JP2003055498A - Method for decomposing thermosetting resin - Google Patents

Method for decomposing thermosetting resin

Info

Publication number
JP2003055498A
JP2003055498A JP2001249265A JP2001249265A JP2003055498A JP 2003055498 A JP2003055498 A JP 2003055498A JP 2001249265 A JP2001249265 A JP 2001249265A JP 2001249265 A JP2001249265 A JP 2001249265A JP 2003055498 A JP2003055498 A JP 2003055498A
Authority
JP
Japan
Prior art keywords
thermosetting resin
pressure
pure water
decomposing
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001249265A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Seiji Furumura
清司 古村
Susumu Hirai
進 平井
Hiroaki Morita
広昭 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
SWCC Corp
Original Assignee
Chubu Electric Power Co Inc
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Showa Electric Wire and Cable Co filed Critical Chubu Electric Power Co Inc
Priority to JP2001249265A priority Critical patent/JP2003055498A/en
Publication of JP2003055498A publication Critical patent/JP2003055498A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose efficiently under mild conditions a thermosetting resin such as an epoxy resin and the like into a reutilizable low- to medium-molecular weight compound. SOLUTION: A thermosetting resin is brought into contact with a high temperature steam of 250-600 deg.C, preferably 300-500 deg.C in the presence of a metallic compound catalyst to decompose thereby to give a reutilizable low- to medium- molecular weight compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エポキシ樹脂など
の熱硬化性樹脂の廃棄物処理に有用な熱硬化性樹脂の分
解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing a thermosetting resin useful for treating waste of thermosetting resin such as epoxy resin.

【0002】[0002]

【従来の技術】近年、工場や家庭などから排出される廃
棄物中に含まれるプラスチックを回収して資源(プラス
チック原料)として再利用するための研究が盛んに行わ
れており、一部のプラスチックの中には既に実用化に向
けて進んでいるものもある。
2. Description of the Related Art In recent years, much research has been conducted to collect plastics contained in wastes discharged from factories and households and reuse them as resources (plastic raw materials). Some of them are already in the process of being put into practical use.

【0003】しかしながら、その多くは未だ十分な再生
技術が確立されておらず、なかでも、エポキシ樹脂やフ
ェノール樹脂のような熱硬化性樹脂は、一旦硬化する
と、熱により軟化や溶融しないため、プラスチック原料
として再生することは困難であると考えられてきた。
[0003] However, many of them have not yet established sufficient regeneration technology, and in particular, thermosetting resins such as epoxy resins and phenol resins, once cured, do not soften or melt due to heat, so plastic It has been considered difficult to regenerate as a raw material.

【0004】このような中で、近時、超臨界状態または
亜臨界状態の水を利用して熱硬化性樹脂を分解する方法
が考案され、大量の熱硬化性樹脂廃棄物を高速で処理し
て再利用可能な低乃至中分子化合物を回収しうることか
ら注目されている。
Under these circumstances, recently, a method of decomposing a thermosetting resin using water in a supercritical state or a subcritical state has been devised, and a large amount of waste thermosetting resin is treated at high speed. Attention has been paid to the ability to recover reusable low to medium molecular weight compounds.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような超臨界状態あるいは亜臨界状態の水を利用する方
法では、装置内に超臨界あるいは亜臨界といった非常に
高温で高圧な処理領域を形成維持しなければならないた
め、装置は複雑かつ高価なものとなり、また、処理にも
多額のコストがかかるという難点がある。さらに安全性
の点でも問題がある。
However, in the method using water in the supercritical state or subcritical state as described above, a high temperature and high pressure treatment region such as supercritical or subcritical is formed and maintained in the apparatus. Therefore, the apparatus is complicated and expensive, and the processing is also expensive. There is also a problem in terms of safety.

【0006】このため、より緩和な条件で熱硬化性樹脂
を再利用可能な低乃至中分子化合物に分解することがで
き、これにより、設備や処理に要する費用を低減するこ
とができるとともに、安全性も向上させることができる
再生技術が求められている。
Therefore, the thermosetting resin can be decomposed into reusable low to medium molecular compounds under milder conditions, which can reduce the cost required for equipment and processing and can be safe. There is a demand for a recycling technology that can improve the performance.

【0007】なお、回収した熱硬化性樹脂を油化あるい
は微粉化して燃料や充填剤などとして利用する技術はこ
れまでにも多く検討されている。しかしながら、用途や
費用などの課題が未だ多く残されており、実用化までに
は至っていないのが実状である。
Many techniques have been studied so far for utilizing the recovered thermosetting resin as an oil or a fine powder and using it as a fuel or a filler. However, many problems such as applications and costs still remain, and the reality is that they have not been put to practical use.

【0008】本発明はこのような従来の事情に鑑みてな
されたもので、エポキシ樹脂などの熱硬化性樹脂を緩和
な条件で効率よく再利用可能な低乃至中分子化合物に分
解することができる、経済性および安全性に優れた熱硬
化性樹脂の分解方法を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and can decompose a thermosetting resin such as an epoxy resin into a low to medium molecular compound that can be reused efficiently under mild conditions. It is an object of the present invention to provide a method for decomposing a thermosetting resin which is excellent in economy and safety.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱硬化性樹脂の分解方法は、熱硬化性樹脂
を、金属化合物触媒の存在下、温度が250℃〜600℃の高
温水蒸気と接触反応させて分解することを特徴としてい
る。
In order to achieve the above object, a method for decomposing a thermosetting resin of the present invention is to use a thermosetting resin in the presence of a metal compound catalyst at a temperature of 250 ° C to 600 ° C. It is characterized in that it decomposes by contacting with high temperature steam.

【0010】上記構成によれば、従来のように反応領域
を特に高圧とすることなく、熱硬化性樹脂を効率的に再
利用可能な低乃至中分子化合物に分解することができ
る。したがって、従来に比べ設備や処理に要する費用を
低減することができるとともに、安全性も向上させるこ
とができる。
According to the above structure, the thermosetting resin can be efficiently decomposed into a reusable low to medium molecular weight compound without particularly increasing the pressure in the reaction region as in the conventional case. Therefore, it is possible to reduce the cost required for the equipment and processing as compared with the related art and to improve the safety.

【0011】なお、高温水蒸気の温度が250℃より低い
と熱硬化性樹脂の分解が十分に進まないおそれがある。
また、高温水蒸気の温度が600℃を越えると、分解が進
みすぎ有用な生成物が得られなくなるおそれがある。ま
た、処理装置にかかる負担やエネルギコストも大きくな
り、設備や処理に要する費用を十分に低減することがで
きなくなる。高温水蒸気の温度は、請求項2に記載した
ように、300℃〜500℃であることがより好ましい。
If the temperature of the high temperature steam is lower than 250 ° C., the thermosetting resin may not be decomposed sufficiently.
Further, if the temperature of the high temperature steam exceeds 600 ° C., decomposition may proceed excessively and useful products may not be obtained. Further, the burden on the processing apparatus and the energy cost also increase, and it becomes impossible to sufficiently reduce the cost required for equipment and processing. The temperature of the high temperature steam is more preferably 300 ° C. to 500 ° C., as described in claim 2.

【0012】本発明において、反応圧力は、請求項3に
記載したように、常圧乃至5MPaとすることが好ましく、
このように構成することにより、設備や処理に要する費
用を十分に低減することができ、また、安全性も高める
ことができる。反応圧力は、請求項4に記載したよう
に、常圧乃至2MPaであることがより好ましい。
In the present invention, the reaction pressure is preferably atmospheric pressure to 5 MPa as described in claim 3,
With such a configuration, it is possible to sufficiently reduce the cost required for equipment and processing, and it is possible to enhance safety. As described in claim 4, the reaction pressure is more preferably atmospheric pressure to 2 MPa.

【0013】また、金属化合物は、請求項5に記載した
ように、遷移金属化合物であることが好ましい。
Further, the metal compound is preferably a transition metal compound as described in claim 5.

【0014】さらに、請求項6に記載したように、熱硬
化性樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミ
ド樹脂、ポリエステル樹脂およびウレタン樹脂よりなる
群から選ばれた少なくとも1種である場合に大きな効果
を得ることができる。
Further, when the thermosetting resin is at least one selected from the group consisting of epoxy resin, phenol resin, polyimide resin, polyester resin and urethane resin, a great effect is obtained. Can be obtained.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】すなわち、図1は、本発明に使用される熱
硬化性樹脂の分解装置の一例を概略的に示す構成図であ
る。
That is, FIG. 1 is a schematic view showing an example of an apparatus for decomposing a thermosetting resin used in the present invention.

【0017】図1に示すように、この装置は、電気炉1
aを備えた耐圧反応容器1と、純水を収容した溶媒タン
ク2と、この溶媒タンク2から純水を耐圧反応容器1に
送り込むためのポンプ3と、耐圧反応容器1から排出さ
れる気体成分を水冷する水冷管4と、水冷により凝縮さ
れた液状成分を回収する回収容器5と、これらの各機器
を接続する配管6とを備えている。なお、図1中、7
は、水冷管4と回収容器5との間に介挿された減圧弁、
8は、耐圧反応容器1内の温度を測定するための温度測
定用熱電対をそれぞれ示している。
As shown in FIG. 1, this apparatus comprises an electric furnace 1
a pressure-resistant reaction container 1 having a, a solvent tank 2 containing pure water, a pump 3 for feeding pure water from the solvent tank 2 into the pressure-resistant reaction container 1, and a gas component discharged from the pressure-resistant reaction container 1. A water cooling pipe 4 for water cooling, a recovery container 5 for recovering a liquid component condensed by water cooling, and a pipe 6 connecting each of these devices are provided. In addition, in FIG.
Is a pressure reducing valve interposed between the water cooling pipe 4 and the recovery container 5,
Reference numerals 8 respectively denote temperature measuring thermocouples for measuring the temperature in the pressure resistant reactor 1.

【0018】本発明は、このような装置を用いて例えば
次のように実施される。
The present invention is implemented, for example, as follows using such a device.

【0019】耐圧反応容器1内に、被分解物である熱硬
化性樹脂を金属化合物触媒とともに投入し密閉する。熱
硬化性樹脂は予め体積が0.125cm3を越えないような大き
さにまで粉砕しておくことが好ましく、このように粉砕
した熱硬化性樹脂を用いることにより、再利用可能な低
乃至中分子化合物の収率を高めることができる。
A thermosetting resin, which is a substance to be decomposed, is placed in a pressure-resistant reaction container 1 together with a metal compound catalyst and sealed. The thermosetting resin is preferably crushed in advance to a size such that the volume does not exceed 0.125 cm 3, and by using the crushed thermosetting resin in this manner, reusable low-to-medium molecule The yield of the compound can be increased.

【0020】一方、金属化合物触媒は、粒径が数十μm
程度の粉末状のものを使用することが好ましく、その種
類としては、銅、銀、チタン、バナジウム、クロム、マ
ンガン、鉄、コバルト、ニッケル、モリブデン、タング
ステンなどの遷移金属の酸化物や硫化物が好ましく使用
される。これらは1種を単独で使用してもよく、2種以上
を併用してもよい。本発明においては、なかでも、酸化
バナジウム、酸化クロム、酸化鉄、硫化鉄、酸化コバル
ト、硫化コバルト、酸化ニッケル、硫化ニッケル、酸化
モリブデン、硫化モリブデン、硫化タングステン、酸化
コバルトモリブデン、酸化ニッケル鉄、酸化コバルト鉄
およびこれらの複合化合物をそれぞれ単独または混合し
て使用することが好ましく、酸化コバルトモリブデンま
たは酸化コバルトと酸化モリブデンの複合化合物の使用
がより好ましい。この金属化合物は、熱硬化性樹脂100
重量部あたり0.01重量部〜10重量部の範囲で加えること
が好ましく、0.01重量部未満では熱硬化性樹脂の分解反
応を十分に促進することができず、熱硬化性樹脂は分解
されないか、もしくは分解に非常に時間がかかるように
なる。また、10重量部を超えても効果はさほど変わらな
い。より好ましい使用量は、熱硬化性樹脂100重量部あ
たり0.01重量部〜5重量部の範囲であり、0.01重量部〜3
重量部の範囲であるとさらに好ましい。本発明において
は、この金属化合物触媒を酸化アルミニウムなどのセラ
ミックスに担持させて使用するようにしてもよい。この
場合には、このような複合物として粒径が数十μm程度
の粉末状としたものを使用することが望ましい。
On the other hand, the metal compound catalyst has a particle size of several tens of μm.
It is preferable to use a powdery powder of about a certain degree, and as the types thereof, oxides and sulfides of transition metals such as copper, silver, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, molybdenum, and tungsten are used. Preferably used. These may be used alone or in combination of two or more. In the present invention, among others, vanadium oxide, chromium oxide, iron oxide, iron sulfide, cobalt oxide, cobalt sulfide, nickel oxide, nickel sulfide, molybdenum oxide, molybdenum sulfide, tungsten sulfide, cobalt molybdenum oxide, nickel iron oxide, oxide It is preferable to use cobalt iron and a composite compound thereof alone or in combination, and it is more preferable to use cobalt molybdenum oxide or a composite compound of cobalt oxide and molybdenum oxide. This metal compound is a thermosetting resin 100
It is preferable to add in the range of 0.01 parts by weight to 10 parts by weight per part by weight, less than 0.01 parts by weight can not sufficiently accelerate the decomposition reaction of the thermosetting resin, the thermosetting resin is not decomposed, or It takes a very long time to disassemble. Further, the effect is not so different even if it exceeds 10 parts by weight. A more preferable amount of use is 0.01 part by weight to 5 parts by weight per 100 parts by weight of the thermosetting resin, and 0.01 part by weight to 3 parts by weight.
More preferably, it is in the range of parts by weight. In the present invention, the metal compound catalyst may be used by being supported on a ceramic such as aluminum oxide. In this case, it is desirable to use a powdery material having a particle size of about several tens of μm as such a composite.

【0021】次いで、溶媒タンク2から純水を連続的に
圧入するとともに、耐圧反応容器1を、内部に温度250
℃〜600℃、好ましくは300℃〜500℃の高温水蒸気雰囲
気が形成されるように加熱し、耐圧反応容器1内の熱硬
化性樹脂を分解させる。
Next, pure water was continuously injected from the solvent tank 2, and the pressure-resistant reaction vessel 1 was heated to a temperature of 250.
The thermosetting resin in the pressure resistant reaction vessel 1 is decomposed by heating so as to form a high temperature steam atmosphere of ℃ to 600 ℃, preferably 300 ℃ to 500 ℃.

【0022】このような方法においては、熱硬化性樹脂
を効率的に再利用可能な低乃至中分子化合物に分解する
ことができる。しかも、処理条件は従来の超臨界水や亜
臨界水を用いる処理方法に比べ緩和であるため、設備や
処理に要する費用を低減することができるとともに、安
全性も向上させることができる。
In such a method, the thermosetting resin can be efficiently decomposed into reusable low to medium molecular compounds. Moreover, since the treatment conditions are milder than those of conventional treatment methods using supercritical water or subcritical water, it is possible to reduce the cost required for equipment and treatment and improve the safety.

【0023】なお、熱硬化性樹脂の分解によって生じた
低乃至中分子化合物は、耐圧反応容器1に導入され高温
水蒸気とされた水とともに、耐圧反応容器1から排出さ
れた後、水冷管4で冷却され、常温常圧に戻され、回収
容器5に回収される。したがって、回収容器5に回収さ
れた液状物から既存の技術により分離回収するようにす
ればよい。
The low to medium molecular weight compounds generated by the decomposition of the thermosetting resin are discharged from the pressure resistant reaction vessel 1 together with water introduced into the pressure resistant reaction vessel 1 and turned into high temperature steam, and then in the water cooling pipe 4. It is cooled, returned to room temperature and atmospheric pressure, and recovered in the recovery container 5. Therefore, the liquid material recovered in the recovery container 5 may be separated and recovered by the existing technique.

【0024】なお、本発明においては、耐圧反応容器1
に熱硬化性樹脂を投入した後、溶媒タンク2から純水を
連続的に圧入する前に、耐圧反応容器1内を純水で一旦
満たして内部の酸素を除去しておくことが望ましい。こ
れによって、分解反応時の熱硬化性樹脂の酸化を防止す
ることができる。また、同様の観点から、耐圧反応容器
1に導入する純水には、真空脱気処理などを施すなどし
て、溶存する酸素を除去したものを用いることが望まし
い。
In the present invention, the pressure resistant reactor 1
It is desirable that after the thermosetting resin is charged into the tank, before the pure water is continuously injected from the solvent tank 2, the pressure resistant reaction container 1 is once filled with pure water to remove oxygen therein. This can prevent oxidation of the thermosetting resin during the decomposition reaction. From the same viewpoint, it is desirable to use, as the pure water to be introduced into the pressure-resistant reaction vessel 1, one from which dissolved oxygen has been removed by performing vacuum deaeration treatment or the like.

【0025】また、熱硬化性樹脂を高温水蒸気と接触さ
せて分解させる際の耐圧反応容器1内の内圧は、あまり
高いと、装置にかかる負担が大きくなるだけでなく処理
コストが上昇し、さらに、分解が進みすぎて再利用性の
低い分解物にまで分解されてしまうおそれあることか
ら、常圧乃至5MPaの範囲で調整することが好ましい。ま
た、耐圧反応容器1内の内圧は、金属化合物触媒の効果
にも影響し、あまり高いとその添加による効果が十分に
得られないおそれがある。このような観点からも、内圧
は前記範囲でに調整することが好ましい。
Further, if the internal pressure in the pressure resistant reaction vessel 1 when the thermosetting resin is brought into contact with high temperature steam to decompose it is too high, not only the burden on the apparatus is increased but also the processing cost is increased. However, it is preferable to adjust the pressure in the range of atmospheric pressure to 5 MPa, because the decomposition may proceed too much and the decomposition product may have low reusability. Further, the internal pressure in the pressure-resistant reaction container 1 also affects the effect of the metal compound catalyst, and if it is too high, the effect due to its addition may not be sufficiently obtained. From this point of view, it is preferable to adjust the internal pressure within the above range.

【0026】さらに、反応時間は、通常、0.5分〜120分
程度であり、あまり短いと分解が十分に進まないおそれ
があり、逆にあまり長いと分解が進み過ぎるおそれがあ
る。
Further, the reaction time is usually about 0.5 to 120 minutes. If it is too short, the decomposition may not proceed sufficiently, and if it is too long, the decomposition may proceed too much.

【0027】本発明で分解することができる熱硬化性樹
脂は、特に限定されないが、エポキシ樹脂、フェノール
樹脂、ポリイミド樹脂、ポリエステル樹脂およびウレタ
ン樹脂よりなる群から選ばれた少なくとも1種である場
合に大きな効果を得ることができる。なお、これらの熱
硬化性樹脂には、充填剤や老化防止剤などの各種添加剤
が配合されていてもよい。
The thermosetting resin that can be decomposed in the present invention is not particularly limited, but when it is at least one selected from the group consisting of epoxy resin, phenol resin, polyimide resin, polyester resin and urethane resin. A great effect can be obtained. It should be noted that these thermosetting resins may be blended with various additives such as a filler and an antioxidant.

【0028】[0028]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0029】実施例1 エポキシ樹脂(チバスペシャリティケミカルズ社製 商
品名 アラルダイトB(CT200))100重量部、硬化剤
(チバスペシャリティケミカルズ社製 商品名ハードナ
ーHT901)30重量部、石英粉(龍森社製 商品名
ヒューズレックスE−1)200重量部および着色剤(チ
バスペシャリティケミカルズ社製 商品名 アラルダイ
トDW016)5重量部からなるエポキシ樹脂組成物を
用いて製造されたエポキシ樹脂成型品(硬化条件;160
℃×15時間)を、最大径が約5mm以下となるように粉砕
した。
Example 1 100 parts by weight of an epoxy resin (trade name Araldite B (CT200) manufactured by Ciba Specialty Chemicals), 30 parts by weight of a curing agent (Hardener HT901 manufactured by Ciba Specialty Chemicals), quartz powder (manufactured by Tatsumori Co., Ltd.) Product name
An epoxy resin molded product (curing condition: 160) produced by using an epoxy resin composition consisting of Hughrex E-1) 200 parts by weight and a colorant (Ciba Specialty Chemicals Co., Ltd., trade name Araldite DW016) 5 parts by weight.
(° C x 15 hours) was pulverized so that the maximum diameter was about 5 mm or less.

【0030】上記粉砕物約2gを、酸化アルミニウムに担
持させた酸化コバルトモリブデン(平均粒径 約10μ
m)約50mg(酸化コバルトモリブデン量 約15mg)とと
もに、図1に示す装置の耐圧反応容器(内容積10cc)1
内に投入した後、この耐圧反応容器1内に溶媒タンク2
から純水を供給し、内部を純水で一旦満たして、耐圧反
応容器1内の空気を除去した。その後、溶媒タンク2か
ら純水を0.01ml/minの流量で連続的に圧入し、300℃、5
MPaで60分間処理した。なお、純水には、真空脱気処理
を行って溶存酸素を除去したものを用いた。
About 2 g of the pulverized product was supported on aluminum oxide to form cobalt molybdenum oxide (average particle size: about 10 μm).
m) About 50 mg (cobalt oxide molybdenum amount about 15 mg) together with the pressure resistant reaction vessel (internal volume 10 cc) of the device shown in FIG.
After being charged into the pressure-resistant reaction vessel 1, the solvent tank 2
Pure water was supplied from the reactor, and the inside was once filled with pure water to remove the air in the pressure resistant reactor 1. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min at 300 ° C for 5
Treated with MPa for 60 minutes. The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0031】この後、1時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、石英粉、酸化アルミニウムに担持させた酸
化コバルトモリブデンおよびエポキシ樹脂の未分解物で
あり、その総重量は約1.5gであった。一方、フィルタを
通って回収された液状分は、エポキシ樹脂の構成単位の
一部であるフェノール類化合物とオリゴマー成分を含む
水溶液であり、これを溶媒抽出法に抽出したところ、約
0.5gのフェノール類化合物およびオリゴマー成分が得ら
れた。
Thereafter, the mixture was cooled for 1 hour and returned to room temperature and atmospheric pressure, and all the solid and liquid components in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of analysis, it was an undecomposed product of quartz powder, cobalt molybdenum oxide supported on aluminum oxide, and an epoxy resin, and the total weight thereof was about 1.5 g. On the other hand, the liquid content recovered through the filter is an aqueous solution containing a phenolic compound and an oligomer component that are a part of the constituent units of the epoxy resin, and when this is extracted by the solvent extraction method,
0.5 g of phenol compounds and oligomer components were obtained.

【0032】実施例2 実施例1と同様にして得たエポキシ樹脂成型品の粉砕物
約2gを、酸化アルミニウムに担持させた酸化コバルトモ
リブデン(平均粒径 約10μm)約50mg(酸化コバルト
モリブデン量 約15mg)とともに、図1に示す装置の耐圧
反応容器(内容積10cc)1内に投入した後、この耐圧反
応容器1内に溶媒タンク2から純水を供給し、内部を純
水で一旦満たして、耐圧反応容器1内の空気を除去し
た。その後、溶媒タンク2から純水を0.01ml/minの流量
で連続的に圧入し、300℃、0.1MPaで60分間処理した。
なお、純水には、真空脱気処理を行って溶存酸素を除去
したものを用いた。
Example 2 About 2 g of a pulverized product of an epoxy resin molded article obtained in the same manner as in Example 1 was added to aluminum oxide to give about 50 mg of cobalt molybdenum oxide (average particle size: about 10 μm) (amount of cobalt molybdenum oxide: about 10 μm). 15 mg) and charged into a pressure resistant reaction vessel (internal volume 10 cc) 1 of the apparatus shown in FIG. 1, pure water is supplied from the solvent tank 2 into this pressure resistant reaction vessel 1, and the inside is once filled with pure water. The air in the pressure resistant reactor 1 was removed. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min and treated at 300 ° C. and 0.1 MPa for 60 minutes.
The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0033】この後、1時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、石英粉、酸化アルミニウムに担持させた酸
化コバルトモリブデンおよび未分解物であり、その総重
量は約1.5gであった。一方、フィルタを通って回収され
た液状分は、エポキシ樹脂の構成単位の一部であるフェ
ノール類化合物とオリゴマー成分を含む水溶液であり、
これを溶媒抽出法に抽出したところ、約0.5gのフェノー
ル類化合物およびオリゴマー成分が得られた。
After that, the mixture was cooled for 1 hour and returned to room temperature and atmospheric pressure, and all the solid and liquid components in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of analysis, quartz powder, cobalt molybdenum oxide supported on aluminum oxide and undecomposed material were obtained, and the total weight thereof was about 1.5 g. On the other hand, the liquid content recovered through the filter is an aqueous solution containing a phenolic compound and an oligomer component, which are a part of the constituent units of the epoxy resin,
When this was extracted by the solvent extraction method, about 0.5 g of phenol compounds and oligomer components were obtained.

【0034】実施例3 実施例1と同様にして得たエポキシ樹脂成型品の粉砕物
約2gを、酸化アルミニウムに担持させた酸化コバルトモ
リブデン(平均粒径 約10μm)約50mg(酸化コバルト
モリブデン量 約15mg)とともに、図1に示す装置の耐圧
反応容器(内容積10cc)1内に投入した後、この耐圧反
応容器1内に溶媒タンク2から純水を供給し、内部を純
水で一旦満たして、耐圧反応容器1内の空気を除去し
た。その後、溶媒タンク2から純水を0.01ml/minの流量
で連続的に圧入し、300℃、5MPaで150分間処理した。な
お、純水には、真空脱気処理を行って溶存酸素を除去し
たものを用いた。
Example 3 About 2 g of a crushed product of an epoxy resin molded product obtained in the same manner as in Example 1 was added to aluminum oxide to give about 50 mg of cobalt molybdenum oxide (average particle size: about 10 μm) (cobalt molybdenum amount: about 10 μm). 15 mg) and charged into a pressure resistant reaction vessel (internal volume 10 cc) 1 of the apparatus shown in FIG. 1, pure water is supplied from the solvent tank 2 into this pressure resistant reaction vessel 1, and the inside is once filled with pure water. The air in the pressure resistant reactor 1 was removed. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min and treated at 300 ° C. and 5 MPa for 150 minutes. The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0035】この後、1時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、石英粉および酸化アルミニウムに担持させ
た酸化コバルトモリブデンであり、その総重量は約1.4g
であった。一方、フィルタを通って回収された液状分
は、エポキシ樹脂のモノマーの分解物を約0.2g含む水溶
液であった。
After that, the mixture was cooled for 1 hour and returned to room temperature and normal pressure, and all the solid and liquid components in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of analysis, cobalt molybdenum oxide supported on quartz powder and aluminum oxide, the total weight of which is about 1.4 g
Met. On the other hand, the liquid component recovered through the filter was an aqueous solution containing about 0.2 g of the decomposition product of the epoxy resin monomer.

【0036】実施例4 実施例1と同様にして得たエポキシ樹脂成型品の粉砕物
約2gを、酸化アルミニウムに担持させた酸化コバルトモ
リブデン(平均粒径 約10μm)約50mg(酸化コバルト
モリブデン量 約15mg)とともに、図1に示す装置の耐圧
反応容器(内容積10cc)1内に投入した後、この耐圧反
応容器1内に溶媒タンク2から純水を供給し、内部を純
水で一旦満たして、耐圧反応容器1内の空気を除去し
た。その後、溶媒タンク2から純水を0.01ml/minの流量
で連続的に圧入し、300℃、7MPaで60分間処理した。な
お、純水には、真空脱気処理を行って溶存酸素を除去し
たものを用いた。
Example 4 About 2 g of a pulverized product of an epoxy resin molded product obtained in the same manner as in Example 1 was added to aluminum oxide to give about 50 mg of cobalt molybdenum oxide (average particle size: about 10 μm) (cobalt molybdenum oxide amount: about 10 μm). 15 mg) and charged into a pressure resistant reaction vessel (internal volume 10 cc) 1 of the apparatus shown in FIG. 1, pure water is supplied from the solvent tank 2 into this pressure resistant reaction vessel 1, and the inside is once filled with pure water. The air in the pressure resistant reactor 1 was removed. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min and treated at 300 ° C. and 7 MPa for 60 minutes. The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0037】この後、1時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、石英粉、酸化アルミニウムに担持させた酸
化コバルトモリブデンおよび未分解物であり、その総重
量は約1.9gであった。一方、フィルタを通って回収され
た液状分は、エポキシ樹脂の構成単位の一部であるフェ
ノール類化合物とオリゴマー成分を含む水溶液であり、
これを溶媒抽出法に抽出したところ、約0.1gのフェノー
ル類化合物およびオリゴマー成分が得られた。
After that, the mixture was cooled for 1 hour and returned to room temperature and atmospheric pressure, and all the solid and liquid components in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of analysis, the powder was quartz powder, cobalt molybdenum oxide supported on aluminum oxide, and undecomposed matter, and the total weight thereof was about 1.9 g. On the other hand, the liquid content recovered through the filter is an aqueous solution containing a phenolic compound and an oligomer component, which are a part of the constituent units of the epoxy resin,
When this was extracted by the solvent extraction method, about 0.1 g of phenol compounds and oligomer components were obtained.

【0038】実施例5 実施例1と同様にして得たエポキシ樹脂成型品の粉砕物
約2gを、酸化アルミニウムに担持させた酸化コバルトモ
リブデン(平均粒径 約10μm)約100mg(酸化コバルト
モリブデン量 約30mg))とともに、図1に示す装置の耐
圧反応容器(内容積10cc)1内に投入した後、この耐圧
反応容器1内に溶媒タンク2から純水を供給し、内部を
純水で一旦満たして、耐圧反応容器1内の空気を除去し
た。その後、溶媒タンク2から純水を0.01ml/minの流量
で連続的に圧入し、300℃、5MPaで60分間処理した。な
お、純水には、真空脱気処理を行って溶存酸素を除去し
たものを用いた。
Example 5 About 2 g of a pulverized product of an epoxy resin molded product obtained in the same manner as in Example 1 was added to aluminum oxide to give about 100 mg of cobalt molybdenum oxide (average particle size: about 10 μm) (amount of cobalt molybdenum oxide: about 10 μm). 30 mg)) into the pressure-resistant reaction vessel (internal volume 10 cc) 1 of the apparatus shown in FIG. 1, and then pure water is supplied from the solvent tank 2 into the pressure-resistant reaction vessel 1 to once fill the inside with pure water. Then, the air in the pressure resistant reactor 1 was removed. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min and treated at 300 ° C. and 5 MPa for 60 minutes. The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0039】この後、1時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、石英粉および酸化アルミニウムに担持させ
た酸化コバルトモリブデンであり、その総重量は約1.5g
であった。一方、フィルタを通って回収された液状分
は、エポキシ樹脂のモノマーの分解物を約0.2g含む水
溶液であった。
Thereafter, the mixture was cooled for 1 hour and returned to room temperature and atmospheric pressure, and all the solid and liquid components in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of the analysis, it was found to be cobalt molybdenum oxide supported on quartz powder and aluminum oxide, and its total weight was about 1.5 g.
Met. On the other hand, the liquid content recovered through the filter was an aqueous solution containing about 0.2 g of the decomposition product of the epoxy resin monomer.

【0040】比較例1 実施例1と同様にして得たエポキシ樹脂成型品の粉砕物
約2gを、酸化アルミニウムに担持させた酸化コバルトモ
リブデン(平均粒径 約10μm)約50mg(酸化コバルト
モリブデン量 約15mg)とともに、図1に示す装置の耐圧
反応容器(内容積10cc)1内に投入した後、この耐圧反
応容器1内に溶媒タンク2から純水を供給し、内部を純
水で一旦満たして、耐圧反応容器1内の空気を除去し
た。その後、溶媒タンク2から純水を0.01ml/minの流量
で連続的に圧入し、230℃、2.5MPaで60分間処理した。
なお、純水には、真空脱気処理を行って溶存酸素を除去
したものを用いた。
Comparative Example 1 About 2 g of a pulverized product of an epoxy resin molded product obtained in the same manner as in Example 1 was added to aluminum oxide to give about 50 mg of cobalt molybdenum oxide (average particle size: about 10 μm) (amount of cobalt molybdenum oxide: about 10 μm). 15 mg) and charged into a pressure resistant reaction vessel (internal volume 10 cc) 1 of the apparatus shown in FIG. 1, pure water is supplied from the solvent tank 2 into this pressure resistant reaction vessel 1, and the inside is once filled with pure water. The air in the pressure resistant reactor 1 was removed. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min and treated at 230 ° C. and 2.5 MPa for 60 minutes.
The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0041】この後、1時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、酸化アルミニウムに担持させた酸化コバル
トモリブデンおよび未分解物であり、その総重量は約2g
であった。一方、フィルタを通って回収された液状分
は、水のみであった。
After that, the mixture was cooled for 1 hour and returned to room temperature and atmospheric pressure, and all the solid and liquid contents in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of analysis, it was found that cobalt molybdenum oxide supported on aluminum oxide and undecomposed material had a total weight of about 2 g.
Met. On the other hand, the only liquid content recovered through the filter was water.

【0042】比較例2 実施例1と同様にして得たエポキシ樹脂成型品の粉砕物
約2gを、酸化アルミニウムに担持させた酸化コバルトモ
リブデン(平均粒径 約10μm)約50mg(酸化コバルト
モリブデン量 約15mg)とともに、図1に示す装置の耐圧
反応容器(内容積10cc)1内に投入した後、この耐圧反
応容器1内に溶媒タンク2から純水を供給し、内部を純
水で一旦満たして、耐圧反応容器1内の空気を除去し
た。その後、溶媒タンク2から純水を0.01ml/minの流量
で連続的に圧入し、610℃、5MPaで60分間処理した。な
お、純水には、真空脱気処理を行って溶存酸素を除去し
たものを用いた。
Comparative Example 2 About 2 g of a crushed epoxy resin molded product obtained in the same manner as in Example 1 was added to aluminum oxide to give about 50 mg of cobalt molybdenum oxide (average particle size: about 10 μm) (amount of cobalt molybdenum oxide: about 10 μm). 15 mg) and charged into a pressure resistant reaction vessel (internal volume 10 cc) 1 of the apparatus shown in FIG. 1, pure water is supplied from the solvent tank 2 into this pressure resistant reaction vessel 1, and the inside is once filled with pure water. The air in the pressure resistant reactor 1 was removed. Then, pure water was continuously injected from the solvent tank 2 at a flow rate of 0.01 ml / min and treated at 610 ° C. and 5 MPa for 60 minutes. The pure water used was one that had been subjected to vacuum deaeration to remove dissolved oxygen.

【0043】この後、2時間かけて冷却して常温常圧に
戻し、耐圧反応容器1内および回収容器5内にあるすべ
ての固形分および液状分をまとめて回収した。さらに、
これらの回収物を約10μmメッシュのフィルタに通し、
固形分および液状分に分離した。分離された固形分は、
分析の結果、石英粉、酸化アルミニウムに担持させた酸
化コバルトモリブデンおよび炭化物であり、その総重量
は約1.6gであった。一方、フィルタを通って回収され
た液状分は、エポキシ樹脂のモノマーの分解物を約0.2g
含む水溶液であった。
Thereafter, the mixture was cooled for 2 hours and returned to room temperature and atmospheric pressure, and all the solid and liquid components in the pressure resistant reaction container 1 and the recovery container 5 were collectively collected. further,
Pass these collections through a filter of about 10 μm mesh,
Separated into solid and liquid. The separated solids are
As a result of analysis, the powder was quartz powder, cobalt molybdenum oxide supported on aluminum oxide, and carbide, and the total weight thereof was about 1.6 g. On the other hand, the liquid content recovered through the filter contains about 0.2 g of decomposed products of the epoxy resin monomer.
It was an aqueous solution containing.

【0044】ここで、上記各実施例および各比較例にお
いて回収された回収物のうちエポキシ樹脂成型品に基づ
くものを、固形分および液状分に分けてその収率ととも
に表1に示す。なお、表1には熱硬化性樹脂の分解条件
も併せ示した。
Here, among the recovered materials recovered in the above Examples and Comparative Examples, those based on the epoxy resin molded product are divided into solid content and liquid content, and the yields thereof are shown in Table 1. In addition, Table 1 also shows the decomposition conditions of the thermosetting resin.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】以上説明したように、本発明の熱硬化性
樹脂の分解方法によれば、エポキシ樹脂などの熱硬化性
樹脂を緩和な条件で効率よく再利用可能な低乃至中分子
化合物に分解することができ、従来に比べ、設備や処理
に要する費用を低減することができるとともに安全性を
向上させることができる。
As described above, according to the method for decomposing a thermosetting resin of the present invention, a thermosetting resin such as an epoxy resin can be efficiently reused under mild conditions as a low to medium molecular compound. Since it can be disassembled, the cost required for equipment and treatment can be reduced and the safety can be improved as compared with the related art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用される装置の一例を概略的に示す
図。
FIG. 1 is a diagram schematically showing an example of an apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1………耐圧反応容器 2………溶媒タンク 3………ポンプ 4………水冷管 5………回収容器 6………配管 7………減圧弁 1 ... Pressure resistant reactor 2 ... Solvent tank 3 ... Pump 4 ......... Water cooling tube 5: Collection container 6 ………… Piping 7 ... Reducing valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古村 清司 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 平井 進 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 森田 広昭 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 Fターム(参考) 4F301 AA22 AA24 AA25 AA27 AB02 CA09 CA23 CA32 CA51 CA72 CA73    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyoshi Furumura             20 Kitakanzan, Otakamachi, Midori-ku, Nagoya-shi, Aichi             No. 1 Chubu Electric Power Co., Inc. (72) Inventor Susumu Hirai             2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa             No. Showa Densen Denki Co., Ltd. (72) Inventor Hiroaki Morita             2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa             No. Showa Densen Denki Co., Ltd. F-term (reference) 4F301 AA22 AA24 AA25 AA27 AB02                       CA09 CA23 CA32 CA51 CA72                       CA73

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂を、金属化合物触媒の存在
下、温度が250℃〜600℃の高温水蒸気と接触反応させて
分解することを特徴とする熱硬化性樹脂の分解方法。
1. A method for decomposing a thermosetting resin, which comprises decomposing a thermosetting resin by catalytically reacting with high temperature steam having a temperature of 250 ° C. to 600 ° C. in the presence of a metal compound catalyst.
【請求項2】 高温水蒸気の温度が、300℃〜500℃であ
ることを特徴とする請求項1記載の熱硬化性樹脂の分解
方法。
2. The method for decomposing a thermosetting resin according to claim 1, wherein the temperature of the high temperature steam is 300 ° C. to 500 ° C.
【請求項3】 反応圧力を、常圧乃至5MPaとすることを
特徴とする請求項1または2記載の熱硬化性樹脂の分解
方法。
3. The method for decomposing a thermosetting resin according to claim 1, wherein the reaction pressure is atmospheric pressure to 5 MPa.
【請求項4】 反応圧力を、常圧乃至2MPaとすることを
特徴とする請求項1乃至3のいずれか1項記載の熱硬化
性樹脂の分解方法。
4. The method for decomposing a thermosetting resin according to claim 1, wherein the reaction pressure is from normal pressure to 2 MPa.
【請求項5】 前記金属化合物触媒は、遷移金属化合物
であることを特徴とする請求項1乃至4のいずれか1項
記載の熱硬化性樹脂の分解方法。
5. The method for decomposing a thermosetting resin according to claim 1, wherein the metal compound catalyst is a transition metal compound.
【請求項6】 熱硬化性樹脂は、エポキシ樹脂、フェノ
ール樹脂、ポリイミド樹脂、ポリエステル樹脂およびウ
レタン樹脂よりなる群から選ばれた少なくとも1種であ
ることを特徴とする請求項1乃至5のいずれか1項記載
の熱硬化性樹脂の分解方法。
6. The thermosetting resin is at least one selected from the group consisting of an epoxy resin, a phenol resin, a polyimide resin, a polyester resin and a urethane resin, according to any one of claims 1 to 5. The method for decomposing a thermosetting resin according to item 1.
JP2001249265A 2001-08-20 2001-08-20 Method for decomposing thermosetting resin Withdrawn JP2003055498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249265A JP2003055498A (en) 2001-08-20 2001-08-20 Method for decomposing thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249265A JP2003055498A (en) 2001-08-20 2001-08-20 Method for decomposing thermosetting resin

Publications (1)

Publication Number Publication Date
JP2003055498A true JP2003055498A (en) 2003-02-26

Family

ID=19078295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249265A Withdrawn JP2003055498A (en) 2001-08-20 2001-08-20 Method for decomposing thermosetting resin

Country Status (1)

Country Link
JP (1) JP2003055498A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113111A (en) * 2003-09-17 2005-04-28 Honda Motor Co Ltd Method for decomposing resin component
WO2005103131A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Method for decomposing thermosetting resin
JP2007070485A (en) * 2005-09-07 2007-03-22 Fuji Electric Systems Co Ltd Method for carrying out decomposition treatment of polyurethane waste
EP1829920A1 (en) * 2004-11-09 2007-09-05 Sumitomo Bakelite Company, Limited Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
WO2007141911A1 (en) * 2006-06-06 2007-12-13 Nippon Steel Chemical Co., Ltd. Method of dehalogenating organic compound
CN101407596B (en) * 2008-09-25 2011-08-17 上海第二工业大学 Method for recycling epoxy resins and glass fibre from non-metal powder of waste printed circuit board
JP2012219210A (en) * 2011-04-12 2012-11-12 As R&D合同会社 Method for producing low-molecular polymer, low-molecular polymer obtained by the method, and coating material, powder coating material, adhesive, fiber and nonwoven fabric using the polymer
CN103627026A (en) * 2012-08-28 2014-03-12 杨晓林 Epoxy resin-based material recovery method
CN103627024A (en) * 2012-08-28 2014-03-12 杨晓林 Method for recycling waste polyurethane
EP3181623A1 (en) * 2015-12-16 2017-06-21 Korea Institute of Science and Technology Composition and method for depolymerization of cured epoxy resin materials using transition metal salts
US20180194918A1 (en) * 2017-01-12 2018-07-12 Korea Institute Of Science And Technology Method and apparatus for repairing composite material using solvation process
JP2018177970A (en) * 2017-04-13 2018-11-15 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Method and composition for depolymerization of epoxy resin cured article using transition metal salt or transition metal oxide
WO2020022336A1 (en) * 2018-07-23 2020-01-30 国立大学法人東北大学 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method
US11286333B2 (en) 2019-12-23 2022-03-29 Industrial Technology Research Institute Method for degradating thermosetting resin, catalyst composition used therein and resin composition obtained thereby
CN115181327A (en) * 2022-08-30 2022-10-14 湖北恒驰电子科技有限公司 Method for recycling waste multiphase flexible copper clad laminate by subcritical technology

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113111A (en) * 2003-09-17 2005-04-28 Honda Motor Co Ltd Method for decomposing resin component
WO2005103131A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Method for decomposing thermosetting resin
EP2894192A3 (en) * 2004-11-09 2015-08-12 Sumitomo Bakelite Company Limited Decomposition Reaction Apparatus, System for Producing Raw Material for Recycled Resin Composition, Method for Producing Raw Material for Recycled Resin Composition, Raw Material for Recycled Resin Composition, and Formed Article
EP1829920A1 (en) * 2004-11-09 2007-09-05 Sumitomo Bakelite Company, Limited Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
EP1829920A4 (en) * 2004-11-09 2008-09-03 Sumitomo Bakelite Co Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
JP2007070485A (en) * 2005-09-07 2007-03-22 Fuji Electric Systems Co Ltd Method for carrying out decomposition treatment of polyurethane waste
WO2007141911A1 (en) * 2006-06-06 2007-12-13 Nippon Steel Chemical Co., Ltd. Method of dehalogenating organic compound
CN101407596B (en) * 2008-09-25 2011-08-17 上海第二工业大学 Method for recycling epoxy resins and glass fibre from non-metal powder of waste printed circuit board
JP2012219210A (en) * 2011-04-12 2012-11-12 As R&D合同会社 Method for producing low-molecular polymer, low-molecular polymer obtained by the method, and coating material, powder coating material, adhesive, fiber and nonwoven fabric using the polymer
CN103627026A (en) * 2012-08-28 2014-03-12 杨晓林 Epoxy resin-based material recovery method
CN103627024A (en) * 2012-08-28 2014-03-12 杨晓林 Method for recycling waste polyurethane
EP3181623A1 (en) * 2015-12-16 2017-06-21 Korea Institute of Science and Technology Composition and method for depolymerization of cured epoxy resin materials using transition metal salts
US10106421B2 (en) 2015-12-16 2018-10-23 Korea Institute Of Science And Technology Composition and method for depolymerization of cured epoxy resin materials using transition metal salts
US20180194918A1 (en) * 2017-01-12 2018-07-12 Korea Institute Of Science And Technology Method and apparatus for repairing composite material using solvation process
JP2018177970A (en) * 2017-04-13 2018-11-15 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Method and composition for depolymerization of epoxy resin cured article using transition metal salt or transition metal oxide
WO2020022336A1 (en) * 2018-07-23 2020-01-30 国立大学法人東北大学 Degradable polymer material, hybrid material and inorganic molding material, hybrid molded article in which these are used, inorganic molded article, and polymer removal or recovery method
US11286333B2 (en) 2019-12-23 2022-03-29 Industrial Technology Research Institute Method for degradating thermosetting resin, catalyst composition used therein and resin composition obtained thereby
CN115181327A (en) * 2022-08-30 2022-10-14 湖北恒驰电子科技有限公司 Method for recycling waste multiphase flexible copper clad laminate by subcritical technology

Similar Documents

Publication Publication Date Title
JP2003055498A (en) Method for decomposing thermosetting resin
JP3659717B2 (en) Chemical plant waste decomposition method and apparatus
EP2684911A1 (en) Epoxy resin hardened material and decomposition method for same
JP3134095B2 (en) Fiber recovery and reuse method from fiber reinforced plastic
JP4848506B2 (en) Plastic disassembly method
WO2007088880A1 (en) Process and system for recycling of carbon dioxide
JP2010168560A (en) Method for decomposing composite material
CN106902896A (en) A kind of method for removing aluminium scrap base hydrogenation catalyst surface oily substance
McKay et al. Recovery of organic matter from Green River oil shale at temperatures of 400 C and below
US8043399B1 (en) Process for rapid microwave-enhanced detoxification of CCA-treated wood
CN111847483A (en) Comprehensive treatment and recycling method for industrial inorganic waste salt containing organic pollutants
JP3405904B2 (en) Waste ion exchange resin treatment method
CN109097583A (en) A kind of method that clean and effective recycles useless low mercury catalyst
CN112679322B (en) Supercritical CO 2 Method for preparing 2, 6-dihydroxytoluene by catalysis
JP4317696B2 (en) Method for decomposing thermosetting resin and / or cured product thereof and method for producing thermosetting resin using decomposition product obtained thereby
JP3419624B2 (en) Waste plastic treatment equipment and treatment method
JPH10287766A (en) Decomposing and recycling methods for thermosetting resin
JP4579584B2 (en) Recovery method of bisphenol A
JPH11140223A (en) Treatment of halogen-containing plastic and apparatus therefor
JP2003096233A (en) Method for decomposing thermosetting resin and method for recycling the resin
CN219174587U (en) Comprehensive utilization treatment system for waste catalyst containing cobalt, nickel and molybdenum
JP4090645B2 (en) Method for decomposing thermosetting resin
JP2001055468A (en) Decomposition and production of phenolic resin or epoxy resin
JPH11140460A (en) Thermal decomposition of plastics, and device and dechlorinating agent used therefor
CN1860108B (en) Product recovery from supercritical mixtures

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060616

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104