WO2019240044A1 - カチオン硬化性組成物、及び硬化物の製造方法 - Google Patents

カチオン硬化性組成物、及び硬化物の製造方法 Download PDF

Info

Publication number
WO2019240044A1
WO2019240044A1 PCT/JP2019/022767 JP2019022767W WO2019240044A1 WO 2019240044 A1 WO2019240044 A1 WO 2019240044A1 JP 2019022767 W JP2019022767 W JP 2019022767W WO 2019240044 A1 WO2019240044 A1 WO 2019240044A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
group
cationic
cationic curable
composition according
Prior art date
Application number
PCT/JP2019/022767
Other languages
English (en)
French (fr)
Inventor
和伸 神谷
弘毅 渋谷
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US17/055,350 priority Critical patent/US11773208B2/en
Priority to CN201980038683.0A priority patent/CN112292414A/zh
Priority to KR1020207037613A priority patent/KR102479148B1/ko
Publication of WO2019240044A1 publication Critical patent/WO2019240044A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a cationic curable composition and a method for producing a cured product.
  • An example of a technique for a latent curing agent using the above curing system is a method of holding an aluminum chelate compound in porous particles, and various techniques for the latent curing agent and a curable composition using the same.
  • has been proposed see, for example, Patent Documents 1 to 4).
  • the storage stability is improved and the low-temperature rapid curability is excellent.
  • the aluminum chelate compound that has exuded from the porous particles reacts with the silanol compound to generate a cationic curing initiation species. Therefore, the composition obtained by mixing them has a problem that the storage stability is excellent compared with the case where no latent curing agent is used, but it is not sufficient in terms of long-term storage stability.
  • the present situation is that it is required to provide a cationic curable composition that can be stored for a long period of time, has excellent low-temperature rapid curability, and has a long pot life after light irradiation.
  • the present invention is a cationic curable composition that can be stored for a long period of time, has excellent low-temperature rapid curability, and has a long pot life after light irradiation, and production of a cured product using the cationic curable composition. It aims to provide a method.
  • Means for solving the problems are as follows. That is, ⁇ 1> A cationic curable composition that generates a silanol group by light irradiation and is cured by heat, A cationic curable composition comprising a cationic curing component, porous particles holding an aluminum chelate, and a photodecomposable silicon compound that generates a silanol group by photolysis. ⁇ 2> The cationically curable composition according to the above ⁇ 1>, wherein the photodegradable silicon compound has at least one of a peroxysilyl group, an o-nitrobenzyloxy group directly bonded to a silicon atom, and an ⁇ -ketosilyl group. It is a thing.
  • ⁇ 3> The cationic curable composition according to any one of ⁇ 1> to ⁇ 2>, wherein the porous particles are composed of a polyurea resin.
  • the porous particles further include a vinyl resin as a constituent component.
  • the epoxy resin contains at least one of an alicyclic epoxy resin and a glycidyl ether type epoxy resin.
  • ⁇ 7> The cationic curable composition according to any one of ⁇ 5> to ⁇ 6>, wherein the cationic curing component further contains an oxetane compound.
  • Calorific value (H 0 ) by differential scanning calorimetry after light irradiation for 1 minute at 50 mW / cm 2 by a mercury xenon lamp, and calorific value by differential scanning calorimetry 48 hours after the light irradiation (H 48 ) is the cationic curable composition according to any one of ⁇ 1> to ⁇ 7>, which satisfies the following formula (1).
  • the heat generation start temperature in differential scanning calorimetry after light irradiation with a mercury xenon lamp at 50 mW / cm 2 for 1 minute is 45 ° C. or more and 80 ° C. or less, according to any one of ⁇ 1> to ⁇ 8> A cationically curable composition.
  • the exothermic peak temperature in differential scanning calorimetry after light irradiation at 50 mW / cm 2 for 1 minute with a mercury xenon lamp is 60 ° C. or higher and 130 ° C.
  • any one of ⁇ 1> to ⁇ 9> A cationically curable composition.
  • the cation-curable composition according to any one of ⁇ 1> to ⁇ 10> is irradiated with light, the photodecomposable silicon compound is photolyzed to generate a silanol group, and then heated. It is a manufacturing method of the hardened
  • ⁇ 12> The method for producing a cured product according to ⁇ 11>, wherein the heating is performed at 60 ° C. or higher and 180 ° C. or lower when the heating is performed.
  • the above-mentioned object can be achieved, long-term storage is possible, low-temperature fast curability is excellent, and further, the cationic curable composition has a long pot life after light irradiation, and the cationic curable composition.
  • cured material using a composition can be provided.
  • FIG. 1 is a chart showing the results of DSC measurement of Formulation 1.
  • FIG. 2 is a chart showing the results of DSC measurement of Formulation 2.
  • FIG. 3 is a chart showing the results of DSC measurement of Formulation 3.
  • FIG. 4 is a chart showing the results of DSC measurement of Formulation 4.
  • FIG. 5 is a chart showing the results of DSC measurement of Formulation 5.
  • FIG. 6 is a chart showing the results of DSC measurement of Formulation 6.
  • FIG. 7 is a chart showing the results of DSC measurement for Formulations 7-9.
  • the cationic curable composition of the present invention contains at least a cationic curing component, porous particles, and a photodegradable silicon compound, and further contains other components as necessary.
  • the cationic curable composition is a cationic curable composition that generates a silanol group by light irradiation and is cured by heat.
  • the cationic curing component is not particularly limited as long as it is an organic material that is cationically cured, and can be appropriately selected according to the purpose. Examples thereof include an epoxy resin, an oxetane compound, and a vinyl ether resin.
  • Epoxy resin >> There is no restriction
  • the alicyclic epoxy resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • vinylcyclopentadiene dioxide vinylcyclohexene mono- to dioxide, dicyclopentadiene oxide, epoxy- [epoxy-oxaspiro C 8-15 alkyl] -cycloC 5-12 alkane (for example, 3,4-epoxy-1- [8,9-epoxy-2,4-dioxaspiro [5.5] undecan-3-yl] -cyclohexane, etc.
  • 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate [trade name: Celoxide #, manufactured by Daicel Corporation, because it is easily available as a commercial product. 2021P; epoxy equivalent of 128 to 140] is preferably used.
  • C 8-15 , C 5-12 , and C 1-3 includes 8 to 15 carbon atoms, 5 to 12 carbon atoms, and 1 to 3 carbon atoms, respectively. It means that there is a range of compound structures.
  • the glycidyl ether type epoxy resin may be, for example, liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, ester type epoxy resin and the like can be mentioned.
  • bisphenol A type epoxy resins can be preferably used from the viewpoint of resin characteristics. These epoxy resins also include monomers and oligomers.
  • oxetane compound examples include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane, 1,4-bis ⁇ [( 3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylic acid bis [(3-ethyl-3 -Oxetanyl)] methyl ester, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3 -Ethyl-3- ⁇ [3- (
  • content of the said cation hardening component in the said cation curable composition there is no restriction
  • the said content is content in the non volatile matter of the said cationic curable composition. The same applies to the following.
  • the said oxetane compound in the said cationic hardening component there is no restriction
  • the porous particles hold an aluminum chelate.
  • the porous particles are not particularly limited as long as they have many pores, and can be appropriately selected according to the purpose. Examples thereof include porous organic resin particles composed of an organic resin. .
  • the porous particles retain the aluminum chelate in the pores, for example. In other words, the aluminum chelate is incorporated and held in the fine pores present in the porous particle matrix.
  • the average pore diameter of the pores of the porous particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 300 nm, more preferably 5 nm to 150 nm.
  • porous organic resin particles are not particularly limited as long as they are porous particles composed of an organic resin, and can be appropriately selected according to the purpose.
  • the porous organic resin particles are preferably composed of at least a polyurea resin.
  • the porous organic resin particles may further contain a vinyl resin as a constituent component.
  • the polyurea resin is a resin having a urea bond in the resin.
  • the polyurea resin constituting the porous organic resin particles can be obtained, for example, by polymerizing a polyfunctional isocyanate compound in an emulsion.
  • the polyurea resin may have a bond derived from an isocyanate group and a bond other than a urea bond, such as a urethane bond, in the resin.
  • the porous particles composed of the polyurea resin are excellent in thermal responsiveness compared to the case where the porous particles are composed of porous inorganic particles such as silica.
  • the vinyl resin is a resin obtained by polymerizing a radical polymerizable vinyl compound.
  • the vinyl resin improves the mechanical properties of the porous particles. Thereby, the thermal responsiveness at the time of hardening of a cationic hardening component, especially a sharp thermal responsiveness in a low temperature area
  • region are realizable.
  • the vinyl resin contains, for example, a radical-polymerizable vinyl compound in an emulsified oil phase containing a polyfunctional isocyanate compound, and at the same time when the polyfunctional isocyanate compound is polymerized in the emulsified oil phase. It can be obtained by radical polymerization of a polymerizable vinyl compound.
  • the average particle size of the porous organic resin particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m. The following are particularly preferred:
  • Aluminum chelate examples include a complex compound in which three ⁇ -keto enolate anions coordinated to aluminum represented by the following general formula (A).
  • the alkoxy group is not directly bonded to aluminum. This is because when it is directly bonded, it is easily hydrolyzed and is not suitable for the emulsification treatment in producing the porous particles.
  • R 1 , R 2 and R 3 each independently represents an alkyl group or an alkoxyl group.
  • the alkyl group include a methyl group and an ethyl group.
  • the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
  • Examples of the complex compound represented by the general formula (A) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), and aluminum monoacetylacetonate. Examples thereof include bis (oleyl acetoacetate).
  • the content of the aluminum chelate in the porous particles is not particularly limited and can be appropriately selected depending on the purpose.
  • the porous particles may have a reaction product of an alkoxysilane coupling agent on the surface in terms of increasing the potential.
  • the reaction product is obtained by reacting an alkoxysilane coupling agent.
  • the reaction product is present on the surface of the porous particles.
  • ⁇ Method for Producing Porous Particles There is no restriction
  • the method for producing the porous inorganic particles holding the aluminum chelate include a method of impregnating the porous inorganic particles in a liquid containing the aluminum chelate and filling the pores of the porous inorganic particles with the aluminum chelate. It is done.
  • maintains an aluminum chelate the following manufacturing methods etc. are mentioned, for example.
  • the method for producing the porous organic resin particles includes, for example, at least a porous particle preparation step, and further includes other steps such as an inactivation step as necessary.
  • the porous particle preparation process includes at least an emulsion preparation process and a polymerization process, preferably includes an additional filling process, and further includes other processes as necessary.
  • the emulsion preparation process is not particularly limited as long as it is a process for obtaining an emulsion by emulsifying a liquid obtained by mixing an aluminum chelate, a polyfunctional isocyanate compound, and preferably an organic solvent. For example, it can be performed using a homogenizer.
  • the resin constituting the porous particles contains not only a polyurea resin but also a vinyl resin
  • the liquid further contains a radical polymerizable vinyl compound and a radical polymerization initiator.
  • Examples of the aluminum chelate include the aluminum chelate in the description of the porous particles.
  • the size of the oil droplets in the emulsion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the polyfunctional isocyanate compound is a compound having two or more isocyanate groups, preferably three or more isocyanate groups in one molecule.
  • Examples of the polyfunctional isocyanate compound include a bifunctional isocyanate compound and a trifunctional isocyanate compound.
  • Preferred examples of the trifunctional isocyanate compound include a TMP adduct of the following general formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and the following general formula (3) obtained by self-condensing 3 mol of a diisocyanate compound.
  • the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
  • diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. , 4'-diisocyanate and the like.
  • bifunctional isocyanate compound examples include tolylene diisocyanate, xylylene diisocyanate, naphthylene 1,5-diisocyanate, tetramethylxylene diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexylmethane diisocyanate, hexamelletin diisocyanate, dimer acid diisocyanate.
  • Norbornene diisocyanate trimethylhexamethylene diisocyanate, methylene diphenyl diisocyanate, dichlorobiphenyl diisocyanate, phenylene diisocyanate, tetramethylene diisocyanate and the like.
  • the mixing ratio of the aluminum chelate and the polyfunctional isocyanate compound is not particularly limited and can be appropriately selected according to the purpose. However, if the amount of the aluminum chelate is too small, the cationic curing component to be cured. The curability of the resin is lowered, and if it is too much, the latency of the resulting latent curing agent is lowered. In that respect, 10 mass parts or more and 500 mass parts or less of the said aluminum chelate are preferable with respect to 100 mass parts of said polyfunctional isocyanate compounds, and 10 mass parts or more and 300 mass parts or less are more preferable.
  • a volatile organic solvent is preferable.
  • the organic solvent is a good solvent for each of the aluminum chelate, the polyfunctional isocyanate compound, the radical polymerizable vinyl compound, and the radical polymerization initiator (the solubility of each is preferably 0.1 g / ml (organic solvent) or more). It is preferable that it does not substantially dissolve in water (the solubility of water is 0.5 g / ml (organic solvent) or less) and has a boiling point of 100 ° C. or less under atmospheric pressure.
  • Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
  • the amount of the organic solvent used is not particularly limited and can be appropriately selected depending on the purpose.
  • the radical polymerizable vinyl compound is a compound having a radical polymerizable carbon-carbon unsaturated bond in the molecule.
  • the radical polymerizable vinyl compound includes so-called monofunctional radical polymerizable compounds and polyfunctional radical polymerizable compounds.
  • the radical polymerizable vinyl compound preferably contains a polyfunctional radical polymerizable compound. This is because by using a polyfunctional radically polymerizable compound, it becomes easier to realize sharp thermal responsiveness in a low temperature region. Also from this meaning, the radical polymerizable vinyl compound preferably contains 30% by mass or more, more preferably 50% by mass or more of the polyfunctional radical polymerizable compound.
  • Examples of the monofunctional radical polymerizable compound include monofunctional vinyl compounds (for example, styrene and methylstyrene), monofunctional (meth) acrylate compounds (for example, butyl acrylate), and the like.
  • Examples of the polyfunctional radical polymerizable compound include polyfunctional vinyl compounds (eg, divinylbenzene, divinyl adipate, etc.), polyfunctional (meth) acrylate compounds (eg, 1,6-hexanediol diacrylate, Methylolpropane triacrylate, polyethylene glycol diacrylate, etc.).
  • Examples of the polyethylene glycol diacrylate include polyethylene glycol diacrylate represented by the following general formula (B).
  • n represents an integer of 2 to 10.
  • polyfunctional vinyl compounds particularly divinylbenzene
  • the distance between cross-linking points is increased, so that in the additional filling process, the aluminum chelate can be easily additionally charged into the porous particles, and the porous particles can be highly filled with the aluminum chelate. That is, the polyethylene glycol diacrylate can be preferably used in that the curing start temperature can be lowered, and the polyethylene glycol diacrylate represented by the general formula (B) can be more preferably used.
  • the polyfunctional radically polymerizable compound may be composed of a polyfunctional vinyl compound and a polyfunctional (meth) acrylate compound.
  • radical polymerization initiator examples include peroxide initiators and azo initiators.
  • the blending amount of the radical polymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.1 to 10 parts by mass with respect to 100 parts by mass of the radical polymerizable vinyl compound. It is preferably 0.5 parts by mass to 5 parts by mass.
  • the polymerization treatment is not particularly limited as long as it is a treatment for obtaining porous particles by polymerizing the polyfunctional isocyanate compound in the emulsion, and can be appropriately selected according to the purpose.
  • the porous particles hold the aluminum chelate.
  • polyurea resin In the polymerization treatment, a part of the isocyanate group of the polyfunctional isocyanate compound is hydrolyzed to become an amino group, and the amino group and the isocyanate group of the polyfunctional isocyanate compound react to form a urea bond. A polyurea resin is obtained.
  • the polyfunctional isocyanate compound has a urethane bond
  • the resulting polyurea resin also has a urethane bond
  • the polyurea resin produced at that point can also be referred to as a polyureaurethane resin.
  • the emulsion contains the radical polymerizable vinyl compound and the radical polymerization initiator
  • the polyfunctional isocyanate compound in the polymerization treatment, is polymerized and at the same time, the presence of the radical polymerization initiator is present.
  • the radical polymerizable vinyl compound causes radical polymerization. Therefore, the obtained porous particles contain a polyurea resin and a vinyl resin as constituent resins.
  • polymerization time in the said polymerization process there is no restriction
  • polymerization temperature in the said polymerization process Although it can select suitably according to the objective, 30 to 90 degreeC is preferable and 50 to 80 degreeC is more preferable.
  • the additional filling process is not particularly limited as long as it is a process of additionally filling the porous particles obtained by the polymerization process with an aluminum chelate, and can be appropriately selected according to the purpose.
  • aluminum Examples include a method of removing the organic solvent from the solution after the porous particles are immersed in a solution obtained by dissolving a chelate in an organic solvent.
  • the amount of aluminum chelate retained by the porous particles is increased by performing the additional filling process.
  • the porous particles additionally filled with aluminum chelate can be crushed into primary particles by a known crushing apparatus after being filtered, washed and dried as necessary.
  • the aluminum chelate that is additionally filled in the additional filling process may be the same as or different from the aluminum chelate that is blended in the liquid to be the emulsion.
  • the aluminum chelate used in the additional filling process may be an aluminum chelate in which an alkoxy group is bonded to aluminum.
  • Examples of such aluminum chelates include diisopropoxy aluminum monooleyl acetoacetate, monoisopropoxy aluminum bis (oleyl acetoacetate), monoisopropoxy aluminum monooleate monoethyl acetoacetate, diisopropoxy aluminum monolauryl acetoacetate.
  • diisopropoxyaluminum monostearyl acetoacetate diisopropoxyaluminum monoisostearyl acetoacetate, monoisopropoxyaluminum mono-N-lauroyl- ⁇ -alanate monolauryl acetoacetate and the like.
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the organic solvents exemplified in the description of the emulsion preparation process. The preferred embodiment is also the same.
  • the method for removing the organic solvent from the solution is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the method of heating the solution to the boiling point of the organic solvent or lowering the solution. The method etc. are mentioned.
  • the deactivation step is not particularly limited as long as it is a step of providing a reaction product of an alkoxysilane coupling agent on the surface of the porous particles, and can be appropriately selected according to the purpose.
  • the porous particles are preferably immersed in a solution containing an alkoxysilane coupling agent and an organic solvent and reacted with the alkoxysilane coupling agent.
  • the porous particles are considered to have an aluminum chelate not only on the inside but also on the surface due to its structure.
  • most of the surface aluminum chelate is inactivated by water present in the polymerization system during the interfacial polymerization. Therefore, the porous particles can acquire the potential without requiring the deactivation step (that is, even if the surface does not have a reaction product of an alkoxysilane coupling agent).
  • the cationic curable composition using a latent curing agent that has not undergone the inactivation step is usually greatly increased over time. Sticky.
  • the porous particle that has not undergone the inactivation step is used because the photodegradable silicon compound does not generate silanol groups unless irradiated with light. Even if it uses, the cation hardening of the cation hardening component with time can be suppressed.
  • alkoxysilane coupling agent-- The alkoxysilane coupling agent is classified into two types as described below.
  • the first type reacts with the active aluminum chelate on the surface of the porous particles to produce an aluminum chelate-silanol reactant, thereby reducing the electron density of oxygen adjacent to the aluminum atom
  • It is a type of silane coupling agent whose activity is lowered by lowering the acidity of hydrogen bonded to oxygen, in other words, lowering the polarizability between oxygen and hydrogen.
  • this type of silane coupling agent include an alkoxysilane coupling agent having an electron donating group bonded to a silicon atom, preferably an alkylalkoxysilane coupling agent having an alkyl group. Specific examples include methyltrimethoxysilane, n-propyltrimethoxysilane, hexyltrimethoxysilane and the like.
  • the second type is a silane coupling agent of which the activity is lowered by covering the surface with an epoxy polymer chain generated by reacting the active aluminum chelate of the porous particles with an epoxy group in the molecule.
  • An epoxy silane coupling agent is mentioned as this type of silane coupling agent. Specifically, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical ( Etc.).
  • nonpolar solvent there is no restriction
  • the nonpolar solvent include hydrocarbon solvents.
  • the hydrocarbon solvent include toluene, xylene, hexane, cyclohexane and the like.
  • the content of the alkoxysilane coupling agent in the solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass or more and 80% by mass or less.
  • the temperature of the solution in the inactivation step is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the aggregation of the porous particles and the outflow of the aluminum chelate from the porous particles Is preferably from 10 to 80 ° C., more preferably from 20 to 60 ° C.
  • the solution is preferably stirred.
  • the latent curing agent obtained through the inactivation step can be filtered, washed and dried as necessary, and then pulverized into primary particles by a known pulverizer.
  • the photodecomposable silicon compound is not particularly limited as long as it is a silicon compound that generates a silanol group by photolysis by light irradiation, and can be appropriately selected according to the purpose.
  • the photodecomposable silicon compound has, for example, a peroxysilyl group, an o-nitrobenzyloxy group directly bonded to a silicon atom, an ⁇ -ketosilyl group as a group for generating a silanol group by photolysis.
  • Photodegradable silicon compound having a peroxysilyl group examples include silicon compounds represented by the following general formula (I).
  • General formula (I) R 1 and R 2 may be the same or different and are each a hydrogen atom, a halogen atom, an unsubstituted or substituted alkyl group having 1 to 5 carbon atoms, Or represents an unsubstituted or substituted aryl group.
  • n represents an integer of 0 to 3.
  • Examples of the unsubstituted or substituted alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an isopropyl group, an n-propyl group, an n-butyl group, a t-butyl group, a sec-butyl group, and an n-pentyl group. Group, methoxy group, ethoxy group, chloromethyl group and the like.
  • Examples of the unsubstituted or substituted aryl group include a phenyl group, a naphthyl group, an anthranyl group, a p-methoxyphenyl group, and a p-chlorophenyl group.
  • Examples of the photodecomposable silicon compound having a peroxysilyl group include the following compounds. ⁇ Tert-butylperoxytriphenylsilane ⁇ tert-butylperoxydimethylphenylsilane ⁇ tert-butylperoxymethyldiphenylsilane ⁇ tert-butylperoxymethylvinylphenylsilane ⁇ tert-butylperoxydimethylvinylsilane ⁇ di- (tert-butylperoxy) diphenyl Silane • Di- (tert-butylperoxy) methylphenylsilane • Di- (tert-butylperoxy) vinylphenylsilane • 1,1-dimethylpropylperoxytriphenylsilane • 1-methylethylperoxytriphenylsilane • Di (1- Methylethylperoxy) diphenylsilane di (1,1-dimethylpropylperoxy) diphen
  • the method for synthesizing the photodegradable silicon compound having a peroxysilyl group is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Photodegradable silicon compound having an o-nitrobenzyloxy group directly bonded to a silicon atom examples include a silicon compound represented by the following general formula (II).
  • R 1 , R 2 , and R 3 may be the same or different and are each a hydrogen atom, a halogen atom, a vinyl group, an allyl group, or a carbon number of 1 to 10 represents an unsubstituted or substituted alkyl group, a substituted or substituted alkoxy group having 1 to 10 carbon atoms, an unsubstituted or substituted aryl group, a substituted or substituted aryloxy group, or a siloxy group.
  • R 4 represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, or a substituted or substituted phenyl group.
  • R 5 , R 6 , R 7 , and R 8 may be the same or different and are each a hydrogen atom, a nitro group, a cyano group, a hydroxy group, a mercapto group, a halogen atom, an acetyl group, or an allyl group.
  • p, q, and r represent integers that satisfy the following conditions: 0 ⁇ p ⁇ 3, 0 ⁇ q ⁇ 3, 0 ⁇ r ⁇ 3, and 1 ⁇ p + q + r ⁇ 3.
  • Examples of the unsubstituted or substituted alkyl group having 1 to 10 carbon atoms include, for example, methyl group, ethyl group, propyl group, butyl group, t-butyl group, pentyl group, chloromethyl group, chloroethyl group, fluoromethyl group, cyanomethyl Groups and the like.
  • Examples of the unsubstituted or substituted alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, and an n-butoxy group.
  • Examples of the unsubstituted or substituted aryl group include a phenyl group, a p-methoxyphenyl group, and a p-chlorophenyl group.
  • Examples of the photodecomposable silicon compound having an o-nitrobenzyloxy group directly bonded to the silicon atom include the following compounds. ⁇ P-trifluoromethylphenylvinylmethylphenyl (o-nitrobenzyloxy) silane ⁇ t-butylmethylphenyl (o-nitrobenzyloxy) silane ⁇ triethyl (o-nitrobenzyloxy) silane ⁇ tri (2-chloroethyl)- o-nitrobenzyloxysilane, tri (p-trifluoromethylphenyl) -o-nitrobenzyloxysilane, trimethyl [ ⁇ - (o-nitrophenyl) -o-nitrobenzyloxy] silane, dimethylphenyl [ ⁇ - (o -Nitrophenyl) -o-nitrobenzyloxy] silaneMethylphenyldi [ ⁇ - (o-nitrophenyl) -o-nitrobenzyloxy] silaneTriphenyl ( ⁇ -e
  • the method for synthesizing the photodegradable silicon compound having an o-nitrobenzyloxy group directly bonded to the silicon atom is not particularly limited and may be appropriately selected depending on the intended purpose. Reference can be made to the method described in Japanese Patent No. 174389.
  • Photodegradable silicon compound having ⁇ -ketosilyl group examples include a silicon compound represented by the following general formula (III).
  • R 1 , R 2 , R 3 , and R 4 may be the same or different and are each an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, It represents an unsubstituted or substituted aryl group, an allyl group, a vinyl group, an unsubstituted or substituted aryloxy group, or an unsubstituted or substituted alkoxy group having 1 to 10 carbon atoms.
  • p, q, and r represent integers that satisfy the following conditions: 0 ⁇ p ⁇ 3, 0 ⁇ q ⁇ 3, 0 ⁇ r ⁇ 3, and 1 ⁇ p + q + r ⁇ 3.
  • Examples of the unsubstituted or substituted alkyl group having 1 to 10 carbon atoms include, for example, methyl group, ethyl group, propyl group, butyl group, t-butyl group, pentyl group, chloromethyl group, chloroethyl group, fluoromethyl group, cyanomethyl Groups and the like.
  • Examples of the unsubstituted or substituted aryl group include a phenyl group, a p-methoxyphenyl group, and a p-chlorophenyl group.
  • Examples of the unsubstituted or substituted alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, and an n-butoxy group.
  • Examples of the photodecomposable silicon compound having an ⁇ -ketosilyl group include the following compounds. ⁇ Benzoyltriphenylsilane ⁇ Benzoylmethyldiphenylsilane ⁇ Benzoyldimethylphenylsilane ⁇ Acetyltriphenylsilane ⁇ Propionyltriphenylsilane ⁇ Acetylmethyldiphenylsilane ⁇ Benzoyltrimethylsilane ⁇ Benzoylmethoxydiphenylsilane
  • the method for synthesizing the photodegradable silicon compound having an ⁇ -ketosilyl group is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the cationic curable composition is composed of a calorific value (H 0 ) by differential scanning calorimetry after light irradiation for 1 minute at 50 mW / cm 2 with a mercury xenon lamp, and differential scanning calorimetry after 48 hours from the light irradiation. It is preferable that the amount of heat generated by (H 48 ) satisfies the following formula (1) in that the pot life after light irradiation is more excellent. ⁇ 30 ⁇ [(H 0 ⁇ H 48 ) / H 0 ] ⁇ 100 ⁇ 30 Formula (1)
  • the differential scanning calorimetry is performed, for example, at a temperature raising condition of 10 ° C./min.
  • the calorific value (H 0 ) is measured immediately after the light irradiation (for example, within 1 hour).
  • the calorific value (H 48 ) is measured after being left for 48 hours in a 25 ° C. environment (for example, humidity 65% RH) after the light irradiation.
  • the heat generation starting temperature in differential scanning calorimetry after light irradiation for 1 minute at 50 mW / cm 2 with a mercury xenon lamp is 45 ° C. or higher and 80 ° C. or lower in terms of low temperature curability. Is preferred.
  • the exothermic peak temperature in differential scanning calorimetry after light irradiation for 1 minute at 50 mW / cm 2 with a mercury xenon lamp is 60 ° C. or higher and 130 ° C. or lower in terms of low temperature curability. Is preferred.
  • the differential scanning calorimetry is performed, for example, at a temperature raising condition of 10 ° C./min.
  • the differential scanning calorimetry is performed, for example, immediately after light irradiation (for example, within one hour).
  • the cationic curable composition is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, in terms of corrosion after curing and electrical insulation, the content of anions in the cured product. It is particularly preferably 20 ppm by mass or less.
  • the anion include carbonate ion, hydroxide ion, and halogen ion.
  • the halogen ions include fluoride ions, chloride ions, bromide ions, and the like.
  • the content of the anion in the cured product can be determined by ion chromatography using the cured product or by quantifying a cation that is a counter ion of the anion.
  • the cation can be quantified by, for example, ICP (inductively coupled plasma) analysis, atomic absorption analysis, ion chromatography, or the like.
  • ICP inductively coupled plasma
  • atomic absorption analysis ion chromatography
  • ICP analysis is performed under the following conditions, for example.
  • Analysis method inductively coupled plasma mass spectrometry (ICP-MS method)
  • Solvent NMP (N-methyl-2-pyrrolidone)
  • cured material of this invention includes irradiating light to the said cationic curable composition of this invention, photodecomposing the said photodegradable silicon compound, producing
  • the light containing an ultraviolet-ray is preferable.
  • a light source examples include a mercury xenon lamp.
  • the irradiation intensity at the time of irradiating the light is not particularly limited and may be appropriately selected depending on the purpose, for example, it may be 1 mW / cm 2 or more 200 mW / cm 2 or less, 10 mW / cm It may be 2 or more and 100 mW / cm 2 or less.
  • heating it is preferable to heat to 60 ° C. or higher and 180 ° C. or lower from the viewpoint of sufficient curing.
  • heating time There is no restriction
  • Impregnation >> The obtained polymer particles were added to the impregnating solution, stirred for 6 hours at a stirring speed of 200 rpm and 30 ° C., and then filtered. Thereafter, solid catalyst particles were obtained by natural drying. After drying, the mixture was pulverized by AO-JET MILL (Seishin Enterprise Co., Ltd.) to obtain primary particles to obtain a capsule-type catalyst 1.
  • Impregnation >> The obtained polymer particles were added to the impregnating solution prepared in Production Example 1, stirred at 200 rpm and 80 ° C. for 6 hours, and then filtered. Thereafter, solid catalyst particles were obtained by natural drying. After drying, the mixture was pulverized by AO-JET MILL (Seishin Enterprise Co., Ltd.) to obtain primary particles to obtain a capsule-type catalyst 2.
  • TBP-TPS t-Butylperoxytriphenylsilane
  • Literature V.D. N. Divivnyi, Yu. P. Pavlovskii, Yu. Ya. Van-Chin-Syan, Formation Entities of Peroxy-Substituted Silanes, Russian Journal of Physical Chemistry A 84, pp. 778-783, 2010. The structure of TBP-TPS is shown below.
  • Comparative Example 2 ⁇ Cation curable composition (Formulation 2)> Cationic curing component (3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, CEL2021P, manufactured by Daicel Corporation) 92 parts by mass, photodegradable silicon compound (3M2NBO-TPS obtained in Production Example 4) 6 parts by mass and 2 parts by mass of an aluminum chelate catalyst (aluminum chelate DOL, Kawaken Fine Chemical Co., Ltd.) were mixed to obtain a cationic curable composition (formulation 2).
  • Cationic curing component (3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, CEL2021P, manufactured by Daicel Corporation) 92 parts by mass, photodegradable silicon compound (3M2NBO-TPS obtained in Production Example 4) 6 parts by mass and 2 parts by mass of an aluminum chelate catalyst (aluminum
  • Example 1 ⁇ Cation curable composition (Formulation 3)> 92 parts by mass of a cationic curing component (CEL2021P, manufactured by Daicel Corporation), 6 parts by mass of a photodegradable silicon compound (TBP-TPS obtained in Production Example 3), and a capsule-type catalyst (capsule-type catalyst obtained in Production Example 1) 1) 2 parts by mass were mixed to obtain a cationic curable composition (Formulation 3).
  • a cationic curing component CEL2021P, manufactured by Daicel Corporation
  • TBP-TPS photodegradable silicon compound
  • capsule-type catalyst capsule-type catalyst obtained in Production Example 1
  • Example 2 ⁇ Cation curable composition (Formulation 4)> 92 parts by mass of a cationic curing component (CEL2021P, manufactured by Daicel Corporation), 6 parts by mass of a photodegradable silicon compound (3M2NBO-TPS obtained in Production Example 4), and a capsule type catalyst (capsule type catalyst obtained in Production Example 1) 1) 2 parts by mass were mixed to obtain a cationic curable composition (Formulation 4).
  • a cationic curing component CEL2021P, manufactured by Daicel Corporation
  • 3M2NBO-TPS photodegradable silicon compound
  • capsule type catalyst capsule type catalyst obtained in Production Example 1
  • Example 3 ⁇ Cation curable composition (Formulation 5)> 92 parts by mass of a cationic curing component (CEL2021P, manufactured by Daicel Corporation), 6 parts by mass of a photodegradable silicon compound (3M2NBO-TPS obtained in Production Example 4), and a capsule-type catalyst (capsule-type catalyst obtained in Production Example 2) 2) 2 parts by mass were mixed to obtain a cationic curable composition (Formulation 5).
  • a cationic curing component CEL2021P, manufactured by Daicel Corporation
  • a photodegradable silicon compound 3M2NBO-TPS obtained in Production Example 4
  • a capsule-type catalyst capsule-type catalyst obtained in Production Example 2 parts by mass were mixed to obtain a cationic curable composition (Formulation 5).
  • Example 4 ⁇ Cation curable composition (Formulation 6)> 76 parts by mass of a cationic curing component (glycidyl ether type epoxy resin, EP828, manufactured by Mitsubishi Chemical Corporation), 18 parts by mass of a photodegradable silicon compound (3M2NBO-TPS obtained in Production Example 4), and a capsule type catalyst (Production Example 1) 6 parts by mass of the capsule-type catalyst obtained in 1) was mixed to obtain a cationic curable composition (formulation 6).
  • a cationic curing component glycol ether type epoxy resin, EP828, manufactured by Mitsubishi Chemical Corporation
  • a photodegradable silicon compound 3M2NBO-TPS obtained in Production Example 4
  • Example 5 ⁇ Cation curable composition (Formulation 7)> A cationic curable composition (Formulation 7) having the composition shown in Table 1 below was prepared.
  • Example 7 ⁇ Cation curable composition (Formulation 9)> A cationic curable composition (Formulation 9) having the composition shown in Table 1 below was prepared.
  • As the oxetane compound 3-ethyl-3- ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (OXT-221, manufactured by Toagosei Co., Ltd.) was used.
  • PI2074 is a photoacid generator [4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate] manufactured by Rhodia.
  • KAYACURE DETX-S is a sensitizer (2,4-diethylthioxan) manufactured by Nippon Kayaku Co., Ltd.
  • Formulation 1 and Formulation 2 >> First, in order to confirm the curability using a photodegradable silicon compound and an aluminum chelate, the curability evaluation of a system (compound 1 and blend 2) in which an aluminum chelate was directly blended was performed.
  • FIG. 1 show the results of curability of the cationic curable composition of Formulation 1 (Comparative Example 1).
  • the chart (1) in FIG. 1 is the case where the temperature rise measurement is performed at 10 ° C./min after UV irradiation
  • the chart (2) in FIG. 1 is the case where the temperature rise measurement is performed directly without UV irradiation. From these charts, it can be seen that the photodecomposable silicon compound can be decomposed and form a cationically active species with an aluminum chelate to cure the epoxy resin (cationic curing component) at high temperatures even with heat alone. It was. However, the heat generation start temperature can be lowered by about 80 ° C. by performing UV irradiation before the measurement.
  • 3M2NBO-TPS showed lower temperature curability than TBP-TPS.
  • the heat generation start temperature at the time of temperature increase was the same as the measurement start.
  • the latent capsule type catalyst was prepared by impregnation with a highly active tris (ethyl acetoacetate) type aluminum chelate, or the starting temperature was equivalent to that of aluminum chelate DOL (aluminum monoacetylacetonate bis (alkyl acetate). Because of impregnation with two kinds of aluminum chelates, two exothermic peaks were shown.
  • the 3M2NBO-TPS system showed a very sharp curing exothermic property.
  • the exothermic peak temperature is about 90 ° C. and the exothermic peak intensity reaches 65 mW, indicating that the low temperature property and the short-time curability are extremely excellent.
  • the result at the time of using the capsule type catalyst 2 prepared by carrying out the high temperature process of the impregnation liquid at the time of the impregnation process of a catalyst is shown below.
  • UV irradiation ⁇ exothermic starting temperature at the time of heating was 54 ° C.
  • the exothermic peak temperature was 71 ° C., indicating low temperature curability.
  • the exothermic peak intensity was 30 mW or more, indicating a short-time curability.
  • the present curing system showed good low-temperature and short-time curability.
  • Table 8 and FIG. 7 show the results of evaluating the curability of the cationic curable compositions of Formulations 7 to 9 (Examples 5 to 7).
  • the epoxy resin can be cured at a specific temperature for a short time after UV irradiation by using the latent capsule catalyst and the photodegradable silicon compound. Then, liquid life evaluation is shown below.
  • ⁇ Liquid life evaluation 1> ⁇ Before UV irradiation >> After blending each raw material to obtain a cationic curable composition, the pot life in the absence of UV irradiation was evaluated. Evaluation was performed as follows. The results are shown in Table 9. ⁇ Evaluation method ⁇ ⁇ DSC measurement> DSC measurement (differential scanning calorimetry) was performed under the following conditions, and the liquid life was evaluated from the retention rate of the total calorific value after storage at room temperature for 48 hours. Equipment: DSC6200 (Hitachi High-Tech Science Co., Ltd.) Evaluation amount: 10mg ⁇ Storage temperature: 25 °C (room temperature) ⁇ Raising rate: 10 ° C / min
  • the liquid life at room temperature was good, and the retention ratio of the total calorific value after standing at room temperature for 48 hours was 95% or more.
  • the cationic curable composition was cured by standing at room temperature for 48 hours.
  • UV irradiation ⁇ After UV irradiation >> Each raw material was blended to obtain a cationic curable composition, and then the pot life when UV irradiation was performed was evaluated. Evaluation was performed using the pot life evaluation method using the same DSC measurement as before UV irradiation. The UV irradiation conditions are shown below. The results are shown in Table 10. ⁇ Evaluation method ⁇ UV irradiation conditions: ⁇ Mercury-Xenon lamp UXM-200YA (Ushio Lighting Co., Ltd.) ⁇ Temperature: 25 °C Irradiation time: 1 minute Irradiation intensity: 50 mW / cm 2
  • Examples 1 to 7 containing the latent capsule catalyst showed good liquid life even after UV irradiation.
  • the retention rate of the total calorific value after 48 hours storage at room temperature was 80% or more.
  • the total calorific value retention after 48 hours at room temperature was less than 40%.
  • UV irradiation and DSC measurement were performed.
  • the total calorific value was not reduced even after being left for 48 hours after UV irradiation compared with the product before being left. Further, since the photodecomposable silicon compound does not generate triphenylsilanol unless UV irradiation is performed, even when left at room temperature for 1 week, it showed the same curability as that before leaving (no decrease in total calorific value).
  • the cationic curable composition of the present invention generates a silanol group by light irradiation, can be cured by heat, can be stored for a long period of time, is excellent in low-temperature fast curability, and further has a pot life after light irradiation. Since it is long, it can be suitably used as an adhesive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

光照射によりシラノール基を生成し、熱により硬化するカチオン硬化性組成物であって、 カチオン硬化成分と、アルミニウムキレートを保持する多孔質粒子と、光分解によりシラノール基を生成する光分解性ケイ素化合物とを含有するカチオン硬化性組成物である。

Description

カチオン硬化性組成物、及び硬化物の製造方法
 本発明は、カチオン硬化性組成物、及び硬化物の製造方法に関する。
 従来、エポキシ樹脂のカチオン硬化の手段として、アルミニウムキレート化合物とシラノール化合物とを併用する触媒を利用する方法が知られている。この方法では、アルミニウムキレート化合物とシラノール化合物とが反応し、カチオン硬化開始種を生成することでカチオン硬化を発現する。
 上記硬化系を利用した潜在性硬化剤についての技術の一例は、多孔質粒子にアルミニウムキレート化合物を保持させる方法であり、当該潜在性硬化剤及びそれを用いた硬化性組成物については種々の技術が提案されている(例えば、特許文献1~4参照)。
 これらの提案の技術では、多孔質粒子にアルミニウムキレート化合物を保持させた潜在性硬化剤を用いることにより、保存安定性を高めつつ、低温速硬化性に優れる。
 しかし、上記提案の技術では、潜在性硬化剤とシラノール化合物とを混合すると、多孔質粒子から滲み出したアルミニウムキレート化合物と、シラノール化合物とが反応し、カチオン硬化開始種を生成する。そのことから、それらを混合して得られる組成物においては、潜在性硬化剤を用いない場合に比べて保存安定性が優れるものの、長期の保存性の点では十分ではないという問題がある。
 他方、エポキシ樹脂の光カチオン硬化の技術として、ポットライフの延長を目的として、エポキシ樹脂に光分解性有機ケイ素化合物及びアルミニウム化合物を配合した組成物において、該光分解性有機ケイ素化合物として、フッ素原子を少なくとも1個有するフェニル基と、置換基を有してもよいo-ニトロベンジルオキシ基をそれぞれ少なくとも1個有するケイ素化合物を用いる光重合性エポキシ樹脂組成物が提案されている(特許文献5参照)。
 しかし、この提案の技術では、光照射後に早期に反応が進行するため、光照射後の可使時間が十分ではないという問題がある。光照射後の可使時間が十分ではないと、接着剤として使用する際に、接着対象物の位置の修正や付け直しが困難になる。
 したがって、長期保存が可能であり、低温速硬化性に優れ、更に光照射後の可使時間が長いカチオン硬化性組成物の提供が求められているのが現状である。
特許第5458596号公報 特許第5481013号公報 特許第5707662号公報 特開2016-56274号公報 特開平1-103621号公報
 本発明は、以下の目的を達成することを課題とする。
 即ち、本発明は、長期保存が可能であり、低温速硬化性に優れ、更に光照射後の可使時間が長いカチオン硬化性組成物、及び前記カチオン硬化性組成物を用いた硬化物の製造方法を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 光照射によりシラノール基を生成し、熱により硬化するカチオン硬化性組成物であって、
 カチオン硬化成分と、アルミニウムキレートを保持する多孔質粒子と、光分解によりシラノール基を生成する光分解性ケイ素化合物とを含有することを特徴とするカチオン硬化性組成物である。
 <2> 前記光分解性ケイ素化合物が、ペルオキシシリル基、ケイ原子に直接結合するo-ニトロベンジルオキシ基、及びα-ケトシリル基の少なくともいずれかを有する前記<1>に記載のカチオン硬化性組成物である。
 <3> 前記多孔質粒子が、ポリウレア樹脂で構成される前記<1>から<2>のいずれかに記載のカチオン硬化性組成物である。
 <4> 前記多孔質粒子が、更にビニル樹脂を構成成分として有する前記<3>に記載のカチオン硬化性組成物である。
 <5> 前記カチオン硬化成分が、エポキシ樹脂を含有する前記<1>から<4>のいずれかに記載のカチオン硬化性組成物である。
 <6> 前記エポキシ樹脂が、脂環式エポキシ樹脂、及びグリシジルエーテル型エポキシ樹脂の少なくともいずれかを含有する前記<5>に記載のカチオン硬化性組成物である。
 <7> 前記カチオン硬化成分が、更にオキセタン化合物を含有する前記<5>から<6>のいずれかに記載のカチオン硬化性組成物である。
 <8> 水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定による発熱量(H)と、前記光照射後48時間経過後の示差走査熱量測定による発熱量(H48)とが、以下の式(1)を満たす前記<1>から<7>のいずれかに記載のカチオン硬化性組成物である。
     -30≦〔(H-H48)/H〕×100≦30・・・式(1)
 <9> 水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定における発熱開始温度が、45℃以上80℃以下である前記<1>から<8>のいずれかに記載のカチオン硬化性組成物である。
 <10> 水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定における発熱ピーク温度が、60℃以上130℃以下である前記<1>から<9>のいずれかに記載のカチオン硬化性組成物である。
 <11> 前記<1>から<10>のいずれかに記載のカチオン硬化性組成物に光を照射し、前記光分解性ケイ素化合物を光分解し、シラノール基を生成させた後に、加熱することを含むことを特徴とする硬化物の製造方法である。
 <12> 前記加熱する際、60℃以上180℃以下に加熱する前記<11>に記載の硬化物の製造方法である。
 本発明によれば、前記目的を達成することができ、長期保存が可能であり、低温速硬化性に優れ、更に光照射後の可使時間が長いカチオン硬化性組成物、及び前記カチオン硬化性組成物を用いた硬化物の製造方法を提供することができる。
図1は、配合1のDSC測定の結果を示すチャートである。 図2は、配合2のDSC測定の結果を示すチャートである。 図3は、配合3のDSC測定の結果を示すチャートである。 図4は、配合4のDSC測定の結果を示すチャートである。 図5は、配合5のDSC測定の結果を示すチャートである。 図6は、配合6のDSC測定の結果を示すチャートである。 図7は、配合7~9のDSC測定の結果を示すチャートである。
(カチオン硬化性組成物)
 本発明のカチオン硬化性組成物は、カチオン硬化成分と、多孔質粒子と、光分解性ケイ素化合物とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記カチオン硬化性組成物は、光照射によりシラノール基を生成し、熱により硬化するカチオン硬化性組成物である。
<カチオン硬化成分>
 前記カチオン硬化成分としては、カチオン硬化する有機材料であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、オキセタン化合物、ビニルエーテル樹脂などが挙げられる。
<<エポキシ樹脂>>
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂環式エポキシ樹脂、グリシジルエーテル型エポキシ樹脂などが挙げられる。
 前記脂環式エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビニルシクロペンタジエンジオキシド、ビニルシクロヘキセンモノ乃至ジオキシド、ジシクロペンタジエンオキシド、エポキシ-[エポキシ-オキサスピロC8-15アルキル]-シクロC5-12アルカン(例えば、3,4-エポキシ-1-[8,9-エポキシ-2,4-ジオキサスピロ[5.5]ウンデカン-3-イル]-シクロヘキサン等)、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボレート、エポキシC5-12シクロアルキルC1-3アルキル-エポキシC5-12シクロアルカンカルボキシレート(例えば、4,5-エポキシシクロオクチルメチル-4’,5’-エポキシシクロオクタンカルボキシレート等)、ビス(C1-3アルキルエポキシC5-12シクロアルキルC1-3アルキル)ジカルボキシレート(例えば、ビス(2-メチル-3,4-エポキシシクロヘキシルメチル)アジペート等)などが挙げられる。
 なお、脂環式エポキシ樹脂としては、市販品として入手容易である点から、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート〔(株)ダイセル製、商品名:セロキサイド♯2021P;エポキシ当量 128~140〕が好ましく用いられる。
 なお、上記例示中において、C8-15、C5-12、C1-3との記載は、それぞれ、炭素数が8~15、炭素数が5~12、炭素数が1~3、であることを意味し、化合物の構造の幅があることを示している。
 前記脂環式エポキシ樹脂の一例の構造式を、以下に示す。
Figure JPOXMLDOC01-appb-C000001
 前記グリシジルエーテル型エポキシ樹脂としては、例えば、液状でも固体状でもよく、エポキシ当量が通常100~4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エステル型エポキシ樹脂等を挙げることができる。中でも、樹脂特性の点からビスフェノールA型エポキシ樹脂を好ましく使用できる。また、これらのエポキシ樹脂にはモノマーやオリゴマーも含まれる。
<<オキセタン化合物>>
 前記カチオン硬化性組成物において、前記エポキシ樹脂に前記オキセタン化合物を併用することで、発熱ピークをシャープにすることができる。
 前記オキセタン化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸 ビス[(3-エチル-3-オキセタニル)]メチルエステル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、ジ[1-エチル(3-オキセタニル)]メチルエーテル、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタンなどが挙げられる。
 前記カチオン硬化性組成物における前記カチオン硬化成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%以上99質量%以下が好ましく、50質量%以上98質量%以下がより好ましく、70質量%以上97質量%以下が特に好ましい。
 なお、前記含有量は、前記カチオン硬化性組成物の不揮発分における含有量である。以下においても同様である。
 前記カチオン硬化成分における前記エポキシ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、80質量%以上であってもよいし、90質量%以上であってもよい。
 前記カチオン硬化成分における前記オキセタン化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0質量%超であって、20質量%以下であってもよいし、15質量%以下であってもよいし、10質量%以下であってもよい。
<多孔質粒子>
 前記多孔質粒子は、アルミニウムキレートを保持する。
 前記多孔質粒子は、多くの細孔を有する粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機樹脂で構成される多孔質有機樹脂粒子などが挙げられる。
 前記多孔質粒子は、例えば、その細孔内に前記アルミニウムキレートを保持する。言い換えれば、多孔質粒子マトリックス中に存在する微細な孔に、アルミニウムキレートが取り込まれて保持されている。
 前記多孔質粒子の細孔の平均細孔直径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~300nmが好ましく、5nm~150nmがより好ましい。
<<多孔質有機樹脂粒子>>
 前記多孔質有機樹脂粒子としては、有機樹脂で構成される多孔質粒子であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記有機樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、ポリウレア樹脂が好ましい。即ち、前記多孔質有機樹脂粒子は、少なくともポリウレア樹脂で構成されることが好ましい。
 前記多孔質有機樹脂粒子は、更に、ビニル樹脂を構成成分に含んでいてもよい。
<<<ポリウレア樹脂>>>
 前記ポリウレア樹脂とは、その樹脂中にウレア結合を有する樹脂である。
 前記多孔質有機樹脂粒子を構成する前記ポリウレア樹脂は、例えば、多官能イソシアネート化合物を乳化液中で重合させることにより得られる。前記ポリウレア樹脂は、樹脂中に、イソシアネート基に由来する結合であって、ウレア結合以外の結合、例えば、ウレタン結合などを有していてもよい。
 前記ポリウレア樹脂から構成される多孔質粒子は、前記多孔質粒子がシリカなどの多孔質無機粒子から構成される場合と比べて、熱応答性に優れる。
<<<ビニル樹脂>>>
 前記ビニル樹脂とは、ラジカル重合性ビニル化合物を重合して得られる樹脂である。
 前記ビニル樹脂は、前記多孔質粒子の機械的性質を改善する。これにより、カチオン硬化成分の硬化時の熱応答性、特に低温領域でシャープな熱応答性を実現することができる。
 前記ビニル樹脂は、例えば、多官能イソシアネート化合物を含有する乳化油相に、ラジカル重合性ビニル化合物を含有させておき、前記乳化油相中で前記多官能イソシアネート化合物を重合させる際に、同時に前記ラジカル重合性ビニル化合物をラジカル重合させることにより得ることができる。
 前記多孔質有機樹脂粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5μm以上20μm以下が好ましく、1μm以上10μm以下がより好ましく、1μm以上5μm以下が特に好ましい。
<<アルミニウムキレート>>
 前記アルミニウムキレートとしては、例えば、下記一般式(A)で表される、3つのβ-ケトエノラート陰イオンがアルミニウムに配位した錯体化合物が挙げられる。ここで、アルミニウムにはアルコキシ基は直接結合していない。直接結合していると加水分解し易く、前記多孔質粒子を作製する際の乳化処理に適さないからである。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(A)中、R、R及びRは、それぞれ独立に、アルキル基又はアルコキシル基を表す。
 前記アルキル基としては、例えば、メチル基、エチル基などが挙げられる。
 前記アルコキシル基としては、例えば、メトキシ基、エトキシ基、オレイルオキシ基などが挙げられる。
 前記一般式(A)で表される錯体化合物としては、例えば、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(オレイルアセトアセテート)などが挙げられる。
 前記多孔質粒子における前記アルミニウムキレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
<<多孔質粒子の表面>>
 前記多孔質粒子は、潜在性をより高める点で、表面にアルコキシシランカップリング剤の反応生成物を有していてもよい。
 前記反応生成物は、アルコキシシランカップリング剤が反応して得られる。
 前記反応生成物は、前記多孔質粒子の表面に存在する。
 前記多孔質粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記カチオン硬化成分に対して、20質量%以下が好ましく、0.1質量%以上20質量%以下がより好ましく、1質量%以上10質量%以下が特に好ましい。
 前記カチオン硬化性組成物における前記多孔質粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1質量%以上20質量%以下が好ましく、0.5質量%以上15質量%以下がより好ましい。
<<多孔質粒子の製造方法>>
 アルミニウムキレートを保持する前記多孔質粒子の製造方法としては、特に制限はなく、目的に応じて適宜選択することができる。
 アルミニウムキレートを保持する前記多孔質無機粒子の製造方法としては、例えば、アルミニウムキレートを含む液に多孔質無機粒子を含浸させ、前記多孔質無機粒子の細孔に前記アルミニウムキレートを充填する方法が挙げられる。
 アルミニウムキレートを保持する前記多孔質有機樹脂粒子の製造方法としては、例えば、以下の製造方法などが挙げられる。
<<<多孔質有機樹脂粒子の製造方法>>>
 前記多孔質有機樹脂粒子の製造方法は、例えば、多孔質粒子作製工程を少なくとも含み、更に必要に応じて、不活性化工程などのその他の工程を含む。
-多孔質粒子作製工程-
 前記多孔質粒子作製工程は、乳化液作製処理と、重合処理とを少なくとも含み、好ましくは、追加充填処理を含み、更に必要に応じて、その他の処理を含む。
--乳化液作製処理--
 前記乳化液作製処理は、アルミニウムキレートと、多官能イソシアネート化合物と、好ましくは有機溶剤とを混合して得られる液を乳化処理して乳化液を得る処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホモジナイザーを用いて行うことができる。
 前記多孔質粒子を構成する樹脂が、ポリウレア樹脂のみではなく、更にビニル樹脂を含む場合、前記液は、更に、ラジカル重合性ビニル化合物と、ラジカル重合開始剤とを含有する。
 前記アルミニウムキレートとしては、前記多孔質粒子の説明における前記アルミニウムキレートが挙げられる。
 前記乳化液における油滴の大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.5μm以上100μm以下が好ましい。
---多官能イソシアネート化合物---
 前記多官能イソシアネート化合物は、一分子中に2個以上のイソシアネート基、好ましくは3個以上のイソシアネート基を有する化合物である。
 前記多官能イソシアネート化合物としては、例えば、2官能イソシアネート化合物、3官能イソシアネート化合物が挙げられる。
 3官能イソシアネート化合物の好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた下記一般式(2)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた下記一般式(3)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した下記一般式(4)のビュウレット体が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 前記一般式(2)~(4)中、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4-ジイソシアネート、トルエン2,6-ジイソシアネート、m-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ-m-キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネートなどが挙げられる。
 2官能イソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ナフチレン1,5-ジイソシアネート、テトラメチルキシレンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメレチンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネン・ジイソシアネート、トリメチルヘキサメチレンジイソシアネート、メチレンジフェニルジイソシアネート、ジクロロビフェニルジイソシアナート、フェニレンジイソシアネート、テトラメチレンジイソシアネートなどが挙げられる。
 前記アルミニウムキレートと前記多官能イソシアネート化合物との配合割合としては、特に制限はなく、目的に応じて適宜選択することができるが、アルミニウムキレートの配合量が、少なすぎると、硬化させるべきカチオン硬化成分の硬化性が低下し、多すぎると、得られる潜在性硬化剤の潜在性が低下する。その点において、前記多官能イソシアネート化合物100質量部に対して、前記アルミニウムキレート10質量部以上500質量部以下が好ましく、10質量部以上300質量部以下がより好ましい。
---有機溶剤---
 前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、揮発性有機溶剤が好ましい。
 前記有機溶剤は、前記アルミニウムキレート、前記多官能イソシアネート化合物、前記ラジカル重合性ビニル化合物、及び前記ラジカル重合開始剤のそれぞれの良溶媒(それぞれの溶解度が好ましくは0.1g/ml(有機溶剤)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶剤)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような揮発性有機溶剤の具体例としては、アルコール類、酢酸エステル類、ケトン類などが挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルが好ましい。
 前記有機溶剤の使用量としては、特に制限はなく、目的に応じて適宜選択することができる。
---ラジカル重合性ビニル化合物---
 前記ラジカル重合性ビニル化合物は、分子内にラジカル重合性の炭素-炭素不飽和結合を有する化合物である。
 前記ラジカル重合性ビニル化合物は、いわゆる単官能ラジカル重合性化合物、多官能ラジカル重合性化合物を包含する。
 前記ラジカル重合性ビニル化合物は、多官能ラジカル重合性化合物を含有することが好ましい。これは、多官能ラジカル重合性化合物を使用することにより、低温領域でシャープな熱応答性を実現することがより容易になるからである。この意味からも、前記ラジカル重合性ビニル化合物は、多官能ラジカル重合性化合物を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましい。
 前記単官能ラジカル重合性化合物としては、例えば、単官能ビニル系化合物(例えば、スチレン、メチルスチレン等)、単官能(メタ)アクリレート系化合物(例えば、ブチルアクリレートなど)など挙げられる。
 前記多官能ラジカル重合性化合物としては、例えば、多官能ビニル系化合物(例えば、ジビニルベンゼン、アジピン酸ジビニル等)、多官能(メタ)アクリレート系化合物(例えば、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、ポリエチレングリコールジアクリレート等)などが挙げられる。前記ポリエチレングリコールジアクリレートとしては、例えば、下記一般式(B)で表されるポリエチレングリコールジアクリレートなどが挙げられる。
 CH=CH-C(=O)-O-(CHCHO)-C(=O)-CH=CH
                        ・・・一般式(B)
 ただし、前記一般式(B)中、nは、2~10の整数を表す。
 これらの中でも、潜在性及び熱応答性の点から、多官能ビニル系化合物、特にジビニルベンゼンを好ましく使用することができる。
 また、これらの中でも、架橋点間距離が長くなることで前記追加充填処理において、前記アルミニウムキレートを前記多孔質粒子に追加で充填しやすく、前記多孔質粒子に、前記アルミニウムキレートを高充填できる点、すなわち硬化開始温度を低温化できる点において、前記ポリエチレングリコールジアクリレートを好ましく使用することができ、前記一般式(B)で表されるポリエチレングリコールジアクリレートをより好ましく使用することができる。
 なお、多官能ラジカル重合性化合物は、多官能ビニル系化合物と多官能(メタ)アクリレート系化合物とから構成されていてもよい。このように併用することにより、熱応答性を変化させたり、反応性官能基を導入できたりといった効果が得られる。
 前記ラジカル重合性ビニル化合物の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記多官能イソシアネート化合物100質量部に対して、1質量部以上80質量部以下が好ましく、10質量部以上60質量部以下がより好ましい。
---ラジカル重合開始剤---
 前記ラジカル重合開始剤としては、例えば、過酸化物系開始剤、アゾ系開始剤などが挙げられる。
 前記ラジカル重合開始剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ラジカル重合性ビニル化合物100質量部に対して、0.1質量部~10質量部が好ましく、0.5質量部~5質量部がより好ましい。
--重合処理--
 前記重合処理としては、前記乳化液中で前記多官能イソシアネート化合物を重合させて多孔質粒子を得る処理であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記多孔質粒子は、前記アルミニウムキレートを保持する。
 前記重合処理においては、前記多官能イソシアネート化合物のイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基と前記多官能イソシアネート化合物のイソシアネート基とが反応してウレア結合を生成して、ポリウレア樹脂が得られる。ここで、前記多官能イソシアネート化合物が、ウレタン結合を有する場合には、得られるポリウレア樹脂は、ウレタン結合も有しており、その点において生成されるポリウレア樹脂は、ポリウレアウレタン樹脂と称することもできる。
 また、前記乳化液が、前記ラジカル重合性ビニル化合物と、前記ラジカル重合開始剤とを含有する場合、前記重合処理においては、前記多官能イソシアネート化合物を重合させると同時に、前記ラジカル重合開始剤の存在下で前記ラジカル重合性ビニル化合物がラジカル重合を生じる。
 そのため、得られる前記多孔質粒子は、構成する樹脂として、ポリウレア樹脂とビニル樹脂とを含有する。
 前記重合処理における重合時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以上30時間以下が好ましく、2時間以上10時間以下がより好ましい。
 前記重合処理における重合温度としては、特に制限はなく、目的に応じて適宜選択することができるが、30℃以上90℃以下が好ましく、50℃以上80℃以下がより好ましい。
--追加充填処理--
 前記追加充填処理としては、前記重合処理により得られた前記多孔質粒子にアルミニウムキレートを追加で充填する処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルミニウムキレートを有機溶剤に溶解して得られる溶液に、前記多孔質粒子を浸漬させた後に、前記溶液から前記有機溶剤を除去する方法などが挙げられる。
 前記追加充填処理を行うことにより、前記多孔質粒子に保持されるアルミニウムキレートの量が増加する。なお、アルミニウムキレートが追加充填された前記多孔質粒子は、必要に応じてろ別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。
 前記追加充填処理において追加で充填されるアルミニウムキレートは、前記乳化液となる前記液に配合される前記アルミニウムキレートと同じであってもよいし、異なっていてもよい。例えば、前記追加充填処理においては水を使用しないため、前記追加充填処理に使用するアルミニウムキレートは、アルミニウムにアルコキシ基が結合したアルミニウムキレートであってもよい。そのようなアルミニウムキレートとしては、例えば、ジイソプロポキシアルミニウムモノオレイルアセトアセテート、モノイソプロポキシアルミニウムビス(オレイルアセトアセテート)、モノイソプロポキシアルミニウムモノオレエートモノエチルアセトアセテート、ジイソプロポキシアルミニウムモノラウリルアセトアセテート、ジイソプロポキシアルミニウムモノステアリルアセトアセテート、ジイソプロポキシアルミニウムモノイソステアリルアセトアセテート、モノイソプロポキシアルミニウムモノ-N-ラウロイル-β-アラネートモノラウリルアセトアセテートなどが挙げられる。
 前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記乳化液作製処理の説明において例示した前記有機溶剤などが挙げられる。好ましい態様も同じである。
 前記溶液から前記有機溶剤を除去する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記溶液を前記有機溶剤の沸点以上に加熱する方法、前記溶液を減圧させる方法などが挙げられる。
 前記アルミニウムキレートを前記有機溶剤に溶解して得られる前記溶液における前記アルミニウムキレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量%以上80質量%以下が好ましく、10質量%以上50質量%以下がより好ましい。
-不活性化工程-
 前記不活性化工程としては、前記多孔質粒子の表面に、アルコキシシランカップリング剤の反応生成物を付与する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルコキシシランカップリング剤と有機溶剤とを含有する溶液に前記多孔質粒子を浸漬し、前記アルコキシシランカップリング剤を反応させることにより行われることが好ましい。
 前記多孔質粒子は、その構造上、その内部だけでなく表面にもアルミニウムキレートが存在することになると思われる。しかし、界面重合の際に重合系内に存在する水により表面のアルミニウムキレートの多くが不活性化する。そのため、前記多孔質粒子は、前記不活性化工程を要さずに(即ち、その表面がアルコキシシランカップリング剤の反応生成物を有していなくても)、潜在性を獲得できる。
 ところが、エポキシ樹脂として高い反応性を有する脂環式エポキシ樹脂を使用する場合には、通常は、前記不活性化工程を経ていない潜在性硬化剤を用いるカチオン硬化性組成物は経時的に大きく増粘する。そのことから、前記多孔質粒子の表面のアルミニウムキレートの一部は不活性化せず、活性を維持していると考えられる。
 しかし、本発明の前記カチオン硬化性組成物では、光を照射しないと光分解性ケイ素化合物がシラノール基を生成しないために、前記不活性化工程を経ていない多孔質粒子(潜在性硬化剤)を用いても、経時的なカチオン硬化成分のカチオン硬化を抑制することができる。
--アルコキシシランカップリング剤--
 前記アルコキシシランカップリング剤は、以下に説明するように二つのタイプに分類される。
 第一のタイプは、前記多孔質粒子の表面の活性なアルミニウムキレートと反応してアルミニウムキレート-シラノール反応物を生成し、それによりアルミニウム原子に隣接する酸素の電子密度を小さくすること(言い換えれば、酸素に結合している水素の酸性度を低下させること、更に言い換えれば、酸素と水素との間の分極率を低下させること)で活性を低下させるタイプのシランカップリング剤である。このタイプのシランカップリング剤としては、電子供与性基がケイ素原子に結合したアルコキシシランカップリング剤、好ましくはアルキル基を有するアルキルアルコキシシランカップリング剤が挙げられる。具体的には、メチルトリメトキシシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。
 第二のタイプは、前記多孔質粒子の活性なアルミニウムキレートに、分子内のエポキシ基を反応させて生成したエポキシ重合鎖で表面を被覆して活性を低下させるタイプのシランカップリング剤である。このタイプのシランカップリング剤としては、エポキシシランカップリング剤が挙げられる。具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303、信越化学工業(株))、3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株))等が挙げられる。
--有機溶剤--
 前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、非極性溶剤が好ましい。前記非極性溶剤としては、例えば、炭化水素系溶剤が挙げられる。前記炭化水素系溶剤としては、例えば、トルエン、キシレン、ヘキサン、シクロヘキサンなどが挙げられる。
 前記溶液における前記アルコキシシランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%以上80質量%以下が好ましい。
 前記不活性化工程における前記溶液の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、前記多孔質粒子の凝集、並びに、前記多孔質粒子からの前記アルミニウムキレートの流出を防止する点で、10℃以上80℃以下が好ましく、20℃以上60℃以下がより好ましい。
 前記不活性化工程における浸漬の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以上48時間以下が好ましく、5時間以上30時間以下がより好ましい。
 前記不活性化工程においては、前記溶液を撹拌することが好ましい。
 前記不活性化工程を経て得られた前記潜在性硬化剤は、必要に応じてろ別し洗浄し乾燥した後、公知の解砕装置で一次粒子に解砕することができる。
<光分解性ケイ素化合物>
 前記光分解性ケイ素化合物としては、光照射による光分解によりシラノール基を生成するケイ素化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記光分解性ケイ素化合物は、例えば、光分解によりシラノール基を生成するための基として、ペルオキシシリル基、ケイ原子に直接結合するo-ニトロベンジルオキシ基、α-ケトシリル基などを有する。
<<ペルオキシシリル基を有する光分解性ケイ素化合物>>
 前記ペルオキシシリル基を有する前記光分解性ケイ素化合物としては、例えば、下記一般式(I)で表されるケイ素化合物が挙げられる。
 (R-Si(O-O-R4-n  ・・・一般式(I)
 ただし、前記一般式(I)中、R、及びRは、同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、炭素数1~5の非置換若しくは置換アルキル基、又は非置換若しくは置換アリール基を表わす。nは0~3の整数を表わす。
 前記炭素数1~5の非置換若しくは置換アルキル基としては、例えば、メチル基、エチル基、イソプロピル基、n-プロピル基、n-ブチル基、t-ブチル基、sec-ブチル基、n-ペンチル基、メトキシ基、エトキシ基、クロルメチル基などが挙げられる。
 前記非置換若しくは置換アリール基としては、例えば、フェニル基、ナフチル基、アントラニル基、p-メトキシフェニル基、p-クロロフェニル基などが挙げられる。
 前記ペルオキシシリル基を有する前記光分解性ケイ素化合物としては、例えば、以下の化合物が挙げられる。
 ・tert-ブチルペルオキシトリフェニルシラン
 ・tert-ブチルペルオキシジメチルフェニルシラン
 ・tert-ブチルペルオキシメチルジフェニルシラン
 ・tert-ブチルペルオキシメチルビニルフェニルシラン
 ・tert-ブチルペルオキシジメチルビニルシラン
 ・ジ-(tert-ブチルペルオキシ)ジフェニルシラン
 ・ジ-(tert-ブチルペルオキシ)メチルフェニルシラン
 ・ジ-(tert-ブチルペルオキシ)ビニルフェニルシラン
 ・1,1-ジメチルプロピルペルオキシトリフェニルシラン
 ・1-メチルエチルペルオキシトリフェニルシラン
 ・ジ(1-メチルエチルペルオキシ)ジフェニルシラン
 ・ジ(1,1-ジメチルプロピルペルオキシ)ジフェニルシラン
 前記ペルオキシシリル基を有する前記光分解性ケイ素化合物の合成方法としては、特に制限はなく、目的に応じて適宜選択することができる。
<<ケイ原子に直接結合するo-ニトロベンジルオキシ基を有する光分解性ケイ素化合物>>
 前記ケイ原子に直接結合するo-ニトロベンジルオキシ基を有する前記光分解性ケイ素化合物としては、例えば、下記一般式(II)で表されるケイ素化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 ただし、前記一般式(II)中、R、R、及びRは、同一であっても異なっていてもよく、それぞれ、水素原子、ハロゲン原子、ビニル基、アリル基、炭素数1~10の非置換若しくは置換アルキル基、炭素数1~10の置換若しくは置換アルコキシ基、非置換若しくは置換アリール基、置換若しくは置換アリールオキシ基、又はシロキシ基を表わす。Rは、水素原子、炭素数1~10の非置換若しくは置換アルキル基、又は置換若しくは置換フェニル基を表わす。R、R、R、及びRは、同一であっても異なっていてもよく、それぞれ、水素原子、ニトロ基、シアノ基、ヒドロキシ基、メルカプト基、ハロゲン原子、アセチル基、アリル基、炭素数1~5の非置換若しくは置換アルキル基、炭素数1~5の非置換若しくは置換アルコキシ基、非置換若しくは置換アリール基、又は非置換若しくは置換アリールオキシ基を表わす。p、q、及びrは、0≦p≦3、0≦q≦3、0≦r≦3、及び1≦p+q+r≦3の条件を満たす整数を表わす。
 前記炭素数1~10の非置換若しくは置換アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ペンチル基、クロロメチル基、クロロエチル基、フルオロメチル基、シアノメチル基などが挙げられる。
 前記炭素数1~10の非置換若しくは置換アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基などが挙げられる。
 前記非置換若しくは置換アリール基としては、例えば、フェニル基、p-メトキシフェニル基、p-クロロフェニル基などが挙げられる。
 前記ケイ原子に直接結合するo-ニトロベンジルオキシ基を有する前記光分解性ケイ素化合物としては、例えば、以下の化合物などが挙げられる。
 ・p-トリフルオロメチルフェニルビニルメチルフェニル(o-ニトロベンジルオキシ)シラン
 ・t-ブチルメチルフェニル(o-ニトロベンジルオキシ)シラン
 ・トリエチル(o-ニトロベンジルオキシ)シラン
 ・トリ(2-クロロエチル)-o-ニトロベンジルオキシシラン
 ・トリ(p-トリフルオロメチルフェニル)-o-ニトロベンジルオキシシラン
 ・トリメチル[α-(o-ニトロフェニル)-o-ニトロベンジルオキシ]シラン
 ・ジメチルフェニル[α-(o-ニトロフェニル)-o-ニトロベンジルオキシ]シラン
 ・メチルフェニルジ[α-(o-ニトロフェニル)-o-ニトロベンジルオキシ]シラン
 ・トリフェニル(α-エチル-o-ニトロベンジルオキシ)シラン
 ・トリメチル(3-メチル-2-ニトロベンジルオキシ)シラン
 ・ジメチルフェニル(3,4,5-トリメトキシ-2-ニトロベンジルオキシ)シラン
 ・トリフェニル(4,5,6-トリメトキシ-2-ニトロベンジルオキシ)シラン
 ・ジフェニルメチル(5-メチル-4-メトキシ-2-ニトロベンジルオキシ)シラン
 ・トリフェニル(4,5-ジメチル-2-ニトロベンジルオキシ)シラン
 ・ビニルメチルフェニル(4,5-ジクロロ-2-ニトロベンジルオキシ)シラン
 ・トリフェニル(2,6-ジニトロベンジルオキシ)シラン
 ・ジフェニルメチル(2,4-ニトロベンジルオキシ)シラン
 ・トリフェニル(3-メトキシ-2-ニトロベンジルオキシ)シラン
 ・ビニルメチルフェニル(3,4-ジメトキシ-2-ニトロベンジルオキシ)シラン
 ・ジメチルジ(o-ニトロベンジルオキシ)シラン
 ・メチルフェニルジ(o-ニトロベンジルオキシ)シラン
 ・ビニルフェニルジ(o-ニトロベンジルオキシ)シラン
 ・t-ブチルフェニルジ(o-ニトロベンジルオキシ)シラン
 ・ジエチルジ(o-ニトロベンジルオキシ)シラン
 ・2-クロロエチルフェニルジ(o-ニトロベンジルオキシ)シラン
 ・ジフェニルジ(o-ニトロベンジルオキシ)シラン
 ・ジフェニルジ(3-メトキシ-2-ニトロベンジルオキシ)シラン
 ・ジフェニルジ(3,4-ジメトキシ-2-ニトロベンジルオキシ)シラン
 ・ジフェニルジ(2,6-ジニトロベンジルオキシ)シラン
 ・ジフェニルジ(2,4-ジニトロベンジルオキシ)シラン
 ・メチルトリ(o-ニトロベンジルオキシ)シラン
 ・フェニルトリ(o-ニトロベンジルオキシ)シラン
 ・p-ビス(o-ニトロベンジルオキシジメチルシリル)ベンゼン
 ・1,1,3,3-テトラフェニル-1,3-ジ(o-ニトロベンジルオキシ)シロキサン
 ・1,1,3,3,5,5-ヘキサフェニル-1,5-ジ(o-ニトロベンジルオキシ)シロキサン
 前記ケイ原子に直接結合するo-ニトロベンジルオキシ基を有する前記光分解性ケイ素化合物の合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開昭58-174389号公報に記載の方法を参照することができる。
<<α-ケトシリル基を有する光分解性ケイ素化合物>>
 前記α-ケトシリル基を有する前記光分解性ケイ素化合物としては、例えば、下記一般式(III)で表されるケイ素化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 ただし、前記一般式(III)中、R、R、R、及びRは、同一であっても異なっていてもよく、それぞれ、炭素数1~10の非置換若しくは置換アルキル基、非置換若しくは置換アリール基、アリル基、ビニル基、非置換若しくは置換アリールオキシ基、又は炭素数1~10の非置換若しくは置換アルコキシ基を表わす。p、q、及びrは、0≦p≦3、0≦q≦3、0≦r≦3、及び1≦p+q+r≦3の条件を満たす整数を表わす。
 前記炭素数1~10の非置換若しくは置換アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ペンチル基、クロロメチル基、クロロエチル基、フルオロメチル基、シアノメチル基などが挙げられる。
 前記非置換若しくは置換アリール基としては、例えば、フェニル基、p-メトキシフェニル基、p-クロロフェニル基などが挙げられる。
 前記炭素数1~10の非置換若しくは置換アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基などが挙げられる。
 前記α-ケトシリル基を有する前記光分解性ケイ素化合物としては、例えば、以下の化合物などが挙げられる。
 ・ベンゾイルトリフェニルシラン
 ・ベンゾイルメチルジフェニルシラン
 ・ベンゾイルジメチルフェニルシラン
 ・アセチルトリフェニルシラン
 ・プロピオニルトリフェニルシラン
 ・アセチルメチルジフェニルシラン
 ・ベンゾイルトリメチルシラン
 ・ベンゾイルメトキシジフェニルシラン
 前記α-ケトシリル基を有する前記光分解性ケイ素化合物の合成方法としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記カチオン硬化性組成物における前記光分解性ケイ素化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%以上30質量%以下が好ましく、1質量%以上25質量%以下がより好ましく、3質量%以上20質量%以下が特に好ましい。
 前記カチオン硬化性組成物は、水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定による発熱量(H)と、前記光照射後48時間経過後の示差走査熱量測定による発熱量(H48)とが、以下の式(1)を満たすことが、光照射後の可使時間がより優れる点で、好ましい。
     -30≦〔(H-H48)/H〕×100≦30・・・式(1)
 前記示差走査熱量測定は、例えば、昇温条件を10℃/minとして行われる。
 前記発熱量(H)の測定は、前記光照射後直ぐ(例えば、1時間以内)に行われる。
 前記発熱量(H48)の測定は、前記光照射後、25℃環境下(例えば、湿度65%RH)で48時間放置した後に行われる。
 前記カチオン硬化性組成物は、水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定における発熱開始温度が、低温硬化性の点で、45℃以上80℃以下であることが好ましい。
 前記カチオン硬化性組成物は、水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定における発熱ピーク温度が、低温硬化性の点で、60℃以上130℃以下であることが好ましい。
 前記示差走査熱量測定は、例えば、昇温条件を10℃/minとして行われる。
 前記示差走査熱量測定は、例えば、光照射後直ぐ(例えば、1時間以内)に行われる。
 前記カチオン硬化性組成物は、硬化後の腐食や電気絶縁性の点で、硬化物のアニオンの含有量が、100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、20質量ppm以下であることが特に好ましい。
 前記アニオンとしては、例えば、炭酸イオン、水酸化物イオン、ハロゲンイオンなどが挙げられる。
 前記ハロゲンイオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオンなどが挙げられる。
 硬化物中の前記アニオンの含有量は、硬化物を用いてのイオンクロマトグラフ法や前記アニオンの対イオンであるカチオンを定量することにより求めることができる。
 前記カチオンの定量は、例えば、ICP(誘導結合プラズマ)分析法、原子吸光分析法、イオンクロマトグラフ法などにより行うことができる。
 前記ICP分析は、例えば、以下の条件で行う。
 分析法:誘導結合プラズマ質量分析法(ICP-MS法)
 溶媒:NMP(N-メチル-2-ピロリドン)
(硬化物の製造方法)
 本発明の硬化物の製造方法は、本発明の前記カチオン硬化性組成物に光を照射し、前記光分解性ケイ素化合物を光分解し、シラノール基を生成させた後に、加熱することを含む。
 前記光としては、紫外線を含む光が好ましい。そのような光の光源としては、例えば、水銀キセノンランプなどが挙げられる。
 前記光を照射する際の照射強度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1mW/cm以上200mW/cm以下であってもよいし、10mW/cm以上100mW/cm以下であってもよい。
 前記光を照射する際の照射時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1秒間以上10分間以下であってもよいし、30秒間以上5分間以下であってもよい。
 前記加熱する際には、60℃以上180℃以下に加熱することが、十分に硬化を行うことができる点で好ましい。
 前記加熱の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1分間以上10時間以下であってもよいし、10分間以上5時間以下であってもよいし、30分間以上2時間以下であってもよい。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(製造例1)
<カプセル型触媒1(アルミニウムキレートを保持する多孔質粒子)の製造>
<<重合粒子の作製>>
 蒸留水800質量部と、界面活性剤(ニューレックスR-T、日油(株))0.05質量部と、分散剤としてポリビニルアルコール(PVA-205、(株)クラレ)4質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合し水相を調製した。
 この水相に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24質量%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))100質量部と、多官能イソシアネート化合物としてメチレンジフェニル-4,4’-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))70質量部と、ラジカル重合性化合物としてジビニルベンゼン(メルク(株))30質量部と、ラジカル重合開始剤(パーロイルL、日油(株))をラジカル重合性化合物の1質量%相当量(0.3質量部)とを、酢酸エチル100質量部に溶解した油相を投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、80℃で6時間、界面重合とラジカル重合を行った。反応終了後、重合反応液を室温まで放冷し、重合粒子を濾過により濾別した。
<<含浸液の作製>>
 アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24質量%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))15質量部、アルミニウムトリス(エチルアセトアセテート)(ALCH-TR、川研ファインケミカル(株))25質量部、及びエチルアルコール60質量部を混合し、含浸液を作製した。
<<含浸>>
 得られた前記重合粒子を、前記含浸液に添加し、撹拌速度200rpm、30℃で6時間撹拌処理した後、ろ過した。その後、自然乾燥により固体の触媒粒子を得た。なお、乾燥後はAO-JET MILL((株)セイシン企業)にて解砕し、1次粒子の状態とし、カプセル型触媒1を得た。
(製造例2)
<カプセル型触媒2(アルミニウムキレートを保持する多孔質粒子)の製造>
 製造例1で調製した水相に、更に、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24質量%イソプロパノール溶液(アルミキレートD、川研ファインケミカル(株))100質量部と、多官能イソシアネート化合物としてメチレンジフェニル-4,4’-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))70質量部と、ラジカル重合性化合物としてPEG200#ジアクリレート(ライトアクリレート4EG-A(共栄社化学(株)))30質量部と、ラジカル重合開始剤(パーロイルL、日油(株))をラジカル重合性化合物の1質量%相当量(0.3質量部)とを、酢酸エチル100質量部に溶解した油相を投入し、ホモジナイザー(10000rpm/5分:T-50、IKAジャパン(株))で乳化混合後、80℃で6時間、界面重合とラジカル重合を行った。反応終了後、重合反応液を室温まで放冷し、重合粒子を濾過により濾別した。
<<含浸>>
 得られた前記重合粒子を、製造例1で調製した前記含浸液に添加し、撹拌速度200rpm、80℃で6時間撹拌処理した後、ろ過した。その後、自然乾燥により固体の触媒粒子を得た。なお、乾燥後はAO-JET MILL((株)セイシン企業)にて解砕し、1次粒子の状態とし、カプセル型触媒2を得た。
(製造例3)
<光分解性ケイ素化合物(TBP-TPS:t-Butylperoxytriphenylsilane)の製造>
 トリフェニルクロロシランと、t-ブチルヒドロペルオキシドとを用い、以下の文献に記載の方法でTBP-TPSを合成した。
 文献:V. N. Dibrivnyi, Yu. P. Pavlovskii, Yu. Ya. Van-Chin-Syan, Formation Enthalpies of Peroxy-Substituted Silanes, Russian Journal of Physical Chemistry A 84, pp.778-783, 2010.
 TBP-TPSの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000006
(製造例4)
<光分解性ケイ素化合物(3M2NBO-TPS: (3-methyl-2-nitro benzyloxy)triphenylsilane)の製造>
 水素化アルミニウムリチウムを用いて3-メチル-2-ニトロ安息香酸を還元して得られる生成物をトリフェニルクロロシランと反応させて3M2NBO-TPSを合成した。
 3M2NBO-TPSの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000007
(比較例1)
<カチオン硬化性組成物(配合1)>
 カチオン硬化成分(3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、CEL2021P、株式会社ダイセル社製)92質量部、光分解性ケイ素化合物(製造例3で得たTBP-TPS)6質量部、及びアルミキレート触媒(アルミキレートDOL、川研ファインケミカル(株))2質量部を混合し、カチオン硬化性組成物(配合1)を得た。
 なお、UV照射後の暴走反応を避けるため、アルミキレートとして、長鎖アルキル型のアルミニウムキレートを選択した。
(比較例2)
<カチオン硬化性組成物(配合2)>
 カチオン硬化成分(3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、CEL2021P、株式会社ダイセル社製)92質量部、光分解性ケイ素化合物(製造例4で得た3M2NBO-TPS)6質量部、及びアルミキレート触媒(アルミキレートDOL、川研ファインケミカル(株))2質量部を混合し、カチオン硬化性組成物(配合2)を得た。
(実施例1)
<カチオン硬化性組成物(配合3)>
 カチオン硬化成分(CEL2021P、株式会社ダイセル社製)92質量部、光分解性ケイ素化合物(製造例3で得たTBP-TPS)6質量部、及びカプセル型触媒(製造例1で得たカプセル型触媒1)2質量部を混合し、カチオン硬化性組成物(配合3)を得た。
(実施例2)
<カチオン硬化性組成物(配合4)>
 カチオン硬化成分(CEL2021P、株式会社ダイセル社製)92質量部、光分解性ケイ素化合物(製造例4で得た3M2NBO-TPS)6質量部、及びカプセル型触媒(製造例1で得たカプセル型触媒1)2質量部を混合し、カチオン硬化性組成物(配合4)を得た。
(実施例3)
<カチオン硬化性組成物(配合5)>
 カチオン硬化成分(CEL2021P、株式会社ダイセル社製)92質量部、光分解性ケイ素化合物(製造例4で得た3M2NBO-TPS)6質量部、及びカプセル型触媒(製造例2で得たカプセル型触媒2)2質量部を混合し、カチオン硬化性組成物(配合5)を得た。
(実施例4)
<カチオン硬化性組成物(配合6)>
 カチオン硬化成分(グリシジルエーテル型エポキシ樹脂、EP828、三菱ケミカル株式会社製)76質量部、光分解性ケイ素化合物(製造例4で得た3M2NBO-TPS)18質量部、及びカプセル型触媒(製造例1で得たカプセル型触媒1)6質量部を混合し、カチオン硬化性組成物(配合6)を得た。
(実施例5)
<カチオン硬化性組成物(配合7)>
 下記表1に示す配合のカチオン硬化性組成物(配合7)を調製した。
(実施例6)
<カチオン硬化性組成物(配合8)>
 下記表1に示す配合のカチオン硬化性組成物(配合8)を調製した。
(実施例7)
<カチオン硬化性組成物(配合9)>
 下記表1に示す配合のカチオン硬化性組成物(配合9)を調製した。
 なお、オキセタン化合物としては、3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(OXT-221、東亜合成株式会社製)を用いた。
(比較例3)
<カチオン硬化性組成物(配合10)>
 下記表1に示す配合のカチオン硬化性組成物(配合10)を調製した。
(比較例4)
<カチオン硬化性組成物(配合11)>
 下記表1に示す配合のカチオン硬化性組成物(配合11)を調製した。
 比較例1~4、及び実施例1~7の配合を表1にまとめた。
Figure JPOXMLDOC01-appb-T000008
 表1中の数値の単位は、質量部である。
 PI2074は、ローディア社製の光酸発生剤〔4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート〕である。KAYACURE DETX-Sは、日本化薬社製の増感剤(2,4-ジエチルチオキサン)である。
(評価)
<DSC測定>
 以下の条件でDSC測定(示差走査熱量測定)を行った。
 装置:Photo-DSC〔DSC6200((株)日立ハイテクサイエンス)〕
 評価量:10mg
 UV照射条件:
  ・水銀-キセノンランプ UXM-200YA(ウシオライティング(株))
  ・温度:25℃
  ・照射時間:1分間
  ・照射量:50mW/cm
 熱硬化条件:
  ・昇温速度:10℃/min
<<配合1及び配合2>>
 まずは、光分解性ケイ素化合物とアルミニウムキレートによる硬化性確認のため、アルミニウムキレートを直接配合した系(配合1及び配合2)の硬化性評価を実施した。
-TBP-TPS系での結果-
 表2及び図1に、配合1(比較例1)のカチオン硬化性組成物の硬化性の結果を示す。
Figure JPOXMLDOC01-appb-T000009
 図1のチャート(1)は、UV照射後に10℃/minで昇温測定した場合あり、図1のチャート(2)は、UV照射なしで、直接昇温測定した場合である。これらのチャートから、熱のみでも高温であれば、光分解性ケイ素化合物は分解し、アルミニウムキレートとカチオン活性種を形成してエポキシ樹脂(カチオン硬化成分)を硬化することが可能であることがわかった。しかし、測定前にUV照射することで発熱開始温度は約80℃程度低温化することができる。
-3M2NBO-TPS系での結果-
 続いて、3M2NBO-TPS系での結果を示す。
 表3及び図2に、配合2(比較例2)のカチオン硬化性組成物の硬化性の結果を示す。
Figure JPOXMLDOC01-appb-T000010
 3M2NBO-TPSの方がTBP-TPS系よりも低温硬化性を示した。UV照射後、昇温時の発熱開始温度は測定開始と同時であった。
<<配合3~配合6>>
 続いて、触媒含浸処理により調製したカプセル型触媒1及び2を用いた場合の結果を以下に示す。
-TBP-TPS系での結果-
 表4及び図3に、配合3(実施例1)のカチオン硬化性組成物の硬化性の結果を示す。
Figure JPOXMLDOC01-appb-T000011
 潜在性カプセル型触媒は、高活性なトリス(エチルアセトアセテート)型アルミニウムキレートの含浸により調製したためか、アルミキレートDOL(アルミニウムモノアセチルアセトネートビス(アルキルアセテート)と同等の開始温度となった。また、二種類のアルミニウムキレートを含浸したためか、2つの発熱ピークを示した。
-3M2NBO-TPS系での結果-
 続いて、3M2NBO-TPS系の結果を示す。
--カプセル型触媒1の場合--
 表5及び図4に、配合4(実施例2)のカチオン硬化性組成物の硬化性の結果を示す。
Figure JPOXMLDOC01-appb-T000012
 3M2NBO-TPS系では、非常にシャープな硬化発熱性を示した。UV照射品を昇温硬化させた場合の発熱ピーク温度は約90℃程度で発熱ピーク強度は65mWに達しており、低温性および短時間硬化性に非常に優れていることがわかる。続いて、触媒の含浸処理時に含浸液を高温処理することで調製したカプセル型触媒2を用いた場合の結果を以下に示す。
--カプセル型触媒2の場合--
 表6及び図5に、配合5(実施例3)のカチオン硬化性組成物の硬化性の結果を示す。
Figure JPOXMLDOC01-appb-T000013
 カプセル型触媒2を用いた場合のUV照射→昇温時の発熱開始温度は54℃、発熱ピーク温度は71℃と低温硬化性を示した。この場合の発熱ピーク強度も30mW以上と短時間硬化性を示した。
--カチオン硬化成分がグリシジルエーテル型エポキシ樹脂の場合--
 表7及び図6に、配合6(実施例4)のカチオン硬化性組成物の硬化性の結果を示す。
Figure JPOXMLDOC01-appb-T000014
 汎用エポキシ樹脂であるビスフェノールA型エポキシ樹脂においても、本硬化系は良好な低温短時間硬化性を示した。
 表8及び図7に、配合7~9(実施例5~7)のカチオン硬化性組成物の硬化性評価結果を示す。
Figure JPOXMLDOC01-appb-T000015
 配合7(実施例5)から潜在性カプセル型触媒の配合量を減らした場合でも良好な低温短時間硬化性を示すことを確認した。また、配合8(実施例6)から光分解性ケイ素化合物に対する潜在性カプセル型触媒の配合量を等量とすることで発熱開始温度および発熱ピーク温度を低温化できることを確認した。また、配合9(実施例7)からカチオン硬化性組成物としてオキセタン化合物を配合することでも発熱開始温度および発熱ピーク温度を低温化できることを確認した。
 以上、潜在性カプセル型触媒と光分解性ケイ素化合物を用いることで、UV照射後、エポキシ樹脂を特定の温度で短時間硬化することが可能となることを確認した。続いて、液ライフ評価を以下に示す。
<液ライフ評価1>
<<UV照射前>>
 各原材料を配合してカチオン硬化性組成物を得た後であって、UV照射がない場合の可使時間について評価した。評価は以下のようにして行った。結果を表9に示した。
〔評価方法〕
<DSC測定>
 以下の条件でDSC測定(示差走査熱量測定)を行い、室温保管48h後の総発熱量の保持率から液ライフの評価を行った。
 装置:DSC6200((株)日立ハイテクサイエンス)
 評価量:10mg
  ・保管温度:25℃(室温)
  ・昇温速度:10℃/min
Figure JPOXMLDOC01-appb-T000016
 いずれの実施例においても室温下での液ライフは良好で、室温48h放置後の総発熱量の保持率は95%以上を示した。しかしながら、光分解性ケイ素化合物ではなくシラノール化合物を直接配合した比較例3においては室温48hの放置でカチオン硬化性組成物の硬化が生じた。
<<UV照射後>>
 各原材料を配合してカチオン硬化性組成物を得た後に、更にUV照射をした場合の可使時間について評価した。評価はUV照射前と同様のDSC測定を用いた可使時間評価法を用いて行った。UV照射条件を以下に示す。結果を表10に示した。
〔評価方法〕
 UV照射条件:
  ・水銀-キセノンランプ UXM-200YA(ウシオライティング(株))
  ・温度:25℃
  ・照射時間:1分間
  ・照射強度:50mW/cm
Figure JPOXMLDOC01-appb-T000017
 潜在性カプセル型触媒を配合した実施例1~7は、UV照射後も良好な液ライフ性を示した。いずれの実施例においても室温保管48h後の総発熱量の保持率は80%以上であった。これに対して、アルミニウムキレートを直接配合した比較例1及び2の場合は、室温48h後の総発熱量の保持率は40%未満であった。
<液ライフ評価2>
 以下の条件で、UV照射、及びDSC測定(示差走査熱量測定)を行った。
 装置:Photo-DSC〔DSC6200((株)日立ハイテクサイエンス)〕
 評価量:10mg
 UV照射条件:
  ・水銀-キセノンランプ UXM-200YA(ウシオライティング(株))
  ・温度:25℃
  ・照射時間:1分間
  ・照射強度:50mW/cm
 熱硬化条件:
  ・昇温速度:10℃/min
<<配合4>>
 配合4(実施例2)について、以下の条件でDSC測定(示差走査熱量測定)を行った。結果を表11に示した。
 (i)UV照射後直ぐ(1時間以内)にDSC測定
 (ii)UV照射後48時間(25℃、65%RH)放置した後にDSC測定
 (iii)室温(25℃、65%RH)で1週間保管後に、UV照射し、その後直ぐにDSC測定
Figure JPOXMLDOC01-appb-T000018
 ここで、配合4に関しては、表11より、「〔(H-H48)/H〕×100」は、0.7となる。
 潜在性のカプセル型触媒を用いているため、UV照射後48h放置後も放置前品と比較して総発熱量の低下は見られなかった。また、光分解性ケイ素化合物はUV照射しない限り、トリフェニルシラノールを生成しないため、室温1week放置した場合でも放置前品と同等の硬化性を示した(総発熱量低下なし)。
<<配合5>>
 続いて、低温硬化性を示すカプセル型触媒2配合系での結果を示す。
 配合5(実施例3)について、以下の条件でDSC測定(示差走査熱量測定)を行った。結果を表11に示した。
 (i)UV照射後直ぐ(1時間以内)にDSC測定
 (ii)UV照射後48時間(25℃、65%RH)放置した後にDSC測定
 (iii)室温(25℃、65%RH)で1週間保管後に、UV照射し、その後直ぐにDSC測定
Figure JPOXMLDOC01-appb-T000019
 ここで、配合5に関しては、表12より、「〔(H-H48)/H〕×100」は、9.2となる。
 UV照射48h後は低温硬化性であるためか、若干の総発熱量低下が見られたが、低温活性型のカプセル型触媒を用いた場合でも同様に良好な液ライフ性を示した。UV未照射品の放置に関しては、系内にトリフェニルシラノールが存在しない状態での保管となるため、総発熱量の低下は、ほぼ見られなかった。
<アニオン含有量>
 配合11(比較例4)のカチオン硬化性組成物の硬化物中のアニオン含有量を以下の方法により測定した。
〔評価方法〕
アニオン分析:
  ・イオンクロマトグラフィー ICS-3000(日本ダイオネクス(株))
  ・硬化条件:200℃/10min
  ・抽出条件:超純水中20wt%濃度で100℃10時間抽出
 配合11に関しては100ppmを超える各種アニオンや多くの有機酸が検出された。
 なお、配合3~9に関しても同様にアニオン含有量を測定したところ、検出された各種アニオン量は1ppm以下であった。
 本発明のカチオン硬化性組成物は、光照射によりシラノール基を生成し、熱により硬化させることができ、長期保存が可能であり、低温速硬化性に優れ、更に光照射後の可使時間が長いことから、接着剤として好適に用いることができる。

Claims (12)

  1.  光照射によりシラノール基を生成し、熱により硬化するカチオン硬化性組成物であって、
     カチオン硬化成分と、アルミニウムキレートを保持する多孔質粒子と、光分解によりシラノール基を生成する光分解性ケイ素化合物とを含有することを特徴とするカチオン硬化性組成物。
  2.  前記光分解性ケイ素化合物が、ペルオキシシリル基、ケイ原子に直接結合するo-ニトロベンジルオキシ基、及びα-ケトシリル基の少なくともいずれかを有する請求項1に記載のカチオン硬化性組成物。
  3.  前記多孔質粒子が、ポリウレア樹脂で構成される請求項1から2のいずれかに記載のカチオン硬化性組成物。
  4.  前記多孔質粒子が、更にビニル樹脂を構成成分として有する請求項3に記載のカチオン硬化性組成物。
  5.  前記カチオン硬化成分が、エポキシ樹脂を含有する請求項1から4のいずれかに記載のカチオン硬化性組成物。
  6.  前記エポキシ樹脂が、脂環式エポキシ樹脂、及びグリシジルエーテル型エポキシ樹脂の少なくともいずれかを含有する請求項5に記載のカチオン硬化性組成物。
  7.  前記カチオン硬化成分が、更にオキセタン化合物を含有する請求項5から6のいずれかに記載のカチオン硬化性組成物。
  8.  水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定による発熱量(H)と、前記光照射後48時間経過後の示差走査熱量測定による発熱量(H48)とが、以下の式(1)を満たす請求項1から7のいずれかに記載のカチオン硬化性組成物。
         -30≦〔(H-H48)/H〕×100≦30・・・式(1)
  9.  水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定における発熱開始温度が、45℃以上80℃以下である請求項1から8のいずれかに記載のカチオン硬化性組成物。
  10.  水銀キセノンランプによる50mW/cmで1分間の光照射後の示差走査熱量測定における発熱ピーク温度が、60℃以上130℃以下である請求項1から9のいずれかに記載のカチオン硬化性組成物。
  11.  請求項1から10のいずれかに記載のカチオン硬化性組成物に光を照射し、前記光分解性ケイ素化合物を光分解し、シラノール基を生成させた後に、加熱することを含むことを特徴とする硬化物の製造方法。
  12.  前記加熱する際、60℃以上180℃以下に加熱する請求項11に記載の硬化物の製造方法。
PCT/JP2019/022767 2018-06-13 2019-06-07 カチオン硬化性組成物、及び硬化物の製造方法 WO2019240044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/055,350 US11773208B2 (en) 2018-06-13 2019-06-07 Cationically curable composition and cured product production method
CN201980038683.0A CN112292414A (zh) 2018-06-13 2019-06-07 阳离子固化性组合物和固化物的制备方法
KR1020207037613A KR102479148B1 (ko) 2018-06-13 2019-06-07 카티온 경화성 조성물, 및 경화물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112772 2018-06-13
JP2018112772A JP7117166B2 (ja) 2018-06-13 2018-06-13 カチオン硬化性組成物、及び硬化物の製造方法

Publications (1)

Publication Number Publication Date
WO2019240044A1 true WO2019240044A1 (ja) 2019-12-19

Family

ID=68842855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022767 WO2019240044A1 (ja) 2018-06-13 2019-06-07 カチオン硬化性組成物、及び硬化物の製造方法

Country Status (6)

Country Link
US (1) US11773208B2 (ja)
JP (1) JP7117166B2 (ja)
KR (1) KR102479148B1 (ja)
CN (1) CN112292414A (ja)
TW (1) TWI828703B (ja)
WO (1) WO2019240044A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023010105A (ja) * 2021-07-09 2023-01-20 デクセリアルズ株式会社 硬化性組成物及び硬化物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710620A (en) * 1980-06-24 1982-01-20 Toshiba Corp Catalyst for polymerizing epoxy compound
JPS5710621A (en) * 1980-06-24 1982-01-20 Toshiba Corp Catalyst for polymerizing epoxy compound
JPS57125212A (en) * 1981-01-27 1982-08-04 Toshiba Corp Photo-polymerizable composition
JPS6071628A (ja) * 1983-09-28 1985-04-23 Toshiba Corp エポキシ樹脂組成物の硬化方法
JPS61218624A (ja) * 1985-03-26 1986-09-29 Toshiba Corp エポキシ樹脂組成物
JPS6315817A (ja) * 1986-07-04 1988-01-22 Daicel Chem Ind Ltd 光硬化性樹脂組成物
JPH01103621A (ja) * 1987-07-23 1989-04-20 Ricoh Co Ltd 光重合性エポキシ樹脂組成物
JP2011021132A (ja) * 2009-07-17 2011-02-03 Sony Chemical & Information Device Corp 熱硬化型導電ペースト組成物
JP2013189555A (ja) * 2012-03-14 2013-09-26 Dexerials Corp 熱硬化性エポキシ系接着剤、実装方法及び実装体
JP2017222781A (ja) * 2016-06-15 2017-12-21 デクセリアルズ株式会社 熱硬化型エポキシ樹脂組成物、及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146604A (ja) 1974-10-16 1976-04-21 Daifuku Machinery Works Enjintesutosochi
EP0114258A1 (en) 1982-11-30 1984-08-01 Kabushiki Kaisha Toshiba Resin encapsulation type photo-semiconductor devices
JPS60233177A (ja) * 1984-05-07 1985-11-19 Toshiba Chem Corp 接着剤付金属箔及びその製造方法
JPS61223020A (ja) * 1985-03-29 1986-10-03 Toshiba Corp 光硬化性エポキシ樹脂系組成物
US4954534A (en) 1987-07-23 1990-09-04 Ricoh Company, Ltd. Photodecomposing organosilicon compounds and photopolymerizable epoxy resin compositions containing the organosilicon compounds
JP2791438B2 (ja) * 1988-09-09 1998-08-27 関西ペイント株式会社 樹脂組成物及びその硬化方法
JPH05125150A (ja) * 1991-11-01 1993-05-21 Daicel Chem Ind Ltd 硬化性樹脂組成物
TW404974B (en) * 1995-07-19 2000-09-11 Kansai Paint Co Ltd Solidifiable coating composite
JP4860831B2 (ja) 2001-03-01 2012-01-25 株式会社リコー 光硬化型エポキシ樹脂組成物および光硬化型表示素子用シール剤
JP5481013B2 (ja) 2006-12-26 2014-04-23 デクセリアルズ株式会社 潜在性硬化剤粒子の製造方法、接着剤製造方法
JP5707662B2 (ja) * 2008-01-25 2015-04-30 デクセリアルズ株式会社 熱硬化型エポキシ樹脂組成物
JP5458596B2 (ja) 2008-02-18 2014-04-02 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP5970780B2 (ja) * 2011-11-07 2016-08-17 日立化成株式会社 潜在性硬化剤及びその製造方法
JP6489494B2 (ja) * 2014-09-09 2019-03-27 デクセリアルズ株式会社 アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710620A (en) * 1980-06-24 1982-01-20 Toshiba Corp Catalyst for polymerizing epoxy compound
JPS5710621A (en) * 1980-06-24 1982-01-20 Toshiba Corp Catalyst for polymerizing epoxy compound
JPS57125212A (en) * 1981-01-27 1982-08-04 Toshiba Corp Photo-polymerizable composition
JPS6071628A (ja) * 1983-09-28 1985-04-23 Toshiba Corp エポキシ樹脂組成物の硬化方法
JPS61218624A (ja) * 1985-03-26 1986-09-29 Toshiba Corp エポキシ樹脂組成物
JPS6315817A (ja) * 1986-07-04 1988-01-22 Daicel Chem Ind Ltd 光硬化性樹脂組成物
JPH01103621A (ja) * 1987-07-23 1989-04-20 Ricoh Co Ltd 光重合性エポキシ樹脂組成物
JP2011021132A (ja) * 2009-07-17 2011-02-03 Sony Chemical & Information Device Corp 熱硬化型導電ペースト組成物
JP2013189555A (ja) * 2012-03-14 2013-09-26 Dexerials Corp 熱硬化性エポキシ系接着剤、実装方法及び実装体
JP2017222781A (ja) * 2016-06-15 2017-12-21 デクセリアルズ株式会社 熱硬化型エポキシ樹脂組成物、及びその製造方法

Also Published As

Publication number Publication date
US11773208B2 (en) 2023-10-03
KR102479148B1 (ko) 2022-12-19
TW202000720A (zh) 2020-01-01
CN112292414A (zh) 2021-01-29
JP7117166B2 (ja) 2022-08-12
KR20210016419A (ko) 2021-02-15
JP2019214675A (ja) 2019-12-19
US20210214489A1 (en) 2021-07-15
TWI828703B (zh) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5707662B2 (ja) 熱硬化型エポキシ樹脂組成物
JP6948114B2 (ja) 熱硬化型エポキシ樹脂組成物、及びその製造方法
JP5321082B2 (ja) アルミニウムキレート系潜在性硬化剤及びその製造方法
JP5481995B2 (ja) アルミニウムキレート系潜在性硬化剤及びそれらの製造方法
KR102036751B1 (ko) 알루미늄 킬레이트계 잠재성 경화제의 제조 방법 및 열경화형 에폭시 수지 조성물
KR102331383B1 (ko) 알루미늄 킬레이트계 잠재성 경화제, 그 제조 방법 및 열경화형 에폭시 수지 조성물
JP2009221465A (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP7403695B2 (ja) 潜在性硬化剤の被膜形成用組成物及び潜在性硬化剤の被膜形成方法
JP2012188596A (ja) 熱潜在性硬化剤及びその製造方法並びに熱硬化型エポキシ樹脂組成物
WO2019240044A1 (ja) カチオン硬化性組成物、及び硬化物の製造方法
WO2017217275A1 (ja) 潜在性硬化剤、及びその製造方法、並びに熱硬化型エポキシ樹脂組成物
JP5527433B2 (ja) 反応性ポリシロキサン溶液の製造方法
TWI817949B (zh) 陽離子硬化性組成物
JP2008081685A (ja) 一液型エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207037613

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19818800

Country of ref document: EP

Kind code of ref document: A1