WO2020027078A1 - (メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法 - Google Patents

(メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法 Download PDF

Info

Publication number
WO2020027078A1
WO2020027078A1 PCT/JP2019/029723 JP2019029723W WO2020027078A1 WO 2020027078 A1 WO2020027078 A1 WO 2020027078A1 JP 2019029723 W JP2019029723 W JP 2019029723W WO 2020027078 A1 WO2020027078 A1 WO 2020027078A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic resin
film
resin film
monomer
Prior art date
Application number
PCT/JP2019/029723
Other languages
English (en)
French (fr)
Inventor
奈々恵 白石
笠原 健三
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020217000838A priority Critical patent/KR20210020090A/ko
Priority to JP2020533552A priority patent/JP7298617B2/ja
Priority to KR1020237002886A priority patent/KR20230021157A/ko
Priority to CN201980050755.3A priority patent/CN112513150B/zh
Publication of WO2020027078A1 publication Critical patent/WO2020027078A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a (meth) acrylic resin film and an optical film, and a (meth) acrylic resin film.
  • Acrylic resin films have excellent transparency, weather resistance, gloss and workability, and are therefore used industrially in various fields such as automotive interior / exterior members and building materials.
  • acrylic resins have been used as, for example, optical films of various display devices by utilizing the excellent optical characteristics of acrylic resins.
  • optical films are required to be as wide as 1 m or more, and even 1.4 m or more.
  • the film raw material at the time of manufacturing is becoming longer.
  • the (meth) acrylic resin film is generally formed by a melt extrusion method.
  • a (meth) acrylic resin film containing an acrylic resin and two or more types of rubber-containing graft copolymers is known (for example, see Patent Document 2).
  • Patent Document 2 a (meth) acrylic resin film containing an acrylic resin and two or more types of rubber-containing graft copolymers
  • the present invention has been made in view of the above circumstances. Even when a film is formed by a solution casting method, a (meth) acrylic resin film and an optical film having a sufficient antiblocking property, a (meth) acrylic resin An object is to provide a method for producing a film.
  • the above problem can be solved by the following configuration.
  • the (meth) acrylic resin film of the present invention contains a structural unit derived from methyl methacrylate and a structural unit derived from a copolymerizable monomer other than the methyl methacrylate copolymerizable therewith, and has the following (1) And (2) a (meth) acrylic resin, (1) The copolymerizable monomer having the largest molecular weight among the copolymerizable monomers has a molecular weight ratio of 0.5 to 2.5 with respect to the methyl methacrylate. (2) The glass transition temperature (Tg) is 115 to 160.
  • (C) rubber particles containing (meth) acrylic resin film The amount of warpage expressed as the curvature of warpage when cut out into a size of 35 mm ⁇ 2 mm and immersed in water at 50 ° C. for 90 minutes is 2 to 15 (1 / m).
  • the optical film of the present invention comprises the (meth) acrylic resin film of the present invention.
  • the method for producing a (meth) acrylic resin film of the present invention comprises a structural unit derived from methyl methacrylate and a structural unit derived from a copolymerizable monomer other than the methyl methacrylate copolymerizable therewith, and Obtaining a dope containing (meth) acrylic resin satisfying (1) and (2), rubber particles, and a solvent; (1)
  • the copolymer monomer having the largest molecular weight among the copolymer monomers has a molecular weight ratio of 0.5 to 2.5 with respect to the methyl methacrylate.
  • Tg glass transition temperature
  • the inventors of the present invention have conducted intensive studies and found that a film produced by a solution casting method cannot have a sufficient antiblock property.
  • a specific (meth) acrylic resin satisfying the following (1) and (2) is used.
  • the copolymerizable monomer having the largest molecular weight has a molecular weight ratio (based on methyl methacrylate) of 0.5 to 2.5.
  • the glass transition temperature (Tg) is 115 to 160 ° C.
  • the (meth) acrylic resin contains a structural unit derived from a copolymer monomer having a relatively large (preferably bulky) molecular weight ratio (the requirement (1)).
  • the gap between the resin molecules can be enlarged, so that the solvent can be easily removed, and the movement of the resin due to the difference in the flow speed with the rubber particles is promoted, and the resin is easily moved to the surface of the film-like material. Can. This makes it easier to form protrusions (irregularities) of the resin on the surface of the film.
  • the film is likely to be appropriately warped (the amount of warpage when immersed in water at 90 ° C.
  • the amount of warpage after immersion in water is 2 ( 1 / m) or more, and it is easy to suppress sticking (blocking) between the films when they are wound up. Thereby, it is considered that the anti-blocking property is further improved.
  • the above (meth) acrylic resin has an appropriately high glass transition temperature (Tg) (requirement of the above (2)).
  • Tg glass transition temperature
  • the film-like material containing the solvent at the time of casting has a high curing speed, and can be cured before the formed irregularities are collapsed, so that the irregularities are formed on the surface (surface roughness Ra is low). It is considered that a film having an adequately high antiblocking property can be obtained.
  • (Meth) acrylic resin film The (meth) acrylic resin film contains a (meth) acrylic resin and rubber particles.
  • (meth) acryl means acryl or methacryl.
  • (Meth) acrylic resin The (meth) acrylic resin is derived from a structural unit derived from methyl methacrylate and a copolymerizable monomer other than methyl methacrylate copolymerizable therewith (hereinafter, referred to as a “copolymerized monomer”). And a polymer containing a structural unit and satisfies the following (1) and (2).
  • the copolymerizable monomer having the largest molecular weight has a molecular weight ratio to methyl methacrylate (hereinafter, simply referred to as “molecular weight ratio”) of 0.5 to 2.5.
  • Glass transition temperature (Tg) of 115 to 160 ° C
  • the molecular weight ratio of the comonomer having the maximum molecular weight is 0.5 or more
  • a resin is formed on the surface of the film-like material. It is easy to form irregularities due to the surface roughness Ra.
  • an appropriate density difference easily occurs in the thickness direction of the obtained film, the amount of warpage of the obtained film after immersion in water tends to be in an appropriate range.
  • Examples of the comonomer having a molecular weight ratio of 0.5 to 2.5 include: Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2- (meth) acrylate Ethylhexyl, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclo (meth) acrylate Acrylates having 1 to 20 carbon atoms in the alkyl group such as pentanyl, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acryl
  • the copolymer monomer having a molecular weight ratio of 0.5 to 2.5 is more preferably a copolymer monomer having a molecular weight ratio of 1.1 to 2.5.
  • Preferred examples of the comonomer having a molecular weight ratio of 1.1 to 2.5 include: (Meth) having a cyclo ring such as dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and six-membered lactone (meth) acrylate Acrylic acid esters; alicyclic vinyls such as vinylcyclohexane; and copolymerized monomers (first copolymerized monomers) selected from the group consisting of maleimides such as N-phenylmaleimide; and t-butyl (meth) acrylate; (Meth) acrylates having 4 or more carbon atoms such as hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth)
  • the copolymerized monomer having a molecular weight ratio of 1.1 to 2.5 is more preferably a copolymerized monomer having a molecular weight ratio of 1.4 to 2.5, and a molecular weight ratio of 1.5 to 2. It is particularly preferred that the copolymer monomer is 5.
  • Preferred examples of the copolymerizable monomer having a molecular weight ratio of 1.4 to 2.5 include a copolymerizable monomer (first copolymer) selected from the group consisting of the above-mentioned cyclocyclic-containing (meth) acrylates and maleimides. Polymerized monomer), and t-butyl (meth) acrylate (third copolymerized monomer); Preferred examples of the copolymerizable monomer having a molecular weight ratio of 1.5 to 2.5 include a copolymerizable monomer (first copolymer) selected from the group consisting of the above-mentioned (meth) acrylic acid ester having a cyclo ring and maleimides. Polymerized monomer).
  • the (meth) acrylic resin has a glass transition temperature (Tg) of 115 ° C. or higher, the (meth) acrylic resin film is formed on the surface of the film when producing the (meth) acrylic resin film by the solution casting method.
  • the formed irregularities have an appropriate hardness (or the curing speed is high) and are hardly broken. As a result, the unevenness is easily maintained, so that the surface roughness Ra of the obtained film tends to be appropriately large.
  • the Tg of the (meth) acrylic resin is 160 ° C. or lower, the unevenness of the surface of the obtained film does not become too large, so that it is possible to suppress the reduction of the winding shape (load collapse) due to excessive sliding.
  • the Tg of the (meth) acrylic resin is preferably from 125 to 160 ° C, more preferably from 135 to 150 ° C.
  • the glass transition temperature (Tg) of the (meth) acrylic resin can be measured by using DSC (Differential Scanning Colorimetry) in accordance with JIS K 7121-2012.
  • the copolymerization monomer having a large molecular weight ratio and a bulky (or rigid) structure is a copolymerization monomer (first) selected from the group consisting of the above-mentioned (meth) acrylic acid ester containing a cyclo ring and maleimides. (Copolymerized monomer).
  • the interacting group is, for example, a polar group selected from the group consisting of a nitrile group, an amide group, an imide group, and a carboxyl group. That is, the copolymer monomer having an interacting group is preferably a copolymer monomer having an interacting group (polar group) and an ethylenically unsaturated bond (second copolymer monomer).
  • maleimides such as N-phenylmaleimide; unsaturated nitriles such as methacrylonitrile; unsaturated carboxylic acids such as methacrylic acid; and unsaturated amides such as methacrylamide. Since maleimides have an interacting group (imide group), they are both a first copolymerizable monomer and a second copolymerizable monomer.
  • the physical properties of (1) and (2) include, for example, a copolymer monomer (first copolymer monomer) selected from the group consisting of a (meth) acrylate ester containing a cyclo ring and maleimides, an interacting group ( By combining two or more of a copolymer monomer having a polar group) and an ethylenically unsaturated bond (second copolymer monomer) and a (meth) acrylate ester having 3 or more carbon atoms (third copolymer monomer). Adjustment is preferred.
  • the third copolymer monomer is preferably used in combination with the second copolymer monomer.
  • the (meth) acrylic resin further includes a structural unit derived from a copolymer monomer other than these copolymer monomers (the first copolymer monomer, the second copolymer monomer, and the third copolymer monomer). May be.
  • the (meth) acrylic resin preferably contains a structural unit derived from the first copolymerized monomer; And more preferably both structural units derived from the second copolymerized monomer.
  • the content of these structural units in the (meth) acrylic resin may be set so as to satisfy the requirements of (1) and (2).
  • the (meth) acrylic resin contains at least a structural unit derived from the first copolymerized monomer and, if necessary, a structural unit derived from the second copolymerized monomer
  • the total content of these structural units Is preferably 50 to 90% by mass, more preferably more than 50% by mass and 80% by mass or less, based on 100% by mass of the total of all the structural units constituting the (meth) acrylic resin.
  • the monomer composition of the (meth) acrylic resin can be specified by 1 H-NMR. Then, the molecular weight ratio of the copolymer monomer having the highest molecular weight, among the specified copolymer monomers, specifies the copolymer monomer having the maximum molecular weight calculated from the formula weight; the molecular weight of the specified copolymer monomer, It can be determined by calculating the ratio of the methyl methacrylate to the molecular weight.
  • the weight average molecular weight Mw of the (meth) acrylic resin is preferably, for example, 500,000 to 3,000,000, and is 1,000,000 to 2,000,000 from the viewpoint that the surface roughness Ra of the obtained film can be more easily increased. Is more preferable.
  • the weight average molecular weight Mw of the (meth) acrylic resin is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film formability is not easily impaired.
  • the weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • Rubber Particles may have a function of forming irregularities on the surface and imparting slipperiness to the film while imparting flexibility and toughness to the film.
  • Rubber particles are particles containing a rubbery polymer.
  • the rubber particles have a graft portion containing a rubbery polymer (crosslinked polymer), that is, a core portion made of a rubbery polymer (crosslinked polymer), and a shell portion covering the core portion. It is preferably a core-shell type rubber particle.
  • the rubber-like polymer preferably has a glass transition temperature (Tg) of -10 ° C or lower.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the rubbery polymer is more preferably -15 ° C or lower, and further preferably -20 ° C or lower.
  • the glass transition temperature (Tg) of the rubbery polymer is measured by the same method as described above.
  • the glass transition temperature (Tg) of the rubbery polymer can be adjusted by, for example, the monomer composition. In order to lower the glass transition temperature (Tg) of the rubber-like polymer, as described later, for example, the carbon number of the alkyl group in the monomer mixture (a ′) constituting the acrylic rubber-like polymer (a) is reduced. It is preferable to increase the mass ratio of the total of 4 or more acrylates / copolymerizable monomers (preferably methyl methacrylate) (for example, 3 or more, preferably 4 or more and 10 or less).
  • the rubbery polymer is not particularly limited as long as the glass transition temperature is within the above range, and examples thereof include a butadiene-based crosslinked polymer, a (meth) acrylic crosslinked polymer, and an organosiloxane-based polymer.
  • Crosslinked polymers are included.
  • the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic rubbery polymer) is preferable. Is more preferred.
  • the rubber particles are a core-shell having an acrylic graft copolymer containing an acrylic rubbery polymer (a), that is, a core part containing an acrylic rubbery polymer (a), and a shell part covering the core part.
  • the particles are of the type.
  • the core-shell type particles are a multi-stage polymer (or multilayer) obtained by polymerizing at least one or more stages of a monomer mixture (b) containing a methacrylic acid ester as a main component in the presence of an acrylic rubber-like polymer (a). Structural polymer).
  • the polymerization can be performed by an emulsion polymerization method.
  • the acrylic rubbery polymer (a) is a crosslinked polymer containing an acrylate ester as a main component.
  • the acrylic rubbery polymer (a) is a monomer mixture (a ′) containing 50 to 100% by mass of an acrylate ester and 50 to 0% by mass of another monomer copolymerizable therewith; It is a crosslinked polymer obtained by polymerizing 0.05 to 10 parts by mass of a polyfunctional monomer having two or more non-conjugated reactive double bonds (based on 100 parts by mass of the monomer mixture (a ')).
  • the crosslinked polymer may be obtained by mixing all of these monomers and polymerizing them, or may be obtained by polymerizing two or more times by changing the monomer composition.
  • the acrylate constituting the acrylic rubbery polymer (a) is preferably an alkyl acrylate having 1 to 12 carbon atoms in an alkyl group such as methyl acrylate and butyl acrylate.
  • the acrylate may be one type or two or more types. From the viewpoint of reducing the glass transition temperature of the rubber particles to ⁇ 15 ° C. or lower, the acrylate preferably contains at least an alkyl acrylate having 4 to 10 carbon atoms.
  • the content of the acrylate is preferably from 50 to 100% by mass, more preferably from 60 to 99% by mass, and more preferably from 70 to 99% by mass, based on 100% by mass of the monomer mixture (a '). Is more preferable.
  • the content of the acrylate is 50% by weight or more, it is easy to impart sufficient toughness to the film.
  • an alkyl acrylate having an alkyl group having 4 or more carbon atoms is used in the monomer mixture (a ′).
  • the mass ratio of ester / other copolymerizable monomer (preferably methyl methacrylate) is preferably 3 or more, more preferably 4 or more and 10 or less.
  • copolymerizable monomers examples include methacrylates such as methyl methacrylate; styrenes such as styrene and methylstyrene; and unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinyl benzene, ethylene glycol di (meth) acrylate, diethylene glycol (meth) Acrylates, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetromethylol methanetetra (meth) acrylate, dipropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate are included.
  • the content of the polyfunctional monomer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on 100% by mass of the total of the monomer mixture (a ').
  • the content of the polyfunctional monomer is 0.05% by mass or more, the degree of crosslinking of the obtained acrylic rubbery polymer (a) is easily increased, so that the hardness and rigidity of the obtained film are not excessively impaired.
  • the content is 10% by mass or less, the toughness of the film is not easily impaired.
  • the monomer mixture (b) is a graft component for the acrylic rubbery polymer (a) and forms a shell part.
  • the monomer mixture (b) preferably contains a methacrylate ester as a main component.
  • the methacrylate constituting the monomer mixture (b) is preferably an alkyl methacrylate having 1 to 12 carbon atoms in an alkyl group such as methyl methacrylate.
  • the methacrylic acid ester may be one kind or two or more kinds.
  • the content of the methacrylic acid ester is preferably 50% by mass or more based on 100% by mass of the monomer mixture (b).
  • the content of the methacrylic acid ester is 50% by mass or more, the hardness and rigidity of the obtained film may be hardly reduced.
  • the monomer mixture (b) may further contain another monomer as necessary.
  • examples of other monomers include acrylates such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenoxy (meth) acrylate (Meth) acrylic monomers having an alicyclic structure such as ethyl, a heterocyclic structure or an aromatic group (cyclic structure-containing (meth) acrylic monomers) are included.
  • acrylic graft copolymer examples include 5 to 90 parts by mass (preferably 5 to 75 parts by mass) of an acrylic rubbery polymer as the (meth) acrylic rubbery polymer (a). (Parts by mass) in the presence of 95 to 25 parts by mass of a monomer mixture (b) containing a methacrylate ester as a main component in at least one stage.
  • the acrylic graft copolymer may further include a hard polymer inside the acrylic rubbery polymer (a), if necessary.
  • Such an acrylic graft copolymer can be obtained through the following polymerization steps (I) to (III).
  • a monomer mixture (c1) comprising 40 to 100% by mass of a methacrylic acid ester and 60 to 0% by mass of another monomer copolymerizable therewith, and 0.01 to 10 parts by mass of a polyfunctional monomer (monomer mixture)
  • Methacrylate A monomer mixture (b1) consisting of 60 to 100% by mass and 40 to 0% by mass of another monomer copolymerizable therewith;
  • the acrylic graft copolymer may be further obtained through the polymerization step (IV).
  • a monomer mixture (b2) consisting of 40 to 100% by mass of a methacrylate, 0 to 60% by mass of an acrylate, and 0 to 5% by mass of another copolymerizable monomer, and 0 to 10 of a polyfunctional monomer
  • a hard polymer is obtained by polymerizing parts by mass (based on 100 parts by mass of the monomer mixture (b2)).
  • the soft layer can impart shock absorption to the optical film.
  • the soft layer include a layer made of an acrylic rubbery polymer (a) containing an acrylate ester as a main component.
  • the hard layer makes it difficult for the toughness of the optical film to be impaired, and can suppress coarsening and agglomeration of the rubber particles during production.
  • the hard layer include a layer made of a polymer containing a methacrylate ester as a main component.
  • the graft ratio of the (meth) acrylic graft copolymer is preferably from 10 to 250%, more preferably from 40 to 230%, even more preferably from 60 to 220%.
  • the graft ratio is 10% or more, the (meth) acrylic graft copolymer hardly agglomerates during the production of the film, and the resulting film may be less transparent or less susceptible to foreign matter. Further, the elongation at the time of tensile break is hard to decrease, and the burr tends to hardly occur at the time of cutting the film.
  • it is 250% or less, the melt viscosity at the time of molding, for example, at the time of film formation is not easily increased, and the moldability of the film tends to be hardly reduced. The calculation formula will be described below.
  • the graft ratio of the (meth) acrylic graft copolymer is a mass ratio of the monomer mixture (b) as a graft component to the (meth) acrylic rubbery polymer (a) and is measured by the following method. You.
  • the average particle diameter of the rubber particles is preferably from 100 to 400 nm, more preferably from 150 to 300 nm.
  • the average particle diameter is 100 nm or more, sufficient toughness is easily imparted to the film, and when it is 400 nm or less, the transparency of the film is not easily reduced.
  • the average particle diameter of the rubber particles (acrylic graft copolymer) is specified as the average value of the circle equivalent diameter of 100 particles obtained by SEM photograph or TEM photograph of the film surface and the section.
  • the equivalent circle diameter can be obtained by converting the projected area of a particle obtained by imaging into the diameter of a circle having the same area.
  • rubber particles (acrylic graft copolymer) observed by SEM observation and / or TEM observation at a magnification of 5000 are used for calculating the average particle diameter.
  • the average particle size of the rubber particles (acrylic graft copolymer) in the dispersion can be measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the content of the rubber particles is preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and can be 5 to 10% by mass based on the (meth) acrylic resin.
  • the content of the rubber particles is 5% by mass or more, not only can the (meth) acrylic resin film be easily imparted with sufficient flexibility and toughness, but also unevenness can be formed on the surface to impart slipperiness.
  • the content of the rubber particles is 20% by mass or less, the haze does not increase too much.
  • by using a specific (meth) acrylic resin it is easy to form irregularities on the surface of the film, so that the content of rubber particles can be reduced as compared with the conventional case.
  • Organic Fine Particles have a function of imparting a slipperiness to a (meth) acrylic resin film.
  • the organic fine particles easily form gaps between the resin molecules during the dope drying in the solution casting method, the resin particles and the rubber particles are easily moved to the surface of the film-like material, and the surface of the film-like material is easily removed. In this case, irregularities due to resin protrusions and rubber particles can be more easily formed.
  • Organic fine particles are particles having a glass transition temperature of 80 ° C. or higher.
  • the glass transition temperature is measured in the same manner as described above.
  • the resin constituting the organic fine particles may be any resin having a glass transition temperature (Tg) within the above range, and examples thereof include (meth) acrylates, itaconic diesters, maleic diesters, Derived from one or more selected from the group consisting of vinyl esters, olefins, styrenes, (meth) acrylamides, allyl compounds, vinyl ethers, vinyl ketones, unsaturated nitriles, unsaturated carboxylic acids, and polyfunctional monomers.
  • Polymer a silicone-based resin, a fluorine-based resin, polyphenylene sulfide, and the like.
  • the (meth) acrylic esters, olefins, styrenes, (meth) acrylamides, unsaturated nitriles, unsaturated carboxylic acids and polyfunctional monomers constituting the polymer are the above-mentioned (meth) acrylic resin and The same ones as the monomers constituting the acrylic rubbery polymer (a) can be used.
  • itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dipropyl itaconate.
  • maleic diesters include dimethyl maleate, diethyl maleate, and dipropyl maleate.
  • Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxy acetate, vinyl phenyl acetate, vinyl benzoate, and vinyl salicylate. It is.
  • Examples of allyl compounds include allyl acetate, allyl caproate, allyl laurate, allyl benzoate and the like.
  • Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethylaminoethyl vinyl ether, and the like.
  • Examples of vinyl ketones include methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone, and the like.
  • (meth) acrylates vinyl esters, styrene, etc., from the viewpoint of high affinity with (meth) acrylic resin, flexibility with respect to stress, and easy adjustment of the glass transition temperature to the above range.
  • a copolymer containing a structural unit derived from at least one selected from the group consisting of olefins and a structural unit derived from a polyfunctional monomer is preferable, and a structural unit derived from (meth) acrylates is preferred.
  • a copolymer containing a structural unit derived from a polyfunctional monomer is more preferable, and a structural unit derived from a (meth) acrylate, a structural unit derived from styrene, and a copolymer derived from a polyfunctional monomer are more preferable.
  • a copolymer containing a structural unit is more preferred.
  • organic fine particles made of a copolymer containing a structural unit derived from styrenes can reduce the difference in refractive index from (meth) acrylic resin.
  • the content of the structural unit derived from the polyfunctional monomer in the organic fine particles is generally higher than the content of the structural unit derived from the polyfunctional monomer in the rubber particles.
  • the content of the structural unit derived from the polyfunctional monomer is, for example, 50 to 500 mass% with respect to the total 100 mass% of the structural units derived from the monomers other than the polyfunctional monomer constituting the copolymer. %.
  • ⁇ Particles (polymer particles) composed of such a polymer can be produced by any method, for example, a method such as emulsion polymerization, suspension polymerization, dispersion polymerization, or seed polymerization. Among them, from the viewpoint of easily obtaining polymer particles having a uniform particle diameter, seed polymerization or emulsion polymerization in an aqueous medium is preferred.
  • a method for producing polymer particles for example, A one-stage polymerization method in which the monomer mixture is dispersed in an aqueous medium and then polymerized; A two-stage polymerization method in which the seed particles are obtained by polymerizing the monomer in an aqueous medium, the monomer mixture is absorbed by the seed particles, and then polymerized; -A multi-stage polymerization method in which a step of producing seed particles in a two-stage polymerization method is repeated.
  • These polymerization methods can be appropriately selected depending on the desired average particle size of the polymer particles.
  • the monomer for producing the seed particles is not particularly limited, and any monomer for polymer particles can be used.
  • the organic fine particles may be core-shell type particles.
  • Such organic fine particles may be, for example, particles having a low Tg core portion containing a homopolymer or a copolymer of a (meth) acrylate and a high Tg shell portion.
  • the absolute value ⁇ n of the refractive index difference between the organic fine particles and the (meth) acrylic resin is preferably 0.1 or less, and 0.085 or less, from the viewpoint of highly suppressing the haze increase of the obtained film. Is more preferable, and the value is more preferably 0.065 or less.
  • the average particle diameter of the organic fine particles is preferably from 0.04 to 2 ⁇ m, more preferably from 0.08 to 1 ⁇ m.
  • the average particle diameter of the organic fine particles is 0.04 ⁇ m or more, sufficient lubricity is easily imparted to the obtained film.
  • the average particle diameter of the organic fine particles is 2 ⁇ m or less, it is easy to suppress an increase in haze.
  • the average particle diameter of the organic fine particles can be measured by the same method as the average particle diameter of the rubber particles.
  • the average particle size of the organic fine particles means the average size of the aggregates (average secondary particle size) if the particles are cohesive, and the average of the sizes of one particle if the particles are non-aggregate. Mean value.
  • the content of the organic fine particles is preferably from 0.03 to 1.0% by mass, more preferably from 0.05 to 0.6% by mass, and more preferably from 0.08 to 1.0% by mass, based on the (meth) acrylic resin. More preferably, it is 0.5% by mass.
  • the content of the organic fine particles is 0.03% by mass or more, sufficient slip property is easily imparted to the (meth) acrylic resin film, and when the content is 1.0% by mass or less, an increase in haze is easily suppressed. .
  • by using a specific (meth) acrylic resin it is easy to form irregularities on the surface of the film, so that the content of the organic fine particles can be reduced as compared with the conventional case.
  • the (meth) acrylic resin film of the present invention is produced by a solution casting method as described later, it may contain a residual solvent derived from a dope used in the solution casting method.
  • the residual solvent amount is preferably 700 ppm or less, more preferably 30 to 700 ppm, based on the (meth) acrylic resin film.
  • the content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the later-described (meth) acrylic resin film production process.
  • the content of the residual solvent in the (meth) acrylic resin film can be measured by head space gas chromatography.
  • a sample is sealed in a container, heated, the gas in the container is quickly injected into the gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound. This is to determine volatile components while performing.
  • mass spectrometry is performed to identify volatile components while performing.
  • the (meth) acrylic resin film may be composed of a single layer (single layer) or may be composed of a plurality of layers. It is preferably a single layer.
  • the amount of warpage expressed as the curvature of warpage when the (meth) acrylic resin film is immersed in water at 50 ° C. for 90 minutes is 2 to 15 (1 / m).
  • the warpage of the (meth) acrylic resin film is 2 (1 / m) or more, there is an appropriate density difference between one surface and the other surface of the film, and is 15 (1 / m) or less.
  • the warpage of the (meth) acrylic resin film is more preferably 6 to 10 (1 / m).
  • the warp of the (meth) acrylic resin film occurs in the film forming process such that the surface corresponding to the air-side surface of the cast dope becomes concave.
  • the amount of warpage after immersion in water was determined by cutting a (meth) acrylic resin film into a size of 35 ⁇ 2 mm, immersing the film at 50 ° C. for 90 minutes, and then measuring the curvature of the film immediately after being pulled out of water at 23 ° C. The measurement is performed in a 55% RH environment, and the average value is obtained. This operation is performed three times, and the average value thereof is defined as “the amount of warpage after immersion in water”.
  • the amount of warpage of the (meth) acrylic resin film after immersion in water can be adjusted mainly by the method for producing the film, the molecular weight ratio and the content of the copolymerized monomer.
  • the film is manufactured by a solution casting method, and the molecular weight ratio of the copolymerized monomer is increased, or the content of the copolymerized monomer having the higher molecular weight ratio is reduced It is preferable to increase the number.
  • the ratio (XRR) of the film density of one surface (side A; surface which is air side during dope casting) of the (meth) acrylic resin film and the other side (surface B; surface which is side of the support at the time of dope casting) (Ratio: A side / B side) is preferably less than 1, more preferably from 0.85 to 0.99, and even more preferably from 0.85 to 0.94.
  • the film density on the surface of the (meth) acrylic resin film can be measured using an X-ray reflectivity method (XRR method). That is, a (meth) acrylic resin film is cut into a size of 30 mm ⁇ 40 mm, fixed to a sample holder, and can be measured under the following measurement conditions.
  • XRR method X-ray reflectivity method
  • the XRR ratio of the (meth) acrylic resin film can be adjusted mainly by the molecular weight ratio and content of the copolymerized monomer.
  • the surface roughness Ra of the (meth) acrylic resin film is preferably 3 to 8 nm.
  • the surface roughness Ra of the (meth) acrylic resin film is 3 nm or more, a sufficient antiblocking property (slidability) is easily imparted to the obtained film. In addition, it is easy to suppress a decrease in the winding shape (load collapse) due to excessive slip.
  • the surface roughness Ra of the (meth) acrylic resin film is more preferably 5 to 8 nm.
  • the surface roughness Ra can be measured using a surface roughness measuring device HD3300 manufactured by WYKO in accordance with JIS B 0601-2001.
  • the surface roughness Ra of the (meth) acrylic resin film can be adjusted by, for example, the molecular weight ratio and content of the copolymerized monomer, the Tg of the (meth) acrylic resin, and the like.
  • the molecular weight ratio of the copolymerized monomer is increased, the content of the copolymerized monomer having a large molecular weight ratio is increased, or the Tg of the (meth) acrylic resin is increased. Is preferable.
  • the (meth) acrylic resin film has high transparency from the viewpoint of use as an optical film.
  • the haze of the (meth) acrylic resin film is preferably 4.0% or less, more preferably 2.0% or less, and even more preferably 1.0% or less.
  • the haze can be measured on a sample of 40 mm ⁇ 80 nm at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Machine) in accordance with JIS K-6714.
  • the in-plane retardation Ro measured in an environment of a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. And more preferably 0 to 5 nm.
  • the retardation Rt in the thickness direction of the (meth) acrylic resin film is preferably from -20 to 20 nm, and more preferably from -10 to 10 nm.
  • Ro and Rt are each defined by the following formula.
  • Formula (2a): Ro (nx ⁇ ny) ⁇ d
  • Formula (2b): Rt ((nx + ny) / 2 ⁇ nz) ⁇ d (Where nx represents the refractive index in the in-plane slow axis direction of the film (the direction in which the refractive index is maximized), ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the film, nz represents the refractive index in the thickness direction of the film, d represents the thickness (nm) of the film. )
  • the in-plane slow axis of the (meth) acrylic resin film refers to an axis at which the refractive index is maximized on the film surface.
  • the in-plane slow axis of the (meth) acrylic resin film can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following method. 1) A (meth) acrylic resin film is conditioned for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt at a measurement wavelength of 550 nm of the film after humidity control were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure in the environment.
  • phase differences Ro and Rt of the (meth) acrylic resin film can be adjusted depending on, for example, the type of the resin. In order to reduce the phase difference Ro and Rt of the (meth) acrylic resin film, it is preferable to use a (meth) acrylic resin that hardly develops a phase difference by stretching.
  • the thickness of the (meth) acrylic resin film may be, for example, 5 to 100 ⁇ m, preferably 5 to 40 ⁇ m.
  • the (meth) acrylic resin film of the present invention is produced by a solution casting method (cast method). That is, the (meth) acrylic resin film of the present invention comprises: 1) a step of obtaining a dope containing at least the above (meth) acrylic resin, rubber particles, and a solvent; It can be produced through a step of casting on a body, drying and peeling, and a step 3) of stretching the obtained film-like substance while drying it if necessary.
  • Step 1) The above-mentioned (meth) acrylic resin and rubber particles are dissolved or dispersed in a solvent to prepare a dope.
  • the solvent used for the dope contains at least an organic solvent (good solvent) that can dissolve the (meth) acrylic resin.
  • good solvents include chlorinated organic solvents such as methylene chloride and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Among them, methylene chloride is preferred.
  • the solvent used for the dope may further contain a poor solvent.
  • the poor solvent include a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the film-like material is apt to gel, and is easily peeled from the metal support.
  • the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its stability, the boiling point is relatively low, and the drying property is good.
  • the dope may be prepared by directly adding the (meth) acrylic resin and the rubber particles to the above-mentioned solvent and mixing them, or by dissolving the (meth) acrylic resin in the above-mentioned solvent.
  • a resin solution and a fine particle dispersion in which rubber particles and, if necessary, organic fine particles are dispersed in the above-described solvent may be prepared in advance, and these may be mixed and prepared.
  • the method for adding the organic fine particles is not particularly limited, and the organic fine particles may be individually added to the solvent, or may be added to the solvent as an aggregate of the organic fine particles.
  • the aggregate of organic fine particles is composed of an aggregate of a plurality of organic fine particles in which mutual connection (fusion) is suppressed. Therefore, when the aggregate of organic fine particles is dispersed in a (meth) acrylic resin or a solvent, the particles are easily separated into organic fine particles, so that the dispersibility of the organic fine particles can be improved.
  • the aggregate of organic fine particles can be obtained, for example, by spray-drying a slurry containing organic fine particles and inorganic powder.
  • Step 2) The obtained dope is cast on a metal support.
  • the dope can be cast by discharging it from a casting die.
  • the solvent in the dope cast on the metal support is evaporated and dried.
  • the dried dope is separated from the metal support to obtain a film.
  • the amount of residual solvent of the dope when peeled from the metal support (the amount of residual solvent at the time of peeling) is from 10 to 150 mass in terms of facilitating reduction of the phase difference Ro and Rt of the obtained (meth) acrylic resin film. %, More preferably 20 to 40% by mass.
  • the amount of the residual solvent at the time of peeling is 10% by mass or more, the (meth) acrylic resin easily flows and becomes non-oriented during drying or stretching, and thus the Ro or Rt of the obtained (meth) acrylic resin film is obtained. Is easy to reduce. If the amount of the residual solvent at the time of peeling is 150% by mass or less, the force required for peeling the dope is unlikely to be excessively large, so that breakage of the dope is easily suppressed.
  • Step 3) The obtained film is stretched while being dried. Stretching may be performed so as to conform to required optical characteristics, and is preferably performed in at least one direction, and is performed in two directions orthogonal to each other (for example, the width direction (TD direction) of the film-like material, and Biaxial stretching in the orthogonal transport direction (MD direction) may be performed.
  • Stretching may be performed so as to conform to required optical characteristics, and is preferably performed in at least one direction, and is performed in two directions orthogonal to each other (for example, the width direction (TD direction) of the film-like material, and Biaxial stretching in the orthogonal transport direction (MD direction) may be performed.
  • the stretching ratio can be 1.01 to 2.0 times from the viewpoint of using a (meth) acrylic resin film as a retardation film for IPS, for example.
  • the stretching ratio is defined as (size in the stretching direction of the film after stretching) / (size in the stretching direction of the film before stretching).
  • the stretching ratio is preferably set in each of the TD direction and the MD direction.
  • the stretching temperature is preferably (Tg ⁇ 65) ° C. to (Tg + 60) ° C., and is preferably (Tg ⁇ 50) ° C. to (Tg + 50) ° C., where Tg is the glass transition temperature of the (meth) acrylic resin.
  • the temperature is more preferably (Tg ⁇ 30) ° C. to (Tg + 50) ° C.
  • the stretching temperature is (Tg-30) ° C. or higher, not only is it easy to make the film-like material suitable for stretching, but also the tension applied to the film-like material at the time of stretching does not become too large, so that the obtained (meth) Excess residual stress hardly remains in the acrylic resin film, and Ro and Rt hardly increase excessively.
  • the stretching temperature is (Tg + 60) ° C. or lower, an appropriate residual stress is likely to remain in the (meth) acrylic resin film after stretching, and the generation of bubbles due to the vaporization of the solvent in the film is easily suppressed to a high degree.
  • the stretching temperature may be, specifically, 100 to 220 ° C.
  • the stretching temperature is as follows: (a) in the case of drying by a non-contact heating type such as a tenter stretching machine, etc .;
  • the temperature can be measured as any one of the temperature of the contact heating section and the surface temperature of the film-like material (the surface to be dried).
  • a non-contact heating type such as (a) a tenter stretching machine
  • it is preferable to measure an ambient temperature such as a temperature in the stretching machine or a hot air temperature.
  • the amount of residual solvent in the film at the start of stretching is preferably 2 to 50% by mass. If the amount of the residual solvent at the start of stretching is 2% by mass or more, the substantial Tg of the film at the time of stretching is reduced due to the plasticizing effect of the residual solvent. Rt is unlikely to increase. When the amount of the residual solvent at the start of stretching is 50% by mass or less, generation of bubbles due to vaporization of the solvent in the film can be highly suppressed.
  • the stretching of the film in the MD direction can be performed, for example, by a method (roll method) in which a plurality of rolls are provided with a difference in peripheral speed, and the difference in roll peripheral speed is used therebetween.
  • the stretching of the film in the TD direction can be performed, for example, by a method (tenter method) in which both ends of the film are fixed with clips or pins and the interval between the clips or pins is widened in the traveling direction.
  • the obtained film is further dried if necessary, and then wound into a roll, for example.
  • the (meth) acrylic resin film of the present invention has good anti-blocking properties (slip properties). For this reason, the film is excellent in transportability when transported by a roll, and can prevent sticking of films to each other when wound up in a roll shape. Therefore, scratches and the like are not easily formed on the surface of the obtained film.
  • the obtained (meth) acrylic resin film is preferably used as an optical film such as a polarizing plate protective film (including a retardation film) in various display devices such as a liquid crystal display and an organic EL display.
  • an optical film such as a polarizing plate protective film (including a retardation film) in various display devices such as a liquid crystal display and an organic EL display.
  • the polarizing plate of the present invention includes a polarizer and the optical film of the present invention.
  • the optical film of the present invention is the (meth) acrylic resin film of the present invention.
  • the optical film of the present invention can be disposed on at least one surface (at least the surface facing the liquid crystal cell) of the polarizer via an adhesive layer.
  • Polarizer A polarizer is an element that transmits only light having a polarization plane in a certain direction, and is a polyvinyl alcohol-based polarizing film.
  • Polyvinyl alcohol-based polarizing films include those obtained by dyeing a polyvinyl alcohol-based film with iodine and those obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching the polyvinyl alcohol-based film and then dyeing the film with iodine or a dichroic dye (preferably a film further subjected to a durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of the polarizer is usually parallel to the maximum stretching direction.
  • ethylene content 1 to 4 mol%, polymerization degree of 2000 to 4000 and saponification degree of 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol is used.
  • the thickness of the polarizer is preferably from 5 to 30 ⁇ m, and more preferably from 5 to 20 ⁇ m in order to reduce the thickness of the polarizing plate.
  • optical film of the present invention is disposed on only one surface of the polarizer
  • another optical film may be disposed on the other surface of the polarizer.
  • other optical films include commercially available cellulose ester films (e.g., Konica Minoltack KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6U, KCUEK KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd., Fujitac T40UZ, Fujitack T80UZ, Fujitack T80UZD, Fujitack T60UZD Fujifilm Corporation) and the like.
  • the polarizing plate of the present invention can be obtained by bonding a polarizer and the (meth) acrylic resin film of the present invention via an adhesive.
  • the adhesive may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive may be any of a photo-radical polymerization type composition using photo-radical polymerization, a photo-cation polymerization type composition using photo-cation polymerization, or a combination thereof.
  • the liquid crystal display device of the present invention includes a liquid crystal cell, a first polarizer disposed on one surface of the liquid crystal cell, and a second polarizer disposed on the other surface of the liquid crystal cell.
  • One or both of the first and second polarizing plates are the polarizing plates of the present invention.
  • the display mode of the liquid crystal cell is, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybrid aligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), and the like.
  • STN Super-Twisted Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • HAN Hybrid aligned Nematic
  • VA Very Alignment
  • MVA Multi-domain Vertical Alignment
  • PVA Parallel-Plane-Switching
  • the VA (MVA, PVA) mode and the IPS mode are preferable.
  • the first polarizing plate is disposed on one surface (viewing surface) of the liquid crystal cell and on the surface (viewing surface) of the first polarizer opposite to the liquid crystal cell. And a protective film (F2) disposed on the liquid crystal cell side surface of the first polarizer.
  • the absorption axis of the first polarizer and the absorption axis of the second polarizer are orthogonal (crossed Nicols).
  • At least one of the protective films F1, F2, F3 and F4, preferably the protective film F2 or F3 may be the (meth) acrylic resin film of the present invention.
  • the glass transition temperatures (Tg) and weight average molecular weights (Mw) of (meth) acrylic resins 1 to 15 and 2 ′ were measured by the following methods.
  • Glass transition temperature (Tg) The glass transition temperature of the (meth) acrylic resin was measured according to JIS K 7121-2012 by using DSC (Differential Scanning Colorimetry).
  • the weight average molecular weight (Mw) of the (meth) acrylic resin was measured using gel permeation chromatography (manufactured by Tosoh Corporation, HLC8220GPC) and column (manufactured by Tosoh Corporation, TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). . 20 mg ⁇ 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered with a 0.45 mm filter. 100 ml of this solution was injected into a column (at a temperature of 40 ° C.), measured at a detector RI temperature of 40 ° C., and the value converted into styrene was used.
  • Acrylic rubber particles M-210 (core part: acrylic rubber-like polymer having a multilayer structure (Tg: about -10 ° C.), shell part: methacrylic ester based on methyl methacrylate as a main component) (Polymer, core-shell type rubber particles, average particle diameter: 220 nm)
  • the emulsion containing the seed particles 6060 g was added to the obtained dispersion, and the mixture was stirred at 30 ° C. for 1 hour to allow the seed particles to absorb the monomer mixture.
  • the absorbed monomer mixture is heated and polymerized at 50 ° C. for 5 hours under a nitrogen stream, and then cooled to room temperature (about 25 ° C.) to obtain a slurry of polymer fine particles (organic fine particles). Obtained.
  • the average particle diameter of the obtained organic fine particles 1 was 0.14 ⁇ m, and the glass transition temperature (Tg) was 280 ° C.
  • the dispersed particle size of the fine particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the average particle size of the organic fine particles measured using a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.) is determined by observing the (meth) acrylic resin film with a TEM. It is almost the same as the average particle size.
  • a dope having the following composition was prepared. First, methylene chloride and ethanol were added to a pressure dissolution tank. Next, the (meth) acrylic resin 1 was charged into the pressure dissolution tank with stirring. Next, the fine particle dispersion prepared above was charged, heated to 60 ° C., and completely dissolved with stirring. The heating temperature was increased from room temperature at 5 ° C./min, dissolved for 30 minutes, and then decreased at 3 ° C./min. After the obtained solution was filtered, a dope was obtained.
  • the dope was uniformly cast on a stainless steel belt support at a temperature of 31 ° C. and a width of 1800 mm.
  • the temperature of the stainless steel belt was controlled at 28 ° C.
  • the conveying speed of the stainless steel belt was 20 m / min.
  • the solvent was evaporated on a stainless steel belt support until the amount of residual solvent in the cast film became 30%.
  • the film was peeled off from the stainless steel belt support at a peeling tension of 128 N / m. While the peeled film was transported by a number of rolls, the obtained film was stretched 1.2 times in the width direction with a tenter at (Tg-15) ° C. (128 ° C. in this example). Thereafter, the film was further dried while being conveyed by a roll, and the end portion sandwiched between tenter clips was slit and wound with a laser cutter to obtain a (meth) acrylic resin film having a thickness of 40 ⁇ m.
  • Examples 2 to 9, Comparative Examples 1 to 7 A (meth) acrylic resin film was obtained in the same manner as in Example 1, except that the organic fine particles were not blended and the type of the (meth) acrylic resin was changed as shown in Table 2.
  • the amount of methylene chloride was set to 623 parts by mass instead of not adding the organic fine particle dispersion to the dope.
  • Example 10 A (meth) acrylic resin film was obtained in the same manner as in Example 2 except that the compounding amount of the rubber particles was changed as shown in Table 2. The amount of methylene chloride was set to 623 parts by mass instead of not adding the organic fine particle dispersion to the dope.
  • the obtained (meth) acrylic resin film was cut into a rectangle of 35 mm x 2 mm to obtain a sample piece. After the obtained sample piece was immersed in water at 50 ° C. for 90 minutes, the curvature of the warp of the sample piece immediately after being pulled out of the water was measured at 23 ° C. and 55% RH, and the average value thereof was obtained. This operation was performed three times, and the average value thereof was defined as “the amount of warpage after immersion in water”.
  • Warpage after water immersion is more than 15 (1 / m) 4: Warpage after water immersion is more than 10 (1 / m) 15 (1 / m) or less 3: Warpage after water immersion More than 5 (1 / m) and 10 (1 / m) or less 2: Warpage after water immersion is more than 1 (1 / m) 5 (1 / m) or less 1: Warpage after water immersion is 1 ( 1 / m) or less 2 to 4, it was judged to be good.
  • the density of one surface (A surface; surface on the air side at the time of dope casting) and the other surface (B surface: the surface of the support at the time of dope casting) of the obtained (meth) acrylic resin film was measured by X-ray. It measured using the reflectance method (XRR method). That is, a (meth) acrylic resin film was cut out and fixed to a sample holder, and X-ray reflectivity measurements were performed on the A side (air side) and the B side (support side) of the sample under the following measurement conditions.
  • X-ray diffractometer (Rigaku Corporation ATX-G) ⁇ Sample size: 30mm x 30mm -Incident X-ray wavelength: 1.540540 ⁇ Measurement range ( ⁇ ): 0-6 ° In the film of Reference Example 1, one arbitrary surface was designated as A surface, and the other surface was designated as B surface.
  • XRR ratio (A side / B side) between the A side (air side) and the B side (support side) was calculated and evaluated according to the following criteria.
  • XRR ratio (A surface / B surface) is less than 0.85 XRR ratio (A surface / B surface) is 0.85 or more and less than 0.90
  • XRR ratio (A surface / B surface) is 0.90 or more and less than 0.95
  • XRR ratio (A surface / B surface) is 0.95 or more and less than 1
  • XRR ratio (A surface / B surface) is 1 or more
  • the MIT flexibility of the obtained (meth) acrylic resin film was measured using a bending resistance tester (MIT, Model BE-201, bending radius of curvature 0.38 mm, manufactured by Tester Sangyo Co., Ltd.). Specifically, a (meth) acrylic resin film having a width of 15 mm and a length of 150 mm, which was allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% RH for 1 hour or more, was used as a test piece. Under the conditions, the measurement was carried out in accordance with JIS P8115: 2001, and the number of times until breakage was evaluated according to the following evaluation criteria.
  • the surface roughness Ra of the obtained (meth) acrylic resin film was measured using a surface roughness measuring device HD3300 manufactured by WYKO. Then, the surface roughness Ra of the (meth) acrylic resin film was evaluated according to the following criteria. ⁇ : Surface roughness Ra of 5 nm or more and 8 nm or less ⁇ : Surface roughness Ra of 3 nm or more and less than 5 nm ⁇ : Surface roughness Ra of less than 3 nm or more than 8 nm ⁇ or more was judged to be good.
  • Table 2 shows the evaluation results of the (meth) acrylic resin films obtained in Examples 1 to 10, Comparative Examples 1 to 7 and Reference Example 1.
  • the (meth) acrylic resin films of Examples 1 to 10 containing the (meth) acrylic resin satisfying the range of the molecular weight ratio of (1) and the range of Tg of (2). Have an appropriate amount of warpage after immersion in water. Further, it can be seen that the (meth) acrylic resin films of Examples 1 to 10 all have a moderately high surface roughness Ra and good anti-blocking properties. In addition, all the films had good transparency (haze according to JIS K-6714 was less than 1%).
  • the (meth) acrylic resin films of Comparative Examples 1 to 7 containing (meth) acrylic resins that do not satisfy at least one of the range of the molecular weight ratio of (1) and the range of Tg of (2) are It can be seen that both have low antiblocking properties.
  • the (meth) acrylic resin film of Reference Example 1 obtained by the melt casting method has an XRR ratio of 1 and is immersed in water. It can be seen that the amount of warpage afterward is as low as 1 (1 / m). Further, it is understood that the bending resistance is low.
  • a (meth) acrylic resin 3 'having the same composition as that of the (meth) acrylic resin 3 and having a weight average molecular weight of 780,000 was further prepared, and was prepared in the same manner as in Example 3 except that it was used.
  • An acrylic resin film was obtained.
  • the surface roughness Ra and antiblocking property of the obtained film were measured by the same methods as described above. As a result, the surface roughness Ra of the obtained film was 3.87 nm, which was lower than the surface roughness Ra (5.98 nm) of the film of Example 3.
  • the anti-blocking property of the obtained film was ⁇ , which was lower than the anti-blocking property ( ⁇ ) of the film of Example 3.
  • the higher the molecular weight of the (meth) acrylic resin the easier it is to form unevenness having a moderately high hardness on the surface of the film-like material at the time of film formation, and it is easy to increase the surface roughness Ra of the obtained film. This indicates that the anti-blocking property can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)
  • Moulding By Coating Moulds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明の(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂と、ゴム粒子とを含む。(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位と、それと共重合可能なメタクリル酸メチル以外の共重合モノマーに由来する構造単位とを含み、かつ(1)前記共重合モノマーのうち分子量が最大の共重合モノマーの前記メタクリル酸メチルに対する分子量比が0.5~2.5であり、(2)Tgが115~160℃である。(メタ)アクリル系樹脂フィルムの、50℃で90分間水に浸漬したときの反りの曲率として表される反り量は、2~15(1/m)である。

Description

(メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法
 本発明は、(メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法に関する。
 (メタ)アクリル系樹脂フィルムは、優れた透明性、耐候性、光沢および加工性を有するため、産業上、自動車内外装用部材、建材などの様々な分野で使用されている。近年では、アクリル系樹脂の優れた光学特性を生かして、例えば各種表示装置の光学フィルムとしても使用されている。
 光学フィルムは、最近の表示装置の大画面化により、1m以上、さらには1.4m以上と幅広のフィルムが必要とされている。また、生産性の向上のため、製造時のフィルム原反は、長尺化している。
 しかしながら、フィルム原反の幅が広くなり、長尺化すると、製造したフィルムを巻き取る工程などにおいて、フィルム同士がくっつきやすく、剥がれにくくなるブロッキングと呼ばれる問題が生じやすい(例えば特許文献1参照)。ブロッキングが起こると、フィルムの滑りが悪くなるため、巻き取り工程における品質不良が発生しやすいだけでなく、フィルム表面に傷などが付きやすくなる。
 また、巻き取ったフィルムを高温高湿下で保管する際に、フィルム同士の隙間に水分が入り込み、フィルム同士が貼りつく貼り付き故障と呼ばれる故障も発生しやすい。貼り付き故障が発生すると、ロール状に巻き取ったフィルムからの繰り出しが困難となり、フィルムの品質を低下させる原因となる。そこで、巻き形状の低下を抑制する観点から、光学フィルムの表面に滑り性を付与することが検討されている。
 光学フィルムの製造方法としては、通常、溶液流延方式と溶融押出し方式が知られている。(メタ)アクリル系樹脂フィルムは、一般的には、溶融押出し方式で製膜される。例えば、アクリル系樹脂と、2種類以上のゴム含有グラフト共重合体とを含む(メタ)アクリル系樹脂フィルムが知られている(例えば特許文献2参照)。それにより、優れた透明性と加工性を維持しつつ、アンチブロッキング性も有するフィルムが得られるとされている。
特開2009-229501号公報 特開2017-52920号公報
 しかしながら、特許文献2で示される(メタ)アクリル系樹脂フィルムを溶液流延方式で製膜した場合、得られるフィルムは、ゴム含有グラフト重合体を含むにも係わらず、十分なアンチブロック性(滑り性)を有しないことがわかった。そのため、溶液流延方式で製膜されるアクリル系樹脂フィルムであっても、新たに微粒子を含有させることなく、十分なアンチブロッキング性を付与できることが求められている。
 本発明は、上記事情に鑑みてなされたものであり、溶液流延方式で製膜されても、十分なアンチブロッキング性を有する(メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法を提供することを目的とする。
 上記課題は、以下の構成によって解決することができる。
 本発明の(メタ)アクリル系樹脂フィルムは、メタクリル酸メチルに由来する構造単位と、それと共重合可能な前記メタクリル酸メチル以外の共重合モノマーに由来する構造単位とを含み、かつ下記(1)および(2)を満たす(メタ)アクリル系樹脂と、
 (1)前記共重合モノマーのうち分子量が最大の共重合モノマーの、前記メタクリル酸メチルに対する分子量比が、0.5~2.5である
 (2)ガラス転移温度(Tg)が、115~160℃である
 ゴム粒子と、を含む(メタ)アクリル系樹脂フィルムであって、
 35mm×2mmの大きさに切り出して、50℃の水に90分間浸漬したときの反りの曲率として表される反り量は、2~15(1/m)である。
 本発明の光学フィルムは、本発明の(メタ)アクリル系樹脂フィルムからなる。
 本発明の(メタ)アクリル系樹脂フィルムの製造方法は、メタクリル酸メチルに由来する構造単位と、それと共重合可能な前記メタクリル酸メチル以外の共重合モノマーに由来する構造単位とを含み、かつ下記(1)および(2)を満たす(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含むドープを得る工程と、
 (1)前記共重合モノマーのうち分子量が最大の共重合モノマーの、前記メタクリル酸メチルに対する分子量比が0.5~2.5である
 (2)ガラス転移温度(Tg)が115~160℃である
 前記ドープを支持体上に流延し、乾燥および剥離する工程と、を含む。
 本発明によれば、溶液流延方式で製膜されても、十分な滑り性を有する(メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法を提供することができる。
 前述の通り、本発明者らの鋭意検討によれば、溶液流延方式で製造したフィルムにおいては、十分なアンチブロック性が得られないことがわかった。
 その理由は明らかではないが、以下のように推測される。溶液流延方式では、ドープ中の溶媒を揮発させて膜状物を得る。その際、共重合モノマーの分子量が小さいと、樹脂分子同士の隙間が小さいため、溶媒が抜けにくいだけでなく、ゴム粒子との流動速度の差などにより樹脂が膜状物の表面に移動しにくいため、膜状物の表面に樹脂による突起物(凹凸)が形成されにくい。また、膜状物の表面に樹脂による突起物(凹凸)を形成できたとしても、樹脂のTgが低いと、流延時の溶媒を含む膜状物の硬化速度が遅いため、形成した凹凸が硬化する前に崩れやすく、消失しやすい。それにより、得られるフィルムは、表面に凹凸が少なく(表面粗さRaが低く)、十分なアンチブロック性が得られないと考えられる。
 これに対して本発明では、以下の(1)と(2)を満たす特定の(メタ)アクリル系樹脂を用いる。それにより、溶液流延方式で得られるフィルムであっても、表面に凹凸が形成され、十分なアンチブロック性を有するフィルムを得ることができる。
 (1)分子量が最大の共重合モノマーの(メタクリル酸メチルに対する)分子量比が0.5~2.5である
 (2)ガラス転移温度(Tg)が115~160℃である
 すなわち、上記の(メタ)アクリル系樹脂は、分子量比が比較的大きい(好ましくは嵩高い)共重合モノマーに由来する構造単位を含む(上記(1)の要件)。それにより、樹脂分子同士の隙間を大きくすることができるため、溶媒を抜けやすくしつつ、ゴム粒子との流動速度の差による樹脂の移動を促進し、膜状物の表面に樹脂を移動させやすくしうる。それにより、膜状物の表面に樹脂による突起物(凹凸)を形成しやすくなる。また、得られるフィルムに厚み方向の密度差が生じるため、フィルムが適度に反りやすく(90℃の水に浸漬したときの反り量(以下、「水浸漬後の反り量」ともいう)が2(1/m)以上となりやすく)、巻き取った際のフィルム同士の貼り付き(ブロッキング)を抑制しやすい。それにより、アンチブロッキング性がさらに向上すると考えられる。
 さらに、上記の(メタ)アクリル系樹脂は、適度に高いガラス転移温度(Tg)を有する(上記(2)の要件)。それにより、流延時の溶媒を含む膜状物の硬化速度が速いため、形成した凹凸が崩れないうちに、硬化させることができるため、表面に凹凸が良好に形成された(表面粗さRaが適度に高い)、十分なアンチブロック性を有するフィルムが得られると考えられる。
 1.(メタ)アクリル系樹脂フィルム
 (メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂と、ゴム粒子とを含む。なお、(メタ)アクリルとは、アクリルまたはメタクリルを意味する。
 1-1.(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位と、それと共重合可能なメタクリル酸メチル以外の共重合モノマー(以下、「共重合モノマー」という)に由来する構造単位とを含む重合体であり、かつ下記(1)および(2)を満たす。
 (1)分子量が最大の共重合モノマーの、メタクリル酸メチルに対する分子量比(以下、単に「分子量比」という)が0.5~2.5である
 (2)ガラス転移温度(Tg)が115~160℃である
 (1)について
 分子量が最大となる共重合モノマーの分子量比が0.5以上であると、(メタ)アクリル系樹脂フィルムを溶液流延方式で製膜する際に、膜状物の表面に樹脂による凹凸を形成しやすく、表面粗さRaを適度に高めやすい。また、得られるフィルムの厚み方向に適度な密度差も生じやすいため、得られるフィルムの、水浸漬後の反り量が適度な範囲になりやすい。
 分子量比が0.5~2.5である共重合モノマーの例には、
 アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシル、六員環ラクトン(メタ)アクリル酸エステルなどのアルキル基の炭素数が1~20のアクリル酸エステルまたはアルキル基の炭素数が2~20のメタクリル酸エステル類;
 スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレンなどのスチレン類;
 ビニルシクロヘキサンなどの脂環式ビニル類;
 (メタ)アクリロニトリル、(メタ)アクリロニトリル-スチレン共重合体などの不飽和ニトリル類;
 (メタ)アクリル酸、クロトン酸、(メタ)アクリル酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステルなどの不飽和カルボン酸類;
 酢酸ビニルなどのオレフィン類;
 塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニル類;
 (メタ)アクリルアミド、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、プロピル(メタ)アクリルアミド、ブチル(メタ)アクリルアミド、tert-ブチル(メタ)アクリルアミド、フェニル(メタ)アクリルアミドなどの(メタ)アクリルアミド類;
 (メタ)アクリル酸グリシジルなどの不飽和グリシジル類;
 N-フェニルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド類が含まれる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
 中でも、分子量比が0.5~2.5である共重合モノマーは、分子量比が1.1~2.5である共重合モノマーであることがより好ましい。
 分子量比が1.1~2.5である共重合モノマーの好ましい例には、
 (メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシル、六員環ラクトン(メタ)アクリル酸エステルなどのシクロ環を有する(メタ)アクリル酸エステル;ビニルシクロヘキサンなどの脂環式ビニル類;およびN-フェニルマレイミドなどのマレイミド類からなる群より選ばれる共重合モノマー(第1共重合モノマー);および
 (メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジルなどの炭素数4以上の(メタ)アクリル酸エステル類(第3共重合モノマー)が含まれる。
 また、分子量比が1.1~2.5である共重合モノマーは、分子量比が1.4~2.5である共重合モノマーであることがさらに好ましく、分子量比が1.5~2.5である共重合モノマーであることが特に好ましい。
 分子量比が1.4~2.5である共重合モノマーの好ましい例には、上記シクロ環を含有する(メタ)アクリル酸エステル、およびマレイミド類からなる群より選ばれる共重合モノマー(第1共重合モノマー)、ならびに(メタ)アクリル酸t-ブチル(第3共重合モノマー)が含まれ;
 分子量比が1.5~2.5である共重合モノマーの好ましい例には、上記シクロ環を含有する(メタ)アクリル酸エステル、およびマレイミド類からなる群より選ばれる共重合モノマー(第1共重合モノマー)が含まれる。
 (2)について
 (メタ)アクリル系樹脂のガラス転移温度(Tg)が115℃以上であると、(メタ)アクリル系樹脂フィルムを溶液流延方式で製造する際に、膜状物の表面に形成された凹凸が適度な硬さを有し(あるいは硬化の速度が速く)、崩れにくい。それにより、凹凸形状を維持しやすいため、得られるフィルムの表面粗さRaが適度に大きくなりやすい。また、(メタ)アクリル系樹脂のTgが160℃以下であると、得られるフィルムの表面の凹凸が大きくなりすぎないため、滑りすぎることによる巻き形状の低下(荷崩れ)を抑制できる。(メタ)アクリル系樹脂のTgは、125~160℃であることが好ましく、135~150℃であることがより好ましい。
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定することができる。
 (メタ)アクリル系樹脂のガラス転移温度(Tg)を高くするためには、分子量比が大きく、かつ嵩高い(または剛直な)構造を有する共重合モノマーや;相互作用する基を有する共重合モノマーに由来する構造単位の含有比率を多くすればよい。
 分子量比が大きく、かつ嵩高い(または剛直な)構造を有する共重合モノマーは、前述のシクロ環を含有する(メタ)アクリル酸エステル、およびマレイミド類からなる群より選ばれる共重合モノマー(第1共重合モノマー)であることが好ましい。
 相互作用する基は、例えばニトリル基、アミド基、イミド基、およびカルボキシル基からなる群より選ばれる極性基である。すなわち、相互作用する基を有する共重合モノマーは、相互作用する基(極性基)とエチレン性不飽和結合とを有する共重合モノマー(第2共重合モノマー)であることが好ましく、その例には、N-フェニルマレイミドなどのマレイミド類;メタクリロニトリルなどの不飽和ニトリル類;メタクリル酸などの不飽和カルボン酸類;メタクリルアミドなどの不飽和アミド類が含まれる。なお、マレイミド類は、相互作用する基(イミド基)を有することから、第1共重合モノマーであり、かつ第2共重合モノマーでもある。
 (1)および(2)の物性は、例えば、上記シクロ環を含有する(メタ)アクリル酸エステルおよびマレイミド類からなる群より選ばれる共重合モノマー(第1共重合モノマー)、相互作用する基(極性基)とエチレン性不飽和結合とを有する共重合モノマー(第2共重合モノマー)および炭素数4以上の(メタ)アクリル酸エステル類(第3共重合モノマー)のうち2以上を組み合わせることによって調整することが好ましい。なお、(メタ)アクリル系樹脂のガラス転移温度(Tg)を低下させない観点では、第3共重合モノマーは、第2共重合モノマーと併用されることが好ましい。
 また、(メタ)アクリル系樹脂は、これらの共重合モノマー(第1共重合モノマー、第2共重合モノマーおよび第3共重合モノマー)以外の他の共重合モノマーに由来する構造単位をさらに含んでいてもよい。
 (1)および(2)の物性を満たすためには、(メタ)アクリル系樹脂は、第1共重合モノマーに由来する構造単位を含むことが好ましく;第1共重合モノマーに由来する構造単位と、第2共重合モノマーに由来する構造単位の両方を含むことがより好ましい。
 (メタ)アクリル系樹脂中のこれらの構造単位の含有量は、(1)と(2)の要件を満たすように設定されればよい。例えば、(メタ)アクリル系樹脂が、少なくとも第1共重合モノマーに由来する構造単位と、必要に応じて第2共重合モノマーに由来する構造単位とを含む場合、これらの構造単位の合計含有量は、(メタ)アクリル系樹脂を構成する全構造単位の合計100質量%に対して50~90質量%であることが好ましく、50質量%超80質量%以下であることがより好ましい。
 (メタ)アクリル系樹脂のモノマー組成は、H-NMRにより特定することができる。そして、分子量が最大の共重合モノマーの分子量比は、特定した共重合モノマーのうち、式量から算出される分子量が最大となる共重合モノマーを特定し;当該特定した共重合モノマーの分子量の、メタクリル酸メチルの分子量に対する比を算出して求めることができる。
 (メタ)アクリル系樹脂の重量平均分子量Mwは、例えば50万~300万であることが好ましく、得られるフィルムの表面粗さRaをより高めやすくしうる観点などから、100万~200万であることがより好ましい。(メタ)アクリル系樹脂の重量平均分子量Mwが上記範囲であると、フィルムに十分な機械的強度(靱性)を付与しつつ、製膜性も損なわれにくい。重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。
 1-2.ゴム粒子
 ゴム粒子は、フィルムに柔軟性や靱性を付与しつつ、表面に凹凸を形成してフィルムに滑り性を付与する機能を有しうる。
 ゴム粒子は、ゴム状重合体を含む粒子である。具体的には、ゴム粒子は、ゴム状重合体(架橋重合体)を含むグラフト共重合体、すなわち、ゴム状重合体(架橋重合体)からなるコア部と、それを覆うシェル部とを有するコアシェル型のゴム粒子であることが好ましい。
 ゴム状重合体のガラス転移温度(Tg)は、-10℃以下であることが好ましい。ゴム状重合体のガラス転移温度(Tg)が-10℃以下であると、フィルムに十分な靱性を付与しやすい。ゴム状重合体のガラス転移温度(Tg)は、-15℃以下であることがより好ましく、-20℃以下であることがさらに好ましい。ゴム状重合体のガラス転移温度(Tg)は、前述と同様の方法で測定される。
 ゴム状重合体のガラス転移温度(Tg)は、例えば構成するモノマー組成などによって調整することができる。ゴム状重合体のガラス転移温度(Tg)を低くするためには、後述するように、例えばアクリル系ゴム状重合体(a)を構成するモノマー混合物(a’)における、アルキル基の炭素数が4以上のアクリル酸エステル/共重合可能なモノマーの合計(好ましくはメタアクリル酸メチル)の質量比を多くする(例えば3以上、好ましくは4以上10以下とする)ことが好ましい。
 ゴム状重合体は、ガラス転移温度が上記範囲内となるものであればよく、特に制限されないが、その例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、およびオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、光学フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。
 すなわち、ゴム粒子は、アクリル系ゴム状重合体(a)を含むアクリル系グラフト共重合体、すなわち、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であることが好ましい。当該コアシェル型の粒子は、アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルを主成分とするモノマー混合物(b)を少なくとも1段以上重合して得られる多段重合体(または多層構造重合体)である。重合は、乳化重合法で行うことができる。
 (コア部:アクリル系ゴム状重合体(a)について)
 アクリル系ゴム状重合体(a)は、アクリル酸エステルを主成分とする架橋重合体である。アクリル系ゴム状重合体(a)は、アクリル酸エステルを50~100質量%と、それと共重合可能な他のモノマー50~0質量%とを含むモノマー混合物(a’)、および、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性モノマー0.05~10質量部(モノマー混合物(a’)100質量部に対して)を重合させて得られる架橋重合体である。当該架橋重合体は、これらのモノマーを全部混合して重合させて得てもよいし、モノマー組成を変化させて2回以上で重合させて得てもよい。
 アクリル系ゴム状重合体(a)を構成するアクリル酸エステルは、アクリル酸メチル、アクリル酸ブチルなどのアルキル基の炭素数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。ゴム粒子のガラス転移温度を-15℃以下にする観点では、アクリル酸エステルは、少なくとも、炭素数4~10のアクリル酸アルキルエステルを含むことが好ましい。
 アクリル酸エステルの含有量は、モノマー混合物(a’)100質量%に対して50~100質量%であることが好ましく、60~99質量%であることがより好ましく、70~99質量%であることがさらに好ましい。アクリル酸エステルの含有量が50重量%以上であると、フィルムに十分な靱性を付与しやすい。
 また、アクリル系ゴム状重合体(a)のガラス転移温度を-10℃以下にしやすくする観点では、前述の通り、モノマー混合物(a’)における、アルキル基の炭素数が4以上のアクリル酸アルキルエステル/それ以外の共重合可能なモノマーの合計(好ましくはメタアクリル酸メチル)の質量比は、3以上であることが好ましく、4以上10以下であることがより好ましい。
 共重合可能なモノマーの例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類なども含まれる。
 多官能性モノマーの例には、アリル(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、テトロメチロールメタンテトラ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。
 多官能性モノマーの含有量は、モノマー混合物(a’)の合計100質量%に対して0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。多官能性モノマーの含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られるフィルムの硬度、剛性が損なわれすぎず、10質量%以下であると、フィルムの靱性が損なわれにくい。
 (シェル部:モノマー混合物(b)について)
 モノマー混合物(b)は、アクリル系ゴム状重合体(a)に対するグラフト成分であり、シェル部を構成する。モノマー混合物(b)は、メタアクリル酸エステルを主成分として含むことが好ましい。
 モノマー混合物(b)を構成するメタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素数1~12のメタクリル酸アルキルエステルであることが好ましい。メタクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。
 メタクリル酸エステルの含有量は、モノマー混合物(b)100質量%に対して50質量%以上であることが好ましい。メタクリル酸エステルの含有量が50質量%以上であると、得られるフィルムの硬度、剛性を低下させにくくしうる。
 モノマー混合物(b)は、必要に応じて他のモノマーをさらに含んでもよい。他のモノマーの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルなどのアクリル酸エステル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルなどの脂環式構造、複素環式構造または芳香族基を有する(メタ)アクリル系モノマー類(環構造含有(メタ)アクリル系モノマー)が含まれる。
 (コアシェル型のゴム粒子:アクリル系グラフト共重合体について)
 アクリル系グラフト共重合体、すなわち、コアシェル型のゴム粒子の例には、(メタ)アクリル系ゴム状重合体(a)としてのアクリル系ゴム状重合体5~90質量部(好ましくは5~75質量部)の存在下で、メタクリル酸エステルを主成分とするモノマー混合物(b)95~25質量部を少なくとも1段階で重合させた重合体が含まれる。
 アクリル系グラフト共重合体は、必要に応じて、アクリル系ゴム状重合体(a)の内側に硬質重合体をさらに含んでもよい。そのようなアクリル系グラフト共重合体は、以下の(I)~(III)の重合工程を経て得ることができる。
 (I)メタクリル酸エステル40~100質量%と、これと共重合可能な他のモノマー60~0質量%からなるモノマー混合物(c1)、および多官能性モノマー0.01~10質量部(モノマー混合物(c1)の合計100質量部に対して)を重合して硬質重合体を得る工程
 (II)アクリル酸エステル60~100質量%と、これと共重合可能な他のモノマー0~40質量%からなるモノマー混合物(a1)、および多官能性モノマー0.1~5質量部(モノマー混合物(a1)の合計100質量部に対して)を重合して軟質重合体を得る工程
 (III)メタクリル酸エステル60~100質量%と、これと共重合可能な他のモノマー40~0質量%からなるモノマー混合物(b1)、および多官能性モノマー0~10質量部(モノマー混合物(b1)の合計100質量部に対して)を重合して硬質重合体を得る工程
 (I)~(III)の各重合工程の間に、他の重合工程がさらに含まれてもよい。
 アクリル系グラフト共重合体は、さらに(IV)の重合工程を経て得られてもよい。
 (IV)メタクリル酸エステル40~100質量%、アクリル酸エステル0~60質量%、および共重合可能な他のモノマー0~5質量%からなるモノマー混合物(b2)、ならびに多官能性モノマー0~10質量部(モノマー混合物(b2)100質量部に対して)を重合して硬質重合体を得る。
 各工程で用いられるメタクリル酸エステル、アクリル酸エステル、共重合可能な他のモノマー、および多官能性モノマーは、前述と同様のものを用いることができる。
 軟質層は、光学フィルムに衝撃吸収性を付与しうる。軟質層の例には、アクリル酸エステルを主成分とするアクリル系ゴム状重合体(a)からなる層が含まれる。硬質層は、光学フィルムの靱性を損ないにくくし、かつゴム粒子の製造時に、粒子の粗大化や塊状化を抑制しうる。硬質層の例には、メタクリル酸エステルを主成分とする重合体からなる層が含まれる。
 (メタ)アクリル系グラフト共重合体のグラフト率は、10~250%であることが好ましく、40~230%であることがより好ましく、60~220%であることがさらに好ましい。グラフト率が10%以上であると、フィルム製造時に(メタ)アクリル系グラフト共重合体が凝集しにくく、得られるフィルムの透明性が低下したり、異物が生じたりしにくくしうる。また引張破断時の伸びが低下しにくく、フィルム切断時にバリが発生しにくい傾向がある。250%以下であると、成形時、例えば、フィルム成形時の溶融粘度が高くなりにくく、フィルムの成形性が低下しにくい傾向がある。算出式は下記にて説明する。
 (メタ)アクリル系グラフト共重合体のグラフト率とは、(メタ)アクリル系ゴム状重合体(a)に対する、グラフト成分であるモノマー混合物(b)の質量比であり、次の方法で測定される。
 (メタ)アクリル系グラフト共重合体2gを、メチルエチルケトン50mlに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpm、温度12℃にて1時間遠心し、不溶分と可溶分とに分離する(遠心分離作業を合計3回セット)。得られた不溶分を、グラフト率として、以下の式から算出する。
 グラフト率(%)=[{(メチルエチルケトン不溶分の重量)-((メタ)アクリル系ゴム状重合体(a)の重量)}/((メタ)アクリル系ゴム状重合体(a)の重量)]×100
 ゴム粒子(アクリル系グラフト共重合体)の平均粒子径は、100~400nmであることが好ましく、150~300nmであることがより好ましい。平均粒子径が100nm以上であると、フィルムに十分な靱性を付与しやすく、400nm以下であると、フィルムの透明性が低下しにくい。
 ゴム粒子(アクリル系グラフト共重合体)の平均粒子径は、フィルム表面および切片のSEM撮影またはTEM撮影によって得た粒子100個の円相当径の平均値として特定される。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することによって求めることができる。この際、倍率5000倍のSEM観察および/またはTEM観察によって観察されるゴム粒子(アクリル系グラフト共重合体)を、平均粒子径の算出に使用する。なお、分散液でのゴム粒子(アクリル系グラフト共重合体)の平均粒子径は、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定することができる。
 ゴム粒子の含有量は、(メタ)アクリル系樹脂に対して5~20質量%であることが好ましく、5~15質量%であることがより好ましく、5~10質量%とすることもできる。ゴム粒子の含有量が5質量%以上であると、(メタ)アクリル系樹脂フィルムに十分な柔軟性や靱性を付与しやすいだけでなく、表面に凹凸を形成して滑り性も付与しうる。ゴム粒子の含有量が20質量%以下であると、ヘイズが上昇しすぎない。特に本発明では、特定の(メタ)アクリル系樹脂を用いることで、フィルムの表面に凹凸を形成しやすいため、従来よりもゴム粒子の含有量を少なくすることができる。
 1-3.有機微粒子
 有機微粒子は、(メタ)アクリル系樹脂フィルムの滑り性を付与する機能を有する。また、有機微粒子は、溶液流延方式におけるドープ乾燥時に樹脂分子同士の間に隙間を形成しやすいため、樹脂分子やゴム粒子を膜状物の表面に移動させやすくし、当該膜状物の表面に樹脂の突起物やゴム粒子による凹凸をより形成しやすくしうる。
 有機微粒子は、ガラス転移温度が80℃以上の粒子である。ガラス転移温度は、前述と同様の方法で測定される。
 有機微粒子を構成する樹脂は、ガラス転移温度(Tg)が上記範囲となるようなものであればよく、その例には、(メタ)アクリル酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、ビニルエステル類、オレフィン類、スチレン類、(メタ)アクリルアミド類、アリル化合物、ビニルエーテル類、ビニルケトン類、不飽和ニトリル類、不飽和カルボン酸類、および多官能モノマー類からなる群より選ばれる1以上に由来する構造単位を含む重合体や、シリコーン系樹脂、フッ素系樹脂、ポリフェニレンスルフィドなどが含まれる。
 上記重合体を構成する(メタ)アクリル酸エステル類、オレフィン類、スチレン類、(メタ)アクリルアミド類、不飽和ニトリル類、不飽和カルボン酸類および多官能モノマー類は、上記(メタ)アクリル系樹脂や上記アクリル系ゴム状重合体(a)を構成するモノマーとして挙げたものと同様のものを用いることができる。イタコン酸ジエステル類の例には、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジプロピルが含まれる。マレイン酸ジエステル類の例には、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピルが含まれる。ビニルエステル類の例には、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルイソブチレート、ビニルカプロエート、ビニルクロロアセテート、ビニルメトキシアセテート、ビニルフェニルアセテート、安息香酸ビニル、サリチル酸ビニルが含まれる。アリル化合物の例には、酢酸アリル、カプロン酸アリル、ラウリン酸アリル、安息香酸アリルなどが含まれる。ビニルエーテル類の例には、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテル、ジメチルアミノエチルビニルエーテルなどが含まれる。ビニルケトン類の例には、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトンなどが含まれる。
 中でも、(メタ)アクリル系樹脂との親和性が高く、応力に対する柔軟性があり、かつガラス転移温度を上記範囲に調整しやすい観点などから、(メタ)アクリル酸エステル類、ビニルエステル類、スチレン類、オレフィン類からなる群より選ばれる1以上に由来する構造単位と、多官能モノマー類に由来する構造単位とを含む共重合体が好ましく、(メタ)アクリル酸エステル類に由来する構造単位と、多官能モノマー類に由来する構造単位とを含む共重合体がより好ましく、(メタ)アクリル酸エステル類に由来する構造単位と、スチレン類に由来する構造単位と、多官能モノマー類に由来する構造単位とを含む共重合体がさらに好ましい。特にスチレン類に由来する構造単位を含む共重合体からなる有機微粒子は、(メタ)アクリル系樹脂との屈折率差を少なくしうる。
 有機微粒子が、多官能モノマーに由来する構造単位を含む場合、有機微粒子における多官能モノマーに由来する構造単位の含有量は、通常、ゴム粒子における多官能モノマーに由来する構造単位の含有量よりも多い。具体的には、多官能モノマーに由来する構造単位の含有量は、上記共重合体を構成する多官能モノマー以外のモノマーに由来する構造単位の合計100質量%に対して、例えば50~500質量%でありうる。
 このような重合体からなる粒子(重合体粒子)は、任意の方法、例えば乳化重合、懸濁重合、分散重合、シード重合などの方法により製造されうる。中でも、粒子径が揃った重合体粒子が得られやすい観点などから、水性媒体下でのシード重合や乳化重合が好ましい。
 重合体粒子の製造方法としては、例えば、
 ・単量体混合物を水性媒体に分散させた後、重合させる1段重合法、
 ・単量体を水性媒体中で重合させることで種粒子を得た後、単量体混合物を種粒子に吸収させた後、重合させる2段重合法、
 ・2段重合法の種粒子を製造する工程を繰り返す多段重合法などが挙げられる。これらの重合法は、重合体粒子の所望する平均粒子径に応じて適宜選択できる。なお、種粒子を製造するための単量体は、特に限定されず、重合体粒子用の単量体をいずれも使用できる。
 有機微粒子は、コアシェル型の粒子であってもよい。そのような有機微粒子は、例えば(メタ)アクリル酸エステルの単独重合体あるいは共重合体を含む低Tgのコア部と、高Tgのシェル部とを有する粒子などでありうる。
 有機微粒子と(メタ)アクリル系樹脂との屈折率差の絶対値Δnは、得られるフィルムのヘイズ上昇を高度に抑制する観点では、0.1以下であることが好ましく、0.085以下であることがより好ましく、0.065以下であることがさらに好ましい。
 有機微粒子の平均粒子径は、0.04~2μmであることが好ましく、0.08~1μmであることがより好ましい。有機微粒子の平均粒子径が0.04μm以上であると、得られるフィルムに十分な滑り性を付与しやすい。有機微粒子の平均粒子径が2μm以下であると、ヘイズの上昇を抑制しやすい。有機微粒子の平均粒子径は、ゴム粒子の平均粒子径と同様の方法で測定することができる。
 有機微粒子の平均粒子径は、凝集性の粒子であれば、凝集体の平均大きさ(平均二次粒径)を意味し、非凝集性の粒子であれば、一粒子のサイズを測定した平均値を意味する。
 有機微粒子の含有量は、(メタ)アクリル系樹脂に対して0.03~1.0質量%であることが好ましく、0.05~0.6質量%であることがより好ましく、0.08~0.5質量%であることがさらに好ましい。有機微粒子の含有量が0.03質量%以上であると、(メタ)アクリル系樹脂フィルムに十分な滑り性を付与しやすく、1.0質量%以下であると、ヘイズの上昇を抑制しやすい。特に本発明では、特定の(メタ)アクリル系樹脂を用いることで、フィルムの表面に凹凸を形成しやすいため、従来よりも有機微粒子の含有量を少なくすることができる。
 1-4.その他の成分
 本発明の(メタ)アクリル系樹脂フィルムは、後述するように溶液流延方式により製造されることから、溶液流延方式で用いられるドープに由来する残留溶媒を含んでいてもよい。
 残留溶媒量は、(メタ)アクリル系樹脂フィルムに対して700ppm以下であることが好ましく、30~700ppmであることがより好ましい。残留溶媒の含有量は、後述する(メタ)アクリル系樹脂フィルムの製造工程における、支持体上に流延させたドープの乾燥条件によって調整されうる。
 (メタ)アクリル系樹脂フィルムにおける残留溶媒の含有量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、試料を容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマー等を定量をも併せて行うことができる。
 (メタ)アクリル系樹脂フィルムは、1つの層(単層)で構成されてもよいし、複数の層で構成されてもよいが、表示ムラが少なく、薄型化が可能である点などから、単層であることが好ましい。
 1-5.物性
 (水浸漬後の反り量)
 (メタ)アクリル系樹脂フィルムを、50℃で90分間水に浸漬したときの反りの曲率として表される反り量は、2~15(1/m)である。(メタ)アクリル系樹脂フィルムの当該反り量が2(1/m)以上であると、フィルムの一方の表面と他方の表面とで適度な密度差があり、15(1/m)以下であると、一方の表面と他方の表面との間で密度差が大きすぎないため、いずれもハンドリングしやすい。(メタ)アクリル系樹脂フィルムの当該反り量は、6~10(1/m)であることがより好ましい。なお、(メタ)アクリル系樹脂フィルムの反りは、フィルムの製膜工程において、流延されたドープの空気側の面に対応する面が凹となるように生じる。
 水浸漬後の反り量は、(メタ)アクリル系樹脂フィルムを35×2mmの大きさに切り出し、50℃で90分間浸漬させた後、水から引き上げた直後のフィルムの反りの曲率を、23℃55%RH環境下で測定し、それらの平均値を求める。この操作を3回行い、それらの平均値を「水浸漬後の反り量」とする。
 (メタ)アクリル系樹脂フィルムの水浸漬後の反り量は、主に、フィルムの製造方法や、共重合モノマーの分子量比および含有量によって調整することができる。水浸漬後の反り量を大きくするためには、例えばフィルムは溶液流延方式で製造することが好ましく、共重合モノマーの分子量比を大きくしたり、当該分子量比の大きい共重合モノマーの含有量を多くしたりすることが好ましい。
 (XRR比)
 (メタ)アクリル系樹脂フィルムの一方の面(A面;ドープ流延時に空気側である面)と他方の面(B面;ドープ流延時に支持体側である面)の膜密度の比(XRR比;A面/B面)は、1未満であることが好ましく、0.85~0.99であることがより好ましく、0.85~0.94であることがさらに好ましい。
 (メタ)アクリル系樹脂フィルムの表面の膜密度は、X線反射率法(XRR法)を用いて測定することができる。すなわち、(メタ)アクリル系樹脂フィルムを30mm×40mmの大きさに切り出し、試料ホルダーに固定して、以下の測定条件で測定することができる。
 (測定条件)
 ・装置              :X線回折装置(リガク株式会社製ATX-G)
 ・サンプルサイズ    :30mm×30mm
 ・入射X線波長      :1.5405Å
 ・測定範囲(θ)    :0~6°
 (メタ)アクリル系樹脂フィルムのXRR比は、主に、共重合モノマーの分子量比や含有量によって調整することができる。XRR比を大きくするためには、例えば共重合モノマーの分子量比を大きくしたり、当該分子量比の大きい共重合モノマーの含有量を多くしたりすることが好ましい。
 (表面粗さRa)
 (メタ)アクリル系樹脂フィルムの表面粗さRaは、3~8nmであることが好ましい。(メタ)アクリル系樹脂フィルムの表面粗さRaが3nm以上であると、得られるフィルムに十分なアンチブロック性(滑り性)を付与しやすく、8nm以下であると、ロール状に巻いた際に、滑りすぎることによる巻き形状の低下(荷崩れ)を抑制しやすい。(メタ)アクリル系樹脂フィルムの表面粗さRaは、上記観点から、5~8nmであることがより好ましい。表面粗さRaは、JIS B 0601-2001に準拠して、WYKO社製の表面粗さ測定器HD3300を用いて測定することができる。
 (メタ)アクリル系樹脂フィルムの表面粗さRaは、例えば共重合モノマーの分子量比や含有量、(メタ)アクリル系樹脂のTgなどによって調整することができる。表面粗さRaを大きくするためには、例えば共重合モノマーの分子量比を大きくしたり、当該分子量比の大きい共重合モノマーの含有量を多くしたり、(メタ)アクリル系樹脂のTgを高くしたりすることが好ましい。
 (ヘイズ)
 (メタ)アクリル系樹脂フィルムは、光学フィルムとして用いる観点では、透明性が高いことが好ましい。(メタ)アクリル系樹脂フィルムのヘイズは、4.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。ヘイズは、試料40mm×80nmを25℃、60%RHでヘイズメーター(HGM-2DP、スガ試験機)でJISK-6714に従って測定することができる。
 (位相差RoおよびRt)
 (メタ)アクリル系樹脂フィルムは、例えばIPSモード用の位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、0~10nmであることが好ましく、0~5nmであることがより好ましい。(メタ)アクリル系樹脂フィルムの厚み方向の位相差Rtは、-20~20nmであることが好ましく、-10~10nmであることがより好ましい。
 RoおよびRtは、それぞれ下記式で定義される。
 式(2a):Ro=(nx-ny)×d
 式(2b):Rt=((nx+ny)/2-nz)×d
(式中、
 nxは、フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、フィルムの面内遅相軸に直交する方向の屈折率を表し、
 nzは、フィルムの厚み方向の屈折率を表し、
 dは、フィルムの厚み(nm)を表す。)
 (メタ)アクリル系樹脂フィルムの面内遅相軸とは、フィルム面において屈折率が最大となる軸をいう。(メタ)アクリル系樹脂フィルムの面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。
 RoおよびRtは、以下の方法で測定することができる。
 1)(メタ)アクリル系樹脂フィルムを23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長550nmにおけるリターデーションRoおよびRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
 (メタ)アクリル系樹脂フィルムの位相差RoおよびRtは、例えば樹脂の種類によって調整することができる。(メタ)アクリル系樹脂フィルムの位相差RoおよびRtを低くするためには、延伸によって位相差を発現しにくい(メタ)アクリル系樹脂を用いることが好ましい。
 (厚み)
 (メタ)アクリル系樹脂フィルムの厚みは、例えば5~100μm、好ましくは5~40μmとしうる。
 2.(メタ)アクリル系樹脂フィルムの製造方法
 本発明の(メタ)アクリル系樹脂フィルムは、溶液流延方式(キャスト法)で製造される。すなわち、本発明の(メタ)アクリル系樹脂フィルムは、1)少なくとも前述の(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含むドープを得る工程と、2)得られたドープを金属支持体上に流延し、乾燥および剥離する工程と、必要に応じて3)得られた膜状物を、乾燥させながら延伸する工程とを経て製造されうる。
 1)の工程について
 前述の(メタ)アクリル系樹脂とゴム粒子とを、溶媒に溶解または分散させて、ドープを調製する。
 ドープに用いられる溶媒は、少なくとも(メタ)アクリル系樹脂を溶解させうる有機溶媒(良溶媒)を含む。
 良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。
 ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいことなどからエタノールが好ましい。
 ドープの調製は、前述の溶媒に、(メタ)アクリル系樹脂、およびゴム粒子をそれぞれ直接添加し、混合して調製してもよいし;前述の溶媒に、(メタ)アクリル系樹脂を溶解させた樹脂溶液と、前述の溶媒に、ゴム粒子および必要に応じて有機微粒子を分散させた微粒子分散液とを予め調製しておき、それらを混合して調製してもよい。
 有機微粒子の添加方法は、特に制限されず、有機微粒子を個別に溶媒に添加してもよいし、有機微粒子の集合体として溶媒に添加してもよい。有機微粒子の集合体は、相互の連結(融着)が抑制された複数の有機微粒子の集合体からなる。そのため、取り扱い性に優れ、(メタ)アクリル系樹脂や溶媒に、有機微粒子の集合体を分散させれば、容易に有機微粒子に別れるため、有機微粒子の分散性を良好としうる。有機微粒子の集合体は、例えば、有機微粒子と、無機粉末とを含むスラリーを噴霧乾燥させることによって得ることができる。
 2)の工程について
 得られたドープを、金属支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。
 次いで、金属支持体上に流延されたドープ中の溶媒を蒸発させ、乾燥させる。乾燥されたドープを金属支持体から剥離して、膜状物を得る。
 金属支持体から剥離する際のドープの残留溶媒量(剥離時の残留溶媒量)は、得られる(メタ)アクリル系樹脂フィルムの位相差RoやRtを低減しやすくする点では、10~150質量%であることが好ましく、20~40質量%であることがより好ましい。剥離時の残留溶媒量が10質量%以上であると、乾燥または延伸時に、(メタ)アクリル系樹脂が流動しやすく、無配向にしやすいため、得られる(メタ)アクリル系樹脂フィルムのRoやRtを低減しやすい。剥離時の残留溶媒量が150質量%以下であると、ドープを剥離する際に要する力が過剰に大きくなりにくいので、ドープの破断を抑制しやすい。
 ドープの残留溶媒量は、下記式で定義される。以下においても同様である。
 ドープの残留溶媒量(質量%)=(ドープの加熱処理前質量-ドープの加熱処理後質量)/ドープの加熱処理後質量×100
 尚、残留溶媒量を測定する際の加熱処理とは、140℃30分の加熱処理をいう。
 3)の工程について
 得られた膜状物を、乾燥させながら延伸する。延伸は、求められる光学特性に適合するように行えばよく、少なくとも一方の方向に延伸することが好ましく、互いに直交する二方向に延伸(例えば、膜状物の幅方向(TD方向)と、それと直交する搬送方向(MD方向)の二軸延伸)してもよい。
 延伸倍率は、(メタ)アクリル系樹脂フィルムを例えばIPS用の位相差フィルムとして用いる観点では、1.01~2.0倍とすることができる。延伸倍率が高いほど、得られるフィルムの残留応力が大きくなりやすい。延伸倍率は、(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)として定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれにおいて上記延伸倍率とすることが好ましい。
 延伸温度は、(メタ)アクリル系樹脂のガラス転移温度をTgとしたとき、(Tg-65)℃~(Tg+60)℃であることが好ましく、(Tg-50)℃~(Tg+50)℃であることがより好ましく、(Tg-30)℃~(Tg+50)℃であることがさらに好ましい。延伸温度が(Tg-30)℃以上であると、膜状物を延伸に適した柔らかさにしやすいだけでなく、延伸時に膜状物に加わる張力が大きくなりすぎないので、得られる(メタ)アクリル系樹脂フィルムに過剰な残留応力が残りにくく、RoやRtも過剰には増大しにくい。延伸温度が(Tg+60)℃以下であると、延伸後の(メタ)アクリル系樹脂フィルムに適度な残留応力が残りやすく、膜状物中の溶媒の気化による気泡の発生も高度に抑制しやすい。延伸温度は、具体的には、100~220℃としうる。
 延伸温度は、(a)テンター延伸機などのように非接触加熱型で乾燥させる場合は、延伸機内温度または熱風温度などの雰囲気温度、(b)熱ローラーなどの接触加熱型で乾燥させる場合は、接触加熱部の温度、あるいは(c)膜状物(被乾燥面)の表面温度のいずれかの温度として測定することができる。中でも、(a)テンター延伸機などのように非接触加熱型で乾燥させる場合は、延伸機内温度または熱風温度などの雰囲気温度を測定することが好ましい。
 延伸開始時の膜状物中の残留溶媒量は、2~50質量%であることが好ましい。延伸開始時の残留溶媒量が2質量%以上であると、残留溶媒による可塑化効果で、延伸時の膜状物の実質的なTgが低くなるため、(メタ)アクリル系樹脂フィルムのRoやRtが増大しにくい。延伸開始時の残留溶媒量が50質量%以下であると、膜状物中の溶媒の気化による気泡の発生を高度に抑制できる。
 膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。膜状物のTD方向の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。
 得られた膜状物は、必要に応じてさらに乾燥された後、例えばロール状に巻き取られる。
 本発明の(メタ)アクリル系樹脂フィルムは、良好なアンチブロッキング性(滑り性)を有する。そのため、ロールにより搬送する際の搬送性に優れ、かつロール状に巻き取った際に、フィルム同士の貼り付きなどを抑制できる。そのため、得られるフィルムの表面に傷などが形成されにくい。
 得られる(メタ)アクリル系樹脂フィルムは、液晶ディスプレイや有機ELディスプレイなどの各種表示装置における、偏光板保護フィルム(位相差フィルムも含む)などの光学フィルムとして好ましく用いられる。
 3.偏光板
 本発明の偏光板は、偏光子と、本発明の光学フィルムとを含む。本発明の光学フィルムは、本発明の(メタ)アクリル系樹脂フィルムである。本発明の光学フィルムは、偏光子の少なくとも一方の面(少なくとも液晶セルと対向する面)に接着剤層を介して配置されうる。
 3-1.偏光子
 偏光子は、一定方向の偏波面の光だけを通す素子であり、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、通常、最大延伸方向と平行である。
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールが用いられる。
 偏光子の厚みは、5~30μmであることが好ましく、偏光板を薄型化するため等から、5~20μmであることがより好ましい。
 3-2.他の光学フィルム
 本発明の光学フィルムが偏光子の一方の面のみに配置されている場合、偏光子の他方の面には、他の光学フィルムが配置されうる。他の光学フィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC8UA、KC2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フイルム(株)製)などが含まれる。
 3-3.偏光板の製造方法
 本発明の偏光板は、偏光子と本発明の(メタ)アクリル系樹脂フィルムを、接着剤を介して貼り合わせて得ることができる。接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)、または活性エネルギー線硬化性接着剤でありうる。活性エネルギー線硬化性接着剤は、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、またはそれらの併用物のいずれであってもよい。
 4.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、液晶セルの一方の面に配置された第1偏光板と、液晶セルの他方の面に配置された第2偏光板とを含む。第1および第2偏光板のうち一方または両方が、本発明の偏光板である。
 液晶セルの表示モードは、例えばSTN(Super-Twisted Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、HAN(Hybridaligned Nematic)、VA(Vertical Alignment、MVA(Multi-domain Vertical Alignment)、PVA(Patterned Vertical Alignment))、IPS(In-Plane-Switching)などでありうる。中でも、VA(MVA,PVA)モードおよびIPSモードが好ましい。
 第1偏光板は、液晶セルの一方の面(視認側の面)に配置された第1偏光子と、第1偏光子の液晶セルとは反対側の面(視認側の面)に配置された保護フィルム(F1)と、第1偏光子の液晶セル側の面に配置された保護フィルム(F2)とを含む。
 第2偏光板は、液晶セルの他方の面(バックライト側の面)に配置された第2偏光子と、第2偏光子の液晶セル側の面に配置された保護フィルム(F3)と、第2偏光子の液晶セルとは反対側の面(バックライト側の面)に配置された保護フィルム(F4)とを含む。
 第1偏光子の吸収軸と第2偏光子の吸収軸とは直交している(クロスニコルとなっている)ことが好ましい。
 保護フィルムF1、F2、F3およびF4の少なくとも一つ、好ましくは保護フィルムF2またはF3を、本発明の(メタ)アクリル系樹脂フィルムとしうる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 1.(メタ)アクリル系樹脂フィルムの材料
 (1)(メタ)アクリル系樹脂
 表1に記載される(メタ)アクリル系樹脂1~15および2’を用いた。各共重合モノマーの分子量は、式量から算出した。
Figure JPOXMLDOC01-appb-T000001
 (メタ)アクリル系樹脂1~15および2’のガラス転移温度(Tg)および重量平均分子量(Mw)は、以下の方法で測定した。
 (ガラス転移温度(Tg))
 (メタ)アクリル系樹脂のガラス転移温度は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
 (重量平均分子量(Mw))
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(東ソー社製  HLC8220GPC)、カラム(東ソー社製  TSK-GEL  G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL  直列)を用いて測定した。試料20mg±0.5mgをテトラヒドロフラン10mlに溶解し、0.45mmのフィルターで濾過した。この溶液をカラム(温度40℃)に100ml注入し、検出器RI温度40℃で測定し、スチレン換算した値を用いた。
 (2)ゴム粒子
 アクリル系ゴム粒子M-210(コア部:多層構造のアクリル系ゴム状重合体(Tg:約-10℃)、シェル部:メタアクリル酸メチルを主成分とするメタクリル酸エステル系重合体、のコアシェル型のゴム粒子、平均粒子径:220nm)
 (3)有機微粒子
 以下の方法で調製した有機微粒子を用いた。
 (種粒子の作製)
 攪拌機、温度計を備えた重合器に、脱イオン水1000gを入れ、そこへメタクリル酸メチル50g、t-ドデシルメルカプタン6gを仕込み、攪拌下に窒素置換しながら70℃まで加温した。内温を70℃に保ち、重合開始剤として過硫酸カリウム1gを溶解した脱イオン水20gを添加した後、10時間重合させた。得られたエマルジョン中の種粒子の平均粒子径は、0.05μmであった。
 (有機微粒子の作製)
 攪拌機、温度計を備えた重合器に、ゲル化抑制剤としてラウリル硫酸ナトリウム2.4gを溶解した脱イオン水800gを入れ、そこへ単量体混合物としてメタクリル酸メチル66g、スチレン20gおよびエチレングリコールジメタクリレート64gと、重合開始剤としてアゾビスイソブチロニトリル1gとの混合液を入れた。次いで、混合液をT.Kホモミキサー(特殊機化工業社製)にて攪拌して、分散液を得た。
 得られた分散液に、上記種粒子を含むエマルジョン60gを加え、30℃で1時間攪拌して種粒子に単量体混合物を吸収させた。次いで、吸収させた単量体混合物を、窒素気流下で50℃、5時間加温して重合させた後、室温(約25℃)まで冷却して、重合体微粒子(有機微粒子)のスラリーを得た。得られた有機微粒子1の平均粒子径は、0.14μmであり、ガラス転移温度(Tg)は、280℃であった。
 (有機微粒粒子の集合体の作製)
 このエマルジョンを噴霧乾燥機としての坂本技研社製のスプレードライヤー(型式:アトマイザーテイクアップ方式、型番:TRS-3WK)で次の条件下にて噴霧乾燥して複合体1の集合体を得た。重合体粒子の集合体の平均粒子径は、30μmであった。
 供給速度:25ml/min
 アトマイザー回転数:11000rpm
 風量:2m/min
 噴霧乾燥機のスラリー入口温度:100℃
 重合体粒子集合体出口温度:50℃
 ゴム粒子および有機微粒子の平均粒子径は、以下の方法で測定した。
 (平均粒子径)
 得られた分散液中の微粒子の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定した。なお、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)用いて測定される有機微粒子の平均粒子径は、(メタ)アクリル系樹脂フィルムをTEM観察して測定される有機微粒子の平均粒子径とほぼ一致するものである。
 2.(メタ)アクリル系樹脂フィルムの作製および評価
 [実施例1]
 (ゴム粒子分散液の調製)
 20質量部のゴム粒子と、380質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、ゴム粒子分散液を得た。
 (有機微粒子分散液の調製)
 12質量部の有機微粒子と、388質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、有機微粒子分散液を得た。
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライド、およびエタノールを添加した。次いで、加圧溶解タンクに、(メタ)アクリル系樹脂1を撹拌しながら投入した。次いで、上記調製した微粒子分散液を投入して、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を濾過した後、ドープを得た。
 (ドープの組成)
 (メタ)アクリル系樹脂1:100質量部
 メチレンクロライド:467質量部
 エタノール:71質量部
 ゴム粒子分散液:352質量部
 有機微粒子分散液:20質量部
 (製膜)
 次いで、無端ベルト流延装置を用い、ドープを温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶剤量が30%になるまで溶剤を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離した。剥離したフィルムを多数のロールで搬送させながら、得られた膜状物を、テンターにて(Tg-15)℃(本例では128℃)の条件下で幅方向に1.2倍延伸した。その後、ロールで搬送しながらさらに乾燥させ、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、膜厚40μmの(メタ)アクリル系樹脂フィルムを得た。
 [実施例2~9、比較例1~7]
 有機微粒子を配合せず、かつ(メタ)アクリル系樹脂の種類を表2に示されるように変更した以外は実施例1と同様にして(メタ)アクリル系樹脂フィルムを得た。なお、ドープへ有機微粒子分散液を配合しない代わりに、メチレンクロライドの配合量を623質量部とした。
 [実施例10]
 ゴム粒子の配合量を表2に示されるように変更した以外は実施例2と同様にして(メタ)アクリル系樹脂フィルムを得た。なお、ドープへ有機微粒子分散液を配合しない代わりに、メチレンクロライドの配合量を623質量部とした。
 [参考例1]
 表2に示される組成の(メタ)アクリル系樹脂2’およびゴム粒子を、40ミリφベント付き単軸押出機(田端機械工業(株)製、HV-40-28)を用いてシリンダ温度を250℃に設定して溶融混練を行い、ペレット化した。得られたペレットを、Tダイ付き40ミリφ押出機(ナカムラ産機(株)製、NEX040397)を用いて、シリンダ設定温度160~235℃およびダイス温度250℃で押出成形して、膜厚40μmの(メタ)アクリル系樹脂フィルムを得た。
 実施例1~10、比較例1~7および参考例1で得られた(メタ)アクリル系樹脂フィルムの、水浸漬後の反り量、表面粗さRa、アンチブロッキング性、XRR比およびMIT屈曲性を、それぞれ以下の方法で評価した。
 (水浸漬後の反り量)
 得られた(メタ)アクリル系樹脂フィルムを、35mm×2mmの長方形に切り出し、試料片とした。得られた試料片を、50℃の水に90分間浸漬させた後、水中から引き上げた直後の試料片の反りの曲率を23℃55%RH下で測定し、それらの平均値を求めた。この操作を3回行い、それらの平均値を「水浸漬後の反り量」とした。
 そして、以下の基準に基づいて評価した。
 5:水浸漬後の反り量が、15(1/m)超
 4:水浸漬後の反り量が10(1/m)超15(1/m)以下
 3:水浸漬後の反り量が、5(1/m)超10(1/m)以下
 2:水浸漬後の反り量が、1(1/m)超5(1/m)以下
 1:水浸漬後の反り量が、1(1/m)以下
 2~4であれば、良好と判断した。
 (XRR比)
 得られた(メタ)アクリル系樹脂フィルムの一方の面(A面;ドープ流延時の空気側の面)と他方の面(B面:ドープ流延時の支持体側の面)の密度を、X線反射率法(XRR法)を用いて測定した。すなわち、(メタ)アクリル系樹脂フィルムを切り出して、試料ホルダーに固定し、以下の測定条件でサンプルのA面(空気側)とB面(支持体側)のX線反射率測定を行った。
 ・装置              :X線回折装置(リガク株式会社製ATX-G)
 ・サンプルサイズ    :30mm×30mm
 ・入射X線波長      :1.5405Å
 ・測定範囲(θ)    :0~6°
 なお、参考例1のフィルムは、任意の一方の面をA面、他方の面をB面とした。
 そして、A面(空気側)とB面(支持体側)のXRR比(A面/B面)を算出し、以下の基準で評価した。
 XRR比(A面/B面)が0.85未満
 XRR比(A面/B面)が0.85以上0.90未満
 XRR比(A面/B面)が0.90以上0.95未満
 XRR比(A面/B面)が0.95以上1未満
 XRR比(A面/B面)が1以上
 (MIT屈曲性)
 得られた(メタ)アクリル系樹脂フィルムのMIT屈曲性を、耐折度試験機(テスター産業株式会社製、MIT、BE-201型、折り曲げ曲率半径0.38mm)を用いて測定した。
 具体的には、試験片として、温度25℃、相対湿度65%RHの状態に1時間以上静置させた、幅15mm、長さ150mmの(メタ)アクリル系樹脂フィルムを使用し、荷重500gの条件で、JIS P8115:2001に準拠して測定し、破断するまでの回数により、以下の評価基準で評価した。
 5:4000回以上
 4:3000回~3999回
 3:2000回~2999回
 2:1000回~1999回
 1:999回以下 
 破断するまでの回数が多いほど屈曲性に優れていることを表し、繰り返しの折り曲げ耐性に優れていることを表す。
 2~4であれば良好と判断した。
 (表面粗さRa)
 得られた(メタ)アクリル系樹脂フィルムの表面粗さRaを、WYKO社製の表面粗さ測定器HD3300を用いて測定した。そして、(メタ)アクリル系樹脂フィルムの表面粗さRaを、以下の基準で評価した。
 〇:表面粗さRaが、5nm以上8nm以下
 △:表面粗さRaが、3nm以上5nm未満
 ×:表面粗さRaが、3nm未満または8nm超
 △以上であれば、良好と判断した。
 (アンチブロッキング性)
 巻き取った光学フィルムを室温で3ヶ月間した後、フィルムを繰り出し、重なり合うフィルム同士のブロッキング(貼付き)状態を目視観察して、以下の基準で評価した。
 〇:全く貼り付きがない
 △:若干貼り付きが見られるが搬送上問題ない
 ×:全面が貼り付いている
 △以上であれば、良好と判断した。
 実施例1~10、比較例1~7および参考例1で得られた(メタ)アクリル系樹脂フィルムの評価結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、(1)の分子量比の範囲を満たし、かつ(2)のTgの範囲を満たす(メタ)アクリル系樹脂を含む実施例1~10の(メタ)アクリル系樹脂フィルムは、いずれも適度な水浸漬後の反り量を有している。そして、実施例1~10の(メタ)アクリル系樹脂フィルムは、いずれも適度に高い表面粗さRaを有し、アンチブロッキング性も良好であることがわかる。また、いずれのフィルムも、良好な透明性(JISK-6714に準拠したヘイズが1%未満)を有していた。
 これに対して、(1)の分子量比の範囲と、(2)のTgの範囲の少なくとも一方を満たさない(メタ)アクリル系樹脂を含む比較例1~7の(メタ)アクリル系樹脂フィルムは、いずれもアンチブロッキング性が低いことがわかる。
 具体的には、(1)の分子量比を満たすが、(2)のTgの範囲を満たさない比較例2、3、5および6の(メタ)アクリル系樹脂フィルムは、表面粗さRaが低く、アンチブロッキング性が低いことがわかる。同様に、(1)の分子量比と、(2)のTgの範囲の両方を満たさない比較例1および4の(メタ)アクリル系樹脂フィルムも、表面粗さRaが低く、アンチブロッキング性が低いことがわかる。
 また、(1)の分子量比および(2)のTgの範囲を満たすが、溶融流延方式で得られた参考例1の(メタ)アクリル系樹脂フィルムは、XRR比が1であり、水浸漬後の反り量も1(1/m)と低いことがわかる。また、耐屈曲性も低いことがわかる。
 さらに、(メタ)アクリル系樹脂3と同組成で重量平均分子量を78万とした(メタ)アクリル系樹脂3’をさらに準備し、それを用いた以外は実施例3と同様にして(メタ)アクリル系樹脂フィルムを得た。
 得られたフィルムの表面粗さRaとアンチブロッキング性を前述と同様の方法で測定した。その結果、得られたフィルムの表面粗さRaは3.87nmであり、実施例3のフィルムの表面粗さRa(5.98nm)よりも低かった。また、得られたフィルムのアンチブロッキング性は△であり、実施例3のフィルムのアンチブロッキング性(○)よりも低かった。これらのことから、(メタ)アクリル系樹脂の分子量が高いほうが、製膜時の膜状物の表面に硬度が適度に高い凹凸をさらに形成しやすく、得られるフィルムの表面粗さRaを高めやすいこと、それによりアンチブロッキング性もさらに高めうることがわかる。
 本出願は、2018年7月31日出願の特願2018-144429に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、溶液流延方式で製膜されても、十分なアンチブロッキングを有する(メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法を提供することができる。

Claims (10)

  1.  メタクリル酸メチルに由来する構造単位と、それと共重合可能な前記メタクリル酸メチル以外の共重合モノマーに由来する構造単位とを含み、かつ下記(1)および(2)を満たす(メタ)アクリル系樹脂と、
     (1)前記共重合モノマーのうち分子量が最大の共重合モノマーの、前記メタクリル酸メチルに対する分子量比が、0.5~2.5である
     (2)ガラス転移温度が、115~160℃である
     ゴム粒子と、を含む(メタ)アクリル系樹脂フィルムであって、
     35mm×2mmの大きさに切り出して、50℃の水に90分間浸漬したときの反りの曲率として表される反り量は、2~15(1/m)である、
     (メタ)アクリル系樹脂フィルム。
  2.  前記分子量比は、1.5以上である、
     請求項1に記載の(メタ)アクリル系樹脂フィルム。
  3.  前記ガラス転移温度は、125℃以上である、
     請求項1または2に記載の(メタ)アクリル系樹脂フィルム。
  4.  前記共重合モノマーに由来する構造単位は、シクロ環を有する(メタ)アクリル酸エステル、およびマレイミド類からなる群より選ばれる第1共重合モノマーに由来する構造単位を含む、
     請求項1~3のいずれか一項に記載の(メタ)アクリル系樹脂フィルム。
  5.  前記共重合モノマーに由来する構造単位は、ニトリル基、アミド基、イミド基、およびカルボキシル基からなる群より選ばれる極性基と、エチレン性不飽和結合とを有する第2共重合モノマーに由来する構造単位をさらに含む、
     請求項4に記載の(メタ)アクリル系樹脂フィルム。
  6.  前記ゴム粒子の含有量は、前記(メタ)アクリル系樹脂に対して15質量%以下である、
     請求項1~5のいずれか一項に記載の(メタ)アクリル系樹脂フィルム。
  7.  ガラス転移温度が80℃以上の有機微粒子をさらに含む、
     請求項1~6のいずれか一項に記載の(メタ)アクリル系樹脂フィルム。
  8.  JIS B 0601-2001に準拠して測定される表面粗さRaは、5~8nmである、
     請求項1~7のいずれか一項に記載の(メタ)アクリル系樹脂フィルム。
  9.  請求項1~8のいずれか一項に記載の(メタ)アクリル系樹脂フィルムからなる、
     光学フィルム。
  10.  メタクリル酸メチルに由来する構造単位と、それと共重合可能な前記メタクリル酸メチル以外の共重合モノマーに由来する構造単位とを含み、かつ下記(1)および(2)を満たす(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含むドープを得る工程と、
     (1)前記共重合モノマーのうち分子量が最大の共重合モノマーの、前記メタクリル酸メチルに対する分子量比が0.5~2.5である
     (2)ガラス転移温度が115~160℃である
     前記ドープを支持体上に流延し、乾燥および剥離する工程と、を含む、(メタ)アクリル系樹脂フィルムの製造方法。
PCT/JP2019/029723 2018-07-31 2019-07-30 (メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法 WO2020027078A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217000838A KR20210020090A (ko) 2018-07-31 2019-07-30 (메트)아크릴계 수지 필름 및 광학 필름, (메트)아크릴계 수지 필름의 제조 방법
JP2020533552A JP7298617B2 (ja) 2018-07-31 2019-07-30 (メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法
KR1020237002886A KR20230021157A (ko) 2018-07-31 2019-07-30 (메트)아크릴계 수지 필름 및 광학 필름, (메트)아크릴계 수지 필름의 제조 방법
CN201980050755.3A CN112513150B (zh) 2018-07-31 2019-07-30 (甲基)丙烯酸系树脂膜和光学膜、(甲基)丙烯酸系树脂膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144429 2018-07-31
JP2018144429 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027078A1 true WO2020027078A1 (ja) 2020-02-06

Family

ID=69232245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029723 WO2020027078A1 (ja) 2018-07-31 2019-07-30 (メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法

Country Status (4)

Country Link
JP (1) JP7298617B2 (ja)
KR (2) KR20210020090A (ja)
CN (1) CN112513150B (ja)
WO (1) WO2020027078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149421A1 (ja) * 2022-02-07 2023-08-10 株式会社カネカ フレキシブルディスプレイ用の透明樹脂基材、及びハードコートフィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128995A1 (ja) * 2014-02-27 2015-09-03 コニカミノルタ株式会社 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
WO2015141340A1 (ja) * 2014-03-18 2015-09-24 コニカミノルタ株式会社 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
US20160245970A1 (en) * 2013-09-30 2016-08-25 Lg Chem, Ltd. Resin composition for optical film, optical film formed using same, and polarizing plate and image display device comprising same
JP2017101230A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP2017125185A (ja) * 2016-01-07 2017-07-20 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP2017155142A (ja) * 2016-03-02 2017-09-07 コニカミノルタ株式会社 アクリル系樹脂フィルム、偏光板及び液晶表示装置
JP2017179355A (ja) * 2016-03-29 2017-10-05 旭化成株式会社 メタクリル系樹脂組成物、及び成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229501A (ja) 2008-03-19 2009-10-08 Konica Minolta Opto Inc 光学フィルムとその製造方法、偏光板及び表示装置
TWI633147B (zh) * 2013-11-25 2018-08-21 Kuraray Co., Ltd. 丙烯酸樹脂薄膜及其製造方法
JP6328499B2 (ja) * 2014-06-23 2018-05-23 株式会社クラレ メタクリル系樹脂組成物、成形体、樹脂フィルム、偏光子保護フィルム、および位相差フィルム
JP6424084B2 (ja) * 2014-12-17 2018-11-14 株式会社クラレ フィルム及びフィルムの製造方法
JP2017052920A (ja) 2015-09-11 2017-03-16 株式会社カネカ アクリル系樹脂組成物およびその成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160245970A1 (en) * 2013-09-30 2016-08-25 Lg Chem, Ltd. Resin composition for optical film, optical film formed using same, and polarizing plate and image display device comprising same
WO2015128995A1 (ja) * 2014-02-27 2015-09-03 コニカミノルタ株式会社 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
WO2015141340A1 (ja) * 2014-03-18 2015-09-24 コニカミノルタ株式会社 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
JP2017101230A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP2017125185A (ja) * 2016-01-07 2017-07-20 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP2017155142A (ja) * 2016-03-02 2017-09-07 コニカミノルタ株式会社 アクリル系樹脂フィルム、偏光板及び液晶表示装置
JP2017179355A (ja) * 2016-03-29 2017-10-05 旭化成株式会社 メタクリル系樹脂組成物、及び成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149421A1 (ja) * 2022-02-07 2023-08-10 株式会社カネカ フレキシブルディスプレイ用の透明樹脂基材、及びハードコートフィルム

Also Published As

Publication number Publication date
JP7298617B2 (ja) 2023-06-27
JPWO2020027078A1 (ja) 2021-08-26
CN112513150A (zh) 2021-03-16
KR20210020090A (ko) 2021-02-23
CN112513150B (zh) 2023-08-22
KR20230021157A (ko) 2023-02-13

Similar Documents

Publication Publication Date Title
JP4686261B2 (ja) 偏光子保護フィルムおよびその製造方法、ならびにそれを用いた偏光板
US11421060B2 (en) Dope solution for preparing optical film and optical film using the same
JP5574787B2 (ja) 樹脂組成物及びその製造方法、成型体、フィルム、光学用フィルム、偏光子保護フィルム、偏光板
WO2020027085A1 (ja) 光学フィルム、偏光板、および光学フィルムの製造方法
JP7298617B2 (ja) (メタ)アクリル系樹脂フィルムおよび光学フィルム、(メタ)アクリル系樹脂フィルムの製造方法
KR102166417B1 (ko) 아크릴계 광학필름 및 이의 제조방법
JP7314942B2 (ja) 光学フィルム、偏光板保護フィルムおよび偏光板
CN112513698B (zh) 光学膜、偏振片保护膜、光学膜的卷体以及光学膜的制造方法
TW201315760A (zh) 光學樹脂材料、光學樹脂材料的製造方法、光學膜片的製造方法、顯示器用光學膜片、液晶顯示器用光學膜片、偏光板保護膜片、光學膜片、偏光面光源裝置、透鏡、光屏、光學零件以及光路徑中配置元件
JP2009041007A (ja) 光学等方性アクリル樹脂フィルムの製造方法およびその製造方法
JP7314988B2 (ja) 光学フィルム、偏光板、光学フィルムの製造方法
WO2020203833A1 (ja) 光学フィルム、偏光板および光学フィルムの製造方法
JP7379933B2 (ja) 光学フィルム用ドープの製造方法および光学フィルムの製造方法
WO2020166682A1 (ja) 光学フィルム、偏光板、光学フィルムの製造方法
KR102579527B1 (ko) 광학 필름, 위상차 필름, 편광판 및 액정 표시 장치
JP5664736B2 (ja) 光学補償フィルム
KR102122723B1 (ko) 아크릴계 광학필름 및 이의 제조방법
KR102260108B1 (ko) 아크릴계 광학필름 및 이의 제조방법
JP5483935B2 (ja) 偏光子保護フィルム、及びその製造方法
WO2024122626A1 (ja) アクリル樹脂粉粒体およびフィルム
JP5440108B2 (ja) 光学補償フィルム
CN108369312A (zh) 光学补偿膜及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533552

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000838

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844704

Country of ref document: EP

Kind code of ref document: A1