WO2020000462A1 - 一种制备mcdr2基因敲除小鼠的方法 - Google Patents

一种制备mcdr2基因敲除小鼠的方法 Download PDF

Info

Publication number
WO2020000462A1
WO2020000462A1 PCT/CN2018/093872 CN2018093872W WO2020000462A1 WO 2020000462 A1 WO2020000462 A1 WO 2020000462A1 CN 2018093872 W CN2018093872 W CN 2018093872W WO 2020000462 A1 WO2020000462 A1 WO 2020000462A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcdr2
gene
crispr
sgrna
cell
Prior art date
Application number
PCT/CN2018/093872
Other languages
English (en)
French (fr)
Inventor
毛吉炎
Original Assignee
深圳市博奥康生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市博奥康生物科技有限公司 filed Critical 深圳市博奥康生物科技有限公司
Priority to PCT/CN2018/093872 priority Critical patent/WO2020000462A1/zh
Publication of WO2020000462A1 publication Critical patent/WO2020000462A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Definitions

  • the invention relates to the fields of genetic engineering and gene editing, and in particular, to editing an MCDR2 gene by using a CRISPR-Cas9 system and obtaining MCDR2 gene knockout mice through a somatic cell nuclear transfer technology.
  • tumor stem cells Only a small number of cell subpopulations in tumor tissue have the ability to form new tumor tissue, which is called tumor stem cells or tumor initiating cells. Since Ladipot T successfully isolated and identified tumor stem cells from acute myeloid leukemia in 1994, tumors have been found in solid tumor tissues such as breast cancer, glioma, melanoma, liver cancer, lung cancer, prostate cancer, and colorectal cancer. The presence of stem cells. Compared with ordinary tumor cells, tumor stem cells highly express stem cell-related genes, such as Nanog, Notch, HES, SHH and so on. In addition, tumor stem cells also express certain marker molecules, of which MCDR2 is one of the most important marker molecules.
  • MCDR2 is one of the most important marker molecules.
  • MCDR2 is a five-transmembrane glycoprotein with a molecular weight of approximately 120 kDa.
  • CRISPR-Cas9 is an adaptive immune system found in bacteria and archaea. Using artificially synthesized sgRNA sequences that are complementary to genomic DNA bases, the Cas9 enzyme can achieve site-specific cleavage of the genome, resulting in double-strand breaks in the DNA. Subsequently, the cell's DNA repair mechanism is activated, generating random types at the double-strand break Insertion / deletion repair may cause gene frameshift mutations and loss of gene function, which can be used for research related to the clinical application of the MCDR2 target.
  • an object of the present invention is to provide a method for preparing MCDR2 gene knockout mice.
  • the present invention first provides an sgRNA that specifically targets the MCDR2 gene, the nucleotide sequence of which is 5 '- GCAACAGGGAGCCGAGTACG-3 '.
  • the present invention also provides a CRISPR-Cas9 targeting vector containing the aforementioned sgRNA.
  • a CRISPR-Cas9 targeting vector containing the aforementioned sgRNA.
  • it is a px-459 plasmid to which sgRNA is ligated.
  • the px-459 plasmid is purchased from Addgene, and its map is shown in FIG. 1.
  • the CRISPR-Cas9 targeting vector is prepared by the following method: sgRNA and its complementary oligonucleotide sequence are synthesized by means of synthetic primers. The oligo sequence is annealed by boiling for 5 minutes, then left to cool to room temperature. The px-459 plasmid was digested with Bbs I, and the vector backbone was recovered by digestion. T4 DNA ligase was used to ligate with the annealed oligonucleotide product.
  • the present invention also provides a method for preparing a MCDR2 gene knockout cell.
  • a CRISPR-Cas9 targeting vector containing an sgRNA targeted to the CDS region of the MCDR2 gene is transfected into the cell, thereby knocking out the MCDR2 gene of the cell.
  • the present invention also provides a method for preparing a MCDR2 gene knockout mouse, that is, using a CRISPR-Cas9 targeting vector that targets the CDS region of the MCDR2 gene to achieve the MCDR2 gene knockout.
  • the method includes the following steps:
  • step 2 co-transfect the linearized fragment obtained in step 1 into mouse embryonic fibroblasts, and select single-cell clones with resistance by puromycin;
  • the CRISPR-Cas9 targeting vector px-459 was used to transduce mouse embryonic fibroblasts by taking 3 ⁇ g of the px-459 plasmid and transfecting it with a lonza nuclear electrophoresis apparatus and a fibroblast electrotransformation kit.
  • the sgRNA is designed for the CDS region of the mouse MCDR2 gene for the first time, and the MCDR2 gene is cut with the help of the CRISPR-Cas9 system to obtain MCDR2 knockout mice.
  • This method for preparing MCDR2 knockout mice is domestic in China Was not reported before. It provides a practical method for studying mouse MCDR2 gene.
  • Figure 1 shows the px-459 vector map.
  • px-459 vector was purchased from Addgene company, T4 DNA ligase, Bbs I and T7E1 were purchased from NEB company, and high-fidelity PCR enzyme was purchased from Dalian Bio-Bio. Primer synthesis and sequencing were completed by Shanghai Shengong, endotoxin-free plasmid extraction kit The gel recovery kit and genomic extraction kit were purchased from QIAGEN.
  • Embodiment one CRSIPR-Cas9 Construction of a targeting vector
  • sgRNA was designed in the CDS region of mouse MCDR2 gene, and its sequence is 5 ’- GCAACAGGGAGCCGAGTACG -3 ', according to the principle of base complementary pairing, its reverse complementary sequence is 5'- TCCTGTAGCCTCCCAACCTG -3'.
  • the px-459 vector backbone needs to be digested with BbsI, so the sticky end of the BbsI digestion site needs to be added to the sgRNA sequence to facilitate its integration into the pX330 vector backbone. Add the sgRNA sequence of BbsI sticky ends and its complementary sequence.
  • the designed sgRNA added to the cohesive end of the BbsI digestion site and its complementary sequence are synthesized by means of synthetic primers.
  • the synthetic oligonucleotide is annealed to form a double-stranded DNA with sticky ends. The annealing procedure is: boil for 5 min, then let it stand and allow it to cool naturally to room temperature.
  • the px-459 vector backbone was digested with Bbs I and reacted at 37 ° C for 2 h. Then perform agarose gel electrophoresis and cut the gel to recover the target band.
  • the vector backbone is linked to the sgRNA sequence to construct a targeting vector.
  • the recovered vector backbone was ligated with the sgRNA sequence annealing product at 4 ° C overnight.
  • the ligated product was transformed into Top10 competent cells, cultured in an incubator at 37 ° C, and when a monoclonal was grown, a single line was picked and sequenced to identify a positive monoclonal.
  • the target vector was extracted without endotoxin extraction in the expanded culture.
  • Example 3 Transduction of mouse embryonic fibroblasts and screening of single cell clones
  • mouse embryonic fibroblasts whose fusion degree has reached 80-90% are digested and centrifuged to obtain about 200,000-2,000,000 mouse embryonic fibroblasts.
  • the cells in the cell culture dish should adhere and be in good condition. Add 1-3 ⁇ g / ml puromycin, and then add puromycin every 2 days. The dosage should be based on the cell status and Convergence is flexible. After screening for 7-10 days, it can be seen that the monoclonal growth.
  • Embodiment 5 MCDR2 Preparation of knockout mice
  • the positive mouse embryo fibroblasts obtained in Example 4 were used as nuclear transfer donor cells. Culture embryo fibroblasts to 100% confluence for 1-2 days, remove the culture medium in the dish, wash once with PBS, and then digest with 0.1% trypsin for about 2 minutes. Immediately after the cells become round, use 10% FBS. The digestion of the cell culture medium was terminated, centrifuged at 1000 rpm for 5 min, the supernatant was discarded, and the cells pelleted by centrifugation were resuspended, and placed in an ice bath for later use.
  • In vitro mature oocytes are used as nuclear transfer recipient eggs. After artificially inducing ovulation in female mice, cumulus-oocyte complexes were collected from their ovaries, matured in vitro and hyaluronidase was used to remove cumulus cells, and then the first polar body and morphology were selected and discharged under a stereomicroscope. Normal, cytoplasmic mature oocytes are ready for use.
  • mice Use an embryo transfer tube to aspirate the embryo and place it into the joint around the fallopian tube bell mouth, and then reset the fat pad, ovary, fallopian tube, and uterus to suture the wound.
  • the mice were bred in a single cage until delivery after awakening.
  • the sgRNA is designed for the CDS region of the mouse MCDR2 gene for the first time, and the MCDR2 gene is cut with the help of the CRISPR-Cas9 system to obtain MCDR2 knockout mice.
  • This method for preparing MCDR2 knockout mice is domestic in China Was not reported before. It provides a practical method for studying mouse MCDR2 gene.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供一种利用CRISPR-Cas9***对MCDR2基因进行编辑,并通过体细胞核移植技术获得MCDR2基因敲除的小鼠。针对小鼠MCDR2基因的CDS区设计sgRNA,并利用CRISPR-Cas9***对其进行切割,实现了MCDR2基因的敲除,并且获得了相应的敲除小鼠个体,为研究小鼠MCDR2基因提供了一种切实可行的方法。

Description

一种制备MCDR2基因敲除小鼠的方法 技术领域
本发明涉及基因工程和基因编辑领域,具体地说,涉及利用CRISPR-Cas9***对MCDR2基因进行编辑,并通过体细胞核移植技术获得MCDR2基因敲除小鼠。
背景技术
大量的研究结果显示,肿瘤细胞具有很大的异质性。肿瘤组织内只有很少量的细胞亚群具有形成新的肿瘤组织的能力,被称之为肿瘤干细胞或肿瘤起始细胞。自1994年Ladipot T成功从急性粒细胞白血病分离并鉴定出肿瘤干细胞以来,相继在乳腺癌、脑胶质瘤、黑色素瘤、肝癌、肺癌、***癌、结直肠癌等实体肿瘤组织中发现了肿瘤干细胞的存在。与普通肿瘤细胞相比,肿瘤干细胞高表达干细胞相关基因,如Nanog、Notch、HES、SHH等。此外肿瘤干细胞还表达某些标记分子,其中MCDR2是最重要的标记分子之一。
技术问题
MCDR2分子是一种五次跨膜的糖蛋白,分子量约为120 kDa。最早的研究发现MCDR2分子特异性表达在神经干细胞、造血干细胞表面。之后的研究发现MCDR2分子表达于多种胎儿或成体组织。虽然至今对MCDR2分子的功能还不明确,但是MCDR2单独或与其他分子联合已逐渐应用于多种肿瘤干细胞的鉴定和生物学特性研究,如脑胶质瘤、肺癌、肝癌、子宫内膜癌、胰腺癌、***癌等。
CRISPR-Cas9是一种存在于细菌和古生菌中的适应性免疫***。利用人工合成的、与基因组DNA碱基互补配对的sgRNA序列,Cas9酶可以实现基因组的定点切割,从而产生DNA的双链断裂,随后细胞的DNA修复机制被激活,在双链断裂处产生随机类型的***/缺失修复,可能会造成基因的移码突变和基因功能缺失,即可用于MCDR2靶点临床临床应用相关的研究。
技术解决方案
为了解决现有技术中存在的问题,本发明的目的是提供一种制备MCDR2基因敲除小鼠的方法。
为了实现本发明目的,本发明首先提供特异性靶向MCDR2基因的sgRNA,其核苷酸序列为5’ - GCAACAGGGAGCCGAGTACG -3’。
 其次,本发明还提供了含有前述sgRNA的CRISPR-Cas9打靶载体。作为优选,其为连接有sgRNA的px-459质粒,所述px-459质粒购自Addgene,其图谱如图1所示。
    所述CRISPR-Cas9打靶载体,是通过以下方法制备得到的:以合成引物的方式,合成sgRNA及其互补的寡核苷酸序列。将寡核酸序列进行退火操作,方法为煮沸5 min,然后静置并使其自然冷却至室温。用Bbs I酶切px-459质粒,切胶回收载体骨架,利用T4 DNA连接酶与退火后的寡核苷酸产物进行连接。
进一步地,本发明还提供了一种制备MCDR2基因敲除细胞的方法,将含有靶向MCDR2基因CDS区的sgRNA的CRISPR-Cas9打靶载体转染细胞,从而敲除细胞的MCDR2基因。
与此同时,本发明还提供了一种制备MCDR2基因敲除小鼠的方法,即同时利用靶向MCDR2基因CDS区的CRISPR-Cas9打靶载体,对MCDR2基因实现敲除。
具体而言,所述方法包括如下步骤:
① 将含有靶向MCDR2基因CDS区的sgRNA的CRISPR-Cas9打靶载体进行酶切,得到线性化片段;
② 将步骤①得到的线性化片段共转染小鼠的胚胎成纤维细胞,通过嘌呤霉素筛选具有抗性的单细胞克隆;
③ 选取状态良好的阳性单细胞克隆作为核移植的供体细胞,***作为核移植的受体细胞,利用体细胞核移植技术构建克隆胚胎,将优质的克隆胚胎移植到***小鼠的输卵管内,经过全期发育获得MCDR2基因敲除小鼠。
其中,CRISPR-Cas9打靶载体px-459转导小鼠的胚胎成纤维细胞的方法为:取px-459质粒3 μg,利用lonza核电转仪及成纤维细胞电转试剂盒进行转染。
有益效果
本发明首次针对小鼠MCDR2基因的CDS区设计的sgRNA,并借助CRISPR-Cas9***MCDR2基因实现了切割,获得了MCDR2敲除的小鼠个体,这种制备MCDR2基因敲除小鼠的方法在国内外之前是没有报道的。为研究小鼠MCDR2基因提供了一种切实可行的方法。
附图说明
图1为px-459载体图谱。
本发明的实施方式
下面结合具体实施例和附图进一步阐述本发明。
px-459载体购自Addgene公司,T4 DNA连接酶、Bbs I及T7E1购于NEB公司,高保真PCR酶购自大连宝生物,引物合成及测序由上海生工完成,去内毒素质粒提取试剂盒、胶回收试剂盒及基因组提取试剂盒购于QIAGEN公司。
实施例一: CRSIPR-Cas9 打靶载体的构建
根据CRISPR-Cas9的作用原理,在小鼠MCDR2基因的CDS区设计sgRNA,其序列为5’ - GCAACAGGGAGCCGAGTACG -3’, 根据碱基互补配对的原则,其反向互补序列为5’- TCCTGTAGCCTCCCAACCTG -3’。
px-459载体骨架需要使用BbsⅠ进行酶切,所以需要在sgRNA序列上补出BbsⅠ酶切位点的粘性末端,以利于其连入pX330载体骨架。加入BbsⅠ 粘性末端的sgRNA序列及其互补序列。
a. 将设计好的加入BbsⅠ酶切位点粘性末端的sgRNA及其互补序列以合成引物的方式进行合成。将合成的寡核苷酸进行退火操作,使其形成带有粘性末端的DNA双链。退火程序为:煮沸5 min,然后静置并使其自然冷却至室温。
b. px-459载体骨架使用BbsⅠ酶切,37℃反应2 h。然后进行琼脂糖凝胶电泳,并切胶回收目的条带。
c. 载体骨架与sgRNA序列连接,构建打靶载体。将回收的载体骨架与sgRNA序列退火产物于4℃连接过夜。将连接产物转化Top10感受态细胞,37℃培养箱培养,待其长出单克隆后 ,挑取单克隆划线,并进行测序鉴定阳性单克隆。对于测序结果正确的阳性克隆,扩大培养并无内毒素提取其中的打靶载体。
实施例二:小鼠胚胎成纤维细胞的建系
a. 取妊娠10-15天的小鼠,从其子宫内无菌取出胚胎,置于超净工作台中,用眼科剪去除胚胎的头部、四肢、内脏及软骨组织,用PBS冲洗干净;
b. 在细胞培养皿内用眼科剪将剩余组织剪碎成约1平方毫米小块;
c. 加入适量的FBS,保持组织不至于过分干燥。将剪碎的组织块转移到1个T75细胞培养瓶中,将组织块均匀铺开;
d. 加入5 ml细胞培养基,将铺有组织块的一面向上,不被培养基浸没,于37℃,5%CO2培养箱中培养3~5 h后,将培养瓶翻转,使组织块被培养基浸没;
e. 培养5天左右,观察到组织块周围有大量细胞爬出,待细胞生长至约90%汇合度时,对细胞进行消化并冻存备用。
实施例三:小鼠胚胎成纤维细胞的转导和单细胞克隆的筛选
a. 在一个六孔板孔中,将融合度已达到80-90%的小鼠胚胎成纤维细胞,进行消化、离心,获得数量约200000-2000000的小鼠胚胎成纤维细胞。
b. 将打靶载体加入Lonza转染试剂中,混匀。使用加入质粒的转染试剂重悬细胞,并将细胞悬液加入到电击杯中,开始电击细胞。
c. 电击完成后,立即将细胞吸出,加2 ml含10% FBS的DMEM到六孔板中。
d. 37℃,5% CO2培养箱培养48h后,细胞达到80%-90%汇合,将细胞消化下来,稀释至20-30个100 mm细胞培养皿中。
e. 24-48h后,待细胞培养皿中的细胞贴壁、且状态良好,加入1-3 μg/ml的嘌呤霉素,每2天补加一次嘌呤霉素,加药量根据细胞状态及汇合度灵活掌控。筛选7-10天,可见单克隆长出。
f. 单克隆的挑取及扩大培养。在显微镜下,使用记号笔将状态良好的单克隆用圆圈圈出。弃掉培养皿中的培养基,PBS清洗一次,将克隆环蘸取明胶,用克隆环将细胞单克隆圈住,加入10-30 μl 0.1%的胰蛋白酶,37℃消化1 min。在显微镜下观察,待细胞变圆、游离时,立即加入含10% FBS的DMEM终止消化。将细胞吸出加入24孔板中。48-72h后,24孔板中细胞融合度达到80-90%时,将细胞传至12孔板中。待12孔板中细胞融合度达到80%-90%时,对细胞进行冻存。
实施例四:阳性单细胞克隆的鉴定
取30个单克隆的基因组DNA,以其为模板进行PCR扩增,,以野生型细胞的基因组作为阴性对照,并使用T7E1酶对PCR产物进行酶切鉴定,筛选出酶切结果为阳性的单克隆。
实施例五: MCDR2 基因敲除小鼠的制备
以实施例四获得的阳性小鼠胚胎成纤维细胞为核移植供体细胞。培养胚胎成纤维细胞至100%融合1-2天,去除培养皿内培养基,加入PBS洗涤1次,然后用0.1%胰蛋白酶消化约2 min,待细胞变圆后立即后用含10% FBS的细胞培养液终止消化,1000 rpm离心5min,弃上清,重悬离心沉淀的细胞,冰浴放置备用。
b. 以体外成熟的***为核移植受体卵质。人工诱导雌性小鼠***后,从其卵巢中采集取卵丘-***复合体,经过体外成熟并用透明质酸酶脱去卵丘细胞,而后在体式显微镜下挑选排出第一极体、形态正常、胞质均匀的成熟***备用。
c. 在显微操作仪下,将核移植供体细胞移入去核的成熟***中。经过电融合及化学激活,诱导细胞与卵子融合并同时激活***。构建成重组胚胎,融合胚放入低氧培养环境下培养。体外发育至1-4细胞期后观察卵裂情况及发育状态,并用于胚胎移植。
d. 挑选形态正常、发育优良的克隆胚胎移植入胚胎同期的雌性小鼠体内。将假孕的雌性小鼠麻醉后,沿背腰中央纵向剪开皮肤,用镊子沿切口剥开皮肤、肌肉,找到脂肪垫。在脂肪垫的位置剪开肌肉层,用小镊子夹住脂肪组织,把一侧的卵巢、输卵管与子宫一起拉出,固定好,置于显微镜下。使用胚胎移植管吸取胚胎并将其放入输卵管喇叭口周围接合部,然后将脂肪垫、卵巢、输卵管及子宫等复位,缝合伤口。小鼠苏醒后单笼饲养至分娩。
工业实用性
本发明首次针对小鼠MCDR2基因的CDS区设计的sgRNA,并借助CRISPR-Cas9***MCDR2基因实现了切割,获得了MCDR2敲除的小鼠个体,这种制备MCDR2基因敲除小鼠的方法在国内外之前是没有报道的。为研究小鼠MCDR2基因提供了一种切实可行的方法。

Claims (6)

  1. 特异性靶向MCDR2基因的sgRNA,其特征在于,其核苷酸序列为5’ – GCAACAGGGAGCCGAGTACG -3’。
  2. 含有权利要求1所述的sgRNA的CRISPR-Cas9打靶载体。
  3. 根据权利要求2所述的CRISPR-Cas9打靶载体,其特征在于,其为连接有sgRNA的px-459质粒。
  4. 一种制备MCDR2基因敲除细胞的方法,其特征在于,将含有权利要求2所述sgRNA的CRISPR-Cas9打靶载体转染细胞,从而敲除细胞的MCDR2基因。
  5. 一种制备MCDR2基因敲除小鼠的方法,其特征在于,利用靶向MCDR2基因CDS区的CRISPR-Cas9打靶载体,对MCDR2基因实现敲除。
  6. 根据权利要求7所述的方法,其特征在于,包括如下步骤:
    ① 将含有权利要求1所述sgRNA的CRISPR-Cas9打靶载体进行酶切,得到线性化片段;
    ② 将步骤①得到的线性化片段共转染小鼠的胚胎成纤维细胞,通过嘌呤霉素筛选具有抗性的单细胞克隆;
    ③ 选取状态良好的阳性单细胞克隆作为核移植的供体细胞,***作为核移植的受体细胞,利用体细胞核移植技术构建克隆胚胎,将优质的克隆胚胎移植到***母小鼠的输卵管内,经过全期发育获得MCDR2基因敲除小鼠。
PCT/CN2018/093872 2018-06-29 2018-06-29 一种制备mcdr2基因敲除小鼠的方法 WO2020000462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093872 WO2020000462A1 (zh) 2018-06-29 2018-06-29 一种制备mcdr2基因敲除小鼠的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093872 WO2020000462A1 (zh) 2018-06-29 2018-06-29 一种制备mcdr2基因敲除小鼠的方法

Publications (1)

Publication Number Publication Date
WO2020000462A1 true WO2020000462A1 (zh) 2020-01-02

Family

ID=68985333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093872 WO2020000462A1 (zh) 2018-06-29 2018-06-29 一种制备mcdr2基因敲除小鼠的方法

Country Status (1)

Country Link
WO (1) WO2020000462A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN106480027A (zh) * 2016-09-30 2017-03-08 重庆高圣生物医药有限责任公司 CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN106480027A (zh) * 2016-09-30 2017-03-08 重庆高圣生物医药有限责任公司 CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAELIDES, M. ET AL.: "An Autosomal Dominant Bull's-Eye Macular Dystrophy (MCDR2; that Maps to the Short Arm of Chromosome 4", INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 44, no. 4, 1 April 2003 (2003-04-01), pages 1657 - 1662, XP055669514, ISSN: 1552-5783, DOI: 10.1167/iovs.02-0941 *

Similar Documents

Publication Publication Date Title
CN105821049B (zh) 一种Fbxo40基因敲除猪的制备方法
CN105907758B (zh) CRISPR-Cas9引导序列及其引物、转基因表达载体及其构建方法
CN106191064B (zh) 一种制备mc4r基因敲除猪的方法
CN107937345B (zh) 一种制备同时敲除cd163基因和cd13基因的猪成纤维细胞的方法
CN111979243B (zh) 利用CRISPR/Cas9***构建TAP基因缺失的猪T2细胞的方法
CN113957069B (zh) 用于pAPN基因第736位和第738位氨基酸同时修饰的组合物及其应用
WO2019154437A1 (zh) CRISPR/Cas9载体组合及其在基因敲除中的应用
CN113957093B (zh) 用于pAPN基因定点修饰的***及其应用
CN114480457A (zh) 一种基于pCAG-flox-neo载体的高效稳定的定点整合基因敲入方法
WO2018205641A1 (zh) 一种抗寒及瘦肉型转基因猪及其制备方法
CN113403337A (zh) 一种载体***、制备猪成纤维细胞和基因编辑猪的方法
CN106591364B (zh) 一种获取转基因牛胎儿成纤维细胞的方法
WO2020000462A1 (zh) 一种制备mcdr2基因敲除小鼠的方法
CN110938629A (zh) 特异性识别猪Wip1基因的成套sgRNA及其应用和产品
US20220364072A1 (en) Fusion protein that improves gene editing efficiency and application thereof
CN110699326A (zh) 一种永生化人肝星状细胞株及其制备方法
CN109679998A (zh) 一种定点突变MSTN并同时定点整合PPARγ的载体
WO2020000463A1 (zh) 一种制备jm2基因敲除小鼠的方法
WO2020000465A1 (zh) 一种制备lightr基因敲除小鼠的方法
JP6827250B2 (ja) 多能性幹細胞再樹立法
CN111876442B (zh) 一种mc3r基因编辑的猪成纤维细胞系的制备方法
CN102533764A (zh) Figla基因启动子序列及其构建的标记载体和应用
CN110042123B (zh) 一种通过诱导表达zfp57提高牛体细胞克隆效率的方法
CN114934066A (zh) 石骨症的基因编辑体系及其应用
WO2020000464A1 (zh) 一种制备gl-r基因敲除小鼠的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923837

Country of ref document: EP

Kind code of ref document: A1