WO2020000596A1 - 用于太阳能芯片组件的透光处理***和透光处理方法 - Google Patents

用于太阳能芯片组件的透光处理***和透光处理方法 Download PDF

Info

Publication number
WO2020000596A1
WO2020000596A1 PCT/CN2018/100683 CN2018100683W WO2020000596A1 WO 2020000596 A1 WO2020000596 A1 WO 2020000596A1 CN 2018100683 W CN2018100683 W CN 2018100683W WO 2020000596 A1 WO2020000596 A1 WO 2020000596A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
chip
chip component
light transmission
transmission processing
Prior art date
Application number
PCT/CN2018/100683
Other languages
English (en)
French (fr)
Inventor
史庆稳
高军召
林健
苏青峰
林俊荣
王宏
姜威
吕河江
沙振华
魏垚
冯俊
Original Assignee
北京铂阳顶荣光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810678615.8A external-priority patent/CN108878586A/zh
Priority claimed from CN201810679387.6A external-priority patent/CN108878587A/zh
Application filed by 北京铂阳顶荣光伏科技有限公司 filed Critical 北京铂阳顶荣光伏科技有限公司
Publication of WO2020000596A1 publication Critical patent/WO2020000596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/02Manually-operable devices
    • B41F15/06Manually-operable devices with auxiliary equipment, e.g. for drying printed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present disclosure relates to the field of solar photovoltaic power generation, and in particular, to a light transmission processing system and a light transmission processing method for a solar chip component.
  • a solar power generation system or photovoltaic power generation system, is a system that uses solar cells to generate a DC voltage through the photovoltaic effect, converts solar radiation energy into electrical energy, and then generates electricity.
  • solar power generation systems have gained more and more opportunities for development.
  • BAPV systems Building Attached Photovoltaic, solar power systems attached to buildings
  • BIPV systems Building Integrated Photovoltaic, solar power systems integrated with buildings
  • the BIPV system itself can replace building materials such as curtain walls and roofs, and can integrate solar power generation systems into the building itself. It will not affect the function of the house, ensure the aesthetic appearance of the building, and improve the overall power generation efficiency of the system.
  • BAPV systems Building Attached Photovoltaic, solar power systems attached to buildings
  • BIPV systems Building Integrated Photovoltaic, solar power systems integrated with buildings
  • the light-transmitting solar chip components currently used in BIPV systems are usually prepared by laser scribing.
  • the disadvantages of this process are that the equipment is expensive, the process is complex, the processing takes a long time, the transmission size is small, and because the irradiation temperature is high, it is easy to damage the chip layer that does not need to be removed.
  • light-transmissive solar chip components can also be prepared by using special transparent chip layers and electrode layers.
  • this preparation process has the problems of high cost and poor light transmission effect of the manufactured components. The lack of the above-mentioned preparation process has affected the development of BIPV system and other technologies using solar chip components.
  • the present disclosure provides a light transmission processing system and a light transmission processing method for a solar chip component (also referred to as a photovoltaic chip component).
  • a light transmission processing system for light transmission processing of a solar chip component.
  • the light transmission processing system includes:
  • An ink printing unit is configured to print a set pattern on an upper surface of a chip component with ultraviolet (UV) light ink, so that a UV ink layer is formed on the upper surface of the chip component and covered by the pattern.
  • the chip component includes a transparent substrate and a chip layer stacked on an upper surface of the transparent substrate;
  • a curing unit configured to cure the UV ink printed on the chip component with UV light to form a UV ink protective film
  • the layer removing unit is configured to remove a portion of the chip layer corresponding to the hollowed-out area, so that a portion of the transparent substrate corresponding to the hollowed-out area is exposed.
  • the UV light ink refers to an ink containing a photopolymerization prepolymer, an initiator, a colorant, and an auxiliary agent.
  • abrasion-resistant fillers such as borax, bentonite, and silica are contained in the UV light ink.
  • the light transmission processing system further includes a transmission line configured to sequentially transmit the chip component through the ink printing unit, the curing unit, and the delamination unit.
  • the delayering unit includes a sandblasting device configured to perform a sandblasting treatment on an upper surface of the chip assembly on which the UV ink protective film is formed to remove the sandblasting device. A portion of the chip layer corresponding to the hollowed-out area.
  • the diameter of the nozzle of the sandblasting device is 6-9 mm, and preferably 8 mm.
  • the ink printing unit includes a screen printing apparatus that uses a polyester screen as a screen.
  • the screen printing device prints the pattern of the UV ink by one-time printing and forming.
  • the thickness of the printed UV ink pattern is 60 ⁇ m to 70 ⁇ m.
  • the thickness of the printed UV ink pattern is 30 ⁇ m to 60 ⁇ m.
  • the ink printing unit includes a CCD image positioning device configured to position the screen plate and the chip component.
  • the light transmission processing system further includes a chemical cleaning unit configured to perform chemical cleaning on the chip component processed by the delayering unit to remove the chip component.
  • the chemical cleaning unit uses a KOH or NaOH solution having a concentration (wt%) of 0.3% to 0.5% to remove the UV cleaning ink, and removes the UV.
  • the time for removing the ink protective film is 120 to 130 seconds.
  • the chemical cleaning unit includes an air-drying device.
  • the curing unit includes a UV-curable mercury lamp having a light intensity of 800 mJ / cm 2 to 1500 mJ / cm 2 .
  • a light transmission processing method for a solar chip component includes the following steps:
  • the chip component includes a transparent substrate and a chip layer stacked on an upper surface of the transparent substrate;
  • the step c includes: sandblasting an upper surface of the chip component on which the UV ink protection film is formed to remove the chip layer corresponding to the hollowed-out area. section.
  • the blasting particles used for the blasting treatment are 300 to 350 mesh white corundum, the blasting pressure is 3 to 4 bar, and the blasting equipment for performing the blasting treatment
  • the diameter of the nozzle is 8mm.
  • the sandblasted particles are 320 mesh white corundum.
  • the step c includes: spraying an etchant on a portion of the upper surface of the chip component corresponding to the hollowed-out area to remove a portion of the chip layer corresponding to the hollowed-out area.
  • the light transmission processing method further includes: chemically cleaning the chip component to remove the UV ink protective film formed on the chip component.
  • the chemical cleaning reagent used to remove the UV ink protection film is a KOH concentration of 0.3% to 0.5% or a NaOH solution of 0.3% to 0.5%, and the UV ink protection film is removed. Stripping time is 120 seconds to 130 seconds. In addition, the temperature at which the UV ink protective film is removed may be about 30 ° C.
  • the step of chemically cleaning the chip component to remove the UV ink protection film formed on the chip component includes: cleaning and removing the chip component from the chip component. Allow to air dry.
  • the step of curing the UV ink printed on the chip component with UV light to form a UV ink protective film includes: using a light intensity of 800 mJ / cm 2 to 1500 mJ / The UV ink of cm 2 cures the UV ink, and the curing time is 30 seconds to 90 seconds.
  • the light source of the UV light and the UV is 1 mm to 200 mm.
  • a distance between a light source of the UV light and an upper surface of the UV ink layer is 5 mm to 100 mm.
  • the step of printing a set pattern on the upper surface of the chip component by using UV ink includes: using screen printing technology, using a polyester screen as a screen, and forming it in one printing A pattern of the UV ink is printed, and a thickness of the printed pattern of the UV ink is 60 ⁇ m to 70 ⁇ m.
  • the method before the step of printing a set pattern on the upper surface of the chip component with UV ink, the method further includes: using a CCD image positioning device to register the screen and the chip with The component is positioned.
  • the light-transmitting processing system and the light-transmitting processing method for solar chip components provided by the present disclosure can quickly and accurately form a UV ink protective film having a desired pattern by using a combination of ink printing and UV light curing; and using UV inks
  • the protective film has excellent anti-removal performance, and can protect the part of the chip layer covered by the UV ink protective film from being removed. Therefore, the light-transmitting process with the desired light-transmitting pattern, light transmittance, light-transmitting effect, and light-transmitting size can be implemented on the chip component quickly, conveniently, and at low cost by using the present disclosure.
  • FIG. 1 is a schematic cross-sectional view of a chip component to be subjected to light transmission processing
  • FIG. 2 is a schematic diagram of a light transmission processing system for a solar chip component according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a chip assembly printed with a pattern of UV ink according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of a chip assembly having a UV ink protective film formed according to an embodiment of the present disclosure
  • FIG. 5 is a schematic cross-sectional view of a chip component after de-layering according to an embodiment of the present disclosure
  • FIG. 6 is an exemplary structural block diagram of an ink printing unit according to an embodiment of the present disclosure.
  • FIG. 7 is an exemplary structural block diagram of a layer removal unit provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a light transmission processing system for a solar chip component according to an embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view of a chip assembly after cleaning and stripping according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view of a light-transmitting solar double-glass chip component manufactured by using a light-transmitting processing system provided by an embodiment of the present disclosure
  • FIG. 11 is a plan view of a standard solar chip module
  • FIG. 12 is a plan view of a light-transmitting solar chip component manufactured by using a light-transmitting processing system and a light-transmitting processing method provided by embodiments of the present disclosure.
  • FIG. 13 is a flowchart of a light transmission processing method for a solar chip component according to an embodiment of the present disclosure.
  • first, second, etc. are used for descriptive purposes only, and should not be interpreted as indicating or suggesting relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined by “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, unless otherwise stated, "a plurality" means two or more.
  • FIG. 1 is a schematic cross-sectional view of a chip component to be subjected to light transmission processing.
  • the chip component to be processed for light transmission may also be referred to as a standard chip component, which mainly includes a transparent substrate 101 and a chip layer 100 stacked on the upper surface of the transparent substrate 101.
  • the transparent substrate 101 is generally made of glass (such as tempered glass), but may be made of other transparent materials such as crystal.
  • the chip layer 100 may also be referred to as a power generation film layer group.
  • solar cells can include crystalline silicon (including single crystal silicon, polycrystalline silicon), amorphous / single crystal heterojunction (HIT), amorphous silicon films, cadmium telluride (CdTe) films, and copper indium selenium (CIS). Since the chip layer 100 may have various structures, this disclosure does not specifically limit this.
  • the chip layer includes a first layer 102, a second layer 103, and a third layer 104 which are sequentially stacked on the transparent substrate 101.
  • the first layer 102 is a front electrode layer
  • the second layer 103 is an absorption layer
  • the third layer 104 is a transparent conductive layer.
  • the first layer 102 is a molybdenum layer
  • the second layer 103 is an indium gallium selenium (CIGS) layer
  • the third layer 104 is a transparent conductive (TCO) layer
  • the CIGS layer 103 is made of Cu ( A chalcopyrite crystal thin film layer composed of four elements: copper), In (indium), Ga (gallium), and Se (selenium).
  • the TCO layer 104 is a transparent conductive oxide film (Transparent Conductive Oxide).
  • the first layer 102 is a ZnO (zinc oxide) front electrode layer
  • the second layer 103 is a thin-film photoelectric conversion layer
  • the third layer 104 is a ZnO back electrode layer.
  • the number of layers included in the chip layer 100 may be one, two, or more than three.
  • the chip layer includes a back electrode layer, a light absorption layer, a TCO window layer, and a gate line electrode layer which are sequentially arranged; in another optional example, the chip layer includes an n-type silicon layer, An n-type amorphous silicon layer and a p-type amorphous silicon layer on both sides of the n-type silicon, a transparent conductive layer on one side of the n-type amorphous silicon layer and a p-type amorphous silicon layer, respectively, and a back electrode and a positive electrode .
  • the chip layer 100 is opaque as a whole. Therefore, the chip component before the translucent treatment is opaque as a whole. A part of the chip layer 100 needs to be removed according to a set pattern to prepare a light transmission having a light transmission pattern.
  • Solar chip components are opaque as a whole. Therefore, the chip component before the translucent treatment is opaque as a whole. A part of the chip
  • FIG. 2 is a schematic diagram of a light transmission processing system for a solar chip component according to an embodiment of the present disclosure.
  • the light transmission processing system of this embodiment includes an ink printing unit 10, a curing unit 20, and a layer removing unit 30.
  • the ink printing unit 10 is configured to print a set pattern on the upper surface of the chip component with UV ink, so that a UV ink layer 105 is formed on the upper surface of the chip component and covered by the pattern.
  • the hollow areas 108 are formed on the surface not covered by the pattern.
  • the chip assembly includes a transparent substrate 101 and a chip layer 100 stacked on an upper surface of the transparent substrate 101. A portion of the upper surface of the chip layer 100 corresponding to the hollow area 108 is exposed.
  • FIG. 3 is a schematic cross-sectional view of a chip assembly printed with a pattern of UV ink of this embodiment. As shown in FIG. 3, the pattern (UV ink layer) 105 of the UV ink printed by the ink printing unit 10 is placed on the chip layer 100 and covers a part of the chip layer 100.
  • the pattern 105 printed on the upper surface of the chip component by the ink printing unit 10 may be scattered dots, stripes, grids, or various other regular or irregular patterns, which are not limited in the present disclosure. In practice, you can freely design or select the required pattern according to various factors such as architectural aesthetics, light transmission requirements, and light transmission effect requirements.
  • the size of the chip component is 1190 mm ⁇ 790 mm, and the size of the pattern 105 of the UV ink is also this size or slightly smaller than this size.
  • the pattern of the printed UV ink is complementary to the pattern of the finally formed light-transmitting region, and the hollowed-out region 108 is consistent with the pattern of the finally-transmitted light-transmitting region.
  • the pattern of the UV ink is a Chinese character
  • the pattern of the light-transmitting area finally formed is a Chinese character that is complementary to the Chinese character. It can be understood that, when the gate line electrode (not shown) is included in the chip layer 100, the hollowed-out area 108 may not be formed at a position corresponding to the area where the gate line electrode is provided, so as to avoid damage to the gate line electrode in a subsequent process. .
  • UV ink is also called UV light (ultraviolet light) curing ink. It is an ink containing photopolymerization prepolymer, initiator, colorant and auxiliary. Under the irradiation of UV light, the photopolymerized prepolymer in the UV ink interacts with the initiator to make the ink quickly dry and form a film.
  • UV inks not only have good printability, a suitable curing and drying rate, but also a protective film (protective layer) formed after being cured by UV light, which has unexpectedly excellent anti-removal layers and sandblasting resistance.
  • a protective film protecting layer formed after being cured by UV light, which has unexpectedly excellent anti-removal layers and sandblasting resistance.
  • alkaline solutions such as KOH, NaOH solution.
  • the UV ink may contain abrasion-resistant fillers such as borax, bentonite, and silica.
  • the UV ink used is an 871 type ink or a 7315 type ink available from KIWO, Inc.
  • the UV ink is prepared by spraying a polymer prepolymer, a photoinitiator, a cross-linking agent, etc. on the ink layer to make the prepolymer rapidly polymerize under the action of the photoinitiator. .
  • the curing unit 20 is configured to cure UV ink printed on the chip component with UV light to form a UV ink protective film.
  • FIG. 4 is a schematic cross-sectional view of a chip component having a UV ink protection film 105 ′ formed according to an embodiment of the present disclosure.
  • the UV ink having the set pattern 105 on the chip component is cured into a UV ink protection film 105 ′ having the same pattern.
  • the layer removing unit 30 is configured to remove a portion of the chip layer 100 corresponding to the hollowed-out area 108 (ie, a portion of the chip layer 100 that is not covered by the UV ink protection film 105 ′).
  • FIG. 5 is a schematic cross-sectional view of a chip assembly after delayering according to an embodiment of the present disclosure.
  • the chip layer 100 at the region M on the chip module which is not covered by the UV ink protection film 105 ′ is removed by the layer removing unit 30. Accordingly, a portion of the transparent substrate 101 corresponding to the region M is exposed.
  • the de-layering unit 30 may use chemical de-layering (e.g., chemical soaking, pickling, spraying of etchant), mechanical de-layering (e.g., sand blasting, shot peening, rolling), or mechanochemical composite de-layering (e.g. The chip layer 100 is removed by a delamination method such as wet blasting of a reagent).
  • chemical de-layering e.g., chemical soaking, pickling, spraying of etchant
  • mechanical de-layering e.g., sand blasting, shot peening, rolling
  • mechanochemical composite de-layering e.g.
  • the chip layer 100 is removed by a delamination method such as wet blasting of a reagent.
  • the region M on the chip assembly from which the chip layer 100 is removed forms a light-transmitting portion including only the transparent substrate 101. In this way, a desired light transmission pattern is formed on the chip component.
  • a desired light transmission pattern and light transmittance can be implemented on the chip components quickly, conveniently, and at low cost without using expensive laser etching equipment.
  • Light transmission effect and light transmission size transmission the combination of an ink printing unit and a curing unit can quickly and accurately form a UV ink protection film 105 ′, and the formed protection film has unexpectedly excellent anti-removal performance, and can protect the chip layer 100 from UV. The part covered by the ink protection film is not removed, which guarantees the product quality of the transparent solar chip module.
  • the light transmission processing system for a solar chip component further includes a transmission line 50.
  • the transmission line 50 is configured to sequentially transmit the chip components through the ink printing unit 10, the curing unit 20, and the delamination unit 30.
  • the transmission line 50 may be a belt transmission line, a chain transmission line, a robot transmission line, or the like, and the disclosure does not limit this.
  • the ink printing unit 10 and the curing unit 20 and the curing unit 20 and the layer removing unit 30 are connected through a transmission line 50.
  • the transfer line includes a line that passes through the ink printing unit 10, the curing unit 20, and the delamination unit 30, and a conveying device that conveys chip components from the line to each unit and from each unit back to the line (For example, a robot).
  • the transmission line 50 is further configured to transport the chip components from the delamination unit 30 to a subsequent unit (such as a chemical cleaning unit, a packaging unit, etc.) for manufacturing a finished product of the solar chip module.
  • the transmission line 50 includes a positioning mechanism that positions the chip components being transmitted.
  • the transmission line 50 By providing the transmission line 50, the integration degree and automation degree of the light transmission processing system of the solar chip module are improved, labor is saved, and production time is shortened.
  • the ink printing unit 10 includes a screen printing apparatus 11.
  • the screen printing device 11 can use a polyester screen as a screen, and can print the pattern 105 of the UV ink by one-time printing and forming.
  • the specification of the polyester screen is 140-31Y or 165-34Y.
  • the thickness of the printed pattern 105 of the UV ink is 60 ⁇ m to 70 ⁇ m.
  • the thickness of the printed pattern 105 of the UV ink is 30 ⁇ m to 60 ⁇ m.
  • the ink printing unit 10 further includes a CCD (Charge Coupled Device) image positioning device 12, and the CCD image positioning device 12 is configured to screen and screen Chip components are positioned.
  • CCD Charge Coupled Device
  • the CCD image positioning device is a device for precisely positioning the relative positions of the screen and chip components, or the screen and chip components.
  • the working principle of the CCD image positioning device is as follows: first use the CCD camera to collect the image of the chip component that is initially positioned, and then compare and analyze the acquired image with the pre-stored image, or identify a number of reference marks from the acquired image and refer to these references The mark is compared with the pre-stored mark position information to calculate the position error, and then the driving part is controlled to move the chip component and / or the screen to a predetermined position.
  • the ink printing unit 10 further includes a feeding table 13 and / or an initial positioning device 14.
  • the screen printing device 11 includes one or more of the following devices: an automatic ink adding device, an ink storage room, a screen storage room, a screen cleaning room, and a matching screen cleaning device (Not shown).
  • the loading table 13 is used to transfer the chip components from the transmission line 50 to the work table of the ink printing unit 10.
  • the initial positioning device 14 is used for coarse positioning of the chip component with relatively low accuracy. In some cases, the function of the initial positioning device can also be realized by a loading table.
  • the automatic ink adding device automatically adds the required UV ink to the screen printing device 11. Screen cleaning room / screen cleaning device is used to clean the screen after printing.
  • the pattern of UV ink can be printed at one time, and the printing process is fast and economical.
  • the CCD image positioning device 12 in cooperation with the screen printing device 11, a desired pattern can be accurately printed.
  • the curing unit 20 cures the UV ink with UV light having a light intensity of 800 mJ / cm 2 to 1500 mJ / cm 2 , and the curing time is 30 seconds to 90 seconds.
  • the curing unit 20 may include a UV curing mercury lamp used as a light source of UV light.
  • the number of UV curing mercury lamps can be three.
  • the distance between the light source of the UV light and the upper surface of the UV ink layer 105 may be 1 mm to 200 mm; and preferably 5 mm to 100 mm.
  • the curing unit 20 may optionally include a CCD line scan detection system and a transmission classification platform.
  • the delamination unit 30 includes a sand blasting device 31 configured to face the upper surface of the chip component (that is, the UV ink protection film 105 ′) (that is, The side where the UV ink protection film 105 'is located) is sandblasted to remove (spray out) the chip layer 100 at the part of the chip assembly that is not covered by the UV ink protection film 105'.
  • the sand blasting device 31 performs sand blasting on the chip component (and the UV ink protection film 105 ′ formed thereon) in a direction perpendicular to the surface of the chip component.
  • the portion corresponding to the region 108 is removed, and the UV ink protection film 105 ′ is not removed (or rarely removed) due to anti-blasting, so that a portion of the transparent substrate corresponding to the hollowed out region 108 is transparent. It is exposed through the hollowed-out area 108.
  • the blasting particles used by the blasting device 31 are 300-350 mesh white corundum, the blasting pressure is 3 to 4 bar, and the nozzle diameter is 8 mm.
  • the layer removing unit 30 includes an air knife blowing device 33 for blowing off impurities (for example, sand blasting residues) on the chip components after the sand blasting treatment.
  • impurities for example, sand blasting residues
  • the layer removing unit 30 further includes a layer removing positioning device 32 for positioning a chip component.
  • the sand blasting device 31 is used to remove the chip layer 100, which can perfectly match the physical properties of the UV ink protection film 105 'and the chip layer 100, and quickly and easily remove the exposed part of the chip layer 100 without hurting
  • the portion of the chip layer 100 covered by the UV ink protection film 105 ′ can accommodate a larger chip component size (for example, 1190 mm ⁇ 790 mm).
  • the finally manufactured transparent solar chip module does not include the UV ink protection film 105 ′.
  • the light transmission processing system for a solar chip component may further include a chemical cleaning unit 40.
  • the chemical cleaning unit 40 is configured to perform chemical cleaning on the chip component processed by the layer removing unit 30 to remove the UV ink protection film 105 'formed on the chip component.
  • the structure of the chip module after the UV ink protective film 105 ′ is removed is shown in FIG. 9.
  • the chemical cleaning reagent used by the chemical cleaning unit 40 to remove the UV ink protection film 105 ′ is a KOH or NaOH solution having a concentration of 0.3% to 0.5%.
  • the removal time of the UV ink protection film may be 120 to 130 seconds, and the removal temperature of the UV ink protection film may be 30 ° C.
  • the chemical cleaning unit 40 includes an air-drying device.
  • the air-drying equipment is, for example, an air-knife equipment, and the number of the air-drying equipment may be one or more.
  • the chemical cleaning unit 40 further includes a spraying device, a pre-cleaning device, a medicine cleaning device, and the like.
  • the chip component that has undergone the de-layering treatment (such as sandblasting treatment) is sent to the chemical cleaning unit 40 by the transmission line 50, it is pre-cleaned by the pre-cleaning equipment in turn, and wind-cut by the first air knife equipment
  • the medicine-eluting membrane treatment is performed by the medicine washing equipment
  • the wind cutting treatment is performed by the second air knife equipment
  • the spray cleaning is performed by the spray equipment (the conventional cleaning agent such as deionized water can be used)
  • the third air knife is used.
  • the equipment performs air-cut drying.
  • the chemical cleaning unit 40 By providing the chemical cleaning unit 40, not only the UV ink protection film 105 ′ is quickly and conveniently removed, the thickness and weight of the solar chip module are reduced, but the remaining impurities on the chip module are removed, thereby ensuring the product quality of the solar chip module.
  • a KOH or NaOH solution with a concentration of 0.3% to 0.5% as a chemical cleaning reagent (removing agent), the UV ink can be quickly dissolved and thoroughly cleaned without reacting with the chip layer 100 or the transparent substrate.
  • the solar chip component after the solar chip component is subjected to the light-transmitting treatment described above, it can also be processed by a subsequent processing unit.
  • the light-transmissive chip component may be packaged by a subsequent processing unit, so as to form an encapsulation layer 109 on the upper surface of the chip component, and paste on the upper surface of the packaged chip component.
  • the transparent substrate 110 as a back plate, thereby forming a light-transmitting solar double-glass chip module (for example, a CIGS double-glass module) having a light-transmitting pattern.
  • These subsequent processing units and corresponding processing methods are respectively similar to the existing processing units and processing methods for solar chip modules, and will not be described in detail here.
  • an embodiment of the present disclosure also provides a light transmission processing method for a solar chip component. As shown in FIG. 13, the light transmission processing method includes the following steps:
  • Step a Use UV ink to print a set pattern on the upper surface of the chip component.
  • a UV ink layer is formed on the upper surface of the chip component where the pattern is covered, and a hollow is formed on the upper surface of the chip component.
  • a region, the chip component includes a transparent substrate and a chip layer stacked on an upper surface of the transparent substrate;
  • Step b curing the UV ink printed on the chip component with UV light to form a UV ink protective film
  • Step c removing a portion of the chip layer corresponding to the hollowed-out area, so that a portion of the transparent substrate corresponding to the hollowed-out area is exposed.
  • the step c includes: sandblasting an upper surface of the chip component on which the UV ink protection film is formed to remove the chip layer and the hollow. The corresponding part of the area.
  • the blasting particles used in the blasting treatment are white corundum, emery, or steel shot.
  • the blasting particles used for the blasting treatment are 300 to 350 mesh white corundum, and the blasting pressure is 3 to 4 bar.
  • the diameter of the nozzle is 8mm.
  • the step c includes: spraying an etchant on a portion of the upper surface of the chip component corresponding to the hollowed-out area to remove the chip layer corresponding to the hollowed-out area part.
  • composition of the etchant needs to be determined according to the composition of the chip layer and the type of UV ink, that is, the selected etchant can effectively etch the chip layer, but cannot etch the UV ink protective film.
  • the light transmission processing method further includes: chemically cleaning the chip component to remove the UV ink formed on the chip component. Protective film.
  • the chemical cleaning reagent used to remove the UV ink protective film is a KOH or NaOH solution having a concentration of 0.3% to 0.5%, and the film removing time of the UV ink protective film is removed. For 120 to 130 seconds.
  • the step of chemically cleaning the chip component to remove the UV ink protection film formed on the chip component includes: cleaning and stripping the The chip assembly is air-dried.
  • the step b includes: curing the UV ink (UV ink layer) with UV light having a light intensity of 800 mJ / cm 2 to 1500 mJ / cm 2 with a curing time of 30. Seconds to 90 seconds.
  • the distance between the light source of the UV light and the upper surface of the UV ink layer is 1 mm to 200 mm; and preferably 5 mm to 100 mm.
  • the step a includes: using a screen printing technology, using a polyester screen as a screen, printing the pattern of the UV ink by one-time printing, and printing The thickness of the pattern of the UV ink is 60 ⁇ m to 70 ⁇ m.
  • the method before the step a, further includes: using a CCD image positioning device to locate a relative position of the screen plate and the chip component.
  • the obtained chip component is packaged, and a transparent substrate as a backplane is pasted on the upper surface of the packaged chip component, To form a light-transmitting solar double-glass chip component (eg, a CIGS double-glass component) having a light-transmitting pattern.
  • a light-transmitting solar double-glass chip component eg, a CIGS double-glass component
  • a chip having a desired light-transmitting pattern, light transmittance, light-transmitting effect, and light-transmitting size can be quickly, conveniently, and inexpensively implemented on the chip component.
  • Light transmission a UV ink is used to print a set pattern on the upper surface of the chip component and the UV ink is used to cure the UV ink, which can quickly and accurately form a UV ink protection film, and the formed protection film has an unexpected effect.
  • the excellent anti-layer removal performance can protect the chip layer covered by the protective film from being removed, thereby ensuring the quality of the manufactured solar chip module.
  • the layer can match the physical properties of the UV ink protection film and the chip layer just right, and quickly and easily remove the exposed part of the chip layer without damaging the chip layer protected by the UV ink.
  • the portion covered by the film can be adapted to a larger chip component size (for example, 1190 mm ⁇ 790 mm).
  • FIG. 11 shows a schematic plan view of a standard solar chip component, and the figure schematically shows the chip layer 100 of the standard solar chip component and the score line 107 on the upper surface of the chip layer.
  • FIG. 12 illustrates a schematic plan view of a manufactured solar chip module according to various embodiments of the present disclosure. It can be seen that the manufactured transparent solar chip module has the dot-shaped transparent patterns 106 arranged neatly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Printing Methods (AREA)
  • Photovoltaic Devices (AREA)
  • Screen Printers (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

一种用于太阳能芯片组件的透光处理***和透光处理方法,该透光处理***包括:油墨印刷单元(10),其构造为用UV油墨在芯片组件的上表面印制出设定图案,从而所述芯片组件的上表面上未被所述图案覆盖的地方形成镂空区域(108),所述芯片组件包括透明衬底(101)和叠置于所述透明衬底的上表面的芯片层(100);固化单元(20),其构造为用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜;以及除层单元(30),其构造为去除所述芯片层的与所述镂空区域(108)对应的部分,以使所述透明衬底(101)的与所述镂空区域(108)对应的部分露出。

Description

用于太阳能芯片组件的透光处理***和透光处理方法
相关申请的交叉引用
本申请要求2018年6月27日在中国国家知识产权局提交的中国专利申请No.201810679387.6和No.201810678615.8的优先权,这两件申请的全部内容以引用方式并入本文。
技术领域
本公开涉及太阳能光伏发电领域,具体涉及一种用于太阳能芯片组件的透光处理***和透光处理方法。
背景技术
太阳能发电***,或称光伏发电***,是利用太阳能电池片通过光生伏打效应产生直流电压,将太阳光辐射能转换为电能、进而发电的***。随着人们对节能环保的日益重视,太阳能发电***获得了越来越多的发展契机。其中,就太阳能发电***与建筑的结合应用而言,主要包括BAPV***(Building Attached Photovoltaic,附着在建筑物上的太阳能发电***)和BIPV***(Building Integrated Photovoltaic,与建筑一体化的太阳能发电***)两种形式。由于BIPV***自身可取代幕墙、屋顶等建筑材料,能够很好地将太阳能发电***融入建筑本身,既不影响房屋的功能,保证建筑美观,又能提高***的整体发电效率,因此愈发受到人们的青睐。
然而,目前BIPV***中采用的可透光的太阳能芯片组件,通常采用激光划刻工艺来制备。该工艺的缺点是设备昂贵、工艺复杂、加工耗时长、透光尺寸小,并且由于辐照温度较高,容易伤及到不需要除去的芯片层。此外,可透光的太阳能芯片组件也 可以采用特殊的透明芯片层和电极层来制备,然而,这种制备工艺存在成本高,制得的组件透光效果差的问题。上述制备工艺的不足影响了BIPV***以及其他应用太阳能芯片组件的技术的发展。
发明内容
为了至少部分解决现有技术中的上述缺陷,本公开提供一种用于太阳能芯片组件(也称为光伏芯片组件)的透光处理***和透光处理方法。
根据本公开的第一方面,提供一种透光处理***,用于太阳能芯片组件的透光处理,所述透光处理***包括:
油墨印刷单元,其构造为用紫外(UV)光油墨在芯片组件的上表面印制出设定图案,从而所述芯片组件的上表面上被所述图案覆盖的地方形成UV油墨层,未被所述图案覆盖的地方形成镂空区域,所述芯片组件包括透明衬底和叠置于所述透明衬底的上表面的芯片层;
固化单元,其构造为用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜;以及
除层单元,其构造为去除所述芯片层的与所述镂空区域对应的部分,以使所述透明衬底的与所述镂空区域对应的部分露出。
在一个示例性实施例中,所述UV光油墨是指包含有光聚合预聚物、引发剂、色料及助剂的油墨。
在一个示例性实施例中,UV光油墨中含有硼砂,膨润土,二氧化硅等耐磨性填料。
在一个示例性实施例中,所述透光处理***还包括传输线,所述传输线构造为顺序地传输所述芯片组件经过所述油墨印刷单元、所述固化单元和所述除层单元。
在一个示例性实施例中,所述除层单元包括喷砂设备,所述喷砂设备构造为对形成有所述UV油墨保护膜的所述芯片组件的上表面进行喷砂处理,以去除所述芯片层的与所述镂空区域对应 的部分。
在一个示例性实施例中,所述喷砂设备的喷嘴的直径为6~9mm,优选为8mm。
在一个示例性实施例中,所述油墨印刷单元包括丝网印刷设备,所述丝网印刷设备采用聚酯丝网作为网版。
在一个示例性实施例中,所述丝网印刷设备通过一次印刷成形的方式印制所述UV油墨的图案。
在一个示例性实施例中,印制出的所述UV油墨的图案的厚度为60μm至70μm。
在另一个示例性实施例中,印制出的所述UV油墨的图案的厚度为30μm至60μm。
在一个示例性实施例中,所述油墨印刷单元包括CCD影像定位设备,所述CCD影像定位设备构造为对所述网版与所述芯片组件进行定位。
在一个示例性实施例中,所述透光处理***还包括化学清洗单元,所述化学清洗单元构造为对经所述除层单元处理后的所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜。
在一个示例性实施例中,所述化学清洗单元脱除所述UV油墨保护膜所采用的化学清洗试剂为浓度(wt%)为0.3%至0.5%的KOH或NaOH溶液,脱除所述UV油墨保护膜的脱膜时间为120至130秒。
在一个示例性实施例中,所述化学清洗单元包括风干设备。
在一个示例性实施例中,所述固化单元包括光强为800mJ/cm 2至1500mJ/cm 2的UV固化汞灯。
根据本公开的第二方面,提供一种用于太阳能芯片组件的透光处理方法,所述透光处理方法包括以下步骤:
a.用UV油墨在所述芯片组件的上表面印制出设定图案,从而所述芯片组件的上表面上被所述图案覆盖的地方形成UV油墨层,未被所述图案覆盖的地方形成镂空区域,所述芯片组件包括 透明衬底和叠置于所述透明衬底的上表面的芯片层;
b.用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜;以及
c.去除所述芯片层的与所述镂空区域对应的部分,以使所述透明衬底的与所述镂空区域对应的部分露出。
在一个示例性实施例中,所述步骤c包括:对形成有所述UV油墨保护膜的所述芯片组件的上表面进行喷砂处理,以去除所述芯片层的与所述镂空区域对应的部分。
在一个示例性实施例中,所述喷砂处理所采用的喷砂颗粒为300目至350目的白刚玉,喷砂压力为3至4巴(bar),实施所述喷砂处理的喷砂设备的喷嘴的直径为8mm。在一个示例性实例中,喷砂颗粒为320目的白刚玉。
在一个示例性实施例中,所述步骤c包括:朝所述芯片组件的上表面的与所述镂空区域对应的部分喷腐蚀剂,以去除所述芯片层的与所述镂空区域对应的部分。
在一个示例性实施例中,在所述步骤c之后,所述透光处理方法还包括:对所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜。
在一个示例性实施例中,脱除所述UV油墨保护膜所采用的化学清洗试剂为浓度0.3%至0.5%的KOH或0.3%至0.5%的NaOH溶液,脱除所述UV油墨保护膜的脱膜时间为120秒至130秒。另外,脱除所述UV油墨保护膜的脱膜温度可为30℃左右。
在一个示例性实施例中,所述对所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜的步骤包括:对经过清洗和脱膜的所述芯片组件进行风干。
在一个示例性实施例中,所述用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜的步骤包括:采用光强为800mJ/cm 2至1500mJ/cm 2的UV光对所述UV油墨进行固化,固化时间为30秒至90秒。
在一个示例性实施例中,在所述用UV光对所述芯片组件上 印制的所述UV油墨进行固化,以形成UV油墨保护膜的步骤中,所述UV光的光源与所述UV油墨层的上表面之间的距离为1mm至200mm。
在一个示例性实施例中,所述UV光的光源与所述UV油墨层的上表面之间的距离为5mm至100mm。
在一个示例性实施例中,所述用UV油墨在芯片组件的上表面印制出设定图案的步骤包括:采用丝网印刷技术,以聚酯丝网作为网版,通过一次印刷成形的方式印制所述UV油墨的图案,并且印制出的所述UV油墨的图案的厚度为60μm至70μm。
在一个示例性实施例中,在所述用UV油墨在芯片组件的上表面印制出设定图案的步骤之前,所述方法还包括:利用CCD影像定位设备对所述网版与所述芯片组件进行定位。
本公开提供的用于太阳能芯片组件的透光处理***和透光处理方法,利用油墨印刷、UV光固化相结合的方式,能够快速、精确地形成具有期望图案的UV油墨保护膜;利用UV油墨保护膜优异的抗除层性能,能够保护芯片层的被UV油墨保护膜所覆盖的部分不被去除。因此,利用本公开提供的能够快速、便捷、低成本地在芯片组件上实施具有期望的透光图案、透光率、透光效果和透光尺寸的透光处理。
附图说明
图1为待进行透光处理的芯片组件的示意性剖视图;
图2为本公开实施例提供的用于太阳能芯片组件的透光处理***的示意图;
图3为根据本公开实施例的印制有UV油墨的图案的芯片组件的示意性剖视图;
图4为根据本公开实施例的已形成UV油墨保护膜的芯片组件的示意性剖视图;
图5为根据本公开实施例的经过除层后的芯片组件的示意性剖视图;
图6为本公开实施例提供的油墨印刷单元的示例性结构框图;
图7为本公开实施例提供的除层单元的示例性结构框图;
图8为本公开实施例提供的用于太阳能芯片组件的透光处理***的示意图;
图9为根据本公开实施例的经过清洗和脱膜的芯片组件的示意性剖视图;
图10为利用本公开实施例提供的透光处理***所制造的透光太阳能双玻芯片组件的示意性剖视图;
图11为标准太阳能芯片组件的平面图;以及
图12为利用本公开实施例提供的透光处理***和透光处理方法所制造的透光的太阳能芯片组件的平面图;以及
图13为根据本公开实施例的用于太阳能芯片组件的透光处理方法的流程图。
其中附图标记说明如下:
100-芯片层
101-透明衬底
102-第一层
103-第二层
104-第三层
105-UV油墨层
105′-UV油墨保护膜
106-透光图案
107-刻划线
108-镂空区域
109-封装层
110-透明衬底
10-油墨印刷单元
20-固化单元
30-除层单元
31-喷砂设备
32-除层定位装置
33-风刀吹净设备
40-化学清洗单元
50-传输线
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和实施例对本公开的技术方案作进一步详细描述。
需要理解的是,在本公开的描述中,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述的目的,而不是指示或暗示所指的装置或元件必须具有特定的方位或以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”等仅用于描述的目的,而不应理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,以“第一”、“第二”限定的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面,首先对待进行透光处理的太阳能芯片组件(下文中简称芯片组件)进行介绍。图1为待进行透光处理的芯片组件的示意性剖视图。待进行透光处理的芯片组件,也可称为标准芯片组件,主要包括透明衬底101和叠置于透明衬底101的上表面的芯片层100。透明衬底101一般由玻璃(诸如钢化玻璃)构成,但也可以由水晶等其他透明材料构成。芯片层100也可称为发电膜层组。由于太阳能电池可包括晶体硅(包括单晶硅、多晶硅)、非晶/单晶异质结(HIT)、非晶硅薄膜、碲化镉(CdTe)薄膜及 铜铟硒(CIS)等多个种类,因此,芯片层100可具有多种结构,本公开对此不做特别限定。
例如,在一个可选的实施例中,芯片层包括依次叠置在透明衬底101上的第一层102、第二层103和第三层104。在一个可选的实例中,第一层102是前电极层,第二层103是吸收层,第三层104是透明导电层。在另一个可选的实例中,第一层102是钼层、第二层103是铟镓硒(CIGS)层,第三层104是透明导电(TCO)层,其中CIGS层103是由Cu(铜)、In(铟)、Ga(镓)、Se(硒)四种元素构成的黄铜矿结晶薄膜层,TCO层104是透明的导电氧化物薄膜(Transparent Conductive Oxide)。在又一个可选的实例中,第一层102是ZnO(氧化锌)前电极层、第二层103是薄膜光电转换层、第三层104是ZnO背电极层。在其他可选的实例中,芯片层100所包含的层的数量可以是1层、2层或多于3层。例如,在一个可选的实例中,芯片层包括依次设置的背电极层、光吸收层、TCO窗口层以及栅线电极层;在另一个可选的实例中,芯片层包括n型硅层、位于n型硅两侧的n型非晶硅层和p型非晶硅层、分别位于n型非晶硅层和p型非晶硅层的一侧的透明导电物层、以及背电极和正电极。芯片层100整体上是不透光的,因此,透光处理前的芯片组件整体上是不透光的,需要按设定图案将芯片层100的一部分去除,以制备具有透光图案的透光太阳能芯片组件。
图2为本公开实施例提供的用于太阳能芯片组件的透光处理***的示意图。如图2所示,本实施例的透光处理***包括油墨印刷单元10、固化单元20和除层单元30。
油墨印刷单元10构造为用UV油墨在芯片组件的上表面印制出设定图案,从而所述芯片组件的上表面上被所述图案覆盖的地方形成UV油墨层105,所述芯片组件的上表面上未被所述图案覆盖的地方形成镂空区域108。芯片组件包括透明衬底101和叠置于透明衬底101的上表面的芯片层100。芯片层100的上表面的与所 述镂空区域108对应的部分露出。
图3为本实施例的印制有UV油墨的图案的芯片组件的示意性剖视图。如图3所示,油墨印刷单元10所印制的UV油墨的图案(UV油墨层)105置于芯片层100上,覆盖了芯片层100的一部分。
油墨印刷单元10在芯片组件的上表面所印制的图案105可以呈散点状、条纹状、网格状或为各种其他规则或不规则图案,本公开对此不做限制。在实践中,可以根据建筑美学、透光率要求、透光效果要求等各种因素来自由设计或选择所需要的图案。在一个可选的实例中,芯片组件的尺寸为1190mm×790mm,UV油墨的图案105的尺寸也为此尺寸或略小于此尺寸。本领域技术人员容易理解的是,所印制的UV油墨的图案与最终形成的透光区域的图案是互补的,而镂空区域108与最终形成的透光区域的图案是一致的。例如,如果UV油墨的图案是阳文文字,则最终形成的透光区域的图案是与该阳文文字互补的阴文文字。可以理解的是,当芯片层100中包括栅线电极(未示出)时,镂空区域108可不形成在与设置有栅线电极的区域对应的位置,以避免后续处理过程对栅线电极的破坏。
UV油墨又叫UV光(紫外光)固化油墨,是包含有光聚合预聚物、引发剂、色料及助剂的油墨。在UV光的辐照下,UV油墨中的光聚合预聚物与引发剂相互作用,使油墨迅速干燥、成膜。
发明人发现,UV油墨不但具有良好的印刷适性,适宜的固化干燥速率,并且被UV光固化后形成的保护膜(保护层)具有预料不到的优异抗除层、抗喷砂性能,而能够轻易地被碱性溶液(如KOH、NaOH溶液)溶解。
进一步地,UV油墨可含有硼砂,膨润土,二氧化硅等耐磨性填料。
在一个示例性实例中,所采用的UV油墨是购自KIWO,Inc的871型油墨或7315型油墨。
在另一个示例性实例中,采用如下方式来准备UV油墨:在油墨层上喷洒高分子预聚物、光引发剂、交联剂等,以使预聚物在光引发剂的作用下迅速聚合。
固化单元20构造为用UV光对芯片组件上印制的UV油墨进行固化,以形成UV油墨保护膜。
图4为根据本公开实施例的已形成UV油墨保护膜105′的芯片组件的示意性剖视图。通过UV光的光照固化,芯片组件上的具有设定图案105的UV油墨被固化成具有相同图案的UV油墨保护膜105′。
除层单元30构造为去除芯片层100的与镂空区域108对应的部分(即,芯片层100的未被UV油墨保护膜105′覆盖的部分)。
图5为根据本公开实施例的经过除层后的芯片组件的示意性剖视图。如图5所示,在芯片组件上未被UV油墨保护膜105′覆盖的区域M处的芯片层100被除层单元30去除。相应地,透明衬底101的与区域M对应的部分露出。
除层单元30可采用化学除层(例如,化学试剂浸泡、酸洗、喷腐蚀剂)、机械除层(例如,喷砂、喷丸、滚光)、或机械化学复合除层(例如,含化学试剂的湿法喷砂)等除层方式来去除芯片层100。
通过油墨印刷单元10、固化单元20和除层单元30的上述处理,芯片组件上的被去除了芯片层100的区域M形成了仅包括透明衬底101的透光部分。这样,便在芯片组件上形成了期望的透光图案。
利用本实施例所提供的用于太阳能芯片组件的透光处理***,无需使用昂贵的激光刻蚀设备,能够快速、便捷、低成本地在芯片组件上实施具有期望的透光图案、透光率、透光效果和透光尺寸的透光处理。其中,采用油墨印刷单元和固化单元的组合,能够快速、精确地形成UV油墨保护膜105′,且所形成的保护膜具有预料不到的优异抗除层性能,能够保护芯片层100的被UV油墨保护膜所覆盖的部分不被去除,保证了透光太阳能芯片组件 的产品质量。
在本实施例的一个示例性实例中,用于太阳能芯片组件的透光处理***还包括传输线50。传输线50构造为顺序地传输芯片组件经过油墨印刷单元10、固化单元20和除层单元30。
传输线50可以是带式传输线、链式传输线、机械手式传输线等,本公开对此不做限制。在一个可选实例中,如图2所示,油墨印刷单元10与固化单元20之间,以及固化单元20与除层单元30之间均通过传输线50连接。在另一个可选实例中,传输线包括经过油墨印刷单元10、固化单元20和除层单元30的一条流水线,和将芯片组件从该流水线输送至各个单元和从各个单元输送回该流水线的输送装置(例如,机械手)。在又一个可选实例中,传输线50还构造为将芯片组件从除层单元30输送至用于制造太阳能芯片组件的成品的后续单元(如化学清洗单元、封装单元等)。在再一个可选实例中,传输线50包括对所传输的芯片组件进行定位的定位机构。
通过设置传输线50,提高了太阳能芯片组件的透光处理***的一体化程度和自动化程度,节约了人力,缩短了生产时间。
在本实施例的一个示例性实例中,如图6所示,油墨印刷单元10包括丝网印刷设备11。丝网印刷设备11可采用聚酯丝网作为网版,并可通过一次印刷成形的方式印制UV油墨的图案105。
在本实施例的一个示例性实例中,聚酯丝网的规格为140-31Y或165-34Y。
在本实施例的一个示例性实例中,印制出的UV油墨的图案105的厚度为60μm至70μm。
在本实施例的另一个示例性实例中,印制出的UV油墨的图案105的厚度为30μm至60μm。
在本实施例的一个示例性实例中,如图6所示,油墨印刷单元10还包括CCD(Charge Coupled Device,电荷耦合器件)影像定位设备12,该CCD影像定位设备12构造为对网版与芯片组件进行定位。
CCD影像定位设备,是一种用于对网版与芯片组件,或网版与芯片组件的相对位置进行精密定位的设备。CCD影像定位设备的工作原理如下:首先利用CCD相机采集初定位的芯片组件的图像,然后将所采集图像与预存储图像进行对比分析,或从所采集图像中识别出若干参考标记并将这些参考标记与预存储的标记位置信息进行对比分析,计算出位置误差,然后控制驱动部件移动芯片组件和/或网版至预定位置。
在本实施例的一个实例中,如图6所示,油墨印刷单元10还包括上料台13和/或初定位装置14。在本实施例的一个实例中,丝网印刷设备11包括以下装置中的一种或多种:自动添加油墨装置、油墨存储间、网版存储间、网版清洗间及配套的网版清洗装置(未示出)。上料台13用于将芯片组件从传输线50搬送到油墨印刷单元10的工作台上。初定位装置14用于对芯片组件进行精度相对较低的粗定位,在一些情况下,也可以由上料台来实现初定位装置的功能。自动添加油墨装置为丝网印刷设备11自动添加所需的UV油墨。网版清洗间/网版清洗装置用于对印刷完成后的网版进行清洗。
通过采用丝网印刷设备11,能够一次性印制出UV油墨的图案,印制过程快速、经济。通过采用与丝网印刷设备11配合的CCD影像定位设备12,能够精确地印制所需的图案。
在本实施例的一个示例性实例中,固化单元20采用光强为800mJ/cm 2至1500mJ/cm 2的UV光对UV油墨进行固化,固化时间为30秒至90秒。其中,固化单元20可包括用作UV光的光源的UV固化汞灯。UV固化汞灯的数量可以是三个。UV光的光源与UV油墨层105的上表面之间的距离可为1mm至200mm;并且优选为5mm至100mm。此外,固化单元20还可选地包括CCD线扫描检测***和传输分类平台。
可见,在合适的光强下,只需短短30秒至90秒就能够获得具有足够的抗除层性能的UV油墨保护膜105′,大大提高了实施透光工艺的速度。
在本实施例的一个示例性实例中,如图7所示,除层单元30包括喷砂设备31,喷砂设备31构造为对形成有UV油墨保护膜105′的芯片组件的上表面(即,UV油墨保护膜105′所在的一面)进行喷砂处理,以去除(喷除)芯片组件上未被UV油墨保护膜105′覆盖的部分处的芯片层100。具体地说,喷砂设备31沿与芯片组件的表面垂直的方向对芯片组件(及形成在其上的UV油墨保护膜105′)进行喷砂处理,将所述芯片层100的与所述镂空区域108对应的部分去除,而所述UV油墨保护膜105′由于抗喷砂而不被去除(或极少被去除),从而使得所述透明衬底的与所述镂空区域108对应的部分透过镂空区域108而露出。
在本实施例的一个示例性实例中,喷砂设备31所采用的喷砂颗粒为300目至350目的白刚玉,喷砂压力为3至4巴(bar),喷嘴直径为8mm。
在本实施例的一个示例性实例中,如图7所示,除层单元30包括风刀吹净设备33,用于吹除喷砂处理后的芯片组件上的杂质(例如,喷砂处理残余的白刚玉颗粒、芯片层碎屑等)。
在本实施例的一个示例性实例中,如图7所示,除层单元30还包括用于定位芯片组件的除层定位装置32。
采用喷砂设备31对芯片层100进行除层,能够恰到好处地与UV油墨保护膜105′及芯片层100的物理性质相配合,快速、方便地除去芯片层100的裸露部分,而不会伤及芯片层100的被UV油墨保护膜105′所覆盖的部分,且能够适应较大的芯片组件尺寸(例如,1190mm×790mm)。
在一些情况下,考虑到封装处理、电路连接、产品厚度等因素,希望最终制造出的透光太阳能芯片组件中不包括UV油墨保护膜105′。
如图8所示,本实施例的一个可选实例中,用于太阳能芯片组件的透光处理***还可以包括化学清洗单元40。化学清洗单元40构造为对经除层单元30处理后的芯片组件进行化学清洗,以脱 除芯片组件上形成的UV油墨保护膜105′。脱除UV油墨保护膜105′后的芯片组件的结构如图9所示。
在本实施例的一个示例性实例中,化学清洗单元40脱除UV油墨保护膜105′所采用的化学清洗试剂为浓度0.3%至0.5%的KOH或NaOH溶液。此外,脱除UV油墨保护膜的脱膜时间可为120至130秒,脱除所述UV油墨保护膜的脱膜温度可为30℃。
在本实施例的一个示例性实例中,化学清洗单元40包括风干设备。风干设备例如为风刀设备,并且风干设备的数量可以是一个或多个。
在本实施例的一个可选实例中,化学清洗单元40还包括喷淋设备、预清洗设备、药洗设备等。
在一个可选实例中,经过除层处理(如喷砂处理)的芯片组件在由传输线50送入化学清洗单元40后,依次由预清洗设备进行预清洗,由第一风刀设备进行风切处理,由药洗设备进行药洗脱膜处理,由第二风刀设备进行风切处理,由喷淋设备进行喷淋清洗(可采用去离子水等常规清洗剂),最后由第三风刀设备进行风切干燥处理。
通过设置化学清洗单元40,不但快速、便捷地脱除了UV油墨保护膜105′,减少了太阳能芯片组件的厚度和重量,而且清除了芯片组件上的剩余杂质,保证了太阳能芯片组件的产品质量。通过用浓度0.3%至0.5%的KOH或NaOH溶液作为化学清洗试剂(脱膜试剂),能够快速溶解UV油墨,清洗彻底,而与芯片层100或透明衬底不发生反应。
此外,本领域技术人员能够理解,太阳能芯片组件在被实施上述透光处理之后,还可接受后续加工单元的加工处理。如图10所示,可由后续加工单元对已完成透光处理的芯片组件(见图9)进行封装,以便在芯片组件的上表面形成封装层109,并在经封装的芯片组件的上表面粘贴作为背板的透明衬底110,从而形成具有透光图案的透光太阳能双玻芯片组件(例如,CIGS双玻组件)。这些后续加工单元及相应的加工方法分别与现有的用于太阳能芯 片组件的加工单元和加工方法类似,在此不再详述。
此外,本公开实施例还提供一种用于太阳能芯片组件的透光处理方法。如图13所示,所述透光处理方法包括以下步骤:
步骤a:用UV油墨在芯片组件的上表面上印制出设定图案,所述芯片组件的上表面上被所述图案覆盖的地方形成UV油墨层,未被所述图案覆盖的地方形成镂空区域,所述芯片组件包括透明衬底和叠置于所述透明衬底的上表面的芯片层;
步骤b:用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜;以及
步骤c:去除所述芯片层的与所述镂空区域对应的部分,以使所述透明衬底的与所述镂空区域对应的部分露出。
在本实施例的一个示例性实例中,所述步骤c包括:对形成有所述UV油墨保护膜的所述芯片组件的上表面进行喷砂处理,以去除所述芯片层的与所述镂空区域对应的部分。
在本实施例的一个示例性实例中,所述喷砂处理所采用的喷砂颗粒为白刚玉、金刚砂或者钢丸。
在本实施例的一个示例性实例中,所述喷砂处理所采用的喷砂颗粒为300至350目的白刚玉,喷砂压力为3至4bar,实施所述喷砂处理的喷砂设备31的喷嘴的直径为8mm。
在本实施例的一个示例性实例中,所述步骤c包括:朝所述芯片组件的上表面的与所述镂空区域对应的部分喷腐蚀剂,以去除所述芯片层的与所述镂空区域对应的部分。
应当理解的是,所述腐蚀剂的成分需根据芯片层的成分和UV油墨的类型决定,即所选取的腐蚀剂能够有效腐蚀所述芯片层,但是不能腐蚀所述UV油墨保护膜。
在本实施例的一个示例性实例中,在所述步骤c之后,所述透光处理方法还包括:对所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜。
在本实施例的一个示例性实例中,脱除所述UV油墨保护膜 所采用的化学清洗试剂为浓度0.3%至0.5%的KOH或NaOH溶液,脱除所述UV油墨保护膜的脱膜时间为120至130秒。
在本实施例的一个示例性实例中,所述对所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜的步骤包括:对经过清洗和脱膜的所述芯片组件进行风干。
在本实施例的一个示例性实例中,所述步骤b包括:采用光强为800mJ/cm 2至1500mJ/cm 2的UV光对所述UV油墨(UV油墨层)进行固化,固化时间为30秒至90秒。此外,可选的,UV光的光源与UV油墨层的上表面之间的距离为1mm至200mm;并且优选为5mm至100mm。
在本实施例的一个示例性实例中,所述步骤a包括:采用丝网印刷技术,以聚酯丝网作为网版,通过一次印刷成形的方式印制所述UV油墨的图案,并且印制出的所述UV油墨的图案的厚度为60μm至70μm。
在本实施例的一个示例性实例中,在所述步骤a之前,所述方法还包括:利用CCD影像定位设备对所述网版与所述芯片组件的相对位置进行定位。
在本实施例的一个示例性实例中,在清洗和脱除UV油墨保护膜之后,对所得到的芯片组件进行封装,并在经封装的芯片组件的上表面粘贴作为背板的透明衬底,以形成具有透光图案的透光太阳能双玻芯片组件(例如,CIGS双玻组件)。
利用本实施例所提供的用于太阳能芯片组件的透光处理方法,能够快速、便捷、低成本地在芯片组件上实施具有期望的透光图案、透光率、透光效果和透光尺寸的透光处理。其中,采用UV油墨在芯片组件的上表面印制出设定图案并利用UV光对所述UV油墨进行固化,能够快速、精确地形成UV油墨保护膜,且所形成的保护膜具有预料不到的优异抗除层性能,能够保护保护膜所覆盖的芯片层不被去除,保证了所制造的太阳能芯片组件的质量。采用喷砂处理这种除层方式,能够恰到好处地与UV油墨保护膜及芯片层的物理性质相配合,快速、方便地除去芯片层的裸 露部分,而不会伤及芯片层的被UV油墨保护膜所覆盖的部分,且能够适应较大的芯片组件尺寸(例如,1190mm×790mm)。通过对经过除层的芯片组件进行化学清洗,不但快速、便捷地脱除了UV油墨保护膜,减少了太阳能芯片组件的厚度和重量,而且清除了芯片组件上的剩余杂质,保证了太阳能芯片组件的产品质量。
图11示出了一种标准太阳能芯片组件的示意性平面图,图中示意性地示出了标准太阳能芯片组件的芯片层100及芯片层上表面上的刻划线107。图12示出了根据本公开各实施例的所制造的太阳能芯片组件的示意性平面图。可以看到,所制造的透光太阳能芯片组件具有整齐排列的圆点状透光图案106。
可以理解的是,以上实施例及其示例性/可选的实例仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种透光处理***,用于处理太阳能芯片组件,所述透光处理***包括:
    油墨印刷单元,其构造为用紫外光UV油墨在所述芯片组件的上表面印制出设定图案,从而所述芯片组件的上表面上被所述图案覆盖的地方形成UV油墨层,未被所述图案覆盖的地方形成镂空区域,所述芯片组件包括透明衬底和叠置于所述透明衬底的上表面的芯片层;
    固化单元,其构造为用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜;以及
    除层单元,其构造为去除所述芯片层的与所述镂空区域对应的部分,以使所述透明衬底的上表面的与所述镂空区域对应的部分露出。
  2. 根据权利要求1所述的透光处理***,其中,所述透光处理***还包括传输线,所述传输线构造为顺序地传输所述芯片组件经过所述油墨印刷单元、所述固化单元和所述除层单元。
  3. 根据权利要求1所述的透光处理***,其中,所述除层单元包括喷砂设备,所述喷砂设备构造为对形成有所述UV油墨保护膜的所述芯片组件的上表面进行喷砂处理,以去除所述芯片层的与所述镂空区域对应的部分。
  4. 根据权利要求1至3中任一项所述的透光处理***,其中,所述油墨印刷单元包括丝网印刷设备,所述丝网印刷设备采用聚酯丝网作为网版。
  5. 根据权利要求4所述的透光处理***,其中,所述油墨印刷单元还包括电荷耦合器件CCD影像定位设备,所述CCD影像 定位设备构造为对所述网版与所述芯片组件进行定位。
  6. 根据权利要求1至3中任一项所述的透光处理***,其中,所述透光处理***还包括化学清洗单元,所述化学清洗单元构造为对经所述除层单元处理后的所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜。
  7. 一种用于太阳能芯片组件的透光处理方法,包括以下步骤:
    a.用UV油墨在所述芯片组件的上表面印制出设定图案,从而所述芯片组件的上表面上被所述图案覆盖的地方形成UV油墨层,未被所述图案覆盖的地方形成镂空区域,所述芯片组件包括透明衬底和叠置于所述透明衬底的上表面的芯片层;
    b.用UV光对所述芯片组件上印制的所述UV油墨进行固化,以形成UV油墨保护膜;以及
    c.去除所述芯片层的与所述镂空区域对应的部分,以使所述透明衬底的与所述镂空区域对应的部分露出。
  8. 根据权利要求7所述的透光处理方法,其中,所述步骤c包括:对形成有所述UV油墨保护膜的所述芯片组件的上表面进行喷砂处理,以去除所述芯片层的与所述镂空区域对应的部分。
  9. 根据权利要求8所述的透光处理方法,其中,所述喷砂处理所采用的喷砂颗粒为300至350目的白刚玉,喷砂压力为3至4巴,实施所述喷砂处理的喷砂设备的喷嘴的直径为8mm。
  10. 根据权利要求7至9中任一项所述的透光处理方法,其中,所述步骤a包括:采用丝网印刷技术,以聚酯丝网作为网版,通过一次印刷成形的方式印制所述UV油墨的图案,并且印制出的所述UV油墨的图案的厚度为60至70μm。
  11. 根据权利要求10所述的透光处理方法,其中,在所述步骤a之前,所述透光处理方法还包括:利用CCD影像定位设备对所述网版与所述芯片组件进行定位。
  12. 根据权利要求7至9中任一项所述的透光处理方法,其中,在所述步骤c之后,所述透光处理方法还包括:对所述芯片组件进行化学清洗,以脱除所述芯片组件上形成的所述UV油墨保护膜。
  13. 根据权利要求12所述的透光处理方法,其中,脱除所述UV油墨保护膜所采用的化学清洗试剂为浓度0.3%至0.5%的KOH或0.3%至0.5%的NaOH溶液,脱除所述UV油墨保护膜的脱膜时间为120秒至130秒。
  14. 根据权利要求7至9中任一项所述的透光处理方法,其中,所述步骤b包括:采用光强为800mJ/cm 2至1500mJ/cm 2的UV光对所述UV油墨进行固化,固化时间为30秒至90秒。
  15. 根据权利要求7所述的透光处理方法,其中,所述步骤a包括:采用丝网印刷技术,以聚酯丝网作为网版,通过一次印刷成形的方式印制所述UV油墨的图案,并且印制出的所述UV油墨的图案的厚度为30μm至60μm。
  16. 根据权利要求7所述的透光处理方法,其中,所述步骤c包括:朝所述芯片组件的上表面的与所述镂空区域对应的部分喷腐蚀剂,以去除所述芯片层的与所述镂空区域对应的部分。
PCT/CN2018/100683 2018-06-27 2018-08-15 用于太阳能芯片组件的透光处理***和透光处理方法 WO2020000596A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810678615.8 2018-06-27
CN201810678615.8A CN108878586A (zh) 2018-06-27 2018-06-27 太阳能芯片组件的透光处理***和透光处理方法
CN201810679387.6 2018-06-27
CN201810679387.6A CN108878587A (zh) 2018-06-27 2018-06-27 一种光伏芯片的透光处理方法

Publications (1)

Publication Number Publication Date
WO2020000596A1 true WO2020000596A1 (zh) 2020-01-02

Family

ID=63490229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100683 WO2020000596A1 (zh) 2018-06-27 2018-08-15 用于太阳能芯片组件的透光处理***和透光处理方法

Country Status (4)

Country Link
US (1) US20200001592A1 (zh)
EP (1) EP3588587A1 (zh)
JP (1) JP2020001365A (zh)
WO (1) WO2020000596A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768560A (zh) * 2021-01-07 2021-05-07 成都中建材光电材料有限公司 一种对双玻光伏组件图案刻蚀的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741288A (zh) * 2004-08-23 2006-03-01 周庆明 一种非晶硅光电池的制造方法
US20100300532A1 (en) * 2006-05-19 2010-12-02 Cumpston Brian H Hermetically sealed nonplanar solar cells
US20100319772A1 (en) * 2009-06-22 2010-12-23 Chun-Hsiung Lu Thin film solar cell with light transmission
CN101958361A (zh) * 2009-07-13 2011-01-26 无锡尚德太阳能电力有限公司 透光薄膜太阳电池组件刻蚀方法
CN107887457A (zh) * 2017-12-14 2018-04-06 北京铂阳顶荣光伏科技有限公司 一种透光太阳能电池及其制备方法
CN109065668A (zh) * 2018-08-03 2018-12-21 汉能移动能源控股集团有限公司 太阳能电池基板及太阳能组件的制备方法
CN208538888U (zh) * 2018-06-27 2019-02-22 北京铂阳顶荣光伏科技有限公司 太阳能芯片组件的透光处理***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252929B2 (ja) * 2008-01-16 2013-07-31 ラピスセミコンダクタ株式会社 色素増感太陽電池及びその製造方法
US8298852B2 (en) * 2008-12-29 2012-10-30 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
JP5649315B2 (ja) * 2010-03-05 2015-01-07 Jx日鉱日石エネルギー株式会社 太陽電池用透明導電性基板、その製造方法及びそれを用いた太陽電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741288A (zh) * 2004-08-23 2006-03-01 周庆明 一种非晶硅光电池的制造方法
US20100300532A1 (en) * 2006-05-19 2010-12-02 Cumpston Brian H Hermetically sealed nonplanar solar cells
US20100319772A1 (en) * 2009-06-22 2010-12-23 Chun-Hsiung Lu Thin film solar cell with light transmission
CN101958361A (zh) * 2009-07-13 2011-01-26 无锡尚德太阳能电力有限公司 透光薄膜太阳电池组件刻蚀方法
CN107887457A (zh) * 2017-12-14 2018-04-06 北京铂阳顶荣光伏科技有限公司 一种透光太阳能电池及其制备方法
CN208538888U (zh) * 2018-06-27 2019-02-22 北京铂阳顶荣光伏科技有限公司 太阳能芯片组件的透光处理***
CN109065668A (zh) * 2018-08-03 2018-12-21 汉能移动能源控股集团有限公司 太阳能电池基板及太阳能组件的制备方法

Also Published As

Publication number Publication date
EP3588587A1 (en) 2020-01-01
JP2020001365A (ja) 2020-01-09
US20200001592A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
US8647910B2 (en) Masking pastes and processes for manufacturing a partially transparent thin-film photovoltaic panel
US20090032109A1 (en) Cis based thin-film photovoltaic module and process for producing the same
CN101772843B (zh) 薄膜型太阳能电池的制造方法以及用该方法所制造出的薄膜型太阳能电池
EP2466650A2 (en) Method for fabricating silicon wafer solar cell
EP2276074A2 (en) Method for etching a see-through thin film solar module
EP1898226A3 (en) Method of manufacturing solar cell panel
US20100087025A1 (en) Method for defect isolation of thin-film solar cell
WO2020000596A1 (zh) 用于太阳能芯片组件的透光处理***和透光处理方法
CN102231398B (zh) 具有绒面的铜铟镓硒薄膜电池及其制备方法
WO2013051433A1 (ja) 光起電力素子の欠陥修復方法および欠陥修復装置
CN208538888U (zh) 太阳能芯片组件的透光处理***
CN108878586A (zh) 太阳能芯片组件的透光处理***和透光处理方法
CN107394007A (zh) 一种适用于superstrate结构薄膜太阳电池硫化或硒化的方法
US20120291840A1 (en) Patterned textured glass compatible with laser scribing
EP2863442B1 (en) Module-level processing of silicon photovoltaic cells
US7939444B2 (en) Manufacturing methods of thin film solar cell and thin film solar cell module
WO2010081661A3 (en) Solution for increasing wafer sheet resistance and/or photovoltaic cell power density level
CN209886907U (zh) 一种电池激光刻边***
WO2009084850A3 (en) Method of patterning transparent conductive oxide of a conductive glass and conductive glass prepared thereby
KR100901745B1 (ko) 박막 태양전지 및 모듈 제조방법
KR101649850B1 (ko) 태양전지와 그 제조방법 및 태양전지 제조용 식각장비
US20120122271A1 (en) Etching method to increase light transmission in thin-film photovoltaic panels
KR101360710B1 (ko) 포토 레지스트를 이용한 전극의 패터닝 방법과 이에 의해 제조된 태양전지 모듈용 기판 및 태양전지 모듈
US10115848B2 (en) Method of transferring thin film
KR20150014597A (ko) 터치 패널 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924057

Country of ref document: EP

Kind code of ref document: A1