WO2020022336A1 - Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method - Google Patents

Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method Download PDF

Info

Publication number
WO2020022336A1
WO2020022336A1 PCT/JP2019/028863 JP2019028863W WO2020022336A1 WO 2020022336 A1 WO2020022336 A1 WO 2020022336A1 JP 2019028863 W JP2019028863 W JP 2019028863W WO 2020022336 A1 WO2020022336 A1 WO 2020022336A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
inorganic
nanoparticles
nanocatalyst
metal oxide
Prior art date
Application number
PCT/JP2019/028863
Other languages
French (fr)
Japanese (ja)
Inventor
阿尻 雅文
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2020022336A1 publication Critical patent/WO2020022336A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a degradable polymer material, a hybrid material and an inorganic molding material, a hybrid molded product using the same, an inorganic molded product, and a method for removing or recovering a polymer.
  • Hybrid materials such as lightweight aircraft materials using carbon fiber, eco-tires filled with carbon black or silica, glass-reinforced plastics, metal-reinforced plastics, etc. Recycling of polymers and inorganic materials from inorganic composite materials) is also being studied.
  • Patent Documents 1 and 2 For polymer and inorganic material recycling, a polymer decomposition process using a catalyst has been proposed.
  • a polymer decomposition technology based on a solid catalyst packed bed reaction process (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 the polymer has a high viscosity even at the melting temperature or higher, and it is difficult to sufficiently increase the contact efficiency with the catalyst added at the time of recycling, so that sufficient decomposition may not proceed.
  • binders In the molding of metals and ceramics, polymers are used as binders. Specifically, after a metal or ceramic material powder is molded using a binder, the binder is thermally decomposed or oxidized and decomposed by firing to obtain a powder molded product, and further sintered at a high temperature to obtain an inorganic molded product. If the binder is not sufficiently decomposed, carbides are generated in the subsequent firing, and the physical properties and functions of the inorganic molded product are reduced. However, in the molding of metals and ceramics, the solid catalyst packed bed reaction process cannot be used to increase the decomposition efficiency of the binder.
  • the present invention has a high polymer decomposition efficiency, and is a decomposable polymer material that can be applied to polymer and inorganic material recycling technologies, metal and ceramics molding, and the like. It is an object of the present invention to provide a hybrid material and an inorganic molding material capable of increasing the decomposition efficiency of a hybrid, a hybrid molded product using the same, an inorganic molded product, and a method for removing or recovering a polymer.
  • the present invention and its embodiments have the following configurations.
  • [1] A degradable polymer material in which a nanocatalyst having catalytic activity for a decomposition reaction of the polymer is dispersed in the polymer.
  • [2] The degradable polymer material according to [1], wherein the content of the nanocatalyst is 15% by mass or less based on the total mass of the degradable polymer material.
  • [3] The degradable polymer material according to [1] or [2], wherein the nanocatalyst includes metal oxide nanoparticles.
  • a method for removing or recovering a polymer comprising subjecting a molded article containing a polymer and a nanocatalyst having catalytic activity to a decomposition reaction of the polymer to a hydrothermal decomposition (steam decomposition) treatment.
  • a hydrothermal decomposition (steam decomposition) treatment comprising subjecting a molded article containing a polymer and a nanocatalyst having catalytic activity to a decomposition reaction of the polymer to a hydrothermal decomposition (steam decomposition) treatment.
  • the method for removing or recovering a polymer according to [15] wherein 15 parts by mass or less of the nanocatalyst is added to 100 parts by mass of the polymer.
  • the nanocatalyst includes metal oxide nanoparticles.
  • the present invention it is possible to provide a degradable polymer material which has a high decomposition efficiency of a polymer and can be applied to a recycling technique of a polymer or an inorganic material, a molding process of a metal or a ceramic, and the like. Further, the hybrid material and the inorganic molding material of the present invention can increase the decomposition efficiency of the polymer while suppressing the deterioration of the physical properties and functions of the hybrid molded product and the inorganic molded product. INDUSTRIAL APPLICABILITY
  • the polymer removing or recovering method of the present invention has a high polymer decomposition efficiency and can efficiently remove or recover the polymer.
  • 9 is a graph showing the results of thermogravimetric analysis of the oleic acid-modified CeO 2 nanoparticles of Example 7.
  • 9 is a photograph showing the results of evaluating the dispersibility of a decanoic acid-modified CeO 2 nanoparticle of Example 8 in a solvent.
  • 9 is a graph showing the conversion of asphaltenes when CeO 2 nanoparticles of Example 9 are used and when they are not used.
  • 11 is a graph showing the relationship between the Cr doping amount of the Cr-doped CeO 2 nanoparticles of Example 9 and the conversion of asphaltenes.
  • 10 is a photograph of a reaction solution after asphaltene decomposition reaction using Cr-doped CeO 2 nanoparticles of each Cr-doped amount of Example 9.
  • 11 is a graph showing the results of analysis of products after the lignin decomposition reaction in the case where CeO 2 nanoparticles of Example 10 were used and when they were not used. 11 is a graph showing the results of analysis of the amount of aromatics produced after the decomposition reaction of lignin when CeO 2 nanoparticles of Example 10 are used and when they are not used.
  • the degradable polymer material of the present invention is a material in which a nanocatalyst having catalytic activity for a decomposition reaction of the polymer is dispersed in the polymer.
  • polymer refers to polymers, oligomers, and other organic compounds having a molecular weight of 100 or more.
  • the polymer is not particularly limited and can be appropriately selected depending on the application. Specific examples include hydrocarbons such as hexadecane, polyolefins such as polypropylene and polyethylene, polyvinyl alcohol, polyvinyl butyral, and epoxy resins.
  • the polymer contained in the degradable polymer material may be one type, or two or more types.
  • the nanocatalyst is a catalyst that has catalytic activity for a decomposition reaction of a polymer and includes nanoparticles having an average particle diameter of less than 1 ⁇ m.
  • the decomposition reaction of the polymer that promotes the reaction by the catalytic activity of the nanocatalyst is not particularly limited, and examples thereof include thermal decomposition, partial oxidative decomposition, hydrothermal decomposition (steam decomposition), and hydrolysis.
  • the number of the nanocatalysts contained in the degradable polymer material may be one, or two or more.
  • the nanocatalyst has higher contact efficiency with the polymer than the catalyst particles having an average particle diameter of 1 ⁇ m or more, high catalyst efficiency can be easily obtained even in a small amount. For example, when 5 nm nanoparticles are uniformly dispersed at 0.1% by volume in a polymer, the average distance between the nanoparticles is 50 nm, which is almost equal to the size of the polymer. The contact efficiency becomes extremely high. Therefore, by dispersing the nanocatalyst in the polymer, a high catalyst function can be exhibited while reducing the content of the nanocatalyst and suppressing a decrease in the physical properties and functions of the product.
  • Examples of the nanoparticles constituting the nanocatalyst include metal oxide nanoparticles.
  • the metal contained in the metal oxide nanoparticles may be any metal capable of producing nanoparticles.
  • boron (B) of group IIIB-silicon (Si) of group IVB-group VB With the arsenic (As) -group VIB tellurium (Te) line as a boundary the elements on the line and those on the left or lower side of the long-period periodic table from the boundary can be exemplified.
  • a Group VIII element includes Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt
  • a Group IB element includes Cu, Ag, and Au
  • a Group IIB element includes Zn. , Cd, Hg, etc.
  • Group IIIB elements such as B, Al, Ga, In, Tl, etc.
  • Group IVB elements such as Si, Ge, Sn, Pb, etc.
  • Group VB elements such as As, Sb, Bi etc.
  • Group VIB elements include Te, Po, etc., and Group IA to VIIA elements.
  • metal oxide SiO 2, TiO 2, ZnO 2, SnO 2, Al 2 O 3, MnO 2, NiO, Eu 2 O 3, Y 2 O 3, Nb 2 O 3, InO, ZnO, Fe 2 O 3 , Fe 3 O 4 , Co 3 O 4 , ZrO 2 , CeO 2 , BaO.6Fe 2 O 3 , Al 5 (Y + Tb) 3 O 12 , BaTiO 3 , LiCoO 2 , LiMn 2 O 4 , K 2 O.6TiO 2 and AlOOH can be exemplified.
  • a substance with a perovskite structure, such as 2 O 3 , SCZ, or MoO 3 is good. This is because the decomposition reaction with H 2 O used for polymer decomposition is a reverse reaction of the reaction of the fuel cell and is the same as the reaction occurring on a solid.
  • An example of this reaction: MO x () + H 2 O MO x (O) + H 2
  • Fuel cell: H 2 + MO x (O) MO x () + H 2 O
  • catalytic reactions involving oxygen transfer are equally effective.
  • CeO 2 nanoparticles are used as the nanocatalyst.
  • CeO 2 nanoparticles take the form of an octahedron having a (111) plane as a main exposed surface, or a cube having a (100) plane as a main exposed surface.
  • the (100) plane of CeO 2 is unstable, which results in higher catalytic activity.
  • the average particle diameter of the metal oxide nanoparticles is preferably 100 nm or less, more preferably 50 nm or less, further preferably 20 nm or less, and particularly preferably 10 nm or less.
  • the lower limit of the average particle diameter of the metal oxide nanoparticles is not particularly limited, and is substantially 2 nm or more.
  • the average particle diameter of the metal oxide nanoparticles is a value measured by a TEM (transmission electron microscope).
  • the oxygen storage / release capacity (OSC) of the metal oxide nanoparticles at the reaction temperature is preferably at least 10 ⁇ mol / g, more preferably at least 15 ⁇ mol / g, even more preferably at least 20 ⁇ mol / g.
  • OSC of the metal oxide nanoparticles is equal to or more than the lower limit, the activation function as a catalyst can be more expected to be exhibited.
  • the OSC of the metal oxide nanoparticles is the number of moles of oxygen per 1 g of the metal oxide nanoparticles, and is measured by the following method 1 or method 2.
  • Method 1 Method 1
  • Method 2 Method 1
  • the sample is set in a measurement cell, and then the sample is heated to a reaction temperature, that is, 250 ° C. to 500 ° C. while introducing He gas at a predetermined secondary pressure (normal pressure or about 1 to 3 atm). Heat to a temperature of ° C.
  • an O 2 5% gas / He 95% mixed gas carrier gas
  • a CO 4% gas / He 96% mixed gas is introduced into this carrier gas by pulses.
  • Method 2 (1) Flow He gas at 500 ° C. into the measurement system. (2) O 2 gas is flowed into the measurement system at 500 ° C. to allow a sufficient amount of the sample to be adsorbed. (3) Flow He gas into the measurement system at 500 ° C. (4) At 500 ° C., H 2 gas is flowed into the measurement system to reduce the sample and remove adsorbed O 2 . (5) Flow He gas at 500 ° C. into the measurement system. (6) He gas is flowed into the measurement system at a reaction temperature, that is, a detection temperature, for example, 350 ° C.
  • O 2 gas is flown into the measurement system in pulses using He gas as a carrier gas.
  • the O 2 gas is caused to flow into the measurement system in pulses until the O 2 gas of the flowed pulse is no longer detected by the detector.
  • the value obtained by subtracting the total detected amount from the total O 2 gas outflow amount is estimated as the total O 2 gas adsorption amount (cm 3 ).
  • the unit adsorption amount (cm 3 / g) of the O 2 gas was calculated from the total adsorption amount (cm 3 ) of the O 2 gas obtained in the above (9) and the charged amount (g) of the sample. Is determined as OSC.
  • metal oxide nanoparticles metal oxide nanoparticles having an active surface exposed to 30% or more of the particle surface are preferable.
  • the active surface is the most unstable surface in terms of energy, and is the (100) surface in CeO 2 .
  • CeO 2 nanoparticles whose (100) plane is exposed to 30% or more of the particle surface are more preferable.
  • the thermal decomposition or steam decomposition of a polymer using a catalyst is generally performed in a high-temperature field of 600 ° C. or more, so that carbide is often generated or the filler is often damaged.
  • CeO 2 nanoparticles having a (100) face exposed to 30% or more of the surface the polymer can be rapidly decomposed even at 400 ° C. or less, so that carbides are generated or the filler is damaged. Can be suppressed.
  • the proportion of the surface of the CeO 2 nanoparticles where the (100) plane is exposed is preferably 30% or more, more preferably 50% or more, and even more preferably 70% or more.
  • the proportion of the surface of the CeO 2 nanoparticles where the (100) plane is exposed is measured by TEM.
  • CeO 2 nanoparticles are preferably doped with a transition element from the viewpoint of excellent catalytic activity.
  • the transition element doped into the CeO 2 nanoparticles include Cr, Gd, Zr, and the like. Among them, Cr and Gd are preferable.
  • the doping amount of the transition element in the CeO 2 nanoparticles is preferably 0.1 mol% or more, more preferably 4 mol% or more, based on the total mass of CeO 2 . Although the doping amount of the transition element is preferably as large as possible, the doping amount is up to 50 mol%.
  • an organically modified nanoparticle in which an organic molecule is bonded to the surface of a metal oxide nanoparticle is used as the nanocatalyst.
  • organic modified nanoparticles organic modified nanoparticles in which organic molecules are bonded to the surface of CeO 2 nanoparticles are more preferable.
  • Nanoparticles generally have high surface energy and tend to agglomerate in polymers, but the use of organically modified nanoparticles as nanocatalysts makes it easier to uniformly disperse them in the polymer, and the efficiency of polymer decomposition Is higher.
  • the organically modified nanoparticles it is possible to prevent the organic molecules from easily desorbing in the degradable polymer material to aggregate metal oxide nanoparticles and to prevent products using the degradable polymer material from deteriorating. Therefore, it is preferable that the organic molecules are firmly bonded before the polymer is thermally decomposed, and that the entire surface of the metal oxide nanoparticles is covered and the catalytic function is not exhibited. Further, when the polymer is decomposed, it is preferable that the organic molecule be quickly desorbed from the surface of the metal oxide nanoparticles to exhibit a catalytic function.
  • thermogravimetric analysis it is preferable that the organic modified nanoparticles do not show a weight decrease due to elimination of organic molecules at a temperature lower than 150 ° C. As a result, the organic molecules are easily desorbed in the degradable polymer material and the nanoparticles are aggregated, or the catalyst function is unexpectedly exhibited when the product using the degradable polymer material is used, thereby deteriorating the product. Is easy to suppress.
  • the temperature at which organic molecules are eliminated in the thermogravimetric analysis of the organically modified nanoparticles is preferably from 150 to 400 ° C, more preferably from 150 to 350 ° C, and still more preferably from 200 to 350 ° C.
  • the temperature at which the organic molecules are released is equal to or higher than the lower limit of the above range, it is easy to suppress aggregation of the nanoparticles in the degradable polymer material and deterioration of the product using the degradable polymer material.
  • the temperature at which the organic molecules are desorbed is equal to or lower than the upper limit of the above range, the organic molecules are desorbed at the timing of decomposition of the polymer such as at the time of recycling or removal of the binder, and the catalyst function can be easily expressed.
  • the temperature at which organic molecules are desorbed is defined as the temperature at which weight loss due to desorption of organic molecules starts in a thermogravimetric curve measured by thermogravimetric analysis.
  • the organic molecule (organic modifier) in the organically modified nanoparticles may be any one that can bond a hydrocarbon to the surface of the metal oxide nanoparticles, and can be selected according to the type of polymer.
  • the number of carbon atoms of the hydrocarbon bonded to the nanoparticle surface is not particularly limited, but is preferably 3 to 20.
  • the hydrocarbon may be linear, branched, or cyclic. Further, the hydrocarbon may have one or more substituents such as a carboxy group and a cyano group.
  • organic molecule examples include alcohols, aldehydes, ketones, carboxylic acids, esters, amines, thiols, amides, oximes, phosgene, enamines, amino acids, peptides, and saccharides.
  • the organic molecule in the organically modified nanoparticles may be one kind or two or more kinds.
  • the difference between the solubility parameter of the polymer and the solubility parameter of the organic molecule (organic modifier) in the organically modified nanoparticles is preferably 0 to 10 [J / cm 3 ] 1/2 , and 0 to 5 [J / cm 3 ]. 1/2 is more preferable.
  • the super (sub) critical water preferably has a temperature condition of 250 to 500 ° C. and a pressure condition of 10 to 30 MPa.
  • the catalyst functions by desorbing organic molecules during temperature increase in the recycling or binder removal process. Can be done.
  • the content of the nanocatalyst in the degradable polymer material is preferably 15% by mass or less, more preferably 0.1 to 15% by mass, and more preferably 5 to 12% by mass based on the total mass of the degradable polymer material. More preferred. If the content of the nanocatalyst is equal to or higher than the lower limit of the above range, the decomposition efficiency of the polymer, that is, the recycling efficiency of the polymer becomes high, and if the content is less than the upper limit, the excess nanocatalyst is recycled. It is easy to suppress problems such as mixing in molecules.
  • the decomposable polymer material of the present invention disperses the nanocatalyst in the polymer, the polymer can be decomposed efficiently even with a small amount of the catalyst.
  • the decomposable polymer material of the present invention may contain components other than the polymer and the nanocatalyst as long as the effects of the present invention are not impaired.
  • the decomposable polymer material of the present invention can be made a recyclable hybrid material by combining it with an inorganic filler. That is, the hybrid material of the present invention is a hybrid material containing an inorganic filler and a binder, and the binder is the degradable polymer material of the present invention.
  • the application of the hybrid material is not particularly limited, and examples thereof include lightweight aircraft materials and eco-tires.
  • a hybrid molded product can be obtained by heating and molding the hybrid material of the present invention by a known method.
  • the inorganic filler in the hybrid material is not particularly limited, and examples thereof include inorganic powders such as silica, alumina, carbon black, talc, calcium carbonate, and silicon carbide, and inorganic fibers such as carbon fiber and glass fiber.
  • the content of the inorganic filler in the hybrid material can be appropriately set according to the application, and can be, for example, 70 to 90% by mass based on the total mass of the hybrid material.
  • the content of the polymer in the hybrid material can be appropriately set according to the application, and can be, for example, 20 to 80% by mass based on the total mass of the hybrid material.
  • the content of the nanocatalyst in the hybrid material is preferably 15 parts by mass or less, more preferably 1 to 15 parts by mass, and still more preferably 5 to 12 parts by mass with respect to 100 parts by mass of the polymer. If the content of the nanocatalyst is not less than the lower limit of the above range, the decomposition efficiency of the polymer, that is, the recycling efficiency of the polymer is high, and if it is not more than the upper limit, the physical properties of the product using the hybrid material and It is easy to suppress the deterioration of the function.
  • the hybrid material of the present invention contains a nano catalyst, the polymer can be efficiently decomposed and the polymer or inorganic filler can be recycled without adding a new catalyst. Further, since a nanocatalyst having a high decomposition efficiency of a polymer is used even if the amount of the catalyst is small, the amount of the catalyst does not become excessive and the deterioration of the physical properties and functions of the hybrid material can be suppressed. Further, since the size of the inorganic filler is generally several ⁇ m, it is easy to separate and recover the inorganic filler from the catalyst after the decomposition of the polymer.
  • the decomposable polymer material of the present invention can also be used as a binder for an inorganic molding material.
  • the inorganic molding material of the present invention is an inorganic molding material containing an inorganic material and a binder, wherein the binder is the degradable polymer material of the present invention.
  • the inorganic molded article obtained by molding the inorganic molding material of the present invention may be a ceramic molded article, a metal powder molded article, or a metal ceramic composite molded article.
  • Examples of the inorganic material in the inorganic molding material include ceramic powder, metal powder, or a mixture of ceramic powder and metal powder.
  • Examples of the ceramic powder include glass, alumina, silica, talc, kaolin, silicon nitride, silicon carbide, alumina nitride, zirconia, titania, VO 2 , V 2 O 5 , YSZ, YAG, LSM, LSR, ITO, SCZ,
  • Examples include powders of barium titanate, strontium titanate, lanthanum gallate, barium ferrite, strontium ferrite, and sialon.
  • Examples of the metal powder include powders of nickel, copper, iron, neodymium iron boron, and the like.
  • the content of the polymer in the inorganic molding material can be appropriately set, and for example, can be 5 to 10 parts by mass with respect to 100 parts by mass of the inorganic material.
  • the content of the nanocatalyst in the inorganic molding material is preferably 15 parts by mass or less, more preferably 1 to 15 parts by mass, and still more preferably 5 to 12 parts by mass with respect to 100 parts by mass of the polymer. If the content of the nanocatalyst is not less than the lower limit of the above range, the decomposition efficiency of the polymer is sufficiently high, it is easy to suppress that the binder remains in the inorganic molded product, and if it is not more than the upper limit, It is easy to suppress deterioration in physical properties and functions of the inorganic molded product.
  • the method for producing an inorganic molded product using the inorganic molding material of the present invention includes, for example, a method having the following steps (a) to (c).
  • Step (a) The inorganic molding material of the present invention is molded to obtain a powder molded product.
  • Step (c) The powder molded product from which the polymer has been removed is fired to obtain an inorganic molded product.
  • the inorganic molding material is molded into a desired shape using a known press machine, doctor blade, reverse coater or the like to obtain a powder molded product.
  • the shape of the powder molded product may be determined depending on the use of the inorganic molded product.
  • the powder molded product is calcined, and the polymer is thermally decomposed (heat, hydrothermal, steam, (partial) oxidation, hydrolysis, etc.) utilizing the catalytic function of the nanocatalyst.
  • the nanocatalyst is an organically modified nanoparticle
  • the organic molecule of the organically modified nanoparticle is desorbed by heating during baking in step (b) to exhibit a catalytic function.
  • the calcination in the step (b) comprises a multi-stage calcination of polymer decomposition and powder calcination, or comprises a process of decomposing the polymer during heating and powder calcination.
  • the polymer decomposition temperature can be set according to the type of the nanocatalyst, and is preferably from 200 to 400 ° C, more preferably from 250 to 350 ° C. If CeO 2 nanoparticles with the (100) plane exposed are used as the nanocatalyst, the polymer can be efficiently decomposed and removed even at 400 ° C. or lower. Therefore, the polymer carbide is less likely to remain in the inorganic molded product, and the effect of suppressing the deterioration of the physical properties and functions of the inorganic molded product is further enhanced.
  • the powder molded product from which the polymer has been removed is fired to obtain an inorganic molded product.
  • the inorganic molding material of the present invention contains a nanocatalyst having a high polymer decomposition efficiency even in a small amount, carbides of the polymer hardly remain in the inorganic molded product, and deterioration in physical properties and functions of the inorganic molded product can be suppressed.
  • the method for removing or recovering a polymer of the present invention is a method for removing or recovering a polymer, which comprises subjecting a molded article containing a polymer and a nanocatalyst having catalytic activity to a decomposition reaction of the polymer to hydrothermal decomposition treatment. .
  • a nanocatalyst obtained by the above-described production method and having the above-mentioned properties is suitable.
  • a nanocatalyst 15 parts by mass or less of a nanocatalyst is added to 100 parts by mass of a polymer. Further, the polymer in which the nano catalyst is dispersed is subjected to hydrothermal decomposition at 150 to 400 ° C.
  • the efficiency of polymer decomposition is increased, resulting in an improvement in the polymer removal rate or recovery rate, and a relatively low temperature treatment, thereby suppressing the generation of carbides. it can.
  • a degradable polymer material in which a nanocatalyst having catalytic activity for a decomposition reaction of a polymer is dispersed in the polymer is used.
  • a nanocatalyst capable of efficiently decomposing a polymer even with a small amount of catalyst it is possible to suppress a decrease in physical properties and functions of a product due to an excessive amount of catalyst.
  • CeO 2 nanoparticles with the (100) plane exposed as the nano catalyst the polymer can be decomposed efficiently even at 400 ° C. or lower. If the polymer and the inorganic filler can be recycled by thermally decomposing the polymer at 400 ° C. or lower, it is possible to prevent the monomer, oligomer, inorganic filler and the like to be recovered from being greatly damaged at the time of recycling. Also, a process using waste heat is possible, which is advantageous in energy saving.
  • organically modified nanoparticles as nanocatalysts makes it easier to uniformly disperse the nanocatalyst in the polymer, further increasing the decomposition efficiency of the polymer, and expressing the catalytic function until the polymer is thermally decomposed. Therefore, the deterioration of the product can be easily suppressed. Further, if the temperature at which the organic molecules of the organically modified nanoparticles are desorbed is controlled within the above-mentioned specific temperature range, the catalytic function can be developed at a desired timing such as during recycling or binder removal.
  • the aspect using the decomposable polymer material of the present invention is not limited to the aspect used for the hybrid material or the inorganic molding material described above, and is recyclable for producing a resin molded product using the degradable polymer material alone. It may be used as a material.
  • Example 1 Cubic CeO 2 nanoparticles with (100) plane exposed to 80% of the particle surface as a nano catalyst on 0.142 g of polyvinyl butyral ((C 8 H 14 O 2 ) n : 142 g / mol per n) which is a polymer 10 mg (manufactured by ITEC, post-baking: 300 ° C., 2 hours, average particle size: 5 nm) was dispersed, and this was mixed with 1 g of silica (manufactured by Kanto Reagent, particle size: 40 to 60 ⁇ m) as a binder to prepare a test material. .
  • polyvinyl butyral ((C 8 H 14 O 2 ) n : 142 g / mol per n) which is a polymer 10 mg (manufactured by ITEC, post-baking: 300 ° C., 2 hours, average particle size: 5 nm) was dispersed, and this was mixed with 1 g of si
  • the amount of the CeO 2 nanoparticles is about 7.0 parts by mass based on 100 parts by mass of polyvinyl butyral.
  • the obtained test material was subjected to steam pyrolysis at 400 ° C. and 30 MPa for 30 minutes. In steam pyrolysis, 0.5 g of steam was supplied. Also, when the reaction time was set to 60 minutes, steam pyrolysis was similarly performed. In addition, a comparative material was produced in the same manner except that the nano catalyst was not blended, and steam pyrolysis was performed. Table 1 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
  • Example 2 A test material was produced in the same manner as in Example 1 except that 0.176 g of polyvinyl alcohol ((C 2 H 4 O) n : 44 g / mol per n) was used as the polymer, and steam pyrolysis was performed. In this case, the amount of the CeO 2 nanoparticles is about 5.7 parts by mass based on 100 parts by mass of the polyvinyl alcohol. Table 2 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
  • Example 3 Same as Example 1 except that 0.085 g of hexadecane was used as the polymer, and 10 mg of CeO 2 nanoparticles (post-baking: 300 ° C., 2 hours, average particle size: 5 nm) doped with 30% Cr were used as the nanocatalyst.
  • the test material was manufactured by steam pyrolysis. In this case, the amount of the CeO 2 nanoparticles is about 11.8 parts by mass per 100 parts by mass of hexadecane. Table 3 shows the conversion of steam pyrolysis and the analysis results of the products.
  • Example 4 A test material was produced in the same manner as in Example 1 except that 0.168 g of low-density polyethylene (LDPE, (C 2 H 4 ) n : 28 g / mol per n) was used as a polymer, and steam pyrolysis was performed. .
  • the amount of the CeO 2 nanoparticles is about 6.0 parts by mass with respect to 100 parts by mass of the low-density polyethylene.
  • Table 4 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
  • Example 5 A test material was produced in the same manner as in Example 1 except that 0.176 g of polypropylene ((C 3 H 6 ) n : 42 g / mol per n) was used as the polymer, and steam pyrolysis was performed. In this case, the amount of the CeO 2 nanoparticles is about 5.7 parts by mass with respect to 100 parts by mass of the polypropylene. Table 5 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
  • TGA Thermogravimetric analysis
  • Decanoic acid-modified CeO 2 nanoparticles (cube, manufactured by ITEC, average particle diameter: 5 nm) having (100) face exposed to 80% of the particle surface were used as the organic modified nanoparticles.
  • the temperature at which the organic molecules were desorbed was 300 to 400 ° C.
  • the obtained organically modified nanoparticles were excellent in dispersibility in a polymer.
  • FIG. 1 shows the results of thermogravimetric analysis of oleic acid-modified CeO 2 nanoparticles (cubes) synthesized at 400 ° C. by the supercritical hydrothermal synthesis method.
  • weight loss occurred between 290 ° C. and 460 ° C.
  • the organic molecules are stably present and can maintain the dispersed state.
  • the temperature is set to 300 ° C. or higher, the organic molecules are desorbed, and the most active surface is exposed, thereby exhibiting a catalytic function.
  • FIG. 2 shows the results of evaluating the dispersibility of decanoic acid-modified CeO 2 nanoparticles in a solvent in order to evaluate the dispersibility in a resin.
  • the content of cyclohexane having a high affinity for the decanoic acid-modified CeO 2 nanoparticles was transparently dispersed up to 63% by mass, and the content was 70% by mass.
  • CeO 2 nanoparticles that were not organically modified even at 9.9% by mass, they could not be dispersed. This result indicates that by controlling the affinity of the organically modified nanoparticles, it is possible to achieve good dispersion in the resin.
  • Example 9 Decomposition experiments at a low temperature (300 ° C. or 350 ° C.) of asphaltene (ultra heavy oil), which is a kind of polymer, were performed.
  • asphaltene ultra heavy oil
  • As the catalyst (100) face-exposed CeO 2 nanoparticles synthesized by supercritical hydrothermal synthesis and Cr-doped CeO 2 nanoparticles were used, and were added so as to be 0.04% by mass.
  • FIG. 3 shows the conversion of asphaltenes with and without (100) plane exposed CeO 2 nanoparticles.
  • FIG. 4 shows the result of plotting the relationship between the Cr doping amount of the Cr-doped CeO 2 nanoparticles and the conversion of asphaltenes.
  • FIG. 1 shows the result of plotting the relationship between the Cr doping amount of the Cr-doped CeO 2 nanoparticles and the conversion of asphaltenes.
  • FIG. 5 shows a photograph of the reaction solution after the Cr-doped CeO 2 nanoparticles of each Cr-doped amount were decomposed in water vapor at 350 ° C. for 1 hour.
  • the Cr doping amount of the Cr-doped CeO 2 nanoparticles was analyzed from the main peak shift of X-ray diffraction (XRD).
  • FIGS. 6 and 7 show the results of decomposing lignin, a kind of phenol resin, at 350 ° C. for 10 minutes.
  • a catalyst was not used, in the presence of water, a phenol skeleton was polymerized via the Friedel-Crafts reaction by the generated aldehyde together with the hydrolysis, and thus the formation of char was observed.
  • 200 mg of CeO 2 nanoparticles were added to 2 g of lignin, the production of char was suppressed and the production of gas increased.
  • the recovery of the monomer such as guaiacol also increased. It has been shown that monomer recycling is possible.
  • Example 11 A test material was prepared by dispersing 10 mg of (100) surface exposed CeO 2 nanoparticles in 0.142 g of polyvinyl butyral, which is a polymer, and mixing it with 1 g of silica having a particle diameter of 40 to 60 ⁇ m as a binder. In this case, the amount of the CeO 2 nanoparticles is about 7.0 parts by mass with respect to 100 parts by mass of polyvinyl butyral.
  • the obtained test material was subjected to steam pyrolysis at 250 ° C. and 3.56 MPa for 30 minutes. In steam pyrolysis, 0.5 g of steam was supplied. Also, when the reaction time was set to 60 minutes, steam pyrolysis was similarly performed. In addition, a comparative material was produced in the same manner except that the nano catalyst was not blended, and steam pyrolysis was performed. Table 6 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
  • Example 11 in the test material containing the nanocatalyst, the polymer was efficiently decomposed even at a low temperature.
  • the polymer materials are all used as binders for silica as a ceramic, but in any case, the catalytic function of the nanocatalyst is affected by the presence of silica. Not something. This is the same in the presence of other inorganic substances such as metal powder.

Abstract

The present invention provides: a degradable polymer material having high degradation efficiency of the polymer, the degradable polymer material being applicable to polymer and inorganic materials recycling technology, metal and ceramic molding, etc.; a hybrid material and an inorganic molding material in which the degradable polymer material is used; a hybrid molded article in which these are used; an inorganic molded article; and a polymer removal or recovery method. A degradable polymer material in which a nano catalyst having catalytic activity for a degradation reaction of the polymer is dispersed in the polymer. A recyclable hybrid material containing the degradable polymer material and an inorganic filler, and a hybrid molded article in which the hybrid material is used. An inorganic molding material containing an inorganic material and a binder, the molding material being used in the molding of an inorganic molded article, wherein the binder is the above degradable polymer material; and an inorganic molded article in which the inorganic molding material is used. A polymer removal or recovery method using a nano catalyst having catalytic activity for a degradation reaction of a polymer.

Description

分解性高分子材料、ハイブリッド材料及び無機成型材料、これらを用いたハイブリッド成型物、無機成型物、並びに高分子除去又は回収方法Degradable polymer material, hybrid material and inorganic molding material, hybrid molded product using the same, inorganic molded product, and method for removing or recovering polymer
 本発明は、分解性高分子材料、ハイブリッド材料及び無機成型材料、これらを用いたハイブリッド成型物、無機成型物、並びに高分子除去又は回収方法に関する。
 本願は、2018年7月23日に、日本に出願された特願2018-138068号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a degradable polymer material, a hybrid material and an inorganic molding material, a hybrid molded product using the same, an inorganic molded product, and a method for removing or recovering a polymer.
Priority is claimed on Japanese Patent Application No. 2018-138068 filed on July 23, 2018, the content of which is incorporated herein by reference.
 近年、高分子のリサイクル技術は、幅広い分野で展開されている。また、炭素繊維を用いた軽量航空機材料、カーボンブラックやシリカを充填したエコタイヤ、ガラス強化プラスチックス、金属強化プラスチックス等の高分子と無機材料の両方の機能発現を目的としたハイブリッド材料(高分子無機複合材料)から、高分子や無機材料をリサイクルすることも検討されている。 In recent years, polymer recycling technology has been deployed in a wide range of fields. Hybrid materials (polymers) such as lightweight aircraft materials using carbon fiber, eco-tires filled with carbon black or silica, glass-reinforced plastics, metal-reinforced plastics, etc. Recycling of polymers and inorganic materials from inorganic composite materials) is also being studied.
 リサイクル技術としては、燃焼等によるサーマルリサイクルだけでなく、マテリアルリサイクル技術、素原料回収をめざすケミカルリサイクルの可能性も検討されている。すでに高分子の熱分解技術や水蒸気分解技術が開発されつつある。これらの技術は高分子のリサイクルを目的とする場合もあるが、多くの場合は無機材料、特にフィラーのリサイクルを目的としている。 As for recycling technology, not only thermal recycling by combustion etc. but also material recycling technology and possibility of chemical recycling aiming at recovery of raw materials are being studied. Polymer pyrolysis and steam decomposition technologies are already being developed. These techniques may be aimed at recycling polymers, but in many cases are aimed at recycling inorganic materials, especially fillers.
 高分子や無機材料のリサイクルでは、触媒を利用した高分子分解プロセスも提案されている。例えば、固体触媒充填層反応プロセスによる高分子分解技術がある(特許文献1、2)。しかし、高分子は溶融温度以上でも粘性が高く、リサイクル時に添加した触媒との接触効率を充分に高くすることは難しく、充分な分解が進まない場合もある。 For polymer and inorganic material recycling, a polymer decomposition process using a catalyst has been proposed. For example, there is a polymer decomposition technology based on a solid catalyst packed bed reaction process (Patent Documents 1 and 2). However, the polymer has a high viscosity even at the melting temperature or higher, and it is difficult to sufficiently increase the contact efficiency with the catalyst added at the time of recycling, so that sufficient decomposition may not proceed.
 また、金属やセラミクスの成型加工においては、バインダーとして高分子が用いられる。具体的には、バインダーを用いて金属やセラミクスの素材粉末を成型した後、焼成によりバインダーを熱分解あるいは酸化分解させて粉体成型物とし、さらに高温での焼成により無機成型物とする。バインダーの分解が不充分であると、その後の焼成で炭化物が生じ、無機成型物の物性や機能が低下する。しかし、金属やセラミクスの成型加工では、バインダーの分解効率を高めるために固体触媒充填層反応プロセスを利用することはできない。 高分子 In the molding of metals and ceramics, polymers are used as binders. Specifically, after a metal or ceramic material powder is molded using a binder, the binder is thermally decomposed or oxidized and decomposed by firing to obtain a powder molded product, and further sintered at a high temperature to obtain an inorganic molded product. If the binder is not sufficiently decomposed, carbides are generated in the subsequent firing, and the physical properties and functions of the inorganic molded product are reduced. However, in the molding of metals and ceramics, the solid catalyst packed bed reaction process cannot be used to increase the decomposition efficiency of the binder.
特開2015-131892号公報JP-A-2013-131892 国際公開第2015/025941号WO 2015/025941
 本発明は、高分子の分解効率が高く、高分子や無機材料のリサイクル技術、金属やセラミクスの成型加工等に適用できる分解性高分子材料、また物性や機能の低下を抑制しつつ、高分子の分解効率を高められるハイブリッド材料及び無機成型材料、これらを用いたハイブリッド成型物、無機成型物、並びに高分子除去又は回収方法を提供することを目的とする。 The present invention has a high polymer decomposition efficiency, and is a decomposable polymer material that can be applied to polymer and inorganic material recycling technologies, metal and ceramics molding, and the like. It is an object of the present invention to provide a hybrid material and an inorganic molding material capable of increasing the decomposition efficiency of a hybrid, a hybrid molded product using the same, an inorganic molded product, and a method for removing or recovering a polymer.
 本発明及びその実施形態は、以下の構成を有する。
[1]高分子に、当該高分子の分解反応に対する触媒活性を有するナノ触媒が分散されている、分解性高分子材料。
[2]前記ナノ触媒の含有量が、前記分解性高分子材料の総質量に対して15質量%以下である、[1]に記載の分解性高分子材料。
[3]前記ナノ触媒が金属酸化物ナノ粒子を含む、[1]又は[2]に記載の分解性高分子材料。
[4]前記金属酸化物ナノ粒子は、反応温度における酸素吸蔵放出能(OSC)が10μmol/g以上であり、平均粒子径が100nm以下である、[3]に記載の分解性高分子材料。
[5]前記金属酸化物ナノ粒子の表面の30%以上に活性面が露出している、[3]又は[4]に記載の分解性高分子材料。
[6]前記ナノ触媒は、前記金属酸化物ナノ粒子の表面に有機分子が結合された有機修飾ナノ粒子である、[3]~[5]のいずれかに記載の分解性高分子材料。
[7]前記有機修飾ナノ粒子の熱重量分析において、有機分子が脱離する温度が150~400℃である、[6]に記載の分解性高分子材料。
[8]前記金属酸化物ナノ粒子がCeOナノ粒子である、[3]~[7]のいずれかに記載の分解性高分子材料。
[9]前記CeOナノ粒子に遷移元素がドープされている、[8]に記載の分解性高分子材料。
[10]無機フィラーとバインダーとを含有するハイブリッド材料であって、前記バインダーが[1]~[9]のいずれかに記載の分解性高分子材料である、ハイブリッド材料。
[11][10]に記載のハイブリッド材料を加熱及び成型して得られるハイブリッド成型物。
[12]無機材料とバインダーとを含有する成型材料であって、前記バインダーが[1]~[9]のいずれかに記載の分解性高分子材料である、無機成型材料。
[13]前記無機材料が、セラミクス粉末、金属粉末、又は、セラミクス粉末及び金属粉末の混合物である、[12]に記載の無機成型材料。
[14][12]又は[13]に記載の無機成型材料を成型及び焼成して得られる無機成型物。
[15]高分子と、当該高分子の分解反応に対する触媒活性を有するナノ触媒とを含有する成型物を、水熱分解(水蒸気分解)処理する、高分子除去又は回収方法。
[16]前記高分子100質量部に対して前記ナノ触媒を15質量部以下添加する、[15]に記載の高分子除去又は回収方法。
[17]前記ナノ触媒が金属酸化物ナノ粒子を含む、[15]又は[16]に記載の高分子除去又は回収方法。
[18]前記金属酸化物ナノ粒子は、反応温度における酸素吸蔵放出能(OSC)が10μmol/g以上であり、平均粒子径が100nm以下である、[17]に記載の高分子除去又は回収方法。
[19]前記金属酸化物ナノ粒子の表面の30%以上に活性面が露出している、[17]又は[18]に記載の高分子除去又は回収方法。
[20]前記ナノ触媒は、前記金属酸化物ナノ粒子の表面に有機分子が結合された有機修飾ナノ粒子である、[17]~[19]のいずれかに記載の高分子除去又は回収方法。
[21]前記金属酸化物ナノ粒子がCeOナノ粒子である、[17]~[20]のいずれかに記載の高分子除去又は回収方法。
[22]前記CeOナノ粒子に遷移元素がドープされている、[21]に記載の高分子除去又は回収方法。
[23]前記ナノ触媒を分散させた前記高分子を150~400℃で水熱分解処理する、[15]~[22]のいずれかに記載の高分子除去又は回収方法。
[24]前記成型物は、前記高分子をバインダーとする無機フィラー又は無機成型材料を含有する、[15]~[23]のいずれかに記載の高分子除去又は回収方法。
The present invention and its embodiments have the following configurations.
[1] A degradable polymer material in which a nanocatalyst having catalytic activity for a decomposition reaction of the polymer is dispersed in the polymer.
[2] The degradable polymer material according to [1], wherein the content of the nanocatalyst is 15% by mass or less based on the total mass of the degradable polymer material.
[3] The degradable polymer material according to [1] or [2], wherein the nanocatalyst includes metal oxide nanoparticles.
[4] The degradable polymer material according to [3], wherein the metal oxide nanoparticles have an oxygen storage / release capacity (OSC) at a reaction temperature of 10 μmol / g or more and an average particle diameter of 100 nm or less.
[5] The degradable polymer material according to [3] or [4], wherein an active surface is exposed on at least 30% of the surface of the metal oxide nanoparticles.
[6] The degradable polymer material according to any one of [3] to [5], wherein the nanocatalyst is an organically modified nanoparticle in which an organic molecule is bonded to a surface of the metal oxide nanoparticle.
[7] The decomposable polymer material according to [6], wherein in the thermogravimetric analysis of the organically modified nanoparticles, a temperature at which an organic molecule is released is 150 to 400 ° C.
[8] The degradable polymer material according to any one of [3] to [7], wherein the metal oxide nanoparticles are CeO 2 nanoparticles.
[9] The decomposable polymer material according to [8], wherein the CeO 2 nanoparticles are doped with a transition element.
[10] A hybrid material containing an inorganic filler and a binder, wherein the binder is the degradable polymer material according to any one of [1] to [9].
[11] A hybrid molded product obtained by heating and molding the hybrid material according to [10].
[12] A molding material containing an inorganic material and a binder, wherein the binder is the degradable polymer material according to any one of [1] to [9].
[13] The inorganic molding material according to [12], wherein the inorganic material is a ceramic powder, a metal powder, or a mixture of a ceramic powder and a metal powder.
[14] An inorganic molded product obtained by molding and firing the inorganic molding material according to [12] or [13].
[15] A method for removing or recovering a polymer, comprising subjecting a molded article containing a polymer and a nanocatalyst having catalytic activity to a decomposition reaction of the polymer to a hydrothermal decomposition (steam decomposition) treatment.
[16] The method for removing or recovering a polymer according to [15], wherein 15 parts by mass or less of the nanocatalyst is added to 100 parts by mass of the polymer.
[17] The method for removing or recovering a polymer according to [15] or [16], wherein the nanocatalyst includes metal oxide nanoparticles.
[18] The method for removing or recovering a polymer according to [17], wherein the metal oxide nanoparticles have an oxygen storage / release capacity (OSC) at a reaction temperature of 10 μmol / g or more and an average particle diameter of 100 nm or less. .
[19] The method for removing or collecting a polymer according to [17] or [18], wherein an active surface is exposed on at least 30% of the surface of the metal oxide nanoparticles.
[20] The method for removing or recovering a polymer according to any one of [17] to [19], wherein the nanocatalyst is an organically modified nanoparticle in which an organic molecule is bonded to a surface of the metal oxide nanoparticle.
[21] The method for removing or recovering a polymer according to any one of [17] to [20], wherein the metal oxide nanoparticles are CeO 2 nanoparticles.
[22] The method for removing or recovering a polymer according to [21], wherein the CeO 2 nanoparticles are doped with a transition element.
[23] The method for removing or recovering a polymer according to any one of [15] to [22], wherein the polymer in which the nanocatalyst is dispersed is subjected to hydrothermal decomposition at 150 to 400 ° C.
[24] The method for removing or collecting a polymer according to any one of [15] to [23], wherein the molded product contains an inorganic filler or an inorganic molding material using the polymer as a binder.
 本発明によれば、高分子の分解効率が高く、高分子や無機材料のリサイクル技術、金属やセラミクスの成型加工等に適用できる分解性高分子材料を提供できる。また、本発明のハイブリッド材料及び無機成型材料は、ハイブリッド成型物や無機成型物の物性や機能の低下を抑制しつつ、高分子の分解効率を高めることができる。本発明の高分子除去又は回収方法は、高分子の分解効率が高く、高分子を効率良く除去又は回収することができる。 According to the present invention, it is possible to provide a degradable polymer material which has a high decomposition efficiency of a polymer and can be applied to a recycling technique of a polymer or an inorganic material, a molding process of a metal or a ceramic, and the like. Further, the hybrid material and the inorganic molding material of the present invention can increase the decomposition efficiency of the polymer while suppressing the deterioration of the physical properties and functions of the hybrid molded product and the inorganic molded product. INDUSTRIAL APPLICABILITY The polymer removing or recovering method of the present invention has a high polymer decomposition efficiency and can efficiently remove or recover the polymer.
例7のオレイン酸修飾CeOナノ粒子の熱重量分析結果を示したグラフである。9 is a graph showing the results of thermogravimetric analysis of the oleic acid-modified CeO 2 nanoparticles of Example 7. 例8のデカン酸修飾CeOナノ粒子の溶媒中の分散性を評価した結果を示した写真である。9 is a photograph showing the results of evaluating the dispersibility of a decanoic acid-modified CeO 2 nanoparticle of Example 8 in a solvent. 例9のCeOナノ粒子を用いる場合と用いない場合のアスファルテンの転化率を示したグラフである。9 is a graph showing the conversion of asphaltenes when CeO 2 nanoparticles of Example 9 are used and when they are not used. 例9のCrドープCeOナノ粒子のCrドープ量とアスファルテンの転化率の関係を示したグラフである。11 is a graph showing the relationship between the Cr doping amount of the Cr-doped CeO 2 nanoparticles of Example 9 and the conversion of asphaltenes. 例9の各Crドープ量のCrドープCeOナノ粒子を用いたアスファルテンの分解反応後の反応液の写真である。10 is a photograph of a reaction solution after asphaltene decomposition reaction using Cr-doped CeO 2 nanoparticles of each Cr-doped amount of Example 9. 例10のCeOナノ粒子を用いる場合と用いない場合のリグニンの分解反応後の生成物の分析結果を示したグラフである。11 is a graph showing the results of analysis of products after the lignin decomposition reaction in the case where CeO 2 nanoparticles of Example 10 were used and when they were not used. 例10のCeOナノ粒子を用いる場合と用いない場合のリグニンの分解反応後の芳香族生成量の分析結果を示したグラフである。11 is a graph showing the results of analysis of the amount of aromatics produced after the decomposition reaction of lignin when CeO 2 nanoparticles of Example 10 are used and when they are not used.
[分解性高分子材料]
 本発明の分解性高分子材料は、高分子に、当該高分子の分解反応に対する触媒活性を有するナノ触媒が分散されている材料である。
[Degradable polymer material]
The degradable polymer material of the present invention is a material in which a nanocatalyst having catalytic activity for a decomposition reaction of the polymer is dispersed in the polymer.
 本発明において、高分子とは、ポリマー、オリゴマー他、分子量が100以上の有機化合物を意味する。
 高分子としては、特に限定されず、用途に応じて適宜選択できる。具体的には、ヘキサデカン等の炭化水素、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリビニルアルコール、ポリビニルブチラール、エポキシ樹脂等を例示できる。分解性高分子材料に含有される高分子は、1種であってもよく、2種以上であってもよい。
In the present invention, the term “polymer” refers to polymers, oligomers, and other organic compounds having a molecular weight of 100 or more.
The polymer is not particularly limited and can be appropriately selected depending on the application. Specific examples include hydrocarbons such as hexadecane, polyolefins such as polypropylene and polyethylene, polyvinyl alcohol, polyvinyl butyral, and epoxy resins. The polymer contained in the degradable polymer material may be one type, or two or more types.
 本発明の好ましい実施形態においては、ナノ触媒は、高分子の分解反応に対する触媒活性を有する、平均粒子径が1μm未満のナノ粒子を含む触媒である。ナノ触媒の触媒活性によって反応を促進する高分子の分解反応は、特に限定されず、例えば、熱分解、部分酸化分解、水熱分解(水蒸気分解)、加水分解を例示できる。分解性高分子材料に含有されるナノ触媒は、1種であってもよく、2種以上であってもよい。 好 ま し い In a preferred embodiment of the present invention, the nanocatalyst is a catalyst that has catalytic activity for a decomposition reaction of a polymer and includes nanoparticles having an average particle diameter of less than 1 μm. The decomposition reaction of the polymer that promotes the reaction by the catalytic activity of the nanocatalyst is not particularly limited, and examples thereof include thermal decomposition, partial oxidative decomposition, hydrothermal decomposition (steam decomposition), and hydrolysis. The number of the nanocatalysts contained in the degradable polymer material may be one, or two or more.
 ナノ触媒は平均粒子径が1μm以上の触媒粒子に比べて高分子との接触効率が高くなるため、少量でも高い触媒効率が得られやすい。例えば、高分子中に5nmのナノ粒子を0.1体積%で均一に分散している場合、ナノ粒子間の平均距離は50nmであり、高分子の大きさと同程度となるため、高分子との接触効率が極めて高くなる。そのため、高分子にナノ触媒を分散させることで、ナノ触媒の含有量を低くして製品の物性や機能の低下を抑制しつつ、高い触媒機能を発現させることができる。 Since the nanocatalyst has higher contact efficiency with the polymer than the catalyst particles having an average particle diameter of 1 μm or more, high catalyst efficiency can be easily obtained even in a small amount. For example, when 5 nm nanoparticles are uniformly dispersed at 0.1% by volume in a polymer, the average distance between the nanoparticles is 50 nm, which is almost equal to the size of the polymer. The contact efficiency becomes extremely high. Therefore, by dispersing the nanocatalyst in the polymer, a high catalyst function can be exhibited while reducing the content of the nanocatalyst and suppressing a decrease in the physical properties and functions of the product.
 ナノ触媒を構成するナノ粒子としては、金属酸化物ナノ粒子を例示できる。
 金属酸化物ナノ粒子に含まれる金属としては、ナノ粒子を製造できるものであればよく、長周期型周期表で第IIIB族のホウ素(B)-第IVB族のケイ素(Si)-第VB族のヒ素(As)-第VIB族のテルル(Te)の線を境界としてその線上にある元素並びにその境界より、長周期型周期表において左側ないし下側にあるものを例示できる。具体的には、第VIII族の元素ではFe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt等、第IB族の元素ではCu、Ag、Au等、第IIB族の元素ではZn、Cd、Hg等、第IIIB族の元素ではB、Al、Ga、In、Tl等、第IVB族の元素ではSi、Ge、Sn、Pb等、第VB族の元素ではAs、Sb、Bi等、第VIB族の元素ではTe、Po等、そして第IAからVIIA族の元素等を例示できる。
Examples of the nanoparticles constituting the nanocatalyst include metal oxide nanoparticles.
The metal contained in the metal oxide nanoparticles may be any metal capable of producing nanoparticles. In the long period type periodic table, boron (B) of group IIIB-silicon (Si) of group IVB-group VB With the arsenic (As) -group VIB tellurium (Te) line as a boundary, the elements on the line and those on the left or lower side of the long-period periodic table from the boundary can be exemplified. Specifically, a Group VIII element includes Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt, a Group IB element includes Cu, Ag, and Au, and a Group IIB element includes Zn. , Cd, Hg, etc., Group IIIB elements such as B, Al, Ga, In, Tl, etc., Group IVB elements such as Si, Ge, Sn, Pb, etc., and Group VB elements such as As, Sb, Bi etc. , Group VIB elements include Te, Po, etc., and Group IA to VIIA elements.
 金属酸化物の具体例としては、SiO、TiO、ZnO、SnO、Al、MnO、NiO、Eu、Y、Nb、InO、ZnO、Fe、Fe、Co、ZrO、CeO、BaO・6Fe、Al(Y+Tb)12、BaTiO、LiCoO、LiMn、KO・6TiO、AlOOHを例示できる。
 特に、固体電解質燃料電池で使用される、V、CoO、LSM-35、LSF、LSCF、Gd-CeO、LaGaO、Co、Fe、In、Mn、SCZ、MoO等や、ペロブスカイト構造の物質は良い。これは、高分子分解に用いられるHOとの分解反応が、燃料電池の反応の逆反応であり、固体上で生じる反応としては同じであるためである。
 本反応の一例:MO( )+HO = MO(O)+H
 燃料電池:H+MO(O) = MO( )+H
 その他、酸素移動を伴う触媒反応は同様に有効である。
Specific examples of the metal oxide, SiO 2, TiO 2, ZnO 2, SnO 2, Al 2 O 3, MnO 2, NiO, Eu 2 O 3, Y 2 O 3, Nb 2 O 3, InO, ZnO, Fe 2 O 3 , Fe 3 O 4 , Co 3 O 4 , ZrO 2 , CeO 2 , BaO.6Fe 2 O 3 , Al 5 (Y + Tb) 3 O 12 , BaTiO 3 , LiCoO 2 , LiMn 2 O 4 , K 2 O.6TiO 2 and AlOOH can be exemplified.
In particular, V 2 O 5 , CoO, LSM-35, LSF, LSCF, Gd-CeO 2 , LaGaO 3 , Co 3 O 4 , Fe 2 O 3 , In 2 O 3 , Mn used in solid electrolyte fuel cells A substance with a perovskite structure, such as 2 O 3 , SCZ, or MoO 3 , is good. This is because the decomposition reaction with H 2 O used for polymer decomposition is a reverse reaction of the reaction of the fuel cell and is the same as the reaction occurring on a solid.
An example of this reaction: MO x () + H 2 O = MO x (O) + H 2
Fuel cell: H 2 + MO x (O) = MO x () + H 2 O
In addition, catalytic reactions involving oxygen transfer are equally effective.
 本発明の好ましい実施形態においては、ナノ触媒として、金属酸化物ナノ粒子のなかでも、CeOナノ粒子が用いられる。CeOナノ粒子は、(111)面を主な露出面として有する八面体、又は(100)面を主な露出面として有する立方体の形態をとる。CeOの(100)面は不安定であり、それによってより高い触媒活性が得られる。 In a preferred embodiment of the present invention, among the metal oxide nanoparticles, CeO 2 nanoparticles are used as the nanocatalyst. CeO 2 nanoparticles take the form of an octahedron having a (111) plane as a main exposed surface, or a cube having a (100) plane as a main exposed surface. The (100) plane of CeO 2 is unstable, which results in higher catalytic activity.
 金属酸化物ナノ粒子の平均粒子径は、100nm以下が好ましく、50nm以下がより好ましく、20nm以下がさらに好ましく、10nm以下が特に好ましい。金属酸化物ナノ粒子の平均粒子径の下限は特に限定されず、実質的には2nm以上である。
 なお、金属酸化物ナノ粒子の平均粒子径は、TEM(透過型電子顕微鏡)により測定される値である。
The average particle diameter of the metal oxide nanoparticles is preferably 100 nm or less, more preferably 50 nm or less, further preferably 20 nm or less, and particularly preferably 10 nm or less. The lower limit of the average particle diameter of the metal oxide nanoparticles is not particularly limited, and is substantially 2 nm or more.
The average particle diameter of the metal oxide nanoparticles is a value measured by a TEM (transmission electron microscope).
 金属酸化物ナノ粒子の酸素吸蔵放出能(OSC)は、反応温度において、10μmol/g以上が好ましく、15μmol/g以上がより好ましく、20μmol/g以上がさらに好ましい。金属酸化物ナノ粒子のOSCが前記下限値以上であれば、触媒としての活性化機能の発現をより期待できる。 酸 素 The oxygen storage / release capacity (OSC) of the metal oxide nanoparticles at the reaction temperature is preferably at least 10 μmol / g, more preferably at least 15 μmol / g, even more preferably at least 20 μmol / g. When the OSC of the metal oxide nanoparticles is equal to or more than the lower limit, the activation function as a catalyst can be more expected to be exhibited.
 なお、金属酸化物ナノ粒子のOSCは、金属酸化物ナノ粒子1gあたりの酸素モル数であり、以下の方法1又は方法2で測定される。
 (方法1)
 ガス吸着装置を用い、試料を測定セルにセットし、次いで所定の2次圧(常圧、あるいは1気圧以上3気圧以下程度)でHeガスを導入しながら試料を反応温度、すなわち250℃~500℃の温度まで昇温する。次に、HeガスにOガス5%を混合したO5%ガス/He95%混合ガス(キャリアガス)を導入し、このキャリアガス中にCO4%ガス/He96%混合ガスをパルスで導入し、MS(Mass Spectrometry:質量分析法)で分析する。試料がOを吸収するとキャリアガス中のO量は減少する。減少が無くなるまでパルス導入を繰り返し行い、Oガスの減少量の総和から試料1gあたりの酸素モル数を求めてOSCとする。
 なお、本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
The OSC of the metal oxide nanoparticles is the number of moles of oxygen per 1 g of the metal oxide nanoparticles, and is measured by the following method 1 or method 2.
(Method 1)
Using a gas adsorption device, the sample is set in a measurement cell, and then the sample is heated to a reaction temperature, that is, 250 ° C. to 500 ° C. while introducing He gas at a predetermined secondary pressure (normal pressure or about 1 to 3 atm). Heat to a temperature of ° C. Next, an O 2 5% gas / He 95% mixed gas (carrier gas) in which He gas is mixed with O 2 gas 5% is introduced, and a CO 4% gas / He 96% mixed gas is introduced into this carrier gas by pulses. And MS (Mass Spectrometry). Sample upon absorption of O 2 is O 2 amount of carrier gas decreases. Pulse introduction is repeated until the decrease stops, and the number of moles of oxygen per 1 g of the sample is determined from the total amount of the decrease in the O 2 gas to obtain the OSC.
In this specification, “to” indicating a numerical range means that numerical values described before and after the numerical range are included as the lower limit and the upper limit.
 (方法2)
 (1)500℃にて測定系内にHeガスを流す。
 (2)500℃にて測定系内にOガスを流し、試料に十分量吸着させる。
 (3)500℃にて測定系内にHeガスを流す。
 (4)500℃にて測定系内にHガスを流し、試料を還元し吸着Oを取り除く。
 (5)500℃にて測定系内にHeガスを流す。
 (6)反応温度すなわち検出温度、例えば350℃にて測定系内にHeガスを流す。(ここまでが前処理である。)
 (7)検出温度(350℃)にて、Heガスをキャリアガスとして、Oガスをパルスで測定系内に流す。
 (8)流したパルスのOガスが検出器によって検出されなくなるまで、Oガスをパルスで測定系内に流す。
 (9)Oガスの全流出量から全検出量を引いた値が、Oガスの全吸着量(cm)として見積もられる。
 (10)上記(9)で求めたOガスの全吸着量(cm)と試料の仕込み量(g)からOガスの単位吸着量(cm/g)を算出し、試料1gあたりの酸素モル数を求めてOSCとする。
(Method 2)
(1) Flow He gas at 500 ° C. into the measurement system.
(2) O 2 gas is flowed into the measurement system at 500 ° C. to allow a sufficient amount of the sample to be adsorbed.
(3) Flow He gas into the measurement system at 500 ° C.
(4) At 500 ° C., H 2 gas is flowed into the measurement system to reduce the sample and remove adsorbed O 2 .
(5) Flow He gas at 500 ° C. into the measurement system.
(6) He gas is flowed into the measurement system at a reaction temperature, that is, a detection temperature, for example, 350 ° C. (This is the preprocessing.)
(7) At a detection temperature (350 ° C.), O 2 gas is flown into the measurement system in pulses using He gas as a carrier gas.
(8) The O 2 gas is caused to flow into the measurement system in pulses until the O 2 gas of the flowed pulse is no longer detected by the detector.
(9) The value obtained by subtracting the total detected amount from the total O 2 gas outflow amount is estimated as the total O 2 gas adsorption amount (cm 3 ).
(10) The unit adsorption amount (cm 3 / g) of the O 2 gas was calculated from the total adsorption amount (cm 3 ) of the O 2 gas obtained in the above (9) and the charged amount (g) of the sample. Is determined as OSC.
 金属酸化物ナノ粒子としては、粒子表面の30%以上に活性面が露出している金属酸化物ナノ粒子が好ましい。なお、活性面とは、エネルギー的に最も不安定な面であり、CeOでは(100)面である。
 金属酸化物ナノ粒子としては、粒子表面の30%以上に(100)面が露出しているCeOナノ粒子がより好ましい。触媒を用いた高分子の熱分解や水蒸気分解は、一般に600℃以上の高温場で反応させるため、炭化物が生じたり、フィラーが損傷したりすることが多い。しかし、表面の30%以上に(100)面が露出したCeOナノ粒子を用いることで、400℃以下でも速やかに高分子を分解できるため、炭化物が生じたり、フィラーが損傷したりすることを抑制できる。
As the metal oxide nanoparticles, metal oxide nanoparticles having an active surface exposed to 30% or more of the particle surface are preferable. The active surface is the most unstable surface in terms of energy, and is the (100) surface in CeO 2 .
As the metal oxide nanoparticles, CeO 2 nanoparticles whose (100) plane is exposed to 30% or more of the particle surface are more preferable. The thermal decomposition or steam decomposition of a polymer using a catalyst is generally performed in a high-temperature field of 600 ° C. or more, so that carbide is often generated or the filler is often damaged. However, by using CeO 2 nanoparticles having a (100) face exposed to 30% or more of the surface, the polymer can be rapidly decomposed even at 400 ° C. or less, so that carbides are generated or the filler is damaged. Can be suppressed.
 CeOナノ粒子の表面における(100)面が露出している割合は、30%以上が好ましく、50%以上がより好ましく、70%以上がさらに好ましい。
 なお、CeOナノ粒子の表面における(100)面が露出している割合は、TEMにより測定される。
The proportion of the surface of the CeO 2 nanoparticles where the (100) plane is exposed is preferably 30% or more, more preferably 50% or more, and even more preferably 70% or more.
The proportion of the surface of the CeO 2 nanoparticles where the (100) plane is exposed is measured by TEM.
 CeOナノ粒子には、触媒活性に優れる点から、遷移元素がドープされていることが好ましい。CeOナノ粒子にドープされる遷移元素としては、Cr、Gd、Zr等を例示できる。なかでも、Cr、Gdが好ましい。
 CeOナノ粒子における遷移元素のドープ量は、CeOの総質量に対して、0.1mol%以上が好ましく、4mol%以上がより好ましい。遷移元素のドープ量は、多ければ多いほどよいが、ドープであるには50mol%までである。
CeO 2 nanoparticles are preferably doped with a transition element from the viewpoint of excellent catalytic activity. Examples of the transition element doped into the CeO 2 nanoparticles include Cr, Gd, Zr, and the like. Among them, Cr and Gd are preferable.
The doping amount of the transition element in the CeO 2 nanoparticles is preferably 0.1 mol% or more, more preferably 4 mol% or more, based on the total mass of CeO 2 . Although the doping amount of the transition element is preferably as large as possible, the doping amount is up to 50 mol%.
 本発明の好ましい実施形態においては、ナノ触媒として、金属酸化物ナノ粒子の表面に有機分子が結合された有機修飾ナノ粒子が用いられる。かかる有機修飾ナノ粒子としては、CeOナノ粒子の表面に有機分子が結合された有機修飾ナノ粒子がより好ましい。ナノ粒子は一般的に表面エネルギーが高く、高分子中で凝集しやすいが、ナノ触媒を有機修飾ナノ粒子とすることで高分子中に均一に分散させることが容易になり、高分子の分解効率がより高くなる。 In a preferred embodiment of the present invention, an organically modified nanoparticle in which an organic molecule is bonded to the surface of a metal oxide nanoparticle is used as the nanocatalyst. As such organic modified nanoparticles, organic modified nanoparticles in which organic molecules are bonded to the surface of CeO 2 nanoparticles are more preferable. Nanoparticles generally have high surface energy and tend to agglomerate in polymers, but the use of organically modified nanoparticles as nanocatalysts makes it easier to uniformly disperse them in the polymer, and the efficiency of polymer decomposition Is higher.
 有機修飾ナノ粒子としては、分解性高分子材料中で有機分子が容易に脱離して金属酸化物ナノ粒子が凝集したり、分解性高分子材料を用いた製品が劣化したりすることを抑制するため、高分子を熱分解させる前までは有機分子が強固に結合し、金属酸化物ナノ粒子の表面全体が被覆されて触媒機能が発現しないことが好ましい。また、高分子を分解させるときには、有機分子が金属酸化物ナノ粒子の表面から速やかに脱離して触媒機能が発現することが好ましい。 As the organically modified nanoparticles, it is possible to prevent the organic molecules from easily desorbing in the degradable polymer material to aggregate metal oxide nanoparticles and to prevent products using the degradable polymer material from deteriorating. Therefore, it is preferable that the organic molecules are firmly bonded before the polymer is thermally decomposed, and that the entire surface of the metal oxide nanoparticles is covered and the catalytic function is not exhibited. Further, when the polymer is decomposed, it is preferable that the organic molecule be quickly desorbed from the surface of the metal oxide nanoparticles to exhibit a catalytic function.
 有機修飾ナノ粒子からの有機分子の脱離は、熱重量分析における重量減少によって観測できる。有機修飾ナノ粒子は、熱重量分析において、150℃未満では有機分子の脱離による重量減少が見られないことが好ましい。これにより、分解性高分子材料中で有機分子が容易に脱離してナノ粒子が凝集したり、分解性高分子材料を用いた製品の使用時に予期せず触媒機能が発現して製品が劣化したりすることを抑制しやすい。 脱 Desorption of organic molecules from the organically modified nanoparticles can be observed by weight loss in thermogravimetric analysis. In the thermogravimetric analysis, it is preferable that the organic modified nanoparticles do not show a weight decrease due to elimination of organic molecules at a temperature lower than 150 ° C. As a result, the organic molecules are easily desorbed in the degradable polymer material and the nanoparticles are aggregated, or the catalyst function is unexpectedly exhibited when the product using the degradable polymer material is used, thereby deteriorating the product. Is easy to suppress.
 有機修飾ナノ粒子の熱重量分析における有機分子が脱離する温度は、150~400℃が好ましく、150~350℃がより好ましく、200~350℃がさらに好ましい。有機分子が脱離する温度が前記範囲の下限値以上であれば、分解性高分子材料中のナノ粒子の凝集や、分解性高分子材料を用いた製品の劣化を抑制しやすい。有機分子が脱離する温度が前記範囲の上限値以下であれば、リサイクル時やバインダーの除去時等の高分子の分解のタイミングで有機分子を脱離させ、触媒機能を発現させることが容易になる。
 なお、有機分子が脱離する温度は、熱重量分析により測定される熱重量曲線における、有機分子の脱離による重量減少の開始温度とする。
The temperature at which organic molecules are eliminated in the thermogravimetric analysis of the organically modified nanoparticles is preferably from 150 to 400 ° C, more preferably from 150 to 350 ° C, and still more preferably from 200 to 350 ° C. When the temperature at which the organic molecules are released is equal to or higher than the lower limit of the above range, it is easy to suppress aggregation of the nanoparticles in the degradable polymer material and deterioration of the product using the degradable polymer material. If the temperature at which the organic molecules are desorbed is equal to or lower than the upper limit of the above range, the organic molecules are desorbed at the timing of decomposition of the polymer such as at the time of recycling or removal of the binder, and the catalyst function can be easily expressed. Become.
The temperature at which organic molecules are desorbed is defined as the temperature at which weight loss due to desorption of organic molecules starts in a thermogravimetric curve measured by thermogravimetric analysis.
 有機修飾ナノ粒子における有機分子(有機修飾剤)としては、金属酸化物ナノ粒子の表面に炭化水素を結合できるものであればよく、高分子の種類に応じて選択できる。
 有機分子としては、例えば、エーテル結合、エステル結合、N原子を介した結合、S原子を介した結合、金属-C-の結合、金属-C=の結合、及び金属-(C=O)-の結合等を形成できるものを例示できる。
The organic molecule (organic modifier) in the organically modified nanoparticles may be any one that can bond a hydrocarbon to the surface of the metal oxide nanoparticles, and can be selected according to the type of polymer.
Examples of the organic molecule include an ether bond, an ester bond, a bond via an N atom, a bond via an S atom, a bond with a metal -C-, a bond with a metal -C =, and a metal-(C = O)- Can form a bond or the like.
 ナノ粒子表面に結合させる炭化水素の炭素数は、特に限定されないが、3~20が好ましい。炭化水素は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。また、炭化水素は、カルボキシ基、シアノ基等の置換基を1個以上有してもよい。 The number of carbon atoms of the hydrocarbon bonded to the nanoparticle surface is not particularly limited, but is preferably 3 to 20. The hydrocarbon may be linear, branched, or cyclic. Further, the hydrocarbon may have one or more substituents such as a carboxy group and a cyano group.
 有機分子としては、例えば、アルコール類、アルデヒド類、ケトン類、カルボン酸類、エステル類、アミン類、チオール類、アミド類、オキシム類、ホスゲン、エナミン類、アミノ酸類、ペプチド類、糖類を例示できる。
 具体的には、例えば、ペンタノール、ペンタナール、ペンタン酸、ペンタンアミド、ペンタンチオール、ヘキサノール、ヘキサナール、ヘキサン酸、ヘキサンアミド、ヘキサンチオール、ヘプタノール、ヘプタナール、ヘプタン酸、ヘプタンアミド、ヘプタンチオール、オクタノール、オクタナール、オクタン酸、オクタンアミド、オクタンチオール、デカノール、デカナール、デカン酸、デカンアミド、デカンチオールを例示できる。
 有機修飾ナノ粒子における有機分子は、1種であってもよく、2種以上であってもよい。
Examples of the organic molecule include alcohols, aldehydes, ketones, carboxylic acids, esters, amines, thiols, amides, oximes, phosgene, enamines, amino acids, peptides, and saccharides.
Specifically, for example, pentanol, pentanal, pentanoic acid, pentanamide, pentanethiol, hexanol, hexanal, hexanoic acid, hexaneamide, hexanethiol, heptanol, heptanal, heptanoic acid, heptaneamide, heptanethiol, octanol, octanol Octanoic acid, octane amide, octane thiol, decanol, decanol, decanoic acid, decane amide and decane thiol.
The organic molecule in the organically modified nanoparticles may be one kind or two or more kinds.
 高分子の溶解度パラメータと、有機修飾ナノ粒子における有機分子(有機修飾剤)の溶解度パラメータの差は、0~10[J/cm1/2が好ましく、0~5[J/cm1/2がより好ましい。溶解度パラメータの差が前記上限値以下であれば、有機修飾ナノ粒子が高分子中に均一に分散しやすく、高分子の分解効率がより高くなる。
 なお、溶解度パラメータは、下記式で表されるように、凝集エネルギー密度の平方根で定義される値である。
 σ=(△E/V)1/2
 前記式中、Vは溶媒のモル分子容、△Eは凝集エネルギー(蒸発潜熱エネルギー)である。
The difference between the solubility parameter of the polymer and the solubility parameter of the organic molecule (organic modifier) in the organically modified nanoparticles is preferably 0 to 10 [J / cm 3 ] 1/2 , and 0 to 5 [J / cm 3 ]. 1/2 is more preferable. When the difference in the solubility parameter is equal to or less than the upper limit, the organically modified nanoparticles are easily dispersed uniformly in the polymer, and the decomposition efficiency of the polymer is further increased.
The solubility parameter is a value defined by the square root of the cohesive energy density as represented by the following equation.
σ = (△ E / V) 1/2
In the above formula, V is the molar molecular volume of the solvent, and ΔE is the cohesive energy (latent heat energy of evaporation).
 有機修飾ナノ粒子の製造方法としては、公知の方法を採用でき、超臨界水・亜臨界水を反応場として金属酸化物ナノ粒子の表面に有機分子を結合する超臨界水中有機修飾法が好ましい。超(亜)臨界水は、温度条件が250~500℃であり、圧力条件が10~30MPaであることが好ましい。 (4) As a method for producing the organically modified nanoparticles, a known method can be employed, and a supercritical water organic modification method in which organic molecules are bonded to the surface of metal oxide nanoparticles using supercritical water and subcritical water as a reaction field is preferable. The super (sub) critical water preferably has a temperature condition of 250 to 500 ° C. and a pressure condition of 10 to 30 MPa.
 有機分子をナノ粒子に物理吸着させた場合、有機分子が容易に脱離しやすく、ナノ粒子が凝集したり、分解性高分子材料を用いた製品が劣化したりする問題が生じやすい。一方、シランカップリング剤を用いて有機分子をナノ粒子の表面に結合させると、ナノ粒子表面にシリカ層が形成されるため、有機分子を分解除去できたとしても触媒機能が発現しない。
 超臨界水中有機修飾法によれば、150℃未満では有機分子が容易に脱離せずに触媒機能の発現が抑制され、400℃までの加熱で有機分子が脱離して触媒機能が発現する有機修飾ナノ粒子が得られる。ナノ触媒としてこの有機修飾ナノ粒子を用いた分解性高分子材料をハイブリッド材料や無機成型材料に用いれば、リサイクルあるいはバインダー除去のプロセスにおいて、昇温中に有機分子を脱離させて触媒機能を発現させることができる。
When an organic molecule is physically adsorbed on a nanoparticle, the organic molecule is easily desorbed, and the problem of aggregation of the nanoparticle or deterioration of a product using the degradable polymer material is likely to occur. On the other hand, when an organic molecule is bonded to the surface of a nanoparticle using a silane coupling agent, a silica layer is formed on the surface of the nanoparticle, so that even if the organic molecule can be decomposed and removed, no catalytic function is exhibited.
According to the organic modification method in supercritical water, the organic molecule is not easily desorbed at a temperature lower than 150 ° C., and the expression of the catalytic function is suppressed. Nanoparticles are obtained. If a degradable polymer material using these organically modified nanoparticles as a nanocatalyst is used in a hybrid material or an inorganic molding material, the catalyst functions by desorbing organic molecules during temperature increase in the recycling or binder removal process. Can be done.
 分解性高分子材料中のナノ触媒の含有量は、分解性高分子材料の総質量に対して、15質量%以下が好ましく、0.1~15質量%がより好ましく、5~12質量%がさらに好ましい。ナノ触媒の含有量が前記範囲の下限値以上であれば、高分子の分解効率、即ち、高分子のリサイクル効率が高くなり、また上限値以下であれば、余剰のナノ触媒がリサイクルされる高分子に混入するなどの問題を抑制しやすい。 The content of the nanocatalyst in the degradable polymer material is preferably 15% by mass or less, more preferably 0.1 to 15% by mass, and more preferably 5 to 12% by mass based on the total mass of the degradable polymer material. More preferred. If the content of the nanocatalyst is equal to or higher than the lower limit of the above range, the decomposition efficiency of the polymer, that is, the recycling efficiency of the polymer becomes high, and if the content is less than the upper limit, the excess nanocatalyst is recycled. It is easy to suppress problems such as mixing in molecules.
 以上説明した本発明の分解性高分子材料は、ナノ触媒を高分子に分散させるため、触媒量が少量でも高分子を効率良く分解することができる。
 本発明の分解性高分子材料は、本発明の効果を損なわない範囲であれば、高分子及びナノ触媒以外の他の成分を含んでもよい。
Since the decomposable polymer material of the present invention described above disperses the nanocatalyst in the polymer, the polymer can be decomposed efficiently even with a small amount of the catalyst.
The decomposable polymer material of the present invention may contain components other than the polymer and the nanocatalyst as long as the effects of the present invention are not impaired.
[ハイブリッド材料]
 本発明の分解性高分子材料は、無機フィラーと組み合わせることで、リサイクル可能なハイブリッド材料とすることができる。すなわち、本発明のハイブリッド材料は、無機フィラーとバインダーとを含有するハイブリッド材料であって、バインダーが本発明の分解性高分子材料である。ハイブリッド材料の用途としては、特に限定されず、例えば、軽量航空機材料、エコタイヤ等を例示できる。
 本発明のハイブリッド材料を公知の方法で加熱及び成型することでハイブリッド成型物が得られる。
[Hybrid material]
The decomposable polymer material of the present invention can be made a recyclable hybrid material by combining it with an inorganic filler. That is, the hybrid material of the present invention is a hybrid material containing an inorganic filler and a binder, and the binder is the degradable polymer material of the present invention. The application of the hybrid material is not particularly limited, and examples thereof include lightweight aircraft materials and eco-tires.
A hybrid molded product can be obtained by heating and molding the hybrid material of the present invention by a known method.
 ハイブリッド材料における無機フィラーとしては、特に限定されず、例えば、シリカ、アルミナ、カーボンブラック、タルク、炭酸カルシウム、炭化珪素等の無機粉末や、炭素繊維、ガラス繊維等の無機繊維を例示できる。 The inorganic filler in the hybrid material is not particularly limited, and examples thereof include inorganic powders such as silica, alumina, carbon black, talc, calcium carbonate, and silicon carbide, and inorganic fibers such as carbon fiber and glass fiber.
 ハイブリッド材料中の無機フィラーの含有量は、用途に応じて適宜設定でき、例えば、ハイブリッド材料の総質量に対して、70~90質量%とすることができる。
 ハイブリッド材料中の高分子の含有量は、用途に応じて適宜設定でき、例えば、ハイブリッド材料の総質量に対して、20~80質量%とすることができる。
The content of the inorganic filler in the hybrid material can be appropriately set according to the application, and can be, for example, 70 to 90% by mass based on the total mass of the hybrid material.
The content of the polymer in the hybrid material can be appropriately set according to the application, and can be, for example, 20 to 80% by mass based on the total mass of the hybrid material.
 ハイブリッド材料中のナノ触媒の含有量は、高分子100質量部に対して、15質量部以下が好ましく、1~15質量部がより好ましく、5~12質量部がさらに好ましい。ナノ触媒の含有量が前記範囲の下限値以上であれば、高分子の分解効率、即ち、高分子のリサイクル効率が高くなり、また上限値以下であれば、ハイブリッド材料を用いた製品の物性や機能の低下を抑制しやすい。 ナ ノ The content of the nanocatalyst in the hybrid material is preferably 15 parts by mass or less, more preferably 1 to 15 parts by mass, and still more preferably 5 to 12 parts by mass with respect to 100 parts by mass of the polymer. If the content of the nanocatalyst is not less than the lower limit of the above range, the decomposition efficiency of the polymer, that is, the recycling efficiency of the polymer is high, and if it is not more than the upper limit, the physical properties of the product using the hybrid material and It is easy to suppress the deterioration of the function.
 本発明のハイブリッド材料は、ナノ触媒を含むため、新たに触媒を添加しなくても、効率良く高分子を分解して高分子又は無機フィラーをリサイクルできる。また、触媒量が少量でも高分子の分解効率が高いナノ触媒を用いるため、触媒量が過度にならずハイブリッド材料の物性や機能の低下を抑制することができる。また、無機フィラーの大きさは一般的には数μmであるため、高分子の分解後に無機フィラーを触媒から分離して回収することが容易である。 ハ イ ブ リ ッ ド Since the hybrid material of the present invention contains a nano catalyst, the polymer can be efficiently decomposed and the polymer or inorganic filler can be recycled without adding a new catalyst. Further, since a nanocatalyst having a high decomposition efficiency of a polymer is used even if the amount of the catalyst is small, the amount of the catalyst does not become excessive and the deterioration of the physical properties and functions of the hybrid material can be suppressed. Further, since the size of the inorganic filler is generally several μm, it is easy to separate and recover the inorganic filler from the catalyst after the decomposition of the polymer.
[無機成型材料]
 本発明の分解性高分子材料は、無機成型材料のバインダーとしても使用できる。本発明の無機成型材料は、無機材料と、バインダーとを含有し、バインダーが本発明の分解性高分子材料である無機成型材料である。本発明の無機成型材料を成型した無機成型物は、セラミクス成型物であってもよく、金属粉末成型物であってもよく、あるいは、金属セラミクス複合成型物であってもよい。
[Inorganic molding material]
The decomposable polymer material of the present invention can also be used as a binder for an inorganic molding material. The inorganic molding material of the present invention is an inorganic molding material containing an inorganic material and a binder, wherein the binder is the degradable polymer material of the present invention. The inorganic molded article obtained by molding the inorganic molding material of the present invention may be a ceramic molded article, a metal powder molded article, or a metal ceramic composite molded article.
 無機成型材料における無機材料としては、セラミクス粉末、金属粉末、又は、セラミクス粉末及び金属粉末の混合物が挙げられる。
 セラミクス粉末としては、例えば、ガラス、アルミナ、シリカ、タルク、カオリン、窒化珪素、炭化珪素、窒化アルミナ、ジルコニア、チタニア、VO、V、YSZ、YAG、LSM、LSR、ITO、SCZ、チタン酸バリウム、チタン酸ストロンチウム、ランタンガレート、バリウムフェライト、ストロンチウムフェライト、サイアロン等の粉末を例示できる。
 金属粉末としては、例えば、ニッケル、銅、鉄、ネオジウム鉄ボロン等の粉末を例示できる。
Examples of the inorganic material in the inorganic molding material include ceramic powder, metal powder, or a mixture of ceramic powder and metal powder.
Examples of the ceramic powder include glass, alumina, silica, talc, kaolin, silicon nitride, silicon carbide, alumina nitride, zirconia, titania, VO 2 , V 2 O 5 , YSZ, YAG, LSM, LSR, ITO, SCZ, Examples include powders of barium titanate, strontium titanate, lanthanum gallate, barium ferrite, strontium ferrite, and sialon.
Examples of the metal powder include powders of nickel, copper, iron, neodymium iron boron, and the like.
 無機成型材料中の高分子の含有量は、適宜設定でき、例えば、無機材料100質量部に対して、5~10質量部とすることができる。 高分子 The content of the polymer in the inorganic molding material can be appropriately set, and for example, can be 5 to 10 parts by mass with respect to 100 parts by mass of the inorganic material.
 無機成型材料中のナノ触媒の含有量は、高分子100質量部に対して、15質量部以下が好ましく、1~15質量部がより好ましく、5~12質量部がさらに好ましい。ナノ触媒の含有量が前記範囲の下限値以上であれば、高分子の分解効率が充分に高くなり、無機成型物中にバインダーが残存することを抑制しやすく、また上限値以下であれば、無機成型物の物性や機能の低下を抑制しやすい。 ナ ノ The content of the nanocatalyst in the inorganic molding material is preferably 15 parts by mass or less, more preferably 1 to 15 parts by mass, and still more preferably 5 to 12 parts by mass with respect to 100 parts by mass of the polymer. If the content of the nanocatalyst is not less than the lower limit of the above range, the decomposition efficiency of the polymer is sufficiently high, it is easy to suppress that the binder remains in the inorganic molded product, and if it is not more than the upper limit, It is easy to suppress deterioration in physical properties and functions of the inorganic molded product.
 本発明の無機成型材料を用いて無機成型物を製造する方法は、例えば、以下の工程(a)~(c)を有する方法が挙げられる。
 工程(a)本発明の無機成型材料を成型して粉体成型物を得る。
 工程(b)前記粉体成型物を焼成し、高分子を熱分解して除去する。
 工程(c)高分子を除去した粉体成型物を焼成し、無機成型物を得る。
The method for producing an inorganic molded product using the inorganic molding material of the present invention includes, for example, a method having the following steps (a) to (c).
Step (a) The inorganic molding material of the present invention is molded to obtain a powder molded product.
Step (b): baking the powder molded product and thermally decomposing and removing the polymer.
Step (c) The powder molded product from which the polymer has been removed is fired to obtain an inorganic molded product.
 工程(a)では、公知のプレス機械、ドクターブレード、リバースコーター等を用いて、無機成型材料を所望の形状に成型して粉体成型物を得る。粉体成型物の形状は、無機成型物の用途に応じて決定すればよい。 In the step (a), the inorganic molding material is molded into a desired shape using a known press machine, doctor blade, reverse coater or the like to obtain a powder molded product. The shape of the powder molded product may be determined depending on the use of the inorganic molded product.
 工程(b)では、粉体成型物を焼成し、ナノ触媒による触媒機能を利用して高分子を熱分解(熱、水熱、水蒸気、(部分)酸化、加水分解等)する。ナノ触媒が有機修飾ナノ粒子の場合、工程(b)の焼成時の加熱によって有機修飾ナノ粒子の有機分子を脱離させて触媒機能を発現させる。 In the step (b), the powder molded product is calcined, and the polymer is thermally decomposed (heat, hydrothermal, steam, (partial) oxidation, hydrolysis, etc.) utilizing the catalytic function of the nanocatalyst. In the case where the nanocatalyst is an organically modified nanoparticle, the organic molecule of the organically modified nanoparticle is desorbed by heating during baking in step (b) to exhibit a catalytic function.
 工程(b)の焼成は、高分子分解と紛体焼成の多段階焼成から成り、あるいは昇温中に高分子を分解させる過程と紛体焼成から成る。高分子分解温度は、ナノ触媒の種類に応じて設定でき、200~400℃が好ましく、250~350℃がより好ましい。
 ナノ触媒として、(100)面が露出したCeOナノ粒子を用いれば、400℃以下でも高分子を効率良く分解して除去できる。そのため、高分子の炭化物が無機成型物に残留しにくくなるため、無機成型物の物性及び機能の低下を抑制する効果がより高くなる。
The calcination in the step (b) comprises a multi-stage calcination of polymer decomposition and powder calcination, or comprises a process of decomposing the polymer during heating and powder calcination. The polymer decomposition temperature can be set according to the type of the nanocatalyst, and is preferably from 200 to 400 ° C, more preferably from 250 to 350 ° C.
If CeO 2 nanoparticles with the (100) plane exposed are used as the nanocatalyst, the polymer can be efficiently decomposed and removed even at 400 ° C. or lower. Therefore, the polymer carbide is less likely to remain in the inorganic molded product, and the effect of suppressing the deterioration of the physical properties and functions of the inorganic molded product is further enhanced.
 工程(b)の後、高分子を除去した粉体成型物を焼成して無機成型物とする。 の 後 After the step (b), the powder molded product from which the polymer has been removed is fired to obtain an inorganic molded product.
 本発明の無機成型材料は、少量でも高分子の分解効率が高いナノ触媒を含むため、高分子の炭化物が無機成型物に残留しにくく、無機成型物の物性及び機能の低下を抑制できる。 無機 Since the inorganic molding material of the present invention contains a nanocatalyst having a high polymer decomposition efficiency even in a small amount, carbides of the polymer hardly remain in the inorganic molded product, and deterioration in physical properties and functions of the inorganic molded product can be suppressed.
[高分子除去又は回収方法]
 本発明の高分子除去又は回収方法は、高分子と、当該高分子の分解反応に対する触媒活性を有するナノ触媒とを含有する成型物を、水熱分解処理する、高分子除去又は回収方法である。
[Polymer removal or recovery method]
The method for removing or recovering a polymer of the present invention is a method for removing or recovering a polymer, which comprises subjecting a molded article containing a polymer and a nanocatalyst having catalytic activity to a decomposition reaction of the polymer to hydrothermal decomposition treatment. .
 本発明の高分子除去又は回収方法の好ましい実施形態においては、用いるナノ触媒としては、先に述べた製造法により得られる、先に述べた特性を有するナノ触媒が適する。 好 ま し い In a preferred embodiment of the polymer removal or recovery method of the present invention, as the nanocatalyst to be used, a nanocatalyst obtained by the above-described production method and having the above-mentioned properties is suitable.
 本発明の高分子除去又は回収方法の好ましい実施形態においては、高分子100質量部に対してナノ触媒を15質量部以下添加する。また、前記ナノ触媒を分散させた前記高分子を150~400℃で水熱分解処理する。 好 ま し い In a preferred embodiment of the method for removing or recovering a polymer according to the present invention, 15 parts by mass or less of a nanocatalyst is added to 100 parts by mass of a polymer. Further, the polymer in which the nano catalyst is dispersed is subjected to hydrothermal decomposition at 150 to 400 ° C.
 本発明の高分子除去又は回収方法によれば、高分子の分解効率が高められる結果、高分子除去率又は回収率が向上し、且つ比較的低温での処理で済むため、炭化物の生成を抑制できる。 According to the polymer removal or recovery method of the present invention, the efficiency of polymer decomposition is increased, resulting in an improvement in the polymer removal rate or recovery rate, and a relatively low temperature treatment, thereby suppressing the generation of carbides. it can.
 以上説明したように、本発明では、高分子の分解反応に対する触媒活性を有するナノ触媒が高分子に分散された分解性高分子材料を用いる。少量の触媒量でも効率良く高分子を分解できるナノ触媒を分散させることで、触媒量が多くなりすぎることによる製品の物性や機能の低下を抑制できる。
 また、ナノ触媒として、(100)面が露出したCeOナノ粒子を用いることで、400℃以下でも高分子を効率良く分解できる。400℃以下で高分子を熱分解して高分子や無機フィラーをリサイクルできれば、リサイクル時に、回収するモノマーやオリゴマー、無機フィラー等に多大なダメージが加わることを抑制できる。また廃熱を利用したプロセスも可能となり省エネルギーの点でも有利である。
As described above, in the present invention, a degradable polymer material in which a nanocatalyst having catalytic activity for a decomposition reaction of a polymer is dispersed in the polymer is used. By dispersing a nanocatalyst capable of efficiently decomposing a polymer even with a small amount of catalyst, it is possible to suppress a decrease in physical properties and functions of a product due to an excessive amount of catalyst.
Further, by using CeO 2 nanoparticles with the (100) plane exposed as the nano catalyst, the polymer can be decomposed efficiently even at 400 ° C. or lower. If the polymer and the inorganic filler can be recycled by thermally decomposing the polymer at 400 ° C. or lower, it is possible to prevent the monomer, oligomer, inorganic filler and the like to be recovered from being greatly damaged at the time of recycling. Also, a process using waste heat is possible, which is advantageous in energy saving.
 さらに、ナノ触媒として有機修飾ナノ粒子を用いれば、高分子中にナノ触媒を均一に分散させやすく、高分子の分解効率がさらに高くなるうえ、高分子を熱分解したいときまでは触媒機能の発現を抑制できるため、製品の劣化を容易に抑制できる。また、有機修飾ナノ粒子の有機分子が脱離する温度が前記した特定の温度範囲に制御されていれば、リサイクル時やバインダー除去時等の所望のタイミングで触媒機能を発現させることができる。 Furthermore, the use of organically modified nanoparticles as nanocatalysts makes it easier to uniformly disperse the nanocatalyst in the polymer, further increasing the decomposition efficiency of the polymer, and expressing the catalytic function until the polymer is thermally decomposed. Therefore, the deterioration of the product can be easily suppressed. Further, if the temperature at which the organic molecules of the organically modified nanoparticles are desorbed is controlled within the above-mentioned specific temperature range, the catalytic function can be developed at a desired timing such as during recycling or binder removal.
 なお、本発明の分解性高分子材料を用いる態様は、前記したハイブリッド材料や無機成型材料に用いる態様には限定されず、分解性高分子材料単独で樹脂成型物を製造するためのリサイクル可能な材料として用いてもよい。 In addition, the aspect using the decomposable polymer material of the present invention is not limited to the aspect used for the hybrid material or the inorganic molding material described above, and is recyclable for producing a resin molded product using the degradable polymer material alone. It may be used as a material.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
[水熱分解後の分析]
 各例の水熱分解後の生成物の分析は、ガスクロマトグラフィーを用い、必要に応じてMSによる成分の同定を組み合わせて行った。
 高分子の水熱分解の転化率は、水熱分解前後の高分子の質量から算出した。
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited by the following description.
[Analysis after hydrothermal decomposition]
The products after hydrothermal decomposition in each case were analyzed using gas chromatography, combining the identification of components by MS as needed.
The conversion rate of the hydrothermal decomposition of the polymer was calculated from the mass of the polymer before and after the hydrothermal decomposition.
[例1]
 高分子であるポリビニルブチラール((C14:142g/mol per n)0.142gに、ナノ触媒として粒子表面の80%に(100)面が露出した立方体のCeOナノ粒子(ITEC製、後焼成:300℃、2時間、平均粒子径:5nm)10mgを分散させ、これをバインダーとしてシリカ(関東試薬製、粒子径:40~60μm)1gと混合して試験材料とした。この場合のポリビニルブチラール100質量部に対するCeOナノ粒子の量は約7.0質量部である。得られた試験材料に対し、400℃、30MPaの条件で30分間水蒸気熱分解を行った。水蒸気熱分解においては、0.5gの水蒸気を供給した。また、反応時間を60分間とした場合についても、同様に水蒸気熱分解を行った。
 また、ナノ触媒を配合しない以外は、同様にして比較材料を製造し、水蒸気熱分解を行った。
 水蒸気熱分解の転化率、及び生成物の分析結果を表1に示す。
[Example 1]
Cubic CeO 2 nanoparticles with (100) plane exposed to 80% of the particle surface as a nano catalyst on 0.142 g of polyvinyl butyral ((C 8 H 14 O 2 ) n : 142 g / mol per n) which is a polymer 10 mg (manufactured by ITEC, post-baking: 300 ° C., 2 hours, average particle size: 5 nm) was dispersed, and this was mixed with 1 g of silica (manufactured by Kanto Reagent, particle size: 40 to 60 μm) as a binder to prepare a test material. . In this case, the amount of the CeO 2 nanoparticles is about 7.0 parts by mass based on 100 parts by mass of polyvinyl butyral. The obtained test material was subjected to steam pyrolysis at 400 ° C. and 30 MPa for 30 minutes. In steam pyrolysis, 0.5 g of steam was supplied. Also, when the reaction time was set to 60 minutes, steam pyrolysis was similarly performed.
In addition, a comparative material was produced in the same manner except that the nano catalyst was not blended, and steam pyrolysis was performed.
Table 1 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[例2]
 高分子としてポリビニルアルコール((CO):44g/mol per n)0.176gを用いた以外は、例1と同様にして試験材料を製造し、水蒸気熱分解を行った。この場合のポリビニルアルコール100質量部に対するCeOナノ粒子の量は約5.7質量部である。
 水蒸気熱分解の転化率、及び生成物の分析結果を表2に示す。
[Example 2]
A test material was produced in the same manner as in Example 1 except that 0.176 g of polyvinyl alcohol ((C 2 H 4 O) n : 44 g / mol per n) was used as the polymer, and steam pyrolysis was performed. In this case, the amount of the CeO 2 nanoparticles is about 5.7 parts by mass based on 100 parts by mass of the polyvinyl alcohol.
Table 2 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[例3]
 高分子としてヘキサデカン0.085gを用い、ナノ触媒としてCrを30%ドープしたCeOナノ粒子(後焼成:300℃、2時間、平均粒子径:5nm)10mgを用いる以外は、例1と同様にして試験材料を製造し、水蒸気熱分解を行った。この場合のCeOナノ粒子の量は、ヘキサデカン100質量部に対し約11.8質量部である。
 水蒸気熱分解の転化率、及び生成物の分析結果を表3に示す。
[Example 3]
Same as Example 1 except that 0.085 g of hexadecane was used as the polymer, and 10 mg of CeO 2 nanoparticles (post-baking: 300 ° C., 2 hours, average particle size: 5 nm) doped with 30% Cr were used as the nanocatalyst. The test material was manufactured by steam pyrolysis. In this case, the amount of the CeO 2 nanoparticles is about 11.8 parts by mass per 100 parts by mass of hexadecane.
Table 3 shows the conversion of steam pyrolysis and the analysis results of the products.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[例4]
 高分子として低密度ポリエチレン(LDPE、(C:28g/mol per n)0.168gを用いた以外は、例1と同様にして試験材料を製造し、水蒸気熱分解を行った。この場合のCeOナノ粒子の量は、低密度ポリエチレン100質量部に対し約6.0質量部である。
 水蒸気熱分解の転化率、及び生成物の分析結果を表4に示す。
[Example 4]
A test material was produced in the same manner as in Example 1 except that 0.168 g of low-density polyethylene (LDPE, (C 2 H 4 ) n : 28 g / mol per n) was used as a polymer, and steam pyrolysis was performed. . In this case, the amount of the CeO 2 nanoparticles is about 6.0 parts by mass with respect to 100 parts by mass of the low-density polyethylene.
Table 4 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[例5]
 高分子としてポリプロピレン((C:42g/mol per n)0.176gを用いた以外は、例1と同様にして試験材料を製造し、水蒸気熱分解を行った。この場合のCeOナノ粒子の量は、ポリプロピレン100質量部に対し約5.7質量部である。
 水蒸気熱分解の転化率、及び生成物の分析結果を表5に示す。
[Example 5]
A test material was produced in the same manner as in Example 1 except that 0.176 g of polypropylene ((C 3 H 6 ) n : 42 g / mol per n) was used as the polymer, and steam pyrolysis was performed. In this case, the amount of the CeO 2 nanoparticles is about 5.7 parts by mass with respect to 100 parts by mass of the polypropylene.
Table 5 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5に示すように、例1~5において、ナノ触媒を含む試験材料は、水蒸気熱分解によって高分子が効率良く分解された。 As shown in Tables 1 to 5, in Examples 1 to 5, in the test materials containing the nanocatalyst, the polymer was efficiently decomposed by steam pyrolysis.
[熱重量分析(TGA)]
 有機修飾ナノ粒子の熱重量分析は、TGAを用い、窒素雰囲気中で行った。
[Thermogravimetric analysis (TGA)]
Thermogravimetric analysis of the organically modified nanoparticles was performed in a nitrogen atmosphere using TGA.
[分散性の評価]
 有機修飾ナノ粒子の高分子への分散性の評価は、材料の透明性評価により行った。
[Evaluation of dispersibility]
The evaluation of the dispersibility of the organically modified nanoparticles in the polymer was performed by evaluating the transparency of the material.
[例6]
 有機修飾ナノ粒子として、粒子表面の80%に(100)面が露出したデカン酸修飾CeOナノ粒子(立方体、ITEC製、平均粒子径:5nm)を用いた。
 得られた有機修飾ナノ粒子の熱重量分析の結果、有機分子が脱離する温度は300~400℃であった。また、得られた有機修飾ナノ粒子は、高分子への分散性に優れていた。
[Example 6]
Decanoic acid-modified CeO 2 nanoparticles (cube, manufactured by ITEC, average particle diameter: 5 nm) having (100) face exposed to 80% of the particle surface were used as the organic modified nanoparticles.
As a result of thermogravimetric analysis of the obtained organically modified nanoparticles, the temperature at which the organic molecules were desorbed was 300 to 400 ° C. The obtained organically modified nanoparticles were excellent in dispersibility in a polymer.
[例7]
 超臨界水熱合成法により、400℃で合成した、オレイン酸修飾CeOナノ粒子(立方体)の熱重量分析結果を図1に示す。図1に示すように290℃から460℃で重量減少が生じた。つまり、高分子中へのナノ粒子を分散する過程、300℃以下の温度では、有機分子は安定に存在し、分散状態を保つことができる。しかし、300℃以上とすることで有機分子は脱離し、最も活性な面を露出させることで、触媒機能が発現する。
[Example 7]
FIG. 1 shows the results of thermogravimetric analysis of oleic acid-modified CeO 2 nanoparticles (cubes) synthesized at 400 ° C. by the supercritical hydrothermal synthesis method. As shown in FIG. 1, weight loss occurred between 290 ° C. and 460 ° C. In other words, at a temperature of 300 ° C. or less in the process of dispersing the nanoparticles in the polymer, the organic molecules are stably present and can maintain the dispersed state. However, when the temperature is set to 300 ° C. or higher, the organic molecules are desorbed, and the most active surface is exposed, thereby exhibiting a catalytic function.
[例8]
 図2に、その樹脂中分散性を評価するために、デカン酸修飾CeOナノ粒子の、溶媒中分散性を評価した結果を示す。
 デカン酸修飾CeOナノ粒子と親和性の高いシクロヘキサンには、含有量が63質量%まで透明分散し、70質量%で、ようやく分散せず凝集するため、濁った状態となった。一方、有機修飾してないCeOナノ粒子の場合、9.9質量%であっても、分散できていなかった。この結果は、有機修飾ナノ粒子の親和性を制御すれば、樹脂中に良好な分散を達成することが可能であることを示している。
[Example 8]
FIG. 2 shows the results of evaluating the dispersibility of decanoic acid-modified CeO 2 nanoparticles in a solvent in order to evaluate the dispersibility in a resin.
The content of cyclohexane having a high affinity for the decanoic acid-modified CeO 2 nanoparticles was transparently dispersed up to 63% by mass, and the content was 70% by mass. On the other hand, in the case of CeO 2 nanoparticles that were not organically modified, even at 9.9% by mass, they could not be dispersed. This result indicates that by controlling the affinity of the organically modified nanoparticles, it is possible to achieve good dispersion in the resin.
[例9]
 高分子の一種であるアスファルテン(超重質油)の低温(300℃又は350℃)での分解実験を行った。触媒としては、超臨界水熱合成で合成した(100)面露出CeOナノ粒子と、CrドープCeOナノ粒子を用い、0.04質量%となるように添加した。(100)面露出CeOナノ粒子を用いる場合と用いない場合のアスファルテンの転化率を図3に示す。CrドープCeOナノ粒子のCrドープ量とアスファルテンの転化率の関係をプロットした結果を図4に示す。各Crドープ量のCrドープCeOナノ粒子を用い、350℃で水蒸気中で1時間分解した後の反応液の写真を図5に示す。なお、CrドープCeOナノ粒子のCrドープ量はX線回折(XRD)のメインピークシフトから解析した。
[Example 9]
Decomposition experiments at a low temperature (300 ° C. or 350 ° C.) of asphaltene (ultra heavy oil), which is a kind of polymer, were performed. As the catalyst, (100) face-exposed CeO 2 nanoparticles synthesized by supercritical hydrothermal synthesis and Cr-doped CeO 2 nanoparticles were used, and were added so as to be 0.04% by mass. FIG. 3 shows the conversion of asphaltenes with and without (100) plane exposed CeO 2 nanoparticles. FIG. 4 shows the result of plotting the relationship between the Cr doping amount of the Cr-doped CeO 2 nanoparticles and the conversion of asphaltenes. FIG. 5 shows a photograph of the reaction solution after the Cr-doped CeO 2 nanoparticles of each Cr-doped amount were decomposed in water vapor at 350 ° C. for 1 hour. The Cr doping amount of the Cr-doped CeO 2 nanoparticles was analyzed from the main peak shift of X-ray diffraction (XRD).
 図3に示すように、300℃、350℃という低温であっても、(100)面露出CeOナノ粒子を用いた場合(Catalytic cracking)は、触媒を用いない場合(Hydrothermal cracking)に比べて高い分解率を示した。
 図4に示すように、CrドープCeOナノ粒子を用いた場合、アスファルテンの転化率は、Crドープ量が多くなるほど向上した。
 図5に示すように、CrドープCeOナノ粒子を用いて350℃で水蒸気中で1時間分解した結果、アスファルテンは、コーキングを発生することなく、揮発しやすい透明な軽質油に変化した。
As shown in FIG. 3, even when the temperature is as low as 300 ° C. and 350 ° C., the use of the (100) plane exposed CeO 2 nanoparticles (Catalytic cracking) is higher than the case without the catalyst (Hydrothermal cracking). It showed a high decomposition rate.
As shown in FIG. 4, when Cr-doped CeO 2 nanoparticles were used, the conversion of asphaltenes increased as the Cr-doping amount increased.
As shown in FIG. 5, asphaltene was converted to a transparent light oil that was easy to volatilize without generating caulking as a result of decomposing the Cr-doped CeO 2 nanoparticles in water vapor at 350 ° C. for 1 hour.
[例10]
 フェノール樹脂の一種である、リグニンを350℃で10分間、分解した結果を図6及び図7に示す。
 図6に示すように、触媒を用いない場合、水存在下では、加水分解とともに、生成するアルデヒドによりフェノール骨格がフリーデルクラフツ反応を介して重合するため、チャーの生成が見られた。しかし、リグニン2gに対してCeOナノ粒子を200mg加えると、チャーの生成は抑制され、ガス生成が増大した。また、図7に示すように、モノマーであるグアイアコール等の回収率も増大した。モノマーリサイクルが可能であることが示された。
[Example 10]
FIGS. 6 and 7 show the results of decomposing lignin, a kind of phenol resin, at 350 ° C. for 10 minutes.
As shown in FIG. 6, when a catalyst was not used, in the presence of water, a phenol skeleton was polymerized via the Friedel-Crafts reaction by the generated aldehyde together with the hydrolysis, and thus the formation of char was observed. However, when 200 mg of CeO 2 nanoparticles were added to 2 g of lignin, the production of char was suppressed and the production of gas increased. In addition, as shown in FIG. 7, the recovery of the monomer such as guaiacol also increased. It has been shown that monomer recycling is possible.
[例11]
 高分子であるポリビニルブチラール0.142gに、(100)面露出CeOナノ粒子10mgを分散させ、これをバインダーとして、粒子径40~60μmのシリカ1gと混合して試験材料を製造した。この場合のCeOナノ粒子の量は、ポリビニルブチラール100質量部に対し約7.0質量部である。
 得られた試験材料に対し、250℃、3.56MPaの条件で30分間水蒸気熱分解を行った。水蒸気熱分解においては、0.5gの水蒸気を供給した。また、反応時間を60分間とした場合についても、同様に水蒸気熱分解を行った。
 また、ナノ触媒を配合しない以外は、同様にして比較材料を製造し、水蒸気熱分解を行った。
 水蒸気熱分解の転化率、及び生成物の分析結果を表6に示す。
[Example 11]
A test material was prepared by dispersing 10 mg of (100) surface exposed CeO 2 nanoparticles in 0.142 g of polyvinyl butyral, which is a polymer, and mixing it with 1 g of silica having a particle diameter of 40 to 60 μm as a binder. In this case, the amount of the CeO 2 nanoparticles is about 7.0 parts by mass with respect to 100 parts by mass of polyvinyl butyral.
The obtained test material was subjected to steam pyrolysis at 250 ° C. and 3.56 MPa for 30 minutes. In steam pyrolysis, 0.5 g of steam was supplied. Also, when the reaction time was set to 60 minutes, steam pyrolysis was similarly performed.
In addition, a comparative material was produced in the same manner except that the nano catalyst was not blended, and steam pyrolysis was performed.
Table 6 shows the conversion rate of the steam pyrolysis and the analysis results of the products.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、例11において、ナノ触媒を含む試験材料は、低温でも高分子が効率良く分解された。 As shown in Table 6, in Example 11, in the test material containing the nanocatalyst, the polymer was efficiently decomposed even at a low temperature.
 例1~例5及び例11では、高分子材料はいずれもセラミクスであるシリカに対するバインダーとして使用されているものであるが、いずれの場合も、ナノ触媒の触媒機能はシリカの存在に影響を受けるものではない。これは、金属粉末等、他の無機物の存在下においても同様である。 In Examples 1 to 5 and Example 11, the polymer materials are all used as binders for silica as a ceramic, but in any case, the catalytic function of the nanocatalyst is affected by the presence of silica. Not something. This is the same in the presence of other inorganic substances such as metal powder.

Claims (24)

  1.  高分子に、当該高分子の分解反応に対する触媒活性を有するナノ触媒が分散されている、分解性高分子材料。 (4) A degradable polymer material in which a nanocatalyst having catalytic activity for a decomposition reaction of the polymer is dispersed in the polymer.
  2.  前記ナノ触媒の含有量が、前記分解性高分子材料の総質量に対して15質量%以下である、請求項1に記載の分解性高分子材料。 The degradable polymer material according to claim 1, wherein the content of the nanocatalyst is 15% by mass or less based on the total mass of the degradable polymer material.
  3.  前記ナノ触媒が金属酸化物ナノ粒子を含む、請求項1又は2に記載の分解性高分子材料。 The degradable polymer material according to claim 1 or 2, wherein the nanocatalyst includes metal oxide nanoparticles.
  4.  前記金属酸化物ナノ粒子は、反応温度における酸素吸蔵放出能(OSC)が10μmol/g以上であり、平均粒子径が100nm以下である、請求項3に記載の分解性高分子材料。 The degradable polymer material according to claim 3, wherein the metal oxide nanoparticles have an oxygen storage / release capacity (OSC) at a reaction temperature of 10 µmol / g or more and an average particle diameter of 100 nm or less.
  5.  前記金属酸化物ナノ粒子の表面の30%以上に活性面が露出している、請求項3又は4に記載の分解性高分子材料。 The degradable polymer material according to claim 3, wherein an active surface is exposed on 30% or more of the surface of the metal oxide nanoparticles.
  6.  前記ナノ触媒は、前記金属酸化物ナノ粒子の表面に有機分子が結合された有機修飾ナノ粒子である、請求項3~5のいずれか一項に記載の分解性高分子材料。 The degradable polymer material according to any one of claims 3 to 5, wherein the nanocatalyst is an organically modified nanoparticle in which an organic molecule is bonded to a surface of the metal oxide nanoparticle.
  7.  前記有機修飾ナノ粒子の熱重量分析において、有機分子が脱離する温度が150~400℃である、請求項6に記載の分解性高分子材料。 7. The degradable polymer material according to claim 6, wherein, in the thermogravimetric analysis of the organically modified nanoparticles, a temperature at which an organic molecule is released is 150 to 400 ° C.
  8.  前記金属酸化物ナノ粒子がCeOナノ粒子である、請求項3~7のいずれか一項に記載の分解性高分子材料。 The degradable polymer material according to any one of claims 3 to 7, wherein the metal oxide nanoparticles are CeO 2 nanoparticles.
  9.  前記CeOナノ粒子に遷移元素がドープされている、請求項8に記載の分解性高分子材料。 The decomposable polymer material according to claim 8, wherein the CeO 2 nanoparticles are doped with a transition element.
  10.  無機フィラーとバインダーとを含有するハイブリッド材料であって、前記バインダーが請求項1~9のいずれか一項に記載の分解性高分子材料である、ハイブリッド材料。 ハ イ ブ リ ッ ド A hybrid material containing an inorganic filler and a binder, wherein the binder is the degradable polymer material according to any one of claims 1 to 9.
  11.  請求項10に記載のハイブリッド材料を加熱及び成型して得られるハイブリッド成型物。 A hybrid molded product obtained by heating and molding the hybrid material according to claim 10.
  12.  無機材料とバインダーとを含有する成型材料であって、前記バインダーが請求項1~9のいずれか一項に記載の分解性高分子材料である、無機成型材料。 成型 A molding material containing an inorganic material and a binder, wherein the binder is the degradable polymer material according to any one of claims 1 to 9.
  13.  前記無機材料が、セラミクス粉末、金属粉末、又は、セラミクス粉末及び金属粉末の混合物である、請求項12に記載の無機成型材料。 The inorganic molding material according to claim 12, wherein the inorganic material is a ceramic powder, a metal powder, or a mixture of a ceramic powder and a metal powder.
  14.  請求項12又は13に記載の無機成型材料を成型及び焼成して得られる無機成型物。 An inorganic molded product obtained by molding and firing the inorganic molding material according to claim 12 or 13.
  15.  高分子と、当該高分子の分解反応に対する触媒活性を有するナノ触媒とを含有する成型物を、水熱分解処理する、高分子除去又は回収方法。 (4) A method for removing or recovering a polymer, comprising subjecting a molded article containing a polymer and a nanocatalyst having catalytic activity to a decomposition reaction of the polymer to a hydrothermal decomposition treatment.
  16.  前記高分子100質量部に対して前記ナノ触媒を15質量部以下添加する、請求項15に記載の高分子除去又は回収方法。 The method for removing or recovering a polymer according to claim 15, wherein the nanocatalyst is added in an amount of 15 parts by mass or less based on 100 parts by mass of the polymer.
  17.  前記ナノ触媒が金属酸化物ナノ粒子を含む、請求項15又は16に記載の高分子除去又は回収方法。 17. The method for removing or recovering a polymer according to claim 15, wherein the nanocatalyst includes metal oxide nanoparticles.
  18.  前記金属酸化物ナノ粒子は、反応温度における酸素吸蔵放出能(OSC)が10μmol/g以上であり、平均粒子径が100nm以下である、請求項17に記載の高分子除去又は回収方法。 18. The method according to claim 17, wherein the metal oxide nanoparticles have an oxygen storage / release capacity (OSC) at a reaction temperature of 10 μmol / g or more and an average particle diameter of 100 nm or less.
  19.  前記金属酸化物ナノ粒子の表面の30%以上に活性面が露出している、請求項17又は18に記載の高分子除去又は回収方法。 19. The method for removing or recovering a polymer according to claim 17, wherein an active surface is exposed on 30% or more of the surface of the metal oxide nanoparticles.
  20.  前記ナノ触媒は、前記金属酸化物ナノ粒子の表面に有機分子が結合された有機修飾ナノ粒子である、請求項17~19のいずれか一項に記載の高分子除去又は回収方法。 20. The method for removing or recovering a polymer according to claim 17, wherein the nanocatalyst is an organically modified nanoparticle in which an organic molecule is bonded to a surface of the metal oxide nanoparticle.
  21.  前記金属酸化物ナノ粒子がCeOナノ粒子である、請求項17~20のいずれか一項に記載の高分子除去又は回収方法。 The method for removing or recovering a polymer according to any one of claims 17 to 20, wherein the metal oxide nanoparticles are CeO 2 nanoparticles.
  22.  前記CeOナノ粒子に遷移元素がドープされている、請求項21に記載の高分子除去又は回収方法。 The transition element in CeO 2 nanoparticles are doped, the polymer removal or recovery method of claim 21.
  23.  前記ナノ触媒を分散させた前記高分子を150~400℃で水熱分解処理する、請求項15~22のいずれか一項に記載の高分子除去又は回収方法。 The method for removing or recovering a polymer according to any one of claims 15 to 22, wherein the polymer in which the nanocatalyst is dispersed is subjected to hydrothermal decomposition at 150 to 400 ° C.
  24.  前記成型物は、前記高分子をバインダーとする無機フィラー又は無機成型材料を含有する、請求項15~23のいずれか一項に記載の高分子除去又は回収方法。 The method for removing or recovering a polymer according to any one of claims 15 to 23, wherein the molded product contains an inorganic filler or an inorganic molding material using the polymer as a binder.
PCT/JP2019/028863 2018-07-23 2019-07-23 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method WO2020022336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018138068A JP2020015789A (en) 2018-07-23 2018-07-23 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article using these, inorganic molded article, and polymer removal and recovery method
JP2018-138068 2018-07-23

Publications (1)

Publication Number Publication Date
WO2020022336A1 true WO2020022336A1 (en) 2020-01-30

Family

ID=69182251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028863 WO2020022336A1 (en) 2018-07-23 2019-07-23 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method

Country Status (2)

Country Link
JP (1) JP2020015789A (en)
WO (1) WO2020022336A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699244A (en) * 1980-01-11 1981-08-10 Aichi Kogyo Daigaku Recovery method of polyurethane scrap
JP2001294708A (en) * 2000-04-11 2001-10-23 Sanesu:Kk Method for recovering styrene monomer from polystyrene resin and apparatus used therefor
JP2002060541A (en) * 2000-08-22 2002-02-26 Nikken Engineering Kk Method and apparatus for disposing plastic waste containing halogen-containing plastic
JP2003055498A (en) * 2001-08-20 2003-02-26 Chubu Electric Power Co Inc Method for decomposing thermosetting resin
JP2004091720A (en) * 2002-09-03 2004-03-25 National Institute Of Advanced Industrial & Technology Method for separating carbon fiber and resin
JP2005113112A (en) * 2003-09-17 2005-04-28 Honda Motor Co Ltd Method for decomposing resin component
JP2008050351A (en) * 2006-07-27 2008-03-06 Victor Co Of Japan Ltd Method for recovering lactic acid
WO2015025941A1 (en) * 2013-08-23 2015-02-26 国立大学法人東北大学 Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source
JP2015131892A (en) * 2014-01-10 2015-07-23 国立大学法人東北大学 Catalytic cracking method of heavy hydrocarbon under coexistence of water
WO2016105200A1 (en) * 2014-12-23 2016-06-30 Ioniqa Technologies B.V. Polymer degradation
JP2017025288A (en) * 2015-07-27 2017-02-02 学校法人 中央大学 Method for decomposing polymer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699244A (en) * 1980-01-11 1981-08-10 Aichi Kogyo Daigaku Recovery method of polyurethane scrap
JP2001294708A (en) * 2000-04-11 2001-10-23 Sanesu:Kk Method for recovering styrene monomer from polystyrene resin and apparatus used therefor
JP2002060541A (en) * 2000-08-22 2002-02-26 Nikken Engineering Kk Method and apparatus for disposing plastic waste containing halogen-containing plastic
JP2003055498A (en) * 2001-08-20 2003-02-26 Chubu Electric Power Co Inc Method for decomposing thermosetting resin
JP2004091720A (en) * 2002-09-03 2004-03-25 National Institute Of Advanced Industrial & Technology Method for separating carbon fiber and resin
JP2005113112A (en) * 2003-09-17 2005-04-28 Honda Motor Co Ltd Method for decomposing resin component
JP2008050351A (en) * 2006-07-27 2008-03-06 Victor Co Of Japan Ltd Method for recovering lactic acid
WO2015025941A1 (en) * 2013-08-23 2015-02-26 国立大学法人東北大学 Method for treating organic matter in the presence of water, contact reaction device and system including same, and method for recovering waste heat from low-temperature heat source
JP2015131892A (en) * 2014-01-10 2015-07-23 国立大学法人東北大学 Catalytic cracking method of heavy hydrocarbon under coexistence of water
WO2016105200A1 (en) * 2014-12-23 2016-06-30 Ioniqa Technologies B.V. Polymer degradation
JP2017025288A (en) * 2015-07-27 2017-02-02 学校法人 中央大学 Method for decomposing polymer

Also Published As

Publication number Publication date
JP2020015789A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
Varma et al. Solution combustion synthesis of nanoscale materials
Morassaei et al. Simple salt-assisted combustion synthesis of Nd 2 Sn 2 O 7–SnO 2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye
US9783423B2 (en) Carbon material and method for producing same
Adschiri Supercritical hydrothermal synthesis of organic–inorganic hybrid nanoparticles
TW448132B (en) Nanostructured oxides and hydroxides and methods of synthesis therefor
KR101414560B1 (en) method for producing conductive film
Said et al. Synthesis and characterization of nano CuO-NiO mixed oxides
Saka Phosphorus decorated g-C3N4-TiO2 particles as efficient metal-free catalysts for hydrogen release by NaBH4 methanolysis
CN103201215A (en) Novel carbon nanotubes and production method therefor
Sun et al. From layered double hydroxide to spinel nanostructures: facile synthesis and characterization of nanoplatelets and nanorods
Aytimur et al. Magnesia stabilized zirconia doped with boron, ceria and gadolinia
Nguyen et al. Constraint effect caused by graphene on in situ grown Gr@ WO3-nanobrick hybrid material
AU2018207579A1 (en) Rechargeable battery and catalyst materials and the means of production thereof
TWI750137B (en) Method for manufacturing zirconium tungstate phosphate
Zhang et al. Fabrication of rod-like CeO2: characterization, optical and electrochemical properties
Rai et al. An overview on recent developments in the synthesis, characterization and properties of high dielectric constant calcium copper titanate nano-particles
JP6099040B2 (en) Composite layered double hydroxide
Vaidya et al. Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles
Adschiri et al. Supercritical hydrothermal reactions for material synthesis
WO2020022336A1 (en) Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method
CN101255556B (en) Method for preparing porous zinc oxide particle studded composite film
Roosta et al. Synthesis and evaluation of NiO@ MCM-41 core–shell nanocomposite in the CO 2 reforming of methane
Jang et al. Synthesis of nanocrystalline ZnFe2O4 by polymerized complex method for its visible light photocatalytic application: an efficient photo-oxidant
Zhang et al. Facile one-step synthesis and enhanced photocatalytic activity of a WC/ferroelectric nanocomposite
Gholami et al. Investigate the effect of silica on improvement electrochemical storage of hydrogen in ZnAl2O4 spinel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839847

Country of ref document: EP

Kind code of ref document: A1