WO2020006671A1 - 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池 - Google Patents

一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池 Download PDF

Info

Publication number
WO2020006671A1
WO2020006671A1 PCT/CN2018/094165 CN2018094165W WO2020006671A1 WO 2020006671 A1 WO2020006671 A1 WO 2020006671A1 CN 2018094165 W CN2018094165 W CN 2018094165W WO 2020006671 A1 WO2020006671 A1 WO 2020006671A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
nano
composite
composite separator
mass
Prior art date
Application number
PCT/CN2018/094165
Other languages
English (en)
French (fr)
Inventor
程文广
陈秀峰
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to CN201880000769.XA priority Critical patent/CN111630686A/zh
Priority to PCT/CN2018/094165 priority patent/WO2020006671A1/zh
Publication of WO2020006671A1 publication Critical patent/WO2020006671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular, to a composite separator, a preparation method thereof, and a lithium battery including the composite separator.
  • Lithium-ion batteries play an important role in daily life. Lithium-ion batteries have become the first choice for many portable electronic devices and electric vehicles due to their high energy density, long cycle life, safety and pollution-free performance, and fast charge and discharge performance. As an important part of lithium-ion batteries, lithium-ion battery separators are receiving more and more attention. The performance of the separator affects the capacity, safety performance and cycle performance of the lithium-ion battery, and has a decisive effect on the overall performance of the lithium-ion battery.
  • the purpose of the present application is to provide a composite separator, which has a higher liquid absorption and retention rate, a smaller average pore size, and a higher void ratio, so that the composite separator has excellent comprehensive performance.
  • the purpose of the present application also includes providing a method for preparing a composite separator, which can prepare a composite separator with better quality.
  • the object of the present application is also to provide a lithium-ion battery including the above-mentioned composite separator, which has various advantages of the above-mentioned composite separator.
  • a composite membrane includes a film substrate and a functional film layer compounded on the surface of the film substrate.
  • the functional film layer is prepared from lipophilic nano-ceramics, polyethylene, and a porogen.
  • the film substrate is made of lipophilic surface. Nano-ceramics and copolymerized polypropylene, low-melting polyethylene, porogen.
  • a method for preparing a composite membrane as described above comprising:
  • the first melt and the second melt are compounded and extruded to obtain a cast film
  • the cast film was biaxially stretched to extract paraffin oil.
  • a lithium ion battery includes a positive electrode, a negative electrode, and the composite separator described above or the composite separator prepared by the above preparation method.
  • the embodiments of the present application provide a composite separator, a preparation method thereof, and a lithium ion battery with the composite separator.
  • the beneficial effects are:
  • Copolymerized polypropylene and low melting point polyethylene are introduced into the film substrate in the composite separator.
  • the copolymerized polypropylene can have a good interface effect and improve the compatibility of the components in the film substrate.
  • the melting point is low, and the temperature can be kept in a low range during the preparation process, which can be beneficial to form a film matrix with small pore size and high porosity.
  • the surface-lipophilic nano-ceramics are introduced into both the functional film layer and the film substrate. Due to the small particle size, the nano-ceramics increase the surface area of the functional film layer and the film substrate layer, which can make the functional film layer.
  • the combination with the membrane layer substrate is better, and at the same time, it can increase the adsorption of the electrolyte in the lithium battery by the composite separator, improve the liquid absorption and retention rate, and improve the ionic conductivity.
  • 1 is a scanning electron microscope spectrum of a composite diaphragm provided in a first embodiment
  • FIG. 2 is a scanning electron microscope spectrum of a composite diaphragm provided in a second embodiment
  • FIG. 3 is a scanning electron microscope spectrum of a composite diaphragm provided in a third embodiment
  • FIG. 4 is a scanning electron microscope spectrum of a composite diaphragm provided in a fourth embodiment
  • FIG. 5 is a scanning electron microscope spectrum of a composite diaphragm provided in a fifth embodiment
  • FIG. 6 is a scanning electron microscope spectrum of a composite diaphragm provided in a sixth embodiment
  • FIG. 7 is a scanning electron microscope spectrum of a composite diaphragm provided in a seventh embodiment
  • FIG. 9 is a scanning electron microscope spectrum of a composite diaphragm provided in a ninth embodiment.
  • FIG. 10 is a scanning electron microscope image of a composite diaphragm provided in a comparative example.
  • the composite membrane includes a membrane substrate and a functional membrane layer compounded on the surface of the membrane substrate.
  • the functional membrane layer is prepared from a lipophilic nano-ceramic, polyethylene, and a porogen.
  • the layer matrix is prepared from lipophilic nano-ceramics and copolymerized polypropylene, low-melting polyethylene, and porogen.
  • Low-melting-point polyethylene and copolymerized polypropylene are introduced into the film matrix of the composite separator.
  • the copolymerized polypropylene can have a good interface effect and improve the compatibility of the components in the film-layer matrix.
  • the melting point is low, and the temperature can be kept in a low range during the preparation process, which can be beneficial to form a film matrix with small pore size and high porosity.
  • the surface-lipophilic nano-ceramics are introduced into both the functional film layer and the film substrate. Due to the small particle size, the nano-ceramics increase the surface area of the functional film layer and the film substrate layer, which can make the functional film layer.
  • the combination with the membrane layer substrate is better, and at the same time, it can increase the adsorption of the electrolyte in the lithium battery by the composite separator, improve the liquid absorption and retention rate, and improve the ionic conductivity.
  • the composite separator may be a functional film layer compounded on one surface of the film substrate, or a functional film layer may be compounded on both the upper and lower surfaces of the film substrate. Among them, both the number of functional film layers and the number of film substrates can be prepared as required.
  • a method for preparing a composite membrane includes: melting and plasticizing a mixed surface lipophilic nano-ceramic, polyethylene, and a porogen to obtain a first melt.
  • the surface-lipophilic nano-ceramic and polyethylene are thoroughly mixed before being thoroughly mixed with the porogen.
  • the mass of the lipophilic nano-ceramic on the surface is 1% to 12% of the mass of the powder of the functional film material. In some embodiments, the mass of the surface lipophilic nano-ceramic is 3% to 8% of the mass of the powder of the functional film material.
  • the porogen in the first melt includes paraffin oil. After the paraffin oil is extracted, it can form a stable pore structure. It should be noted that, since the paraffin oil is not a powder, the quality of the powder of the functional film layer refers to the sum of the mass of the nano-ceramics and polyethylene that are lipophilic on the surface.
  • the polyethylene in the first melt includes high molecular weight polyethylene or ultra high molecular weight polyethylene.
  • the mixed surface lipophilic nano-ceramic, copolymerized polypropylene and low melting point polyethylene are melted and plasticized to obtain a second melt.
  • the surface-lipophilic nano-ceramics, copolymerized polypropylene and low-melting polyethylene are thoroughly mixed with the porogen.
  • the mass of the surface-lipophilic nano-ceramics is 1% to 12% of the mass of the powder of the raw material of the film substrate. In some embodiments, the mass of the surface-lipophilic nano-ceramic is 3% to 8% of the mass of the powder of the film base material.
  • the porogen in the second melt includes paraffin oil. After the paraffin oil is extracted, it can form a stable pore structure.
  • the quality of the powder of the base material of the film layer substrate refers to the sum of the mass of the surface-lipophilic nano-ceramic, copolymerized polypropylene, and low-melting polyethylene.
  • the mass of the copolymerized polypropylene is 5% to 15% of the mass of the powder in the base material of the film layer.
  • the copolymerization structural unit of the copolymerized polypropylene is ethylene or butene, and the molecular weight of the structural unit is 5% to 15% of the molecular weight of the molecular chain main chain structure of the copolymerized polypropylene.
  • the molecular weight of the structural unit is 8% to 12% of the molecular weight of the molecular chain main chain structure of the copolymerized polypropylene. Since the copolymerized polypropylene is obtained by copolymerization of ethylene or butene and propylene, it has a good interface effect and can improve the compatibility of each component in the film matrix.
  • the copolymerized polypropylene is a vinyl copolymerized polypropylene with a vinyl content of 8.6%, a molecular weight of about 250,000, and a melt index of 0.56.
  • the low melting point polyethylene has a lower melting point, and its melting point is lower than 130 ° C.
  • the temperature can be kept in a lower range, which can be beneficial to the formation of a wide closed-cell break with small pore size, high porosity, and wide The film substrate of the film temperature window.
  • the molecular weight of the low melting point polyethylene is higher than 300,000.
  • the surface-lipophilic nano-ceramics in the first melt and the second melt are both obtained by modifying the nano-ceramics with a silane coupling agent.
  • the nano-ceramic is selected from one or more of nano-alumina, nano-titanium oxide, nano-silicon oxide, nano-zirconia, and nano-zinc oxide. In some embodiments, the particle size of the nano-ceramic is 5 to 200 nm.
  • the silane coupling agent is selected from one or more of vinyltrimethoxysilane, methacryloxypropyltrimethoxysilane, and vinyltriethoxysilane.
  • surface modification is performed by dispersing the nano-ceramic particles in a silane coupling agent, followed by washing and drying to obtain lipophilic nano-ceramic particles.
  • the modification temperature is 40-100 ° C, and the modification time is 2-12 hours.
  • the surface area of the functional film layer and the film substrate layer is increased, which can make the combination of the functional film layer and the film substrate better, and at the same time increase the composite separator for electrolysis in lithium batteries. Adsorption of liquid, improve its liquid absorption and retention rate, and improve ionic conductivity. In addition, the modified nano-ceramics are more easily dispersed uniformly with other components because of their lipophilic properties.
  • first melt and the second melt are compounded and extruded to obtain a cast film; the cast film is biaxially stretched to extract paraffin oil.
  • the raw material of the functional film layer is melted and plasticized in an extruder to obtain a first melt
  • the first melt is transferred to a three-layer die through a melt pump, a filter, and a metering pump.
  • Middle runner The raw material of the film layer substrate is melted and plasticized in another extruder to obtain a second melt.
  • the second melt is transferred to the upper and lower flow channels of the three-layer die through a melt pump, a filter, and a metering pump. Controlling the melt flow of the upper and lower flow channels and the middle flow channels can adjust the thickness of the film substrate and the functional film layer. Then, a three-layer touch head is extruded and compounded to obtain a cast film.
  • the extrusion mass ratio of the first melt and the second melt is from 1: 9 to 9: 1. In some embodiments, the extrusion mass ratio of the first melt and the second melt is from 2: 8 to 8: 2. In some embodiments, the extrusion mass ratio of the first melt and the second melt is 4: 6 to 6: 4. In some embodiments, the thickness of the cast film is 1 to 2 mm. In some embodiments, the extrusion mass ratio of the first melt in the upper and lower runners is 1: 2 to 2: 1.
  • the number of layers of the composite membrane can be adjusted by replacing the die head. For example, when only two layers of film are needed, they can be replaced with two-layer dies, when four-layer dies are needed, they can be replaced with four-layer dies, and so on.
  • the cast film After the cast film is obtained, the cast film needs to be biaxially stretched to obtain a thin sample with a porous structure.
  • the biaxial stretching ratio is 2 to 10 times. In some embodiments, the multiple of the biaxial stretching is 4 to 8 times. It should be noted that biaxial stretching refers to lateral stretching and longitudinal stretching.
  • the cast film was biaxially stretched to extract paraffin oil.
  • the solvent used for extracting paraffin oil includes dichloromethane.
  • the cast film is dried and shaped to obtain a composite membrane.
  • the thickness of the composite separator is 5 to 60 ⁇ m
  • the porosity of the composite separator is 30 to 60%
  • the pore size of the composite separator is 10 to 300 nm.
  • the drying temperature is 50 to 90 ° C, and the drying time is 1 to 3 minutes; the setting treatment temperature is 90 to 120 ° C, and the processing time is 10 to 120s. In some embodiments, the drying temperature is 60 to 70 ° C, and the drying time is 1 to 3 minutes; the setting treatment temperature is 105 to 110 ° C, and the processing time is 30 to 80s.
  • a lithium-ion battery includes a positive electrode, a negative electrode, and the composite separator described above.
  • the composite separator is disposed between the positive electrode and the negative electrode. Because the composite separator has a good ability to absorb and retain liquid, the lithium ion battery can have a better ionic conductivity. Because the composite diaphragm has a smaller pore size, better porosity, and a wider closed-cell film breaking temperature window, that is, has a low closed-cell temperature and a high film-breaking temperature, it can quickly close the pores, has excellent comprehensive properties, and can increase Safety performance of lithium-ion batteries.
  • the embodiments of the present application do not specifically limit the types of the positive electrode, the negative electrode, and the electrolytic solution, and the types of the positive electrode, the negative electrode, and the electrolytic solution of the lithium ion battery known to those skilled in the art may be used.
  • the active material of the positive electrode includes, but is not limited to, one or more of LiFePO 4 , LiMn 2 O 4 , LiCoPO 2 and LiNiO 2 .
  • the negative electrode active material includes, but is not limited to, one or more of graphite, hard carbon, lithium titanate, and soft carbon.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.2 mm.
  • the biaxial stretching of the stretched film in the longitudinal and transverse directions was 7 and 8 times, respectively. Paraffin oil was dried at 70 ° C / 60s and shaped at 110 ° C / 30s to obtain a composite membrane with an average thickness of about 20 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are conveyed to the upper and lower flow channels of the three-layer die, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of approximately 1.3 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 60s and shaped at 105 ° C / 30s to obtain a composite membrane with an average thickness of about 22 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.1 mm.
  • the biaxial stretching of the stretched film in the longitudinal and transverse directions was 7 and 8 times, respectively. Paraffin oil was dried at 60 ° C / 60s and shaped at 105 ° C / 40s to obtain a composite membrane with an average thickness of about 19 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.4 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 60s and shaped at 105 ° C / 40s to obtain a composite membrane with an average thickness of about 25 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.5 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 60s and shaped at 105 ° C / 30s to obtain a composite membrane with an average thickness of about 30 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of approximately 1.3 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 60s and shaped at 105 ° C / 40s to obtain a composite membrane with an average thickness of about 22 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.4 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 60s and shaped at 105 ° C / 30s to obtain a composite membrane with an average thickness of about 25 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.5 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 70s and shaped at 108 ° C / 40s to obtain a composite membrane with an average thickness of about 30 ⁇ m.
  • alumina particles with an average particle size of 60 nm were dispersed in a 30 L ethanol solution, and the modified alumina particles were obtained by surface modification, washing, and drying.
  • the concentration of vinyltrimethoxysilane in the ethanol solution was 10%. .
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.5 mm.
  • the dichloromethane was extracted with dichloromethane. Paraffin oil was dried at 60 ° C / 70s and shaped at 105 ° C / 40s to obtain a composite membrane with an average thickness of about 30 ⁇ m.
  • titanium oxide particles having an average particle diameter of 40 nm were dispersed in 30 L of an ethanol solution, and surface modification, washing, and drying were performed to obtain modified titanium oxide particles.
  • the mass concentration of vinyltriethoxysilane in the ethanol solution was 10 %.
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt is compounded and extruded to obtain a cast film with a thickness of about 2 mm.
  • the paraffin oil in the stretched film is extracted with dichloromethane.
  • a composite separator having an average thickness of about 30 ⁇ m was obtained.
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the alkane is extruded to obtain a cast film with a thickness of about 1 mm.
  • the paraffin in the stretched film is extracted with dichloromethane.
  • the oil was dried at 70 ° C / 70s and shaped at 100 ° C / 40s to obtain a composite membrane having an average thickness of about 30 ⁇ m.
  • the modified nano zinc oxide particles are added to 26,400 g of polyethylene powder with an average molecular weight of 600,000, and then mixed with 70,000 g of paraffin oil into the first extruder.
  • the first extruder and the second extruder sufficiently melt and plasticize the materials, and the melt extrusion flow ratio of the two extruders is 2: 8.
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was extruded after compounding, and the dichloromethane obtained a cast film with a thickness of about 1.5 mm.
  • the biaxial stretching was carried out by longitudinal and transverse stretching magnifications of 4 and 8 times, respectively.
  • the paraffin oil in the film was dried at 90 ° C / 70s and shaped at 120 ° C / 40s to obtain a composite membrane with an average thickness of about 30 ⁇ m.
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was extruded after compounding, and the dichloromethane obtained a cast film with a thickness of about 1.5 mm.
  • the biaxial stretching was carried out by 6 and 8 times the longitudinal and transverse stretching magnifications, respectively.
  • the paraffin oil in the film was dried at 80 ° C / 70s and shaped at 110 ° C / 40s to obtain a composite membrane with an average thickness of about 30 ⁇ m.
  • the first extruder and the second extruder fully melt and plasticize the materials, and the melt extrusion flow ratio of the two extruders is 5: 5.
  • the melt of the first extruder is transferred to the intermediate flow path of the three-layer die through the first filter, the first melt pump, and the first metering pump.
  • the melt of the first extruder is passed through the second filter and the second melt.
  • the body pump and the second metering pump are delivered to the upper and lower flow channels of the three-layer die head, and the melt is evenly distributed to the upper and lower flow channels.
  • the melt was compounded and extruded to obtain a cast film with a thickness of about 1.2 mm.
  • the paraffin in the stretched film was extracted with dichloromethane.
  • the oil was dried at 60 ° C / 70s and shaped at 105 ° C / 40s to obtain a composite separator having an average thickness of about 20 ⁇ m.
  • the closed-cell temperature is the starting temperature when the internal resistance value starts to rise significantly; the film breaking temperature is the temperature when the resistance value returns to the measurement range of the resistance meter.
  • a composite diaphragm sample was selected to measure the average time required to pass 100 mL of gas.
  • the capillary flow meter is used for testing, that is, the inert gas is used to break through the wet composite diaphragm, the pressure value of the gas outflow is measured, and the pore diameter parameter can be obtained through calculation.
  • the composite membranes of Examples 1 to 9 are superior to the composite membranes of the liquid absorption and retention capacity, indicating that the composite membranes prepared by using the process and raw materials of the embodiments of the present application are prepared.
  • the average pore diameter of the composite membranes of Examples 1-9 is smaller than that of the comparative membranes, and the porosity of the composite membranes of Examples 1-9 is larger than that of the comparative membranes.
  • the obtained composite membrane has a smaller pore diameter and a higher porosity, and the composite membrane in the embodiment of the present application can achieve rapid closed pores.
  • the film breaking temperatures of the composite diaphragms of Examples 1-9 and the composite diaphragms of Comparative Examples it was found that the film breaking temperatures of the composite diaphragms of Examples 1, 5, and 7 are equal to the film breaking temperatures of the composite diaphragms of Comparative Examples.
  • the film-breaking temperature of the composite diaphragms of 2-4, 6, 8, and 9 were higher than the film-breaking temperature of the composite diaphragm of the comparative example, which illustrates that the composite diaphragm prepared by using the process and raw materials of the embodiments of the present application has a wide closure.
  • the temperature window of the hole breaking film is conducive to the rapid closing of the composite diaphragm.
  • the composite diaphragms of Examples 1-9 and Comparative Examples were tested under a scanning electron microscope.
  • the scanning electron microscope had a scale of 1 ⁇ m, a voltage of 10 KV, a working distance (WD) of 9.5 mm, and a magnification of 10 KX. Please refer to Figure 1 to Figure 10 for the test results.
  • Fig. 1-10 Please refer to Fig. 1-10.
  • Fig. 1-9 By comparing Fig. 1-9 and Fig. 10, it is found that the pore diameter of the composite diaphragm of Fig. 1-9 is smaller than that of Fig. 10, and the pore structure of Fig. 1-9 is smaller than that of Fig. 10
  • the pore structure is more uniform, which further illustrates that the composite diaphragm of the embodiment of the present application has a smaller pore diameter, which is beneficial to achieving fast closed pores.
  • the present invention provides a composite separator, a preparation method thereof, and a lithium battery including the composite separator.
  • the composite membrane provided by the embodiments of the present application has a higher liquid absorption and retention rate, a smaller average pore size, and a higher void ratio.
  • the composite membrane has excellent comprehensive performance, has great industrial value, and has a broad market prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

本申请提供了一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池。复合隔膜包括膜层基体和复合于膜层基体表面的功能性膜层,功能性膜层由表面亲油的纳米陶瓷、聚乙烯和致孔剂制备得到,膜层基体由表面亲油的纳米陶瓷与共聚型聚丙烯、低熔点聚乙烯、致孔剂制备得到。该复合隔膜吸液保液率较高、平均孔径较小、空隙率较高,该复合隔膜具有优异的综合性能,具有重大的工业价值和广阔的市场前景。

Description

一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池 技术领域
本申请涉及电池技术领域,具体而言,涉及一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池。
背景技术
锂离子电池在日常生活中有着举足轻重的作用。锂离子电池由于其能量密度高、循环寿命长、安全无公害、快速冲放电的性能,成为了众多便携电子设备和电动汽车的首选。作为锂离子电池的重要组成部分,锂离子电池隔膜受到越来越多的关注。隔膜的性能影响着锂离子电池的容量、安全性能以及循环性能,对锂离子电池的综合性能有决定性作用。
目前商品化的锂电池隔膜以聚烯烃单层薄膜或多层薄膜为主,但是聚烯烃隔膜与电解液的亲和性差,保液能力较差。
申请内容
本申请的目的在于提供一种复合隔膜,该复合隔膜吸液保液率较高、平均孔径较小、空隙率较高,从而使得复合隔膜具有优异的综合性能。
本申请的目的还包括提供一种复合隔膜的制备方法,该制备方法能制备得到品质较好的复合隔膜。
本申请的目的还包括提供一种锂离子电池,其包括上述的复合隔膜,其具有上述复合隔膜的各项优点。
为了实现上述目的中的至少一个目的,本申请提供如下技术方案:
一种复合隔膜,包括膜层基体和复合于膜层基体表面的功能性膜层,功能性膜层由表面亲油的纳米陶瓷、聚乙烯和致孔剂制备得到,膜层基体由表面亲油的纳米陶瓷与共聚型聚丙烯、低熔点聚乙烯、致孔剂制备得到。
一种如上述的复合隔膜的制备方法,包括:
将混合的表面亲油的纳米陶瓷、聚乙烯和致孔剂熔化、塑化得到第一熔体;
将混合的表面亲油的纳米陶瓷、共聚型聚丙烯、致孔剂和低熔点聚乙烯熔化、塑化得到第二熔体;
第一熔体与第二熔体复合后挤出得到流延膜;
对流延膜进行双向拉伸后将石蜡油萃取出来。
一种锂离子电池,包括正极、负极和上述的复合隔膜或上述的制备方法制备得到的复合隔膜。
本申请实施例提供一种复合隔膜及其制备方法以及具有该复合隔膜的锂离子电池的有益效果是:
复合隔膜中的膜层基体中引入了共聚型聚丙烯和低熔点聚乙烯,共聚型聚丙烯能够具有较好地界面效应,提高膜层基体中各组分的相容性;低熔点聚乙烯的熔点较低,在制备过程中,温度可保持在较低的范围,从而可以有利于形成孔径小、孔隙率高的膜层基体。另外,功能性膜层和膜层基体中均引入了表面亲油的纳米陶瓷,纳米陶瓷由于粒径较小,增大了功能性膜层与膜层基体层的表面积,能够使得功能性膜层与膜层基体之间的结合更好,同时能增加复合隔膜对锂电池中电解液的吸附,提高其吸液保液率,提高离子电导率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为第一实施例中提供的复合隔膜的扫描电子显微镜图谱;
图2为第二实施例中提供的复合隔膜的扫描电子显微镜图谱;
图3为第三实施例中提供的复合隔膜的扫描电子显微镜图谱;
图4为第四实施例中提供的复合隔膜的扫描电子显微镜图谱;
图5为第五实施例中提供的复合隔膜的扫描电子显微镜图谱;
图6为第六实施例中提供的复合隔膜的扫描电子显微镜图谱;
图7为第七实施例中提供的复合隔膜的扫描电子显微镜图谱;
图8为第八实施例中提供的复合隔膜的扫描电子显微镜图谱;
图9为第九实施例中提供的复合隔膜的扫描电子显微镜图谱;
图10为对比例中提供的复合隔膜的扫描电子显微镜图谱。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本实施方式提供一种复合隔膜,复合隔膜包括膜层基体和复合于膜层基体表面的功能性膜层,功能性膜层由表面亲油的纳米陶瓷、聚乙烯和致孔剂制备得到,膜层基体由表面亲油的纳米陶瓷与共聚型聚丙烯、低熔点聚乙烯、致孔剂制备得到。
复合隔膜中的膜层基体中引入了低熔点聚乙烯和共聚型聚丙烯,共聚型聚丙烯能够具有较好的界面效应,提高膜层基体中各组分的相容性;低熔点聚乙烯的熔点较低,在制备过程中,温度可保持在较低的范围,从而可以有利于形成孔径小、孔隙率高的膜层基体。另外,功能性膜层和膜层基体中均引入了表面亲油的纳米陶瓷,纳米陶瓷由于粒径较小,增大了功能性膜层与膜层基体层的表面积,能够使得功能性膜层与膜层基体之间的结合更好,同时能增加复合隔膜对锂电池中电解液的吸附,提高其吸液保液率,提高离子电导率。
需要说明的是,复合隔膜可以是膜层基体的一侧表面复合上功能性膜层,也可以是膜层基体的上下表面均复合上功能性膜层。其中,功能性膜层的层数和膜层基体的层数均可以根据需要进行制备。
在一些实施方式中,复合隔膜的制备方法包括:将混合的表面亲油的纳米陶瓷、聚乙烯和致孔剂熔化、塑化得到第一熔体。
其中,为了使得各组分熔化、塑化后得到的第一熔体是均匀地,先将表面亲油的纳米陶瓷和聚乙烯充分混合后再和致孔剂进行充分混合。其中,表面亲油的纳米陶瓷的质量为功能性膜层原料的粉料的质量的1%~12%。在一些实施方式中,表面亲油的纳米陶瓷的质量为功能性膜层原料的粉料的质量的3%~8%。
在本实施方式中,第一熔体中的致孔剂包括石蜡油,石蜡油被萃取后,可以形成稳定的孔结构。需要说明的是,由于石蜡油不属于粉料,这里的功能性膜层的粉料的质量即指的是表面亲油的纳米陶瓷和聚乙烯的质量之和。另外,在一些实施方式中,第一熔体中的聚乙烯包括高分子量聚乙烯或超高分子量聚乙烯。
进一步地,将混合的表面亲油的纳米陶瓷、共聚型聚丙烯和低熔点聚乙烯熔化、塑化得到 第二熔体。
同样地,为了使得各组分熔化、塑化后的第二熔体是均匀地,先将表面亲油的纳米陶瓷、共聚型聚丙烯和低熔点聚乙烯进行充分混合后与致孔剂充分混合。其中,表面亲油的纳米陶瓷的质量为膜层基体原料的粉料的质量的1%~12%。在一些实施方式中,表面亲油的纳米陶瓷的质量为膜层基体原料的粉料的质量的3%~8%。同样地,第二熔体中的致孔剂包括石蜡油,石蜡油被萃取后,可以形成稳定的孔结构。这里的膜层基体原料的粉料的质量即指的是表面亲油的纳米陶瓷、共聚型聚丙烯和低熔点聚乙烯的质量之和。
另外,共聚型聚丙烯的质量为膜层基体原料中粉料的质量的5%~15%。共聚型聚丙烯的共聚结构单元为乙烯或丁烯,结构单元的分子量为共聚型聚丙烯的分子链主链结构分子量的5%~15%。可选地,在一些实施方式中,结构单元的分子量为共聚型聚丙烯的分子链主链结构分子量的8%~12%。由于共聚型聚丙烯是由乙烯或丁烯加上丙烯进行共聚得到的,具有较好地界面效应,能够提高膜层基体中各组分的相容性。
在一些实施方式中,共聚型聚丙烯为乙烯基共聚聚丙烯,乙烯基含量8.6%,分子量约为25万,熔融指数为0.56。
其中,低熔点聚乙烯的熔点较低,其熔点低于130℃,在制备过程中,温度可保持在较低的范围,从而可以有利于形成孔径小、孔隙率高、较宽的闭孔破膜温度窗口的膜层基体。另外,低熔点聚乙烯的分子量高于30万。
需要说明的是,第一熔体和第二熔体中的表面亲油的纳米陶瓷均由硅烷偶联剂对纳米陶瓷进行改性得到的。
其中,纳米陶瓷选自纳米氧化铝、纳米氧化钛、纳米氧化硅、纳米氧化锆及纳米氧化锌中的一种或多种。在一些实施方式中,纳米陶瓷的颗粒尺寸为5~200nm。
硅烷偶联剂选自乙烯基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷和乙烯基三乙氧基硅烷中的一种或多种。
在一些实施方式中,通过将纳米陶瓷颗粒分散在硅烷偶联剂中进行表面改性,然后进行洗涤、干燥得到表面亲油的纳米陶瓷颗粒。在一些实施方式中,改性温度为40-100℃,改性时间为2~12h。
纳米陶瓷由于粒径较小,增大了功能性膜层与膜层基体层的表面积,能够使得功能性膜层与膜层基体之间的结合更好,同时能增加复合隔膜对锂电池中电解液的吸附,提高其吸液保液率,提高离子电导率。并且,改性后的纳米陶瓷由于具有亲油的性质,因而更加容易与其他组分分散均匀。
进一步地,将得到的第一熔体与第二熔体复合后挤出得到流延膜;对流延膜进行双向拉伸后将石蜡油萃取出来。
在一些实施方式中,功能性膜层的原料在挤出机中进行熔化、塑化得到第一熔体,第一熔体后经熔体泵、过滤器、计量泵输送到三层模头的中间流道。膜层基体的原料在另一台挤出机中进行熔化、塑化得到第二熔体,第二熔体经熔体泵、过滤器、计量泵输送到三层模头的上下流道,通过控制上下流道与中间流道的熔体流量,可调节膜层基体与功能性膜层的厚度。然后通过三层摸头挤出复合即可得到流延膜。
在一些实施方式中,第一熔体和第二熔体的挤出质量比为1:9~9:1。在一些实施方式中,第一熔体和第二熔体的挤出质量比为2:8~8:2。在一些实施方式中,第一熔体和第二熔体的挤出质量比为4:6~6:4在一些实施方式中,流延膜的厚度为1~2mm。在一些实施方式中,第一熔体在上下流道的挤出质量比为1:2~2:1。
需要说明的是,根据对复合隔膜的不同的层数需要,可通过替换模头来进行调整复合隔膜的层数。例如,当只需要两层膜时,可替换成二层模头,当需要4层模时,可替换成四层模头 以此类推。
在得到流延膜后还需要对流延膜进行双向拉伸,可得到多孔结构的薄化样品。其中,双向拉伸的倍数为2~10倍。在一些实施方式中,双向拉伸的倍数为4~8倍。另外,需要说明的是,双向拉伸指的是横向拉伸和纵向拉伸。
对流延膜进行双向拉伸后将石蜡油萃取出来。其中,萃取石蜡油所用的溶剂包括二氯甲烷。将石蜡油萃取出来后,度流延膜进行干燥定型即可得到复合隔膜。其中,复合隔膜的厚度为5~60μm,复合隔膜的孔隙率为30~60%,复合隔膜的孔径尺寸为10~300nm。
在一些实施方式中,干燥温度为50~90℃,干燥时间为1~3min;定型处理温度为90-120℃,处理时间为10~120s。在一些实施方式中,干燥温度为60~70℃,干燥时间为1~3min;定型处理温度为105-110℃,处理时间为30~80s。
一种锂离子电池,包括正极、负极和上述的复合隔膜。
其中,复合隔膜设置在正极与负极之间。由于复合隔膜具有较好地吸液保液能力,因而能使得锂离子电池具有较好地离子电导率。由于复合隔膜具有较小的孔径、较好地孔隙率以及较宽的闭孔破膜温度窗口,即具有低闭孔温度、高破膜温度,能够快速闭孔,具有优异的综合性能,能够增加锂离子电池的安全性能。
需要说明的是,本申请实施方式对正极、负极和电解液的种类并没有特殊限制,本领域技术人员公知的锂离子电池正极、负极以及电解液的种类即可。
在本申请的实施方式中,正极的活性物质包括但不限于LiFePO 4、LiMn 2O 4、LiCoPO 2和LiNiO 2中的一种或多种。负极活性物质包括但不限于石墨、硬碳、钛酸锂和软碳中的一种或多种。
以下结合实施例对本申请的特征和性能作进一步的详细描述:
第一实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第二挤出机。第一挤出机和第二挤出机对物料进行充分熔融、塑化,并使得两台挤出机熔体挤出流量相同。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.2mm的流延膜,经纵向和横向拉伸倍率分别为7倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经70℃/60s干燥和110℃/30s定型,获得平均厚度约为20μm的复合隔膜。
第二实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为6:4。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、 下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.3mm的流延膜,经纵向和横向拉伸倍率分别为7倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/60s干燥和105℃/30s定型,获得平均厚度约为22μm的复合隔膜。
第三实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为4:6。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.1mm的流延膜,经纵向和横向拉伸倍率分别为7倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/60s干燥和105℃/40s定型,获得平均厚度约为19μm的复合隔膜。
第四实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为3:7。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.4mm的流延膜,经纵向和横向拉伸倍率分别为7倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/60s干燥和105℃/40s定型,获得平均厚度约为25μm的复合隔膜。
第五实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为7:3。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.5mm的流延膜,经纵向和横向拉伸倍率分别为6倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/60s干燥和105℃/30s定型,获得平均厚度约为30μm的复合隔膜。
第六实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为2:8。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.3mm的流延膜,经纵向和横向拉伸倍率分别为7倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/60s干燥和105℃/40s定型,获得平均厚度约为22μm的复合隔膜。
第七实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为8:2。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.4mm的流延膜,经纵向和横向拉伸倍率分别为7倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/60s干燥和105℃/30s定型,获得平均厚度约为25μm的复合隔膜。
第八实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量相同。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.5mm的流延膜,经纵向和横向拉伸倍率分别为6倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/70s干燥和108℃/40s定型,获得平均厚度约为30μm的复合隔膜。
第九实施例
将2500g平均粒径为60nm的氧化铝颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化铝颗粒,其中,乙醇溶液中的乙烯基三甲氧基硅烷质量浓度为10%。将2000g乙烯结构单元含量为7.8%的共聚型聚丙烯粉末、1000g改性后氧化铝颗粒与27000g分子量 为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将1500g改性后纳米氧化铝颗粒加入到28500g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为4:6。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,得到厚度约为1.5mm的流延膜,经纵向和横向拉伸倍率分别为6倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/70s干燥和105℃/40s定型,获得平均厚度约为30μm的复合隔膜。
第十实施例
将2500g平均粒径为40nm的氧化钛颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化钛颗粒,其中,乙醇溶液中的乙烯基三乙氧基硅烷质量浓度为10%。将1500g乙烯结构单元含量为5%的共聚型聚丙烯粉末、1500g改性后氧化钛颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将2400g改性后纳米氧化钛颗粒加入到27600g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为1:9。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出得到厚度约为2mm的流延膜,经纵向和横向拉伸倍率分别为4倍和10倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经50℃/70s干燥和90℃/40s定型,获得平均厚度约为30μm的复合隔膜。
第十一实施例
将2500g平均粒径为40nm的氧化硅颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化硅颗粒,其中,乙醇溶液中的乙烯基三乙氧基硅烷质量浓度为10%。将2700g乙烯结构单元含量为5%的共聚型聚丙烯粉末、300g改性后氧化硅颗粒与27000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将900g改性后纳米氧化硅颗粒加入到29100g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为3:7。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出烷得到厚度约为1mm的流延膜,经纵向和横向拉伸倍率分别为2倍和6倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经70℃/70s干燥和100℃/40s定型,获得平均厚度约为30μm的复合隔膜。
第十二实施例
将2500g平均粒径为40nm的氧化锌颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化锌颗粒,其中,乙醇溶液中的甲基丙烯酰氧基丙基三甲氧基硅烷质量浓度为10%。将4800g丁烯结构单元含量为15%的共聚型聚丙烯粉末、3200g改性后氧化锌颗粒与32000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将3600g改性后纳米氧化锌颗粒加入到26400g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为2:8。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵 输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,二氯甲烷得到厚度约为1.5mm的流延膜,经纵向和横向拉伸倍率分别为4倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经90℃/70s干燥和120℃/40s定型,获得平均厚度约为30μm的复合隔膜。
第十三实施例
将2500g平均粒径为40nm的氧化锆颗粒分散在30L的乙醇溶液中进行表面改性、洗涤及干燥得到改性氧化硅颗粒,其中,乙醇溶液中的乙烯基三乙氧基硅烷质量浓度为10%。将6000g乙烯结构单元含量为10%的共聚型聚丙烯粉末、2000g改性后氧化锆颗粒与32000g分子量为100万的低熔点聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;之后将3600g改性后纳米氧化锆颗粒加入到26400g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为2:8。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出,二氯甲烷得到厚度约为1.5mm的流延膜,经纵向和横向拉伸倍率分别为6倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经80℃/70s干燥和110℃/40s定型,获得平均厚度约为30μm的复合隔膜。
对比例
将30000g分子量为100万的聚乙烯粉末混匀,再与70000g石蜡油投入第一挤出机;将30000g平均分子量为60万的聚乙烯粉末中混匀,再与70000g石蜡油投入第一挤出机。第一挤出机和第二挤出机对物料进行充分熔融塑化,并使得两台挤出机熔体挤出流量比为5:5。第一挤出机熔体经第一过滤器、第一熔体泵、第一计量泵输送到三层模头的中间流道,第一挤出机熔体经第二过滤器、第二熔体泵、第二计量泵输送到三层模头的上、下层流道,熔体平均分配到上、下流道。熔体经复合后被挤出得到厚度约为1.2mm的流延膜,经纵向和横向拉伸倍率分别为6倍和8倍的双向拉伸,再用二氯甲烷萃取拉伸膜中的石蜡油,经60℃/70s干燥和105℃/40s定型,获得平均厚度约为20μm的复合隔膜。
试验例
1.对实施例1-9和对比例制备得到的复合隔膜的闭孔温度、破膜温度、透气率、平均孔径、孔隙率、吸液能力和保液能力、纵向拉伸强度和横向拉伸强度进行测试,其结果如表1和表2所示。
(1)闭孔温度和破膜温度的测试方法:
裁取尺寸为50mm×50mm的复合隔膜密封于装有电解液的模具中,将装有复合隔膜样品的模具放入烘箱中,设置烘箱的温度为200℃,按照5℃/min的速率升温,记录升温过程中磨具中内阻随温度的变化值。其中,闭孔温度为内阻值开始发生明显上升时的起始温度;破膜温度为电阻值回到电阻仪测量范围时的温度。
(2)透气率的测试方法:
选取复合隔膜样品测量透过100mL气体所需的平均时间。
(3)平均孔径和孔隙率的测试方法:
采用毛细管流动仪进行测试,即采用惰性气体冲破已润湿的复合隔膜,测量气体流出的压力值,通过计算可得到孔径参数。
(4)吸液和保液能力的测试方法:
裁取150mm×150mm的复合隔膜样品,将样品做好标记并称重m1,将复合隔膜样品浸泡入电解液中1h,将样品取出,将复合隔膜表面的电解液擦拭干净纸质肉眼看不到颗粒状的电解液为止。称重擦干后的复合隔膜样品重量m2,将称重后的复合隔膜平铺展开,称量其重量m3。其中,吸液率=(m2-m1)/m1*100%;保液率=(m3-m1)/m1*100%。
(5)纵向拉伸强度和横向拉伸强度的测试方法:
裁取150mm×15mm的复合隔膜样品5个,使用电子万能拉力试验机对其进行纵向和横向的拉伸强度测量,实验完成后取测量值的平均值。
表1实施例1-9和对比例的复合隔膜的各项性能测试
Figure PCTCN2018094165-appb-000001
从表1的结果可以看出,实施例1-9的复合隔膜的吸液能力和保液能力均优于对比例的复合隔膜,说明了利用本申请实施例的工艺、原料制备得到的复合隔膜具有较好的吸液能力和保液能力。另外,实施例1-9的复合隔膜的平均孔径小于对比例的复合隔膜,实施例1-9的复合隔膜的孔隙率大于对比例的复合隔膜,说明了利用本申请实施例的工艺、原料制备得到的复合隔膜具有较小的孔径和较高的孔隙率,本申请实施例的复合隔膜能够实现快速闭孔。通过对比实施例1-9的复合隔膜与对比例的复合隔膜的破膜温度发现,实施例1、5、7的复合隔膜的破膜温度与对比例的复合隔膜的破膜温度相等,实施例2-4、6、8、9的复合隔膜的破膜温度均高于对比例的复合隔膜的破膜温度,说明了利用本申请实施例的工艺、原料制备得到的复合隔膜具有较宽的闭孔破膜温度窗口,有利于复合隔膜快速闭口。
2.对实施例1-9和对比例的复合隔膜在扫描电子显微镜下进行测试,其中,扫描电子显微镜的标尺为1μm,电压为10KV,工作距离(WD)为9.5mm,放大倍数为10KX。其测试结果 请参照图1-图10。
结果分析:请参照图1-10,通过对比图1-9和图10发现,图1-9的复合隔膜的孔径小于图10的复合隔膜的孔径,且图1-9的孔结构比图10的孔结构更加均匀,进一步说明了本申请实施例的复合隔膜具有较小的孔径,有利于实现快速闭孔。
尽管已用具体实施例来说明和描述了本申请,然而应意识到,在不背离本申请的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本申请范围内的所有这些变化和修改。
工业实用性
本申请提供的一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池。本申请实施例提供的复合隔膜吸液保液率较高、平均孔径较小、空隙率较高,该复合隔膜具有优异的综合性能,具有重大的工业价值和广阔的市场前景。

Claims (25)

  1. 一种复合隔膜,其特征在于,包括膜层基体和复合于所述膜层基体表面的功能性膜层,所述功能性膜层由表面亲油的纳米陶瓷、聚乙烯和致孔剂制备得到,所述膜层基体由表面亲油的纳米陶瓷与共聚型聚丙烯、低熔点聚乙烯、致孔剂制备得到。
  2. 根据权利要求1所述的复合隔膜,其特征在于,所述表面亲油的纳米陶瓷由硅烷偶联剂对纳米陶瓷进行表面改性得到。
  3. 根据权利要求2所述的复合隔膜,其特征在于,所述硅烷偶联剂选自乙烯基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷和乙烯基三乙氧基硅烷中的一种或多种。
  4. 根据权利要求2所述的复合隔膜,其特征在于,所述纳米陶瓷选自纳米氧化铝、纳米氧化钛、纳米氧化硅、纳米氧化锆及纳米氧化锌中的一种或多种。
  5. 根据权利要求2或4所述的复合隔膜,其特征在于,所述纳米陶瓷的颗粒尺寸为5~200nm。
  6. 根据权利要求1-4任一项所述的复合隔膜,其特征在于,所述功能性膜层中的所述聚乙烯包括高分子量聚乙烯。
  7. 根据权利要求1-4任一项所述的复合隔膜,其特征在于,所述致孔剂包括石蜡油。
  8. 根据权利要求1-4任一项所述的复合隔膜,其特征在于,所述共聚型聚丙烯的共聚结构单元为乙烯或丁烯,所述结构单元的分子量为所述共聚型聚丙烯的分子链主链结构分子量的5%~15%。
  9. 根据权利要求1所述的复合隔膜,其特征在于,所述的低熔点聚乙烯的分子量高于30万、熔点低于130℃。
  10. 根据权利要求1或8所述的复合隔膜,其特征在于,所述共聚型聚丙烯的质量为所述膜层基体原料中粉料的质量的5%~15%。
  11. 根据权利要求10所述的复合隔膜,其特征在于,所述共聚型聚丙烯的质量为所述膜层基体原料中粉料的质量的8%~12%。
  12. 根据权利要求1、2或4所述的复合隔膜,其特征在于,所述膜层基体的所述表面亲油的纳米陶瓷的质量为所述膜层基体原料中粉料的质量的1%~12%。
  13. 根据权利要求12所述的复合隔膜,其特征在于,所述膜层基体的所述表面亲油的纳米陶瓷的质量为所述膜层基体原料中粉料的质量的3%~8%。
  14. 根据权利要求1、2或4所述的复合隔膜,其特征在于,所述功能性膜层的所述表面亲油的纳米陶瓷的质量为所述膜层基体原料中粉料的质量的1%~12%。
  15. 根据权利要求14所述的复合隔膜,其特征在于,所述功能性膜层的所述表面亲油的纳米陶瓷的质量为所述膜层基体原料中粉料的质量的3%~8%。
  16. 根据权利要求1-15任一项所述的复合隔膜,其特征在于,所述复合隔膜的厚度为5~60μm。
  17. 根据权利要求1-16任一项所述的复合隔膜,其特征在于,所述功能性膜层复合于所述膜层基体的上下表面。
  18. 一种如权利要求1-17任一项所述的复合隔膜的制备方法,其特征在于,包括:
    将混合的所述表面亲油的纳米陶瓷、所述聚乙烯和所述致孔剂熔化、塑化得到第一熔体;
    将混合的所述表面亲油的纳米陶瓷、所述共聚型聚丙烯、所述致孔剂和所述低熔点聚乙烯熔化、塑化得到第二熔体;
    所述第一熔体与所述第二熔体复合后挤出得到流延膜;
    对所述流延膜进行双向拉伸后将所述石蜡油萃取出来。
  19. 根据权利要求18所述的复合隔膜的制备方法,其特征在于,萃取所述石蜡油所用的溶剂包括二氯甲烷。
  20. 根据权利要求18所述的复合隔膜的制备方法,其特征在于,所述双向拉伸的拉伸倍率为2~10倍。
  21. 根据权利要求18所述的复合隔膜的制备方法,其特征在于,所述第一熔体和所述第二熔体的挤出质量比为1:9~9:1。
  22. 根据权利要求18所述的复合隔膜的制备方法,其特征在于,所述流延膜的厚度为1~2mm。
  23. 根据权利要求18所述的复合隔膜的制备方法,其特征在于,将所述石蜡油萃取出来后,还包括:将所述流延膜进行干燥定型。
  24. 根据权利要求23所述的复合隔膜的制备方法,其特征在于,所述干燥温度为50~90℃,所述定型处理温度为90-12℃。
  25. 一种锂离子电池,其特征在于,包括正极、负极和权利要求1-17任一项所述的复合隔膜或权利要求18-24任一项所述的制备方法制备得到的复合隔膜。
PCT/CN2018/094165 2018-07-03 2018-07-03 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池 WO2020006671A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000769.XA CN111630686A (zh) 2018-07-03 2018-07-03 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池
PCT/CN2018/094165 WO2020006671A1 (zh) 2018-07-03 2018-07-03 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094165 WO2020006671A1 (zh) 2018-07-03 2018-07-03 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池

Publications (1)

Publication Number Publication Date
WO2020006671A1 true WO2020006671A1 (zh) 2020-01-09

Family

ID=69060009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094165 WO2020006671A1 (zh) 2018-07-03 2018-07-03 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池

Country Status (2)

Country Link
CN (1) CN111630686A (zh)
WO (1) WO2020006671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122623A (zh) * 2020-08-31 2022-03-01 青岛蓝科途膜材料有限公司 一种锂离子电池隔膜、其制备方法及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393853B (zh) * 2021-12-24 2024-04-09 武汉中兴创新材料技术有限公司 一种聚丙烯微孔膜的制备方法、聚丙烯微孔膜及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN104538576A (zh) * 2014-12-17 2015-04-22 毛赢超 一种锂离子电池用改性陶瓷隔膜及制备方法
CN108189499A (zh) * 2017-12-14 2018-06-22 深圳市星源材质科技股份有限公司 一种多层复合膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897329A (zh) * 2005-09-20 2007-01-17 上海盛超自动化科技有限公司 锂离子电池用聚烯微多孔多层隔膜及其制造方法
CN104157810B (zh) * 2013-05-15 2017-02-08 比亚迪股份有限公司 一种隔膜、其制备方法及一种锂离子电池
CN103956451B (zh) * 2014-05-16 2017-01-04 中国东方电气集团有限公司 一种锂离子电池用复合陶瓷隔膜及其制备方法
CN104617248A (zh) * 2015-02-09 2015-05-13 刘会会 纳米陶瓷颗粒掺杂pe隔膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN104538576A (zh) * 2014-12-17 2015-04-22 毛赢超 一种锂离子电池用改性陶瓷隔膜及制备方法
CN108189499A (zh) * 2017-12-14 2018-06-22 深圳市星源材质科技股份有限公司 一种多层复合膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122623A (zh) * 2020-08-31 2022-03-01 青岛蓝科途膜材料有限公司 一种锂离子电池隔膜、其制备方法及其应用

Also Published As

Publication number Publication date
CN111630686A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
US7618743B2 (en) Microporous polyolefin film
CA2810168C (en) Porous membrane and method for manufacturing the same
KR100885360B1 (ko) 폴리올레핀 미다공막 및 축전지용 세퍼레이터
WO2016034019A1 (zh) 水性的聚合物和无机纳米粒子复合的锂电池隔膜及其制备方法
CN104409674B (zh) 复合隔膜材料及其制备方法与应用
CN114361715A (zh) 用于锂离子电池的涂布液、锂离子电池隔膜和锂离子电池
CN108039443B (zh) 一种锂电池用复合隔膜及其制备方法
CN108189499B (zh) 一种多层复合膜及其制备方法
KR20200061575A (ko) 무기 코팅 분리막 및 그 제조방법
KR101301595B1 (ko) 미세 다공성 세라믹 코팅 분리막 및 그 제조방법
JPWO2006038532A1 (ja) ポリオレフィン微多孔膜
WO2012061963A1 (zh) 多孔膜及其制备方法
WO2009136648A1 (ja) 高出力密度リチウムイオン二次電池用セパレータ
CN105762317A (zh) 一种水溶性聚合物辅助的无机复合隔膜的制备方法
US20230120595A1 (en) Composition, composite separator and preparation method therefor, and lithium ion battery
TW201942219A (zh) 芳香族聚醯胺微孔膜及其製備方法和用途
KR20170045438A (ko) 이차전지용 전극 접착성 코팅 분리막 및 그 제조 방법
JP2012131990A (ja) 蓄電デバイス用セパレータ
WO2020006671A1 (zh) 一种复合隔膜及其制备方法以及包括该复合隔膜的锂电池
CN113013552A (zh) 一种电池隔膜及其制备方法
JP2018141029A (ja) ポリオレフィン微多孔膜
KR20160088973A (ko) 미세 다공성 코팅 분리막 및 그 제조방법
KR20200061576A (ko) 접착성 분리막 및 그 제조방법
JP2003231772A (ja) ポリオレフィン製微多孔膜
WO2022052469A1 (zh) 一种聚烯烃微多孔膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925115

Country of ref document: EP

Kind code of ref document: A1