WO2020013662A1 - 2차 정련로용 마그네시아-카본 염기성 캐스터블 - Google Patents

2차 정련로용 마그네시아-카본 염기성 캐스터블 Download PDF

Info

Publication number
WO2020013662A1
WO2020013662A1 PCT/KR2019/008661 KR2019008661W WO2020013662A1 WO 2020013662 A1 WO2020013662 A1 WO 2020013662A1 KR 2019008661 W KR2019008661 W KR 2019008661W WO 2020013662 A1 WO2020013662 A1 WO 2020013662A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
magnesia
castable
powder
Prior art date
Application number
PCT/KR2019/008661
Other languages
English (en)
French (fr)
Inventor
김재원
Original Assignee
(주)포스코케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코케미칼 filed Critical (주)포스코케미칼
Publication of WO2020013662A1 publication Critical patent/WO2020013662A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite

Definitions

  • the molten steel after the primary refining in the Basic Oxygen Furnace or Electric Furnace process is finely adjusted to meet the properties of steel required by the final product. It relates to a basic castable that can be used in a snorkel of an RH plant for a secondary refinery.
  • RH is one of the secondary refining plants that finely adjusts the impurities in the molten steel that has been first refined from the converter.
  • RH is connected to the lower part of the upper / lower basin and the lower part of the chamber which acts as a vacuum chamber, and it is a immersion tube that directly immerses the molten steel by direct immersion in the molten steel and guides the molten steel to the upper reflux tube. Consists of.
  • Refractories for RH facilities are typically MgO-C bricks and MgO-Cr2O3 bricks, and in particular, for refractory pipes, Al2O3-MgO castables are generally used in addition to the two types of bricks.
  • Refractory for immersion pipes of RH facilities exhibits the weakest service life compared to other parts due to direct contact with slag that floats on top of molten steel as well as hot molten steel.
  • the RH immersion pipe has a thermal shock phenomenon of the refractory by sharply dropping the temperature below about 900 °C after 3 minutes at a high temperature of about 1,600 ⁇ 1,700 °C immediately after the operation, resulting in cracks and severe fall off of the refractory Sudden downtimes are the most frequent.
  • the most vulnerable material of the refractory for RH dip tube is Al2O3-MgO castable in the bottom of the dip tube brick.
  • 1 is a diagram showing the process of using the RH immersion pipe for the secondary refinery, it can be divided into four problem areas.
  • FIG. 1 is a diagram showing the damage after curing of the Al2O3-MgO castable for the lower RH immersion tube.
  • the finished body after curing is subjected to a drying process after removing the outer shell as the next step.
  • a drying process after removing the outer shell as the next step.
  • cracks in the outer surface of the construction are generated, and the propagation of cracks generated during drying continues to accelerate, increasing the thickness and length of the crack continuously.
  • infiltration by slag in molten steel increases, and if such a phenomenon persists, a sudden operation may occur due to the dropping of the castable.
  • 3 is a diagram showing a crack after drying of the Al 2 O 3 -MgO castable.
  • the dried castable is heated in order to prevent sudden thermal shock before operation.
  • the appearance of the Al2O3-MgO castable in the lower part of the immersion tube is good due to the construction, curing, and drying, cracks may occur in the refractory during heating. Cracks during heating are strongly influenced by the material composition of the refractory and can lead to very serious accidental shutdowns during operation by cracks generated. 4 is a photograph showing cracks during heating of the Al 2 O 3 -MgO castable.
  • FIG. 5 is a photograph showing that the upper refractory brick is dropped due to dropping out during operation of the Al 2 O 3 -MgO castable.
  • Patent Document 1 Korean Patent Publication No. 10-0590712
  • the present invention has been devised to solve the above problems, there is little variation in the quality of the product with respect to the temperature change, high cracking resistance due to curing, drying and molten steel of high temperature, such as falling off due to cracking during operation It provides a very low risk of unexpected risks and improves corrosion resistance by molten steel and slag, enabling stable use of RH immersion pipes, and additionally reducing the use of repair materials, eliminating waste of workers, and greatly improving steelmaking productivity. It is an object to provide a magnesia-carbon basic castable for a refinery.
  • magnesia clinker 87-91%
  • impression graphite 2-4%
  • fine graphite 1-2%
  • pitch powder 2-4%
  • silicon powder 4-5%
  • ultrafine silica powder 1 to 2 parts by weight
  • B4C powder 1 to 1.5 parts by weight
  • carbon fiber 0.1 to 0.3 parts by weight
  • the magnesia-carbon basic castable for secondary refining furnace of this invention contains 15-17 weight part of resol type phenol resins, and 1.5-2.55 weight part of ester-type hardeners with respect to 100 weight part of mixed materials of the said main raw material and an additive. It is preferable to be prepared by
  • the composition according to the embodiment of the present invention and the magnesia-carbon basic castable prepared therefrom are phenol resins and phenols with magnesia clinker, impression graphite, fine graphite, pitch powder, silicon powder and other additives as main ingredients. Used in combination of resin curing agents. Accordingly, it is possible to obtain a basic castable having increased corrosion resistance and thermal shock resistance, thereby increasing cracking resistance due to thermochemical erosion by molten steel and slag and rapid temperature change from high temperature to low temperature.
  • 1 is a diagram showing a step of using the RH immersion pipe for the secondary refinery.
  • Figure 2 is a diagram showing the damage after curing of the Al2O3-MgO castable for the lower RH immersion tube of FIG.
  • FIG. 3 is a diagram illustrating a crack after drying of the Al 2 O 3 -MgO castable of FIG. 1.
  • FIG. 4 is a photograph showing cracks during heating of the Al 2 O 3 -MgO castable of FIG. 1.
  • FIG. 5 is a photograph showing that the upper refractory brick is dropped due to dropping out during operation of the Al 2 O 3 -MgO castable.
  • magnesia-carbon basic castable for the secondary refining furnace which is one aspect of this invention is demonstrated in detail.
  • the magnesia-carbon basic castable for the secondary refining furnace of this invention is a weight%, magnesia clinker: 87-91%, impression graphite: 2-4%, fine graphite: 1-2%, pitch powder: 2- 4%, silicon powder: 4-5%, the main composition containing the remaining unavoidable impurities as a base composition, with respect to 100 parts by weight of the main raw material, ultra fine silica powder: 1-2 parts by weight, B4C powder: 1-1.5 weight Part, carbon fiber: 0.1 to 0.3 parts by weight and includes an additive containing 1 to 1.5 parts by weight of metal fibers.
  • the castable refractory includes a magnesia clinker as the main raw material composition.
  • magnesia clinker is a basic main refractory raw material used for the purpose of improving the corrosion resistance to molten steel and slag, and is much higher than other raw materials in the temperature range of about 1,600 ° C or higher during secondary refining operations. Effect.
  • it is effective to use an electrolytic magnesia material having a lower content of other components than a sintered magnesia containing a large amount of CaO and other impurities as MgO and other components.
  • the main raw material preferably comprises the magnesia clinker in the range of 87 to 91% by weight. If the magnesia clinker content is higher, the erosion resistance may be lowered if it is less than 87% by weight, and if it exceeds 91%, crack resistance may be lowered. Therefore, the content of magnesia clinker is preferably in the range of 87 to 91% by weight based on the weight of the main raw material.
  • Castable refractory material of the present invention includes the raw graphite, fine graphite and pitch powder in the basic composition.
  • the impression graphite, fine graphite and pitch powder have high thermal conductivity and low thermal expansion characteristics at high temperature, it suppresses a large amount of cracks generated at high temperature thermal expansion of magnesia raw material having high thermal expansion characteristics, and permeability to high temperature molten steel and slag and Plays an important role in inhibiting chemical reaction erosion.
  • the impression graphite, fine graphite or pitch powder may include at least one of them.
  • the impression graphite reduces the wettability and penetration of magnesia clinker, molten steel and slag, and improves crack resistance.
  • the content of the impression graphite is preferably limited to 2 to 4% by weight, based on the weight of the main material itself. If the added amount of the impression graphite is less than 2%, the above-mentioned effect is not exhibited. If the addition amount of the graphite is more than 4%, the flowability of the magnesia-carbon basic castable kneaded with the binder decreases drastically, and it may be applied to the site to be installed. Because it can be impossible.
  • the particulate graphite powder is also used to express the same effect as impression graphite, and further helps to slightly improve the fluidity of the magnesia-carbon basic castable.
  • the fine graphite powder is preferably included in an amount of 1 to 2% by weight based on the weight of the main raw material. If the particulate graphite powder is less than 1%, the erosion resistance and strength values may be reduced. If the fine graphite powder is more than 2%, the flowability of the magnesia-carbon basic castable may be slightly reduced.
  • the pitch powder is also used to express the same effect as the impression graphite and fine graphite, and in particular, improves the binding force in the low temperature region (200 ⁇ 250 °C) of the main raw material and other additives of magnesia-carbon basic castable.
  • the crystallinity of carbon is high, which further improves the crack resistance of the castable to rapidly changing temperatures.
  • Pitch powder is preferably contained in an amount of 2 to 4% by weight based on the weight of the main raw material. If the pitch powder content is less than 2%, the above effect cannot be obtained. If the pitch powder content is more than 4%, the flowability of the magnesia-carbon basic castable is greatly reduced, which may render it impossible to apply the inlet construction.
  • Castable refractory material of the present invention may include silicon (Si) powder in the raw material composition.
  • the silicon (Si) powder is an essential raw material to improve the oxidation resistance of the graphite, fine graphite and pitch powder by the oxygen at high temperature, and also plays an important role of improving the strength of the castable by reacting with carbon at a temperature of 1,200 ° C. or higher. Perform.
  • the silicon powder is preferably contained in the range of 4 to 5% by weight based on the main raw material. If the content is less than 4%, it is difficult to improve the oxidation resistance of carbon. If the content is more than 5%, a large amount of gas phase "SiO" component is generated by reaction with high temperature oxygen, and the corrosion resistance of the castable is increased. It is because it can lower.
  • the castable refractory material of the present invention is an additive, with respect to 100 parts by weight of the main raw material, ultrafine silica powder: 1 to 2 parts by weight, B4C powder: 1 to 1.5 parts by weight, carbon fibers: 0.1 to 0.3 parts by weight and metal fibers It may include 1 to 1.5 parts by weight.
  • the ultrafine silica (SiO 2) powder significantly improves the flowability of the castable and the oxidation resistance of carbon at high temperatures.
  • These silica powders are produced by capturing and producing steam produced during the manufacture of Fused Zirconia using Zircon (ZiSiO4), and have a white color unlike general silica.
  • the silica powder When the silica powder is added to the castable, it exhibits dispersibility, flowability, strength, and the high temperature sintering inhibiting effect of the castable.
  • the ultrafine silica powder is preferably added in an amount of 1 to 2 parts by weight by extrapolation with respect to 100 parts by weight of the main raw material, and when less than 1 part by weight is added, the fluidity, dispersibility and high temperature oxidation resistance of the castable are insufficient. When added in excess of 2 parts by weight, the high temperature corrosion resistance of the castable may be reduced.
  • the B4C powder may inhibit or prevent high temperature oxidation of carbon. Therefore, it exhibits a great effect on improving the corrosion resistance of the castable through high temperature carbon oxidation. Therefore, in the present invention, the B4C powder is preferably limited to 1 to 1.5 parts by weight per 100 parts by weight of the main raw material, and the addition of less than 1 part by weight reduces the high temperature oxidation inhibitory effect of carbon, and when the addition of more than 1.5 parts by weight of Boron liquid phase at high temperature As a result, a large amount of cracking may occur due to the decrease in the high temperature thermal shock resistance of the castable.
  • the carbon fiber not only prevents cracking during drying of the graphite-containing amorphous refractory material after completion of construction, but also has the advantage of delaying or suppressing crack generation due to expansion and contraction of the refractory material at high temperature. Therefore, the carbon fiber in the present invention is preferably limited to 0.1 to 0.3 parts by weight per 100 parts by weight of the main raw material. If the amount is more than 0.3 parts by weight, the flowability of the castable is reduced, and if it is less than 0.1 parts by weight, the delay or suppression effect of crack generation due to expansion and contraction of the refractory may be reduced. .
  • the metal fiber may reduce the quality characteristics due to thermal corrosion at high temperatures of 1,600 ° C. or higher, but is stable without damage at temperatures of 1,500 ° C. or lower, and is not affected by structural stress of the RH immersion tube after curing and drying of the castable or during high temperature use. It shows the effect of suppressing or delaying the occurrence of cracks.
  • the addition amount of the metal fiber is usually preferably added 1 to 1.5 parts by weight per 100 parts by weight of the main raw material. If the added amount is less than 1 part by weight, the above effect is reduced, because if it is more than 1.5 parts by weight, it may cause a decrease in fluidity of the castable and damage to the castable internally by high temperature thermal corrosion.
  • the magnesia-carbon basic castable consisting of the main raw material and the additive may add an organic binder as a fluid medium.
  • the resol type phenol resin which is an organic binder is used.
  • This resol type phenolic resin binder can be used stably mixed with the other additives, there is no harmful reaction, and also forms residual carbon (Fixed Carbon) at a high temperature to induce all carbon bonds of the amorphous refractory to a high temperature atmosphere Excellent strength of the refractory.
  • Resol-based phenolic resin of the present invention is a resol-based phenolic resin that can be cured at room temperature, unlike the phenolic resin used in conventional magnesia-carbon brick.
  • the resol-based phenol resin addition amount is preferably mixed in the range of 15 to 17 parts by weight based on 100 parts by weight of the material in which the main raw material and the additive are mixed. If the amount of the resol-based phenolic resin is less than 15 parts by weight, the fluidity of the castable is reduced, and the workability is reduced. When the amount of the resol-based phenolic resin is more than 17 parts by weight, sedimentation of the magnesia clinker in the castable occurs due to the use of an excessive amount of binder. Can be significantly reduced.
  • ester curing agent as a curing agent added for the purpose of room temperature curing of the resol-based phenol resin.
  • ester-based curing agents have a great advantage of causing hardening of the resol type phenolic resin at room temperature, and maintain a uniform shape without expansion or contraction of the magnesia-carbon castable. Do it.
  • the amount of the ester-based curing agent it is preferable to limit the amount of the ester-based curing agent to the range of 1.5 to 2.55 parts by weight based on 100 parts by weight of the material mixed with the main raw material and the additive. If the amount of the ester-based curing agent is less than 1.5 parts by weight, curing of the castable occurs, but a large amount of pores are formed by expansion during drying or high temperature firing, thereby reducing the durability. This is because the time required for the construction of the castable is shortened, which may cause great inconvenience to the work.
  • magnesia-carbon basic castable composition To prepare a magnesia-carbon basic castable composition to which the main raw materials and additives as shown in Table 1 were added. At this time, evaluation was conducted to select an appropriate amount of the main raw material, and the amount of the other additives was fixed by fixing the minimum amount to secure the fluidity and physical properties in the magnesia-carbon basic castable and to prevent the oxidation of carbon. Was carried out.
  • a specimen for quality characteristics evaluation was produced.
  • the prepared test specimens were dried at 250 ° C. for 24 hours, and then, as shown in Table 1 below, the fluidity and physical properties (porosity, cold bending strength, hot bending strength, and thermal shock resistance) of the specimens were evaluated.
  • the specimens of the experimental examples 17 parts by weight of the resol-based phenol resin and 2.34 parts by weight of the ester-based curing agent were added per 100 parts by weight of the mixed composition of the main raw material and the additive.
  • Samples of the finished dough were sampled to evaluate their fluidity, 40 mm ⁇ 40 mm ⁇ 160 mm specimens for porosity and cold compressive strength measurements, 25 mm ⁇ 25 mm ⁇ 120 mm specimens for cold bending strength measurements, and thermal shock.
  • specimens of 60 mm ⁇ 60 mm ⁇ 60 mm size were prepared. The porosity and cold compressive strength were measured for 3 hours at 1,500 °C reducing atmosphere, and the strength of the cooled specimen was measured.
  • thermal shock resistance evaluation was carried out 30 times the process of maintaining the temperature in the furnace at 1,400 °C, inserting the specimen inside the furnace, 30 minutes, then forced air injection and cooling for 30 minutes.
  • O the meaning of "O" of thermal shock resistance means that the final crack did not occur or the amount of generation is very small, based on the specimens repeatedly performed 30 times of the test process.
  • Experimental Examples 1 to 3 evaluated the quality characteristics according to the addition amount of the impression graphite.
  • the addition amount of the impression graphite exceeds 6 parts by weight, as shown in Experiment 3, the fluidity of the castable showed a tendency to decrease rapidly.
  • Experimental Example 3 measured only physical properties in the present invention according to the difficulty in the actual operation due to the reduced fluidity, and did not measure the thermal shock resistance.
  • Experimental Example 1 and Experimental Example 2 showed good fluidity, and Experimental Example 2 showed a tendency to slightly decrease the fluidity due to an increase in the amount of the added graphite compared to Experimental Example 1.
  • the amount of graphite added was 2 to 4 parts by weight, good physical properties and fluidity were exhibited, but the thermal shock resistance was decreased when 2 parts by weight of graphite was added. It can be seen that the thermal conductivity of the magnesia clinker is reduced due to the lack of graphite content, and cracks are generated due to high thermal stress.
  • the amount of the composition added as the main raw material was fixed based on Experimental Example 6 of Example 1. And evaluation was performed as Table 2 in order to select the suitable addition amount of other additives.
  • Specimen preparation for quality characteristics evaluation was carried out in the same manner as in Example 1 and evaluated.
  • the rate of erosion by molten steel and slag was carried out for a total of eight times for 30 minutes at a high temperature of 1,600 to 1,700 ° C.
  • the prior art uses water as the flow medium.
  • the fluidity is 106mm, which results in a very poor result compared to Comparative Examples 1 to 3 and Inventive Examples 1 to 3, and it can be seen that there is a disadvantage that the workload for the workers may be increased during the actual operation.
  • Porosity was also very low compared to Comparative Examples 1 to 3 and Inventive Examples 1 to 3, the cold compressive strength was also very high.
  • the conventional example is made of alumina cement bonded material, and ceramic bonding is performed by sintering at high temperature. Therefore, very high cold compressive strength is shown compared with Comparative Examples 1-3 and Inventive Examples 1-3 which formed carbon bond.
  • the thermal shock resistance showed a very low evaluation result compared to Comparative Examples 1 to 3 and Inventive Examples 1 to 3.
  • Comparative Example 1 was evaluated by increasing the B4C powder to 2 parts by weight. Other quality characteristics were good while thermal shock resistance was significantly lower. For this reason, it can be seen that a crack occurs when a sudden temperature change is caused by the liquefied boron in the castable.
  • Comparative Example 2 the metal fibers were increased to 2 parts by weight, and evaluated. Similarly, the quality characteristics and thermal shock resistance were quite good, but the erosion rate was increased to 10% compared to the conventional example due to the corrosion at high temperature due to the increase in metal fiber.
  • Comparative Example 3 evaluated the ultrafine silica powder as 3 parts by weight. The fluidity due to the addition of ultrafine silica showed the highest value. In addition, the strength value was also increased, but the erosion rate due to the increased silica content was significantly reduced.
  • Inventive Example 1 was evaluated by 1 part by weight of the ultrafine silica powder, the hot bending strength was reduced compared to Inventive Example 2-3, but the thermal shock resistance is good, the erosion rate also showed a very good result compared to the conventional example.
  • Inventive Example 2-3 fixed 2 parts by weight of the ultrafine silica powder and 1.2 parts by weight of the metal fiber, changed the B4C powder to 1 part by weight and 1.5 parts by weight, and increased the carbon fiber to 0.3 parts by weight. Evaluation of using 0.3 parts by weight of carbon fiber did not cause a special crack during drying without significantly affecting the flowability of the castable compared to Comparative Example 1 using 0.1 parts by weight. When 1.5 parts by weight of B4C powder was added, the cold compressive strength was increased compared to 1 part by weight, and in particular, the thermal shock resistance was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

2차 정련로용 마그네시아-카본 염기성 캐스터블이 제공된다. 본 발명의 마그네시아-카본 염기성 캐스터블은, 중량%로, 마그네시아 클린커: 87~91%, 인상 흑연: 2~4%, 미립 흑연: 1~2%, 피치 분말: 2~4%, 실리콘 분말: 4~5%, 잔부 불가피한 불순물을 포함하는 주원료를 기본 조성으로 하고, 상기 주원료 100 중량부에 대하여, 극미립 실리카 분말: 1~2 중량부, B4C 분말: 1~1.5 중량부, 카본 화이버: 0.1~0.3 중량부 및 금속 화이버 1~1.5 중량부를 포함하는 첨가제를 포함한다.

Description

2차 정련로용 마그네시아-카본 염기성 캐스터블
본 발명은 제강 공정 중 전로(Basic Oxygen Furnace) 혹은 전기로(Electric Furnace)에서 1차 정련을 마친 용강을 최종 제품이 요구하는 강(Steel)의 성질을 만족시키기 위해 온도 및 성분을 미세 조정하는 2차 정련로용 RH 설비의 침지관(Snorkel)에 사용될 수 있는 염기성 캐스터블(Castable)에 관한 것이다.
RH는 전로로부터 1차 정련 처리 된 용강(Steel) 중의 불순물을 좀 더 세밀하게 조정하는 2차 정련 설비 중 하나이다. RH는 크게 진공 챔버(Chamber) 역할을 하는 상/하부조와 하부조의 하부에 연결되어 용강의 환류를 안내하는 환류관 및 용강 내에 직접 침지하여 용강을 흡입하고 상부 환류관으로 용강을 유도하는 침지관으로 구성되어 있다.
RH 설비용 내화물은 MgO-C 벽돌 및 MgO-Cr2O3 벽돌이 대표적으로 사용되며, 특히 침지관용 내화물은 상기 두 종류의 벽돌 외에 Al2O3-MgO 캐스터블이 일반적으로 사용 되고 있다.
RH 설비의 침지관용 내화물은 고온의 용강뿐만 아니라, 용강의 상부에 부상되어 있는 슬래그(Slag)와 직접 접촉함에 따라 타 부위 대비 가장 취약한 사용 수명을 나타낸다. 특히, RH 침지관은 조업을 마친 직 후 약 1,600~1,700℃의 고온에서 3분이 지난 후 약 900℃ 이하로 온도가 급강하 함으로써 내화물의 열충격 현상이 발생되며, 이로 인한 균열 발생과 심할 경우 내화물의 탈락으로 인한 돌발적 조업 중지가 가장 많이 발생 된다.
RH 침지관용 내화물 중 가장 취약한 재질은 침지관 벽돌 하부의 Al2O3-MgO 캐스터블이며, 구체적으로 문제를 기술하자면 하기와 같다.
도 1은 2차 정련로용 RH 침지관의 사용 공정을 나타내는 그림이며, 크게 4개의 문제 영역으로 구분 할 수 있다.
도 1에 나타난 바와 같이, 벽돌 축조 및 철물 조립이 완료 되면, Al2O3-MgO 캐스터블 시공이 이루어 진다. 부정형 캐스터블은 약 24시간 양생이 실시되며, 이 구간에서 첫 번째 문제가 발생 된다. 부정형 제품은 매년 환절기 시 수시적 품질 변동이 발생된다. 예를 들자면, 양생 지연 및 양생 강도 부족으로 철피 제거 후 시공체의 손상이 발생(동절기) 되며, 하절기의 경우 조기 경화에 따른 캐스터블의 충진성이 저하하는 문제가 자주 일어난다. 또한, 시공 중 발생 된 과도한 재료-수분 분리 현상으로 인해 시공체의 강건성 또한 현저히 감소한다. 도 2는 이러한 RH 침지관 하부용 Al2O3-MgO 캐스터블의 양생 후 손상을 나타내는 그림이다.
이어, 양생이 종료된 시공체는 다음 단계로 외부 철피 제거 후 건조 공정을 거치게 된다. 건조 중 시공체 외부 표면의 균열이 발생되며, 건조 지속 시 발생 된 균열의 전파가 가속화되어 균열의 두께 및 길이가 지속적으로 증가한다. 이 경우, 상기 내화물을 조업에 사용하게 될 때에는 용강 중 Slag에 의한 침윤이 증가하고, 이러한 현상이 지속될 경우 최종적으로 캐스터블의 탈락으로 인한 조업 중 돌발이 발생 될 수 있다. 도 3은 Al2O3-MgO 캐스터블의 건조 후 균열을 나타내는 그림이다.
그리고 다음 공정으로, 건조가 완료된 캐스터블은 조업 전 급작스런 열충격 방지를 위해 승열 공정이 이루어 진다. 침지관 하부의 Al2O3-MgO 캐스터블의 시공, 양생 및 건조에 의한 외관 상태가 양호할지라도, 승열 중 내화물에는 균열이 발생 될 수 있다. 승열 중 균열은 내화물의 재료 구성에 큰 영향을 받으며, 발생된 균열에 의한 조업 중 아주 심각한 돌발적 조업 중단이 일어 날 수 있다. 도 4는 Al2O3-MgO 캐스터블의 승열 중 균열을 보이는 사진이다.
마지막으로, 조업 중 RH 침지관 하부 균열 발생 문제는 가장 중대하며, 제강 생산업체 혹은 내화물 공급사에 큰 손실을 초래 할 수 있다. 따라서, 균열 발생에 대한 사전 조치 혹은 조업 중 균열 부위 보수가 필히 이루어 져야 한다. 침지관 하부의 Al2O3-MgO 캐스터블은 조업 중 특히 균열이 상당 부분 발생되며, 균열 전파와 진전 또는 가속화가 일어난다. 이 균열에 의한 캐스터블의 탈락은 상부에 설치되어 있는 내화벽돌까지 동반 탈락을 유발시킴에 따라 조업 안정성에 큰 악영향을 초래한다. 결론적으로, 상기 나타낸 캐스터블의 균열 문제는 반드시 해결 되어야만 하고, 이를 극복하기 위한 신규 캐스터블의 개발이 반드시 필요하다. 도 5는 Al2O3-MgO 캐스터블의 조업 중 탈락으로 인한 상부 내화벽돌 탈락됨을 보이는 사진이다.
(선행기술문헌)
(특허문헌 1) 한국 등록특허공보 10-0590712호
따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 온도 변화에 대한 제품의 품질 변동성이 거의 없고, 양생, 건조 및 고온의 용강에 의한 균열 발생 저항성이 높아 조업 중 균열에 의한 탈락 등의 돌발적 위험성이 극히 낮은 특성을 제공하며, 용강 및 Slag에 의한 내식성이 향상되어 RH 침지관의 안정적 사용이 가능하고, 추가적으로 보수재의 사용량 저감, 작업 인력 낭비 해소 및 제강 생산성을 크게 향상시킬 수 있는 2차 정련로용 마그네시아-카본 염기성 캐스터블을 제공함을 그 목적으로 한다.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
상기 목적을 달성하기 위해 본 발명은,
중량%로, 마그네시아 클린커: 87~91%, 인상 흑연: 2~4%, 미립 흑연: 1~2%, 피치 분말: 2~4%, 실리콘 분말: 4~5%, 잔부 불가피한 불순물을 포함하는 주원료를 기본 조성으로 하고,
상기 주원료 100 중량부에 대하여, 극미립 실리카 분말: 1~2 중량부, B4C 분말: 1~1.5 중량부, 카본 화이버: 0.1~0.3 중량부 및 금속 화이버 1~1.5 중량부를 포함하는 첨가제를 포함하는 2차 정련로용 마그네시아-카본 염기성 캐스터블에 관한 것이다.
본 발명의 2차 정련로용 마그네시아-카본 염기성 캐스터블은, 상기 주원료와첨가제의 혼합 재료 100중량부에 대하여, 레졸계 페놀수지: 15~17 중량부 및 에스테르계 경화제: 1.5~2.55 중량부를 포함하여 조성되는 것이 바람직하다
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 더욱 상세하게 이해될 수 있을 것이다.
상술한 바와 같이, 본 발명의 실시예에 따른 조성물 및 이로 제조된 마그네시아-카본 염기성 캐스터블은 주원료인 마그네시아 클린커, 인상흑연, 미립흑연, 피치 분말, 실리콘 분말 외 기타 첨가제와 함께 페놀수지 및 페놀수지 경화제의 조합으로 사용한다. 이에 내식성 및 열충격 저항성이 증가된 염기성 캐스터블을 획득 할 수 있어, 용강 및 Slag에 의한 열화학적 침식 및 고온에서 저온으로 순식간에 급변하는 온도에 의한 균열 저항성을 증가 시킬 수 있다.
따라서, RH 침지관 조업 중 균열에 의한 탈락 등의 돌발적 위험성이 낮은 특성을 제공하며, RH 침지관의 안정적 사용으로 보수재의 사용량 저감, 작업 인력 낭비 해소 및 제강 생산성을 크게 향상하여 조업 원단위 절감에 큰 효과가 있다.
도 1은 2차 정련로용 RH 침지관의 사용 공정을 나타내는 그림이다.
도 2는 도 1의 RH 침지관 하부용 Al2O3-MgO 캐스터블의 양생 후 손상을 나타내는 그림이다.
도 3은 도 1의 Al2O3-MgO 캐스터블의 건조 후 균열을 나타내는 그림이다.
도 4는 도 1의 Al2O3-MgO 캐스터블의 승열 중 균열을 보이는 사진이다.
도 5는 Al2O3-MgO 캐스터블의 조업 중 탈락으로 인한 상부 내화벽돌 탈락됨을 보이는 사진이다.
이하, 본 발명의 일측면인 2차 정련로용 마그네시아-카본 염기성 캐스터블에 대하여 상세히 설명한다.
본 발명의 2차 정련로용 마그네시아-카본 염기성 캐스터블은, 중량%로, 마그네시아 클린커: 87~91%, 인상 흑연: 2~4%, 미립 흑연: 1~2%, 피치 분말: 2~4%, 실리콘 분말: 4~5%, 잔부 불가피한 불순물을 포함하는 주원료를 기본 조성으로 하고, 상기 주원료 100 중량부에 대하여, 극미립 실리카 분말: 1~2 중량부, B4C 분말: 1~1.5 중량부, 카본 화이버: 0.1~0.3 중량부 및 금속 화이버 1~1.5 중량부를 포함하는 첨가제를 포함한다.
본 발명은 캐스트블 내화물은 주원료 조성으로 마그네시아 클린커를 포함한다.
일반적으로, 마그네시아 클린커는 용강 및 Slag에 대한 내침식성을 향상시키기 위한 목적으로 사용되는 염기성질 주 내화원료로서, 2차 정련 조업 중 약 1,600℃ 이상 고온의 온도 영역에서 다른 원료 대비 아주 높은 내침식성 효과를 나타낸다. 특히, 보다 더 향상된 내침식성을 나타내기 위해서는 MgO 외 기타 성분으로 CaO 및 기타 불순물 성분을 많이 포함하는 소결 마그네시아 보다, 기타 성분 함유량이 적은 전융 마그네시아 원료를 사용하는 것이 효과적이다.
본 발명에서는 상기 주원료는 상기 마그네시아 클린커를 자체 중량%로 87~91% 범위로 포함함이 바람직하다. 만일 마그네시아 클린커 함량이 높을수록 좋으나, 자체 중량%로 87% 미만이면 내침식성이 저하될 수 있고, 91%를 초과하면 균열 저항성이 저하될 수 있기 때문이다. 따라서, 마그네시아 클린커의 함량은 주원료에 대한 자체 중량%로, 87~91% 범위인 것이 바람직하다.
본 발명의 캐스터블 내화물은 원료 기본조성으로 인상 흑연, 미립흑연 및 피치 분말을 포함한다.
상기 인상흑연, 미립흑연 및 피치 분말은 고온에서 고열전도성과 저열팽창 특성을 가짐에 따라 고열팽창 특성의 마그네시아 원료의 고온 열팽창 시 발생하는 다량의 균열을 억제하며, 고온의 용강 및 Slag에 대한 침투성 및 화학적 반응 침식을 억제하는 중요한 역할을 수행한다. 본 발명은 인상흑연, 미립흑연 또는 피치 분말은 이들 중 적어도 어느 하나를 포함할 수 있다.
상기 인상흑연은 마그네시아 클린커와 용강 및 Slag와의 젖음성 및 침투성을 감소 시키고, 균열 저항성을 향상시킨다. 따라서, 마그네시아-카본 염기성 캐스터블의 내침식성을 증가시킨다. 이때, 인상 흑연의 함량은 주원료에 대한 자체 중량%로, 2~4% 범위로 제한하는 것이 바람직 하다. 만약, 인상흑연의 첨가량이 2% 미만이면 상기 제시한 효과를 나타내지 못하며, 4%를 초과하면 바인더와 함께 반죽된 마그네시아-카본 염기성 캐스터블의 유동성이 급격히 감소하여 설치하고자 하는 부위에 유입 시공을 할 수 없는 상태가 될 수 있기 때문이다.
상기 미립흑연 분말 또한 인상흑연과 동일한 효과 발현을 위해 사용되며, 추가적으로 마그네시아-카본 염기성 캐스터블의 유동성을 소폭 향상시키는데 도움이 된다. 미립흑연 분말은 주원료에 대한 자체 중량%로, 1~2%로 범위로 포함하는 것이 바람직하다. 상기 미립흑연 분말이 1% 미만일 경우 내침식성 및 강도 값이 감소될 수 있으며, 2%를 초과 할 경우 마그네시아-카본 염기성 캐스터블의 유동성이 소폭 감소될 수 있기 때문이다.
상기 피치 분말 또한 상기 인상흑연 및 미립흑연과 동일한 효과를 발현하기 위해 사용되며, 특히, 마그네시아-카본 염기성 캐스터블의 주원료 및 기타 첨가제의 저온 영역(200~250℃) 에서의 결합력을 향상시킨다. 또한, 고온에서의 탄화 후 카본(Carbon)의 결정성이 높아 급변하는 온도에 대한 캐스터블의 균열 저항성을 보다 더 향상시킨다. 피치 분말은 주원료에 대한 자체 중량%로, 2~4% 범위로 함유하는 것이 바람직하다. 만일 피치 분말 함량이 2% 미만이면 상기 효과를 나타낼 수 없으며, 4%를 초과하면 마그네시아-카본 염기성 캐스터블의 유동성이 대폭 감소하여 유입 시공을 할 수 없는 상태가 될 수 있기 때문니다.
본 발명의 캐스터블 내화물은 원료 기본조성으로 실리콘(Si) 분말을 포함할 수 있다.
상기 실리콘(Si) 분말은 상기 인상흑연, 미립흑연 또한 피치 분말의 고온 중 산소에 의한 산화 저항성을 향상 시키는 필수 원료이며, 1,200℃ 이상의 고온에서 카본과 반응하여 캐스터블의 강도 또한 향상시키는 중요한 역할을 수행한다. 실리콘 분말은 주원료에 대한 중량%로, 4~5% 범위로 함유하는 것이 바람직하다. 만일 그 함량이 4% 미만이면 카본의 산화 저항성을 향상 시키는 것이 어려우며, 5%를 초과하면 고온 산소와의 반응에 의한 다량의 가스상(Gas Phase)의 "SiO" 성분을 생성시켜 캐스터블의 내침식성을 저하시킬 수 있기 때문이다.
또한 본 발명의 캐스터블 내화물은 첨가제로서, 상기 주원료 100 중량부에 대하여, 극미립 실리카 분말: 1~2 중량부, B4C 분말: 1~1.5 중량부, 카본 화이버: 0.1~0.3 중량부 및 금속 화이버 1~1.5 중량부를 포함할 수 있다.
상기 극미립 실리카(SiO2) 분말은 캐스터블의 유동성 및 카본의 고온 중 내산화성을 상당히 향상시킨다. 특히, 본 발명은 자체 중량%로 ZrO2 함유량이 7.0% 이하이고, pH가 2-5인 극미립 실리카(SiO2) 분말을 이용함이 바람직하다. 이러한 실리카 분말은 지르콘(ZiSiO4)을 이용한 전융 지르코니아(Fused Zirconia) 제조 시 생성된 증기를 포집하여 제품화 한 것으로 일반 실리카와는 달리 백색의 색상을 나타낸다. 이러한 실리카 분말을 캐스터블에 첨가 시 분산성, 유동성, 강도 및 캐스터블의 고온 소결 억제 효과를 나타낸다.
본 발명에서 상기 극미립 실리카 분말은 주원료 100 중량부에 대하여 외삽으로 1~2 중량부 범위로 첨가하는 것이 바람직하며, 1 중량부 미만 첨가 시 캐스터블의 유동성, 분산성 및 고온 내산화성 효과가 부족하며, 2 중량부 초과 첨가 시 캐스터블의 고온 내침식성을 저하 시킬 수 있다.
상기 B4C 분말은 카본의 고온 산화를 억제하거나 방지할 수 있다. 따라서, 고온의 카본 산화를 통한 캐스터블의 내침식성 향상에 큰 효과를 나타낸다. 이에 본 발명에서 B4C 분말은 주원료 100 중량부 당 1~1.5 중량부로 제한하는 것이 바람직하며, 1 중량부 미만 첨가 시 카본의 고온 산화 억제 효과가 감소하며, 1.5 중량부 초과 첨가 시 고온 중 Boron 액상량이 증가하여 캐스터블의 고온 열충격 저항성 감소로 인한 다량의 균열이 발생될 수 있다.
상기 카본 화이버는 시공 완료 후 흑연 함유 부정형 내화물의 건조 중 균열을 방지할 뿐만 아니라, 고온 사용 시 내화물의 팽창과 수축에 의한 균열 발생을 지연 혹은 억제하는 장점을 가진다. 이에, 본 발명에서 카본 화이버는 주원료 100 중량부 당 0.1~0.3 중량부로 제한하는 것이 바람직하다. 만일 그 첨가량이 0.3 중량부 초과 시 캐스터블의 유동성이 감소하는 단점을 나타내고, 0.1 중량부 미만이면 내화물의 팽창과 수축에 의한 균열 발생 지연 혹은 억제 효과가 감소될 수 있기 때문이다. .
상기 금속 화이버는 1,600℃ 이상의 고온에서 열 부식에 의한 품질 특성이 감소할 수 있으나, 1,500℃ 이하의 온도에서는 손상없이 안정적이며, 캐스터블의 양생 및 건조 후 혹은 고온 사용 중 RH 침지관의 구조적 응력에 의한 균열 발생을 억제 혹은 지연시키는 효과를 나타낸다. 상기 금속 화이버의 첨가량은 통상적으로 주원료 100 중량부 당 1~1.5 중량부를 첨가하는 것이 바람직하다. 만일 그 첨가량이 1 중량부 미만이면 상기 효과가 감소하며, 1.5 중량부 초과 시 캐스터블의 유동성 감소 및 고온 열 부식에 의한 캐스터블 내부 손상을 야기할 수 있기 때문이다.
나아가, 본 발명에서 상기 주원료 및 첨가제로 이루어지는 마그네시아-카본 염기성 캐스터블은 유동 미디어로서 유기 바인더를 첨가할 수 있다.
본 발명에서는 유기 바인더인 레졸계 페놀수지를 사용한다. 이 레졸계 페놀수지 바인더는 상기 조성된 다른 첨가물과의 안정적 혼합 사용이 가능하고, 유해한 반응이 전혀 없으며, 또한, 고온에서 잔류 탄소(Fixed Carbon)를 형성시켜 부정형 내화물 전체 카본 결합을 유도하여 고온 분위기하에서 내화물의 우수한 강도를 발현시켜 준다. 본 발명의 레졸계 페놀수지는 기존 통상의 마그네시아-카본 벽돌에 사용되는 페놀수지와 달리 상온에서 경화가 이루어 질 수 있는 레졸계 페놀수지이다.
본 발명에서 상기 레졸계 페놀수지 첨가량은 상술한 주원료 및 첨가제를 혼합한 재료 100 중량부에 대하여 15~17 중량부 범위로 혼합함이 바람직하다. 상기 레졸계 페놀수지 첨가량이 15 중량부 미만이면 캐스터블의 유동성이 감소하여 시공성이 감소하며, 17 중량부를 초과하면 과량의 바인더 사용으로 인한 캐스터블 내 마그네시아 클린커의 침강이 발생하여 조업 중 내구성을 상당히 감소시킬 수 있다.
한편 본 발명에서는 상기 레졸계 페놀수지의 상온 경화를 목적으로 첨가하는 경화제로서 에스테르계 경화제를 이용함이 바람직하다. 에스테르계 경화제는 기존 고온에서 경화가 발생하는 마그네시아-카본 벽돌과 달리 상온에서 레졸계 페놀수지의 경화를 일으키는 큰 장점을 가지며, 마그네시아-카본 캐스터블의 팽창 혹은 수축 없이 균일한 형태로 유지시켜 주는 역할을 한다.
본 발명에서는 상기 에스테르계 경화제의 첨가량을 상술한 주원료 및 첨가제 를 혼합한 재료 100 중량부에 대하여 1.5~2.55 중량부 범위로 제한하는 것이 바람직하다. 만일 에스테르계 경화제의 첨가량이 1.5 중량부 미만이면 캐스터블의 경화는 발생하나 건조 혹은 고온 소성 중 팽창에 의한 다량의 기공이 형성되어 내구성을 감소시킬 수 있으며, 첨가량이 2.55 중량부를 초과하면 경화 속도가 빨라 캐스터블의 시공에 요구되는 시간이 단축되어 작업에 큰 불편함을 초래 할 수 있기 때문이다.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.
(실시예 1)
하기 표 1과 같은 주원료와 첨가제가 첨가된 마그네시아-카본 염기성 캐스터블 조성물을 마련하였다. 이때, 주원료의 적정 첨가량을 선정하기 위해 평가를 실시하였으며, 기타 첨가제의 첨가량은 마그네시아-카본 염기성 캐스터블 중 유동성 및 물리적 특성 확보, 그리고 카본의 산화 방지를 발현하기 위한 최소한의 첨가량으로 고정하여 평가를 실시하였다.
상기 주원료와 첨가제로 이루어지는 조성물에 유기 바인더를 첨가하여 반죽 후, 품질 특성 평가를 위한 시편을 제작하였다. 제작된 평가용 시편은 250℃에서 24시간 건조 하였으며, 이후, 하기 표 1에 나타낸 바와 같이, 시편의 유동성 및 물리적 특성(기공율, 냉간 곡강도, 열간 곡강도, 열충격 저항성)을 평가하였다.
구체적으로, 실험예들의 시편을 제작하기 위해 주원료 및 첨가제의 혼합 조성물 100 중량부 당 레졸계 페놀수지 17 중량부와 에스테르계 경화제 2.34 중량부를 첨가하여 반죽을 하였다. 반죽을 완료한 시편은 일부 샘플을 채취하여 유동성을 평가하였으며, 기공율 및 냉간 압축강도 측정을 위해 40mm × 40mm × 160mm 크기의 시편을, 냉간 곡강도 측정을 위해 25mm × 25mm × 120mm 크기의 시편을, 열충격 저항성 평가를 위해 60mm × 60mm × 60mm 크기의 시편을 제작하였다. 기공율 및 냉간 압축강도는 1,500℃ 환원분위기에서 3시간 유지 후, 냉각된 시편의 강도를 측정하였으며, 열간 곡강도는 1,450℃ 환원분위기에서 1시간 유지 후 시편의 강도를 측정하였다. 열충격 저항성 평가는 전기로 내 온도를 1,400℃로 유지하고, 시편을 전기로 내부에 삽입 후, 30분 유지한 뒤 강제로 공기를 주입하여 30분간 냉각하는 과정을 30회 반복 실시하였다. 이때 열충격 저항성의 "O"의 의미는 상기 시험 과정의 30회 반복 실시된 시편을 기준으로 최종 균열이 발생 되지 않았거나, 발생량이 아주 미미한 수준의 것을 의미한다.
구분 실험예
1 2 3 4 5 6
주원료(중량%) 마그네시아 클린커 92 90 88 89 87 87.5
인상흑연 2 4 6 4 4 4
미립흑연 2 2 2 0 0 1
피치분말 0 0 0 2 4 2.5
Si 분말 4 4 4 5 5 5
첨가제(중량부) 극미립 실리카 분말 1 1 1 1 1 1
B4C 분말 1 1 1 1 1 1
카본 화이버 0.1 0.1 0.1 0.1 0.1 0.1
금속 화이버 1.2 1.2 1.2 1.2 1.2 1.2
바인더(중량부) 레졸계 페놀수지 17
에스테르계 경화제 2.34
유동성(mm) 152 146 101 148 136 147
기공율(%) 26.9 27.6 29 30.2 33.6 30.2
냉간곡강도(kg/cm2) 27 30 34 38 32 38
열간곡강도(kg/cm2) 53 52 43 32 22 34
열충격 저항성 X - O
O:양호, X: 불량, △: 보통
표 1에 나타난 바와 같이, 실험예 1~3은 인상흑연의 첨가량에 따른 품질 특성을 평가하였다. 전반적으로 실험예 3과 같이 인상흑연의 첨가량이 6 중량부를 초과 하는 경우 캐스터블의 유동성이 급격히 감소하는 경향을 나타내었다. 실험예 3은 유동성 감소로 인해 실제 조업에서 작업이 어려움에 따라 본 발명에서 물리적 특성만 측정하였고, 열충격 저항성은 측정하지 않았다.
실험예 1 및 실험예 2의 경우 양호한 유동성을 나타내었으며, 실험예 2의 경우 실험예 1 대비 인상흑연 첨가량 증대로 인해 유동성이 소폭 감소하는 경향을 나타내었다. 전반적으로 인상흑연 첨가량이 2~4 중량부 일 때 양호한 물성과 유동성을 나타내었지만, 인상흑연 2 중량부 첨가 시 열충격 저항성이 감소하는 결과를 나타내었다. 이것은 흑연 함유량 부족으로 마그네시아 클린커의 열전도성이 감소하여 높은 열응력으로 인한 균열이 발생 된 것을 확인 할 수 있다.
실험예 4~5는 미립흑연을 대체한 피치 분말을 각각 2, 4 중량부 첨가하였으며, 금속 실리콘 분말을 5 중량부로 변경하여 품질을 평가하였다. 평가 결과 피치 분말 첨가 시, 미 사용한 실험예 2 대비 유동성은 유사하며, 냉간 압축강도 및 기공율이 증가하고, 열간 곡강도가 감소하는 결과를 나타내었다. 하지만, 피치 분말 미 사용한 조성물 대비 열충격 저항성이 상당히 향상 된 결과를 알 수 있었다. 특히, 실험예 6의 미립흑연 1 중량부, 피치 분말 2.5 중량부 사용 시 아주 양호한 열충격 저항성 결과를 나타내었다.
(실시예 2)
실시예 1의 실험예 6을 기준으로 주원료의 조성물 첨가량을 고정하였다. 그리고, 기타 첨가제의 적합한 첨가량을 선정하기 위해 표 2와 같이 평가를 실시하였다.
품질 특성 평가를 위한 시편 제작은 실시예 1과 동일하게 제작하여 평가를 실시하였다. 추가적으로 용강 및 Slag에 의한 침식율은 고온 1,600~1,700℃에서 30분간 총 8회 실시하여 시험을 실시 하였고, 이때 Slag의 염기도(CaO/SiO2)는 1로 유지하였다.
구분 종래예 비교예 발명예
1 2 3 1 2 3
주원료(중량%) 알루미나 클린커 86~91
마그네시아 클린커 7~12 87.5 87.5 87.5 87.5 87.5 87.5
인상흑연 4 4 4 4 4 4
미립흑연 1 1 1 1 1 1
피치분말 2.5 2.5 2.5 2.5 2.5 2.5
Si 분말 5 5 5 5 5 5
금속화이버 1~2
첨가제(중량부) 극미립 실리카 분말 2 2 3 1 2 2
B4C 분말 2 1.5 1.5 1.5 1 1.5
카본 화이버 0.3 0.1 0.3 0.3 0.3 0.3
금속 화이버 1.2 2 1.2 1.2 1.2 1.2
유동미디어 수분 6.1중량부
바인더(중량부) 레졸계 페놀수지 17
에스테르계 경화제 2.34
유동성(mm) 106 146 114 156 132 144 147
기공율(%) 19.9 30 32 30.1 31.2 30.3 30.2
냉간곡강도(kg/cm2) 258 34 63 57 29 27 49
열간곡강도(kg/cm2) 29 38 27 49 33 43 44
침식율(%) 100 81.7 110 118 85.6 83.6 80.2
열 충격 저항성 X X O O
O:양호, X: 불량, △: 보통
표 2에 나타난 바와 같이, 종래예는 수분을 유동 미디어로 사용한다. 유동성은 106mm로서 비교예 1~3 및 발명예 1~3 대비 아주 부족한 결과를 나타내어, 실제 조업 중 작업 시 작업자들에 대한 작업 부하도가 높아 질 수 있는 단점을 가짐을 알 수 있다. 기공율 또한 비교예 1~3 및 발명예 1~3 대비 아주 낮았으며, 냉간 압축강도 또한 아주 높았다. 그 이유로서 종래예는 알루미나 시멘트 결합한 재질로서 고온 중 소결에 의한 세라믹 결합이 이루어진다. 따라서, 카본 결합을 형성한 비교예 1~3 및 발명예 1~3 대비 아주 높은 냉간 압축강도를 나타내고 있다. 다만, 기공율이 낮고 냉간 압축강도가 높다는 것은 반대로 세라믹 결합한 캐스터블의 취성이 높아 균열 발생 시 균열 전파량 및 전파 속도가 아주 크다는 것을 알 수 있다. 이 경우 조업 중 균열에 의한 돌발 발생 가능성이 높다는 것을 예상할 수 있다. 따라서 열충격 저항성은 비교예 1~3 및 발명예 1~3 대비 아주 낮은 평가 결과를 나타내었다.
비교예 1은 B4C 분말을 2 중량부로 증량하여 평가를 실시하였다. 기타 품질 특성이 양호한 반면 열충격 저항성이 상당히 낮은 결과를 나타내었다. 그 이유로 캐스터블 내 액상화된 Boron에 의한 급격한 온도 변화 시 균열이 발생된 것을 알 수 있다.
비교예 2는 금속 화이버를 2 중량부로 증량하여 평가를 실시하였다. 마찬가지로 품질 특성 및 열충격 저항성이 상당히 양호 하였으나, 금속 화이버 증량에 의한 고온 중 부식으로 침식율이 종래예 대비 10% 수준으로 높아진 결과를 나타내었다.
비교예 3은 극미립 실리카 분말을 3 중량부로 하여 평가하였다. 극미립 실리카 첨가로 인한 유동성은 가장 높은 값을 나타내었다. 또한, 강도 값도 높게 증가 하였지만, 실리카 함유량 증대로 인한 침식율이 상당히 감소하는 결과를 나타내었다.
이에 반하여, 발명예 1~3은 전반적으로 전 품질 특성이 양호한 결과를 나타내었다.
구체적으로, 발명예 1은 극미립 실리카 분말 1 중량부로 하여 평가를 실시한 결과, 열간 곡강도는 발명예 2-3 대비 감소하나, 열충격 저항성이 양호하고, 침식율 또한 종래예 대비 아주 양호한 결과를 나타내었다.
발명예 2-3은 극미립 실리카 분말을 2 중량부 및 금속 화이버를 1.2 중량부로 고정하고, B4C 분말을 1 중량부와 1.5 중량부로 변경하였으며, 카본 화이버를 0.3 중량부로 증량하였다. 카본 화이버를 0.3 중량부 사용 시 평가 결과 0.1 중량부를 사용한 비교예 1 대비 캐스터블의 유동성에 큰 영향을 끼치지 않으면서 건조 중 특별한 균열을 발생 시키지 않았다. B4C 분말 1.5 중량부 첨가 시 1 중량부 대비 냉간 압축강도가 증가하였으며, 특히 아주 우수한 열충격 저항성을 나타내었다.
상술한 바와 같이, 본 발명이 제안한 범위를 모두 만족하는 발명예 1 내지 3의 경우 우수한 내침식성 및 열충격 저항성을 가지는 결과를 확인할 수 있다.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.

Claims (3)

  1. 중량%로, 마그네시아 클린커: 87~91%, 인상 흑연: 2~4%, 미립 흑연: 1~2%, 피치 분말: 2~4%, 실리콘 분말: 4~5%, 잔부 불가피한 불순물을 포함하는 주원료를 기본 조성으로 하고,
    상기 주원료 100 중량부에 대하여, 극미립 실리카 분말: 1~2 중량부, B4C 분말: 1~1.5 중량부, 카본 화이버: 0.1~0.3 중량부 및 금속 화이버 1~1.5 중량부를 포함하는 첨가제를 포함하는 2차 정련로용 마그네시아-카본 염기성 캐스터블.
  2. 제 1항에 있어서, 상기 주원료와 첨가제의 혼합 재료 100중량부에 대하여, 레졸계 페놀수지: 15~17 중량부 및 에스테르계 경화제: 1.5~2.55 중량부를 포함하여 조성되는 2차 정련로용 마그네시아-카본 염기성 캐스터블.
  3. 제 1항에 있어서, 상기 극미립 실리카 분말은 자체 중량%로 ZrO2 함유량이 7.0% 이하이고, pH가 2-5인 것을 특징으로 하는 2차 정련로용 마그네시아-카본 염기성 캐스터블.
PCT/KR2019/008661 2018-07-12 2019-07-12 2차 정련로용 마그네시아-카본 염기성 캐스터블 WO2020013662A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0081142 2018-07-12
KR1020180081142A KR102061807B1 (ko) 2018-07-12 2018-07-12 2차 정련로용 마그네시아-카본 염기성 캐스터블

Publications (1)

Publication Number Publication Date
WO2020013662A1 true WO2020013662A1 (ko) 2020-01-16

Family

ID=69142395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008661 WO2020013662A1 (ko) 2018-07-12 2019-07-12 2차 정련로용 마그네시아-카본 염기성 캐스터블

Country Status (2)

Country Link
KR (1) KR102061807B1 (ko)
WO (1) WO2020013662A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196980B (zh) * 2022-06-24 2023-05-26 偃师中岳耐火材料有限公司 一种镁碳质耐火浇注料的制备方法
CN115650703A (zh) * 2022-11-04 2023-01-31 辽宁利尔镁质合成材料股份有限公司 一种镁质浇注料及其制备方法
CN117466626B (zh) * 2023-12-27 2024-02-27 中民驰远实业有限公司 一种废旧镁碳砖再利用制备镁基复合耐火砖的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199575A (ja) * 1992-12-31 1994-07-19 Shinagawa Refract Co Ltd アルミナ−スピネル質キャスタブル耐火物
JPH08239274A (ja) * 1995-03-03 1996-09-17 Kyushu Refract Co Ltd 吹付補修材
JPH08259340A (ja) * 1995-03-24 1996-10-08 Toshiba Ceramics Co Ltd マグネシア−カーボン質キャスタブル耐火物
JP2018044073A (ja) * 2016-09-15 2018-03-22 アイカ工業株式会社 接着剤組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199575A (ja) * 1992-12-31 1994-07-19 Shinagawa Refract Co Ltd アルミナ−スピネル質キャスタブル耐火物
JPH08239274A (ja) * 1995-03-03 1996-09-17 Kyushu Refract Co Ltd 吹付補修材
JPH08259340A (ja) * 1995-03-24 1996-10-08 Toshiba Ceramics Co Ltd マグネシア−カーボン質キャスタブル耐火物
JP2018044073A (ja) * 2016-09-15 2018-03-22 アイカ工業株式会社 接着剤組成物

Also Published As

Publication number Publication date
KR102061807B1 (ko) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2020013662A1 (ko) 2차 정련로용 마그네시아-카본 염기성 캐스터블
KR930005250B1 (ko) 산질화 알루미늄 함유 내화물, 슬라이딩 노즐용 내화물 및 강 연속주조용 노즐
Thethwayo et al. A review of carbon-based refractory materials and their applications
CN100519005C (zh) 一种采用不烧工艺生产的铝碳锆质滑动水口砖
CN113321495A (zh) 一种无水泥高性能泵送炉缸料
WO2017090929A1 (ko) 내화 조성물 및 이로 제작된 강 주조용 웰블럭
JPH09202667A (ja) スライドゲート用キャスタブル耐火物
CN110981513A (zh) 一种铬刚玉渣-高铝矾土复合无碳钢包下水口砖及其制备方法
US5411997A (en) Mud material used for iron tap hole in blast furnace
CN107602137B (zh) 一种浇注成型转炉出钢口内水口砖及其制备方法
CN113698186B (zh) 一种矾土基堇青石防爆浇注料
CN105254317A (zh) 一种镁铁铝尖晶石喷煤管
JP7121311B2 (ja) キャスタブル耐火物及びその製造方法
CN114478031A (zh) 一种电炉钢包用不烧铝镁碳砖的生产工艺
JP2012192430A (ja) アルミナ−カーボン質スライドゲートプレート
KR20200025788A (ko) Rh 침적관 내화벽돌용 조성물
KR100689154B1 (ko) 내식성 및 내산화성이 우수한 마그네시아-카본질내화벽돌용 내화조성물
JP2009242122A (ja) 高炉炉床用れんが及びこれをライニングした高炉炉床
JP7088130B2 (ja) 炭素含有不定形耐火物の混練方法およびそれを利用した炭素含有不定形耐火物の成形体の製造方法
KR100286663B1 (ko) 티밍래들용 염기성 내화물
JPS5855379A (ja) 取鍋内張り用耐火キヤスタブル
JPH11157927A (ja) ジルコニア質不定形耐火物
JPH04280858A (ja) 不焼成マグネシア−カーボン煉瓦の製造方法
JPS59146975A (ja) スライデイングノズル用プレ−ト耐火物
JP2003002754A (ja) 断熱性キャスタブル耐火物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19835023

Country of ref document: EP

Kind code of ref document: A1