WO2019239772A1 - Electroless plating method and electroless plating apparatus and program - Google Patents

Electroless plating method and electroless plating apparatus and program Download PDF

Info

Publication number
WO2019239772A1
WO2019239772A1 PCT/JP2019/019134 JP2019019134W WO2019239772A1 WO 2019239772 A1 WO2019239772 A1 WO 2019239772A1 JP 2019019134 W JP2019019134 W JP 2019019134W WO 2019239772 A1 WO2019239772 A1 WO 2019239772A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
liquid layer
main surface
plating solution
liquid
Prior art date
Application number
PCT/JP2019/019134
Other languages
French (fr)
Japanese (ja)
Inventor
栄次 梅田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019239772A1 publication Critical patent/WO2019239772A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents

Definitions

  • the present invention relates to an electroless plating method, an electroless plating apparatus, and a program.
  • the electroless plating solution is divided into a first chemical solution containing a metal salt and a second chemical solution containing a reducing agent. Both chemicals are mixed while the processing of one substrate is started and then the processing of the next substrate is started. And the stable plating process is attained by using the liquid mixture (electroless-plating liquid) in the process of the following board
  • substrate is a semiconductor substrate.
  • the plating solution immediately before being supplied to the substrate is activated by heating.
  • the plating solution in contact with the substrate surface is instantaneously replaced at the discharge position on the substrate, that is, the flow rate of the plating solution on the substrate surface increases. It becomes difficult for the electroless plating reaction to proceed locally.
  • the thickness of the plating layer is different between the discharge position and other regions, and the uniformity of the thickness of the plating layer is lowered.
  • the present invention is directed to an electroless plating method, and aims to improve the uniformity of the thickness of the plating layer.
  • a liquid layer of the plating solution covering the one main surface is formed by discharging a plating solution from a nozzle toward one main surface of the substrate in a horizontal state. And b) heating the liquid layer while stopping the discharge of the plating solution from the nozzle to the one main surface and holding the liquid layer on the one main surface, or And a step of accelerating an electroless plating reaction on the one main surface by initiating rocking of the liquid layer.
  • the uniformity of the thickness of the plating layer can be improved.
  • the plating solution contains a metal salt of a plating metal and a reducing agent that reduces and deposits ions of the plating metal, and a stabilizer or complex that prevents decomposition of the plating solution. Contains no agents.
  • the plating solution is mixed with the first chemical solution containing the metal salt and the second chemical solution containing the reducing agent. Is preferably produced.
  • a reducing agent for reducing and depositing the plating metal ions and a first chemical solution containing a metal salt of the plating metal in the step a), immediately before discharging the plating solution from the nozzle, a reducing agent for reducing and depositing the plating metal ions and a first chemical solution containing a metal salt of the plating metal.
  • the said plating solution is produced
  • the first chemical solution and the second chemical solution are mixed in the nozzle.
  • the first chemical solution and the second chemical solution are mixed in a mixing valve connected to the nozzle.
  • the electroless plating method further includes a step of discharging a rinsing liquid from the nozzle toward the one main surface after the step b), and at the time of discharging the rinsing liquid.
  • the rinse liquid passes through the flow path from the mixing position of the first chemical liquid and the second chemical liquid to the discharge port of the nozzle.
  • the electroless plating method includes: c) After the step b), a new plating solution is discharged from the nozzle toward the liquid layer of the plating solution on the one main surface. A step of forming a liquid layer of the new plating solution covering the one main surface, and d) stopping the discharge of the new plating solution from the nozzle to the one main surface, and By holding the liquid layer of the new plating solution on the one main surface and heating the liquid layer or swinging the liquid layer, the electroless plating on the one main surface is performed. And further promoting the reaction.
  • the electroless plating method comprises: c) after the step b), the substrate is rotated to remove the liquid layer of the plating solution, and then the one main surface. Forming a liquid layer of the new plating solution covering the one main surface by discharging a new plating solution from the nozzle toward the surface; and d) the step from the nozzle to the one main surface. The discharge of the new plating solution is stopped and the liquid layer is heated or the liquid layer is swung while the liquid layer of the new plating solution is held on the one main surface. And a step of promoting an electroless plating reaction on the one main surface.
  • the electroless plating method may further include a step of repeating the steps c) and d).
  • the heating of the liquid layer by the heater is turned off, and in the step b), the heating of the liquid layer by the heater is turned on.
  • the heating of the liquid layer by the heater is turned off, and in the steps b) and d), the heating of the liquid layer by the heater is turned on.
  • the heater faces the other main surface of the substrate, and in the ON state, the heater is disposed at a position close to or in contact with the other main surface. In the OFF state, the heater is the other main surface. It is arrange
  • the substrate in the step b), is rotated while the liquid layer of the plating solution is heated and the liquid layer is held on the one main surface.
  • the substrate in the step b), is rotated or the substrate is vibrated while the liquid layer of the plating solution is held on the one main surface. Is granted.
  • the present invention is also directed to an electroless plating apparatus.
  • the substrate holding unit that holds the substrate in a horizontal state, and the plating solution is discharged from a nozzle toward the one main surface of the substrate, thereby covering the one main surface.
  • a plating solution supply unit for forming a plating solution liquid layer, a plating reaction promoting unit for heating the liquid layer or swinging the liquid layer, and the plating solution from the nozzle to the one main surface.
  • heating of the liquid layer by the plating reaction accelerating unit, or oscillation of the liquid layer is started, And a controller that promotes an electroless plating reaction on one main surface.
  • the present invention is also directed to a program for causing a computer to control an electroless plating apparatus including a substrate holding unit, a plating solution supply unit, and a plating reaction promoting unit.
  • FIG. 1 is a diagram showing a configuration of an electroless plating apparatus 1 according to an embodiment of the present invention.
  • the electroless plating apparatus 1 is a single-wafer type apparatus that processes the disk-shaped substrates 9 one by one.
  • the electroless plating apparatus 1 includes a substrate holding unit 21, a substrate rotating mechanism 22, a cup 23, a plating solution supply unit 3, a plating reaction promoting unit 4, and a computer 11.
  • the substrate holding part 21 has a disk-like base part 211 centering on a central axis J1 facing in the up-down direction.
  • a plurality of chuck pins 212 are provided on the upper surface of the base portion 211.
  • the plurality of chuck pins 212 are arranged at equal intervals in the circumferential direction on a circumference centered on the central axis J1.
  • Each chuck pin 212 can be rotated around an axis parallel to the central axis J1 by a pin driving mechanism (not shown).
  • a grip portion 213 is provided at the tip of the chuck pin 212.
  • the plurality of gripping portions 213 are pressed against the outer peripheral edge of the substrate 9, and the substrate 9 is held in a horizontal state above the base portion 211.
  • the center of the substrate 9 held by the substrate holding part 21 is located on the central axis J1.
  • the upper surface of the base portion 211 is parallel to a main surface 92 (hereinafter referred to as “lower surface 92”) facing downward of the substrate 9, and both face each other with a gap.
  • the upper end of the shaft part 221 centered on the central axis J1 is fixed.
  • the substrate rotation mechanism 22 having a motor rotates the lower end portion of the shaft portion 221
  • the substrate holding portion 21 rotates together with the substrate 9 about the central axis J1.
  • the cup 23 has a substantially cylindrical shape surrounding the base portion 211.
  • various processing liquids scattered from the outer peripheral edge of the rotating substrate 9 are received by the inner peripheral surface of the cup 23 and collected.
  • the upper part of the cup 23 can be moved up and down by a cup lifting mechanism (not shown).
  • the upper part of the cup 23 is lowered, and the cup 23 is prevented from interfering with an external transport mechanism.
  • the plating reaction promoting unit 4 includes a heater 41 and a heater lifting mechanism 42.
  • the heater 41 has a disc shape centered on the central axis J ⁇ b> 1 and is disposed between the substrate 9 held by the substrate holding part 21 and the base part 211.
  • the heater 41 is located on the lower surface 92 side of the substrate 9.
  • the heater 41 is a hot plate having a resistance heating element such as a nichrome wire.
  • the heater 41 may use a heat source other than the resistance heating element.
  • the upper surface of the heater 41 extends over substantially the entire lower surface 92 of the substrate 9 and directly faces the lower surface 92.
  • the upper surface of the heater 41 is substantially parallel to the lower surface 92 of the substrate 9.
  • the upper end of the elevating shaft 421 centering on the central axis J1 is fixed.
  • the base portion 211 and the shaft portion 221 are provided with a hollow portion extending in the vertical direction on the central axis J1, and the lifting shaft 421 is disposed in the hollow portion.
  • the elevating shaft 421 extends below the lower end of the shaft portion 221. Below the shaft portion 221, the lower end portion of the lifting shaft 421 is connected to the heater lifting mechanism 42.
  • the heater elevating mechanism 42 supports the heater 41 via the elevating shaft 421.
  • the heater elevating mechanism 42 includes a ball screw mechanism and a motor, and moves the elevating shaft 421 in the vertical direction by driving the motor.
  • the heater 41 is selectively disposed at an upper position where the upper surface of the heater 41 is close to the lower surface 92 of the substrate 9 and a lower position where the upper surface of the heater 41 is separated from the lower surface 92 of the substrate 9.
  • the lower surface of the heater 41 approaches or contacts the upper surface of the base portion 211 at the lower position.
  • the heater 41 may be disposed at an arbitrary position between the upper position and the lower position.
  • the heater 41 is constantly heated at a constant temperature, and the lower surface 92 of the substrate 9 can be heated substantially uniformly by disposing the heater 41 in the upper position.
  • the substrate 9 is hardly heated in the state where the heater 41 is disposed at the lower position.
  • the upper surface of the heater 41 may contact the lower surface 92 of the substrate 9 at the upper position.
  • the plating solution supply unit 3 includes a mixing nozzle 31, a first chemical solution supply source 33, a second chemical solution supply source 34, and a rinse solution supply source 35.
  • the mixing nozzle 31 faces a main surface 91 (hereinafter referred to as “upper surface 91”) facing the upper side of the substrate 9. Specifically, the mixing nozzle 31 is disposed above the central portion of the upper surface 91, and the discharge port 312 of the mixing nozzle 31 directly faces the upper surface 91.
  • the mixing nozzle 31 has a mixing chamber 311 and the discharge port 312 described above.
  • a first chemical liquid supply source 33 is connected to the mixing chamber 311 via a first chemical liquid supply pipe 331, and a second chemical liquid supply source 34 is connected via a second chemical liquid supply pipe 341.
  • a rinsing liquid supply source 35 is connected to the mixing chamber 311 via a rinsing liquid supply pipe 351.
  • the first chemical liquid supply pipe 331 is provided with a flow rate adjustment valve 332 and an opening / closing valve 333 in order from the first chemical liquid supply source 33 side toward the mixing nozzle 31.
  • the second chemical liquid supply pipe 341 is provided with a flow rate adjustment valve 342 and an on-off valve 343 in order from the second chemical liquid supply source 34 toward the mixing nozzle 31.
  • the rinsing liquid supply pipe 351 is provided with an opening / closing valve 353.
  • the first chemical solution is supplied from the first chemical solution supply source 33 into the mixing chamber 311 and the second chemical solution is supplied from the second chemical solution supply source 34 into the mixing chamber 311.
  • the first chemical solution contains a metal salt of a plating metal in electroless plating.
  • the plating metal is, for example, nickel (Ni), copper (Cu), cobalt (Co), cobalt tungsten boron (CoWB), gold (Au), silver (Ag), or the like.
  • the second chemical solution includes a reducing agent that causes the precipitation of ions of the plating metal.
  • the reducing agent is, for example, DMAB (boron compound).
  • DMAB boron compound
  • the plating solution is discharged, for example, in a columnar shape from the discharge port 312 continuous to the mixing chamber 311 toward the center of the upper surface 91 of the substrate 9.
  • the mixing ratio of the first chemical solution and the second chemical solution in the plating solution is prepared by controlling the opening degree of the flow rate adjusting valves 332 and 342.
  • both the first chemical solution and the second chemical solution are stabilizers that prevent the decomposition of the plating solution (for example, a mixed solution obtained by adding alkyl alcohol to carboxylic acid) or complexing agents (for example, a mixture containing ethylenediamine). Liquid etc.).
  • the plating solution generated in the mixing nozzle 31 does not contain a stabilizer or a complexing agent.
  • the plating solution does not contain both a stabilizer and a complexing agent.
  • the plating solution may contain a ph adjusting agent (for example, ammonia or the like) that adjusts the ph of the plating solution, and a buffering agent (for example, ammonia or the like) that suppresses fluctuations in ph.
  • the first chemical solution supply source 33 and the first chemical solution supply pipe 331 are not provided with a heater for heating the first chemical solution. Further, in the second chemical liquid supply source 34 and the second chemical liquid supply pipe 341, a heater for heating the second chemical liquid is not provided. Further, the mixing nozzle 31 is not provided with a heater. Therefore, the plating solution at substantially room temperature is discharged from the mixing nozzle 31 toward the upper surface 91 of the substrate 9. The temperature of the plating solution discharged from the mixing nozzle 31 is, for example, 23 to 40 ° C.
  • the rinsing solution is supplied from the rinsing solution supply source 35 into the mixing chamber 311 of the mixing nozzle 31, so that the rinsing solution flows from the discharge port 312 toward the center of the upper surface 91 of the substrate 9. Discharged.
  • the rinse liquid is, for example, pure water. A rinse solution other than pure water may be used.
  • the electroless plating apparatus 1 further includes a treatment liquid supply unit 5.
  • the processing liquid supply unit 5 includes an auxiliary nozzle 51, a catalyst solution supply source 52, a cleaning liquid supply source 53, and a rinse liquid supply source 54.
  • the auxiliary nozzle 51 is disposed above the substrate 9.
  • a catalyst solution supply source 52, a cleaning liquid supply source 53, and a rinse liquid supply source 54 are connected to the auxiliary nozzle 51 through valves.
  • the catalyst solution is a solution containing a catalyst (for example, metal ions such as palladium (Pd)) used for electroless plating.
  • the cleaning liquid is supplied from the cleaning liquid supply source 53 to the auxiliary nozzle 51, the cleaning liquid is discharged from the auxiliary nozzle 51 toward the center of the upper surface 91 of the substrate 9.
  • the cleaning liquid is, for example, DHF (dilute hydrofluoric acid).
  • DHF dilute hydrofluoric acid
  • the rinse liquid is discharged from the auxiliary nozzle 51 toward the center of the upper surface 91 of the substrate 9.
  • the rinse liquid is, for example, pure water.
  • other processing liquids such as an etching liquid may be used.
  • the catalyst solution supply source 52, the cleaning liquid supply source 53, and the rinse liquid supply source 54 may be connected to different nozzles. Further, the rinse solution supply source 35 of the plating solution supply unit 3 may also serve as the rinse solution supply source 54.
  • a nozzle moving mechanism for moving the mixing nozzle 31 and the auxiliary nozzle 51 may be provided.
  • the nozzle moving mechanism selectively arranges the mixing nozzle 31 and the auxiliary nozzle 51 at a facing position facing the upper surface 91 of the substrate 9 and a standby position away from the substrate 9 in the horizontal direction.
  • the nozzle moving mechanism may move the mixing nozzle 31 and the auxiliary nozzle 51 individually.
  • FIG. 2 is a diagram illustrating a configuration of the computer 11.
  • the computer 11 has a general computer system configuration including a CPU 111 that performs various arithmetic processes, a ROM 112 that stores basic programs, and a RAM 113 that stores various information.
  • the computer 11 includes a fixed disk 114 that stores information, a display unit 115 that displays various types of information, a keyboard 116a and a mouse 116b that receive input from an operator as an input unit 116, an optical disk, a magnetic disk, and a magneto-optical disk.
  • a reading / writing device 118 that reads information from or writes information to the recording medium 81, and a communication unit 119 that communicates with each component of the electroless plating apparatus 1.
  • a communication unit 119 that communicates with each component of the electroless plating apparatus 1.
  • the program 810 is read from the recording medium 81 via the reading / writing device 118 in advance and stored in the fixed disk 114. Then, when the CPU 111 executes arithmetic processing according to the program 810 using the RAM 113 and the fixed disk 114 (that is, when the computer executes the program), the computer 11 controls the electroless plating apparatus 1 in FIG. It functions as the unit 110.
  • the control unit 110 is responsible for overall control.
  • the control unit 110 may be constructed by a dedicated electric circuit, or a partially dedicated electric circuit may be used.
  • FIG. 3 is a diagram showing the flow of the electroless plating process in the electroless plating apparatus 1.
  • the control unit 110 in FIG. 1 controls the electroless plating apparatus 1 (control of each component of the electroless plating apparatus 1 excluding the control unit 110).
  • the substrate 9 to be processed is loaded in advance by an external transport mechanism and is held by the substrate holder 21.
  • the rotation of the substrate 9 is started by the substrate rotation mechanism 22.
  • the substrate 9 rotates together with the substrate holding unit 21 in a horizontal state.
  • the cleaning liquid is supplied from the cleaning liquid supply source 53 to the central portion of the upper surface 91 of the substrate 9 through the auxiliary nozzle 51 disposed at the facing position (step S11).
  • the cleaning liquid spreads toward the outer peripheral edge of the substrate 9 due to the centrifugal force generated by the rotation of the substrate 9, and the cleaning liquid is supplied to the entire upper surface 91.
  • the cleaning liquid scattered from the outer peripheral edge of the substrate 9 is received and collected by the inner peripheral surface of the cup 23 (the same applies when supplying a rinsing liquid, a catalyst solution, and a plating liquid described later).
  • supplying the cleaning liquid foreign matters, natural oxide films, and the like on the upper surface 91 are removed.
  • the discharge of the cleaning liquid is continued for a predetermined time.
  • the rinse liquid is supplied from the rinse liquid supply source 54 to the central portion of the upper surface 91 through the auxiliary nozzle 51 (step S12).
  • the rinse liquid spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the rinse liquid is supplied to the entire upper surface 91.
  • the cleaning liquid adhering to the upper surface 91 is removed.
  • the discharge of the rinse liquid is continued for a predetermined time and then stopped.
  • the catalyst solution is supplied from the catalyst solution supply source 52 to the central portion of the upper surface 91 through the auxiliary nozzle 51 (step S13).
  • the catalyst solution spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the catalyst solution is supplied to the entire upper surface 91.
  • a catalyst for example, palladium
  • the discharge of the catalyst solution is continued for a predetermined time.
  • the rinsing liquid is supplied from the rinsing liquid supply source 54 to the central portion of the upper surface 91 through the auxiliary nozzle 51 (step S14).
  • the rinse liquid spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the rinse liquid is supplied to the entire upper surface 91.
  • the rinse liquid By supplying the rinse liquid, the catalyst solution adhering to the upper surface 91 is removed. Note that the catalyst layer formed on the upper surface 91 is maintained.
  • the discharge of the rinse liquid is continued for a predetermined time and then stopped.
  • the supply of the first chemical liquid from the first chemical liquid supply source 33 into the mixing chamber 311 of the mixing nozzle 31 and the supply of the second chemical liquid from the second chemical liquid supply source 34 into the mixing chamber 311 are started.
  • the The first chemical solution and the second chemical solution are mixed in the mixing chamber 311 to generate a plating solution.
  • the mixing nozzle 31 is disposed at an opposing position, and the plating solution is continuously discharged from the discharge port 312 of the mixing nozzle 31 toward the center of the upper surface 91 of the substrate 9. On the upper surface 91, the plating solution spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the plating solution is supplied to the entire upper surface 91.
  • a plating solution liquid layer 93 (also called a paddle) covering the entire upper surface 91 is formed (step S15). That is, the plating solution is deposited on the upper surface 91.
  • the rotation of the substrate 9 is indicated by an arrow A1 (the same applies to FIGS. 4C, 4E, 4F, 5A, and 5B described later).
  • the plating solution is at room temperature.
  • the heater 41 is disposed at a lower position away from the lower surface 92 of the substrate 9.
  • the temperature of the plating solution contained in the liquid layer 93 is maintained at substantially normal temperature, and the electroless plating reaction on the upper surface 91 is suppressed, that is, the reaction rate is low (inactive state).
  • the heater 41 since the heater 41 is disposed at an upper position close to the lower surface 92, the heating of the liquid layer 93 by the heater 41 is turned on, so that the heater 41 is disposed at a lower position away from the lower surface 92. In step S15, it can be said that the heating of the liquid layer 93 by the heater 41 is in the OFF state.
  • the total amount (volume) of the plating solution generated in the mixing chamber 311 during the period in which the plating solution is continuously discharged from the mixing nozzle 31 (the processing period of step S ⁇ b> 15) is the volume of the mixing chamber 311. Big enough than. Therefore, most of the plating solution generated by mixing the first chemical solution and the second chemical solution in the period is discharged toward the substrate 9 during the period. In other words, in the electroless plating apparatus 1, immediately before discharging the plating solution from the mixing nozzle 31, the first chemical solution and the second chemical solution are mixed to generate a plating solution.
  • a plating solution liquid layer 93 having a certain thickness is provided.
  • the number of rotations of the substrate 9 is preferably 300 rpm or less.
  • the electroless plating apparatus 1 it is also possible to form the plating solution liquid layer 93 in a state where the rotation of the substrate 9 is stopped. In this case, the plating solution continuously supplied to the central portion of the upper surface 91 gradually spreads toward the outer peripheral edge of the substrate 9, and a plating solution liquid layer 93 is formed on the entire upper surface 91.
  • the rotation speed of the substrate 9 (hereinafter referred to as “liquid layer formation rotation speed”) during the formation of the plating solution liquid layer 93 is preferably 0 to 300 rpm.
  • the liquid layer forming rotation speed is more preferably 0 to 50 rpm, and further preferably 0 to 10 rpm.
  • the flow rate of the plating solution is more preferably 0.05 to 0.3 L / min.
  • the rotation of the substrate 9 at the liquid layer forming rotation speed includes the case where the rotation speed of the substrate 9 is 0, that is, the rotation of the substrate 9 is stopped.
  • the discharge of the plating solution from the mixing nozzle 31 is stopped when the discharge of the plating solution is continued for a predetermined time and the plating solution liquid layer 93 is formed.
  • the liquid layer 93 is held by the surface tension of the plating solution.
  • the heater 41 is raised by the heater elevating mechanism 42 and disposed at an upper position close to the lower surface 92 of the substrate 9 as shown in FIG. 4B. Thereby, the heating of the substrate 9 by the heater 41 is started.
  • the liquid layer 93 is also heated by heating the substrate 9.
  • the heating of the liquid layer 93 by the heater 41 is turned on.
  • the plating solution contained in the liquid layer 93 As the temperature of the plating solution contained in the liquid layer 93 rises, the plating solution becomes active (the reaction rate is high), and the electroless plating reaction on the entire upper surface 91 is promoted (step S16).
  • the plating solution contained in the liquid layer 93 is heated to 40 to 60 ° C.
  • the catalytic agent of the catalyst layer formed on the upper surface 91 oxidizes the reducing agent contained in the plating solution, and the ions of the plating metal contained in the plating solution are generated by electrons from the reducing agent. As a result, the plated metal is deposited on the catalyst layer.
  • the reducing agent is oxidized by the catalytic action of the plated metal itself, and ions of the plated metal are further reduced and deposited.
  • the lower surface 92 of the substrate 9 is uniformly heated, and the electroless plating reaction is promoted simultaneously on the entire upper surface 91. Thereby, the plating metal grows uniformly on the entire upper surface 91, and a uniform plating layer 94 (see FIG. 4C described later) is formed.
  • the film formation rate in step S16 is, for example, 5 times or more (equivalent to a solid film) with respect to the film formation rate in step S15 (the film formation rate in a state where the reaction is suppressed).
  • a large number of pattern elements standing upright on the upper surface 91 are formed, and a plating layer 94 is formed on the surface of the pattern elements.
  • the electroless plating reaction does not proceed in the gap. Therefore, in the electroless plating apparatus 1, by rotating the substrate 9 at a rotation speed capable of holding the liquid layer 93 of the plating solution on the upper surface 91 (for example, a rotation speed of 300 rpm or less), plating existing in the gap is provided. It is preferable that the solution is gently replaced with the surrounding plating solution.
  • the electroless plating reaction is further promoted and the plating solution is added. It can be used efficiently (less waste).
  • the rotation of the substrate 9 may be stopped from the viewpoint of more reliably holding the liquid layer 93 on the upper surface 91.
  • the number of rotations of the substrate 9 in step S16 is, for example, 0 to 300 rpm, preferably 0 to 50 rpm, and more preferably 0 to 10 rpm.
  • the heater 41 When a predetermined time elapses from the heating start of the liquid layer 93 by the heater 41, the heater 41 is lowered by the heater lifting mechanism 42 and disposed at a lower position away from the lower surface 92 of the substrate 9 (see FIG. 4C described later). Thereby, the heating of the substrate 9 by the heater 41 is substantially stopped. In other words, the heating of the liquid layer 93 by the heater 41 is turned off. Subsequently, it is confirmed whether or not the processes in steps S15 and S16 are repeated. In control unit 110, the set value of the number of repetitions in steps S15 and S16 is input in advance, and it is confirmed whether or not the actual number of repetitions has reached the set value.
  • step S17 If the actual number of repetitions has not reached the set value (step S17), the plating solution liquid layer on the upper surface 91 is rotated as shown in FIG. A new plating solution is discharged from the mixing nozzle 31 toward the nozzle 93.
  • FIG. 4C the width of the parallel oblique lines attached to the liquid layer 93 is made narrower than that in FIGS. 4A and 4B, indicating that the liquid layer 93 has been used.
  • a new plating solution layer 93a covering the upper surface 91 is formed (step S15). As described above, since the heating of the liquid layer 93a by the heater 41 is in the OFF state, the electroless plating reaction on the upper surface 91 is suppressed.
  • the new plating solution may include a part of the plating solution generated in the mixing chamber 311 during the immediately preceding processing period of step S15 (that is, when the first plating solution layer 93 is formed).
  • the plating solution is generated immediately before being discharged from the mixing nozzle 31.
  • Step S16 The discharge of a new plating solution from the mixing nozzle 31 to the upper surface 91 is continued for a predetermined time and then stopped.
  • the heater 41 is raised by the heater elevating mechanism 42 and disposed at an upper position close to the lower surface 92 of the substrate 9 as shown in FIG. 4D.
  • the heating of the liquid layer 93a is started in a state where the liquid layer 93a is held on the upper surface 91 (that is, the heating of the liquid layer 93a by the heater 41 is turned on), and the electroless plating reaction on the upper surface 91 is promoted.
  • Step S16 By electroless plating using the liquid layer 93a on the upper surface 91, the thickness of the plating layer 94 on the upper surface 91 increases uniformly.
  • step S17 the thickness of the plating layer 94 further increases.
  • the rinse liquid is supplied from the rinse liquid supply source 35 to the mixing nozzle 31.
  • the rinsing liquid is discharged from the mixing nozzle 31 toward the center of the upper surface 91 (step S18).
  • the rinse liquid spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the rinse liquid is supplied to the entire upper surface 91.
  • the plating liquid adhering to the upper surface 91 is removed.
  • the mixing nozzle 31 of FIG. 1 the rinsing liquid is filled into the mixing chamber 311 and then discharged from the discharge port 312. Therefore, the plating solution remaining in the mixing chamber 311 is removed by the rinsing solution that passes through the mixing chamber 311.
  • the discharge of the rinse liquid is continued for a predetermined time and then stopped.
  • the substrate rotating mechanism 22 increases the number of rotations of the substrate 9 as compared with the time of supplying the rinsing liquid, thereby starting the drying process (spin drying) of the substrate 9 as shown in FIG. 4F (step S19). .
  • the rinse liquid adhering to the upper surface 91 is removed by the drying process.
  • the rotation of the substrate 9 is stopped.
  • the substrate 9 is unloaded from the electroless plating apparatus 1 by an external transport mechanism.
  • the processing of the substrate 9 in the electroless plating apparatus 1 is completed.
  • a comparative electroless plating apparatus for discharging a heated plating solution from the nozzle onto the upper surface 91 of the substrate 9 will be described.
  • the electroless plating apparatus of the comparative example since the plating solution is discharged from the nozzle in an active state by heating, the electroless plating reaction proceeds on the upper surface 91 due to the spreading plating solution.
  • the plating solution in contact with the upper surface 91 is instantaneously changed, that is, the flow rate of the plating solution on the upper surface 91 is increased.
  • the electroless plating reaction is less likely to proceed locally at the discharge position on the upper surface 91 (plating metal is less likely to grow), and the thickness of the plating layer is less uniform.
  • a step of forming a plating solution liquid layer covering the upper surface 91 by discharging a normal temperature plating solution from the mixing nozzle 31 is performed.
  • the electrolysis plating on the upper surface 91 is started by stopping the discharge of the plating solution from the mixing nozzle 31 to the upper surface 91 and starting the heating of the liquid layer while holding the liquid layer on the upper surface 91.
  • a step of promoting the reaction is performed.
  • the electroless plating reaction is suppressed over the entire upper surface 91, and the electroless plating reaction is performed over the entire upper surface 91 by heating the substrate 9 after the formation of the liquid layer of the plating solution.
  • a step of forming a new plating solution liquid layer covering the upper surface 91 by discharging a new plating solution from the mixing nozzle 31 toward the liquid layer on the upper surface 91 is performed. Subsequently, the discharge of a new plating solution from the mixing nozzle 31 to the upper surface 91 is stopped, and the liquid layer is heated in a state where the liquid layer is held on the upper surface 91, whereby the electroless surface on the upper surface 91 is electroless. A step of promoting the plating reaction is performed. Thereby, a uniform and thick plating layer can be formed.
  • the stabilizer or complexing agent is adsorbed on the catalyst layer formed on the upper surface 91, and the oxidation of the reducing agent due to the catalytic action of the catalyst layer is inhibited.
  • stabilizers or complexing agents may act as catalyst poisons. In this case, the plating layer is not properly formed.
  • a plating solution containing no stabilizer or complexing agent is used.
  • the plating solution does not contain both the stabilizer and the complexing agent, whereby the oxidation of the reducing agent can be further inhibited from being inhibited.
  • the cost required for producing the plating solution can be reduced by omitting the stabilizer or the complexing agent.
  • the plating solution may contain a stabilizer or a complexing agent.
  • a concentration monitor If a tank that stores the plating solution is used, a concentration monitor, a solution replenishment system, and the like are required to keep the concentration of the plating solution in the tank constant. Further, it is necessary to add a stabilizer or a complexing agent in order to stabilize the properties of the plating solution in the tank. Further, the inside of the pipe connecting the tank and the nozzle may be plated.
  • the electroless plating apparatus 1 of FIG. 1 immediately before discharging the plating solution from the mixing nozzle 31, the first chemical solution and the second chemical solution are mixed in the mixing nozzle 31 to generate a plating solution. . Accordingly, the inside of the first chemical liquid supply pipe 331 connecting the first chemical liquid supply source 33 and the mixing nozzle 31 and the inside of the second chemical liquid supply pipe 341 connecting the second chemical liquid supply source 34 and the mixing nozzle 31 are plated. Can be prevented. In addition, a plating solution in which a metal salt and a reducing agent are uniformly mixed can be easily supplied onto the substrate 9 in a necessary amount without providing a concentration monitor or a liquid replenishment system.
  • the flow path from the mixing position of the first chemical liquid and the second chemical liquid (mixing chamber 311 in FIG. 1) to the discharge port 312 of the mixing nozzle 31 is rinsed. Liquid passes through.
  • the plating solution remaining in the flow path from the mixing position to the discharge port 312 can be removed by the rinse liquid, and the flow path can be prevented from being plated.
  • a tank for storing a plating solution may be employed.
  • the heater 41 is disposed at a position close to or in contact with the lower surface 92 of the substrate 9 in the liquid layer heating ON state, and the heater 41 is separated from the lower surface 92 in the liquid layer heating OFF state. It is arranged at the position. Accordingly, it is possible to appropriately switch the heating / dissolving state of the liquid layer using the heater 41 that is difficult to raise and lower the temperature rapidly.
  • step S15 when the processes of steps S15 and S16 are repeated, a new plating solution is discharged from the mixing nozzle 31 toward the plating solution liquid layer 93 on the upper surface 91, but before the new plating solution is discharged.
  • the liquid layer 93 on the upper surface 91 may be removed.
  • step S15 repeated by step S17 the substrate 9 is rotated at a higher rotational speed than the liquid layer forming rotational speed, whereby the liquid layer 93 on the upper surface 91 is removed as shown in FIG. 5A.
  • the heater 41 is disposed at the lower position.
  • FIG. 5B a new plating solution covering the upper surface 91 is discharged by discharging a new plating solution from the mixing nozzle 31 toward the upper surface 91 while rotating the substrate 9 at the liquid layer forming rotation speed.
  • the liquid layer 93a is formed.
  • step S16 as shown in FIG. 5C, the discharge of a new plating solution from the mixing nozzle 31 to the upper surface 91 is stopped, and the new plating solution liquid layer 93a is held on the upper surface 91.
  • 41 is arranged at the upper position. Thereby, the heating of the liquid layer 93a by the heater 41 is turned on, and the electroless plating reaction on the upper surface 91 is promoted. As a result, the thickness of the plating layer 94 on the upper surface 91 increases.
  • steps S15 and S16 are further repeated as necessary.
  • the substrate 9 is rotated at a high rotational speed before discharging a new plating solution, so that the temperature of the substrate 9 is lowered while removing the liquid layer 93 of the used plating solution. can do.
  • substrate 9 and a plating solution can be kept low at the time of formation of the liquid layer 93a of a new plating solution, and the electroless-plating reaction in the upper surface 91 can be suppressed more reliably.
  • the uniformity of the thickness of the plating layer can be further improved.
  • the amount of new plating solution required for forming the liquid layer 93a replacement of the used plating solution with a new plating solution
  • FIG. 6 is a diagram showing another example of the plating solution supply unit. 6 includes a nozzle 31a, a mixing valve 32, a first chemical liquid supply source 33, a second chemical liquid supply source 34, and a rinse liquid supply source 35.
  • the nozzle 31 a is, for example, a straight nozzle and is disposed above the center portion of the upper surface 91 of the substrate 9.
  • the mixing valve 32 includes a mixing chamber 320 and a plurality of valves 321 to 324. The plurality of valves 321 to 324 are connected to the mixing chamber 320.
  • a first chemical liquid supply source 33 is connected to the first valve 321 via a first chemical liquid supply pipe 331, and a second chemical liquid supply source 34 is connected to the second valve 322 via a second chemical liquid supply pipe 341.
  • the third valve 323 is connected to the rinse liquid supply source 35 via the rinse liquid supply pipe 351, and the fourth valve 324 is connected to the nozzle 31 a.
  • the first chemical liquid supply pipe 331 is provided with a flow rate adjustment valve 332, and the second chemical liquid supply pipe 341 is provided with a flow rate adjustment valve 342.
  • the first chemical solution from the first chemical solution supply source 33 and the second chemical solution from the second chemical solution supply source 34 are opened by opening the valves 321, 322 and 324. It mixes in the mixing chamber 320 of the mixing valve 32, and is supplied to the nozzle 31a as a plating solution.
  • the first chemical solution includes a metal salt of a plating metal
  • the second chemical solution includes a reducing agent.
  • the mixing ratio of the first chemical solution and the second chemical solution in the plating solution is adjusted by the flow rate adjusting valves 332 and 342.
  • the plating solution does not contain a stabilizer or complexing agent, and more preferably does not contain both a stabilizer and a complexing agent.
  • the rinsing liquid from the rinsing liquid supply source 35 passes through the mixing chamber 320 by closing the valves 321 and 322 and opening the valves 323 and 324. To the nozzle 31a.
  • the first chemical solution and the second chemical solution are mixed in the mixing valve 32 connected to the nozzle 31a, so that the inside of the first chemical solution supply pipe 331 and the second chemical solution supply pipe 341 is plated. Can be prevented. Moreover, the plating solution in which the metal salt and the reducing agent are uniformly mixed can be easily supplied onto the substrate 9. Further, immediately after the plating solution is generated, the plating solution is discharged from the nozzle 31a, so that an adverse effect (for example, deterioration of the plating solution) occurs due to the absence of the stabilizer or the complexing agent in the plating solution. This can also be suppressed.
  • an adverse effect for example, deterioration of the plating solution
  • the rinse liquid When discharging the rinse liquid, the rinse liquid passes through the flow path from the mixing position of the first chemical liquid and the second chemical liquid (mixing chamber 320 in FIG. 6) to the discharge port of the nozzle 31a. Thereby, the plating solution remaining in the flow path can be removed with the rinse liquid, and the flow path can be prevented from being plated.
  • the electroless plating process and the electroless plating apparatus 1 can be variously modified.
  • the electroless plating reaction on the upper surface 91 is promoted by starting the heating of the liquid layer of the plating solution, but the electroless plating reaction on the upper surface 91 is started by starting the oscillation of the liquid layer. May be promoted.
  • a vibrator 43 is provided instead of the heater 41 of FIG. The vibrator 43 is selectively disposed at an upper position in contact with the lower surface 92 of the substrate 9 and a lower position separated from the lower surface 92 by an elevator mechanism (not shown).
  • the vibrator 43 is disposed at the upper position in a state where the discharge of the plating solution from the mixing nozzle 31 to the upper surface 91 is stopped and the plating solution liquid layer 93 is held on the upper surface 91. Is done. At this time, the rotation of the substrate 9 is stopped.
  • vibration is applied to the substrate 9 and the liquid layer 93 is swung. Thereby, the plating solution in the liquid layer 93 is gently stirred, and the electroless plating reaction on the upper surface 91 is promoted.
  • ultrasonic vibration may be applied to the substrate 9.
  • the liquid layer 93 may be swung by rotating the substrate 9 while holding the liquid layer 93 of the plating solution on the upper surface 91.
  • a vibrator may be added to the heater 41, and both the heating of the liquid layer 93 by the heater 41 and the swinging of the liquid layer 93 by the vibrator may be performed.
  • heating of the liquid layer and / or liquid layer is performed while the discharge of the plating solution from the nozzle to the upper surface 91 is stopped and the liquid layer is held on the upper surface 91.
  • the oscillation of the electroless plating it is possible to promote the electroless plating reaction on the upper surface 91.
  • the rotation of the substrate 9 is preferably stopped when the liquid layer is formed.
  • the plating solution liquid layer 93 may be held on the upper surface 91 using a member surrounding the outer peripheral edge of the substrate 9.
  • the substrate holding part 21a has an annular holding member 214 centered on the central axis J1.
  • the diameter of the inner peripheral surface 215 of the holding member 214 gradually increases as it goes upward. That is, the inner peripheral surface 215 is a frustoconical surface.
  • the diameter at the lower portion of the inner peripheral surface 215 is smaller than the outer diameter of the substrate 9, and the diameter at the upper portion of the inner peripheral surface 215 is larger than the outer diameter of the substrate 9.
  • a substrate lifting mechanism 216 that lifts and lowers the substrate 9 is provided below the holding member 214.
  • the substrate 9 is transferred from the external transport mechanism to the substrate lifting mechanism 216 above the holding member 214, and then the substrate lifting mechanism 216 moves the substrate 9 downward.
  • the outer peripheral edge of the substrate 9 contacts the inner peripheral surface 215 of the holding member 214 over the entire periphery, and the substrate 9 is held by the substrate holding portion 21a in a horizontal state.
  • a plating solution is discharged from the mixing nozzle 31 toward the upper surface 91 of the substrate 9.
  • the plating solution is stored in a storage space surrounded by the upper surface 91 of the substrate 9 and the inner peripheral surface 215 of the holding member 214. In other words, the plating solution liquid layer 93 is held on the upper surface 91.
  • the heater 41a is disposed above the liquid layer 93 by a heater moving mechanism (not shown). Thereby, heating of the liquid layer 93 is started, and the electroless plating reaction on the upper surface 91 is promoted.
  • the uniformity of the thickness of the plating layer can also be improved by the above treatment in the electroless plating apparatus 1a.
  • the substrate lifting mechanism 216 raises the substrate 9, thereby forming a gap between the outer peripheral edge of the substrate 9 and the inner peripheral surface 215 of the holding member 214.
  • the plating solution is discharged downward through the gap.
  • a vibrator may be used in the electroless plating apparatus 1a.
  • the heating of the liquid layer of the plating solution may be realized by various configurations.
  • the plating solution liquid layer 93 may be heated by moving (scanning) the heater 41 b disposed above the substrate 9 along the upper surface 91. It is also possible to provide a heater using a lamp. Depending on the structure of the heater, the ON / OFF state of the heating of the liquid layer may be switched by ON / OFF of the heater itself.
  • the mixing nozzle 31 and the nozzle 31 a can supply the plating solution to the entire upper surface 91 of the substrate 9, the plating solution may be discharged toward a position deviated from the central portion on the upper surface 91.
  • the formation of the catalyst layer on the upper surface 91 of the substrate 9 may be performed by another apparatus.
  • the plating layer can be formed on the upper surface 91 without forming the catalyst layer, the supply of the catalyst solution to the upper surface 91 may be omitted.
  • a substrate holding portion that sucks and holds the lower surface 92 of the substrate 9 may be used.
  • the substrate to be processed in the electroless plating apparatus 1 or 1a is not limited to a semiconductor substrate, and may be another substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

In this electroless plating method, a step of forming a liquid layer of a plating liquid, which covers an upper surface (91) of a substrate (9) oriented in a horizontal state, is executed by discharging the plating liquid from a mixing nozzle (31) toward the upper surface (91). Next, a step of accelerating an electroless plating reaction on the upper surface (91) is executed by stopping the discharge of the plating liquid from the mixing nozzle (31) to the upper surface (91) and starting to heat the liquid layer with a heater (41) while the liquid layer is held on the upper surface (91). Due to this configuration, the uniformity of the thickness of the plating layer can be improved.

Description

無電解めっき方法、無電解めっき装置およびプログラムElectroless plating method, electroless plating apparatus and program
 本発明は、無電解めっき方法、無電解めっき装置およびプログラムに関する。 The present invention relates to an electroless plating method, an electroless plating apparatus, and a program.
 近年、半導体デバイスの製造において、半導体基板(以下、単に「基板」という。)に対して無電解めっきを施すことが試みられている。例えば、特開2006-111938号公報(文献1)の無電解めっき装置では、無電解めっき液を金属塩が含まれる第1の薬液と、還元剤が含まれる第2の薬液とに分けておき、一の基板の処理が開始されてから次の基板の処理に移る間に両薬液が混合される。そして、その混合液(無電解めっき液)を次の基板の処理において用いることにより、安定しためっき処理が可能となる。 In recent years, in the manufacture of semiconductor devices, an attempt has been made to apply electroless plating to a semiconductor substrate (hereinafter simply referred to as “substrate”). For example, in the electroless plating apparatus disclosed in Japanese Patent Application Laid-Open No. 2006-1111938 (Document 1), the electroless plating solution is divided into a first chemical solution containing a metal salt and a second chemical solution containing a reducing agent. Both chemicals are mixed while the processing of one substrate is started and then the processing of the next substrate is started. And the stable plating process is attained by using the liquid mixture (electroless-plating liquid) in the process of the following board | substrate.
 ところで、文献1の装置では、基板に供給する直前のめっき液が、加熱により活性な状態にされる。このようなめっき液をノズルから基板上に連続的に吐出する場合、基板上の吐出位置において、基板表面に接するめっき液が瞬時に入れ替わる、すなわち、基板表面におけるめっき液の流速が大きくなるため、局所的に無電解めっき反応が進みにくくなる。その結果、基板表面において、吐出位置と他の領域とでめっき層の厚さが相違し、めっき層の厚さの均一性が低くなる。 Incidentally, in the apparatus of Document 1, the plating solution immediately before being supplied to the substrate is activated by heating. When such a plating solution is continuously discharged from the nozzle onto the substrate, the plating solution in contact with the substrate surface is instantaneously replaced at the discharge position on the substrate, that is, the flow rate of the plating solution on the substrate surface increases. It becomes difficult for the electroless plating reaction to proceed locally. As a result, on the substrate surface, the thickness of the plating layer is different between the discharge position and other regions, and the uniformity of the thickness of the plating layer is lowered.
 本発明は、無電解めっき方法に向けられており、めっき層の厚さの均一性を向上することを目的としている。 The present invention is directed to an electroless plating method, and aims to improve the uniformity of the thickness of the plating layer.
 本発明に係る無電解めっき方法は、a)水平状態の基板の一の主面に向けてノズルからめっき液を吐出することにより、前記一の主面を覆う前記めっき液の液層を形成する工程と、b)前記ノズルから前記一の主面への前記めっき液の吐出を停止し、かつ、前記一の主面上において前記液層を保持した状態で、前記液層の加熱、または、前記液層の揺動を開始することにより、前記一の主面における無電解めっき反応を促進させる工程とを備える。 In the electroless plating method according to the present invention, a) a liquid layer of the plating solution covering the one main surface is formed by discharging a plating solution from a nozzle toward one main surface of the substrate in a horizontal state. And b) heating the liquid layer while stopping the discharge of the plating solution from the nozzle to the one main surface and holding the liquid layer on the one main surface, or And a step of accelerating an electroless plating reaction on the one main surface by initiating rocking of the liquid layer.
 本発明によれば、めっき層の厚さの均一性を向上することができる。 According to the present invention, the uniformity of the thickness of the plating layer can be improved.
 本発明の一の好ましい形態では、前記めっき液が、めっき金属の金属塩、および、前記めっき金属のイオンを還元析出させる還元剤を含み、めっき液の分解を防止する安定剤、または、錯化剤を含まない。 In one preferred embodiment of the present invention, the plating solution contains a metal salt of a plating metal and a reducing agent that reduces and deposits ions of the plating metal, and a stabilizer or complex that prevents decomposition of the plating solution. Contains no agents.
 この場合に、前記a)工程において、前記ノズルから前記めっき液を吐出する直前に、前記金属塩を含む第1薬液と、前記還元剤を含む第2薬液とを混合することにより、前記めっき液が生成されることが好ましい。 In this case, in the step a), immediately before discharging the plating solution from the nozzle, the plating solution is mixed with the first chemical solution containing the metal salt and the second chemical solution containing the reducing agent. Is preferably produced.
 本発明の他の好ましい形態では、前記a)工程において、前記ノズルから前記めっき液を吐出する直前に、めっき金属の金属塩を含む第1薬液と、前記めっき金属のイオンを還元析出させる還元剤を含む第2薬液とを混合することにより、前記めっき液が生成される。 In another preferred embodiment of the present invention, in the step a), immediately before discharging the plating solution from the nozzle, a reducing agent for reducing and depositing the plating metal ions and a first chemical solution containing a metal salt of the plating metal. The said plating solution is produced | generated by mixing with the 2nd chemical | medical solution containing.
 本発明の一の局面では、前記第1薬液と前記第2薬液とが、前記ノズル内で混合される。 In one aspect of the present invention, the first chemical solution and the second chemical solution are mixed in the nozzle.
 本発明の他の局面では、前記ノズルに接続されたミキシングバルブにおいて、前記第1薬液と前記第2薬液とが混合される。 In another aspect of the present invention, the first chemical solution and the second chemical solution are mixed in a mixing valve connected to the nozzle.
 本発明の他の局面では、無電解めっき方法が、前記b)工程の後、前記一の主面に向けて前記ノズルからリンス液を吐出する工程をさらに備え、前記リンス液の吐出の際に、前記第1薬液と前記第2薬液との混合位置から前記ノズルの吐出口へと至る流路を前記リンス液が通過する。 In another aspect of the present invention, the electroless plating method further includes a step of discharging a rinsing liquid from the nozzle toward the one main surface after the step b), and at the time of discharging the rinsing liquid. The rinse liquid passes through the flow path from the mixing position of the first chemical liquid and the second chemical liquid to the discharge port of the nozzle.
 本発明の他の好ましい形態では、無電解めっき方法が、c)前記b)工程の後、前記一の主面上の前記めっき液の前記液層に向けて前記ノズルから新たなめっき液を吐出することにより、前記一の主面を覆う前記新たなめっき液の液層を形成する工程と、d)前記ノズルから前記一の主面への前記新たなめっき液の吐出を停止し、かつ、前記一の主面上において前記新たなめっき液の前記液層を保持した状態で、前記液層の加熱、または、前記液層の揺動を行うことにより、前記一の主面における無電解めっき反応を促進させる工程とをさらに備える。 In another preferred embodiment of the present invention, the electroless plating method includes: c) After the step b), a new plating solution is discharged from the nozzle toward the liquid layer of the plating solution on the one main surface. A step of forming a liquid layer of the new plating solution covering the one main surface, and d) stopping the discharge of the new plating solution from the nozzle to the one main surface, and By holding the liquid layer of the new plating solution on the one main surface and heating the liquid layer or swinging the liquid layer, the electroless plating on the one main surface is performed. And further promoting the reaction.
 本発明の他の好ましい形態では、無電解めっき方法が、c)前記b)工程の後、前記基板を回転することにより前記めっき液の前記液層を除去し、続いて、前記一の主面に向けて前記ノズルから新たなめっき液を吐出することにより、前記一の主面を覆う前記新たなめっき液の液層を形成する工程と、d)前記ノズルから前記一の主面への前記新たなめっき液の吐出を停止し、かつ、前記一の主面上において前記新たなめっき液の前記液層を保持した状態で、前記液層の加熱、または、前記液層の揺動を行うことにより、前記一の主面における無電解めっき反応を促進させる工程とをさらに備える。 In another preferred embodiment of the present invention, the electroless plating method comprises: c) after the step b), the substrate is rotated to remove the liquid layer of the plating solution, and then the one main surface. Forming a liquid layer of the new plating solution covering the one main surface by discharging a new plating solution from the nozzle toward the surface; and d) the step from the nozzle to the one main surface. The discharge of the new plating solution is stopped and the liquid layer is heated or the liquid layer is swung while the liquid layer of the new plating solution is held on the one main surface. And a step of promoting an electroless plating reaction on the one main surface.
 無電解めっき方法が、前記c)およびd)工程を繰り返す工程をさらに備えてもよい。 The electroless plating method may further include a step of repeating the steps c) and d).
 本発明の他の好ましい形態では、前記a)工程において、ヒータによる前記液層の加熱がOFF状態とされ、前記b)工程において、前記ヒータによる前記液層の加熱がON状態とされる。 In another preferred embodiment of the present invention, in the step a), the heating of the liquid layer by the heater is turned off, and in the step b), the heating of the liquid layer by the heater is turned on.
 好ましくは、前記a)およびc)工程において、ヒータによる前記液層の加熱がOFF状態とされ、前記b)およびd)工程において、前記ヒータによる前記液層の加熱がON状態とされる。 Preferably, in the steps a) and c), the heating of the liquid layer by the heater is turned off, and in the steps b) and d), the heating of the liquid layer by the heater is turned on.
 例えば、前記ヒータが、前記基板の他の主面に対向し、前記ON状態において、前記ヒータが前記他の主面に近接または接触する位置に配置され、前記OFF状態において、前記ヒータが前記他の主面から離間した位置に配置される。 For example, the heater faces the other main surface of the substrate, and in the ON state, the heater is disposed at a position close to or in contact with the other main surface. In the OFF state, the heater is the other main surface. It is arrange | positioned in the position spaced apart from the main surface.
 本発明の他の好ましい形態では、前記b)工程において、前記めっき液の前記液層が加熱されるとともに、前記一の主面上にて前記液層を保持した状態で、前記基板が回転される。 In another preferred embodiment of the present invention, in the step b), the substrate is rotated while the liquid layer of the plating solution is heated and the liquid layer is held on the one main surface. The
 本発明の他の好ましい形態では、前記b)工程において、前記一の主面上にて前記めっき液の前記液層を保持した状態で、前記基板が回転される、または、前記基板に振動が付与される。 In another preferred embodiment of the present invention, in the step b), the substrate is rotated or the substrate is vibrated while the liquid layer of the plating solution is held on the one main surface. Is granted.
 本発明は、無電解めっき装置にも向けられている。本発明に係る無電解めっき装置は、基板を水平状態で保持する基板保持部と、前記基板の一の主面に向けてノズルからめっき液を吐出することにより、前記一の主面を覆う前記めっき液の液層を形成するめっき液供給部と、前記液層の加熱、または、前記液層の揺動を行うめっき反応促進部と、前記ノズルから前記一の主面への前記めっき液の吐出を停止し、かつ、前記一の主面上において前記液層を保持した状態で、前記めっき反応促進部による前記液層の加熱、または、前記液層の揺動を開始することにより、前記一の主面における無電解めっき反応を促進させる制御部とを備える。 The present invention is also directed to an electroless plating apparatus. In the electroless plating apparatus according to the present invention, the substrate holding unit that holds the substrate in a horizontal state, and the plating solution is discharged from a nozzle toward the one main surface of the substrate, thereby covering the one main surface. A plating solution supply unit for forming a plating solution liquid layer, a plating reaction promoting unit for heating the liquid layer or swinging the liquid layer, and the plating solution from the nozzle to the one main surface. In a state where the discharge is stopped and the liquid layer is held on the one main surface, heating of the liquid layer by the plating reaction accelerating unit, or oscillation of the liquid layer is started, And a controller that promotes an electroless plating reaction on one main surface.
 本発明は、基板保持部、めっき液供給部、および、めっき反応促進部を備える無電解めっき装置の制御を、コンピュータに行わせるプログラムにも向けられている。 The present invention is also directed to a program for causing a computer to control an electroless plating apparatus including a substrate holding unit, a plating solution supply unit, and a plating reaction promoting unit.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above object and other objects, features, aspects, and advantages will become apparent from the following detailed description of the present invention with reference to the accompanying drawings.
無電解めっき装置の構成を示す図である。It is a figure which shows the structure of an electroless-plating apparatus. コンピュータの構成を示す図である。It is a figure which shows the structure of a computer. 無電解めっき処理の流れを示す図である。It is a figure which shows the flow of an electroless-plating process. 無電解めっき処理を説明するための図である。It is a figure for demonstrating an electroless-plating process. 無電解めっき処理を説明するための図である。It is a figure for demonstrating an electroless-plating process. 無電解めっき処理を説明するための図である。It is a figure for demonstrating an electroless-plating process. 無電解めっき処理を説明するための図である。It is a figure for demonstrating an electroless-plating process. 無電解めっき処理を説明するための図である。It is a figure for demonstrating an electroless-plating process. 無電解めっき処理を説明するための図である。It is a figure for demonstrating an electroless-plating process. 無電解めっき処理の他の例を説明するための図である。It is a figure for demonstrating the other example of an electroless-plating process. 無電解めっき処理の他の例を説明するための図である。It is a figure for demonstrating the other example of an electroless-plating process. 無電解めっき処理の他の例を説明するための図である。It is a figure for demonstrating the other example of an electroless-plating process. めっき液供給部の他の例を示す図である。It is a figure which shows the other example of a plating solution supply part. めっき反応促進部の他の例を示す図である。It is a figure which shows the other example of a plating reaction promotion part. 無電解めっき装置の他の例を示す図である。It is a figure which shows the other example of an electroless-plating apparatus. ヒータの他の例を示す図である。It is a figure which shows the other example of a heater.
 図1は、本発明の一の実施の形態に係る無電解めっき装置1の構成を示す図である。無電解めっき装置1は、円板状の基板9を1枚ずつ処理する枚葉式の装置である。無電解めっき装置1は、基板保持部21と、基板回転機構22と、カップ23と、めっき液供給部3と、めっき反応促進部4と、コンピュータ11とを備える。 FIG. 1 is a diagram showing a configuration of an electroless plating apparatus 1 according to an embodiment of the present invention. The electroless plating apparatus 1 is a single-wafer type apparatus that processes the disk-shaped substrates 9 one by one. The electroless plating apparatus 1 includes a substrate holding unit 21, a substrate rotating mechanism 22, a cup 23, a plating solution supply unit 3, a plating reaction promoting unit 4, and a computer 11.
 基板保持部21は、上下方向を向く中心軸J1を中心とする円板状のベース部211を有する。ベース部211の上面には、複数のチャックピン212が設けられる。複数のチャックピン212は、中心軸J1を中心とする円周上において、周方向に等間隔に配置される。各チャックピン212は、ピン駆動機構(図示省略)により中心軸J1に平行な軸を中心として回動可能である。チャックピン212の先端には把持部213が設けられる。基板保持部21が基板9を保持する際には、各チャックピン212が回動する。これにより、複数の把持部213が、基板9の外周縁に押し付けられ、基板9がベース部211の上方において水平状態で保持される。基板保持部21により保持された基板9の中心は、中心軸J1上に位置する。ベース部211の上面は、基板9の下方を向く主面92(以下、「下面92」という。)と平行であり、両者は隙間を空けて互いに対向する。 The substrate holding part 21 has a disk-like base part 211 centering on a central axis J1 facing in the up-down direction. A plurality of chuck pins 212 are provided on the upper surface of the base portion 211. The plurality of chuck pins 212 are arranged at equal intervals in the circumferential direction on a circumference centered on the central axis J1. Each chuck pin 212 can be rotated around an axis parallel to the central axis J1 by a pin driving mechanism (not shown). A grip portion 213 is provided at the tip of the chuck pin 212. When the substrate holding unit 21 holds the substrate 9, each chuck pin 212 rotates. Thereby, the plurality of gripping portions 213 are pressed against the outer peripheral edge of the substrate 9, and the substrate 9 is held in a horizontal state above the base portion 211. The center of the substrate 9 held by the substrate holding part 21 is located on the central axis J1. The upper surface of the base portion 211 is parallel to a main surface 92 (hereinafter referred to as “lower surface 92”) facing downward of the substrate 9, and both face each other with a gap.
 ベース部211の下面の中央には、中心軸J1を中心とするシャフト部221の上端が固定される。モータを有する基板回転機構22が、シャフト部221の下端部を回転することにより、基板保持部21が基板9と共に中心軸J1を中心として回転する。カップ23は、ベース部211の周囲を囲む略筒状である。後述する基板9の処理では、回転する基板9の外周縁から飛散する各種処理液が、カップ23の内周面により受けられ、回収される。無電解めっき装置1では、図示省略のカップ昇降機構により、カップ23の上部が上下方向に昇降可能である。無電解めっき装置1における基板9の搬入搬出時には、カップ23の上部が下降して、カップ23が外部の搬送機構と干渉することが防止される。 At the center of the lower surface of the base part 211, the upper end of the shaft part 221 centered on the central axis J1 is fixed. When the substrate rotation mechanism 22 having a motor rotates the lower end portion of the shaft portion 221, the substrate holding portion 21 rotates together with the substrate 9 about the central axis J1. The cup 23 has a substantially cylindrical shape surrounding the base portion 211. In the processing of the substrate 9 described later, various processing liquids scattered from the outer peripheral edge of the rotating substrate 9 are received by the inner peripheral surface of the cup 23 and collected. In the electroless plating apparatus 1, the upper part of the cup 23 can be moved up and down by a cup lifting mechanism (not shown). When the substrate 9 is carried in and out of the electroless plating apparatus 1, the upper part of the cup 23 is lowered, and the cup 23 is prevented from interfering with an external transport mechanism.
 めっき反応促進部4は、ヒータ41と、ヒータ昇降機構42とを備える。ヒータ41は、中心軸J1を中心とする円板状であり、基板保持部21に保持された基板9とベース部211との間に配置される。ヒータ41は、基板9の下面92側に位置する。ヒータ41は、例えば、ニクロム線等の抵抗発熱体を有するホットプレートである。ヒータ41は、抵抗発熱体以外の熱源を利用するものであってもよい。ヒータ41の上面は、基板9の下面92のほぼ全体に亘って広がり、下面92に直接的に対向する。ヒータ41の上面は、基板9の下面92とほぼ平行である。 The plating reaction promoting unit 4 includes a heater 41 and a heater lifting mechanism 42. The heater 41 has a disc shape centered on the central axis J <b> 1 and is disposed between the substrate 9 held by the substrate holding part 21 and the base part 211. The heater 41 is located on the lower surface 92 side of the substrate 9. The heater 41 is a hot plate having a resistance heating element such as a nichrome wire. The heater 41 may use a heat source other than the resistance heating element. The upper surface of the heater 41 extends over substantially the entire lower surface 92 of the substrate 9 and directly faces the lower surface 92. The upper surface of the heater 41 is substantially parallel to the lower surface 92 of the substrate 9.
 ヒータ41の下面の中央には、中心軸J1を中心とする昇降軸421の上端が固定される。ベース部211およびシャフト部221には、上下方向に延びる中空部が中心軸J1上に設けられており、当該中空部内に昇降軸421が配置される。昇降軸421は、シャフト部221の下端よりも下方まで延びる。シャフト部221の下方において、昇降軸421の下端部がヒータ昇降機構42に接続される。 At the center of the lower surface of the heater 41, the upper end of the elevating shaft 421 centering on the central axis J1 is fixed. The base portion 211 and the shaft portion 221 are provided with a hollow portion extending in the vertical direction on the central axis J1, and the lifting shaft 421 is disposed in the hollow portion. The elevating shaft 421 extends below the lower end of the shaft portion 221. Below the shaft portion 221, the lower end portion of the lifting shaft 421 is connected to the heater lifting mechanism 42.
 ヒータ昇降機構42は、昇降軸421を介してヒータ41を支持する。例えば、ヒータ昇降機構42は、ボールネジ機構およびモータを含み、モータの駆動により昇降軸421を上下方向に移動する。これにより、ヒータ41の上面が基板9の下面92に近接する上位置と、ヒータ41の上面が基板9の下面92から離間した下位置とに、ヒータ41が選択的に配置される。図1の例では、下位置において、ヒータ41の下面が、ベース部211の上面に近接または接触する。ヒータ41は、上位置と下位置との間における任意の位置に配置可能であってもよい。本実施の形態では、ヒータ41が、一定温度で常時加熱され、ヒータ41を上位置に配置することにより、基板9の下面92をほぼ均一に加熱することが可能である。一方、ヒータ41を下位置に配置した状態では、基板9はほとんど加熱されない。基板9の加熱時に基板9を回転しない場合には、上位置において、ヒータ41の上面が基板9の下面92に接触してもよい。 The heater elevating mechanism 42 supports the heater 41 via the elevating shaft 421. For example, the heater elevating mechanism 42 includes a ball screw mechanism and a motor, and moves the elevating shaft 421 in the vertical direction by driving the motor. Accordingly, the heater 41 is selectively disposed at an upper position where the upper surface of the heater 41 is close to the lower surface 92 of the substrate 9 and a lower position where the upper surface of the heater 41 is separated from the lower surface 92 of the substrate 9. In the example of FIG. 1, the lower surface of the heater 41 approaches or contacts the upper surface of the base portion 211 at the lower position. The heater 41 may be disposed at an arbitrary position between the upper position and the lower position. In the present embodiment, the heater 41 is constantly heated at a constant temperature, and the lower surface 92 of the substrate 9 can be heated substantially uniformly by disposing the heater 41 in the upper position. On the other hand, the substrate 9 is hardly heated in the state where the heater 41 is disposed at the lower position. When the substrate 9 is not rotated when the substrate 9 is heated, the upper surface of the heater 41 may contact the lower surface 92 of the substrate 9 at the upper position.
 めっき液供給部3は、混合ノズル31と、第1薬液供給源33と、第2薬液供給源34と、リンス液供給源35とを備える。混合ノズル31は、基板9の上方を向く主面91(以下、「上面91」という。)に対向する。詳細には、混合ノズル31は、上面91の中央部の上方に配置され、混合ノズル31の吐出口312が、上面91に直接的に対向する。混合ノズル31は、混合室311と、既述の吐出口312とを有する。混合室311には、第1薬液供給管331を介して第1薬液供給源33が接続され、第2薬液供給管341を介して第2薬液供給源34が接続される。また、混合室311には、リンス液供給管351を介してリンス液供給源35が接続される。第1薬液供給管331には、第1薬液供給源33側から混合ノズル31に向かって順に、流量調整弁332および開閉弁333が設けられる。第2薬液供給管341には、第2薬液供給源34側から混合ノズル31に向かって順に、流量調整弁342および開閉弁343が設けられる。リンス液供給管351には、開閉弁353が設けられる。 The plating solution supply unit 3 includes a mixing nozzle 31, a first chemical solution supply source 33, a second chemical solution supply source 34, and a rinse solution supply source 35. The mixing nozzle 31 faces a main surface 91 (hereinafter referred to as “upper surface 91”) facing the upper side of the substrate 9. Specifically, the mixing nozzle 31 is disposed above the central portion of the upper surface 91, and the discharge port 312 of the mixing nozzle 31 directly faces the upper surface 91. The mixing nozzle 31 has a mixing chamber 311 and the discharge port 312 described above. A first chemical liquid supply source 33 is connected to the mixing chamber 311 via a first chemical liquid supply pipe 331, and a second chemical liquid supply source 34 is connected via a second chemical liquid supply pipe 341. A rinsing liquid supply source 35 is connected to the mixing chamber 311 via a rinsing liquid supply pipe 351. The first chemical liquid supply pipe 331 is provided with a flow rate adjustment valve 332 and an opening / closing valve 333 in order from the first chemical liquid supply source 33 side toward the mixing nozzle 31. The second chemical liquid supply pipe 341 is provided with a flow rate adjustment valve 342 and an on-off valve 343 in order from the second chemical liquid supply source 34 toward the mixing nozzle 31. The rinsing liquid supply pipe 351 is provided with an opening / closing valve 353.
 後述するように、めっき液供給部3では、第1薬液供給源33から混合室311内への第1薬液の供給と、第2薬液供給源34から混合室311内への第2薬液の供給とが同時に行われる。第1薬液は、無電解めっきにおけるめっき金属の金属塩を含む。めっき金属は、例えば、ニッケル(Ni)、銅(Cu)、コバルト(Co)、コバルトタングステンボロン(CoWB)、金(Au)または銀(Ag)等である。第2薬液は、めっき金属のイオンを還元析出させる還元剤を含む。還元剤は、例えばDMAB(ホウ素化合物)等である。混合室311において、第1薬液と第2薬液とを混合することにより、上記金属塩および還元剤を含むめっき液が生成される。 As will be described later, in the plating solution supply unit 3, the first chemical solution is supplied from the first chemical solution supply source 33 into the mixing chamber 311 and the second chemical solution is supplied from the second chemical solution supply source 34 into the mixing chamber 311. Are performed at the same time. The first chemical solution contains a metal salt of a plating metal in electroless plating. The plating metal is, for example, nickel (Ni), copper (Cu), cobalt (Co), cobalt tungsten boron (CoWB), gold (Au), silver (Ag), or the like. The second chemical solution includes a reducing agent that causes the precipitation of ions of the plating metal. The reducing agent is, for example, DMAB (boron compound). In the mixing chamber 311, a plating solution containing the metal salt and the reducing agent is generated by mixing the first chemical solution and the second chemical solution.
 めっき液は、混合室311に連続する吐出口312から、基板9の上面91の中央部に向かって、例えば柱状に吐出される。めっき液における第1薬液と第2薬液との混合比は、流量調整弁332,342の開度を制御することにより調製される。好ましくは、第1薬液および第2薬液の双方が、めっき液の分解を防止する安定剤(例えばカルボン酸にアルキルアルコールを加えた混合液等)、または、錯化剤(例えば、エチレンジアミンを含む混合液等)を含まない。この場合、混合ノズル31内で生成されるめっき液も、安定剤または錯化剤を含まない。より好ましくは、めっき液が、安定剤および錯化剤の双方を含まない。めっき液は、めっき液のphを調製するph調整剤(例えば、アンモニア等)、および、phの変動を抑制する緩衝剤(例えば、アンモニア等)を含んでもよい。 The plating solution is discharged, for example, in a columnar shape from the discharge port 312 continuous to the mixing chamber 311 toward the center of the upper surface 91 of the substrate 9. The mixing ratio of the first chemical solution and the second chemical solution in the plating solution is prepared by controlling the opening degree of the flow rate adjusting valves 332 and 342. Preferably, both the first chemical solution and the second chemical solution are stabilizers that prevent the decomposition of the plating solution (for example, a mixed solution obtained by adding alkyl alcohol to carboxylic acid) or complexing agents (for example, a mixture containing ethylenediamine). Liquid etc.). In this case, the plating solution generated in the mixing nozzle 31 does not contain a stabilizer or a complexing agent. More preferably, the plating solution does not contain both a stabilizer and a complexing agent. The plating solution may contain a ph adjusting agent (for example, ammonia or the like) that adjusts the ph of the plating solution, and a buffering agent (for example, ammonia or the like) that suppresses fluctuations in ph.
 本実施の形態では、第1薬液供給源33、および、第1薬液供給管331において、第1薬液を加熱するヒータは設けられない。また、第2薬液供給源34、および、第2薬液供給管341において、第2薬液を加熱するヒータは設けられない。さらに、混合ノズル31にも、ヒータは設けられない。したがって、ほぼ常温のめっき液が、混合ノズル31から基板9の上面91に向かって吐出される。混合ノズル31から吐出されるめっき液の温度は、例えば23~40℃である。 In the present embodiment, the first chemical solution supply source 33 and the first chemical solution supply pipe 331 are not provided with a heater for heating the first chemical solution. Further, in the second chemical liquid supply source 34 and the second chemical liquid supply pipe 341, a heater for heating the second chemical liquid is not provided. Further, the mixing nozzle 31 is not provided with a heater. Therefore, the plating solution at substantially room temperature is discharged from the mixing nozzle 31 toward the upper surface 91 of the substrate 9. The temperature of the plating solution discharged from the mixing nozzle 31 is, for example, 23 to 40 ° C.
 めっき液供給部3では、リンス液供給源35から混合ノズル31の混合室311内にリンス液が供給されることにより、吐出口312から、基板9の上面91の中央部に向けてリンス液が吐出される。混合ノズル31へのリンス液の供給時には、混合室311内への第1薬液の供給、および、第2薬液の供給は行われない。リンス液は、例えば純水である。純水以外のリンス液が用いられてもよい。 In the plating solution supply unit 3, the rinsing solution is supplied from the rinsing solution supply source 35 into the mixing chamber 311 of the mixing nozzle 31, so that the rinsing solution flows from the discharge port 312 toward the center of the upper surface 91 of the substrate 9. Discharged. At the time of supplying the rinsing liquid to the mixing nozzle 31, the first chemical liquid and the second chemical liquid are not supplied into the mixing chamber 311. The rinse liquid is, for example, pure water. A rinse solution other than pure water may be used.
 無電解めっき装置1は、処理液供給部5をさらに備える。処理液供給部5は、補助ノズル51と、触媒溶液供給源52と、洗浄液供給源53と、リンス液供給源54とを備える。補助ノズル51は、基板9の上方に配置される。補助ノズル51には、触媒溶液供給源52、洗浄液供給源53およびリンス液供給源54が弁を介してそれぞれ接続される。触媒溶液供給源52から補助ノズル51に触媒溶液が供給されることにより、補助ノズル51から、基板9の上面91の中央部に向けて触媒溶液が吐出される。触媒溶液は、無電解めっきに利用される触媒(例えば、パラジウム(Pd)等の金属のイオン)を含む溶液である。 The electroless plating apparatus 1 further includes a treatment liquid supply unit 5. The processing liquid supply unit 5 includes an auxiliary nozzle 51, a catalyst solution supply source 52, a cleaning liquid supply source 53, and a rinse liquid supply source 54. The auxiliary nozzle 51 is disposed above the substrate 9. A catalyst solution supply source 52, a cleaning liquid supply source 53, and a rinse liquid supply source 54 are connected to the auxiliary nozzle 51 through valves. By supplying the catalyst solution from the catalyst solution supply source 52 to the auxiliary nozzle 51, the catalyst solution is discharged from the auxiliary nozzle 51 toward the center of the upper surface 91 of the substrate 9. The catalyst solution is a solution containing a catalyst (for example, metal ions such as palladium (Pd)) used for electroless plating.
 また、洗浄液供給源53から補助ノズル51に洗浄液が供給されることにより、補助ノズル51から、基板9の上面91の中央部に向けて洗浄液が吐出される。洗浄液は、例えば、DHF(希フッ酸)である。リンス液供給源54から補助ノズル51にリンス液が供給されることにより、補助ノズル51から、基板9の上面91の中央部に向けてリンス液が吐出される。リンス液は、例えば純水である。処理液供給部5では、エッチング液等、他の処理液が用いられてもよい。触媒溶液供給源52、洗浄液供給源53およびリンス液供給源54は、それぞれ異なるノズルに接続されてもよい。また、めっき液供給部3のリンス液供給源35がリンス液供給源54を兼ねてもよい。 Further, when the cleaning liquid is supplied from the cleaning liquid supply source 53 to the auxiliary nozzle 51, the cleaning liquid is discharged from the auxiliary nozzle 51 toward the center of the upper surface 91 of the substrate 9. The cleaning liquid is, for example, DHF (dilute hydrofluoric acid). By supplying the rinse liquid from the rinse liquid supply source 54 to the auxiliary nozzle 51, the rinse liquid is discharged from the auxiliary nozzle 51 toward the center of the upper surface 91 of the substrate 9. The rinse liquid is, for example, pure water. In the processing liquid supply unit 5, other processing liquids such as an etching liquid may be used. The catalyst solution supply source 52, the cleaning liquid supply source 53, and the rinse liquid supply source 54 may be connected to different nozzles. Further, the rinse solution supply source 35 of the plating solution supply unit 3 may also serve as the rinse solution supply source 54.
 無電解めっき装置1では、混合ノズル31および補助ノズル51を移動するノズル移動機構が設けられてもよい。ノズル移動機構は、混合ノズル31および補助ノズル51を、基板9の上面91に対向する対向位置と、基板9から水平方向に離れた待機位置とに選択的に配置する。ノズル移動機構は、混合ノズル31および補助ノズル51を個別に移動してもよい。 In the electroless plating apparatus 1, a nozzle moving mechanism for moving the mixing nozzle 31 and the auxiliary nozzle 51 may be provided. The nozzle moving mechanism selectively arranges the mixing nozzle 31 and the auxiliary nozzle 51 at a facing position facing the upper surface 91 of the substrate 9 and a standby position away from the substrate 9 in the horizontal direction. The nozzle moving mechanism may move the mixing nozzle 31 and the auxiliary nozzle 51 individually.
 図2は、コンピュータ11の構成を示す図である。コンピュータ11は、各種演算処理を行うCPU111と、基本プログラムを記憶するROM112と、各種情報を記憶するRAM113とを含む一般的なコンピュータシステムの構成となっている。コンピュータ11は、情報記憶を行う固定ディスク114と、各種情報の表示を行う表示部115と、入力部116として操作者からの入力を受け付けるキーボード116aおよびマウス116bと、光ディスク、磁気ディスク、光磁気ディスク等のコンピュータ読み取り可能な記録媒体81から情報の読み取りを行ったり記録媒体81に情報の書き込みを行う読取/書込装置118と、無電解めっき装置1の各構成と通信を行う通信部119とをさらに含む。 FIG. 2 is a diagram illustrating a configuration of the computer 11. The computer 11 has a general computer system configuration including a CPU 111 that performs various arithmetic processes, a ROM 112 that stores basic programs, and a RAM 113 that stores various information. The computer 11 includes a fixed disk 114 that stores information, a display unit 115 that displays various types of information, a keyboard 116a and a mouse 116b that receive input from an operator as an input unit 116, an optical disk, a magnetic disk, and a magneto-optical disk. A reading / writing device 118 that reads information from or writes information to the recording medium 81, and a communication unit 119 that communicates with each component of the electroless plating apparatus 1. In addition.
 コンピュータ11では、事前に読取/書込装置118を介して記録媒体81からプログラム810が読み出され、固定ディスク114に記憶される。そして、CPU111がRAM113および固定ディスク114を利用しつつプログラム810に従って演算処理を実行することにより(すなわち、コンピュータがプログラムを実行することにより)、コンピュータ11が、図1の無電解めっき装置1における制御部110として機能する。無電解めっき装置1では、制御部110が全体制御を担う。制御部110は、専用の電気回路により構築されてもよく、部分的に専用の電気回路が利用されてもよい。 In the computer 11, the program 810 is read from the recording medium 81 via the reading / writing device 118 in advance and stored in the fixed disk 114. Then, when the CPU 111 executes arithmetic processing according to the program 810 using the RAM 113 and the fixed disk 114 (that is, when the computer executes the program), the computer 11 controls the electroless plating apparatus 1 in FIG. It functions as the unit 110. In the electroless plating apparatus 1, the control unit 110 is responsible for overall control. The control unit 110 may be constructed by a dedicated electric circuit, or a partially dedicated electric circuit may be used.
 図3は、無電解めっき装置1における無電解めっき処理の流れを示す図である。無電解めっき処理では、図1の制御部110により無電解めっき装置1の制御(制御部110を除く、無電解めっき装置1の各構成の制御)が行われる。 FIG. 3 is a diagram showing the flow of the electroless plating process in the electroless plating apparatus 1. In the electroless plating process, the control unit 110 in FIG. 1 controls the electroless plating apparatus 1 (control of each component of the electroless plating apparatus 1 excluding the control unit 110).
 無電解めっき装置1では、事前に、外部の搬送機構により処理対象の基板9が搬入され、基板保持部21により保持されている。無電解めっき処理では、まず、基板回転機構22により基板9の回転が開始される。基板9は、水平状態で基板保持部21と共に回転する。また、洗浄液供給源53から、対向位置に配置された補助ノズル51を介して、基板9の上面91の中央部に洗浄液が供給される(ステップS11)。 In the electroless plating apparatus 1, the substrate 9 to be processed is loaded in advance by an external transport mechanism and is held by the substrate holder 21. In the electroless plating process, first, the rotation of the substrate 9 is started by the substrate rotation mechanism 22. The substrate 9 rotates together with the substrate holding unit 21 in a horizontal state. Further, the cleaning liquid is supplied from the cleaning liquid supply source 53 to the central portion of the upper surface 91 of the substrate 9 through the auxiliary nozzle 51 disposed at the facing position (step S11).
 上面91では、基板9の回転による遠心力により洗浄液が基板9の外周縁に向かって広がり、上面91の全体に洗浄液が供給される。基板9の外周縁から飛散する洗浄液は、カップ23の内周面により受けられて回収される(後述のリンス液、触媒溶液およびめっき液の供給時において同様)。洗浄液の供給により、上面91上の異物や自然酸化膜等が除去される。洗浄液の吐出は所定時間継続される。 On the upper surface 91, the cleaning liquid spreads toward the outer peripheral edge of the substrate 9 due to the centrifugal force generated by the rotation of the substrate 9, and the cleaning liquid is supplied to the entire upper surface 91. The cleaning liquid scattered from the outer peripheral edge of the substrate 9 is received and collected by the inner peripheral surface of the cup 23 (the same applies when supplying a rinsing liquid, a catalyst solution, and a plating liquid described later). By supplying the cleaning liquid, foreign matters, natural oxide films, and the like on the upper surface 91 are removed. The discharge of the cleaning liquid is continued for a predetermined time.
 洗浄液の吐出が停止されると、リンス液供給源54から補助ノズル51を介して上面91の中央部にリンス液が供給される(ステップS12)。上面91では、基板9の回転によりリンス液が基板9の外周縁に向かって広がり、上面91の全体にリンス液が供給される。リンス液の供給により、上面91に付着する洗浄液が除去される。リンス液の吐出は所定時間継続され、その後、停止される。 When the discharge of the cleaning liquid is stopped, the rinse liquid is supplied from the rinse liquid supply source 54 to the central portion of the upper surface 91 through the auxiliary nozzle 51 (step S12). On the upper surface 91, the rinse liquid spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the rinse liquid is supplied to the entire upper surface 91. By supplying the rinse liquid, the cleaning liquid adhering to the upper surface 91 is removed. The discharge of the rinse liquid is continued for a predetermined time and then stopped.
 続いて、触媒溶液供給源52から補助ノズル51を介して上面91の中央部に触媒溶液が供給される(ステップS13)。上面91では、基板9の回転により触媒溶液が基板9の外周縁に向かって広がり、上面91の全体に触媒溶液が供給される。これにより、上面91に触媒(例えば、パラジウム)が吸着し、触媒層が形成される。触媒溶液の吐出は所定時間継続される。 Subsequently, the catalyst solution is supplied from the catalyst solution supply source 52 to the central portion of the upper surface 91 through the auxiliary nozzle 51 (step S13). On the upper surface 91, the catalyst solution spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the catalyst solution is supplied to the entire upper surface 91. Thereby, a catalyst (for example, palladium) is adsorbed on the upper surface 91, and a catalyst layer is formed. The discharge of the catalyst solution is continued for a predetermined time.
 触媒溶液の吐出が停止されると、リンス液供給源54から補助ノズル51を介して上面91の中央部にリンス液が供給される(ステップS14)。上面91では、基板9の回転によりリンス液が基板9の外周縁に向かって広がり、上面91の全体にリンス液が供給される。リンス液の供給により、上面91に付着する触媒溶液が除去される。なお、上面91に形成された触媒層は維持される。リンス液の吐出は所定時間継続され、その後、停止される。 When the discharge of the catalyst solution is stopped, the rinsing liquid is supplied from the rinsing liquid supply source 54 to the central portion of the upper surface 91 through the auxiliary nozzle 51 (step S14). On the upper surface 91, the rinse liquid spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the rinse liquid is supplied to the entire upper surface 91. By supplying the rinse liquid, the catalyst solution adhering to the upper surface 91 is removed. Note that the catalyst layer formed on the upper surface 91 is maintained. The discharge of the rinse liquid is continued for a predetermined time and then stopped.
 続いて、第1薬液供給源33から、混合ノズル31の混合室311内への第1薬液の供給と、第2薬液供給源34から混合室311内への第2薬液の供給とが開始される。第1薬液および第2薬液は、混合室311において混合され、めっき液が生成される。混合ノズル31は、対向位置に配置されており、混合ノズル31の吐出口312から、基板9の上面91の中央部に向けてめっき液が連続的に吐出される。上面91では、基板9の回転によりめっき液が基板9の外周縁に向かって広がり、上面91の全体にめっき液が供給される。 Subsequently, the supply of the first chemical liquid from the first chemical liquid supply source 33 into the mixing chamber 311 of the mixing nozzle 31 and the supply of the second chemical liquid from the second chemical liquid supply source 34 into the mixing chamber 311 are started. The The first chemical solution and the second chemical solution are mixed in the mixing chamber 311 to generate a plating solution. The mixing nozzle 31 is disposed at an opposing position, and the plating solution is continuously discharged from the discharge port 312 of the mixing nozzle 31 toward the center of the upper surface 91 of the substrate 9. On the upper surface 91, the plating solution spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the plating solution is supplied to the entire upper surface 91.
 このとき、基板9の回転数は比較的低いため、図4Aに示すように、上面91の全体を覆うめっき液の液層93(パドルとも呼ばれる。)が形成される(ステップS15)。すなわち、上面91にめっき液が液盛りされる。図4Aでは、矢印A1により基板9の回転を示している(後述の図4C、図4E、図4F、図5Aおよび図5Bにおいて同様)。既述のように、めっき液はほぼ常温である。また、ヒータ41は、基板9の下面92から離間した下位置に配置される。したがって、液層93に含まれるめっき液の温度がほぼ常温で維持され、上面91における無電解めっき反応は抑制された状態、すなわち、反応速度が低い状態(不活性な状態)となる。後述するように、ヒータ41が下面92に近接した上位置に配置されることにより、ヒータ41による液層93の加熱がON状態となるため、ヒータ41が下面92から離間した下位置に配置されるステップS15では、ヒータ41による液層93の加熱はOFF状態であるといえる。 At this time, since the rotation speed of the substrate 9 is relatively low, as shown in FIG. 4A, a plating solution liquid layer 93 (also called a paddle) covering the entire upper surface 91 is formed (step S15). That is, the plating solution is deposited on the upper surface 91. In FIG. 4A, the rotation of the substrate 9 is indicated by an arrow A1 (the same applies to FIGS. 4C, 4E, 4F, 5A, and 5B described later). As described above, the plating solution is at room temperature. The heater 41 is disposed at a lower position away from the lower surface 92 of the substrate 9. Therefore, the temperature of the plating solution contained in the liquid layer 93 is maintained at substantially normal temperature, and the electroless plating reaction on the upper surface 91 is suppressed, that is, the reaction rate is low (inactive state). As will be described later, since the heater 41 is disposed at an upper position close to the lower surface 92, the heating of the liquid layer 93 by the heater 41 is turned on, so that the heater 41 is disposed at a lower position away from the lower surface 92. In step S15, it can be said that the heating of the liquid layer 93 by the heater 41 is in the OFF state.
 めっき液供給部3では、混合ノズル31からめっき液を連続的に吐出する期間(ステップS15の処理期間)に、混合室311で生成されるめっき液の総量(体積)は、混合室311の容積よりも十分に大きい。したがって、上記期間において第1薬液および第2薬液の混合により生成されためっき液の大部分が、上記期間中に基板9に向けて吐出される。換言すると、無電解めっき装置1では、混合ノズル31からめっき液を吐出する直前に、第1薬液と第2薬液とを混合してめっき液が生成される。 In the plating solution supply unit 3, the total amount (volume) of the plating solution generated in the mixing chamber 311 during the period in which the plating solution is continuously discharged from the mixing nozzle 31 (the processing period of step S <b> 15) is the volume of the mixing chamber 311. Big enough than. Therefore, most of the plating solution generated by mixing the first chemical solution and the second chemical solution in the period is discharged toward the substrate 9 during the period. In other words, in the electroless plating apparatus 1, immediately before discharging the plating solution from the mixing nozzle 31, the first chemical solution and the second chemical solution are mixed to generate a plating solution.
 基板9の直径が300mmであり、かつ、混合ノズル31からめっき液が毎分0.05~0.3L(リットル)の流量で吐出される場合に、ある程度の厚さのめっき液の液層93を適切に形成するという観点では、基板9の回転数は、300rpm以下であることが好ましい。無電解めっき装置1では、基板9の回転を停止した状態で、めっき液の液層93を形成することも可能である。この場合、上面91の中央部に連続的に供給されるめっき液は、次第に基板9の外周縁に向かって広がり、上面91の全体にめっき液の液層93が形成される。以上のように、めっき液の液層93の形成時における基板9の回転数(以下、「液層形成回転数」という。)は、0~300rpmであることが好ましい。液層形成回転数は、0~50rpmであることがより好ましく、0~10rpmであることがより一層好ましい。また、めっき液の流量は、毎分0.05~0.3Lであることがより好ましい。以下の説明において、液層形成回転数での基板9の回転は、基板9の回転数が0である、すなわち、基板9の回転を停止する場合を含む。 When the diameter of the substrate 9 is 300 mm and the plating solution is discharged from the mixing nozzle 31 at a flow rate of 0.05 to 0.3 L (liter) per minute, a plating solution liquid layer 93 having a certain thickness is provided. From the viewpoint of appropriately forming the substrate 9, the number of rotations of the substrate 9 is preferably 300 rpm or less. In the electroless plating apparatus 1, it is also possible to form the plating solution liquid layer 93 in a state where the rotation of the substrate 9 is stopped. In this case, the plating solution continuously supplied to the central portion of the upper surface 91 gradually spreads toward the outer peripheral edge of the substrate 9, and a plating solution liquid layer 93 is formed on the entire upper surface 91. As described above, the rotation speed of the substrate 9 (hereinafter referred to as “liquid layer formation rotation speed”) during the formation of the plating solution liquid layer 93 is preferably 0 to 300 rpm. The liquid layer forming rotation speed is more preferably 0 to 50 rpm, and further preferably 0 to 10 rpm. Further, the flow rate of the plating solution is more preferably 0.05 to 0.3 L / min. In the following description, the rotation of the substrate 9 at the liquid layer forming rotation speed includes the case where the rotation speed of the substrate 9 is 0, that is, the rotation of the substrate 9 is stopped.
 めっき液の吐出が所定時間継続され、めっき液の液層93が形成されると、混合ノズル31からのめっき液の吐出が停止される。上面91では、めっき液の表面張力により液層93が保持される。続いて、ヒータ昇降機構42によりヒータ41が上昇し、図4Bに示すように、基板9の下面92に近接した上位置に配置される。これにより、ヒータ41による基板9の加熱が開始される。基板9の加熱により、液層93も加熱される。このように、ヒータ41を上位置に配置することにより、ヒータ41による液層93の加熱がON状態となる。 The discharge of the plating solution from the mixing nozzle 31 is stopped when the discharge of the plating solution is continued for a predetermined time and the plating solution liquid layer 93 is formed. On the upper surface 91, the liquid layer 93 is held by the surface tension of the plating solution. Subsequently, the heater 41 is raised by the heater elevating mechanism 42 and disposed at an upper position close to the lower surface 92 of the substrate 9 as shown in FIG. 4B. Thereby, the heating of the substrate 9 by the heater 41 is started. The liquid layer 93 is also heated by heating the substrate 9. Thus, by arranging the heater 41 in the upper position, the heating of the liquid layer 93 by the heater 41 is turned on.
 液層93に含まれるめっき液の温度が上昇することにより、当該めっき液が活性な状態(反応速度が高い状態)となり、上面91の全体における無電解めっき反応が促進される(ステップS16)。例えば、液層93に含まれるめっき液は、40~60℃に加熱される。無電解めっき反応では、上面91上に形成されている触媒層の触媒作用により、めっき液に含まれる還元剤が酸化されるとともに、めっき液に含まれるめっき金属のイオンが還元剤からの電子により還元され、めっき金属が触媒層上に析出する。また、析出しためっき金属自体の触媒作用により、還元剤が酸化され、めっき金属のイオンがさらに還元析出する。無電解めっき装置1では、基板9の下面92が均一に加熱され、上面91の全体において同時に無電解めっき反応が促進される。これにより、上面91の全体において均一にめっき金属が成長し、一様なめっき層94(後述の図4C参照)が形成される。ステップS16における成膜レートは、ステップS15における成膜レート(反応が抑制された状態における成膜レート)に対して、例えば5倍以上(べた膜相当)である。 As the temperature of the plating solution contained in the liquid layer 93 rises, the plating solution becomes active (the reaction rate is high), and the electroless plating reaction on the entire upper surface 91 is promoted (step S16). For example, the plating solution contained in the liquid layer 93 is heated to 40 to 60 ° C. In the electroless plating reaction, the catalytic agent of the catalyst layer formed on the upper surface 91 oxidizes the reducing agent contained in the plating solution, and the ions of the plating metal contained in the plating solution are generated by electrons from the reducing agent. As a result, the plated metal is deposited on the catalyst layer. Further, the reducing agent is oxidized by the catalytic action of the plated metal itself, and ions of the plated metal are further reduced and deposited. In the electroless plating apparatus 1, the lower surface 92 of the substrate 9 is uniformly heated, and the electroless plating reaction is promoted simultaneously on the entire upper surface 91. Thereby, the plating metal grows uniformly on the entire upper surface 91, and a uniform plating layer 94 (see FIG. 4C described later) is formed. The film formation rate in step S16 is, for example, 5 times or more (equivalent to a solid film) with respect to the film formation rate in step S15 (the film formation rate in a state where the reaction is suppressed).
 基板9の一例では、上面91上において直立する多数のパターン要素が形成されており、当該パターン要素の表面にめっき層94が形成される。このとき、互いに隣接するパターン要素間の微小な隙間に注目すると、当該隙間に存在するめっき液のめっき金属や還元剤が消費されると、当該隙間では、無電解めっき反応が進まなくなる。したがって、無電解めっき装置1では、上面91上のめっき液の液層93を保持可能な回転数(例えば、300rpm以下の回転数)で、基板9を回転することにより、当該隙間に存在するめっき液が、周囲のめっき液と緩やかに入れ替えられることが好ましい。このように、めっき液の液層93を加熱するとともに、上面91上にて液層93を保持した状態で、基板9を回転することにより、無電解めっき反応をさらに促進させるとともに、めっき液を効率よく(無駄を少なく)利用することが可能となる。一方、上面91における無電解めっき反応の促進時に、上面91上において液層93をより確実に保持するという観点では、基板9の回転が停止されてもよい。ステップS16における基板9の回転数は、例えば、0~300rpmであり、好ましくは、0~50rpmであり、より好ましくは、0~10rpmである。 In an example of the substrate 9, a large number of pattern elements standing upright on the upper surface 91 are formed, and a plating layer 94 is formed on the surface of the pattern elements. At this time, paying attention to a minute gap between adjacent pattern elements, if the plating metal or reducing agent in the plating solution existing in the gap is consumed, the electroless plating reaction does not proceed in the gap. Therefore, in the electroless plating apparatus 1, by rotating the substrate 9 at a rotation speed capable of holding the liquid layer 93 of the plating solution on the upper surface 91 (for example, a rotation speed of 300 rpm or less), plating existing in the gap is provided. It is preferable that the solution is gently replaced with the surrounding plating solution. Thus, while heating the liquid layer 93 of the plating solution and rotating the substrate 9 while holding the liquid layer 93 on the upper surface 91, the electroless plating reaction is further promoted and the plating solution is added. It can be used efficiently (less waste). On the other hand, when the electroless plating reaction on the upper surface 91 is promoted, the rotation of the substrate 9 may be stopped from the viewpoint of more reliably holding the liquid layer 93 on the upper surface 91. The number of rotations of the substrate 9 in step S16 is, for example, 0 to 300 rpm, preferably 0 to 50 rpm, and more preferably 0 to 10 rpm.
 ヒータ41による液層93の加熱開始から所定時間が経過すると、ヒータ昇降機構42によりヒータ41が下降し、基板9の下面92から離間した下位置に配置される(後述の図4C参照)。これにより、ヒータ41による基板9の加熱が実質的に停止される。換言すると、ヒータ41による液層93の加熱がOFF状態となる。続いて、上記ステップS15,S16の処理を繰り返すか否かが確認される。制御部110では、ステップS15,S16の繰返回数の設定値が予め入力されており、実際の繰返回数が設定値に到達したか否かが確認される。実際の繰返回数が設定値に到達していない場合には(ステップS17)、液層形成回転数で基板9を回転しつつ、図4Cに示すように、上面91上のめっき液の液層93に向けて混合ノズル31から新たなめっき液が吐出される。図4Cでは、液層93に付す平行斜線の幅を、図4Aおよび図4Bよりも狭くして、液層93が使用済みであることを示している。混合ノズル31からの新たなめっき液の吐出により、上面91を覆う新たなめっき液の液層93a(後述の図4D参照)が形成される(ステップS15)。既述のように、ヒータ41による液層93aの加熱はOFF状態であるため、上面91における無電解めっき反応は抑制される。 When a predetermined time elapses from the heating start of the liquid layer 93 by the heater 41, the heater 41 is lowered by the heater lifting mechanism 42 and disposed at a lower position away from the lower surface 92 of the substrate 9 (see FIG. 4C described later). Thereby, the heating of the substrate 9 by the heater 41 is substantially stopped. In other words, the heating of the liquid layer 93 by the heater 41 is turned off. Subsequently, it is confirmed whether or not the processes in steps S15 and S16 are repeated. In control unit 110, the set value of the number of repetitions in steps S15 and S16 is input in advance, and it is confirmed whether or not the actual number of repetitions has reached the set value. If the actual number of repetitions has not reached the set value (step S17), the plating solution liquid layer on the upper surface 91 is rotated as shown in FIG. A new plating solution is discharged from the mixing nozzle 31 toward the nozzle 93. In FIG. 4C, the width of the parallel oblique lines attached to the liquid layer 93 is made narrower than that in FIGS. 4A and 4B, indicating that the liquid layer 93 has been used. By discharging a new plating solution from the mixing nozzle 31, a new plating solution layer 93a (see FIG. 4D described later) covering the upper surface 91 is formed (step S15). As described above, since the heating of the liquid layer 93a by the heater 41 is in the OFF state, the electroless plating reaction on the upper surface 91 is suppressed.
 このとき、新たなめっき液は、直前のステップS15の処理期間(すなわち、最初のめっき液の液層93の形成時)に、混合室311で生成されためっき液の一部を含んでもよい。無電解めっき処理では、各ステップS15の処理期間において第1薬液および第2薬液の混合により生成されためっき液の少なくとも一部が、当該処理期間中に基板9に向けて吐出される場合に、めっき液が、混合ノズル31から吐出される直前に生成されていると捉えることができる。 At this time, the new plating solution may include a part of the plating solution generated in the mixing chamber 311 during the immediately preceding processing period of step S15 (that is, when the first plating solution layer 93 is formed). In the electroless plating process, when at least a part of the plating solution generated by mixing the first chemical solution and the second chemical solution in the processing period of each step S15 is discharged toward the substrate 9 during the processing period, It can be understood that the plating solution is generated immediately before being discharged from the mixing nozzle 31.
 混合ノズル31から上面91への新たなめっき液の吐出は所定時間継続され、その後、停止される。続いて、ヒータ41が、ヒータ昇降機構42により上昇し、図4Dに示すように、基板9の下面92に近接した上位置に配置される。これにより、上面91において液層93aを保持した状態で、液層93aの加熱が開始され(すなわち、ヒータ41による液層93aの加熱がON状態とされ)、上面91における無電解めっき反応が促進される(ステップS16)。上面91に対する液層93aを用いた無電解めっきにより、上面91におけるめっき層94の厚さが均一に増大する。液層93aの加熱開始から所定時間が経過すると、ヒータ41が下降し、液層93aの加熱が停止される。無電解めっき装置1では、ステップS15,S16の実際の繰返回数が、設定値に到達するまで、上記ステップS15,S16の処理が繰り返される(ステップS17)。これにより、めっき層94の厚さがさらに増大する。 The discharge of a new plating solution from the mixing nozzle 31 to the upper surface 91 is continued for a predetermined time and then stopped. Subsequently, the heater 41 is raised by the heater elevating mechanism 42 and disposed at an upper position close to the lower surface 92 of the substrate 9 as shown in FIG. 4D. Thereby, the heating of the liquid layer 93a is started in a state where the liquid layer 93a is held on the upper surface 91 (that is, the heating of the liquid layer 93a by the heater 41 is turned on), and the electroless plating reaction on the upper surface 91 is promoted. (Step S16). By electroless plating using the liquid layer 93a on the upper surface 91, the thickness of the plating layer 94 on the upper surface 91 increases uniformly. When a predetermined time elapses from the start of heating the liquid layer 93a, the heater 41 is lowered and heating of the liquid layer 93a is stopped. In the electroless plating apparatus 1, the processes of steps S15 and S16 are repeated until the actual number of repetitions of steps S15 and S16 reaches a set value (step S17). Thereby, the thickness of the plating layer 94 further increases.
 ステップS15,S16の実際の繰返回数が、設定値に到達すると(ステップS17)、リンス液供給源35から混合ノズル31にリンス液が供給される。これにより、図4Eに示すように、混合ノズル31から上面91の中央部に向けてリンス液が吐出される(ステップS18)。上面91では、基板9の回転によりリンス液が基板9の外周縁に向かって広がり、上面91の全体にリンス液が供給される。リンス液の供給により、上面91に付着するめっき液が除去される。このとき、図1の混合ノズル31では、リンス液が混合室311内に充填された後、吐出口312から吐出される。したがって、混合室311内に残留するめっき液が、混合室311を通過するリンス液により除去される。リンス液の吐出は所定時間継続され、その後、停止される。 When the actual number of repetitions of steps S15 and S16 reaches the set value (step S17), the rinse liquid is supplied from the rinse liquid supply source 35 to the mixing nozzle 31. As a result, as shown in FIG. 4E, the rinsing liquid is discharged from the mixing nozzle 31 toward the center of the upper surface 91 (step S18). On the upper surface 91, the rinse liquid spreads toward the outer peripheral edge of the substrate 9 by the rotation of the substrate 9, and the rinse liquid is supplied to the entire upper surface 91. By supplying the rinse liquid, the plating liquid adhering to the upper surface 91 is removed. At this time, in the mixing nozzle 31 of FIG. 1, the rinsing liquid is filled into the mixing chamber 311 and then discharged from the discharge port 312. Therefore, the plating solution remaining in the mixing chamber 311 is removed by the rinsing solution that passes through the mixing chamber 311. The discharge of the rinse liquid is continued for a predetermined time and then stopped.
 続いて、基板回転機構22が基板9の回転数をリンス液の供給時よりも高くすることにより、図4Fに示すように、基板9の乾燥処理(スピンドライ)が開始される(ステップS19)。乾燥処理により、上面91に付着するリンス液が除去される。乾燥処理が完了すると、基板9の回転が停止される。その後、基板9は、外部の搬送機構により無電解めっき装置1から搬出される。以上により、無電解めっき装置1における基板9の処理が完了する。 Subsequently, the substrate rotating mechanism 22 increases the number of rotations of the substrate 9 as compared with the time of supplying the rinsing liquid, thereby starting the drying process (spin drying) of the substrate 9 as shown in FIG. 4F (step S19). . The rinse liquid adhering to the upper surface 91 is removed by the drying process. When the drying process is completed, the rotation of the substrate 9 is stopped. Thereafter, the substrate 9 is unloaded from the electroless plating apparatus 1 by an external transport mechanism. Thus, the processing of the substrate 9 in the electroless plating apparatus 1 is completed.
 ここで、加熱されためっき液をノズルから基板9の上面91に吐出する比較例の無電解めっき装置について述べる。比較例の無電解めっき装置では、加熱により活性な状態でめっき液がノズルから吐出されるため、上面91において、広がっためっき液により無電解めっき反応が進む。一方、ノズルから吐出されためっき液が衝突する上面91上の位置(吐出位置)では、上面91に接するめっき液が瞬時に入れ替わる、すなわち、上面91におけるめっき液の流速が大きくなる。その結果、上面91上の吐出位置において、局所的に無電解めっき反応が進みにくくなり(めっき金属が成長しにくくなり)、めっき層の厚さの均一性が低くなる。 Here, a comparative electroless plating apparatus for discharging a heated plating solution from the nozzle onto the upper surface 91 of the substrate 9 will be described. In the electroless plating apparatus of the comparative example, since the plating solution is discharged from the nozzle in an active state by heating, the electroless plating reaction proceeds on the upper surface 91 due to the spreading plating solution. On the other hand, at the position (discharge position) on the upper surface 91 where the plating solution discharged from the nozzle collides, the plating solution in contact with the upper surface 91 is instantaneously changed, that is, the flow rate of the plating solution on the upper surface 91 is increased. As a result, the electroless plating reaction is less likely to proceed locally at the discharge position on the upper surface 91 (plating metal is less likely to grow), and the thickness of the plating layer is less uniform.
 これに対し、無電解めっき装置1における処理では、常温のめっき液を混合ノズル31から吐出することにより、上面91を覆うめっき液の液層を形成する工程が行われる。続いて、混合ノズル31から上面91へのめっき液の吐出を停止し、かつ、上面91上において当該液層を保持した状態で、当該液層の加熱を開始することにより上面91における無電解めっき反応を促進させる工程が行われる。このように、混合ノズル31からのめっき液の吐出時に、上面91全体において無電解めっき反応を抑制し、めっき液の液層の形成後に、基板9の加熱により、上面91全体において無電解めっき反応を促進させることにより、吐出位置と他の領域との間における、めっき金属の成長差を抑制して、めっき層の厚さの均一性を向上することができる。 On the other hand, in the process in the electroless plating apparatus 1, a step of forming a plating solution liquid layer covering the upper surface 91 by discharging a normal temperature plating solution from the mixing nozzle 31 is performed. Subsequently, the electrolysis plating on the upper surface 91 is started by stopping the discharge of the plating solution from the mixing nozzle 31 to the upper surface 91 and starting the heating of the liquid layer while holding the liquid layer on the upper surface 91. A step of promoting the reaction is performed. Thus, when the plating solution is discharged from the mixing nozzle 31, the electroless plating reaction is suppressed over the entire upper surface 91, and the electroless plating reaction is performed over the entire upper surface 91 by heating the substrate 9 after the formation of the liquid layer of the plating solution. By promoting the above, it is possible to suppress the difference in the growth of the plating metal between the discharge position and other regions, and to improve the uniformity of the thickness of the plating layer.
 また、上記工程の後、上面91上の上記液層に向けて混合ノズル31から新たなめっき液を吐出することにより、上面91を覆う新たなめっき液の液層を形成する工程が行われる。続いて、混合ノズル31から上面91への新たなめっき液の吐出を停止し、かつ、上面91上において当該液層を保持した状態で、当該液層の加熱を行うことにより上面91における無電解めっき反応を促進させる工程が行われる。これにより、均一かつ厚いめっき層を形成することができる。 Further, after the above step, a step of forming a new plating solution liquid layer covering the upper surface 91 by discharging a new plating solution from the mixing nozzle 31 toward the liquid layer on the upper surface 91 is performed. Subsequently, the discharge of a new plating solution from the mixing nozzle 31 to the upper surface 91 is stopped, and the liquid layer is heated in a state where the liquid layer is held on the upper surface 91, whereby the electroless surface on the upper surface 91 is electroless. A step of promoting the plating reaction is performed. Thereby, a uniform and thick plating layer can be formed.
 ところで、めっき液が、安定剤または錯化剤を含む場合、上面91上に形成されている触媒層に、安定剤または錯化剤が吸着し、触媒層の触媒作用による還元剤の酸化が阻害される、すなわち、安定剤または錯化剤が触媒毒として作用することがある。この場合、めっき層が適切に形成されなくなる。 By the way, when the plating solution contains a stabilizer or a complexing agent, the stabilizer or complexing agent is adsorbed on the catalyst layer formed on the upper surface 91, and the oxidation of the reducing agent due to the catalytic action of the catalyst layer is inhibited. I.e. stabilizers or complexing agents may act as catalyst poisons. In this case, the plating layer is not properly formed.
 これに対し、好ましい無電解めっき処理では、安定剤または錯化剤を含まないめっき液が用いられる。これにより、還元剤の酸化が阻害されることを抑制することができ、めっき層を適切に形成することができる。より好ましい無電解めっき処理では、めっき液が安定剤および錯化剤の双方を含まないことにより、還元剤の酸化が阻害されることをさらに抑制することができる。また、安定剤または錯化剤を省くことにより、めっき液の生成に要するコストを削減することができる。めっき液の種類等によっては、めっき液が安定剤または錯化剤を含んでもよい。 On the other hand, in a preferable electroless plating treatment, a plating solution containing no stabilizer or complexing agent is used. Thereby, it can suppress that the oxidation of a reducing agent is inhibited and a plating layer can be formed appropriately. In a more preferable electroless plating treatment, the plating solution does not contain both the stabilizer and the complexing agent, whereby the oxidation of the reducing agent can be further inhibited from being inhibited. Moreover, the cost required for producing the plating solution can be reduced by omitting the stabilizer or the complexing agent. Depending on the type of the plating solution, the plating solution may contain a stabilizer or a complexing agent.
 仮に、めっき液を貯溜するタンクを採用する場合、タンク内のめっき液の濃度を一定に保つために、濃度モニタや、液補充システム等が必要となる。また、タンク内のめっき液の性状を安定させるため、安定剤または錯化剤を添加する必要もある。さらに、タンクとノズルとの間を接続する管の内部がめっきされる可能性もある。 If a tank that stores the plating solution is used, a concentration monitor, a solution replenishment system, and the like are required to keep the concentration of the plating solution in the tank constant. Further, it is necessary to add a stabilizer or a complexing agent in order to stabilize the properties of the plating solution in the tank. Further, the inside of the pipe connecting the tank and the nozzle may be plated.
 これに対し、図1の無電解めっき装置1では、混合ノズル31からめっき液を吐出する直前に、第1薬液と第2薬液とを混合ノズル31内で混合して、めっき液が生成される。これにより、第1薬液供給源33と混合ノズル31とを接続する第1薬液供給管331、および、第2薬液供給源34と混合ノズル31とを接続する第2薬液供給管341の内部がめっきされることを防止することができる。また、濃度モニタや液補充システム等を設けることなく、金属塩と還元剤とを均一に混合しためっき液を、容易に、かつ、必要な量だけ基板9上に供給することができる。その結果、無電解めっき装置1の製造コストの削減や、めっき液の省液によるランニングコストの削減を実現することができる。さらに、めっき液中に安定剤または錯化剤が存在しないことに起因する悪影響(例えば、めっき液の劣化等)が生じることも抑制することができる。 On the other hand, in the electroless plating apparatus 1 of FIG. 1, immediately before discharging the plating solution from the mixing nozzle 31, the first chemical solution and the second chemical solution are mixed in the mixing nozzle 31 to generate a plating solution. . Accordingly, the inside of the first chemical liquid supply pipe 331 connecting the first chemical liquid supply source 33 and the mixing nozzle 31 and the inside of the second chemical liquid supply pipe 341 connecting the second chemical liquid supply source 34 and the mixing nozzle 31 are plated. Can be prevented. In addition, a plating solution in which a metal salt and a reducing agent are uniformly mixed can be easily supplied onto the substrate 9 in a necessary amount without providing a concentration monitor or a liquid replenishment system. As a result, it is possible to reduce the manufacturing cost of the electroless plating apparatus 1 and the running cost by saving the plating solution. Furthermore, it is possible to suppress the occurrence of adverse effects (for example, deterioration of the plating solution) caused by the absence of the stabilizer or the complexing agent in the plating solution.
 また、混合ノズル31からリンス液を吐出する際には、第1薬液と第2薬液との混合位置(図1では、混合室311)から混合ノズル31の吐出口312へと至る流路をリンス液が通過する。これにより、混合位置から吐出口312へと至る流路に残留するめっき液をリンス液により除去することができ、当該流路がめっきされることを防止することができる。もちろん、無電解めっき装置1の設計によっては、めっき液を貯溜するタンクが採用されてもよい。 Further, when the rinsing liquid is discharged from the mixing nozzle 31, the flow path from the mixing position of the first chemical liquid and the second chemical liquid (mixing chamber 311 in FIG. 1) to the discharge port 312 of the mixing nozzle 31 is rinsed. Liquid passes through. Thus, the plating solution remaining in the flow path from the mixing position to the discharge port 312 can be removed by the rinse liquid, and the flow path can be prevented from being plated. Of course, depending on the design of the electroless plating apparatus 1, a tank for storing a plating solution may be employed.
 無電解めっき装置1では、液層の加熱のON状態において、ヒータ41が基板9の下面92に近接または接触する位置に配置され、液層の加熱のOFF状態において、ヒータ41が下面92から離間した位置に配置される。これにより、温度を急激に上下させることが困難であるヒータ41を用いて、液層の加熱のON/OFF状態の切替を適切に行うことが可能となる。 In the electroless plating apparatus 1, the heater 41 is disposed at a position close to or in contact with the lower surface 92 of the substrate 9 in the liquid layer heating ON state, and the heater 41 is separated from the lower surface 92 in the liquid layer heating OFF state. It is arranged at the position. Accordingly, it is possible to appropriately switch the heating / dissolving state of the liquid layer using the heater 41 that is difficult to raise and lower the temperature rapidly.
 上記処理例では、ステップS15,S16の処理を繰り返す際に、上面91上のめっき液の液層93に向けて混合ノズル31から新たなめっき液が吐出されるが、新たなめっき液の吐出前に、上面91上の液層93が除去されてもよい。この場合、ステップS17により繰り返されるステップS15では、基板9を液層形成回転数よりも高い回転数で回転することにより、図5Aに示すように、上面91上の液層93が除去される。このとき、ヒータ41は下位置に配置されている。続いて、基板9を液層形成回転数で回転しつつ、上面91に向けて混合ノズル31から新たなめっき液を吐出することにより、図5Bに示すように、上面91を覆う新たなめっき液の液層93aが形成される。 In the above processing example, when the processes of steps S15 and S16 are repeated, a new plating solution is discharged from the mixing nozzle 31 toward the plating solution liquid layer 93 on the upper surface 91, but before the new plating solution is discharged. In addition, the liquid layer 93 on the upper surface 91 may be removed. In this case, in step S15 repeated by step S17, the substrate 9 is rotated at a higher rotational speed than the liquid layer forming rotational speed, whereby the liquid layer 93 on the upper surface 91 is removed as shown in FIG. 5A. At this time, the heater 41 is disposed at the lower position. Subsequently, as shown in FIG. 5B, a new plating solution covering the upper surface 91 is discharged by discharging a new plating solution from the mixing nozzle 31 toward the upper surface 91 while rotating the substrate 9 at the liquid layer forming rotation speed. The liquid layer 93a is formed.
 ステップS16では、図5Cに示すように、混合ノズル31から上面91への新たなめっき液の吐出を停止し、かつ、上面91上において新たなめっき液の液層93aを保持した状態で、ヒータ41が上位置に配置される。これにより、ヒータ41による液層93aの加熱がON状態とされ、上面91における無電解めっき反応が促進される。その結果、上面91におけるめっき層94の厚さが増大する。上記ステップS15,S16の処理は、必要に応じてさらに繰り返される。 In step S16, as shown in FIG. 5C, the discharge of a new plating solution from the mixing nozzle 31 to the upper surface 91 is stopped, and the new plating solution liquid layer 93a is held on the upper surface 91. 41 is arranged at the upper position. Thereby, the heating of the liquid layer 93a by the heater 41 is turned on, and the electroless plating reaction on the upper surface 91 is promoted. As a result, the thickness of the plating layer 94 on the upper surface 91 increases. The processes in steps S15 and S16 are further repeated as necessary.
 上記ステップS15,S16の処理では、新たなめっき液の吐出前に、基板9を高い回転数で回転することにより、使用済みのめっき液の液層93を除去しつつ、基板9の温度を低くすることができる。これにより、新たなめっき液の液層93aの形成時に、基板9およびめっき液の温度を低く保ち、上面91における無電解めっき反応をより確実に抑制することができる。その結果、めっき層の厚さの均一性をさらに向上することができる。また、液層93aの形成(使用済みのめっき液と新たなめっき液との入れ替え)に要する新たなめっき液の量を少なくすることができる。 In the processing of steps S15 and S16, the substrate 9 is rotated at a high rotational speed before discharging a new plating solution, so that the temperature of the substrate 9 is lowered while removing the liquid layer 93 of the used plating solution. can do. Thereby, the temperature of the board | substrate 9 and a plating solution can be kept low at the time of formation of the liquid layer 93a of a new plating solution, and the electroless-plating reaction in the upper surface 91 can be suppressed more reliably. As a result, the uniformity of the thickness of the plating layer can be further improved. In addition, the amount of new plating solution required for forming the liquid layer 93a (replacement of the used plating solution with a new plating solution) can be reduced.
 図6は、めっき液供給部の他の例を示す図である。図6のめっき液供給部3aは、ノズル31aと、ミキシングバルブ32と、第1薬液供給源33と、第2薬液供給源34と、リンス液供給源35とを備える。ノズル31aは、例えばストレートノズルであり、基板9の上面91の中央部の上方に配置される。ミキシングバルブ32は、混合室320と、複数の弁321~324とを備える。複数の弁321~324は、混合室320に接続される。第1の弁321には、第1薬液供給管331を介して第1薬液供給源33が接続され、第2の弁322には、第2薬液供給管341を介して第2薬液供給源34が接続される。また、第3の弁323には、リンス液供給管351を介してリンス液供給源35が接続され、第4の弁324には、ノズル31aが接続される。第1薬液供給管331には、流量調整弁332が設けられ、第2薬液供給管341には、流量調整弁342が設けられる。 FIG. 6 is a diagram showing another example of the plating solution supply unit. 6 includes a nozzle 31a, a mixing valve 32, a first chemical liquid supply source 33, a second chemical liquid supply source 34, and a rinse liquid supply source 35. The nozzle 31 a is, for example, a straight nozzle and is disposed above the center portion of the upper surface 91 of the substrate 9. The mixing valve 32 includes a mixing chamber 320 and a plurality of valves 321 to 324. The plurality of valves 321 to 324 are connected to the mixing chamber 320. A first chemical liquid supply source 33 is connected to the first valve 321 via a first chemical liquid supply pipe 331, and a second chemical liquid supply source 34 is connected to the second valve 322 via a second chemical liquid supply pipe 341. Is connected. The third valve 323 is connected to the rinse liquid supply source 35 via the rinse liquid supply pipe 351, and the fourth valve 324 is connected to the nozzle 31 a. The first chemical liquid supply pipe 331 is provided with a flow rate adjustment valve 332, and the second chemical liquid supply pipe 341 is provided with a flow rate adjustment valve 342.
 めっき液の液層を形成する際には、弁321,322,324を開くことにより、第1薬液供給源33からの第1薬液と、第2薬液供給源34からの第2薬液とが、ミキシングバルブ32の混合室320内で混合され、めっき液としてノズル31aに供給される。既述のように、第1薬液は、めっき金属の金属塩を含み、第2薬液は、還元剤を含む。めっき液における第1薬液と第2薬液との混合比は、流量調整弁332,342により調製される。好ましくは、めっき液中に安定剤または錯化剤は含まれず、より好ましくは、安定剤および錯化剤の双方が含まれない。また、上面91上のめっき液をリンス液により除去する際には、弁321,322を閉じ、弁323,324を開くことにより、リンス液供給源35からのリンス液が、混合室320を介してノズル31aに供給される。 When forming the liquid layer of the plating solution, the first chemical solution from the first chemical solution supply source 33 and the second chemical solution from the second chemical solution supply source 34 are opened by opening the valves 321, 322 and 324. It mixes in the mixing chamber 320 of the mixing valve 32, and is supplied to the nozzle 31a as a plating solution. As described above, the first chemical solution includes a metal salt of a plating metal, and the second chemical solution includes a reducing agent. The mixing ratio of the first chemical solution and the second chemical solution in the plating solution is adjusted by the flow rate adjusting valves 332 and 342. Preferably, the plating solution does not contain a stabilizer or complexing agent, and more preferably does not contain both a stabilizer and a complexing agent. Further, when the plating solution on the upper surface 91 is removed by the rinsing liquid, the rinsing liquid from the rinsing liquid supply source 35 passes through the mixing chamber 320 by closing the valves 321 and 322 and opening the valves 323 and 324. To the nozzle 31a.
 めっき液供給部3aでは、ノズル31aに接続されたミキシングバルブ32において、第1薬液と第2薬液とが混合されるため、第1薬液供給管331および第2薬液供給管341の内部がめっきされることを防止することができる。また、金属塩と還元剤とを均一に混合しためっき液を、容易に基板9上に供給することができる。さらに、めっき液の生成直後に、当該めっき液がノズル31aから吐出されるため、めっき液中に安定剤または錯化剤が存在しないことに起因する悪影響(例えば、めっき液の劣化等)が生じることも抑制することができる。リンス液の吐出の際には、第1薬液と第2薬液との混合位置(図6では、混合室320)からノズル31aの吐出口へと至る流路をリンス液が通過する。これにより、当該流路に残留するめっき液をリンス液により除去することができ、当該流路がめっきされることを防止することができる。 In the plating solution supply unit 3a, the first chemical solution and the second chemical solution are mixed in the mixing valve 32 connected to the nozzle 31a, so that the inside of the first chemical solution supply pipe 331 and the second chemical solution supply pipe 341 is plated. Can be prevented. Moreover, the plating solution in which the metal salt and the reducing agent are uniformly mixed can be easily supplied onto the substrate 9. Further, immediately after the plating solution is generated, the plating solution is discharged from the nozzle 31a, so that an adverse effect (for example, deterioration of the plating solution) occurs due to the absence of the stabilizer or the complexing agent in the plating solution. This can also be suppressed. When discharging the rinse liquid, the rinse liquid passes through the flow path from the mixing position of the first chemical liquid and the second chemical liquid (mixing chamber 320 in FIG. 6) to the discharge port of the nozzle 31a. Thereby, the plating solution remaining in the flow path can be removed with the rinse liquid, and the flow path can be prevented from being plated.
 上記無電解めっき処理および無電解めっき装置1では様々な変形が可能である。 The electroless plating process and the electroless plating apparatus 1 can be variously modified.
 上記実施の形態では、めっき液の液層の加熱を開始することにより、上面91における無電解めっき反応が促進されるが、液層の揺動を開始することにより、上面91における無電解めっき反応が促進されてもよい。例えば、図7のめっき反応促進部4aでは、図1のヒータ41に代えてバイブレータ43が設けられる。バイブレータ43は、図示省略の昇降機構により、基板9の下面92と接触する上位置と、下面92から離間した下位置とに選択的に配置される。図3の処理におけるステップS16では、混合ノズル31から上面91へのめっき液の吐出を停止し、かつ、上面91上においてめっき液の液層93を保持した状態で、バイブレータ43が上位置に配置される。このとき、基板9の回転は停止される。そして、バイブレータ43の駆動が開始されることにより、基板9に振動が付与され、液層93が揺動する。これにより、液層93中のめっき液が緩やかに攪拌され、上面91における無電解めっき反応が促進される。めっき反応促進部4aでは、基板9に対して超音波振動が付与されてもよい。 In the above embodiment, the electroless plating reaction on the upper surface 91 is promoted by starting the heating of the liquid layer of the plating solution, but the electroless plating reaction on the upper surface 91 is started by starting the oscillation of the liquid layer. May be promoted. For example, in the plating reaction promoting unit 4a of FIG. 7, a vibrator 43 is provided instead of the heater 41 of FIG. The vibrator 43 is selectively disposed at an upper position in contact with the lower surface 92 of the substrate 9 and a lower position separated from the lower surface 92 by an elevator mechanism (not shown). In step S16 in the process of FIG. 3, the vibrator 43 is disposed at the upper position in a state where the discharge of the plating solution from the mixing nozzle 31 to the upper surface 91 is stopped and the plating solution liquid layer 93 is held on the upper surface 91. Is done. At this time, the rotation of the substrate 9 is stopped. When the drive of the vibrator 43 is started, vibration is applied to the substrate 9 and the liquid layer 93 is swung. Thereby, the plating solution in the liquid layer 93 is gently stirred, and the electroless plating reaction on the upper surface 91 is promoted. In the plating reaction promoting unit 4a, ultrasonic vibration may be applied to the substrate 9.
 また、上面91上でめっき液の液層93を保持した状態で、基板9を回転することにより、液層93が揺動されてもよい。さらに、ヒータ41にバイブレータが付加され、ヒータ41による液層93の加熱と、バイブレータによる液層93の揺動の双方が行われてもよい。以上のように、無電解めっき処理では、ノズルから上面91へのめっき液の吐出を停止し、かつ、上面91上において液層を保持した状態で、液層の加熱、または/および、液層の揺動を開始することにより、上面91における無電解めっき反応を促進させることが可能となる。なお、基板9の回転により無電解めっき反応を促進する場合には、液層の形成時に基板9の回転が停止されることが好ましい。 Alternatively, the liquid layer 93 may be swung by rotating the substrate 9 while holding the liquid layer 93 of the plating solution on the upper surface 91. Further, a vibrator may be added to the heater 41, and both the heating of the liquid layer 93 by the heater 41 and the swinging of the liquid layer 93 by the vibrator may be performed. As described above, in the electroless plating process, heating of the liquid layer and / or liquid layer is performed while the discharge of the plating solution from the nozzle to the upper surface 91 is stopped and the liquid layer is held on the upper surface 91. By starting the oscillation of the electroless plating, it is possible to promote the electroless plating reaction on the upper surface 91. When the electroless plating reaction is promoted by the rotation of the substrate 9, the rotation of the substrate 9 is preferably stopped when the liquid layer is formed.
 無電解めっき装置1では、基板9の外周縁を囲む部材を利用して、上面91上でめっき液の液層93が保持されてもよい。図8の無電解めっき装置1aでは、基板保持部21aが、中心軸J1を中心とする環状の保持部材214を有する。保持部材214の内周面215の直径は、上方に向かうに従って漸次増大する。すなわち、内周面215は、円錐台状の面である。内周面215の下部における直径は、基板9の外径よりも小さく、内周面215の上部における直径は、基板9の外径よりも大きい。保持部材214の下方には、基板9を昇降する基板昇降機構216が設けられる。 In the electroless plating apparatus 1, the plating solution liquid layer 93 may be held on the upper surface 91 using a member surrounding the outer peripheral edge of the substrate 9. In the electroless plating apparatus 1a of FIG. 8, the substrate holding part 21a has an annular holding member 214 centered on the central axis J1. The diameter of the inner peripheral surface 215 of the holding member 214 gradually increases as it goes upward. That is, the inner peripheral surface 215 is a frustoconical surface. The diameter at the lower portion of the inner peripheral surface 215 is smaller than the outer diameter of the substrate 9, and the diameter at the upper portion of the inner peripheral surface 215 is larger than the outer diameter of the substrate 9. A substrate lifting mechanism 216 that lifts and lowers the substrate 9 is provided below the holding member 214.
 無電解めっき装置1aでは、保持部材214の上方にて、外部の搬送機構から基板昇降機構216に基板9が受け渡され、その後、基板昇降機構216が基板9を下方に移動する。これにより、基板9の外周縁が、全周に亘って保持部材214の内周面215と接触し、基板9が水平状態で基板保持部21aにより保持される。無電解めっき処理では、混合ノズル31から基板9の上面91に向けてめっき液が吐出される。めっき液は、基板9の上面91と、保持部材214の内周面215とにより囲まれる貯溜空間に貯溜される。換言すると、上面91上にてめっき液の液層93が保持される。混合ノズル31から上面91へのめっき液の吐出を停止した後、図示省略のヒータ移動機構により、液層93の上方にヒータ41aが配置される。これにより、液層93の加熱が開始され、上面91における無電解めっき反応が促進される。 In the electroless plating apparatus 1a, the substrate 9 is transferred from the external transport mechanism to the substrate lifting mechanism 216 above the holding member 214, and then the substrate lifting mechanism 216 moves the substrate 9 downward. As a result, the outer peripheral edge of the substrate 9 contacts the inner peripheral surface 215 of the holding member 214 over the entire periphery, and the substrate 9 is held by the substrate holding portion 21a in a horizontal state. In the electroless plating process, a plating solution is discharged from the mixing nozzle 31 toward the upper surface 91 of the substrate 9. The plating solution is stored in a storage space surrounded by the upper surface 91 of the substrate 9 and the inner peripheral surface 215 of the holding member 214. In other words, the plating solution liquid layer 93 is held on the upper surface 91. After stopping the discharge of the plating solution from the mixing nozzle 31 to the upper surface 91, the heater 41a is disposed above the liquid layer 93 by a heater moving mechanism (not shown). Thereby, heating of the liquid layer 93 is started, and the electroless plating reaction on the upper surface 91 is promoted.
 無電解めっき装置1aにおける上記処理によっても、めっき層の厚さの均一性を向上することができる。なお、上面91上のめっき液を除去する際には、基板昇降機構216が基板9を上昇することにより、基板9の外周縁と保持部材214の内周面215との間に隙間が形成され、当該隙間を介してめっき液が下方に排出される。無電解めっき装置1aにおいても、バイブレータが用いられてもよい。 The uniformity of the thickness of the plating layer can also be improved by the above treatment in the electroless plating apparatus 1a. When removing the plating solution on the upper surface 91, the substrate lifting mechanism 216 raises the substrate 9, thereby forming a gap between the outer peripheral edge of the substrate 9 and the inner peripheral surface 215 of the holding member 214. The plating solution is discharged downward through the gap. In the electroless plating apparatus 1a, a vibrator may be used.
 めっき液の液層の加熱は、様々な構成により実現されてよい。例えば、図9に示すように、基板9の上方に配置したヒータ41bを上面91に沿って移動する(スキャンさせる)ことにより、めっき液の液層93が加熱されてもよい。また、ランプを用いたヒータ等を設けることも可能である。ヒータの構造によっては、ヒータ自体のON/OFFにより、液層の加熱のON状態とOFF状態とが切り替えられてもよい。 The heating of the liquid layer of the plating solution may be realized by various configurations. For example, as shown in FIG. 9, the plating solution liquid layer 93 may be heated by moving (scanning) the heater 41 b disposed above the substrate 9 along the upper surface 91. It is also possible to provide a heater using a lamp. Depending on the structure of the heater, the ON / OFF state of the heating of the liquid layer may be switched by ON / OFF of the heater itself.
 混合ノズル31およびノズル31aは、基板9の上面91の全体にめっき液を供給することが可能であるならば、上面91において中央部から逸れた位置に向けてめっき液を吐出してもよい。 If the mixing nozzle 31 and the nozzle 31 a can supply the plating solution to the entire upper surface 91 of the substrate 9, the plating solution may be discharged toward a position deviated from the central portion on the upper surface 91.
 基板9の上面91における触媒層の形成は、他の装置により行われてもよい。また、触媒層を形成することなく、上面91にめっき層を形成することが可能である場合には、上面91への触媒溶液の供給が省略されてもよい。 The formation of the catalyst layer on the upper surface 91 of the substrate 9 may be performed by another apparatus. In addition, when the plating layer can be formed on the upper surface 91 without forming the catalyst layer, the supply of the catalyst solution to the upper surface 91 may be omitted.
 めっき反応促進部4,4aの構造等によっては、基板9の下面92を吸着して保持する基板保持部が用いられてもよい。 Depending on the structure of the plating reaction promoting portions 4 and 4a, a substrate holding portion that sucks and holds the lower surface 92 of the substrate 9 may be used.
 無電解めっき装置1,1aにおいて処理が行われる基板は半導体基板には限定されず、他の基板であってもよい。 The substrate to be processed in the electroless plating apparatus 1 or 1a is not limited to a semiconductor substrate, and may be another substrate.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1,1a  無電解めっき装置
 3,3a  めっき液供給部
 4,4a  めっき反応促進部
 9  基板
 11  コンピュータ
 21,21a  基板保持部
 31  混合ノズル
 31a  ノズル
 32  ミキシングバルブ
 41,41a,41b  ヒータ
 91  (基板の)上面
 92  (基板の)下面
 93,93a  (めっき液の)液層
 110  制御部
 311,320  混合室
 312  吐出口
 810  プログラム
 S11~S19  ステップ
DESCRIPTION OF SYMBOLS 1,1a Electroless plating apparatus 3,3a Plating solution supply part 4,4a Plating reaction promotion part 9 Substrate 11 Computer 21,21a Substrate holding part 31 Mixing nozzle 31a Nozzle 32 Mixing valve 41, 41a, 41b Heater 91 (Substrate) Upper surface 92 (Substrate) lower surface 93, 93a (Plating solution) liquid layer 110 Control unit 311, 320 Mixing chamber 312 Discharge port 810 Program S11 to S19 Steps

Claims (27)

  1.  無電解めっき方法であって、
     a)水平状態の基板の一の主面に向けてノズルからめっき液を吐出することにより、前記一の主面を覆う前記めっき液の液層を形成する工程と、
     b)前記ノズルから前記一の主面への前記めっき液の吐出を停止し、かつ、前記一の主面上において前記液層を保持した状態で、前記液層の加熱、または、前記液層の揺動を開始することにより、前記一の主面における無電解めっき反応を促進させる工程と、
    を備える。
    An electroless plating method,
    a) forming a liquid layer of the plating solution covering the one main surface by discharging the plating solution from a nozzle toward one main surface of the substrate in a horizontal state;
    b) Stopping the discharge of the plating solution from the nozzle to the one main surface and holding the liquid layer on the one main surface, heating the liquid layer, or the liquid layer Accelerating the electroless plating reaction on the one main surface by starting the oscillation of
    Is provided.
  2.  請求項1に記載の無電解めっき方法であって、
     前記めっき液が、めっき金属の金属塩、および、前記めっき金属のイオンを還元析出させる還元剤を含み、めっき液の分解を防止する安定剤、または、錯化剤を含まない。
    The electroless plating method according to claim 1,
    The plating solution contains a metal salt of a plating metal and a reducing agent that reduces and deposits ions of the plating metal, and does not contain a stabilizer or a complexing agent that prevents decomposition of the plating solution.
  3.  請求項2に記載の無電解めっき方法であって、
     前記a)工程において、前記ノズルから前記めっき液を吐出する直前に、前記金属塩を含む第1薬液と、前記還元剤を含む第2薬液とを混合することにより、前記めっき液が生成される。
    The electroless plating method according to claim 2,
    In the step a), just before discharging the plating solution from the nozzle, the plating solution is generated by mixing the first chemical solution containing the metal salt and the second chemical solution containing the reducing agent. .
  4.  請求項1に記載の無電解めっき方法であって、
     前記a)工程において、前記ノズルから前記めっき液を吐出する直前に、めっき金属の金属塩を含む第1薬液と、前記めっき金属のイオンを還元析出させる還元剤を含む第2薬液とを混合することにより、前記めっき液が生成される。
    The electroless plating method according to claim 1,
    In the step a), immediately before discharging the plating solution from the nozzle, a first chemical solution containing a metal salt of a plating metal and a second chemical solution containing a reducing agent for reducing and depositing ions of the plating metal are mixed. Thus, the plating solution is generated.
  5.  請求項3または4に記載の無電解めっき方法であって、
     前記第1薬液と前記第2薬液とが、前記ノズル内で混合される。
    The electroless plating method according to claim 3 or 4,
    The first chemical liquid and the second chemical liquid are mixed in the nozzle.
  6.  請求項3または4に記載の無電解めっき方法であって、
     前記ノズルに接続されたミキシングバルブにおいて、前記第1薬液と前記第2薬液とが混合される。
    The electroless plating method according to claim 3 or 4,
    In the mixing valve connected to the nozzle, the first chemical liquid and the second chemical liquid are mixed.
  7.  請求項3ないし6のいずれか1つに記載の無電解めっき方法であって、
     前記b)工程の後、前記一の主面に向けて前記ノズルからリンス液を吐出する工程をさらに備え、
     前記リンス液の吐出の際に、前記第1薬液と前記第2薬液との混合位置から前記ノズルの吐出口へと至る流路を前記リンス液が通過する。
    The electroless plating method according to any one of claims 3 to 6,
    After the step b), further comprising a step of discharging a rinsing liquid from the nozzle toward the one main surface,
    When the rinsing liquid is discharged, the rinsing liquid passes through a flow path from the mixing position of the first chemical liquid and the second chemical liquid to the discharge port of the nozzle.
  8.  請求項1ないし7のいずれか1つに記載の無電解めっき方法であって、
     c)前記b)工程の後、前記一の主面上の前記めっき液の前記液層に向けて前記ノズルから新たなめっき液を吐出することにより、前記一の主面を覆う前記新たなめっき液の液層を形成する工程と、
     d)前記ノズルから前記一の主面への前記新たなめっき液の吐出を停止し、かつ、前記一の主面上において前記新たなめっき液の前記液層を保持した状態で、前記液層の加熱、または、前記液層の揺動を行うことにより、前記一の主面における無電解めっき反応を促進させる工程と、
    をさらに備える。
    The electroless plating method according to any one of claims 1 to 7,
    c) After the step b), the new plating covering the one main surface by discharging a new plating solution from the nozzle toward the liquid layer of the plating solution on the one main surface. Forming a liquid layer of liquid;
    d) In the state where the discharge of the new plating solution from the nozzle to the one main surface is stopped and the liquid layer of the new plating solution is held on the one main surface, the liquid layer Or a step of accelerating an electroless plating reaction on the one main surface by performing the heating of the liquid layer or swinging the liquid layer,
    Is further provided.
  9.  請求項1ないし7のいずれか1つに記載の無電解めっき方法であって、
     c)前記b)工程の後、前記基板を回転することにより前記めっき液の前記液層を除去し、続いて、前記一の主面に向けて前記ノズルから新たなめっき液を吐出することにより、前記一の主面を覆う前記新たなめっき液の液層を形成する工程と、
     d)前記ノズルから前記一の主面への前記新たなめっき液の吐出を停止し、かつ、前記一の主面上において前記新たなめっき液の前記液層を保持した状態で、前記液層の加熱、または、前記液層の揺動を行うことにより、前記一の主面における無電解めっき反応を促進させる工程と、
    をさらに備える。
    The electroless plating method according to any one of claims 1 to 7,
    c) After the step b), the liquid layer of the plating solution is removed by rotating the substrate, and then a new plating solution is discharged from the nozzle toward the one main surface. Forming a liquid layer of the new plating solution covering the one main surface;
    d) In the state where the discharge of the new plating solution from the nozzle to the one main surface is stopped and the liquid layer of the new plating solution is held on the one main surface, the liquid layer Or a step of accelerating an electroless plating reaction on the one main surface by performing the heating of the liquid layer or swinging the liquid layer,
    Is further provided.
  10.  請求項8または9に記載の無電解めっき方法であって、
     前記c)およびd)工程を繰り返す工程をさらに備える。
    The electroless plating method according to claim 8 or 9,
    The method further includes the step of repeating the steps c) and d).
  11.  請求項1ないし10のいずれか1つに記載の無電解めっき方法であって、
     前記a)工程において、ヒータによる前記液層の加熱がOFF状態とされ、
     前記b)工程において、前記ヒータによる前記液層の加熱がON状態とされる。
    The electroless plating method according to any one of claims 1 to 10,
    In the step a), the heating of the liquid layer by the heater is turned off,
    In the step b), the heating of the liquid layer by the heater is turned on.
  12.  請求項8ないし10のいずれか1つに記載の無電解めっき方法であって、
     前記a)およびc)工程において、ヒータによる前記液層の加熱がOFF状態とされ、
     前記b)およびd)工程において、前記ヒータによる前記液層の加熱がON状態とされる。
    The electroless plating method according to any one of claims 8 to 10,
    In the steps a) and c), the heating of the liquid layer by the heater is turned off,
    In the steps b) and d), the heating of the liquid layer by the heater is turned on.
  13.  請求項11または12に記載の無電解めっき方法であって、
     前記ヒータが、前記基板の他の主面に対向し、
     前記ON状態において、前記ヒータが前記他の主面に近接または接触する位置に配置され、
     前記OFF状態において、前記ヒータが前記他の主面から離間した位置に配置される。
    The electroless plating method according to claim 11 or 12,
    The heater faces the other main surface of the substrate;
    In the ON state, the heater is disposed at a position close to or in contact with the other main surface,
    In the OFF state, the heater is disposed at a position separated from the other main surface.
  14.  請求項1ないし13のいずれか1つに記載の無電解めっき方法であって、
     前記b)工程において、前記めっき液の前記液層が加熱されるとともに、前記一の主面上にて前記液層を保持した状態で、前記基板が回転される。
    The electroless plating method according to any one of claims 1 to 13,
    In the step b), the substrate is rotated while the liquid layer of the plating solution is heated and the liquid layer is held on the one main surface.
  15.  請求項1ないし13のいずれか1つに記載の無電解めっき方法であって、
     前記b)工程において、前記一の主面上にて前記めっき液の前記液層を保持した状態で、前記基板が回転される、または、前記基板に振動が付与される。
    The electroless plating method according to any one of claims 1 to 13,
    In the step b), the substrate is rotated or vibration is applied to the substrate while the liquid layer of the plating solution is held on the one main surface.
  16.  無電解めっき装置であって、
     基板を水平状態で保持する基板保持部と、
     前記基板の一の主面に向けてノズルからめっき液を吐出することにより、前記一の主面を覆う前記めっき液の液層を形成するめっき液供給部と、
     前記液層の加熱、または、前記液層の揺動を行うめっき反応促進部と、
     前記ノズルから前記一の主面への前記めっき液の吐出を停止し、かつ、前記一の主面上において前記液層を保持した状態で、前記めっき反応促進部による前記液層の加熱、または、前記液層の揺動を開始することにより、前記一の主面における無電解めっき反応を促進させる制御部と、
    を備える。
    An electroless plating apparatus,
    A substrate holding part for holding the substrate in a horizontal state;
    A plating solution supply unit that forms a liquid layer of the plating solution covering the one main surface by discharging the plating solution from the nozzle toward the one main surface of the substrate;
    A plating reaction accelerating unit that heats the liquid layer or swings the liquid layer;
    Heating of the liquid layer by the plating reaction promoting unit in a state where the discharge of the plating solution from the nozzle to the one main surface is stopped and the liquid layer is held on the one main surface, or A control unit that promotes an electroless plating reaction on the one main surface by initiating rocking of the liquid layer;
    Is provided.
  17.  請求項16に記載の無電解めっき装置であって、
     前記めっき液が、めっき金属の金属塩、および、前記めっき金属のイオンを還元析出させる還元剤を含み、めっき液の分解を防止する安定剤、または、錯化剤を含まない。
    The electroless plating apparatus according to claim 16,
    The plating solution contains a metal salt of a plating metal and a reducing agent that reduces and deposits ions of the plating metal, and does not contain a stabilizer or a complexing agent that prevents decomposition of the plating solution.
  18.  請求項16に記載の無電解めっき装置であって、
     前記めっき液供給部が、前記ノズルから前記めっき液を吐出する直前に、めっき金属の金属塩を含む第1薬液と、前記めっき金属のイオンを還元析出させる還元剤を含む第2薬液とを混合することにより、前記めっき液を生成する。
    The electroless plating apparatus according to claim 16,
    Immediately before the plating solution supply unit discharges the plating solution from the nozzle, the first chemical solution containing the metal salt of the plating metal and the second chemical solution containing the reducing agent for reducing and depositing ions of the plating metal are mixed. By doing so, the plating solution is generated.
  19.  請求項18に記載の無電解めっき装置であって、
     前記液層を用いた無電解めっきの後、前記めっき液供給部が、前記一の主面に向けて前記ノズルからリンス液を吐出し、
     前記リンス液の吐出の際に、前記第1薬液と前記第2薬液との混合位置から前記ノズルの吐出口へと至る流路を前記リンス液が通過する。
    The electroless plating apparatus according to claim 18,
    After the electroless plating using the liquid layer, the plating liquid supply unit discharges a rinsing liquid from the nozzle toward the one main surface,
    When the rinsing liquid is discharged, the rinsing liquid passes through a flow path from the mixing position of the first chemical liquid and the second chemical liquid to the discharge port of the nozzle.
  20.  請求項16ないし19のいずれか1つに記載の無電解めっき装置であって、
     前記めっき反応促進部が、前記液層の加熱を行うヒータを備え、
     前記液層を形成する際に、前記ヒータによる前記液層の加熱がOFF状態とされ、
     前記無電解めっき反応を促進させる際に、前記ヒータによる前記液層の加熱がON状態とされる。
    The electroless plating apparatus according to any one of claims 16 to 19,
    The plating reaction promoting part includes a heater for heating the liquid layer,
    When forming the liquid layer, heating of the liquid layer by the heater is turned off,
    When the electroless plating reaction is promoted, the heating of the liquid layer by the heater is turned on.
  21.  請求項20に記載の無電解めっき装置であって、
     前記ヒータが、前記基板の他の主面に対向し、
     前記ON状態において、前記ヒータが前記他の主面に近接または接触する位置に配置され、
     前記OFF状態において、前記ヒータが前記他の主面から離間した位置に配置される。
    The electroless plating apparatus according to claim 20,
    The heater faces the other main surface of the substrate;
    In the ON state, the heater is disposed at a position close to or in contact with the other main surface,
    In the OFF state, the heater is disposed at a position separated from the other main surface.
  22.  基板保持部、めっき液供給部、および、めっき反応促進部を備える無電解めっき装置の制御を、コンピュータに行わせるプログラムであって、前記プログラムの前記コンピュータによる実行は、前記コンピュータに、
     a)前記基板保持部により水平状態で保持される基板の一の主面に向けて、前記めっき液供給部のノズルからめっき液を吐出することにより、前記一の主面を覆う前記めっき液の液層を形成する工程と、
     b)前記ノズルから前記一の主面への前記めっき液の吐出を停止し、かつ、前記一の主面上において前記液層を保持した状態で、前記めっき反応促進部による前記液層の加熱、または、前記液層の揺動を開始することにより、前記一の主面における無電解めっき反応を促進させる工程と、
    を実行させる。
    A program for causing a computer to control an electroless plating apparatus including a substrate holding unit, a plating solution supply unit, and a plating reaction promoting unit, and executing the program by the computer
    a) The plating solution covering the one main surface by discharging the plating solution from the nozzle of the plating solution supply unit toward one main surface of the substrate held in a horizontal state by the substrate holding unit. Forming a liquid layer;
    b) Heating of the liquid layer by the plating reaction promoting unit in a state where the discharge of the plating solution from the nozzle to the one main surface is stopped and the liquid layer is held on the one main surface. Or a step of accelerating an electroless plating reaction on the one main surface by initiating rocking of the liquid layer;
    Is executed.
  23.  請求項22に記載のプログラムであって、
     前記めっき液が、めっき金属の金属塩、および、前記めっき金属のイオンを還元析出させる還元剤を含み、めっき液の分解を防止する安定剤、または、錯化剤を含まない。
    The program according to claim 22, wherein
    The plating solution contains a metal salt of a plating metal and a reducing agent that reduces and deposits ions of the plating metal, and does not contain a stabilizer or a complexing agent that prevents decomposition of the plating solution.
  24.  請求項22に記載のプログラムであって、
     前記a)工程において、前記ノズルから前記めっき液を吐出する直前に、めっき金属の金属塩を含む第1薬液と、前記めっき金属のイオンを還元析出させる還元剤を含む第2薬液とを混合することにより、前記めっき液が生成される。
    The program according to claim 22, wherein
    In the step a), immediately before discharging the plating solution from the nozzle, a first chemical solution containing a metal salt of a plating metal and a second chemical solution containing a reducing agent for reducing and depositing ions of the plating metal are mixed. Thus, the plating solution is generated.
  25.  請求項24に記載のプログラムであって、
     前記b)工程の後、前記一の主面に向けて前記ノズルからリンス液を吐出する工程をさらに実行させ、
     前記リンス液の吐出の際に、前記第1薬液と前記第2薬液との混合位置から前記ノズルの吐出口へと至る流路を前記リンス液が通過する。
    A program according to claim 24, wherein
    After the step b), a step of discharging a rinsing liquid from the nozzle toward the one main surface is further executed,
    When the rinsing liquid is discharged, the rinsing liquid passes through a flow path from the mixing position of the first chemical liquid and the second chemical liquid to the discharge port of the nozzle.
  26.  請求項22ないし25のいずれか1つに記載のプログラムであって、
     前記めっき反応促進部が、前記液層の加熱を行うヒータを備え、
     前記a)工程において、前記ヒータによる前記液層の加熱がOFF状態とされ、
     前記b)工程において、前記ヒータによる前記液層の加熱がON状態とされる。
    A program according to any one of claims 22 to 25,
    The plating reaction promoting part includes a heater for heating the liquid layer,
    In the step a), the heating of the liquid layer by the heater is turned off,
    In the step b), the heating of the liquid layer by the heater is turned on.
  27.  請求項26に記載のプログラムであって、
     前記ヒータが、前記基板の他の主面に対向し、
     前記ON状態において、前記ヒータが前記他の主面に近接または接触する位置に配置され、
     前記OFF状態において、前記ヒータが前記他の主面から離間した位置に配置される。
    The program according to claim 26, wherein
    The heater faces the other main surface of the substrate;
    In the ON state, the heater is disposed at a position close to or in contact with the other main surface,
    In the OFF state, the heater is disposed at a position separated from the other main surface.
PCT/JP2019/019134 2018-06-13 2019-05-14 Electroless plating method and electroless plating apparatus and program WO2019239772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112995 2018-06-13
JP2018112995A JP7030020B2 (en) 2018-06-13 2018-06-13 Electroless plating method, electroless plating equipment and programs

Publications (1)

Publication Number Publication Date
WO2019239772A1 true WO2019239772A1 (en) 2019-12-19

Family

ID=68843257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019134 WO2019239772A1 (en) 2018-06-13 2019-05-14 Electroless plating method and electroless plating apparatus and program

Country Status (3)

Country Link
JP (1) JP7030020B2 (en)
TW (1) TWI720503B (en)
WO (1) WO2019239772A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467264B2 (en) 2020-07-14 2024-04-15 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method and nozzle
KR102588826B1 (en) * 2021-09-01 2023-10-12 동아대학교 산학협력단 electroless nickel plating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050668A (en) * 1973-09-06 1975-05-07
JPS60202985A (en) * 1984-03-28 1985-10-14 日立化成工業株式会社 Method of producing printed circuit board
JPH11510219A (en) * 1995-12-19 1999-09-07 エフエスアイ インターナショナル インコーポレイテッド Electroless plating of metal films using a spray processor.
JP2003073845A (en) * 2001-08-29 2003-03-12 Sony Corp Rotary plating apparatus and plating method
JP2016079439A (en) * 2014-10-14 2016-05-16 四国化成工業株式会社 Copper film formation agent and its application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050668A (en) * 1973-09-06 1975-05-07
JPS60202985A (en) * 1984-03-28 1985-10-14 日立化成工業株式会社 Method of producing printed circuit board
JPH11510219A (en) * 1995-12-19 1999-09-07 エフエスアイ インターナショナル インコーポレイテッド Electroless plating of metal films using a spray processor.
JP2003073845A (en) * 2001-08-29 2003-03-12 Sony Corp Rotary plating apparatus and plating method
JP2016079439A (en) * 2014-10-14 2016-05-16 四国化成工業株式会社 Copper film formation agent and its application

Also Published As

Publication number Publication date
JP7030020B2 (en) 2022-03-04
TW202014557A (en) 2020-04-16
JP2019214776A (en) 2019-12-19
TWI720503B (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6707386B2 (en) Plating apparatus, plating method and storage medium
WO2019239772A1 (en) Electroless plating method and electroless plating apparatus and program
KR20100009467A (en) Supply apparatus, semiconductor manufacturing apparatus and semiconductor manufacturing method
KR102651512B1 (en) Plating apparatus, plating method and recording medium
JP3485561B1 (en) Electroless plating method and electroless plating apparatus
US20040062861A1 (en) Method of electroless plating and apparatus for electroless plating
JP5631815B2 (en) Plating treatment method, plating treatment apparatus, and storage medium
KR102286317B1 (en) Forming method of hard mask, forming apparatus of hard mask and recording medium
JP4593662B2 (en) Cap metal forming method
KR102456511B1 (en) Plating processing method, plating processing apparatus and storage medium
JP6815828B2 (en) Plating method, plating equipment and storage medium
JP7467264B2 (en) Substrate processing apparatus, substrate processing method and nozzle
KR102617194B1 (en) Plating processing method, plating processing device, and storage medium
WO2021070659A1 (en) Substrate liquid treatment apparatus and substrate liquid treatment method
KR102481255B1 (en) Plating method, plating device and storage medium
WO2018070127A1 (en) Substrate processing system
TW202321525A (en) Substrate liquid treatment device and substrate liquid treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819296

Country of ref document: EP

Kind code of ref document: A1