JP2004091720A - Method for separating carbon fiber and resin - Google Patents

Method for separating carbon fiber and resin Download PDF

Info

Publication number
JP2004091720A
JP2004091720A JP2002257490A JP2002257490A JP2004091720A JP 2004091720 A JP2004091720 A JP 2004091720A JP 2002257490 A JP2002257490 A JP 2002257490A JP 2002257490 A JP2002257490 A JP 2002257490A JP 2004091720 A JP2004091720 A JP 2004091720A
Authority
JP
Japan
Prior art keywords
resin
cfrp
catalyst
reaction
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002257490A
Other languages
Japanese (ja)
Inventor
Yoshihiro Endo
遠藤 善博
Yutaka Miura
三浦 裕
Yoshiki Sato
佐藤 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Teijin Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toho Tenax Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002257490A priority Critical patent/JP2004091720A/en
Publication of JP2004091720A publication Critical patent/JP2004091720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering carbon fibers (CF) in a carbon fiber-reinforced plastic (CFRP) by using a solvent, capable of decomposing a matrix resin in the CFRP in a high conversion rate and also separating the resin and CF from the CFRP while without deteriorating physical properties of the CF. <P>SOLUTION: This method for separating the CF and resin is provided by pressurizing and heating a mixture of the CFRP, a higher alcohol or light cycle oil (LCO), catalyst such as Na<SB>2</SB>CO<SB>3</SB>, CaCO<SB>3</SB>, etc., under a non-oxidative gas atmosphere to decompose the resin in the CFRP and separating the obtained decomposed resin from the CF in the CFRP. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維強化プラスチック(CFRP)中の炭素繊維(CF)と樹脂との分離方法に関するものである。
【0002】
【従来の技術】
近年、ごみ処理問題などに非常に多くの関心が集まっており、地球環境保全などの面からも早急な対応が望まれている。繊維強化プラスチック(FRP)は埋立てや焼却などの処理が主流となっていたが、既にこれらの処理方法自体が埋立地の減少、排気ガスなどの社会問題になっていることから、廃棄されたFRPの再利用(リサイクル)が重要な課題となっている。
【0003】
これまでプラスチックやFRPを構成するマトリックス樹脂を強化材から分離・除去する技術としては、熱分解〔特許文献1、特許文献2〕、化学分解〔非特許文献1〕、超臨界分解〔非特許文献2〕、光・オゾン分解などが考えられている。
【0004】
FRPのマトリックス樹脂材料などとして使用されるフェノール樹脂やエポキシ樹脂などの熱硬化性樹脂は、テトラリンなどの水素供与性溶剤を用いた液相熱分解法により400℃以上の反応温度で、ほぼ100%分解され、フェノールなどのモノマーを主成分とする液状生成物に転換される。このことは非特許文献3、非特許文献4に記載されているように公知である。
【0005】
また、CFRP中のマトリックス樹脂を有機触媒使用のもとに油化し、更に処理後のCFを回収する技術については、非特許文献5に記載されている。
【0006】
しかし、これらの処理方法では使用する溶媒(溶剤)が工業的に広く生産されておらず特殊であり、コストが高いなどの問題を抱えている。加えて、処理後の強化繊維に有機触媒が付着し、その除去が容易でないことが処理の簡便さに欠けている。
【0007】
また、CFRP中に含まれるCFは耐熱性の高い材料ではあるが、150℃以上では徐々に酸化・劣化する。CFを回収再利用する観点からはCFRP中のCFとマトリックス樹脂を分離する際には、極力CFの性能・特徴を保持させたまま、高い分解率、若しくはモノマー成分等への高い転化率で樹脂を除去することが可能である分離技術の確立が求められている。
【0008】
【特許文献1】
特許第3180463号公報 (第2頁[0004]〜第3頁[0021])
【特許文献2】
特開平11−172258号公報 (第2頁[0003]〜第3頁[0014])
【非特許文献1】
牛越憲治、小松信幸、杉野守彦、材料、44巻、P428〜431(1995)
【非特許文献2】
佐古猛、岡島いずみ、菅田猛、プラスチック化学リサイクル研究会、第3回討論会予稿集、P27〜28(2000)
【非特許文献3】
Y.Sato、Y.Kodera、T.Kamo、Energy & Fuels、13巻、P364〜368(1999)
【非特許文献4】
佐藤芳樹、化学と工業、54(12)、P1347〜1351(2001)
【非特許文献5】
平成12年度  新エネルギー・産業技術総合開発機構研究受託成果報告書、リサイクルCFRP粉砕品の標準化、P45〜65
【0009】
【発明が解決しようとする課題】
本発明者等は、上記の問題を解決するために種々検討しているうちに、CFRPと、工業的に広く使用されている高級アルコール又はライトサイクルオイル〔Light Cycle Oil(LCO:石油精製工業においてFCC装置から製造される生成残油の軽質成分)〕と、触媒との混合物を非酸化性ガス雰囲気下、加圧・加熱することにより、マトリックス樹脂を極力高い転化率にて、かつCFの性能を劣化させないで除去できることを知得し本発明を完成するに至った。
【0010】
よって、本発明の目的とするところは、上記問題を解決したCFRPからのCFとマトリックス樹脂との分離方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載のものである。
【0012】
〔1〕  炭素繊維強化プラスチックと、高級アルコール又はライトサイクルオイルと、触媒との混合物を、非酸化性ガス雰囲気下、加圧・加熱して炭素繊維強化プラスチック中の樹脂を分解し、得られた分解樹脂を炭素繊維強化プラスチック中の炭素繊維から分離する炭素繊維と樹脂との分離方法。
【0013】
〔2〕  触媒が、アルカリ金属若しくはアルカリ土類金属の炭酸塩、元素の周期表1族、2族、3族、15族及び16族金属を除く金属の酸化物、又は水素活性化金属を多孔性無機担体に担持させた触媒である請求項1に記載の炭素繊維と樹脂との分離方法。
【0014】
【発明の実施の形態】
本発明で被処理原料として用いるCFRPは、マトリックス樹脂にCFを分散させた強化複合材料である。マトリックス樹脂には、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂、並びにポリプロピレン、ナイロンなどの熱可塑性樹脂が包含される。CFにはレーヨン糸、ピッチ糸、アクリル糸などのCFが包含される。
【0015】
CFRP中の樹脂含有量は、特に限定されるものではないが、20〜50質量%が好ましい。
【0016】
本発明においては、上記CFRPと、高級アルコール又はLCOと、触媒との混合物を、非酸化性ガス雰囲気下、加圧、加熱してCFRPから樹脂とCFとを分離することを特徴とする。
【0017】
高級アルコールの純度は98質量%が好ましい。
【0018】
高級アルコールは通常、炭素数4以上の脂肪族アルコールを指す。これら脂肪族アルコールのうちでも、炭素数が6〜12の脂肪族アルコールで樹脂の分解によって得られる低分子化合物よりも高沸点のものが好ましい。このような高級アルコールとしては、ヘキサノール、シクロヘキサノール、1−ヘプタノール、2−エチル−1−ヘキサノール、1−オクタノールなどが挙げられる。
【0019】
LCOの純度は98質量%が好ましい。
【0020】
これら溶剤の使用割合は、CFRP100質量部当り、50〜400質量部の割合が好ましく、50〜300質量部の割合が更に好ましい。
【0021】
触媒としては、アルカリ金属若しくはアルカリ土類金属の炭酸塩、元素の周期表1族、2族、3族、15族及び16族金属を除く金属の酸化物、又は水素活性化金属を多孔性無機担体に担持させた触媒を用いることができる。具体的には、炭酸塩としては、NaCO、KCO、CaCO、MgCO、BaCO等が例示でき、酸化物としては、Fe、V、ZrO、CuO、CuO、MoO、ZnO、Al、TiO、Cr、CeO、MnO、SnO、CdO、CoO等が例示でき、水素活性化金属としては、Fe、Ni、Co、Mo等が例示でき、多孔性無機担体としては、アルミナ、シリカ、チタン等が例示できる。
【0022】
上記触媒の使用割合は、CFRP100質量部当り、2〜8質量部の割合が好ましく、4〜5質量部が更に好ましい。
【0023】
CFRPは最大径で10mm以下に破砕することが好ましく、1〜5mmに破砕することが更に好ましい。
【0024】
次に、上記CFRPと溶剤と触媒との混合物を、非酸化性ガス雰囲気下、好ましくは1〜5MPa、更に好ましくは2〜3MPaに加圧すると共に、好ましくは300〜500℃、更に好ましくは380〜440℃に加熱することにより、液相熱分解させる。
【0025】
この液相熱分解反応により、CFRPのマトリックス樹脂は、低分子化合物にまで分解され、ガス状成分、又は溶剤に溶けて常温で液体の生成油(液状生成物)となる。
【0026】
例えば、CFRPのマトリックス樹脂がエポキシ樹脂の場合、液状生成物としては、樹脂はフェノールやイソプロピルフェノールなどのエポキシ樹脂由来のモノマー成分にまで分解され、それらのモノマー成分の生成量は、CFRP当り1〜10質量%にまで達する。
【0027】
上記液相熱分解反応において、非酸化性ガス雰囲気は、N、Arなどの不活性ガス雰囲気、又はHガス雰囲気が好ましい。
【0028】
液相熱分解の圧力を上記範囲の1〜5MPaにすることにより、CFRPと混合した溶剤を、その加熱温度において液相に保持することができる。
【0029】
液相熱分解の反応温度が300℃未満の場合は、後述する軽質油収率が低くなるので好ましくない。液相熱分解の反応温度が500℃を超える場合は、反応生成物中のガス量が多くなる、並びに、回収されるCFの強度が低下するなどの不具合を生ずるので好ましくない。
【0030】
液相熱分解の反応時間は、そのCFRPが十分に分解油化される時間であれば良く、通常、60〜90分程度である。
【0031】
上記液相熱分解反応においては、CFRPと混合された溶剤からは触媒作用によって、水素が脱離する。この水素は樹脂の炭化を防ぐと共に、樹脂の分解を円滑に進行させる。
【0032】
樹脂からの分解生成物は低分子化して溶剤に溶ける。しかし、触媒を加えない液相熱分解反応では、樹脂からの分解生成物は、ある程度低分子化するものの、常温で液体になるまでは低分子化できない。
【0033】
次に、液状生成物については、330℃、400Paでの真空蒸留を行い、留出油(軽質油Oil)と、水と、残渣(重質成分VR)とに分離することが好ましい。
【0034】
上記の本発明のCFRPからのCFと樹脂の分離方法によって得られたスラリー中の反応生成物は、濾過法などの固液分離によって固体(回収CFを含む)と液状生成物とに分離することができる。
【0035】
一方の固液分離物である固体は、必要に応じ脱イオン水とアセトンを用いて洗浄し、付着している溶媒、触媒を除去することができる。本発明のCFRPからのCFと樹脂の分離方法によれば、回収されたCFは、光学顕微鏡観察、比重、強度とも未処理の原糸と変わらないことを特徴としている。
【0036】
他方の固液分離物である液状生成物は、真空蒸留などの蒸留分離によって、留出油(軽質油)と、水と、残渣(重質成分)とに分離することができる。本発明のCFRPからのCFと樹脂の分離方法によれば、水や重質油の生成量が少なく、リサイクルとして適した軽質油の生成量が多いことを特徴としている。
【0037】
なお、上記軽質油は、CFRPのマトリックス樹脂から液相熱分解反応で得られた軽質油成分と、溶剤と、脱水素された溶剤との混合物になっているため、液相熱分解反応で得られた生成物の組成解析をする際には、溶剤の仕込量を差し引いた数値として示すものである。
【0038】
【実施例】
次に本発明を実施例により更に詳細に説明する。
【0039】
(CFRPの液相分解)
実施例1
内容積200mLの電磁攪拌式オートクレーブにより、溶剤としてシクロヘキサノールを55.75gと、CFRP22.29gと、触媒としてCaCOを0.96g仕込み、2MPaの窒素加圧下、反応温度440℃、反応時間1hr、攪拌数1000rpmの条件で液相熱分解反応を行った。
【0040】
CFRPは、東邦テナックス(株)製・CF〔Besfight(登録商標)〕プリプレグ(原糸:HTA−12K、エポキシ樹脂37質量%含有)を50×50mmに切断し、熱風乾燥機にて2hr硬化させたものを使用した。
【0041】
上記液相熱分解反応によって生成したガスの容量は湿式ガスメーターによって測定し、その組成はTCD検出器を備えたガスクロマトグラフによって定量した。
【0042】
未反応CFRPを含むスラリー状の反応生成物は、濾過法によって固体〔未反応CFRP(回収CFを含む)〕と液状生成物とに分離した。液状生成物については、330℃、400Paでの真空蒸留を行い、留出油(軽質油Oil)と、水と、残渣(重質成分VR)とに分離した。軽質油中のフェノール、イソプロピルフェノール及びビスフェノールAについてはFID検出器及びガラスキャピラリーカラムを備えたガスクロマトグラフによって組成解析を行った。
【0043】
以上の液相熱分解反応で得られた生成物の各成分組成を、CFRPの仕込量に対する質量%として表1に示している。なお、軽質油については溶剤の仕込量を差引いた数値として示している。また、後述する「回収CFの外観と性状」において回収CFの生成物各成分の付着量を求め、各成分組成に加えた。
【0044】
実施例2
液相熱分解反応における触媒をNaCOにした以外は、実施例1と同様にして、液相熱分解反応、液固分離、真空蒸留、成分組成分析を行い、それらの結果を表1に示した。
【0045】
実施例3
液相熱分解反応における反応温度を380℃にし、触媒をNaCOにした以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表1に示した。
【0046】
実施例4
溶剤としてシクロヘキサノールの代わりにLCO55.75gを、触媒としてCaCOの代わりにNaCO0.96gを、オートクレーブに仕込み、反応温度を440℃とした以外は、実施例1と同様にして、液相熱分解反応、液固分離、真空蒸留、成分組成分析を行い、それらの結果を表1に示した。
【0047】
【表1】

Figure 2004091720
【0048】
実施例5
溶剤としてシクロヘキサノールの代わりに2−エチル−1−ヘキサノール55.75gを、オートクレーブに仕込んだ以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表2に示した。
【0049】
実施例6
溶剤としてシクロヘキサノールの代わりに1−オクタノール55.75gを、オートクレーブに仕込んだ以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表2に示した。
【0050】
実施例7
溶剤としてシクロヘキサノールの代わりに1−オクタノール55.75gを、触媒としてCaCOの代わりにNaCO0.96gを、オートクレーブに仕込んだ以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表2に示した。
【0051】
比較例1
オートクレーブに触媒を仕込まなかった以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表2に示した。
【0052】
【表2】
Figure 2004091720
【0053】
比較例2
オートクレーブに触媒を仕込まなかった以外は、実施例4と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表3に示した。
【0054】
比較例3
オートクレーブに、触媒を仕込まず、溶剤としてシクロヘキサノールの代わりに1−ヘプタノール55.75gを仕込み、反応温度を350℃とした以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表3に示した。
【0055】
比較例4
オートクレーブに、触媒を仕込まず、溶剤としてシクロヘキサノールの代わりに1−ヘプタノール55.75gを仕込み、反応温度を440℃とした以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表3に示した。
【0056】
比較例5
オートクレーブに、触媒を仕込まず、溶剤としてシクロヘキサノールの代わりに2−エチル−1−ヘキサノール55.75gを仕込み、反応温度を350℃とした以外は、実施例1と同様にして、液相熱分解反応、固液分離、真空蒸留、成分組成解析を行い、それらの結果を表3に示した。
【0057】
【表3】
Figure 2004091720
【0058】
前述のようにCFRPサンプル中には37質量%のエポキシ樹脂が含まれているため、すべての樹脂が分解された場合の転化率も37質量%であり、表中にはフェノールなどのエポキシ樹脂の分解によって生成する主な成分の収率も付記してある。
【0059】
表1乃至3によると、比較例2のLCO を溶剤として使用した場合を除くと、いずれの場合もガスの生成率は0.2〜5質量%と低く、主な組成は二酸化炭素、一酸化炭素、メタン及び低級炭化水素などであった。
【0060】
シクロヘキサノールやLCO、他の高級アルコールへCaCOあるいはNaCOなどの触媒を併用した場合には、熱分解反応では樹脂を十分分解・除去することができた。
【0061】
転化率については、CaCOあるいはNaCOなどの触媒を添加した実施例1乃至4では何れも37質量%前後と高い値を示した。実施例5の2−エチル−1−ヘキサノールについては、転化率が33.8質量%と少し低めの値であった。しかし、比較例5と比べるとCaCOを触媒として加え、温度を30℃上げることによって、転化率にして19.4質量%もの上昇を示した。
【0062】
反応後、CaCOあるいはNaCOなど触媒は、水洗によって容易に除去できることから、残渣としてのCFの物性に影響を及ぼすことはないどころか、後述の「回収CFの外観と性状の評価」で示すように、残渣としてのCFの物性は非接触反応の場合よりも高く維持されるため、熱分解反応における接触反応は効果的である。
【0063】
反応温度の違いについては、実施例2と実施例3更には実施例4との比較で示されるように、転化率への影響は少なかった。
【0064】
なお、液体の反応生成物(軽質油、重質成分、及び水)の収率(樹脂からの転化率)は、反応後の総液体生成物(軽質油、重質成分、及び水に加えて、反応後の溶剤も含まれる)の質量から反応前の溶剤の質量を差し引いて算出した。また、軽質油の収率は、上記液体反応生成物の収率から、重質成分の収率、及び水の収率を差し引いて算出した。
【0065】
そのため、軽質油収率の値が負の値を示すことがある。このことは熱的に分解された樹脂成分からの活性成分(ラジカル)が溶剤と縮重合反応を起こし、多量の重質成分(VR)を生成したためと考えられる。
【0066】
液体の反応生成物中にはフェノール、イソプロピルフェノールなどエポキシ樹脂由来のモノマー成分が認められた。水素を放出した後の溶剤が縮重合反応によって重質化するため、計算上、軽質油の収率は低くなる場合があるが、エポキシ樹脂の分解で生成したラジカルは溶剤からの水素によって、エポキシ樹脂由来のモノマー成分として低分子のまま安定化されていると考えられる。
【0067】
液体の反応生成物は蒸留可能な炭化水素類であり、燃料あるいは石油化学用の原料などとしての利用が可能である。
【0068】
(回収CFの外観と性状の評価)
実施例1〜7、並びに、比較例1〜5に示す液相熱分解法により処理した後の回収CFは、脱イオン水及びアセトンを用いて洗浄し、付着している溶剤、触媒を除去した。その後、80℃で1hrの加熱乾燥を施し各種解析を実施した。
【0069】
原材料CFRP、並びに、実施例3及び4における回収CFについて、その外観をそれぞれ図1(a)、図1(b)、並びに、図1(c)に示す。
【0070】
回収CFの表面の解析には光学顕微鏡を用いて観察を、実施例1〜4、並びに、比較例1及び2における各回収CFについて行い、その光学顕微鏡写真をそれぞれ図2(a)、図2(b)、図2(c)、図2(d)、図2(e)、並びに、図2(f)に示した。
【0071】
さらに、繊維の劣化を評価するために、各回収CFの比重及び単繊維強度の測定を、実施例1〜7、並びに、比較例1〜5について行った。これらの比重測定、単繊維強度測定の結果を表4に示した。
【0072】
なお、繊維劣化の比較対照としては、未処理の原糸(HTA−12K、サイズ剤なし、比重1.77、単繊維強度:4.0GPa)を用いて優位差を判断した。
【0073】
【表4】
Figure 2004091720
【0074】
表4によると、溶剤としてシクロヘキサノールやLCOを使用し、CaCOやNaCOなどの触媒を併用した場合には、繊維比重の値が1.77、単繊維強度も4.3〜3.9GPaと繊維劣化は認められず、物性的には十分再利用可能である。しかし、CaCOやNaCOなどの触媒を併用しない場合には、繊維比重の値が1.77であるものの、単繊維強度が3.6、3.7GPaであり、物性が劣化している。
【0075】
また、表4によると、溶剤として2−エチル−1−ヘキサノール、1−オクタノール及び1−ヘプタノールを使用し、CaCOやNaCOなどの触媒を併用した場合にも、繊維比重の値が1.77、単繊維強度も3.9〜3.8GPaと繊維劣化は認められず、物性的には十分再利用可能である。しかし、CaCOやNaCOなどの触媒を併用しない場合には、繊維比重の値が1.77であるものの、単繊維強度が3.6〜3.4GPaであり、物性が劣化している。
【0076】
更に、図2(a)、図2(b)、図2(c)、図2(d)、図2(e)、並びに、図2(f)によると、実施例1〜4では光学顕微鏡での観察において樹脂が除去されている様子が窺える。しかし、比較例1及び2においては、CF表面に樹脂が残存している。
【0077】
【発明の効果】
本発明によれば、CFRPと、高級アルコール又はLCOと、触媒との混合物を、非酸化性ガス雰囲気下、加圧・加熱することから、CFRP中のマトリックス樹脂を高い転化率で分解することができると共に、CFの物性劣化させることなく、CFRPから樹脂とCFとを分離することができる。
【図面の簡単な説明】
【図1】原材料CFRP、並びに、実施例3及び4における回収CFの外観について撮影した図面代用の写真であって、(a)は原材料CFRP、(b)は実施例3における回収CF、(c)は実施例4における回収CFの外観写真である。
【図2】実施例1〜4、並びに、比較例1及び2において撮影した図面代用の光学顕微鏡写真であって、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は実施例4、(e)は比較例1、(f)は比較例2における顕微鏡写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for separating carbon fiber (CF) and resin in carbon fiber reinforced plastic (CFRP).
[0002]
[Prior art]
In recent years, there has been a great deal of interest in garbage disposal issues and the like, and an immediate response is also desired in terms of global environmental conservation and the like. The mainstream of fiber reinforced plastic (FRP) treatment was landfilling and incineration, but these methods have already been discarded due to the reduction of landfills and social problems such as exhaust gas. Reuse (recycling) of FRP is an important issue.
[0003]
Conventionally, techniques for separating and removing matrix resin constituting plastic and FRP from reinforcing materials include thermal decomposition [Patent Document 1, Patent Document 2], chemical decomposition [Non-patent Document 1], and supercritical decomposition [Non-patent Document]. 2), light and ozonolysis are considered.
[0004]
Thermosetting resins such as phenolic resins and epoxy resins used as matrix resin materials for FRP are almost 100% at a reaction temperature of 400 ° C. or more by a liquid phase pyrolysis method using a hydrogen donor solvent such as tetralin. It is decomposed and converted into a liquid product mainly composed of a monomer such as phenol. This is known as described in Non-Patent Documents 3 and 4.
[0005]
Further, Non-Patent Document 5 describes a technique for liquefying a matrix resin in CFRP under the use of an organic catalyst and recovering the CF after the treatment.
[0006]
However, in these treatment methods, the solvent to be used (solvent) is not widely produced industrially, is special, and has problems such as high cost. In addition, the simplicity of the treatment is lacking because the organic catalyst adheres to the reinforced fibers after the treatment and the removal thereof is not easy.
[0007]
Further, CF contained in CFRP is a material having high heat resistance, but gradually oxidizes and deteriorates at 150 ° C. or higher. From the viewpoint of recovering and reusing CF, when separating the CF from the matrix resin in the CFRP, the resin must have a high decomposition rate or a high conversion rate to monomer components while maintaining the performance and characteristics of CF as much as possible. There is a demand for the establishment of a separation technique capable of removing methane.
[0008]
[Patent Document 1]
Japanese Patent No. 3180463 (Page 2 [0004] to Page 3 [0021])
[Patent Document 2]
JP-A-11-172258 (Page 2 [0003] to Page 3 [0014])
[Non-patent document 1]
Kenji Ushikoshi, Nobuyuki Komatsu, Morihiko Sugino, Materials, 44 volumes, pp. 428-431 (1995)
[Non-patent document 2]
Takeshi Sako, Izumi Okajima, Takeshi Sugata, Plastic Chemistry Recycling Study Group, Proceedings of the 3rd Symposium, P27-28 (2000)
[Non-Patent Document 3]
Y. Sato, Y .; Kodera, T .; Kamo, Energy & Fuels, Volume 13, P364-368 (1999)
[Non-patent document 4]
Yoshiki Sato, Chemistry and Industry, 54 (12), P1347-1351 (2001)
[Non-Patent Document 5]
FY2000 New Energy and Industrial Technology Development Organization Research Commissioned Results Report, Standardization of Recycled CFRP Pulverized Products, P45-65
[0009]
[Problems to be solved by the invention]
The present inventors have conducted various studies to solve the above-mentioned problems, and found that CFRP and a higher alcohol or light cycle oil widely used industrially [Light Cycle Oil (LCO: FCC Pressurizing and heating a mixture of the residual oil produced from the apparatus) and a catalyst in a non-oxidizing gas atmosphere to convert the matrix resin at the highest possible conversion rate and improve the CF performance. The inventors have learned that they can be removed without deterioration, and have completed the present invention.
[0010]
Accordingly, it is an object of the present invention to provide a method for separating CF from a matrix resin from CFRP, which solves the above problem.
[0011]
[Means for Solving the Problems]
The present invention that achieves the above object is as described below.
[0012]
[1] A mixture of a carbon fiber reinforced plastic, a higher alcohol or light cycle oil, and a catalyst is pressurized and heated under a non-oxidizing gas atmosphere to decompose the resin in the carbon fiber reinforced plastic and obtain the obtained decomposition. A method for separating a carbon fiber and a resin, wherein the resin is separated from the carbon fibers in the carbon fiber reinforced plastic.
[0013]
[2] The catalyst is made of a porous metal such as a carbonate of an alkali metal or an alkaline earth metal, an oxide of a metal other than metals of Groups 1, 2, 3, 15 and 16 of the periodic table, or a hydrogen-activated metal. The method for separating carbon fiber and resin according to claim 1, wherein the catalyst is a catalyst supported on a conductive inorganic carrier.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
CFRP used as a raw material to be treated in the present invention is a reinforced composite material in which CF is dispersed in a matrix resin. The matrix resin includes a thermosetting resin such as an epoxy resin, a phenol resin, a polyurethane resin, and an unsaturated polyester resin, and a thermoplastic resin such as polypropylene and nylon. CF includes rayon yarn, pitch yarn, and acrylic yarn.
[0015]
Although the resin content in CFRP is not particularly limited, it is preferably 20 to 50% by mass.
[0016]
The present invention is characterized in that a mixture of the above CFRP, higher alcohol or LCO, and a catalyst is pressurized and heated in a non-oxidizing gas atmosphere to separate resin and CF from CFRP.
[0017]
The purity of the higher alcohol is preferably 98% by mass.
[0018]
The higher alcohol usually refers to an aliphatic alcohol having 4 or more carbon atoms. Among these aliphatic alcohols, aliphatic alcohols having 6 to 12 carbon atoms and having a higher boiling point than low molecular weight compounds obtained by decomposition of a resin are preferable. Such higher alcohols include hexanol, cyclohexanol, 1-heptanol, 2-ethyl-1-hexanol, 1-octanol and the like.
[0019]
The purity of LCO is preferably 98% by mass.
[0020]
The use ratio of these solvents is preferably from 50 to 400 parts by mass, more preferably from 50 to 300 parts by mass, per 100 parts by mass of CFRP.
[0021]
Examples of the catalyst include a carbonate of an alkali metal or an alkaline earth metal, an oxide of a metal excluding metals of Groups 1, 2, 3, 15 and 16 of the Periodic Table of Elements, or a porous inorganic material. A catalyst supported on a carrier can be used. Specifically, examples of the carbonate include Na 2 CO 3 , KCO 3 , CaCO 3 , MgCO 3 , and BaCO 3. Examples of the oxide include Fe 2 O 3 , V 2 O 5 , ZrO 2 , and CuO. , Cu 2 O, MoO 3 , ZnO, Al 2 O 3 , TiO 2 , Cr 2 O 3 , CeO 2 , MnO 2 , SnO 2 , CdO, CoO, and the like. Examples of the hydrogen-activating metal include Fe, Ni. , Co, Mo, and the like, and examples of the porous inorganic carrier include alumina, silica, and titanium.
[0022]
The use ratio of the above catalyst is preferably 2 to 8 parts by mass, more preferably 4 to 5 parts by mass, per 100 parts by mass of CFRP.
[0023]
The CFRP is preferably crushed to a maximum diameter of 10 mm or less, more preferably 1 to 5 mm.
[0024]
Next, the mixture of the CFRP, the solvent, and the catalyst is pressurized under a non-oxidizing gas atmosphere to preferably 1 to 5 MPa, more preferably 2 to 3 MPa, and preferably 300 to 500 ° C., and more preferably 380 to 380 ° C. By heating to 440 ° C., liquid phase pyrolysis is performed.
[0025]
By this liquid-phase thermal decomposition reaction, the matrix resin of CFRP is decomposed into low molecular compounds, and dissolved in gaseous components or solvents to form liquid oil (liquid product) at room temperature.
[0026]
For example, when the matrix resin of CFRP is an epoxy resin, as a liquid product, the resin is decomposed into monomer components derived from an epoxy resin such as phenol or isopropylphenol, and the amount of these monomer components generated is 1 to 1 per CFRP. It reaches up to 10% by weight.
[0027]
In the liquid phase pyrolysis reaction, the non-oxidizing gas atmosphere is preferably an inert gas atmosphere such as N 2 or Ar, or an H 2 gas atmosphere.
[0028]
By setting the pressure of liquid phase pyrolysis to the above range of 1 to 5 MPa, the solvent mixed with CFRP can be kept in the liquid phase at the heating temperature.
[0029]
When the reaction temperature of the liquid phase thermal decomposition is lower than 300 ° C., the light oil yield described below is undesirably low. When the reaction temperature of the liquid phase pyrolysis exceeds 500 ° C., it is not preferable because problems such as an increase in the amount of gas in the reaction product and a decrease in the strength of the recovered CF are caused.
[0030]
The reaction time of the liquid phase pyrolysis may be any time as long as the CFRP is sufficiently decomposed into oil, and is usually about 60 to 90 minutes.
[0031]
In the liquid phase pyrolysis reaction, hydrogen is desorbed from the solvent mixed with CFRP by a catalytic action. The hydrogen prevents carbonization of the resin and promotes the decomposition of the resin.
[0032]
Decomposition products from the resin are reduced in molecular weight and dissolved in the solvent. However, in the liquid phase pyrolysis reaction without adding a catalyst, the decomposition products from the resin are reduced to a certain degree in molecular weight, but cannot be reduced to a liquid state at room temperature.
[0033]
Next, the liquid product is preferably subjected to vacuum distillation at 330 ° C. and 400 Pa to separate a distillate (light oil), water, and a residue (heavy component VR).
[0034]
The reaction product in the slurry obtained by the method for separating CF and resin from CFRP of the present invention is separated into a solid (including recovered CF) and a liquid product by solid-liquid separation such as filtration. Can be.
[0035]
The solid, which is one of the solid-liquid separation products, can be washed with deionized water and acetone as necessary to remove the attached solvent and catalyst. According to the method for separating CF and resin from CFRP of the present invention, the recovered CF is characterized in that it is not different from untreated raw yarn in optical microscopic observation, specific gravity and strength.
[0036]
The other liquid product, which is a solid-liquid separation product, can be separated into a distillate (light oil), water, and a residue (heavy component) by distillation separation such as vacuum distillation. According to the method for separating CF and resin from CFRP of the present invention, the amount of water and heavy oil generated is small, and the amount of light oil suitable for recycling is large.
[0037]
Since the light oil is a mixture of a light oil component obtained from a matrix resin of CFRP in a liquid phase pyrolysis reaction, a solvent, and a dehydrogenated solvent, the light oil is obtained in a liquid phase pyrolysis reaction. When the composition of the obtained product is analyzed, it is shown as a value obtained by subtracting the charged amount of the solvent.
[0038]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0039]
(Liquid phase decomposition of CFRP)
Example 1
55.75 g of cyclohexanol as a solvent, 22.29 g of CFRP, and 0.96 g of CaCO 3 as a catalyst were charged by a magnetic stirring autoclave having an internal volume of 200 mL, and a reaction temperature of 440 ° C. and a reaction time of 1 hr were applied under nitrogen pressure of 2 MPa. The liquid phase pyrolysis reaction was performed under the conditions of a stirring number of 1,000 rpm.
[0040]
CFRP is a product of Toho Tenax Co., Ltd., CF [Besfight (registered trademark)] prepreg (raw yarn: HTA-12K, containing 37% by mass of epoxy resin), cut into 50 × 50 mm, and cured with a hot air drier for 2 hours. Was used.
[0041]
The volume of the gas generated by the liquid phase pyrolysis reaction was measured by a wet gas meter, and the composition was quantified by a gas chromatograph equipped with a TCD detector.
[0042]
The slurry-like reaction product containing unreacted CFRP was separated into a solid [unreacted CFRP (including recovered CF)] and a liquid product by a filtration method. The liquid product was subjected to vacuum distillation at 330 ° C. and 400 Pa to separate a distillate (light oil), water, and a residue (heavy component VR). The composition of phenol, isopropylphenol and bisphenol A in light oil was analyzed by gas chromatography equipped with a FID detector and a glass capillary column.
[0043]
Table 1 shows the composition of each component of the product obtained in the above liquid phase pyrolysis reaction as% by mass with respect to the charged amount of CFRP. Light oil is shown as a value obtained by subtracting the charged amount of the solvent. The amount of each component of the recovered CF was determined in “Appearance and Properties of Recovered CF” described below, and added to each component composition.
[0044]
Example 2
A liquid-phase pyrolysis reaction, liquid-solid separation, vacuum distillation, and component composition analysis were performed in the same manner as in Example 1 except that Na 2 CO 3 was used as the catalyst in the liquid-phase pyrolysis reaction. It was shown to.
[0045]
Example 3
The liquid phase pyrolysis reaction, solid-liquid separation, vacuum distillation, and component composition analysis were performed in the same manner as in Example 1 except that the reaction temperature in the liquid phase pyrolysis reaction was set to 380 ° C. and the catalyst was changed to Na 2 CO 3. The results are shown in Table 1.
[0046]
Example 4
55.75 g of LCO instead of cyclohexanol as a solvent, and 0.96 g of Na 2 CO 3 instead of CaCO 3 as a catalyst were charged into an autoclave, and the reaction temperature was changed to 440 ° C. Liquid phase pyrolysis reaction, liquid-solid separation, vacuum distillation, and component composition analysis were performed. The results are shown in Table 1.
[0047]
[Table 1]
Figure 2004091720
[0048]
Example 5
Liquid phase pyrolysis reaction, solid-liquid separation, vacuum distillation, component composition analysis in the same manner as in Example 1 except that 55.75 g of 2-ethyl-1-hexanol was charged to the autoclave instead of cyclohexanol as a solvent. And the results are shown in Table 2.
[0049]
Example 6
A liquid phase pyrolysis reaction, solid-liquid separation, vacuum distillation, and component composition analysis were performed in the same manner as in Example 1 except that 55.75 g of 1-octanol was used instead of cyclohexanol as a solvent in the autoclave. Table 2 shows the results.
[0050]
Example 7
Liquid phase pyrolysis was carried out in the same manner as in Example 1 except that 55.75 g of 1-octanol was used instead of cyclohexanol as a solvent, and 0.96 g of Na 2 CO 3 was used as a catalyst instead of CaCO 3 in an autoclave. Reaction, solid-liquid separation, vacuum distillation, and component composition analysis were performed, and the results are shown in Table 2.
[0051]
Comparative Example 1
A liquid phase pyrolysis reaction, solid-liquid separation, vacuum distillation, and component composition analysis were performed in the same manner as in Example 1 except that no catalyst was charged in the autoclave. The results are shown in Table 2.
[0052]
[Table 2]
Figure 2004091720
[0053]
Comparative Example 2
A liquid phase pyrolysis reaction, solid-liquid separation, vacuum distillation and component composition analysis were performed in the same manner as in Example 4 except that the catalyst was not charged in the autoclave. The results are shown in Table 3.
[0054]
Comparative Example 3
A liquid phase pyrolysis reaction and a solid-liquid reaction were performed in the same manner as in Example 1 except that the autoclave was charged with 55.75 g of 1-heptanol instead of cyclohexanol as a solvent without charging the catalyst, and the reaction temperature was changed to 350 ° C. Separation, vacuum distillation and component composition analysis were performed, and the results are shown in Table 3.
[0055]
Comparative Example 4
A liquid phase pyrolysis reaction and a solid-liquid reaction were performed in the same manner as in Example 1 except that the autoclave was charged with 55.75 g of 1-heptanol instead of cyclohexanol as a solvent and the reaction temperature was changed to 440 ° C without charging the catalyst. Separation, vacuum distillation and component composition analysis were performed, and the results are shown in Table 3.
[0056]
Comparative Example 5
Liquid phase pyrolysis was performed in the same manner as in Example 1 except that the catalyst was not charged into the autoclave, but 55.75 g of 2-ethyl-1-hexanol was charged as a solvent instead of cyclohexanol, and the reaction temperature was 350 ° C. Reaction, solid-liquid separation, vacuum distillation, and component composition analysis were performed, and the results are shown in Table 3.
[0057]
[Table 3]
Figure 2004091720
[0058]
As described above, since the CFRP sample contains 37% by mass of the epoxy resin, the conversion rate when all the resins are decomposed is 37% by mass, and the epoxy resin such as phenol is shown in the table. The yields of the main components formed by the decomposition are also indicated.
[0059]
According to Tables 1 to 3, except for the case where LCO 2 of Comparative Example 2 was used as a solvent, the gas generation rate was as low as 0.2 to 5% by mass in each case, and the main composition was carbon dioxide and monoxide. Carbon, methane and lower hydrocarbons.
[0060]
When a catalyst such as CaCO 3 or Na 2 CO 3 was used in combination with cyclohexanol, LCO, or other higher alcohols, the resin could be sufficiently decomposed and removed by the thermal decomposition reaction.
[0061]
Regarding the conversion, all of Examples 1 to 4 in which a catalyst such as CaCO 3 or Na 2 CO 3 was added showed a high value of about 37% by mass. The conversion of 2-ethyl-1-hexanol of Example 5 was a slightly lower value of 33.8% by mass. However, when compared with Comparative Example 5, CaCO 3 was added as a catalyst and the temperature was increased by 30 ° C., whereby the conversion was increased by 19.4% by mass.
[0062]
After the reaction, since the catalyst such as CaCO 3 or Na 2 CO 3 can be easily removed by washing with water, it does not affect the physical properties of CF as a residue. As shown, since the physical properties of CF as a residue are maintained higher than in the case of the non-contact reaction, the catalytic reaction in the thermal decomposition reaction is effective.
[0063]
Regarding the difference in the reaction temperature, as shown in the comparison between Example 2, Example 3, and Example 4, there was little influence on the conversion.
[0064]
The yield (conversion rate from resin) of liquid reaction products (light oil, heavy components, and water) is calculated by adding the total liquid products (light oil, heavy components, and water) after the reaction. , Including the solvent after the reaction) was subtracted from the mass of the solvent before the reaction. The yield of light oil was calculated by subtracting the yield of heavy components and the yield of water from the yield of the liquid reaction product.
[0065]
Therefore, the value of the light oil yield may show a negative value. This is presumably because the active component (radical) from the thermally decomposed resin component caused a polycondensation reaction with the solvent to generate a large amount of heavy component (VR).
[0066]
Monomer components derived from epoxy resins such as phenol and isopropylphenol were found in the liquid reaction product. Since the solvent after releasing hydrogen becomes heavier due to the polycondensation reaction, the yield of light oil may be calculated lower in some cases, but radicals generated by the decomposition of the epoxy resin are converted into epoxy by hydrogen from the solvent. It is considered that the low molecular weight is stabilized as a resin-derived monomer component.
[0067]
The liquid reaction product is a hydrocarbon which can be distilled, and can be used as a fuel or a raw material for petrochemicals.
[0068]
(Evaluation of appearance and properties of recovered CF)
The recovered CF after the treatment by the liquid phase pyrolysis method shown in Examples 1 to 7 and Comparative Examples 1 to 5 was washed with deionized water and acetone to remove the attached solvent and catalyst. . After that, heating and drying were performed at 80 ° C. for 1 hour, and various analyzes were performed.
[0069]
The appearance of the raw material CFRP and the recovered CF in Examples 3 and 4 are shown in FIGS. 1 (a), 1 (b) and 1 (c), respectively.
[0070]
For the analysis of the surface of the recovered CF, observation was performed using an optical microscope for each of the recovered CFs in Examples 1 to 4 and Comparative Examples 1 and 2, and the optical microscope photographs were respectively shown in FIGS. (B), FIG. 2 (c), FIG. 2 (d), FIG. 2 (e), and FIG. 2 (f).
[0071]
Furthermore, in order to evaluate fiber deterioration, specific gravity and single fiber strength of each recovered CF were measured for Examples 1 to 7 and Comparative Examples 1 to 5. Table 4 shows the results of these specific gravity measurements and single fiber strength measurements.
[0072]
In addition, as a comparative control of fiber deterioration, a superior difference was determined using an untreated raw yarn (HTA-12K, no sizing agent, specific gravity 1.77, single fiber strength: 4.0 GPa).
[0073]
[Table 4]
Figure 2004091720
[0074]
According to Table 4, when cyclohexanol or LCO is used as a solvent and a catalyst such as CaCO 3 or Na 2 CO 3 is used in combination, the fiber specific gravity value is 1.77 and the single fiber strength is 4.3 to 3 As a result, no fiber deterioration was observed at 0.9 GPa, and the material was sufficiently recyclable. However, when a catalyst such as CaCO 3 or Na 2 CO 3 is not used in combination, although the specific gravity of the fiber is 1.77, the single fiber strength is 3.6 and 3.7 GPa, and the physical properties are deteriorated. I have.
[0075]
According to Table 4, 2-ethyl-1-hexanol, 1-octanol and 1-heptanol were used as solvents, and the value of the fiber specific gravity was also increased when a catalyst such as CaCO 3 or Na 2 CO 3 was used in combination. 1.77, the single fiber strength was 3.9 to 3.8 GPa, and no fiber deterioration was observed. However, when a catalyst such as CaCO 3 or Na 2 CO 3 is not used in combination, although the specific gravity of the fiber is 1.77, the single fiber strength is 3.6 to 3.4 GPa, and the physical properties are deteriorated. I have.
[0076]
Further, according to FIGS. 2 (a), 2 (b), 2 (c), 2 (d), 2 (e), and 2 (f), in Examples 1 to 4, the optical microscope was used. It can be seen that the resin has been removed in the observation. However, in Comparative Examples 1 and 2, the resin remains on the CF surface.
[0077]
【The invention's effect】
According to the present invention, a mixture of CFRP, higher alcohol or LCO, and a catalyst is pressurized and heated under a non-oxidizing gas atmosphere, so that the matrix resin in CFRP can be decomposed at a high conversion rate. The resin and the CF can be separated from the CFRP without deteriorating the physical properties of the CF.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a photograph instead of a drawing taken of the appearance of a raw material CFRP and the recovered CF in Examples 3 and 4, wherein (a) is the raw material CFRP, (b) is the recovered CF in Example 3, (c) () Is a photograph of the appearance of the recovered CF in Example 4.
FIGS. 2A and 2B are optical microscope photographs taken in Examples 1 to 4 and Comparative Examples 1 and 2 as substitutes for drawings, wherein FIG. 2A is Example 1, FIG. 2B is Example 2, and FIG. Example 3, (d) is a micrograph in Example 4, (e) is a micrograph in Comparative Example 1, and (f) is a micrograph in Comparative Example 2.

Claims (2)

炭素繊維強化プラスチックと、高級アルコール又はライトサイクルオイルと、触媒との混合物を、非酸化性ガス雰囲気下、加圧・加熱して炭素繊維強化プラスチック中の樹脂を分解し、得られた分解樹脂を炭素繊維強化プラスチック中の炭素繊維から分離する炭素繊維と樹脂との分離方法。A mixture of carbon fiber reinforced plastic, higher alcohol or light cycle oil, and a catalyst is pressurized and heated in a non-oxidizing gas atmosphere to decompose the resin in the carbon fiber reinforced plastic, and the obtained decomposed resin is converted into carbon. A method for separating a carbon fiber and a resin from carbon fibers in a fiber reinforced plastic. 触媒が、アルカリ金属若しくはアルカリ土類金属の炭酸塩、元素の周期表1族、2族、3族、15族及び16族金属を除く金属の酸化物、又は水素活性化金属を多孔性無機担体に担持させた触媒である請求項1に記載の炭素繊維と樹脂との分離方法。The catalyst may be a porous inorganic carrier comprising an alkali metal or alkaline earth metal carbonate, an oxide of a metal other than metals of Groups 1, 2, 3, 15 and 16 of the Periodic Table or a hydrogen-activated metal. The method according to claim 1, wherein the catalyst is a catalyst supported on a carbon fiber.
JP2002257490A 2002-09-03 2002-09-03 Method for separating carbon fiber and resin Pending JP2004091720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257490A JP2004091720A (en) 2002-09-03 2002-09-03 Method for separating carbon fiber and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257490A JP2004091720A (en) 2002-09-03 2002-09-03 Method for separating carbon fiber and resin

Publications (1)

Publication Number Publication Date
JP2004091720A true JP2004091720A (en) 2004-03-25

Family

ID=32062377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257490A Pending JP2004091720A (en) 2002-09-03 2002-09-03 Method for separating carbon fiber and resin

Country Status (1)

Country Link
JP (1) JP2004091720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154104A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, carbon fiber multilayer fabric, and composite material
WO2017154103A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, carbon fiber multilayer fabric, and composite material
EP3124528A4 (en) * 2014-03-27 2017-11-15 Rapas Corporation Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
WO2020022336A1 (en) * 2018-07-23 2020-01-30 国立大学法人東北大学 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method
CN110922633A (en) * 2019-11-04 2020-03-27 中国商用飞机有限责任公司北京民用飞机技术研究中心 Carbon fiber resin matrix composite material thermal degradation catalyst and application method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124528A4 (en) * 2014-03-27 2017-11-15 Rapas Corporation Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
WO2017154104A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, carbon fiber multilayer fabric, and composite material
WO2017154103A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, carbon fiber multilayer fabric, and composite material
JPWO2017154103A1 (en) * 2016-03-08 2018-12-27 日立化成株式会社 Carbon fiber nonwoven fabric, carbon fiber nonwoven fabric manufacturing method, carbon fiber multilayer fabric, and composite material
JPWO2017154104A1 (en) * 2016-03-08 2019-01-10 日立化成株式会社 Carbon fiber nonwoven fabric, carbon fiber nonwoven fabric manufacturing method, carbon fiber multilayer fabric, and composite material
WO2020022336A1 (en) * 2018-07-23 2020-01-30 国立大学法人東北大学 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method
CN110922633A (en) * 2019-11-04 2020-03-27 中国商用飞机有限责任公司北京民用飞机技术研究中心 Carbon fiber resin matrix composite material thermal degradation catalyst and application method thereof
CN110922633B (en) * 2019-11-04 2021-03-12 中国商用飞机有限责任公司北京民用飞机技术研究中心 Carbon fiber resin matrix composite material thermal degradation catalyst and application method thereof

Similar Documents

Publication Publication Date Title
Karuppannan Gopalraj et al. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis
Morin et al. Near-and supercritical solvolysis of carbon fibre reinforced polymers (CFRPs) for recycling carbon fibers as a valuable resource: State of the art
Meng et al. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options
Liu et al. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: Synergistic effect of phenol and KOH on the decomposition efficiency
López et al. Recovery of carbon fibres by the thermolysis and gasification of waste prepreg
Morales Ibarra et al. Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials
JP6855503B2 (en) Recovery of Reinforcing Fibers from Fiber Reinforced Composites
Ma et al. Influence of thermal treatment on the properties of carbon fiber reinforced plastics under various conditions
CN101928406B (en) Method for catalytically decomposing carbon fiber-reinforced thermosetting epoxy resin composite material
Lopez-Urionabarrenechea et al. Reclamation of carbon fibers and added-value gases in a pyrolysis-based composites recycling process
TWI732327B (en) Porous composite material capable of generating electric arc in microwave field, and preparation method and application thereof
WO2003089212A1 (en) Method and apparatus for recovering carbon and/or glass fibers from a composite material
Yan et al. Chemical degradation of TGDDM/DDS epoxy resin in supercritical 1-propanol: Promotion effect of hydrogenation on thermolysis
WO2016177305A1 (en) Methods for degrading and recycling cross-linked polymers and reinforced polymer composites
Sokoli et al. Characterization of the liquid products from hydrolyzed epoxy and polyester resin composites using solid-phase microextraction and recovery of the monomer phthalic acid
JP2004091720A (en) Method for separating carbon fiber and resin
Lopez-Urionabarrenechea et al. Production of hydrogen-rich gases in the recycling process of residual carbon fiber reinforced polymers by pyrolysis
JP4848506B2 (en) Plastic disassembly method
Protsenko et al. Recycling of fiberglass fillers obtained from polymer composites based on an epoxy vinyl ester binder
Shetty et al. Recycling of carbon fiber reinforced polymers in a subcritical acetic acid solution
Kim et al. Recovery of carbon fibers from carbon fiber-reinforced epoxy-isophorone diamine composites via step thermolysis
JP2004091719A (en) Method for recovering carbon fiber
KR101810284B1 (en) Method of collecting carbon fiber from waste carbon fiber reinforced plastic
JP4752777B2 (en) Plastic disassembly / recovery method
EP3263305B1 (en) Method for treating vapours generated during the process for recovering carbon fibres from composites by pyrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612