of Bullet Train", SHANGHAI RAILWAY SCIENCE & TECHNOLOGY, 31 January 2010 (2010-01-31), pages 71 - 73, XP009524111 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111612109A (zh) * 2020-05-14 2020-09-01 中国铁建高新装备股份有限公司 一种轨道设备走行距离和速度的自动校验***及方法
CN113954932A (zh) * 2021-11-01 2022-01-21 中国铁道科学研究院集团有限公司通信信号研究所 一种基于工程线路数据的电子地图自动生成方法
CN114114245A (zh) * 2022-01-27 2022-03-01 成都工航科技有限公司 一种高速列车定位方法及***
CN114114245B (zh) * 2022-01-27 2022-04-12 成都工航科技有限公司 一种高速列车定位方法及***
CN114802358A (zh) * 2022-05-25 2022-07-29 武汉大学 一种基于视觉识别的轨道检查车定位方法及定位***

Also Published As

Publication number Publication date
CN109229156B (zh) 2020-05-22
CN109229156A (zh) 2019-01-18
EP3778346A1 (en) 2021-02-17
EP3778346A4 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2020037944A1 (zh) 一种铁路车辆三维定位***
CN109229157B (zh) 一种铁路车辆定位***
US10297153B2 (en) Vehicle on-board controller centered train control system
RU2567997C2 (ru) Мобильные устройства и способы контроля транспортных средств
CN110371164B (zh) 轨道列车在道岔行驶方向的检测***及方法
CN103223955B (zh) 一种车辆限界的检测方法及装置
CN108914815A (zh) 桥面车辆荷载识别装置、桥梁及桥梁荷载分布识别方法
CN102139704A (zh) 一种基于射频技术的高精度列车定位***及其定位方法
CN106672016B (zh) 采用激光对射探测器的地铁轮径实时检测***和方法
CN103021182B (zh) 机动车闯红灯违章监测方法及装置
CN207850304U (zh) 一种电气化铁路接触网检测***
CN109159803B (zh) 一种铁路车辆平面定位***
CN110443819A (zh) 一种单轨列车的轨道检测方法和装置
CN108639108B (zh) 一种机车作业安全防护***
CN110824515B (zh) Gnss与雷达测距相结合的铁水联运车辆跟踪定位方法及***
CN113031606B (zh) 一种无线虚拟导轨***以及车辆定位和控制方法
CN110758473B (zh) 一种铁水联运轨道车辆跟踪定位方法及***
CN114325572A (zh) 基于uwb定位技术的铁路货运车辆调车编组方法和***
CN109466591A (zh) 集装箱轨道动力平车的定位***
CN110626383A (zh) 一种基于惯性测量的轨道检测装置
CN207882450U (zh) 一种线空定位与触发装置
CN112622987A (zh) 列车自主定位测速及完整性检查***及方法
CN208219481U (zh) 一种桥面车辆荷载识别装置及设置该装置的桥梁
CN211317333U (zh) 一种车载定位***
CN110794163A (zh) 一种测算车辆行驶速度的采集***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019851483

Country of ref document: EP

Effective date: 20201112

NENP Non-entry into the national phase

Ref country code: DE