WO2020024226A1 - 地块作业的路线规划和作业方法、装置、设备以及介质 - Google Patents

地块作业的路线规划和作业方法、装置、设备以及介质 Download PDF

Info

Publication number
WO2020024226A1
WO2020024226A1 PCT/CN2018/098359 CN2018098359W WO2020024226A1 WO 2020024226 A1 WO2020024226 A1 WO 2020024226A1 CN 2018098359 W CN2018098359 W CN 2018098359W WO 2020024226 A1 WO2020024226 A1 WO 2020024226A1
Authority
WO
WIPO (PCT)
Prior art keywords
parcel
plot
route
point
parcels
Prior art date
Application number
PCT/CN2018/098359
Other languages
English (en)
French (fr)
Inventor
萧延强
金晓会
Original Assignee
广州极飞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技有限公司 filed Critical 广州极飞科技有限公司
Priority to PCT/CN2018/098359 priority Critical patent/WO2020024226A1/zh
Priority to CN201880023862.2A priority patent/CN110692026B/zh
Publication of WO2020024226A1 publication Critical patent/WO2020024226A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present disclosure relates to the field of communication technology, for example, to a route planning and operation method, device, equipment, and medium for plot operations.
  • the operation method of automatic route planning mainly includes: surveying and plotting the parcels through surveying and mapping sensors, generating parcel information and parcel obstacle information according to the surveying and mapping data; uploading the mapped parcel information and obstacle information to the server; The server downloads this information, generates a route based on the information, sends it to the mobile work equipment, and controls the mobile work equipment to work along the route.
  • the primary working range of the movable working equipment is fixed.
  • the battery can last for a limited time, and the medicine tank can hold a limited amount of liquid medicine, so the drone can take a fixed number of acres at a time, such as an unmanned The aircraft can spray 20 acres at a time.
  • the movable work equipment can perform multiple operations to complete the operation of the entire plot. For example, a drone can spray a part of a plot at one takeoff and landing, and spray a large plot, such as a 60-acre plot, with 3 sprays.
  • a drone can spray a part of a plot at one takeoff and landing, and spray a large plot, such as a 60-acre plot, with 3 sprays.
  • the mobile work equipment needs to complete the work on one plot before being controlled by the operator to go to the next plot.
  • the movable working equipment needs to be moved to the starting point of the plot multiple times, which wastes energy and is relatively inefficient.
  • land plots are usually 0.5 acres to 3 acres.
  • One drone is enough to spray the first plot once. The usual operation flow is to take off to the starting point of the first plot and finish the first plot. Then return to the starting point, and then take off by the operator to spray the second plot.
  • the drone needs to take off and land multiple times to the starting point.
  • Embodiments of the present disclosure provide a route planning and operation method, device, equipment, and medium of a plot operation, which can avoid waste of energy caused by movable operation equipment that needs to be controlled by an operator to move to the starting point of the plot multiple times, and improve Efficiency of mobile work equipment.
  • a route planning method for plot operations includes: obtaining a plot set to be operated, where the plot set includes plot information of at least two plots; and according to the plot set, planning via the plot set Merge route for at least two plots.
  • an embodiment of the present disclosure also provides a method for operating a plot, including:
  • the set of plots includes at least two plots.
  • the merge operation route is a route that passes through at least two plots in the set of plots. Merge at least two plots.
  • An embodiment of the present disclosure further provides a route planning device for a parcel operation, including: a parcel set acquisition module configured to acquire a parcel set to be operated, and the parcel set includes parcel information of at least two parcels; a route The planning module is configured to: according to the parcel set, plan a merge operation route of at least two parcels in the parcel set.
  • An embodiment of the present disclosure further provides a plot operation device, including: a route acquisition module configured to: obtain a merge operation route corresponding to a set of plots to be operated, where the plot set includes at least two plots, and the merge operation route is The route of at least two parcels in the parcel set; the merge operation module is configured to perform a merge operation on at least two parcels in the parcel set according to the merge operation route.
  • a route acquisition module configured to: obtain a merge operation route corresponding to a set of plots to be operated, where the plot set includes at least two plots, and the merge operation route is The route of at least two parcels in the parcel set
  • the merge operation module is configured to perform a merge operation on at least two parcels in the parcel set according to the merge operation route.
  • An embodiment of the present disclosure further provides a movable job device including: at least one processor; a storage device for storing at least one program; and when the at least one program is executed by the at least one processor, the at least one processor implements the foregoing method.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and the computer program implements the foregoing method when executed by a processor.
  • FIG. 1 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for obtaining a parcel in-point of a parcel centralized parcel according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for acquiring a parcel entry point of a parcel centralized parcel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a route planning method for plot operations according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for obtaining a parcel entry point of a parcel centralized parcel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of a route planning method for plot operations according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a plot operation method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a plot operation method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a route planning device for plot operations according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a plot operation device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a movable working device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure. This embodiment can be applied to the situation of route planning for plot operations.
  • the method can be implemented by a route planning device for plot operations.
  • the device may be implemented in at least one of software and hardware, and the device may be configured in a movable working device, such as a drone, a tractor, and a ground robot. As shown in FIG. 1, the method includes steps 101 and 102.
  • step 101 a parcel set to be operated is acquired, and the parcel set includes parcel information of at least two parcels.
  • the movable work equipment may obtain the set of parcels to be operated by acquiring parcel information of at least two parcels input by the user.
  • the parcel information may be position information of the parcel, including a boundary of the parcel.
  • step 102 a merge operation route of at least two parcels in the parcel set is planned according to the parcel set.
  • a merge operation route is planned through at least two parcels in the parcel set.
  • the movable work equipment can complete the work tasks of at least two plots in one operation according to the combined work route.
  • the merge operation route may be a merge operation route of all the parcels in the lot set, or a merge operation route of some parcels in the lot set.
  • the plot set includes the plot information of at least two plots, and then according to the plot set, planning at least two plots via the plot set
  • the combined operation route to ensure that the movable work equipment can complete the task of at least two plots in one operation according to the combined operation route, avoiding the need for the operator to control the multiple moves to the plot due to the movable work equipment
  • the starting point leads to waste of energy and improves the efficiency of mobile work equipment.
  • obtaining the set of plots to be operated may include: obtaining the set of plots to be operated, and obstacle information matching each of the plots in the set of plots.
  • planning a merge operation route of at least two parcels in the parcel set may include: planning a merge operation route of at least two parcels in the parcel set according to the parcel set and the obstacle information.
  • FIG. 2 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure.
  • step 102 may include: determining a parcel operation sequence corresponding to the parcel set; planning a transitional connection subroutine and at least two parcel operation subroutines according to the parcel operation sequence and parcel information; According to the operation order of the parcels, the transition connection subroutine and the operation subroutines in the parcel are combined to form a merged operation route.
  • the method includes steps 201 to 204.
  • step 201 a set of plots to be operated is acquired, and the set of plots includes plot information of at least two plots.
  • the set of plots to be operated after obtaining the set of plots to be operated, it further includes: if it is determined that the set of plots includes at least two short-distance plots whose relative distance is less than or equal to a first set distance threshold, performing the short-distance plots The merge process is performed to obtain a first merged parcel; a blank transition area corresponding to at least two short-distance parcels in the first merged parcel is recorded; and the first merged parcel is used to replace the short-distance parcel in the parcel set.
  • the first set distance threshold is a threshold for determining at least two short-distance parcels that can be merged into one parcel.
  • the first merged parcel is a parcel obtained by merging at least two short-distance parcels with a relative distance less than or equal to a first set distance threshold. Therefore, the operation efficiency is improved by merging the plots with relatively close distances into one plot.
  • the set of parcels to be operated may further include: if it is determined that the set of parcels includes at least two overlapping parcels with overlapping areas, merge the overlapping parcels to obtain a second merge Parcels; Replace overlapping parcels in the parcel set with the second merged parcel.
  • Overlapping parcels refer to at least two parcels of parcels with areas overlapping each other.
  • the second merged parcel is a parcel obtained by merging overlapping parcels with overlapping areas in the parcel set. In this way, the overlapping parcels are merged, and the second merged parcels are used to replace the overlapping parcels in the parcel set, thereby improving the operation efficiency.
  • the merge processing operation may be to obtain a parcel boundary corresponding to each of the overlapping parcels, and use the obtained union of each parcel boundary as the second merged parcel.
  • acquiring the set of plots to be operated may include: receiving at least two candidate plots to be selected by the user; determining whether the alternative plot includes a relative distance greater than or equal to a second set distance threshold At least two alternative land parcels: if at least two alternative parcels with a relative distance greater than or equal to the second set distance threshold are included, the prompt information is pushed; if not including the relative distance greater than or equal to the second set distance threshold At least two alternative parcels of, then a parcel set is formed according to at least two alternative parcels.
  • the second set distance threshold is a threshold for judging whether the distances of the at least two candidate parcels to be operated selected by the user are suitable for performing the merge operation.
  • the distance between at least two candidate plots whose relative distance is greater than or equal to the first set distance threshold is too long, which is not suitable for merging.
  • the user is notified by pushing a prompt message of at least two backup plots in the candidate plot that are not suitable for merging. Selection of land.
  • the prompt message could be "Not recommended for centralized work.”
  • At least two alternative parcels whose relative distance is less than a set distance threshold are suitable for merging operations, and a parcel set is directly formed based on at least two alternative parcels. Therefore, by judging at least two candidate parcels to be operated by the user according to the set distance threshold, the candidate parcels that are unsuitable for the merge operation due to the relative distance are screened out.
  • step 202 a parcel operation sequence corresponding to the parcel set is determined.
  • the movable work equipment sequentially completes the work tasks of at least two plots in the plot set according to the plot operation sequence.
  • determining a parcel operation sequence corresponding to a parcel set includes at least one of the following: determining a parcel operation corresponding to a parcel set according to a job start point, a job end point, and parcel information of at least two parcels. order. Obtain the parcel job order corresponding to the parcel set input by the user; determine the alternative parcel job order corresponding to the parcel set according to the job start point, end point, and parcel information of at least two parcels, and obtain the user input The adjustment result of the alternative parcel work order is used as the parcel work order corresponding to the parcel set.
  • the starting point of the job is the position where the mobile work equipment starts the job in one job task.
  • the job end point is where the movable work equipment stops the job.
  • the distance between the plot and the starting point of the plot can be determined according to the plot starting point and the plot information of at least two plots. It is also possible to determine the distance of the parcel from the starting point of the work according to the end of the work and the parcel information of at least two parcels, and sort the parcels from the distance of the end of the work from the largest to the smallest.
  • step 203 according to the operation order of the parcels and the parcel information, a transitional connection subroutine and at least two operation subroutines in the parcel are planned.
  • the transitional connection sub-route is a route in which the movable working equipment moves from the current working plot to the next plot. According to the operation order of the parcels and the parcel information, the sub-routes for the transition connection between the parcels can be determined in turn.
  • the working sub-route in the plot is the working route of the mobile work equipment in the plot.
  • step 204 the transition connection subroutine and the operation subroutine in the parcel are combined in accordance with the operation order of the parcel to form a merged operation route.
  • the planned transitional connection subroutine is combined with the operation subroutines in the plot to form a merged operation route.
  • a transition connection sub-route and at least two sub-routes within the parcel are planned , And then combine the transition connection subroutine with the operation subroutine in the parcel to form a merged operation route in accordance with the operation order of the parcel.
  • FIG. 3 is a schematic flowchart of a route planning method for plot operations provided by an embodiment of the present disclosure.
  • step 203 may include: acquiring a parcel in the parcel set as the current operation parcel according to the parcel operation order; and planning to correspond to the current operation parcel according to the parcel entry point of the current operation parcel.
  • the method includes steps 301 to 307.
  • step 301 a set of parcels to be operated is acquired, and the parcel set includes parcel information of at least two parcels.
  • step 302 a parcel operation sequence corresponding to a parcel set is determined.
  • step 303 a parcel is acquired in the parcel set as the current operation parcel according to the parcel operation order.
  • one parcel is sequentially acquired in the parcel set as the currently operating parcel according to a predetermined parcel operation order.
  • step 304 according to the parcel-in point of the currently-operated parcel, a work sub-route within the parcel corresponding to the currently-operated parcel is planned, and the parcel-out point corresponding to the currently-operated parcel is determined.
  • the entry point of the plot is the position where the movable work equipment enters the currently operating plot and starts work.
  • the point of the plot is the position where the movable work equipment leaves the currently operating plot and stops the work.
  • the work sub-route within the plot is the work route during the operation of the movable work equipment from the start point of the plot to the stop point of the plot in the currently operating plot.
  • step 305 it is determined whether there is a next operation parcel adjacent to the currently operated parcel in the parcel set according to the order of the parcel operations: if there is a next operation parcel adjacent to the currently operated parcel in the parcel set , Step 306 is performed; if there is no next operation plot adjacent to the current operation plot in the plot set, step 307 is performed.
  • step 306 a transition connecting sub-route between the plots is planned according to the plot out point of the currently operated plot and the plot in point of the next operation plot. After step 306 is completed, go back to step 303.
  • step 307 in accordance with the order of operation of the parcels, the transitional connection subroutine and the operation subroutines in the parcel are combined to form a merged operation route.
  • the operation sub-route within the plot corresponding to the currently operated plot is determined, and the plot corresponding to the currently operated plot is determined.
  • Out point when there is a next operation plot adjacent to the currently operated plot in the plot set, a plot is planned based on the out point of the currently operated plot and the in point of the next operation plot.
  • the sub-routes for the transition between blocks can be planned based on the plot's in-points in turn, and the operation sub-routes and plot-out points in the plots can be planned out, and based on the plot-in points and plot-out points of each plot in turn Plan transitional sub-routes between parcels.
  • a transitional connection subroutine and at least two parcels of operation subroutines are planned, and the method further includes: according to the operation starting point and the first operation parcel corresponding to the parcel set.
  • the parcel entry point determines a transitional connection sub-route from the starting point of the operation to the first operation parcel.
  • the starting point of the job is the position where the mobile work equipment starts the job in one job task.
  • the first job parcel is the parcel corresponding to the job task.
  • a line from the starting point of the operation to the first position is determined based on the starting point of the operation and the starting point of the first operating plot corresponding to the set of blocks Sub-routes for transitional connection of job plots. You can directly connect the starting point of the job and the parcel in point of the first job parcel corresponding to the parcel set. The resulting line segment is the transition connection sub-route.
  • the starting point of the operation is the same as the position of the entry point of the first operation block corresponding to the block set, the movable work equipment directly starts the operation from the entry point of the first operation block corresponding to the block set.
  • a transitional connection subroutine and at least two parcels within the parcel are planned, and the method further includes: according to the parcel set corresponding to the last operation parcel. The exit point and the end point of the operation determine a transitional connection sub-route from the last operation plot to the end point of the operation.
  • the job end point is the position where the movable work equipment stops the job in one job task.
  • the last job plot is the last plot in the plot set corresponding to the job task.
  • an end-of-end The transition sub-route from the job site to the job end point. You can directly connect the plot out point and the end point of the last operation plot corresponding to the plot set, and the resulting line segment is the transition connection sub-route.
  • the end point of the operation is the same as the position of the out-point of the last operation plot corresponding to the set of plots, the movable work equipment directly stops the operation at the out-point of the last operation plot corresponding to the set of plots.
  • FIG. 4 is a schematic flowchart of a method for acquiring a parcel in-point of a parcel centralized parcel according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes steps 401 and 402.
  • a target parallel line is obtained from a plurality of traversed parallel lines corresponding to the target plot according to the way of parallel lines traversing the target plot.
  • the target parcel is a parcel in which the parcel in-point acquisition is performed in the current parcel.
  • the way for parallel lines to traverse the target parcel is to traverse the parcels through the parallel lines inside the target parcel to obtain multiple traversed parallel lines corresponding to the target parcel.
  • obtaining a target parallel line from a plurality of traversed parallel lines corresponding to the target plot includes: determining whether the target plot is the first operation plot: if it is the first operation plot, obtaining the starting point of the operation as the first Target reference point; if it is not the first operation plot, then the plot reference point of the previous plot adjacent to the target plot is taken as the first target reference point; among the multiple traversed parallel lines corresponding to the target plot, An ergodic parallel line that matches the boundary line of each of the target parcels is screened out. In each traversed parallel line that is selected, a traversal parallel line closest to the first target reference point is obtained as the target parallel line.
  • the first target reference point is a reference position point for filtering out the target parallel lines among the traversed parallel lines.
  • the target parallel line is a traversal parallel line closest to the first target reference point.
  • the job starting point is obtained as the first target reference point.
  • traversed parallel lines corresponding to the target parcel traversed parallel lines that match the boundary line of each parcel of the target parcel are respectively selected.
  • a traversed parallel line closest to the job start point is obtained as the target parallel line.
  • the target parcel is not the first operation parcel, obtain the parcel out point of the previous parcel adjacent to the target parcel as the first target reference point.
  • traversed parallel lines that match the boundary line of each parcel of the target parcel are respectively selected.
  • the traversed parallel line that is closest to the point of the plot of the previous plot is taken as the target parallel line.
  • step 402 an end point of the target parallel line is used as a parcel entry point of the target parcel.
  • an end point closest to the target parallel line and the first target reference point may be used as a parcel entry point of the target parcel.
  • the target parallel line is obtained from a plurality of traversed parallel lines corresponding to the target parcel; One end point of the target parallel line is used as the parcel entry point of the target parcel.
  • the parcel entry point of the target parcel can be determined according to the position information between the parcels in the way that the parallel line traverses the target parcel.
  • FIG. 5 is a schematic flow chart of a route planning method for a lot operation provided by an embodiment of the present disclosure.
  • the lot entry point in this embodiment is obtained from the lot entry point according to the lot concentration shown in FIG. 4 Method.
  • the method includes steps 501 to 508.
  • step 501 a parcel set to be operated is acquired, and the parcel set includes parcel information of at least two parcels.
  • step 502 a parcel operation sequence corresponding to a parcel set is determined.
  • step 503 one parcel is acquired in the parcel set as the current operation parcel according to the parcel operation order.
  • step 504 according to the way of traversing the currently operated parcel according to the parallel line, starting from the target parallel line where the parcel entry point of the currently operated parcel is the starting parallel line, each adjacent traversal in the currently operated parcel is parallel.
  • the lines are connected in sequence from end to end to form a sub-routine for operations within the plot corresponding to the currently operating plot.
  • the target parallel line where the entry point of the current operation block is located is the starting parallel line, and each adjacent traversal parallel line in the current operation block is sequentially connected end to end to form a corresponding line with the current operation block. Subroutine within the plot.
  • step 505 the end point of the working sub-route in the parcel is used as the parcel out point corresponding to the currently operated parcel.
  • step 506 it is determined whether there is a next operation parcel adjacent to the currently operated parcel in the parcel set according to the order of the parcel operations: if there is a next operation parcel adjacent to the currently operated parcel in the parcel set , Step 507 is performed; if there is no next operation plot adjacent to the current operation plot in the plot set, step 508 is performed.
  • step 507 a transition connecting sub-route between the plots is planned according to the plot out point of the currently operated plot and the plot in point of the next operation plot. After step 507 is completed, go back to step 503.
  • step 508 the transition connection subroutine and the operation subroutine in the parcel are combined in accordance with the operation order of the parcel to form a merged operation route.
  • FIG. 6 is a schematic flowchart of a method for obtaining a parcel in-point of a parcel centralized parcel according to an embodiment of the present disclosure. As shown in FIG. 6, the method includes steps 601 and 602.
  • step 601 the target point is obtained from a plurality of traversal points corresponding to the target plot according to the manner in which the multi-segment traverses the target plot.
  • the method of traversing the target lot by the multi-segment refers to traversing the lot through the end-to-end of the multi-segment inside the target lot, and the multiple traversing line segments and corresponding traversal points corresponding to the target lot can be obtained. If the target plot is the first job plot, among the multiple traversal points corresponding to the target plot, the traversal point closest to the job start point is obtained as the target point. If the target parcel is not the first operation parcel, among the multiple traversal points corresponding to the target parcel, obtain the traversal point closest to the parcel output point of the previous parcel as the target point.
  • step 602 the target point is used as the parcel-in point of the target parcel.
  • the target point is obtained from a plurality of traversal points corresponding to the target parcel by traversing the target parcel according to the adopted multi-line segment, and the target is The point is the entry point of the target parcel.
  • the entry point of the target parcel can be determined according to the position information between the parcels in a manner of traversing the target parcel in multiple lines.
  • FIG. 7 is a schematic flowchart of a route planning method for a lot operation provided by an embodiment of the present disclosure.
  • the lot entry point in this embodiment is obtained from the lot entry point according to the lot concentration shown in FIG. 6 Method. As shown in FIG. 7, the method includes steps 701 to 708.
  • step 701 a parcel set to be operated is acquired, and the parcel set includes parcel information of at least two parcels.
  • step 702 a parcel operation sequence corresponding to a parcel set is determined.
  • step 703 a parcel is acquired in the parcel set as the current operation parcel according to the parcel operation order.
  • step 704 according to the way of traversing the current operation plot according to the multi-line segment, starting from the input point of the current operation plot, each adjacent traversal point in the current operation plot is sequentially connected to form the current operation plot. Sub-routes within the plot corresponding to the plot.
  • the starting point of the parcel of the current operation is used as a starting point, and each adjacent traversal point in the parcel of the current operation is sequentially connected to form a sub-route of operations in the parcel corresponding to the parcel of the current operation.
  • step 705 the end point of the operation sub-route in the parcel is used as the parcel out point corresponding to the currently operated parcel.
  • step 706 it is determined whether there is a next operation plot adjacent to the currently operated plot in the plot set according to the order of the plot operations: if there is a next operation plot adjacent to the currently operated plot in the plot set , Step 707 is performed; if there is no next operation plot adjacent to the current operation plot in the plot set, step 708 is performed.
  • step 707 a transition sub-route between the plots is planned according to the plot out point of the currently operated plot and the plot in point of the next operation plot. After step 707 is completed, go back to step 703.
  • step 708 the transition connection sub-route is combined with the operation sub-route within the plot in accordance with the order of the plot operation to form a merged operation route.
  • each adjacent traversal in the currently operated plot is traversed by using the method of traversing the currently operated plot according to the adopted multi-line segments, starting from the plot input point of the currently operated plot.
  • the points are connected in order to form the working sub-route within the parcel corresponding to the currently operating parcel, and the end point of the working sub-route within the parcel is used as the exit point of the parcel corresponding to the currently operating parcel.
  • the way of the parcels determines the operation sub-routes and parcels out points in the parcels corresponding to the currently operated parcels.
  • FIG. 8 is a schematic flowchart of a method for obtaining a parcel in-point of a parcel centralized parcel according to an embodiment of the present disclosure. As shown in FIG. 8, the method includes steps 801 and 802.
  • step 801 a traversing spiral line corresponding to the target plot is obtained according to the manner of traversing the target plot by the spiral.
  • the method of traversing the target parcel by the spiral line refers to traversing the parcel by the spiral line inside the target parcel to obtain the traversing spiral line corresponding to the target parcel.
  • step 802 the parcel entry point of the target parcel is determined according to the traversal spiral.
  • determining the parcel entry point of the target plot according to the traversal spiral includes: judging whether the target parcel is the first job parcel: if it is the first job parcel, obtaining the starting point of the job as the second target reference point; If it is not the first operation parcel, then the parcel exit point of the previous parcel adjacent to the target parcel is obtained as the second target reference point; among the spiral start point and the spiral end point of the traversal spiral, the second distance is selected. The nearest endpoint of the target reference point is the parcel entry point of the target parcel.
  • the second target reference point is a reference position point for traversing the helix to determine the entry point of the parcel in the target parcel. If the target plot is the first job plot, obtain the job start point as the second target reference point. From the spiral start point and the spiral end point of the traversal spiral, select the end point closest to the job start point as the target plot block. Into the point. If the target parcel is not the first operation parcel, obtain the parcel out point of the previous parcel adjacent to the target parcel as the second target reference point, and select from the starting point of the spiral traversing the spiral and the end of the spiral. The end point closest to the exit point of the previous parcel adjacent to the target parcel is the parcel in point of the target parcel.
  • the traversal spiral corresponding to the target parcel is obtained by traversing the target parcel according to the adopted spiral, and the target parcel is determined according to the traversal spiral.
  • the block entry point of the block can be determined by traversing the target block in a spiral manner, and determining the block entry point of the target block according to the position information between the blocks.
  • FIG. 9 is a schematic flow chart of a route planning method for a lot operation provided by an embodiment of the present disclosure.
  • the lot entry point in this embodiment is obtained from the lot entry point according to the lot concentration shown in FIG. 8 Method. As shown in FIG. 9, the method includes steps 901 to 910.
  • step 901 a parcel set to be operated is acquired, and the parcel set includes parcel information of at least two parcels.
  • step 902 a parcel operation sequence corresponding to the parcel set is determined.
  • step 903 one parcel is acquired in the parcel set as the current operation parcel according to the parcel operation order.
  • step 904 the traversing spiral line corresponding to the current operation parcel is used as the operation sub-route within the parcel corresponding to the current operation parcel according to the manner of traversing the current operation parcel according to the spiral.
  • step 905 determine the position of the entry point of the currently operating plot. If the currently operating plot uses the starting point of the traversal spiral as the entry point of the parcel, perform step 906; if the currently operating plot is to traverse the end of the spiral As the parcel entry point, step 907 is performed.
  • step 906 the end point of the traversing spiral is used as the parcel out point corresponding to the currently operated parcel. After step 906 is completed, step 908 is performed.
  • step 907 the starting point of the traversing spiral is used as the parcel out point corresponding to the currently operated parcel. After step 908 is completed, step 908 is performed.
  • step 908 it is determined whether there is a next operation parcel adjacent to the currently operated parcel in the parcel set according to the order of the parcel operations: if there is a next operation parcel adjacent to the currently operated parcel in the parcel set If yes, go to step 909; if there is no next operation plot adjacent to the currently operating plot in the plot set, then proceed to step 910.
  • step 909 a transition connecting sub-route between the plots is planned according to the plot out point of the currently operated plot and the plot in point of the next operation plot. After step 909 is completed, go back to step 903.
  • step 910 the transition connection subroutine and the operation subroutine in the parcel are combined in accordance with the operation order of the parcel to form a merged operation route.
  • the traversing spiral corresponding to the currently operated plot is used as a subroutine for the operation in the plot corresponding to the currently operated plot. .
  • FIG. 10 is a schematic flowchart of a route planning method for plot operations according to an embodiment of the present disclosure.
  • step 203 may include: determining the plot operation sequence, the start point, the end point, and the plot information to determine Get out the plot in point corresponding to each plot and the plot out point corresponding to each plot; according to the starting point, end point of the job, and the plot in point corresponding to each plot and each Determine the sub-routes of the transitional connections corresponding to the respective plot out points of the plots; determine at least two plots based on the plot in points corresponding to each plot and the plot out points corresponding to each plot respectively In-block job subroutine.
  • the method includes steps 1001 to 1006.
  • step 1001 a parcel set to be operated is acquired, and the parcel set includes parcel information of at least two parcels.
  • step 1002 a parcel operation sequence corresponding to the parcel set is determined.
  • step 1003 a parcel input point corresponding to each parcel and a parcel output point corresponding to each parcel are determined according to a parcel operation sequence, a work start point, a work end point, and parcel information.
  • a parcel in point and a parcel out point corresponding to each parcel are determined in advance.
  • step 1004 the transition connection sub-route is determined according to the starting point of the operation, the end point of the operation, the in-point of the plot corresponding to each plot, and the out-point of the plot corresponding to each plot.
  • the starting point of the operation is connected to the entry point of the first operation block, the connecting point of the block and the previous block adjacent to the block, and the connecting point of the last operation block is connected to the end point of the operation.
  • step 1005 according to a plot in point corresponding to each plot and a plot out point corresponding to each plot, at least two work sub-routes in the plot are determined.
  • a parallel line traverses the target parcel
  • a multi-line segment traverses the target parcel
  • a spiral traverses the target parcel. Sub-routes within the plot corresponding to each plot.
  • step 1006 the transition connection subroutine is combined with the operation subroutine in the parcel in accordance with the operation order of the parcel to form a merged operation route.
  • a parcel in point and a parcel out point corresponding to each parcel are determined according to a parcel operation sequence, a work start point, a work end point, and parcel information.
  • the starting point, the end of the operation, and the parcel in point and parcel out point corresponding to each parcel determine the transitional connection sub-route; based on the parcel in point and parcel out point corresponding to each parcel, determine Out of at least two sub-routes within the plot, you can first determine the corresponding plot in point and plot out point of each plot, and then determine the plot in and plot out points corresponding to each plot.
  • the transitional connection subroutine and inner operation subroutine corresponding to the set of plots to be operated are output.
  • FIG. 11 is a schematic flowchart of a plot operation method according to an embodiment of the present disclosure. This embodiment is applicable to the situation of plot operations.
  • the method can be performed by a plot operation device, which can be implemented in software and hardware.
  • the device can be configured in a mobile operating device, such as a drone, a tractor, and a ground robot. As shown in FIG. 11, the method includes steps 1101 and 1102.
  • a merge operation route corresponding to a set of plots to be operated is obtained.
  • the set of plots includes at least two plots, and the merge operation route is a route of at least two plots via the set of plots.
  • the merge operation route is a merge operation route planned through at least two parcels in the parcel set according to the parcel information of the at least two parcels in the parcel set.
  • step 1102 a merge operation is performed on at least two parcels in the parcel set according to the merge operation route.
  • the movable work equipment can complete the work tasks of at least two plots in one operation according to the combined work route.
  • the parcel set includes at least two parcels
  • the merge operation route is a route of at least two parcels via the parcel set
  • the merge operation is performed on at least two plots in the plot set to ensure that the movable work equipment can complete the task of at least two plots in one operation according to the merge operation route, which avoids the movable operation.
  • the equipment needs to be controlled by the operator to move to the starting point of the plot multiple times, resulting in waste of energy and improving the operating efficiency of the movable operating equipment.
  • the merged operation route may include: a transition connection sub-route and at least two operation sub-routes within the parcel.
  • step 1102 may include: during the operation of merging the plot sets, if a job interruption condition is detected, recording the current job position as the interruption position and executing the interruption processing strategy; upon detecting that the continued operation condition is satisfied When the current operation position is matched with the transition connection sub-route and the operation sub-route within the parcel; if it is determined that the interruption position is located on the transition connection sub-route, the starting point of the operation sub-route within the next parcel matching the interruption position is obtained as The new operation starting point continues the operation of the parcel set; if it is determined that the interruption position is located in the operation sub-route within the parcel, the interruption position is used as the new operation starting point to continue the operation of the parcel set.
  • the job interruption condition may be a job interruption instruction set by the user in advance, or a job interruption instruction input by the user.
  • the interrupt handling strategy can be to return to the starting point of the job.
  • the resume operation condition may be a resume operation instruction input by the user. Therefore, by recording the current operation position as the interruption position, and determining a new operation starting point to continue the operation on the lot set according to the position information of the interruption position, the operation efficiency can be improved.
  • FIG. 12 is a schematic flowchart of a plot operation method according to an embodiment of the present disclosure.
  • step 1102 may include: during a merge operation, detecting whether the operation is performed to a second merged plot;
  • the second merged parcel is formed by merging at least two short-distance parcels whose relative distance in the parcel is less than or equal to a set distance threshold, and records in advance corresponding to at least two short-distance parcels of the second merged parcel.
  • Blank transition area if it is determined to enter from the parcel area in the second merged parcel to the blank transition area, perform the transition from working state to non-operational state; if it is determined to enter from the blank transition area in the second merged parcel to For the parcel area, the conversion from the non-operational state to the operational state is performed.
  • the method includes steps 1201 to 1205.
  • a merge operation route corresponding to the set of plots to be operated is obtained.
  • the set of plots includes at least two plots, and the merge operation route is a route of at least two plots via the set of plots.
  • step 1202 in the process of merging operation, it is detected whether the operation is performed on the first merged parcel: if the operation is performed on the first merged parcel, step 1203 is performed; if the operation is not performed on the first merged parcel, the process returns to step 1202. .
  • the first merged parcel is formed by merging at least two short-distance parcels in which the relative distance between the parcels is less than or equal to a set distance threshold, and at least two short-distance parcels with the first merged parcel are recorded in advance. Blank transition area corresponding to the block.
  • step 1203 the movement state in the first merged parcel is detected: if it is determined that the parcel area in the first merged parcel enters into the blank transition area, step 1204 is performed; if it is determined that it is in the first merged parcel, If the blank transition area enters the plot area, step 1205 is performed.
  • the blank transition area is an area between at least two short-distance parcels, and the movable work equipment does not need to perform the same operation as the inner area of the parcel in the blank transition area.
  • the mobile operating equipment is a drone that performs plant protection operations on the plot and sprays liquid chemicals. Blank transition areas do not require drug spraying.
  • the process of merging operations it is possible to detect whether the movable work equipment is operating to the first merged parcel and determine the position status of the movable work equipment according to the parcel information of the parcel set and the position information of the movable work equipment: from the first merge
  • the parcel area in the parcel enters the blank transition area
  • the blank transition area in the first merged parcel enters the parcel area, the parcel area located in the first merged parcel, and the Blank transition area.
  • step 1204 a transition from a working state to a non-working state is performed.
  • the transition from the working state to the non-working state is performed. For example, if it is determined that the drone has entered a blank transition area from a parcel area in the first merged parcel, a transition from spraying medicine to stopping spraying is performed.
  • step 1205 a transition from the non-operation state to the operation state is performed.
  • the conversion from the non-operation state to the operation state is performed. For example, if it is determined that the drone has entered a blank area from a blank transition area in the first merged lot, a conversion from stopping spraying to spraying medicine is performed.
  • the first merged parcel is at least two by concentrating the parcels with a relative distance less than or equal to a set distance threshold.
  • Short-distance parcels are merged and a blank transition area corresponding to at least two short-distance parcels of the first merged parcel is recorded in advance; if it is determined that the parcel transition from the parcel area in the first merged parcel to the blank transition Area, perform the transition from operational to non-operational state; if it is determined to enter the blank transition area from the first merged parcel into the parcel region, perform the conversion from non-operational to operational state.
  • the working status of the movable working equipment is switched according to the position information, thereby avoiding wasting resources in a blank area.
  • FIG. 13 is a schematic structural diagram of a route planning device for a plot operation according to an embodiment of the present disclosure. This embodiment is applicable to a situation in which route planning for a plot operation is performed.
  • the device may be implemented in at least one of software and hardware, and the device may be configured in a movable working device, such as a drone, a tractor, and a ground robot.
  • the apparatus may include a parcel set acquisition module 1301 and a route planning module 1302.
  • the parcel set acquisition module 1301 is configured to acquire a parcel set to be operated, and the parcel set includes parcel information of at least two parcels; the route planning module 1302 is configured to plan the land to be passed through according to the parcel set. The merge operation route of at least two parcels in the block set.
  • the parcel set includes parcel information of at least two parcels, and then planning at least two parcels via the parcel set according to the parcel set.
  • the combined operation route to ensure that the movable work equipment can complete the task of at least two plots in one operation according to the combined operation route, avoiding the need for the operator to control the multiple moves to the plot due to the movable work equipment.
  • the starting point leads to waste of energy and improves the efficiency of mobile work equipment.
  • the route planning module 1302 may include: a sequence determination sub-module configured to determine a sequence of plot operations corresponding to a set of plots; a sub-route planning sub-module configured to: according to a sequence of plot operations and plot information, Plan a transition connection sub-route and at least two working sub-routes in the plot; the route combination submodule is set to: combine the transition connecting sub-route with the working sub-routes in the plot in accordance with the order of plot operations to form a merged operation route .
  • the sub-route planning sub-module in this embodiment may include: a parcel acquisition unit configured to acquire a parcel in the parcel set as the current operation parcel according to the parcel operation order; and a first route planning unit configured to: The parcel in point of the currently operating parcel, planning the sub-routes of operations in the parcel corresponding to the currently operating parcel, and determining the parcel out point corresponding to the currently operating parcel.
  • the second route planning unit is set to: According to the operation order of the parcels, it is determined that there is a next operation parcel adjacent to the currently operated parcel in the parcel set, and then according to the parcel out point of the currently operated parcel and the parcel in point of the next operation parcel, plan out A sub-route for the transitional connection between parcels; the operation execution unit is set to: repeatedly perform each of the above operations until the processing of all parcels in the parcel set is completed.
  • the sub-route planning sub-module in this embodiment may further include: a first route determining unit configured to determine a route from the starting point of work to the first place according to the starting point of the operation and the starting point of the first operating block corresponding to the set of blocks. Sub-routes for transitional connection of job plots.
  • the sub-route planning sub-module in this embodiment may further include: a second route determination unit configured to determine a job from the last position according to the plot out point and the end point of the last operation plot corresponding to the plot set. The transition from the plot to the end of the job connects the sub-routes.
  • the apparatus for acquiring a parcel entry point of a parcel centralized parcel may include: a parallel line acquisition module configured to traverse a target parcel according to a parallel line, and traverse parallel lines corresponding to the target parcel in a plurality of parallel lines.
  • a target parallel line is obtained.
  • the first determining module is configured to set an end point of the target parallel line as a parcel entry point of the target parcel.
  • the parallel line acquisition module in this embodiment may include: a parcel judging sub-module configured to judge whether the target parcel is the first operation parcel: a first acquisition sub-module set to: if the first parcel is the first operation parcel, obtaining the starting point of the operation As the first target reference point; the second acquisition sub-module is set to: if it is not the first operation parcel, obtain the parcel output point of the previous parcel adjacent to the target parcel as the first target reference point; parallel lines
  • the screening sub-module is set as follows: out of a plurality of traversed parallel lines corresponding to the target plot, a traversed parallel line that matches the boundary line of each plot of the target plot is respectively selected; the parallel line determination sub-module is set as: In each of the traversed parallel lines screened out, a traversed parallel line closest to the first target reference point is obtained as the target parallel line.
  • the first route planning unit may include: a first connection subunit, configured to traverse the currently operated plot according to the parallel line, starting from the target parallel line where the plot entry point of the currently operated plot is located Starting parallel line, connecting each adjacent traversal parallel line in the currently operating plot in sequence to form a sub-routine within the plot corresponding to the currently operating plot; the first determining subunit is set to: The end point of the inner operation sub-route is used as the out-point of the plot corresponding to the currently operated plot.
  • the apparatus for acquiring a parcel in-point of a parcel in a centralized parcel may include a target point acquisition module for traversing the target parcel according to a multi-line segment, among a plurality of traversal points corresponding to the target parcel, Obtain a target point; a second determination module, configured to set the target point as a parcel entry point of the target parcel.
  • the first route planning unit may include: a second connection subunit, configured to: traverse the currently operated plot according to the multi-line segment, and use the plot input point of the currently operated plot as a starting point to set the current operation
  • a second connection subunit configured to: traverse the currently operated plot according to the multi-line segment, and use the plot input point of the currently operated plot as a starting point to set the current operation
  • Each adjacent traversal point in the parcel is connected in sequence to form a subroutine in the parcel corresponding to the currently operated parcel
  • the second determining subunit is set to: set the end point of the subroutine in the parcel to be the same as the The out point of the plot corresponding to the currently operated plot.
  • the apparatus for acquiring a parcel in-point of a parcel in a centralized parcel may include: a spiral line acquisition module configured to acquire a traversing spiral line corresponding to the target parcel according to a manner of traversing the target parcel according to the spiral line;
  • the three determination modules are set as follows: determine the parcel entry point of the target parcel according to the traversing spiral.
  • the third determining module in this embodiment may include: a parcel judging sub-module configured to judge whether the target parcel is the first job parcel: a third acquisition sub-module set to: if the first parcel is the first job parcel, obtaining the starting point of the job As the second target reference point; the fourth acquisition sub-module is set to: if it is not the first operation parcel, obtain the parcel exit point of the previous parcel adjacent to the target parcel as the second target reference point; the in point Select a sub-module and set it as follows: from the start point of the traversing spiral line and the end point of the spiral line, select an end point closest to the second target reference point as the block entry point of the target block.
  • the first route planning unit in this embodiment may include: a helix selection subunit, configured to: traverse the current operation plot according to the spiral, and use the traversing spiral corresponding to the current operation plot as corresponding to the current operation plot
  • the sub-routine for operating within the parcel of land the third determining subunit is set to: if the current operating parcel has the starting point of the traversing spiral as the entry point of the parcel, the end of the traversing spiral is used as the land corresponding to the currently operating parcel Block out point; the fourth determining subunit is set as follows: if the current operation block has the end point of the traversing spiral as the block entry point, the start point of the traversing spiral is used as the block output point corresponding to the current operation block.
  • the sub-route planning sub-module in this embodiment may include: an access point determination unit configured to determine a plot entry point corresponding to each plot according to a plot operation sequence, a job start point, a job end point, and plot information. And the plot out points corresponding to each plot; the transition route determination unit is set to: according to the starting point of work, the end of the job and the plot in point corresponding to each plot and the plots corresponding to each plot respectively The block exit points determine the transitional connection sub-routes; the intra-block route determination unit is set up: according to the block entry points corresponding to each block and the block exit points corresponding to each block, Sub-routes within at least two plots.
  • the route planning device for the operation of the plot in this embodiment may further include: a first plot merging module configured to: if it is determined that the plot set includes at least two short-distance plots whose relative distance is less than or equal to a set distance threshold, The short-distance parcels are merged to obtain the first merged parcel; the area recording module is configured to record blank transition areas corresponding to at least two short-distance parcels in the first merged parcel; the first parcel replacement module , Set to: Replace short-range parcels in the parcel set with the first merged parcel.
  • the route planning device for the parcel operation in this embodiment may further include a second parcel merging module configured to: if it is determined that the parcel set includes at least two overlapping parcels with overlapping areas, merge the overlapping parcels And processing to obtain a second merged parcel; the first parcel replacement module is configured to: use the second merged parcel to replace overlapping parcels in the parcel set.
  • a second parcel merging module configured to: if it is determined that the parcel set includes at least two overlapping parcels with overlapping areas, merge the overlapping parcels And processing to obtain a second merged parcel; the first parcel replacement module is configured to: use the second merged parcel to replace overlapping parcels in the parcel set.
  • the parcel set acquisition module 1301 in this embodiment may include: a parcel receiving submodule configured to: receive at least two candidate parcels to be operated by the user; a distance judgment submodule configured to judge an alternative parcel Whether at least two alternative parcels with a relative distance greater than or equal to the set distance threshold are included in the information push submodule, set to: if at least two alternative parcels with a relative distance greater than or equal to the second set distance threshold are included , The reminder information is pushed; the parcel set forms a sub-module, and is set to: if it does not include at least two alternative parcels whose relative distance is greater than or equal to the second set distance threshold, the parcels are formed according to the at least two alternative parcels Block set.
  • the parcel set acquisition module 1301 in this embodiment may include: an information acquisition submodule configured to acquire a parcel set to be operated and obstacle information matching each parcel in the parcel set.
  • the route planning module 1302 may include a route planning submodule configured to plan a combined operation route of at least two parcels in the parcel set according to the parcel set and the obstacle information.
  • the order determining sub-module may include at least one of the following: a first order determining unit configured to determine a parcel corresponding to a parcel set according to a starting point of work, an end point of the operation, and parcel information of at least two parcels assignment order.
  • the order acquisition unit is configured to acquire a parcel operation sequence corresponding to a parcel set input by a user; and the second order determination unit is configured to determine, based on the parcel information of the starting point of the job, the end point of the operation, and at least two parcels.
  • the alternative plot operation order corresponding to the plot set is obtained as a result of adjusting the alternative plot operation order input by the user as the plot operation order corresponding to the plot set.
  • the route planning device for a lot operation provided by the embodiments of the present disclosure can execute the route planning method for a lot operation provided by any embodiment of the present disclosure, and has function modules corresponding to the execution methods.
  • FIG. 14 is a schematic structural diagram of a plot operation device according to an embodiment of the present disclosure. This embodiment is applicable to a situation where plot operations are performed.
  • the device may be implemented in at least one of software and hardware, and the device may be configured in a movable working device, such as a drone, a tractor, and a ground robot.
  • the apparatus may include a route acquisition module 1401 and a merge operation module 1402.
  • the route acquisition module 1401 is configured to obtain a merged operation route corresponding to a set of plots to be operated, where the set of plots includes at least two parcels, and the merged operation route is a route through at least two of the plots in the set of plots.
  • the parcel operation device by acquiring a merge operation route corresponding to a parcel set to be operated, the parcel set includes at least two parcels, and the merge operation route is a route of at least two parcels via the parcel set, and According to the merge operation route, the merge operation is performed on at least two plots in the plot set to ensure that the movable work equipment can complete the task of at least two plots in one operation according to the merge operation route, which avoids the movable operation.
  • the equipment needs to be controlled by the operator to move to the starting point of the plot multiple times, resulting in waste of energy and improving the operating efficiency of the movable operating equipment.
  • the merge operation module 1402 may include: a parcel detection submodule, configured to detect whether the operation is performed on the first merged parcel during the merge operation; wherein the first merged parcel is obtained by concentrating the parcels. At least two short-distance parcels whose relative distance is less than or equal to a set distance threshold are merged, and a blank transition area corresponding to at least two short-distance parcels of the first merged parcel is recorded in advance; a first conversion submodule , Set to: if the operation is detected to the first merged parcel, and it is determined that the parcel area in the first merged parcel enters the blank transition area, the conversion from the operational state to the non-operating state is performed; the second converter A module configured to: if a job is detected to the first merged parcel and it is determined that the blank transition area in the first merged parcel enters the parcel area, the conversion from the non-operating state to the operating state is performed.
  • a parcel detection submodule configured to detect whether the operation is performed on the first merged parcel
  • the combined operation route may include: a transition connection sub-route and at least two operation sub-routes within the parcel.
  • the merge operation module 1402 in this embodiment may include: an interruption detection submodule, configured to: during a merge operation on a parcel set, if a job interruption condition is detected, record the current job position as the interruption position and perform interruption processing Strategy; location matching sub-module, set to: match the current operating position with the transition connection sub-route and the operating sub-route within the plot when it is detected that the continued operation conditions are met; the first job sub-module, set to: if it is determined to be interrupted The location is on the transition connection subroutine, then the starting point of the operating subroutine in the next parcel that matches the interrupted location is obtained as the new operating starting point to continue the operation of the parcel set; the second operating submodule is set to: if the interruption is determined If the location is in the operation sub-route within the lot, the interruption position is used as the new starting point to continue the operation of the lot set.
  • an interruption detection submodule configured to: during a merge operation on a parcel set, if a job interruption condition is detected, record the current job position as
  • the plot operation device provided by the embodiment of the present disclosure can execute the plot operation method provided by any embodiment of the present disclosure, and has function modules corresponding to the execution method.
  • FIG. 15 is a schematic structural diagram of a movable working device according to an embodiment of the present disclosure.
  • FIG. 15 illustrates a block diagram of an exemplary movable work device 1512 suitable for use in implementing embodiments of the present disclosure.
  • the movable work equipment 1512 shown in FIG. 15 is merely an example, and should not impose any limitation on the function and use range of the embodiments of the present disclosure.
  • the movable working device 1512 is represented in the form of a general-purpose computing device.
  • the components of the movable work equipment 1512 may include, but are not limited to, at least one processor or processing unit 1516, a system memory 1528, and a bus 1518 connecting different system components (including the system memory 1528 and the processing unit 1516).
  • the bus 1518 represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local area bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, the Industry Standard Architecture (ISA) bus, the Micro Channel Architecture (MAC) bus, the enhanced ISA bus, and the Video Electronics Standards Association (VESA) local area bus and Peripheral Component Interconnect (PCI) bus.
  • ISA Industry Standard Architecture
  • MAC Micro Channel Architecture
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • Removable work equipment 1512 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by the removable work device 1512, including volatile and non-volatile media, removable and non-removable media.
  • the system memory 1528 may include a computer system-readable medium in the form of volatile memory, such as at least one of a random access memory (RAM) 1530 and a cache memory 1532.
  • Removable work equipment 1512 may include other removable / non-removable, volatile / nonvolatile computer system storage media.
  • the storage system 1534 can be used to read and write non-removable, non-volatile magnetic media (not shown in FIG. 15 and is commonly referred to as a "hard drive").
  • a disk drive for reading and writing to a removable non-volatile disk such as a "floppy disk"
  • a removable non-volatile disk such as a read-only optical disk (Compact Disc Disc Read)
  • CD-ROM Compact Disc Disc Read
  • DVD-ROM Digital Video Disc
  • each drive may be connected to the bus 1518 through at least one data medium interface.
  • the memory 1528 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of each embodiment of the present disclosure.
  • a program / utility tool 1540 having a set (at least one) of program modules 1542 may be stored in, for example, memory 1528.
  • Such program modules 1542 include, but are not limited to, an operating system, at least one application program, other program modules, and Program data, each or some combination of these examples may include an implementation of a network environment.
  • the program module 1542 generally performs at least one of functions and methods in the embodiments described in the present disclosure.
  • the mobile work device 1512 may also communicate with at least one external device 1514 (such as a keyboard, pointing device, display 1524, etc.), and may also communicate with at least one device that enables a user to interact with the mobile work device 1512, and with the device
  • the mobile work device 1512 is capable of communicating with at least one of any devices (eg, network cards, modems, etc.) that is in communication with at least one other computing device. This communication can be performed through an input / output (I / O) interface 1522.
  • the movable working device 1512 can also communicate with at least one network, such as a local area network (LAN), a wide area network (WAN), and a public network, such as the Internet, through the network adapter 1520.
  • LAN local area network
  • WAN wide area network
  • public network such as the Internet
  • the network adapter 1520 communicates with other modules of the movable work equipment 1512 through the bus 818. It should be understood that although not shown in FIG. 15, at least one of other hardware and software modules may be used in conjunction with the movable work equipment 1512, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays , Redundant Arrays of Independent Disks (RAID) systems, tape drives, and data backup storage systems.
  • RAID Redundant Arrays of Independent Disks
  • the processing unit 1516 executes a variety of functional applications and data processing by running a program stored in the system memory 1528, for example, implementing a route planning method for a plot operation provided by an embodiment of the present disclosure. That is, a set of parcels to be operated is obtained, and the parcel set includes parcel information of at least two parcels; according to the parcel set, a merge operation route of at least two parcels through the parcel set is planned.
  • the method may include: acquiring a merged operation route corresponding to a set of parcels to be operated, where the parcel set includes at least two parcels, and the merged operation route is The route of at least two parcels in the parcel set; according to the merge operation route, the merging operation is performed on at least two parcels in the parcel set.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • the method for implementing a route planning for a plot operation as provided in the embodiment of the present disclosure may include: : Obtain the parcel set to be operated.
  • the parcel set includes parcel information of at least two parcels.
  • plan a combined operation route of at least two parcels through the parcel set.
  • the method may include: acquiring a merged operation route corresponding to a set of parcels to be operated, where the parcel set includes at least two parcels, and the merged operation route is The route of at least two parcels in the parcel set; according to the merge operation route, the merging operation is performed on at least two parcels in the parcel set.
  • the computer storage medium of the embodiment of the present disclosure may adopt any combination of at least one computer-readable medium.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal in baseband or propagated as part of a carrier wave, which carries a computer-readable program code.
  • This transmitted data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • the program code contained on the computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • any appropriate medium including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including programming languages such as Java, Smalltalk, C ++, Ruby, Go, Also included are conventional procedural programming languages-such as "C" or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer, partly on a remote computer, or entirely on a remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider Internet connection).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种地块作业的路线规划和作业方法、装置、设备以及介质,其中,路线规划方法包括:获取待作业的地块集,该地块集中包括至少两个地块的地块信息(101);根据该地块集,规划经由该地块集中至少两个地块的合并作业路线(102),由此可提高作业效率。

Description

地块作业的路线规划和作业方法、装置、设备以及介质 技术领域
本公开涉及通讯技术领域,例如涉及一种地块作业的路线规划和作业方法、装置、设备以及介质。
背景技术
自动规划路线的作业方法主要包括:通过测绘传感器对地块进行测绘,根据测绘数据生成地块信息和地块障碍物信息;将测绘好的地块信息和障碍物信息上传到服务器;遥控器从服务器上下载这些信息,根据这些信息生成路线并发送至可移动作业设备并控制可移动作业设备按照路线进行作业。
由于本身的结构和能源模块的限制,可移动作业设备的一次作业范围是固定的。例如,由于无人机本身体积和质量已经固定,而电池能够续航的时间有限,药箱能够容纳的药液有限,因此无人机一次起降能够作业固定大小的亩数,例如一架无人机一次起降可以喷洒20亩。
对于作业地块为大地块的情况,可移动作业设备可以进行多次作业以完成整个地块的作业。例如,无人机一次起降可以喷洒一个地块的一部分,通过断点续喷的方式可以喷洒完一个大地块,例如一块60亩的地,可以飞3次。而对于作业地块为多个小地块,可移动作业设备需要完成一个地块的作业后,然后再由操作人员控制去下一个地块作业。可移动作业设备需要多次移动至地块的作业起点,浪费能源,效率相对低下。例如,地块通常为0.5亩-3亩,无人机飞一次足够喷洒完第一个地块,通常的作业流程是先起飞到第一个地块的起点,对第一个地块作业完后再回到起点,然后再由操作人员控制起飞去喷洒第二个地块,无人机需要多次起降到起点。
发明内容
本公开实施例提供一种地块作业的路线规划和作业方法、装置、设备以及介质,可避免因可移动作业设备需要由操作人员控制多次移动至地块的作业起点导致能源浪费,提高可移动作业设备的作业效率。
本公开实施例提供的一种地块作业的路线规划方法,包括:获取待作业的地块集,地块集中包括至少两个地块的地块信息;根据地块集,规划经由地块集中至少两个地块的合并作业路线。
此外,本公开实施例还提供一种地块作业方法,包括:
获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线;按照合并作业路线,对地块集中的至少两个地块进行合并作业。
本公开实施例还提供一种地块作业的路线规划装置,包括:地块集获取模块,设置为:获取待作业的地块集,地块集中包括至少两个地块的地块信息;路线规划模块,设置为:根据地块集,规划经由地块集中至少两个地块的合并作业路线。
本公开实施例还提供一种地块作业装置,包括:路线获取模块,设置为:获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线;合并作业模块,设置为:按照合并作业路线,对地块集中的至少两个地块进行合并作业。
本公开实施例还提供一种可移动作业设备,包括:至少一个处理器;存储装置,用于存储至少一个程序;当所述至少一个程序被至少一个处理器执行,使得至少一个处理器实现上述方法。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法。
附图说明
图1为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图2为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图3为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图4为本公开实施例提供的一种地块集中地块的地块入点的获取方法的流程示意图;
图5为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图6为本公开实施例提供的一种地块集中地块的地块入点的获取方法的流程示意图;
图7为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图8为本公开实施例提供的一种地块集中地块的地块入点的获取方法的流程示意图;
图9为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图10为本公开实施例提供的一种地块作业的路线规划方法的流程示意图;
图11为本公开实施例提供的一种地块作业方法的流程示意;
图12为本公开实施例提供的一种地块作业方法的流程示意图;
图13为本公开实施例提供的一种地块作业的路线规划装置的结构示意图;
图14为本公开实施例提供的一种地块作业装置的结构示意图;
图15为本公开实施例提供的一种可移动作业设备的结构示意图。
具体实施方式
下面结合附图和实施例对本公开作详细说明。可以理解的是,此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。
图1为本公开实施例提供的一种地块作业的路线规划方法的流程示意图,本实施例可适用于进行地块作业的路线规划的情况,该方法可以由地块作业的路线规划装置来执行,该装置可以采用软件和硬件中至少一种的方式实现,该装置可以配置于可移动作业设备,例如,无人机,拖拉机,以及地面机器人等。如图1所示,该方法包括步骤101和步骤102。
在步骤101中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
其中,可移动作业设备可以通过获取用户的输入的至少两个地块的地块信息,获取待作业的地块集。地块信息可以为地块的位置信息,包括地块的边界。
在步骤102中,根据地块集,规划经由地块集中至少两个地块的合并作业路线。
其中,根据地块集中的至少两个地块的地块信息,规划一条经由地块集中至少两个地块的合并作业路线。可移动作业设备可以根据合并作业路线在一次作业过程中完成至少两个地块的作业任务。
其中,所述合并作业路线可以为经由该地块集中全部地块的合并作业路线,也可以为经由该地块集中部分地块的合并作业路线。
上述地块作业的路线规划方法实施例,通过获取待作业的地块集,地块集中包括至少两个地块的地块信息,然后根据地块集,规划经由地块集中至少两个地块的合并作业路线,确保可移动作业设备可以根据合并作业路线在一次作业过程中完成至少两个地块的作业任务,避免了因可移动作业设备需要由操作人员控制多次移动至地块的作业起点导致能源浪费,提高了可移动作业设备的作业效率。
本实施例中,获取待作业的地块集,可以包括:获取待作业的地块集,以及与地块集中每个地块匹配的障碍物信息。根据地块集,规划经由地块集中至少两个地块的合并作业路线,可以包括:根据地块集以及障碍物信息,规划经由地块集中至少两个地块的合并作业路线。
其中,规划经由地块集中至少两个地块的合并作业路线时,应考虑地块集中每个地块匹配的障碍物信息,从而保证可移动设备在作业时不碰触到障碍物。
图2为本公开实施例提供的一种地块作业的路线规划方法的流程示意图。在本实施例中,步骤102可以包括:确定与地块集对应的地块作业顺序;根据地块作业顺序以及地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线;按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。如图2所示,该方法包括步骤201至步骤204。
在步骤201中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
本实施例中,在获取待作业的地块集之后,还包括:如果确定地块集中包括至少两个相对距离小于等于第一设定距离阈值的短距离地块,则将短距离地块进行合并处理,得到第一合并地块;记录与第一合并地块中至少两个短距离地块对应的空白过渡区域;使用第一合并地块替换地块集中的短距离地块。
第一设定距离阈值是用于确定可以合并为一个地块的至少两个短距离地块的阈值。第一合并地块为合并至少两个相对距离小于等于第一设定距离阈值的短距离地块后得到的地块。由此,通过将距离比较接近地块合并为一个地块进行作业,提高作业效率。
本实施例中,在获取待作业的地块集之后,可以还包括:如果确定地块集中包括有至少两个具有重叠区域的重叠地块,则将重叠地块进行合并处理,得到第二合并地块;使用第二合并地块替换地块集中的重 叠地块。
重叠地块是指地块中有区域重叠在一起的至少两个地块。第二合并地块为将地块集中的具有重叠区域的重叠地块进行合并处理后得到的地块。由此,通过将重叠地块进行合并处理,使用第二合并地块替换地块集中的重叠地块,提高作业效率。
该合并处理操作可以为获取与每个重叠地块分别对应的地块边界,将获取的每个地块边界的并集作为该第二合并地块。
本实施例中,获取待作业的地块集,可以包括:接收用户选择的至少两个待作业的备选地块;判断备选地块中是否包括相对距离大于或等于第二设定距离阈值的至少两个备选地块:若包括相对距离大于或等于第二设定距离阈值的至少两个备选地块,则推送提示信息;若不包括相对距离大于或等于第二设定距离阈值的至少两个备选地块,则根据至少两个备选地块形成地块集。
第二设定距离阈值是用于判断用户选择的至少两个待作业的备选地块的距离是否适合进行合并作业的阈值。相对距离大于等于第一设定距离阈值的至少两个备选地块的距离比较远,不适合进行合并作业,通过推送提示信息通知用户备选地块中不适合进行合并作业的至少两个备选地块。例如,提示信息可以为“不建议集中作业”。相对距离小于设定距离阈值的至少两个备选地块适合进行合并作业,直接根据至少两个备选地块形成地块集。由此,通过根据设定距离阈值对用户选择的至少两个待作业的备选地块进行判断,筛除了由于相对距离过远而不适合进行合并作业的备选地块。
在步骤202中,确定与地块集对应的地块作业顺序。
其中,可移动作业设备根据地块作业顺序依次完成地块集中的至少两个地块的作业任务。
本实施例中,确定与地块集对应的地块作业顺序,包括以下至少之一:根据作业起点、作业终点以及至少两个地块的地块信息,确定与地块集对应的地块作业顺序。获取用户输入的与地块集对应的地块作业顺序;根据作业起点、作业终点以及至少两个地块的地块信息,确定与地块集对应的备选地块作业顺序,获取用户输入的对备选地块作业顺序的调整结果,作为与地块集对应的地块作业顺序。
其中,作业起点为可移动作业设备在一次作业任务中开始作业的位置。作业终点为可移动作业设备停止作业的位置。可以根据作业起点以及至少两个地块的地块信息确定地块相对于作业起点的距离,按照地块相对于作业起点的距离从小到大进行排序,得到的顺序作为地块作业顺序。也可以根据作业终点以及至少两个地块的地块信息确定地块相对于作业起点的距离,按照地块相对于作业终点的距离从大到小进行排序,得到的顺序作为地块作业顺序。
在步骤203中,根据地块作业顺序以及地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线。
其中,过渡连接子路线为可移动作业设备由当前作业地块移动至下一个地块的路线。可以根据地块作业顺序以及地块信息,依次确定地块间的过渡连接子路线。地块内作业子路线为可移动作业设备在地块内的作业路线。
在步骤204中,按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
其中,按照预先确定的地块作业顺序,将规划的过渡连接子路线与地块内作业子路线进行组合,形成一条合并作业路线。
上述地块作业的路线规划方法实施例,通过确定与地块集对应的地块作业顺序,根据地块作业顺序以及地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,然后按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线,可以根据地块之间的相对位置关系确定地块作业顺序和过渡连接子路线,然后与地块内作业子路线进行组合,形成一条合并作业路线。
图3为本公开实施例提供的一种地块作业的路线规划方法的流程示意图。在本实施例中,步骤203可以包括:按照地块作业顺序,在地块集中获取一个地块作为当前操作地块;根据当前操作地块的地块入点,规划出与当前操作地块对应的地块内作业子路线,并确定与当前操作地块对应的地块出点;如果根据地块作业顺序确定在地块集中存在与当前操作地块相邻的下一作业地块,则根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线;重复执行上述每项操作,直至完成对地块集中全部地块的处理。
如图3所示,该方法包括步骤301至步骤307。
在步骤301中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
在步骤302中,确定与地块集对应的地块作业顺序。
在步骤303中,按照地块作业顺序,在地块集中获取一个地块作为当前操作地块。
其中,按照预先确定的地块作业顺序,在地块集中依次获取一个地块作为当前操作地块。
在步骤304中,根据当前操作地块的地块入点,规划出与当前操作地块对应的地块内作业子路线,并确定与当前操作地块对应的地块出点。
其中,地块入点为可移动作业设备进入当前操作地块,并开始作业的位置。地块出点为可移动作业设备离开当前操作地块,并停止作业的位置。地块内作业子路线为可移动作业设备在当前操作地块内从地块入点开始作业至地块出点停止作业期间的作业路线。
在步骤305中,根据地块作业顺序确定在地块集中是否存在与当前操作地块相邻的下一作业地块:若在地块集中存在与当前操作地块相邻的下一作业地块,执行步骤306;若在地块集中不存在与当前操作地块相邻的下一作业地块,则执行步骤307。
在步骤306中,根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线。步骤306完成后,返回执行步骤303。
其中,可以直接连接当前操作地块的地块出点以及下一作业地块的地块入点,得到的线段即为过渡连接子路线。
在步骤307中,按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
上述地块作业的路线规划方法实施例,通过根据当前操作地块的地块入点,规划出与当前操作地块对应的地块内作业子路线,并确定与当前操作地块对应的地块出点;并在地块集中存在与当前操作地块相邻的下一作业地块时,根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线,可以依次根据地块的地块入点,规划出地块内作业子路线和地块出点,并依次根据每个地块的地块入点和地块出点规划地块间的过渡连接子路线。
本实施例中,根据地块作业顺序以及地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,还包括:根据作业起点以及与地块集对应的首位作业地块的地块入点,确定出一条从作业起点到首位作业地块的过渡连接子路线。
其中,作业起点为可移动作业设备在一次作业任务中开始作业的位置。首位作业地块为作业任务对应的地块集中按照地块作业顺序第一个进行作业的地块。当作业起点与地块集对应的首位作业地块的地块入点的位置不一致时,根据作业起点以及与地块集对应的首位作业地块的地块入点确定出一条从作业起点到首位作业地块的过渡连接子路线。可以直接连接作业起点以及与地块集对应的首位作业地块的地块入点,得到的线段即为过渡连接子路线。当作业起点与地块集对应的首位作业地块的地块入点的位置一致时,可移动作业设备直接从地块集对应的首位作业地块的地块入点开始作业。
本实施例中,根据地块作业顺序以及地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,还包括:根据与地块集中对应的末位作业地块的地块出点以及作业终点,确定出一条从末位作业地块到作业终点的过渡连接子路线。
其中,作业终点为可移动作业设备在一次作业任务中停止作业的位置。末位作业地块为作业任务对应的地块集中按照地块作业顺序最后一个进行作业的地块。当作业终点与地块集中对应的末位作业地块的地块出点的位置不一致时,根据与地块集中对应的末位作业地块的地块出点以及作业终点,确定出一条从末位作业地块到作业终点的过渡连接子路线。可以直接连接与地块集中对应的末位作业地块的地块出点以及作业终点,得到的线段即为过渡连接子路线。当作业终点与地块集中对应的末位作业地块的地块出点的位置一致时,可移动作业设备直接在与地块集中对应的末位作业地块的地块出点停止作业。
图4为本公开实施例提供的一种地块集中地块的地块入点的获取方法的流程示意图。如图4所示,该方法包括步骤401和步骤402。
在步骤401中,根据平行线遍历目标地块的方式,在与目标地块对应的多条遍历平行线中,获取目标平行线。
其中,目标地块为当前地块集中进行地块入点的获取的地块。平行线遍历目标地块的方式是指在目标地块内部通过平行线遍历地块,可以得到与目标地块对应的多条遍历平行线。
本实施例中,在与目标地块对应的多条遍历平行线中,获取目标平行线,包括:判断目标地块是否为首位作业地块:若是首位作业地块,则获取作业起点作为第一目标参考点;若不是首位作业地块,则获取与目标地块相邻的前一地块的地块出点作为第一目标参考点;在与目标地块对应的多条遍历平行线中,筛选出与目标地块的每条地块边界线分别匹配的遍历平行线;在筛选出的每条遍历平行线中,获取距离第一目标参考点最近的一条遍历平行线作为目标平行线。
其中,第一目标参考点为用于在多条遍历平行线中筛选出目标平行线的参考位置点。目标平行线是距离第一目标参考点最近的一条遍历平行线。
如果目标地块为首位作业地块,则获取作业起点作为第一目标参考点。在与目标地块对应的多条遍历平行线中,筛选出与目标地块的每条地块边界线分别匹配的遍历平行线。在筛选出的每条遍历平行线中,获取距离作业起点最近的一条遍历平行线作为目标平行线。如果目标地块不是首位作业地块,获取与目标地块相邻的前一地块的地块出点作为第一目标参考点。在与目标地块对应的多条遍历平行线中,筛选出与目标地块的每条地块边界线分别匹配的遍历平行线。在筛选出的每条遍历平行线中,获取距离前一地块的地块出点最近的一条遍历平行线作为目标平行线。
在步骤402中,将目标平行线的一个端点作为目标地块的地块入点。
其中,可以将目标平行线与第一目标参考点距离最近的一个端点作为目标地块的地块入点。
上述地块集中地块的地块入点的获取方法实施例,通过根据采用的平行线遍历目标地块的方式,在与目标地块对应的多条遍历平行线中,获取目标平行线;将目标平行线的一个端点作为目标地块的地块入点,可以按照平行线遍历目标地块的方式,根据地块间的位置信息确定目标地块的地块入点。
图5为本公开实施例提供的一种地块作业的路线规划方法的流程示意图,本实施例中的地块入点是按照图4所示的地块集中地块的地块入点的获取方法获取的。如图5所示,该方法包括步骤501至步骤508。
在步骤501中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
在步骤502中,确定与地块集对应的地块作业顺序。
在步骤503中,按照地块作业顺序,在地块集中获取一个地块作为当前操作地块。
在步骤504中,根据平行线遍历当前操作地块的方式,以当前操作地块的地块入点所在的目标平行线为起始平行线,将当前操作地块中的每条相邻遍历平行线首尾顺次相连,形成与当前操作地块对应的地块内作业子路线。
其中,以当前操作地块的地块入点所在的目标平行线为起始平行线,将当前操作地块中的每条相邻遍历平行线首尾顺次相连,形成一条与当前操作地块对应的地块内作业子路线。
在步骤505中,将地块内作业子路线的终点作为与当前操作地块对应的地块出点。
在步骤506中,根据地块作业顺序确定在地块集中是否存在与当前操作地块相邻的下一作业地块:若在地块集中存在与当前操作地块相邻的下一作业地块,执行步骤507;若在地块集中不存在与当前操作地块相邻的下一作业地块,则执行步骤508。
在步骤507中,根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线。步骤507完成后,返回执行步骤503。
在步骤508中,按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
上述地块作业的路线规划方法实施例,通过根据采用的平行线遍历当前操作地块的方式,以当前操作地块的地块入点所在的目标平行线为起始平行线,将当前操作地块中的每条相邻遍历平行线首尾顺次相连,形成与当前操作地块对应的地块内作业子路线,并将地块内作业子路线的终点作为与当前操作地块对应的地块出点,可以按照平行线遍历目标地块的方式,确定当前操作地块对应的地块内作业子路线和地块出点。
图6为本公开实施例提供的一种地块集中地块的地块入点的获取方法的流程示意图。如图6所示,该方法包括步骤601和步骤602。
在步骤601中,根据多线段遍历目标地块的方式,在与目标地块对应的多个遍历点中,获取目标点。
其中,多线段遍历目标地块的方式是指在目标地块内部通过多线段首尾相连遍历地块,可以得到与目标地块对应的多条遍历线段和对应的遍历点。如果目标地块为首位作业地块,则在与目标地块对应的多个 遍历点中,获取距离作业起点最近的遍历点作为目标点。如果目标地块不是首位作业地块,则在与目标地块对应的多个遍历点中,获取距离前一地块的地块出点最近的遍历点作为目标点。
在步骤602中,将目标点作为目标地块的地块入点。
上述地块集中地块的地块入点的获取方法实施例,通过根据采用的多线段遍历目标地块的方式,在与目标地块对应的多个遍历点中,获取目标点,并将目标点作为目标地块的地块入点,可以按照多线段遍历目标地块的方式,根据地块间的位置信息确定目标地块的地块入点。
图7为本公开实施例提供的一种地块作业的路线规划方法的流程示意图,本实施例中的地块入点是按照图6所示的地块集中地块的地块入点的获取方法获取的。如图7所示,该方法包括步骤701至步骤708。
在步骤701中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
在步骤702中,确定与地块集对应的地块作业顺序。
在步骤703中,按照地块作业顺序,在地块集中获取一个地块作为当前操作地块。
在步骤704中,根据多线段遍历当前操作地块的方式,以当前操作地块的地块入点为起始点,将当前操作地块中每个相邻遍历点顺次连接,形成与当前操作地块对应的地块内作业子路线。
其中,以当前操作地块的地块入点为起始点,将当前操作地块中每个相邻遍历点顺次连接,形成一条与当前操作地块对应的地块内作业子路线。
在步骤705中,将地块内作业子路线的终点作为与当前操作地块对应的地块出点。
在步骤706中,根据地块作业顺序确定在地块集中是否存在与当前操作地块相邻的下一作业地块:若在地块集中存在与当前操作地块相邻的下一作业地块,执行步骤707;若在地块集中不存在与当前操作地块相邻的下一作业地块,则执行步骤708。
在步骤707中,根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线。步骤707完成后,返回执行步骤703。
在步骤708中,按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
上述地块作业的路线规划方法实施例,通过根据采用的多线段遍历当前操作地块的方式,以当前操作地块的地块入点为起始点,将当前操作地块中每个相邻遍历点顺次连接,形成与当前操作地块对应的地块内作业子路线,并将地块内作业子路线的终点作为与当前操作地块对应的地块出点,可以按照多线段遍历当前操作地块的方式,确定当前操作地块对应的地块内作业子路线和地块出点。
图8为本公开实施例提供的一种地块集中地块的地块入点的获取方法的流程示意图。如图8所示,该方法包括步骤801和步骤802。
在步骤801中,根据螺旋线遍历目标地块的方式,获取与目标地块对应的遍历螺旋线。
其中,螺旋线遍历目标地块的方式是指在目标地块内部通过螺旋线遍历地块,得到与目标地块对应的遍历螺旋线。
在步骤802中,根据遍历螺旋线,确定目标地块的地块入点。
本实施例中,根据遍历螺旋线,确定目标地块的地块入点,包括:判断目标地块是否为首位作业地块:若是首位作业地块,则获取作业起点作为第二目标参考点;若不是首位作业地块,则获取与目标地块相邻的前一地块的地块出点作为第二目标参考点;在遍历螺旋线的螺旋线起点以及螺旋线终点中,选取距离第二目标参考点最近的一个端点作为目标地块的地块入点。
其中,第二目标参考点为用于遍历螺旋线中确定目标地块的地块入点的参考位置点。如果目标地块为首位作业地块,则获取作业起点作为第二目标参考点,在遍历螺旋线的螺旋线起点以及螺旋线终点中,选取距离作业起点最近的一个端点作为目标地块的地块入点。如果目标地块不是首位作业地块,则获取与目标地块相邻的前一地块的地块出点作为第二目标参考点,在遍历螺旋线的螺旋线起点以及螺旋线终点中,选取距离与目标地块相邻的前一地块的地块出点最近的一个端点作为目标地块的地块入点。
上述地块集中地块的地块入点的获取方法实施例,通过根据采用的螺旋线遍历目标地块的方式,获取与目标地块对应的遍历螺旋线,并根据遍历螺旋线,确定目标地块的地块入点,可以按照螺旋线遍历目标地块的方式,根据地块间的位置信息确定目标地块的地块入点。
图9为本公开实施例提供的一种地块作业的路线规划方法的流程示意图,本实施例中的地块入点是按照图8所示的地块集中地块的地块入点的获取方法获取的。如图9所示,该方法包括步骤901至步骤910。
在步骤901中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
在步骤902中,确定与地块集对应的地块作业顺序。
在步骤903中,按照地块作业顺序,在地块集中获取一个地块作为当前操作地块。
在步骤904中,根据螺旋线遍历当前操作地块的方式,将与当前操作地块对应的遍历螺旋线作为与当前操作地块对应的地块内作业子路线。
在步骤905中,判断当前操作地块的地块入点的位置,如果当前操作地块以遍历螺旋线的起点作为地块入点,执行步骤906;如果当前操作地块以遍历螺旋线的终点作为地块入点,执行步骤907。
在步骤906中,将遍历螺旋线的终点作为与当前操作地块对应的地块出点。步骤906完成后,执行步骤908。
在步骤907中,将遍历螺旋线的起点作为与当前操作地块对应的地块出点。步骤908完成后,执行步骤908。
在步骤908中,根据地块作业顺序确定在地块集中是否存在与当前操作地块相邻的下一作业地块:若在地块集中存在与当前操作地块相邻的下一作业地块,执行步骤909;若在地块集中不存在与当前操作地块相邻的下一作业地块,则执行步骤910。
在步骤909中,根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线。步骤909完成后,返回执行步骤903。
在步骤910中,按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
上述地块作业的路线规划方法实施例,通过根据采用的螺旋线遍历当前操作地块的方式,将与当前操作地块对应的遍历螺旋线作为与当前操作地块对应的地块内作业子路线,可以按照螺旋线遍历当前操作地块的方式,确定当前操作地块对应的地块内作业子路线和地块出点。
图10为本公开实施例提供的一种地块作业的路线规划方法的流程示意图,在本实施例中,步骤203可以包括:根据地块作业顺序,作业起点、作业终点以及地块信息,确定出与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点;根据作业起点、作业终点以及与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点,确定出过渡连接子路线;根据与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点,确定出至少两条地块内作业子路线。
如图10所示,该方法包括步骤1001至步骤1006。
在步骤1001中,获取待作业的地块集,地块集中包括至少两个地块的地块信息。
在步骤1002中,确定与地块集对应的地块作业顺序。
在步骤1003中,根据地块作业顺序,作业起点,作业终点以及地块信息,确定出与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点。
其中,预先根据地块作业顺序,作业起点,作业终点以及地块信息,确定出与每个地块分别对应的地块入点以及地块出点。可以根据作业起点选取首位作业地块的地块入点。可以根据与地块相邻的前一地块的地块出点选取地块的地块入点。可以根据作业终点选取末位作业地块的地块出点。
在步骤1004中,根据作业起点,作业终点以及与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点,确定出过渡连接子路线。
其中,连接作业起点与首位作业地块的地块入点,连接地块以及与地块相邻的前一地块的地块出点,连接末位作业地块的地块出点与作业终点,确定与出待作业的地块集对应的过渡连接子路线。
在步骤1005中,根据与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点,确定出至少两条地块内作业子路线。
其中,根据与每个地块分别对应的地块入点以及地块出点,采用平行线遍历目标地块的方式、多线段遍历目标地块的方式或螺旋线遍历目标地块的方式确定出每个地块对应的地块内作业子路线。
在步骤1006中,按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
上述地块作业的路线规划方法实施例,通过根据地块作业顺序,作业起点、作业终点以及地块信息, 确定出与每个地块分别对应的地块入点以及地块出点;根据作业起点、作业终点以及与每个地块分别对应的地块入点以及地块出点,确定出过渡连接子路线;根据与每个地块分别对应的地块入点以及地块出点,确定出至少两条地块内作业子路线,可以先确定每个地块分别对应的地块入点以及地块出点,然后根据每个地块分别对应的地块入点以及地块出点确定出待作业的地块集对应的过渡连接子路线和内作业子路线。
图11为本公开实施例提供的一种地块作业方法的流程示意图,本实施例可适用于进行地块作业情况,该方法可以由地块作业装置来执行,该装置可以采用软件和硬件中至少一种的方式实现,该装置可以配置于可移动作业设备,例如,无人机,拖拉机,以及地面机器人等。如图11所示,该方法包括步骤1101和步骤1102。
在步骤1101中,获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线。
其中,合并作业路线为根据地块集中的至少两个地块的地块信息,规划出的一条经由地块集中至少两个地块的合并作业路线。
在步骤1102中,按照合并作业路线,对地块集中的至少两个地块进行合并作业。
其中,可移动作业设备可以根据合并作业路线在一次作业过程中完成至少两个地块的作业任务。
上述地块作业方法实施例,通过获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线,并按照合并作业路线,对地块集中的至少两个地块进行合并作业,确保可移动作业设备可以根据合并作业路线在一次作业过程中完成至少两个地块的作业任务,避免了因可移动作业设备需要由操作人员控制多次移动至地块的作业起点导致能源浪费,提高了可移动作业设备的作业效率。
本实施例中,合并作业路线可以包括:过渡连接子路线以及至少两条地块内作业子路线。
本实施例中,步骤1102可以包括:在对地块集进行合并作业过程中,如果检测到作业中断条件,则记录当前作业位置作为中断位置,并执行中断处理策略;在检测到满足继续作业条件时,将当前作业位置与过渡连接子路线以及地块内作业子路线进行匹配;如果确定中断位置位于过渡连接子路线上,则获取与中断位置匹配的下一地块内作业子路线的起点作为新的作业起点对地块集进行继续作业;如果确定中断位置位于地块内作业子路线中,则将中断位置作为新的作业起点对地块集进行继续作业。
其中,作业中断条件可以为用户预先设置的作业中断指令,也可以为用户输入的作业中断指令。中断处理策略可以为返回作业起点。继续作业条件可以为用户输入的继续作业指令。由此,可以通过记录当前作业位置作为中断位置,并根据中断位置的位置信息确定新的作业起点对地块集进行继续作业,可以提高作业效率。
图12为本公开实施例提供的一种地块作业方法的流程示意图,在本实施例中,步骤1102可以包括:在合并作业的过程中,检测是否作业至第二合并地块;其中,第二合并地块为通过将地块集中相对距离小于等于设定距离阈值的至少两个短距离地块进行合并构成,且预先记录有与第二合并地块的至少两个短距离地块对应的空白过渡区域;如果确定从第二合并地块中的地块区域进入至空白过渡区域,则执行由作业态至非作业态的转换;如果确定从第二合并地块中的空白过渡区域进入至地块区域,则执行由非作业态到作业态的转换。
如图12所示,该方法包括步骤1201至步骤1205。
在步骤1201中,获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线。
在步骤1202中,在合并作业的过程中,检测是否作业至第一合并地块:若作业至第一合并地块,执行步骤1203;若未作业至第一合并地块,则返回执行步骤1202。
其中,第一合并地块为通过将地块集中相对距离小于等于设定距离阈值的至少两个短距离地块进行合并构成,且预先记录有与第一合并地块的至少两个短距离地块对应的空白过渡区域。
在步骤1203中,检测在第一合并地块中的移动状态:如果确定从第一合并地块中的地块区域进入至空白过渡区域,则执行步骤1204;如果确定从第一合并地块中的空白过渡区域进入至地块区域,则执行步骤1205。
其中,空白过渡区域为至少两个短距离地块之间的区域,可移动作业设备在空白过渡区域不需要进行 与地块内部区域同样的作业。例如,可移动作业设备为无人机,对地块进行植保作业,喷洒药液。空白过渡区域不需要进行药物喷洒。
在合并作业的过程中,可以根据地块集的地块信息和可移动作业设备的位置信息检测可移动作业设备是否作业至第合并地块,确定可移动作业设备的位置状态:从第一合并地块中的地块区域进入至空白过渡区域,第一合并地块中的空白过渡区域进入至地块区域,位于第一合并地块中的地块区域,以及位于第一合并地块中的空白过渡区域。
在步骤1204中,执行由作业态至非作业态的转换。
其中,如果确定从第一合并地块中的地块区域进入至空白过渡区域,则执行由作业态至非作业态的转换。例如,如果确定无人机从第一合并地块中的地块区域进入至空白过渡区域,则执行由喷洒药物至停止喷洒的转换。
在步骤1205中,执行由非作业态到作业态的转换。
其中,如果确定从第一合并地块中的空白过渡区域进入至地块区域,则执行由非作业态到作业态的转换。例如,如果确定无人机从第一合并地块中的空白过渡区域进入至地块区域,则执行由停止喷洒至喷洒药物的转换。
上述地块作业方法实施例,通过在合并作业的过程中,检测是否作业至第一合并地块;其中,第一合并地块为通过将地块集中相对距离小于等于设定距离阈值的至少两个短距离地块进行合并构成,且预先记录有与第一合并地块的至少两个短距离地块对应的空白过渡区域;如果确定从第一合并地块中的地块区域进入至空白过渡区域,则执行由作业态至非作业态的转换;如果确定从第一合并地块中的空白过渡区域进入至地块区域,则执行由非作业态到作业态的转换,可以在合并作业的过程中,根据位置信息转换可移动作业设备的作业状态,避免在空白区域浪费资源。
图13为本公开实施例提供的一种地块作业的路线规划装置的结构示意图,本实施例可适用于进行地块作业的路线规划的情况。该装置可以采用软件和硬件中至少一种的方式实现,该装置可以配置于可移动作业设备,例如,无人机,拖拉机,以及地面机器人等。如图13所示,该装置可以包括:地块集获取模块1301和路线规划模块1302。
其中,地块集获取模块1301,设置为:获取待作业的地块集,地块集中包括至少两个地块的地块信息;路线规划模块1302,设置为:根据地块集,规划经由地块集中至少两个地块的合并作业路线。
上述地块作业的路线规划装置实施例,通过获取待作业的地块集,地块集中包括至少两个地块的地块信息,然后根据地块集,规划经由地块集中至少两个地块的合并作业路线,确保可移动作业设备可以根据合并作业路线在一次作业过程中完成至少两个地块的作业任务,避免了因可移动作业设备需要由操作人员控制多次移动至地块的作业起点导致能源浪费,提高了可移动作业设备的作业效率。
本实施例中路线规划模块1302可以包括:顺序确定子模块,设置为:确定与地块集对应的地块作业顺序;子路线规划子模块,设置为:根据地块作业顺序以及地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线;路线组合子模块,设置为:按照地块作业顺序,将过渡连接子路线与地块内作业子路线进行组合,形成合并作业路线。
本实施例中子路线规划子模块可以包括:地块获取单元,设置为:按照地块作业顺序,在地块集中获取一个地块作为当前操作地块;第一路线规划单元,设置为:根据当前操作地块的地块入点,规划出与当前操作地块对应的地块内作业子路线,并确定与当前操作地块对应的地块出点;第二路线规划单元,设置为:如果根据地块作业顺序确定在地块集中存在与当前操作地块相邻的下一作业地块,则根据当前操作地块的地块出点以及下一作业地块的地块入点,规划出一条地块间的过渡连接子路线;操作执行单元,设置为:重复执行上述每项操作,直至完成对地块集中全部地块的处理。
本实施例中子路线规划子模块可以还包括:第一路线确定单元,设置为:根据作业起点以及与地块集对应的首位作业地块的地块入点,确定出一条从作业起点到首位作业地块的过渡连接子路线。
本实施例中子路线规划子模块可以还包括:第二路线确定单元,设置为:根据与地块集中对应的末位作业地块的地块出点以及作业终点,确定出一条从末位作业地块到作业终点的过渡连接子路线。
本实施例中地块集中地块的地块入点的获取装置可以包括:平行线获取模块,设置为:根据平行线遍历目标地块的方式,在与目标地块对应的多条遍历平行线中,获取目标平行线;第一确定模块,设置为:将目标平行线的一个端点作为目标地块的地块入点。
本实施例中平行线获取模块可以包括:地块判断子模块,设置为:判断目标地块是否为首位作业地块:第一获取子模块,设置为:若是首位作业地块,则获取作业起点作为第一目标参考点;第二获取子模块,设置为:若不是首位作业地块,则获取与目标地块相邻的前一地块的地块出点作为第一目标参考点;平行线筛选子模块,设置为:在与目标地块对应的多条遍历平行线中,筛选出与目标地块的每条地块边界线分别匹配的遍历平行线;平行线确定子模块,设置为:在筛选出的每条遍历平行线中,获取距离第一目标参考点最近的一条遍历平行线作为目标平行线。
本实施例中第一路线规划单元可以包括:第一连线子单元,设置为:根据平行线遍历当前操作地块的方式,以当前操作地块的地块入点所在的目标平行线为起始平行线,将当前操作地块中的每条相邻遍历平行线首尾顺次相连,形成与当前操作地块对应的地块内作业子路线;第一确定子单元,设置为:将地块内作业子路线的终点作为与当前操作地块对应的地块出点。
本实施例中地块集中地块的地块入点的获取装置可以包括:目标点获取模块,用于根据多线段遍历目标地块的方式,在与目标地块对应的多个遍历点中,获取目标点;第二确定模块,设置为:将目标点作为目标地块的地块入点。
本实施例中第一路线规划单元可以包括:第二连线子单元,设置为:根据多线段遍历当前操作地块的方式,以当前操作地块的地块入点为起始点,将当前操作地块中每个相邻遍历点顺次连接,形成与当前操作地块对应的地块内作业子路线;第二确定子单元,设置为:将地块内作业子路线的终点作为与所述当前操作地块对应的地块出点。
本实施例中地块集中地块的地块入点的获取装置可以包括:螺旋线获取模块,设置为:根据螺旋线遍历目标地块的方式,获取与目标地块对应的遍历螺旋线;第三确定模块,设置为:根据遍历螺旋线,确定目标地块的地块入点。
本实施例中第三确定模块可以包括:地块判断子模块,设置为:判断目标地块是否为首位作业地块:第三获取子模块,设置为:若是首位作业地块,则获取作业起点作为第二目标参考点;第四获取子模块,设置为:若不是首位作业地块,则获取与目标地块相邻的前一地块的地块出点作为第二目标参考点;入点选取子模块,设置为:在遍历螺旋线的螺旋线起点以及螺旋线终点中,选取距离第二目标参考点最近的一个端点作为目标地块的地块入点。
本实施例中第一路线规划单元可以包括:螺旋线选取子单元,设置为:根据螺旋线遍历当前操作地块的方式,将与当前操作地块对应的遍历螺旋线作为与当前操作地块对应的地块内作业子路线;第三确定子单元,设置为:如果当前操作地块以遍历螺旋线的起点作为地块入点,则将遍历螺旋线的终点作为与当前操作地块对应的地块出点;第四确定子单元,设置为:如果当前操作地块以遍历螺旋线的终点作为地块入点,则将遍历螺旋线的起点作为与当前操作地块对应的地块出点。
本实施例中子路线规划子模块可以包括:出入点确定单元,设置为:根据地块作业顺序,作业起点,作业终点以及地块信息,确定出与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点;过渡路线确定单元,设置为:根据作业起点,作业终点以及与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点,确定出过渡连接子路线;块内路线确定单元,设置为:根据与每个地块分别对应的地块入点以及与每个地块分别对应的地块出点,确定出至少两条地块内作业子路线。
本实施例中地块作业的路线规划装置可以还包括:第一地块合并模块,设置为:如果确定地块集中包括至少两个相对距离小于或等于设定距离阈值的短距离地块,则将短距离地块进行合并处理,得到第一合并地块;区域记录模块,设置为:记录与第一合并地块中至少两个短距离地块对应的空白过渡区域;第一地块替换模块,设置为:使用第一合并地块替换地块集中的短距离地块。
本实施例中地块作业的路线规划装置可以还包括:第二地块合并模块,设置为:如果确定地块集中包括有至少两个具有重叠区域的重叠地块,则将重叠地块进行合并处理,得到第二合并地块;第一地块替换模块,设置为:使用第二合并地块替换地块集中的重叠地块。
本实施例中地块集获取模块1301可以包括:地块接收子模块,设置为:接收用户选择的至少两个待作业的备选地块;距离判断子模块,设置为:判断备选地块中是否包括相对距离大于或等于设定距离阈值的至少两个备选地块:信息推送子模块,设置为:若包括相对距离大于或等于第二设定距离阈值的至少两个备选地块,则推送提示信息;地块集形成子模块,设置为:若不包括相对距离大于或等于第二设定距离阈值的至少两个备选地块,则根据至少两个备选地块形成地块集。
本实施例中地块集获取模块1301可以包括:信息获取子模块,设置为:获取待作业的地块集,以及与 地块集中每个地块匹配的障碍物信息。
本实施例中路线规划模块1302可以包括:路线规划子模块,设置为:根据地块集以及障碍物信息,规划经由地块集中至少两个地块的合并作业路线。
本实施例中顺序确定子模块可以包括以下至少之一:第一顺序确定单元,设置为:根据作业起点,作业终点以及至少两个地块的地块信息,确定与地块集对应的地块作业顺序。顺序获取单元,设置为:获取用户输入的与地块集对应的地块作业顺序;第二顺序确定单元,设置为:根据作业起点,作业终点以及至少两个地块的地块信息,确定与地块集对应的备选地块作业顺序,获取用户输入的对备选地块作业顺序的调整结果,作为与地块集对应的地块作业顺序。
本公开实施例所提供的地块作业的路线规划装置可执行本公开任意实施例所提供的地块作业的路线规划方法,具备执行方法相应的功能模块。
图14为本公开实施例提供的一种地块作业装置的结构示意图,本实施例可适用于进行地块作业的情况。该装置可以采用软件和硬件中至少一种的方式实现,该装置可以配置于可移动作业设备,例如,无人机,拖拉机,以及地面机器人等。如图14所示,该装置可以包括:路线获取模块1401和合并作业模块1402。
其中,路线获取模块1401,设置为:获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由所述地块集中至少两个地块的路线;合并作业模块1402,设置为:按照合并作业路线,对地块集中的至少两个地块进行合并作业。
上述地块作业装置实施例,通过获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线,并按照合并作业路线,对地块集中的至少两个地块进行合并作业,确保可移动作业设备可以根据合并作业路线在一次作业过程中完成至少两个地块的作业任务,避免了因可移动作业设备需要由操作人员控制多次移动至地块的作业起点导致能源浪费,提高了可移动作业设备的作业效率。
本实施例中合并作业模块1402可以包括:地块检测子模块,设置为:在合并作业的过程中,检测是否作业至第一合并地块;其中,第一合并地块为通过将地块集中相对距离小于或等于设定距离阈值的至少两个短距离地块进行合并构成,且预先记录有与第一合并地块的至少两个短距离地块对应的空白过渡区域;第一转换子模块,设置为:如果检测到作业至第一合并地块,且确定从第一合并地块中的地块区域进入至空白过渡区域,则执行由作业态至非作业态的转换;第二转换子模块,设置为:如果检测到作业至第一合并地块,且确定从第一合并地块中的空白过渡区域进入至地块区域,则执行由非作业态到作业态的转换。
本实施例中合并作业路线可以包括:过渡连接子路线以及至少两条地块内作业子路线。
本实施例中合并作业模块1402可以包括:中断检测子模块,设置为:在对地块集进行合并作业过程中,如果检测到作业中断条件,则记录当前作业位置作为中断位置,并执行中断处理策略;位置匹配子模块,设置为:在检测到满足继续作业条件时,将当前作业位置与过渡连接子路线以及地块内作业子路线进行匹配;第一作业子模块,设置为:如果确定中断位置位于过渡连接子路线上,则获取与中断位置匹配的下一地块内作业子路线的起点作为新的作业起点对地块集进行继续作业;第二作业子模块,设置为:如果确定中断位置位于地块内作业子路线中,则将中断位置作为新的作业起点对地块集进行继续作业。
本公开实施例所提供的地块作业装置可执行本公开任意实施例所提供的地块作业方法,具备执行方法相应的功能模块。
图15为本公开实施例提供的一种可移动作业设备的结构示意图。图15示出了适于用来实现本公开实施方式的示例性可移动作业设备1512的框图。图15显示的可移动作业设备1512仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图15所示,可移动作业设备1512以通用计算设备的形式表现。可移动作业设备1512的组件可以包括但不限于:至少一个处理器或者处理单元1516,***存储器1528,连接不同***组件(包括***存储器1528和处理单元1516)的总线1518。
总线1518表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,***总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(MicroChannel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association, VESA)局域总线以及***组件互连(Peripheral Component Interconnect,PCI)总线。
可移动作业设备1512典型地包括多种计算机***可读介质。这些介质可以是任何能够被可移动作业设备1512访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
***存储器1528可以包括易失性存储器形式的计算机***可读介质,例如随机存取存储器(Ramdom Access Memory,RAM)1530和高速缓存存储器1532中的至少一种。可移动作业设备1512可以包括其它可移动/不可移动的、易失性/非易失性计算机***存储介质。仅作为举例,存储***1534可以用于读写不可移动的、非易失性磁介质(图15未显示,通常称为“硬盘驱动器”)。尽管图15中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘,例如只读光盘(Compact Disc Read-Only Memory,CD-ROM),数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质读写的光盘驱动器。在这些情况下,每个驱动器可以通过至少一个数据介质接口与总线1518相连。存储器1528可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本公开每个实施例的功能。
具有一组(至少一个)程序模块1542的程序/实用工具1540,可以存储在例如存储器1528中,这样的程序模块1542包括——但不限于——操作***、至少一个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块1542通常执行本公开所描述的实施例中的功能和方法中的至少一种。
可移动作业设备1512也可以与至少一个外部设备1514(例如键盘、指向设备、显示器1524等)通信,还可与至少一个使得用户能与该可移动作业设备1512交互的设备通信,和与使得该可移动作业设备1512能与至少一个其它计算设备进行通信的任何设备中的至少一种(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口1522进行。并且,可移动作业设备1512还可以通过网络适配器1520与至少一个网络,例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和公共网络,例如因特网中的至少一种通信。如图所示,网络适配器1520通过总线818与可移动作业设备1512的其它模块通信。应当明白,尽管图15中未示出,可以结合可移动作业设备1512使用其它硬件和软件模块中的至少一种,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)***、磁带驱动器以及数据备份存储***等。
处理单元1516通过运行存储在***存储器1528中的程序,从而执行多种功能应用以及数据处理,例如实现本公开实施例所提供的地块作业的路线规划方法。也即,获取待作业的地块集,地块集中包括至少两个地块的地块信息;根据地块集,规划经由地块集中至少两个地块的合并作业路线。
又例如:实现如本公开实施例所提供的地块作业方法,该方法可以包括:获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线;按照合并作业路线,对地块集中的至少两个地块进行合并作业。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本公开实施例所提供的地块作业的路线规划方法,该方法可以包括:获取待作业的地块集,地块集中包括至少两个地块的地块信息;根据地块集,规划经由地块集中至少两个地块的合并作业路线。
又例如:实现如本公开实施例所提供的地块作业方法,该方法可以包括:获取与待作业的地块集对应的合并作业路线,地块集中包括至少两个地块,合并作业路线为经由地块集中至少两个地块的路线;按照合并作业路线,对地块集中的至少两个地块进行合并作业。
本公开实施例的计算机存储介质,可以采用至少一个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合 适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++、Ruby、Go,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (26)

  1. 一种地块作业的路线规划方法,包括:
    获取待作业的地块集,所述地块集中包括至少两个地块的地块信息;
    根据所述地块集,规划经由所述地块集中至少两个地块的合并作业路线。
  2. 根据权利要求1所述的方法,其中,根据所述地块集,所述规划经由所述地块集中至少两个地块的合并作业路线,包括:
    确定与所述地块集对应的地块作业顺序;
    根据所述地块作业顺序以及所述地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线;
    按照所述地块作业顺序,将所述过渡连接子路线与所述地块内作业子路线进行组合,形成所述合并作业路线。
  3. 根据权利要求2所述的方法,其中,所述根据所述地块作业顺序以及所述地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,包括:
    按照所述地块作业顺序,在所述地块集中获取一个地块作为当前操作地块;
    根据所述当前操作地块的地块入点,规划出与所述当前操作地块对应的地块内作业子路线,并确定与所述当前操作地块对应的地块出点;
    如果根据所述地块作业顺序确定在所述地块集中存在与所述当前操作地块相邻的下一作业地块,则根据所述当前操作地块的地块出点以及所述下一作业地块的地块入点,规划出一条地块间的过渡连接子路线;
    重复执行上述每项操作,直至完成对所述地块集中全部地块的处理。
  4. 根据权利要求3所述的方法,所述根据所述地块作业顺序以及所述地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,还包括:
    根据作业起点以及与所述地块集对应的首位作业地块的地块入点,确定出一条从所述作业起点到所述首位作业地块的过渡连接子路线。
  5. 根据权利要求3所述的方法,所述根据所述地块作业顺序以及所述地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,还包括:
    根据与所述地块集中对应的末位作业地块的地块出点以及作业终点,确定出一条从所述末位作业地块到所述作业终点的过渡连接子路线。
  6. 根据权利要求3-5任一项所述的方法,其中,所述地块集中地块的地块入点的获取方法包括:
    根据平行线遍历目标地块的方式,在与所述目标地块对应的多条遍历平行线中,获取目标平行线;
    将所述目标平行线的一个端点作为所述目标地块的地块入点。
  7. 根据权利要求6所述的方法,其中,所述在与所述目标地块对应的多条遍历平行线中,获取目标平行线,包括:
    判断所述目标地块是否为首位作业地块:若是所述首位作业地块,则获取作业起点作为第一目标参考点;若不是所述首位作业地块,则获取与所述目标地块相邻的前一地块的地块出点作为所述第一目标参考点;
    在与所述目标地块对应的多条遍历平行线中,筛选出与所述目标地块的每条地块边界线分别匹配的遍历平行线;
    在筛选出的每条所述遍历平行线中,获取距离所述第一目标参考点最近的一条遍历平行线作为所述目标平行线。
  8. 根据权利要求6或7所述的方法,其中,所述根据当前操作地块的地块入点,规划出与所述当前操作地块对应的地块内作业子路线,并确定与所述当前操作地块对应的地块出点,包括:
    根据平行线遍历所述当前操作地块的方式,以所述当前操作地块的地块入点所在的目标平行线为起始平行线,将所述当前操作地块中的每条相邻遍历平行线首尾顺次相连,形成与所述当前操作地块对应的地块内作业子路线;
    将所述地块内作业子路线的终点作为与所述当前操作地块对应的地块出点。
  9. 根据权利要求3-5任一项所述的方法,其中,所述地块集中地块的地块入点的获取方法包括:
    根据多线段遍历目标地块的方式,在与所述目标地块对应的多个遍历点中,获取目标点;
    将所述目标点作为所述目标地块的地块入点。
  10. 根据权利要求9所述的方法,其中,所述根据当前操作地块的地块入点,规划出与所述当前操作 地块对应的地块内作业子路线,并确定与所述当前操作地块对应的地块出点,包括:
    根据多线段遍历所述当前操作地块的方式,以所述当前操作地块的地块入点为起始点,将所述当前操作地块中每个相邻遍历点顺次连接,形成与所述当前操作地块对应的地块内作业子路线;
    将所述地块内作业子路线的终点作为与所述当前操作地块对应的地块出点。
  11. 根据权利要求3-5任一项所述的方法,其中,所述地块集中地块的地块入点的获取方法包括:
    根据螺旋线遍历目标地块的方式,获取与所述目标地块对应的遍历螺旋线;
    根据所述遍历螺旋线,确定所述目标地块的地块入点。
  12. 根据权利要求11所述的方法,其中,所述根据所述遍历螺旋线,确定所述目标地块的地块入点,包括:
    判断所述目标地块是否为首位作业地块:若是所述首位作业地块,则获取作业起点作为第二目标参考点;若不是所述首位作业地块,则获取与所述目标地块相邻的前一地块的地块出点作为所述第二目标参考点;
    在所述遍历螺旋线的螺旋线起点以及螺旋线终点中,选取距离所述第二目标参考点最近的一个端点作为所述目标地块的地块入点。
  13. 根据权利要求12所述的方法,其中,所述根据当前操作地块的地块入点,规划出与所述当前操作地块对应的地块内作业子路线,并确定与所述当前操作地块对应的地块出点,包括:
    根据螺旋线遍历所述当前操作地块的方式,将与所述当前操作地块对应的遍历螺旋线作为与所述当前操作地块对应的地块内作业子路线;
    如果所述当前操作地块以所述遍历螺旋线的起点作为地块入点,则将所述遍历螺旋线的终点作为与所述当前操作地块对应的地块出点;
    如果所述当前操作地块以所述遍历螺旋线的终点作为地块入点,则将所述遍历螺旋线的起点作为与所述当前操作地块对应的地块出点。
  14. 根据权利要求2所述的方法,其中,所述根据所述地块作业顺序,以及所述地块信息,规划出过渡连接子路线以及至少两条地块内作业子路线,包括:
    根据所述地块作业顺序,作业起点,作业终点以及所述地块信息,确定出与每个所述地块分别对应的地块入点以及与每个所述地块分别对应的地块出点;
    根据所述作业起点,所述作业终点以及与每个所述地块分别对应的地块入点以及与每个所述地块分别对应的地块出点,确定出所述过渡连接子路线;
    根据与每个所述地块分别对应的地块入点以及与每个所述地块分别对应的地块出点,确定出所述至少两条地块内作业子路线。
  15. 根据权利要求1-14任一项所述的方法,在获取待作业的地块集之后,还包括:
    如果确定所述地块集中包括至少两个相对距离小于或等于第一设定距离阈值的短距离地块,则将所述短距离地块进行合并处理,得到第一合并地块;
    记录与所述第一合并地块中至少两个所述短距离地块对应的空白过渡区域;
    使用所述第一合并地块替换所述地块集中的所述短距离地块。
  16. 根据权利要求1-14任一项所述的方法,在获取待作业的地块集之后,还包括:
    如果确定所述地块集中包括至少两个具有重叠区域的重叠地块,则将所述重叠地块进行合并处理,得到第二合并地块;
    使用所述第二合并地块替换所述地块集中的所述重叠地块。
  17. 根据权利要求1-14任一项所述的方法,其中,获取待作业的地块集,包括:
    接收用户选择的至少两个待作业的备选地块;
    判断所述备选地块中是否包括相对距离大于或等于第二设定距离阈值的至少两个备选地块:若包括相对距离大于或等于第二设定距离阈值的至少两个备选地块,则推送提示信息;若不包括相对距离大于或等于第二设定距离阈值的至少两个备选地块,则根据所述至少两个备选地块形成所述地块集。
  18. 根据权利要求1-14任一项所述的方法,获取待作业的地块集,包括:
    获取待作业的地块集,以及与所述地块集中每个地块匹配的障碍物信息;
    根据所述地块集,规划经由所述地块集中至少两个地块的合并作业路线,包括:
    根据所述地块集以及所述障碍物信息,规划经由所述地块集中至少两个地块的合并作业路线。
  19. 根据权利要求2-14任一项所述的方法,其中,确定与所述地块集对应的地块作业顺序,包括以下至少之一:
    根据作业起点,作业终点以及所述至少两个地块的地块信息,确定与所述地块集对应的地块作业顺序;
    获取用户输入的与所述地块集对应的地块作业顺序;根据作业起点,作业终点以及所述至少两个地块的地块信息,确定与所述地块集对应的备选地块作业顺序,获取用户输入的对所述备选地块作业顺序的调整结果,作为与所述地块集对应的地块作业顺序。
  20. 一种地块作业方法,包括:
    获取与待作业的地块集对应的合并作业路线,所述地块集中包括至少两个地块,所述合并作业路线为经由所述地块集中至少两个地块的路线;
    按照所述合并作业路线,对所述地块集中的至少两个地块进行合并作业。
  21. 根据权利要求20所述的方法,其中,按照所述合并作业路线,对所述地块集中的至少两个地块进行合并作业,包括:
    在所述合并作业的过程中,检测是否作业至第一合并地块;
    其中,所述第一合并地块为通过将地块集中相对距离小于或等于设定距离阈值的至少两个短距离地块进行合并构成,且预先记录有与所述第一合并地块的至少两个短距离地块对应的空白过渡区域;
    如果检测到作业至所述第一合并地块,且确定从所述第一合并地块中的地块区域进入至所述空白过渡区域,则执行由作业态至非作业态的转换;
    如果检测到作业至所述第一合并地块,且确定从所述第一合并地块中的所述空白过渡区域进入至所述地块区域,则执行由非作业态到作业态的转换。
  22. 根据权利要求20或21所述的方法,其中,所述合并作业路线包括:过渡连接子路线以及至少两条地块内作业子路线;
    按照所述合并作业路线,对所述地块集中的至少两个地块进行合并作业,包括:
    在对所述地块集进行合并作业过程中,如果检测到作业中断条件,则记录当前作业位置作为中断位置,并执行中断处理策略;
    在检测到满足继续作业条件时,将所述当前作业位置与所述过渡连接子路线以及所述地块内作业子路线进行匹配;
    如果确定所述中断位置位于所述过渡连接子路线上,则获取与所述中断位置匹配的下一地块内作业子路线的起点作为新的作业起点对所述地块集进行继续作业;
    如果确定所述中断位置位于所述地块内作业子路线中,则将所述中断位置作为新的作业起点对所述地块集进行继续作业。
  23. 一种地块作业的路线规划装置,包括:
    地块集获取模块,设置为:获取待作业的地块集,所述地块集中包括至少两个地块的地块信息;
    路线规划模块,设置为:根据所述地块集,规划经由所述地块集中至少两个地块的合并作业路线。
  24. 一种地块作业装置,包括:
    路线获取模块,设置为:获取与待作业的地块集对应的合并作业路线,所述地块集中包括至少两个地块,所述合并作业路线为经由所述地块集中至少两个地块的路线;
    合并作业模块,设置为:按照所述合并作业路线,对所述地块集中的至少两个地块进行合并作业。
  25. 一种可移动作业设备,包括:
    至少一个处理器;
    存储装置,用于存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-19中任一所述的地块作业的路线规划方法,或者如权利要求20-22中任一所述的地块作业方法。
  26. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1-19任一所述的地块作业的路线规划方法,或者如权利要求20-22中任一所述的地块作业方法。
PCT/CN2018/098359 2018-08-02 2018-08-02 地块作业的路线规划和作业方法、装置、设备以及介质 WO2020024226A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/098359 WO2020024226A1 (zh) 2018-08-02 2018-08-02 地块作业的路线规划和作业方法、装置、设备以及介质
CN201880023862.2A CN110692026B (zh) 2018-08-02 2018-08-02 地块作业的路线规划和作业方法、装置、设备以及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098359 WO2020024226A1 (zh) 2018-08-02 2018-08-02 地块作业的路线规划和作业方法、装置、设备以及介质

Publications (1)

Publication Number Publication Date
WO2020024226A1 true WO2020024226A1 (zh) 2020-02-06

Family

ID=69107209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098359 WO2020024226A1 (zh) 2018-08-02 2018-08-02 地块作业的路线规划和作业方法、装置、设备以及介质

Country Status (2)

Country Link
CN (1) CN110692026B (zh)
WO (1) WO2020024226A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113180557B (zh) * 2021-04-25 2022-06-14 珠海格力电器股份有限公司 设备重定位作业恢复方法、装置、计算机设备和存储介质
WO2023082105A1 (zh) * 2021-11-10 2023-05-19 深圳市大疆创新科技有限公司 喷洒作业的规划方法、装置、控制终端和存储介质
CN114415656B (zh) * 2021-12-03 2024-06-14 广州极飞科技股份有限公司 无人设备多地块作业处理方法、装置、设备和存储介质
CN114253261B (zh) * 2021-12-08 2023-04-07 广州极飞科技股份有限公司 路径生成方法、作业控制方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260485B1 (en) * 2007-04-26 2012-09-04 The Boeing Company Adaptive multi-vehicle area coverage optimization system and method
US20130124089A1 (en) * 2011-11-11 2013-05-16 Lockheed Martin Corporation Spatiotemporal survivability data compression using objective oriented constraints
CN105159319A (zh) * 2015-09-29 2015-12-16 广州极飞电子科技有限公司 一种无人机的喷药方法及无人机
CN106483975A (zh) * 2016-10-26 2017-03-08 广州极飞科技有限公司 确定无人机航线的方法及装置
CN106485429A (zh) * 2016-10-31 2017-03-08 广州极飞科技有限公司 一种无人机作业调度方法及装置
CN108253971A (zh) * 2017-12-29 2018-07-06 深圳创动科技有限公司 一种巡检方法及***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289950B (zh) * 2017-07-28 2019-01-04 上海拓攻机器人有限公司 植保无人机作业航线规划方法及植保无人机
CN107272726A (zh) * 2017-08-11 2017-10-20 上海拓攻机器人有限公司 基于无人机植保作业的作业区域确定方法及装置
CN107368094A (zh) * 2017-08-25 2017-11-21 上海拓攻机器人有限公司 一种无人机植保作业航线规划方法及装置
CN108196580A (zh) * 2018-01-31 2018-06-22 佛山市神风航空科技有限公司 一种无人机的喷药方法及无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260485B1 (en) * 2007-04-26 2012-09-04 The Boeing Company Adaptive multi-vehicle area coverage optimization system and method
US20130124089A1 (en) * 2011-11-11 2013-05-16 Lockheed Martin Corporation Spatiotemporal survivability data compression using objective oriented constraints
CN105159319A (zh) * 2015-09-29 2015-12-16 广州极飞电子科技有限公司 一种无人机的喷药方法及无人机
CN106483975A (zh) * 2016-10-26 2017-03-08 广州极飞科技有限公司 确定无人机航线的方法及装置
CN106485429A (zh) * 2016-10-31 2017-03-08 广州极飞科技有限公司 一种无人机作业调度方法及装置
CN108253971A (zh) * 2017-12-29 2018-07-06 深圳创动科技有限公司 一种巡检方法及***

Also Published As

Publication number Publication date
CN110692026A (zh) 2020-01-14
CN110692026B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2020024226A1 (zh) 地块作业的路线规划和作业方法、装置、设备以及介质
US8948913B2 (en) Method and apparatus for navigating robot
JP7024167B2 (ja) ナビゲーション制御方法、スマート倉庫システム及び無人搬送車
US11886203B2 (en) Flight control method and apparatus, and control device
CN111158384B (zh) 机器人建图方法、设备及存储介质
US12038753B2 (en) Speed planning method and apparatus, electronic device and storage medium
CN110506284B (zh) 仓库绘制工具
CN110146098A (zh) 一种机器人地图扩建方法、装置、控制设备和存储介质
CN108209743B (zh) 一种定点清洁方法、装置、计算机设备和存储介质
WO2022143920A1 (zh) 路径缩短方法、装置、无人设备及存储介质
CN113635912A (zh) 车辆控制方法、装置、设备、存储介质及自动驾驶车辆
WO2023151548A1 (zh) 导航方法、装置、程序及计算机可读存储介质
CN110716551A (zh) 移动机器人行驶策略确定方法、装置以及移动机器人
US11347241B2 (en) Control device, control method, and non-transitory program recording medium
CN113733086B (zh) 一种机器人的出行方法、装置、设备及存储介质
US20200209876A1 (en) Positioning method and apparatus with the same
CN204935662U (zh) 一种大型智能化扫地机器人
CN113867356A (zh) 机器人路径规划方法、装置及机器人
CN110573979A (zh) 作业路径调整方法及装置、可移动设备作业路径调整方法及设备、和记录介质
CN114115214A (zh) 一种基于视觉的农机驾驶方法、***、设备及存储介质
WO2024007807A1 (zh) 一种误差校正方法、装置及移动设备
CN105082153A (zh) 一种大型智能化扫地机器人
CN115542896A (zh) 一种机器人路径生成方法、***及存储介质
CN113776520B (zh) 地图构建、使用方法、装置、机器人和介质
TW202014880A (zh) 開放擴充式移動平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18928639

Country of ref document: EP

Kind code of ref document: A1