WO2019235651A1 - エンジン冷却装置及びエンジンシステム - Google Patents

エンジン冷却装置及びエンジンシステム Download PDF

Info

Publication number
WO2019235651A1
WO2019235651A1 PCT/JP2019/031034 JP2019031034W WO2019235651A1 WO 2019235651 A1 WO2019235651 A1 WO 2019235651A1 JP 2019031034 W JP2019031034 W JP 2019031034W WO 2019235651 A1 WO2019235651 A1 WO 2019235651A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cooling water
engine
valve
radiator
Prior art date
Application number
PCT/JP2019/031034
Other languages
English (en)
French (fr)
Inventor
松本 和也
真 野林
鴨志田 安洋
渡邉 誠
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US16/649,724 priority Critical patent/US11047291B2/en
Priority to CN201980003546.3A priority patent/CN110959067B/zh
Priority to PCT/JP2019/031034 priority patent/WO2019235651A1/ja
Priority to DE112019000061.6T priority patent/DE112019000061T5/de
Priority to JP2019547331A priority patent/JP7311421B2/ja
Publication of WO2019235651A1 publication Critical patent/WO2019235651A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine cooling device and an engine system.
  • Patent Document 1 discloses an engine cooling device including a valve (thermostat) that switches a circulation path of cooling water in accordance with the temperature of the cooling water.
  • a valve thermostat
  • the valve when the engine is warming up (when the cooling water is lower than a predetermined temperature), the valve is closed and the cooling water is circulated between the pump and the engine.
  • the cooling water reaches a predetermined temperature or higher, the valve is opened and the cooling water is circulated through the pump, the engine, and the radiator in order.
  • EGR gas exhaust gas recirculation gas
  • This type of engine system includes an EGR cooler for cooling the EGR gas.
  • the engine cooling device is configured to supply cooling water from the pump to both the engine and the EGR cooler. However, during the warm-up operation of the engine, the cooling water does not circulate to the radiator, so the pressure of the cooling water tends to increase in proportion to the increase in the temperature of the cooling water.
  • the durability (pressure resistance) of the EGR cooler with respect to the pressure of the cooling water is often lower than the durability of the engine, it is not preferable that the pressure of the cooling water becomes high. It is also conceivable to suppress an increase in the pressure of the cooling water by opening the valve at a low temperature and circulating the cooling water to the radiator. However, in this case, there is a problem that the engine is difficult to warm and the warm-up operation of the engine is prolonged.
  • the present invention has been made in view of such a problem, and provides an engine cooling device capable of protecting an EGR cooler and suppressing the engine warm-up time from increasing, and an engine system including the same.
  • the purpose is to do.
  • An engine cooling device includes a pump that supplies cooling water from a discharge port to an engine and an EGR cooler, the cooling water from the engine and the EGR cooler, and an outlet for the cooling water.
  • a radiator connected to a suction port of the pump, a flow path switching unit provided in the course of the cooling water from the engine and the EGR cooler to the radiator, and the flow path switching unit and the radiator are connected.
  • a first valve that causes the cooling water to flow through the first bypass flow path when the temperature is less than the first predetermined temperature, and causes the cooling water to flow through the radiator connection flow path when the temperature is equal to or higher than the first predetermined temperature. And when the temperature of the cooling water is lower than a second predetermined temperature that is higher than the first predetermined temperature, the cooling water is circulated through the first bypass flow path and is equal to or higher than the second predetermined temperature.
  • a second valve that causes the cooling water to flow through the radiator connection flow path in some cases, and the number of the first valves is smaller than the number of the second valves.
  • An engine system includes an engine, an EGR cooler, and the engine cooling device.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • FIG. 5 is a VV cross-sectional view of FIG. 4. It is a flow-path switching part in the engine system concerning one embodiment of the present invention, and is a sectional view showing the state where the 1st valve and the 2nd valve are opened.
  • the engine system according to the present embodiment is mounted on an arbitrary work vehicle such as a dump truck, a wheel loader, or a motor grader.
  • the engine system 1 includes an engine 2, an EGR cooler 3, and an engine cooling device 4 that cools the engine 2 and the EGR cooler 3 with cooling water.
  • the arrows in FIG. 1 indicate the direction in which the cooling water flows in the engine system 1.
  • the engine 2 includes a cylinder, a cylinder block, a cylinder head, and the like.
  • the cylinder head and the cylinder block are provided with a first cooling flow path EF through which cooling water flows.
  • the engine 2 is cooled by cooling water flowing through the first cooling flow path EF.
  • the EGR cooler 3 cools the EGR gas that is a part of the exhaust gas discharged from the engine 2.
  • the EGR cooler 3 is provided with a second cooling flow path CF through which cooling water flows.
  • the EGR gas passing through the EGR cooler 3 is cooled by exchanging heat with the cooling water flowing through the second cooling flow path CF.
  • the engine cooling device 4 includes a pump 5, a radiator 6, and a flow path switching unit 7.
  • the engine cooling device 4 of this embodiment further includes an oil cooler 8.
  • the engine cooling device 4 of the present embodiment further includes an antifoaming tank 9.
  • the pump 5 supplies cooling water to the engine 2 and the EGR cooler 3 from the discharge port 5b.
  • the discharge port 5 b of the pump 5 is connected to the inlet EFa of the first cooling channel EF of the engine 2 and the inlet CFa of the second cooling channel CF of the EGR cooler 3.
  • the pump 5 is driven by the power of the engine 2. The pump 5 always operates while the engine 2 is driven.
  • the radiator 6 exchanges heat between the cooling water that flows through the first cooling flow path EF of the engine 2 and the second cooling flow path CF of the EGR cooler 3 and is warmed by the engine 2 and the EGR cooler 3 and the outside air. Cool the cooling water that has become hot.
  • a cooling water outlet 6 b of the radiator 6 is connected to a suction port 5 a of the pump 5. That is, the cooling water cooled in the radiator 6 flows toward the pump 5.
  • the outlet 6b of the cooling water in the radiator 6 may be directly connected to the suction port 5a of the pump 5, for example. In this embodiment, it is connected to the suction port 5a of the pump 5 via an oil cooler 8 described later.
  • the radiator 6 includes a core 11 and an upper tank 12.
  • the core 11 performs heat exchange between the cooling water and the outside air. Specifically, heat exchange is performed between cooling water flowing through a tube (not shown) of the core 11 and the outside air around the tube.
  • the upper tank 12 is provided on the upper side of the core 11, stores cooling water flowing in from the engine 2 and the EGR cooler 3, and supplies the cooling water to the core 11.
  • a radiator cap 13 is detachably provided on the upper tank 12. By removing the radiator cap 13, the cooling water can be supplied to the upper tank 12 from the outside of the circulation path of the cooling water in the engine cooling device 4.
  • the oil cooler 8 cools the brake oil used for the brake of the work vehicle.
  • the oil cooler 8 is connected to a cooling water outlet 6 b in the radiator 6. Thereby, the cooling water from the radiator 6 passes through the oil cooler 8, and the brake oil can be cooled by exchanging heat between the cooling water and the brake oil.
  • the cooling water outlet 8 b in the oil cooler 8 is connected to the suction port 5 a of the pump 5. As a result, the cooling water flows through the radiator 6 and the oil cooler 8 in order, and then returns to the pump 5.
  • the defoaming tank 9 is connected to the engine 2, the EGR cooler 3, and the upper tank 12.
  • the defoaming tank 9 is connected to the suction port 5 a of the pump 5.
  • the defoaming tank 9 collects cooling water containing air bubbles from the engine 2, the EGR cooler 3, and the upper tank 12, and separates and removes the air bubbles from the cooling water.
  • the cooling water from which the bubbles are removed flows from the defoaming tank 9 to the pump 5. Further, since the defoaming tank 9 and the upper tank 12 are connected, the pressure of the cooling water in the upper tank 12 and the defoaming tank 9 is kept even.
  • the defoaming tank 9 has a relief cap 14. The relief cap 14 opens when the pressure of the cooling water in the defoaming tank 9 and the circulation path of the cooling water connected thereto reaches a predetermined pressure, and prevents the pressure from becoming excessively high.
  • the flow path switching unit 7 is provided in the course of the cooling water path from the engine 2 and the EGR cooler 3 toward the radiator 6, that is, provided between the engine 2 and the EGR cooler 3 and the radiator 6. Between the flow path switching unit 7 and the radiator 6, a radiator connection flow path 15 that connects them is provided. Further, a first bypass flow path 16 that connects these is provided between the flow path switching unit 7 and the pump 5. Furthermore, a second bypass flow path 17 is provided between the flow path switching unit 7 and the oil cooler 8 to connect them.
  • the flow path switching unit 7 is configured to flow the cooling water from the engine 2 and the EGR cooler 3 to the radiator connection flow path 15 and one or both of the first and second bypass flow paths 16 and 17. Switch.
  • the flow path switching unit 7 includes a plurality of valves 20 ⁇ / b> A and 20 ⁇ / b> B and a housing 30 that houses the plurality of valves 20 ⁇ / b> A and 20 ⁇ / b> B.
  • ⁇ Housing> In the housing 30, an inflow side flow path 31, a first outflow side flow path 32, and a second outflow side flow path 33 are formed.
  • the inflow side channel 31 has an inlet 31a connected to the first cooling channel EF of the engine 2 and the outlets EFb, CFb (see FIG. 1) of the second cooling channel CF of the EGR cooler 3.
  • the first outflow side channel 32 has a pump side outflow port 32 a that connects the first bypass channel 16 and an oil cooler side outflow port 32 b that connects the second bypass channel 17.
  • the pump side outlet 32a and the oil cooler side outlet 32b are located at a distance from each other.
  • the pump side outflow port 32a and the oil cooler side outflow port 32b are located at both ends of the first outflow side flow path 32 (housing 30) in one direction (lateral direction in FIG. 2).
  • the second outflow side flow path 33 has a radiator side outflow port 33 a that connects the radiator connection flow path 15.
  • the number of the radiator side outflow ports 33a may be one, for example, in this embodiment, it is plural.
  • the plurality of radiator side outlets 33a are arranged at intervals in the lateral direction. In the housing 30 illustrated in FIG. 2, the number of radiator side outlets 33 a is two.
  • the inflow side flow path 31, the first outflow side flow path 32, and the second outflow side flow path 33 are in a state in which the inflow side flow path 31 and the first outflow side flow path 32 communicate with each other by valves 20A and 20B described later.
  • the inflow side flow path 31 and the second outflow side flow path 33 may be relatively arranged so as to be switched to a state in which they communicate.
  • the inflow side flow path 31, the second outflow side flow path 33, and the first outflow side flow path 32 are longitudinally intersecting the horizontal direction in which the pump side outflow port 32a and the oil cooler side outflow port 32b are arranged. They are arranged in order from the bottom in the vertical direction in FIGS.
  • the second outflow side channel 33 is also located above the first outflow side channel 32 in the vertical direction.
  • the second outflow side flow path 33 includes a lower flow path portion 34 positioned below the first outflow side flow path 32, and an upper side of the first outflow side flow path 32.
  • An upper flow path portion 35 located in the depth direction, and a connection flow path portion 36 that is located next to the first outflow side flow path 32 in the depth direction and connects the lower flow path portion 34 and the upper flow path portion 35.
  • the radiator side outlet 33 a described above opens to the upper flow path portion 35.
  • the lower flow path part 34 of the second outflow side flow path 33 is connected to the inflow side flow path 31 by a first hole 37 formed in the housing 30.
  • a plurality (three in the present embodiment) of the first holes 37 are arranged at intervals in the lateral direction.
  • the lower flow path portion 34 of the second outflow side flow path 33 is connected to the first outflow side flow path 32 by a second hole 38 formed in the housing 30.
  • a plurality (three in the present embodiment) of the second holes 38 are arranged at intervals in the lateral direction so as to be positioned above the first holes 37.
  • the central axes of the first hole 37 and the second hole 38 aligned in the vertical direction are coaxial.
  • the 1st hole 37 and the 2nd hole 38 are utilized for installation of valves 20A and 20B mentioned below.
  • Each valve 20A, 20B is a thermostat that operates according to the temperature of the cooling water.
  • Each valve 20A, 20B connects the inflow side flow path 31 to the first outflow side flow path 32 when the temperature of the cooling water is lower than a predetermined temperature, and allows the cooling water to flow through the first bypass flow path 16 and the second bypass flow. Distribute to the road 17. Further, each of the valves 20 ⁇ / b> A and 20 ⁇ / b> B causes the inflow side flow path 31 to communicate with the second outflow side flow path 33 to flow the cooling water to the radiator connection flow path 15 when the temperature of the cooling water is equal to or higher than a predetermined temperature.
  • each of the valves 20A and 20B is installed in the housing 30 at a position corresponding to the first hole 37 and the second hole 38 aligned in the vertical direction.
  • Each of the valves 20A and 20B includes a valve body 21 formed in a cylindrical shape extending in the longitudinal direction, an annular flange portion 22 projecting radially outward with respect to the valve body 21, and the valve body 21 is driven in the longitudinal direction. And an actuator 23.
  • the valve body 21 has a through-hole 21a penetrating in the vertical direction.
  • the valve main body 21 is inserted through the second hole 38, and the lower opening of the valve main body 21 is arranged to face the first hole 37.
  • the valve body 21 is movable in the vertical direction.
  • the flange portion 22 is fixed to the housing 30 on the lower side of the valve body 21.
  • the flange portion 22 is disposed so as to surround the first hole 37 on the inner surface side of the lower flow path portion 34 where the first hole 37 is opened.
  • the actuator 23 moves the valve body 21 of the valves 20A and 20B downward and contacts the lower end of the valve body 21 with the flange portion 22 when the temperature of the cooling water is lower than a predetermined temperature, as shown in FIGS.
  • a gap is formed between the upper end of the valve main body 21 and the top surface 32 c of the first outflow side flow path 32, and the inflow side flow path 31 passes through the first hole 37 and the through hole 21 a of the valve main body 21. It communicates with one outflow channel 32.
  • the inflow side flow path 31 does not communicate with the second outflow side flow path 33.
  • this state may be referred to as a state in which the valves 20A and 20B are closed.
  • the actuator 23 moves the valve body 21 of the valves 20A and 20B upward and causes the upper end of the valve body 21 to flow out from the first when the temperature of the cooling water is equal to or higher than a predetermined temperature, as shown in FIGS.
  • the top surface 32c of the side channel 32 is brought into contact. In this state, a gap is formed between the lower end of the valve body 21 and the flange portion 22, and the inflow side flow channel 31 communicates with the lower flow channel portion 34 of the second outflow side flow channel 33 through the first hole 37. .
  • this state may be referred to as a state in which the valves 20A and 20B are opened.
  • the plurality of valves 20A and 20B include a first valve 20A having a relatively low operating temperature and a second valve 20B having a higher operating temperature than the first valve 20A.
  • the first valve 20 ⁇ / b> A allows the inflow side flow path 31 to be connected to the first outflow side when the temperature of the cooling water is lower than a first predetermined temperature (hereinafter referred to as the first temperature). Cooling water is circulated through the first bypass channel 16 and the second bypass channel 17 in communication with the channel 32. Further, as shown in FIGS.
  • the first valve 20A communicates the inflow side flow path 31 with the second outflow side flow path 33 when the temperature of the cooling water is equal to or higher than the first temperature. It distribute
  • the second valve 20 ⁇ / b> B is inflow side when the temperature of the cooling water is lower than a second predetermined temperature (hereinafter referred to as the second temperature) higher than the first temperature.
  • the flow path 31 is communicated with the first outflow side flow path 32 so that the cooling water flows through the first bypass flow path 16 and the second bypass flow path 17.
  • the second valve 20B connects the inflow side flow path 31 to the second outflow side flow path 33 and connects the cooling water to the radiator when the temperature of the cooling water is equal to or higher than the second temperature. It is made to distribute
  • the number of first valves 20A is smaller than the number of second valves 20B.
  • the specific number of the first valve 20A and the second valve 20B may be arbitrary. In the present embodiment, the number of first valves 20A is one, and the number of second valves 20B is two. Further, the first valve 20A and the second valve 20B are arranged laterally between the pump side outlet 32a and the oil cooler side outlet 32b so that the first valve 20A is disposed between the second valves 20B. Arranged. That is, the second valve 20B is disposed on both sides of the first valve 20A in the lateral direction. The number of second valves 20B arranged on both sides of the first valve 20A may be different from each other, for example, but more preferably equal to each other.
  • the plurality of radiator-side outlets 33a formed in the housing 30 are located at positions where the distances from the first valve 20A to the radiator-side outlets 33a in the second outlet-side flow path 33 are equal to each other. It is arranged.
  • one first valve 20A is positioned in the middle of the two radiator side outlets 33a in the lateral direction.
  • the plurality of radiator-side outlets 33a are located at positions where the distances from the valve group including the plurality of first valves 20A to the radiator-side outlets 33a are equal to each other. It may be arranged.
  • the first valve 20A is opened as shown in FIGS. 4 and 5, but the second valve 20B is maintained in a closed state. That is, the valve body 21 of the first valve 20A is positioned on the upper side, and the valve body 21 of the second valve 20B is positioned on the lower side. For this reason, a part of the cooling water that has flowed into the inflow side flow path 31 of the flow path switching unit 7 passes through the gap between the valve main body 21 and the flange portion 22 of the first valve 20 ⁇ / b> A and is below the second outflow side flow path 33. It distribute
  • the remaining portion of the cooling water that has flowed into the inflow side flow path 31 flows into the first outflow side flow path 32 through the first hole 37 corresponding to the second valve 20B and the through hole 21a of the valve body 21, and the pump side flow.
  • the gas flows from the outlet 32a and the oil cooler side outlet 32b to the first bypass passage 16 and the second bypass passage 17, and flows toward the pump 5 and the oil cooler 8. That is, in the state shown in FIGS. 4 and 5, the cooling water flows from the flow path switching unit 7 toward the radiator 6, the pump 5, and the oil cooler 8.
  • the flow rate of the cooling water flowing from the flow path switching unit 7 to the radiator 6 is larger than the flow rate of the cooling water flowing to the pump 5 and the oil cooler 8. Is also small. Thereby, even in the state shown in FIGS. 4 and 5, the temperature of the cooling water can be efficiently increased by the engine 2 or the EGR cooler 3.
  • both the first valve 20A and the second valve 20B are opened as shown in FIG. That is, the valve bodies 21 of the first valve 20A and the second valve 20B are positioned on the upper side. For this reason, all the cooling water flowing into the inflow side flow path 31 of the flow path switching unit 7 from the engine 2 and the EGR cooler 3 is a gap between the valve body 21 and the flange portion 22 of the first and second valves 20A and 20B. It flows through the second outflow side flow path 33 through the lower flow path section 34, the connection flow path section 36, and the upper flow path section 35 in order.
  • All the cooling water flows from the radiator side outlet 33 a of the second outflow side passage 33 to the radiator connection passage 15 and flows toward the radiator 6. That is, the cooling water does not flow through the first bypass channel 16 and the second bypass channel 17 and does not flow toward the pump 5 and the oil cooler 8. Thereby, it is prevented that the temperature of the cooling water rises excessively.
  • Table 1 shows the operation of the engine cooling device 4 according to the present embodiment, specifically, the temperature of the cooling water, the positions of the valve bodies 21 of the first and second valves 20A and 20B, and the radiator. The relationship with the presence or absence of the circulation of the cooling water in the connection flow path 15, the first bypass flow path 16, and the second bypass flow path 17 is shown.
  • the engine cooling device 4 and the engine system 1 when the temperature of the cooling water is equal to or higher than the first temperature and lower than the second temperature, a part of the cooling water flows through the flow path. It flows from the switching unit 7 to the radiator 6. For this reason, the water pressure of cooling water can be lowered. Thereby, the water pressure of the cooling water at the cooling water inlet CFa of the EGR cooler 3 can be lowered, and the EGR cooler 3 can be protected. In other words, substantial durability improvement of the EGR cooler 3 in the engine cooling device 4 and the engine system 1 can be achieved.
  • the number of the first valves 20A opened at the first temperature is smaller than the number of the second valves 20B opened at the second temperature. For this reason, when the temperature of the cooling water is equal to or higher than the first temperature and lower than the second temperature, the flow rate of the cooling water flowing from the flow path switching unit 7 to the radiator 6 is the flow rate of the cooling water flowing to the pump 5 and the oil cooler 8. Smaller than. Thereby, compared with the case where all the valves 20A and 20B are opened at a low temperature and all the cooling water is allowed to flow to the radiator 6, the engine 2 can be warmed more quickly. That is, the warm-up operation time of the engine 2 can be kept short.
  • the first valve 20A when the temperature of the cooling water is equal to or higher than the first temperature and lower than the second temperature, the first valve 20A is opened as shown in FIGS. A part of the one outflow channel 32 is blocked. However, the first valve 20A is arranged between the second valves 20B in the direction in which the pump-side outlet 32a and the oil cooler-side outlet 32b formed in the first outlet-side flow path 32 of the housing 30 are arranged. . For this reason, even if the first valve 20A blocks a part of the first outflow passage 32, the cooling water flowing into the first outflow passage 32 through the valve body 21 of each second valve 20B is supplied to the pump outlet. 32a and the oil cooler side outflow port 32b can flow smoothly.
  • the first valve 20 ⁇ / b> A from obstructing the flow of the cooling water toward the pump side outlet 32 a and the oil cooler side outlet 32 b in the first outlet side flow path 32. Therefore, it is possible to suppress or prevent the ratio (diversion ratio) between the flow rate of the cooling water flowing toward the pump 5 and the flow rate of the cooling water flowing toward the oil cooler 8 from changing according to the opening and closing of the first valve 20A. it can.
  • the plurality of radiator side outlets 33a are arranged at positions where the distances from the first valve 20A to the radiator side outlets 33a in the second outlet side flow path 33 are equal to each other.
  • the flow rates of the cooling water from the first valve 20 ⁇ / b> A toward the two radiator outlets 33 a are different from each other in the second outlet side flow path 33 with only the first valve 20 ⁇ / b> A opened. This can be suppressed or prevented. That is, the cooling water can be made to flow evenly at the two radiator side outlets 33a.
  • the arrangement of the plurality of valves 20A and 20B may be arbitrary. That is, the plurality of valves 20 ⁇ / b> A and 20 ⁇ / b> B are not limited to be arranged in a line in the lateral direction of the housing 30, and may be arranged in the depth direction of the housing 30, for example.
  • the engine cooling device of the present invention may not include, for example, the oil cooler 8 and the second bypass passage 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

エンジン冷却装置(4)は、エンジン(2)及びEGRクーラ(3)とラジエータ(6)との間、及び、エンジン及びEGRクーラとポンプ(5)との間に設けられた流路切換部(7)を有する。流路切換部は、冷却水の温度が、第一温度未満である場合に冷却水をポンプに向かう第一バイパス流路(16)に流通させ、第一温度以上である場合に冷却水をラジエータに向かうラジエータ接続流路(15)に流通させる第一バルブ(20A)と、冷却水の温度が、第一温度よりも高い第二温度未満である場合に冷却水を第一バイパス流路に流通させ、第二温度以上である場合に冷却水をラジエータ接続流路に流通させる第二バルブ(20B)と、を備える。第一バルブの数は、第二バルブの数よりも少ない。

Description

エンジン冷却装置及びエンジンシステム
 この発明は、エンジン冷却装置及びエンジンシステムに関する。
 特許文献1には、冷却水の温度に応じて冷却水の循環経路を切り換えるバルブ(サーモスタット)を備えたエンジン冷却装置が開示されている。特許文献1のエンジン冷却装置では、エンジンの暖機運転時(冷却水が所定温度未満のとき)にバルブを閉じて冷却水をポンプとエンジンとの間で循環させ、暖機運転の終了時(冷却水が所定温度以上になったとき)にバルブを開いて冷却水をポンプとエンジンとラジエータとに順番に循環させる。
特開平11-218024号公報
 ところで、エンジン及び上記したエンジン冷却装置を含むエンジンシステムには、エンジンから排出された排気ガスの一部をEGRガス(排気再循環ガス)として外気と混合してエンジンに戻すことで排気ガス中のNOxを低減するように構成されたものがある。この種のエンジンシステムは、EGRガスを冷却するためのEGRクーラを備える。また、エンジン冷却装置は、冷却水をポンプからエンジン及びEGRクーラの両方に供給するように構成される。
 しかしながら、エンジンの暖機運転時には、冷却水がラジエータに循環しないため、冷却水の温度上昇に比例して冷却水の圧力が上昇しやすい。冷却水の圧力に対するEGRクーラの耐久性(耐圧)は、エンジンの耐久性よりも低いことが多いため、冷却水の圧力が高くなることは好ましくない。
 なお、バルブを低い温度で開き冷却水をラジエータに循環させることで、冷却水の圧力上昇を抑えることも考えられる。しかしながら、この場合には、エンジンが温まりにくくエンジンの暖機運転が長くなってしまう、という問題がある。
 本発明はこのような課題に鑑みてなされたものであって、EGRクーラの保護を図ると共に、エンジンの暖機運転の時間が長くなることを抑制できるエンジン冷却装置及びこれを備えるエンジンシステムを提供することを目的とする。
 本発明の一態様に係るエンジン冷却装置は、冷却水を吐出口からエンジン及びEGRクーラに供給するポンプと、前記エンジン及び前記EGRクーラからの前記冷却水を冷却し、当該冷却水の出口を前記ポンプの吸込口に接続したラジエータと、前記エンジン及び前記EGRクーラから前記ラジエータに向かう前記冷却水の経路の途中に設けられた流路切換部と、前記流路切換部と前記ラジエータとを接続するラジエータ接続流路と、前記流路切換部と前記ポンプの吸込口とを接続する第一バイパス流路と、を備え、前記流路切換部は、前記冷却水の温度が、第一の所定温度未満である場合に前記冷却水を前記第一バイパス流路に流通させ、前記第一の所定温度以上である場合に前記冷却水を前記ラジエータ接続流路に流通させる第一バルブと、前記冷却水の温度が、前記第一の所定温度よりも高い第二の所定温度未満である場合に前記冷却水を前記第一バイパス流路に流通させ、前記第二の所定温度以上である場合に前記冷却水を前記ラジエータ接続流路に流通させる第二バルブと、を備え、前記第一バルブの数が、前記第二バルブの数よりも少ない。
 本発明の一態様に係るエンジンシステムは、エンジンと、EGRクーラと、前記エンジン冷却装置と、を備える。
 本発明によれば、EGRクーラの保護を図ると共に、エンジンの暖機運転の時間が長くなることを抑制できる。
本発明の一実施形態に係るエンジンシステムを示す概略構成図である。 本発明の一実施形態に係るエンジンシステムにおける流路切換部であって、第一バルブ及び第二バルブが閉じている状態を示す断面図である。 図2のIII-III断面図である。 本発明の一実施形態に係るエンジンシステムにおける流路切換部であって、第一バルブが開き、かつ第二バルブが閉じている状態を示す断面図である。 図4のV-V断面図である。 本発明の一実施形態に係るエンジンシステムにおける流路切換部であって、第一バルブ及び第二バルブが開いている状態を示す断面図である。
<エンジンシステム>
 以下、本発明の一実施形態について図1~図6を参照して詳細に説明する。本実施形態に係るエンジンシステムは、例えば、ダンプトラック、ホイールローダ、モータグレーダなど任意の作業車両に搭載される。
 図1に示すように、エンジンシステム1は、エンジン2と、EGRクーラ3と、冷却水によってエンジン2及びEGRクーラ3を冷却するエンジン冷却装置4と、を備える。図1における矢印は、エンジンシステム1において冷却水が流れる方向を示している。
<エンジン>
 エンジン2は、シリンダ、シリンダブロック、シリンダヘッド等を備える。シリンダヘッド及びシリンダブロックには、冷却水を流通させる第一冷却流路EFが設けられている。エンジン2は、第一冷却流路EFに流通する冷却水によって冷却される。
<EGRクーラ>
 EGRクーラ3は、エンジン2から排出された排気ガスの一部であるEGRガスを冷却する。EGRクーラ3には、冷却水を流通させる第二冷却流路CFが設けられている。EGRクーラ3を通るEGRガスは、第二冷却流路CFに流通する冷却水との間で熱交換を行うことで冷却される。
<エンジン冷却装置>
 エンジン冷却装置4は、ポンプ5と、ラジエータ6と、流路切換部7と、を備える。本実施形態のエンジン冷却装置4は、オイルクーラ8をさらに備える。また、本実施形態のエンジン冷却装置4は、消泡タンク9をさらに備える。
<ポンプ>
 ポンプ5は、その吐出口5bから冷却水をエンジン2及びEGRクーラ3に供給する。ポンプ5の吐出口5bは、エンジン2の第一冷却流路EFの入口EFa、及び、EGRクーラ3の第二冷却流路CFの入口CFaに接続されている。ポンプ5は、エンジン2の動力によって駆動される。ポンプ5は、エンジン2が駆動している間は常に動作する。
<ラジエータ>
 ラジエータ6は、エンジン2の第一冷却流路EF及びEGRクーラ3の第二冷却流路CFに流通してエンジン2及びEGRクーラ3で暖められた冷却水と外気との間で熱交換を行って高温となった冷却水を冷却する。
 ラジエータ6における冷却水の出口6bは、ポンプ5の吸込口5aに接続される。すなわち、ラジエータ6において冷却された冷却水はポンプ5に向けて流れる。ラジエータ6における冷却水の出口6bは、例えばポンプ5の吸込口5aに直接接続されてよいが、本実施形態では後述するオイルクーラ8を介してポンプ5の吸込口5aに接続される。
 ラジエータ6は、コア11と、アッパータンク12と、を備える。コア11は、冷却水と外気との間で熱交換を行う。具体的には、コア11のチューブ(不図示)に流通する冷却水とチューブ周りの外気との間で熱交換を行う。アッパータンク12は、コア11の上側に設けられ、エンジン2やEGRクーラ3から流入する冷却水を貯留してコア11に供給する。アッパータンク12には、ラジエータキャップ13が着脱可能に設けられている。ラジエータキャップ13を取り外すことで、冷却水をエンジン冷却装置4における冷却水の循環経路の外側から、アッパータンク12に供給することができる。
<オイルクーラ>
 オイルクーラ8は、作業車両のブレーキに利用されるブレーキオイルを冷却する。オイルクーラ8は、ラジエータ6における冷却水の出口6bに接続される。これにより、オイルクーラ8にはラジエータ6からの冷却水が通り、当該冷却水とブレーキオイルとの間で熱交換を行うことでブレーキオイルを冷却できる。オイルクーラ8における冷却水の出口8bは、ポンプ5の吸込口5aに接続される。これにより、冷却水は、ラジエータ6及びオイルクーラ8を順番に流通した上で、ポンプ5に戻る。
<消泡タンク>
 消泡タンク9は、エンジン2やEGRクーラ3、アッパータンク12に接続されている。また、消泡タンク9は、ポンプ5の吸込口5aに接続されている。消泡タンク9は、エンジン2やEGRクーラ3、アッパータンク12から気泡を含む冷却水を回収し、冷却水から気泡を分離して除去する。気泡が除去された冷却水は、消泡タンク9からポンプ5まで流れる。また、消泡タンク9とアッパータンク12とがつながっていることで、アッパータンク12及び消泡タンク9における冷却水の圧力が均等に保たれる。
 消泡タンク9は、リリーフキャップ14を有する。リリーフキャップ14は、消泡タンク9及びこれにつながる冷却水の循環経路における冷却水の圧力が所定圧力に達することで開いて、当該圧力が過度に高くなることを防ぐ。
<流路切換部>
 流路切換部7は、エンジン2及びEGRクーラ3からラジエータ6に向かう冷却水の経路の途中に設けられる、すなわち、エンジン2及びEGRクーラ3とラジエータ6との間に設けられる。流路切換部7とラジエータ6との間には、これらを接続するラジエータ接続流路15が設けられている。また、流路切換部7とポンプ5との間には、これらを接続する第一バイパス流路16が設けられている。さらに、流路切換部7とオイルクーラ8との間には、これらを接続する第二バイパス流路17が設けられている。
 流路切換部7は、エンジン2及びEGRクーラ3からの冷却水を、ラジエータ接続流路15及び第一、第二バイパス流路16,17の一方あるいは両方に流通させるように冷却水の流路を切り換える。
 図2,3に示すように、流路切換部7は、複数のバルブ20A,20Bと、複数のバルブ20A,20Bを収容するハウジング30と、を備える。
<ハウジング>
 ハウジング30の内部には、流入側流路31と、第一流出側流路32と、第二流出側流路33と、が形成されている。流入側流路31は、エンジン2の第一冷却流路EF及びEGRクーラ3の第二冷却流路CFの出口EFb,CFb(図1参照)に接続される流入口31aを有する。
 第一流出側流路32は、第一バイパス流路16を接続するポンプ側流出口32a及び第二バイパス流路17を接続するオイルクーラ側流出口32bを有する。ポンプ側流出口32aとオイルクーラ側流出口32bとは互いに間隔をあけて位置する。本実施形態において、ポンプ側流出口32a及びオイルクーラ側流出口32bは、一方向(図2において横方向)における第一流出側流路32(ハウジング30)の両端に位置する。
 第二流出側流路33は、ラジエータ接続流路15を接続するラジエータ側流出口33aを有する。ラジエータ側流出口33aの数は、例えば一つであってもよいが、本実施形態では複数である。複数のラジエータ側流出口33aは、横方向に間隔をあけて並んでいる。図2に例示するハウジング30では、ラジエータ側流出口33aの数が二つとなっている。
 これら流入側流路31、第一流出側流路32及び第二流出側流路33は、後述するバルブ20A,20Bによって、流入側流路31及び第一流出側流路32が連通する状態と、流入側流路31及び第二流出側流路33が連通する状態とに切り換えることができるように、相対的に配置されればよい。
 本実施形態において、流入側流路31、第二流出側流路33及び第一流出側流路32は、ポンプ側流出口32aとオイルクーラ側流出口32bとが並ぶ横方向に交差する縦方向(図2,3において上下方向)で下から順番に並ぶ。また、第二流出側流路33は、縦方向で第一流出側流路32の上側にも位置する。具体的に、図3に示すように、第二流出側流路33は、第一流出側流路32の下側に位置する下側流路部34と、第一流出側流路32の上側に位置する上側流路部35と、奥行き方向で第一流出側流路32の隣に位置して下側流路部34と上側流路部35とをつなぐ接続流路部36と、を有する。前述したラジエータ側流出口33aは、上側流路部35に開口する。
 図2に示すように、第二流出側流路33の下側流路部34は、ハウジング30に形成された第一孔37によって流入側流路31につながる。第一孔37は、横方向に間隔をあけて複数(本実施形態では三つ)並んでいる。また、第二流出側流路33の下側流路部34は、ハウジング30に形成された第二孔38によって第一流出側流路32につながる。第二孔38は、各第一孔37の上側に位置するように、横方向に間隔をあけて複数(本実施形態では三つ)並んでいる。縦方向に並ぶ第一孔37及び第二孔38の中心軸線は同軸とされている。第一孔37及び第二孔38は、後述するバルブ20A,20Bの設置に利用される。
<バルブ>
 各バルブ20A,20Bは、冷却水の温度に応じて動作するサーモスタットである。各バルブ20A,20Bは、冷却水の温度が所定温度未満である場合に流入側流路31を第一流出側流路32に連通させて冷却水を第一バイパス流路16及び第二バイパス流路17に流通させる。また、各バルブ20A,20Bは、冷却水の温度が所定温度以上である場合に流入側流路31を第二流出側流路33に連通させて冷却水をラジエータ接続流路15に流通させる。
 具体的に、各バルブ20A,20Bは、ハウジング30内において、それぞれ縦方向に並ぶ第一孔37及び第二孔38に対応する位置に設置される。各バルブ20A,20Bは、縦方向に延びる円筒状に形成されたバルブ本体21と、バルブ本体21に対して径方向外側に突出する円環状のフランジ部22と、バルブ本体21を縦方向に駆動するアクチュエータ23と、を有する。
 バルブ本体21は、縦方向に貫通する貫通孔21aを有する。バルブ本体21は、第二孔38に挿通されると共に、バルブ本体21の下側の開口が第一孔37に対向するように配される。バルブ本体21は、縦方向に移動可能である。
 フランジ部22は、バルブ本体21の下側においてハウジング30に固定される。フランジ部22は、第一孔37が開口する下側流路部34の内面側において第一孔37を囲むように配される。
 アクチュエータ23は、冷却水の温度が所定温度未満であるときに、図2~4に示すように、バルブ20A,20Bのバルブ本体21を下方に移動させバルブ本体21の下端をフランジ部22に接触させる。この状態では、バルブ本体21の上端と第一流出側流路32の天面32cとの間に隙間が形成され、流入側流路31が第一孔37及びバルブ本体21の貫通孔21aを通して第一流出側流路32に連通する。また、バルブ本体21の下端がフランジ部22に接触していることで、流入側流路31は第二流出側流路33に連通しない。以下の説明では、この状態をバルブ20A,20Bが閉じた状態と呼ぶことがある。
 また、アクチュエータ23は、冷却水の温度が所定温度以上であるときに、図4~6に示すように、バルブ20A,20Bのバルブ本体21を上方に移動させバルブ本体21の上端を第一流出側流路32の天面32cに接触させる。この状態では、バルブ本体21の下端とフランジ部22との間に隙間が形成され、流入側流路31が第一孔37を通して第二流出側流路33の下側流路部34に連通する。また、バルブ20A,20Bのバルブ本体21の上端が第一流出側流路32の天面32cに接触していることで、流入側流路31は第一流出側流路32に連通しない。以下の説明では、この状態をバルブ20A,20Bが開いた状態と呼ぶことがある。
 図2~6に示すように、複数のバルブ20A,20Bには、動作する温度が比較的低い第一バルブ20Aと、動作する温度が第一バルブ20Aよりも高い第二バルブ20Bとがある。
 第一バルブ20Aは、図2,3に示すように、冷却水の温度が第一の所定温度(以下、第一温度と呼ぶ。)未満である場合に流入側流路31を第一流出側流路32に連通させて冷却水を第一バイパス流路16及び第二バイパス流路17に流通させる。また、第一バルブ20Aは、図4~6に示すように、冷却水の温度が第一温度以上である場合に流入側流路31を第二流出側流路33に連通させて冷却水をラジエータ接続流路15に流通させる。
 一方、第二バルブ20Bは、図2,4に示すように、冷却水の温度が第一温度よりも高い第二の所定温度(以下、第二温度と呼ぶ。)未満である場合に流入側流路31を第一流出側流路32に連通させて冷却水を第一バイパス流路16及び第二バイパス流路17に流通させる。また、第二バルブ20Bは、図6に示すように、冷却水の温度が第二温度以上である場合に流入側流路31を第二流出側流路33に連通させて冷却水をラジエータ接続流路15に流通させる。
 第一バルブ20Aの数は、第二バルブ20Bの数よりも少ない。第一バルブ20A及び第二バルブ20Bの具体的な数は任意であってよい。本実施形態では、第一バルブ20Aの数が一つであり、第二バルブ20Bの数が二つである。
 また、第一バルブ20A及び第二バルブ20Bは、第一バルブ20Aが第二バルブ20Bの間に配されるように、ポンプ側流出口32aとオイルクーラ側流出口32bとの間で横方向に配列される。すなわち、横方向において第一バルブ20Aの両側に第二バルブ20Bが配される。第一バルブ20Aの両側に配される第二バルブ20Bの数は、例えば互いに異なってもよいが、互いに等しいことがより好ましい。
 また、本実施形態において、ハウジング30に形成された複数のラジエータ側流出口33aは、第二流出側流路33において第一バルブ20Aから各ラジエータ側流出口33aに至る距離が互いに等しくなる位置に配されている。本実施形態では、一つの第一バルブ20Aが、横方向において二つのラジエータ側流出口33aの中間に位置している。なお、例えば第一バルブ20Aの数が複数である場合、複数のラジエータ側流出口33aは、複数の第一バルブ20Aからなるバルブ群から各ラジエータ側流出口33aに至る距離が互いに等しくなる位置に配されればよい。
<作用効果>
 本実施形態のエンジン冷却装置4において、冷却水の温度が第一温度未満である状態では、図2,3に示すように、流路切換部7の第一バルブ20A及び第二バルブ20Bの両方が閉じている。すなわち、第一バルブ20A及び第二バルブ20Bのバルブ本体21が下側に位置する。このため、エンジン2及びEGRクーラ3から流路切換部7の流入側流路31に流入した全ての冷却水は、第一、第二バルブ20A,20Bに対応する第一孔37及びバルブ本体21の貫通孔21aを通して第一流出側流路32に流通する。そして、全ての冷却水は、第一流出側流路32のポンプ側流出口32a及びオイルクーラ側流出口32bから第一バイパス流路16及び第二バイパス流路17に流通してポンプ5及びオイルクーラ8に向けて流れる。これにより、冷却水がラジエータ接続流路15に流通しない、すなわち、冷却水が流路切換部7からラジエータ6に向けて流れないため、冷却水は循環しながらエンジン2やEGRクーラ3によって効率よく暖められる。
 その後、冷却水の温度が第一温度以上かつ第二温度未満となると、図4,5に示すように、第一バルブ20Aが開くが、第二バルブ20Bは閉じた状態に維持される。すなわち、第一バルブ20Aのバルブ本体21が上側に位置し、第二バルブ20Bのバルブ本体21が下側に位置する。
 このため、流路切換部7の流入側流路31に流入した冷却水の一部は、第一バルブ20Aのバルブ本体21とフランジ部22との隙間を通して第二流出側流路33の下側流路部34、接続流路部36及び上側流路部35に順番に流通する。そして、この冷却水の一部は、ラジエータ側流出口33aからラジエータ接続流路15に流通してラジエータ6に向けて流れる。
 また、流入側流路31に流入した冷却水の残部は、第二バルブ20Bに対応する第一孔37及びバルブ本体21の貫通孔21aを通して第一流出側流路32に流通し、ポンプ側流出口32a及びオイルクーラ側流出口32bから第一バイパス流路16及び第二バイパス流路17に流通してポンプ5及びオイルクーラ8に向けて流れる。すなわち、図4,5に示す状態では、冷却水が流路切換部7からラジエータ6、ポンプ5及びオイルクーラ8に向けて流れる。
 ここで、第一バルブ20Aの数は第二バルブ20Bの数よりも少ないため、流路切換部7からラジエータ6に流れる冷却水の流量は、ポンプ5やオイルクーラ8に流れる冷却水の流量よりも小さい。これにより、図4,5に示す状態であっても、冷却水の温度をエンジン2やEGRクーラ3によって効率よく上昇させることができる。
 その後、冷却水の温度が第二温度以上となると、図6に示すように、第一バルブ20A及び第二バルブ20Bの両方が開く。すなわち、第一バルブ20A及び第二バルブ20Bのバルブ本体21が上側に位置する。このため、エンジン2及びEGRクーラ3から流路切換部7の流入側流路31に流入した全ての冷却水は、第一、第二バルブ20A,20Bのバルブ本体21とフランジ部22との隙間を通して第二流出側流路33の下側流路部34、接続流路部36及び上側流路部35に順番に流通する。そして、全ての冷却水は、第二流出側流路33のラジエータ側流出口33aからラジエータ接続流路15に流通してラジエータ6に向けて流れる。すなわち、冷却水は、第一バイパス流路16及び第二バイパス流路17に流通せず、ポンプ5及びオイルクーラ8に向けて流れない。これにより、冷却水の温度が過度に上昇することが防止される。
Figure JPOXMLDOC01-appb-T000001
 表1には、上記した本実施形態のエンジン冷却装置4における動作、具体的には、冷却水の温度と、これに伴う第一、第二バルブ20A,20Bのバルブ本体21の位置と、ラジエータ接続流路15、第一バイパス流路16及び第二バイパス流路17における冷却水の流通の有無と、の関係を示している。
 以上説明したように、本実施形態に係るエンジン冷却装置4及びエンジンシステム1によれば、冷却水の温度が第一温度以上かつ第二温度未満である場合に、一部の冷却水が流路切換部7からラジエータ6に流れる。このため、冷却水の水圧を下げることができる。これにより、EGRクーラ3の冷却水の入口CFaにおける冷却水の水圧を低くして、EGRクーラ3の保護を図ることができる。言い換えれば、エンジン冷却装置4及びエンジンシステム1におけるEGRクーラ3の実質的な耐久性向上を図ることができる。
 また、本実施形態のエンジン冷却装置4及びエンジンシステム1によれば、第一温度で開く第一バルブ20Aの数が、第二温度で開く第二バルブ20Bの数よりも少ない。このため、冷却水の温度が第一温度以上かつ第二温度未満である場合に、流路切換部7からラジエータ6に流れる冷却水の流量が、ポンプ5やオイルクーラ8に流れる冷却水の流量よりも小さい。これにより、全てのバルブ20A,20Bを低い温度で開いて全ての冷却水をラジエータ6に流す場合と比較して、エンジン2をより早く暖めることができる。すなわち、エンジン2の暖機運転の時間を短く抑えることができる。
 また、本実施形態のエンジン冷却装置4によれば、冷却水の温度が第一温度以上かつ第二温度未満である場合には、図4,5に示すように第一バルブ20Aが開いて第一流出側流路32の一部を塞ぐ。ただし、第一バルブ20Aは、ハウジング30の第一流出側流路32に形成されたポンプ側流出口32a及びオイルクーラ側流出口32bが並ぶ方向において、第二バルブ20Bの間に配されている。このため、第一バルブ20Aが第一流出側流路32の一部を塞いでも、各第二バルブ20Bのバルブ本体21を通して第一流出側流路32に流入した冷却水を、ポンプ側流出口32a及びオイルクーラ側流出口32bの両方に向けて円滑に流すことができる。すなわち、第一バルブ20Aが、第一流出側流路32においてポンプ側流出口32aやオイルクーラ側流出口32bに向かう冷却水の流れを阻害することを抑制できる。したがって、第一バルブ20Aの開閉に応じて、ポンプ5に向けて流れる冷却水の流量と、オイルクーラ8に向けて流れる冷却水の流量との比(分流比)が変化することを抑制又は防止できる。
 また、本実施形態のエンジン冷却装置4では、複数のラジエータ側流出口33aが、第二流出側流路33において第一バルブ20Aから各ラジエータ側流出口33aに至る距離が互いに等しくなる位置に配されている。このため、図4に示すように、第一バルブ20Aだけが開いた状態で、第二流出側流路33において第一バルブ20Aから二つのラジエータ側流出口33aに向かう冷却水の流量が互いに異なることを抑制又は防止できる。すなわち、冷却水を二つのラジエータ側流出口33aにおいて均等に流すことが可能となる。
<その他の実施形態>
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本発明のエンジン冷却装置において、複数のバルブ20A,20Bの配列は任意であってよい。すなわち、複数のバルブ20A,20Bは、ハウジング30の横方向に一列に並べられることに限らず、例えばハウジング30の奥行き方向に並べられてもよい。
 本発明のエンジン冷却装置は、例えばオイルクーラ8及び第二バイパス流路17を備えなくてもよい。
1…エンジンシステム、2…エンジン、3…EGRクーラ、4…エンジン冷却装置、5…ポンプ、5a…吸込口、5b…吐出口、6…ラジエータ、7…流路切換部、8…オイルクーラ、9…消泡タンク、15…ラジエータ接続流路、16…第一バイパス流路、17…第二バイパス流路、20A…第一バルブ、20B…第二バルブ、21…バルブ本体、21a…貫通孔、22…フランジ部、23…アクチュエータ、30…ハウジング、31…流入側流路、32…第一流出側流路、32a…ポンプ側流出口、32b…オイルクーラ側流出口、33…第二流出側流路、33a…ラジエータ側流出口、34…下側流路部、35…上側流路部、36…接続流路部

Claims (4)

  1.  冷却水を吐出口からエンジン及びEGRクーラに供給するポンプと、
     前記エンジン及び前記EGRクーラからの前記冷却水を冷却し、当該冷却水の出口を前記ポンプの吸込口に接続したラジエータと、
     前記エンジン及び前記EGRクーラから前記ラジエータに向かう前記冷却水の経路の途中に設けられた流路切換部と、
     前記流路切換部と前記ラジエータとを接続するラジエータ接続流路と、
     前記流路切換部と前記ポンプの吸込口とを接続する第一バイパス流路と、
    を備え、
     前記流路切換部は、
     前記冷却水の温度が、第一の所定温度未満である場合に前記冷却水を前記第一バイパス流路に流通させ、前記第一の所定温度以上である場合に前記冷却水を前記ラジエータ接続流路に流通させる第一バルブと、
     前記冷却水の温度が、前記第一の所定温度よりも高い第二の所定温度未満である場合に前記冷却水を前記第一バイパス流路に流通させ、前記第二の所定温度以上である場合に前記冷却水を前記ラジエータ接続流路に流通させる第二バルブと、を備え、
     前記第一バルブの数が、前記第二バルブの数よりも少ないエンジン冷却装置。
  2.  前記ラジエータからの前記冷却水が通り、当該冷却水の出口を前記ポンプの吸込口に接続したオイルクーラと、
     前記流路切換部と前記オイルクーラとを接続する第二バイパス流路と、をさらに備え、
     前記流路切換部は、前記第一バルブ及び前記第二バルブを収容するハウジングを備え、
     前記ハウジングの内部には、前記エンジン及び前記EGRクーラからの前記冷却水が流入する流入側流路と、前記第一バイパス流路を接続するポンプ側流出口及び前記ポンプ側流出口に対して間隔をあけて位置し前記第二バイパス流路を接続するオイルクーラ側流出口を有する第一流出側流路と、前記ラジエータ接続流路を接続するラジエータ側流出口を有する第二流出側流路と、が形成され、
     前記第一バルブは、前記第一の所定温度未満である場合に前記流入側流路を前記第一流出側流路に連通させ、前記第一の所定温度以上である場合に前記流入側流路を前記第二流出側流路に連通させ、
     前記第二バルブは、前記第二の所定温度未満である場合に前記流入側流路を前記第一流出側流路に流通させ、前記第二の所定温度以上である場合に前記流入側流路を前記第二流出側流路に連通させ、
     前記第一バルブ及び前記第二バルブは、前記第一バルブが前記第二バルブの間に配されるように、前記ポンプ側流出口と前記オイルクーラ側流出口との間で前記ポンプ側流出口及び前記オイルクーラ側流出口が並ぶ方向に配列される請求項1に記載のエンジン冷却装置。
  3.  前記第二流出側流路は、複数の前記ラジエータ側流出口を有し、
     複数の前記ラジエータ側流出口は、前記第二流出側流路において前記第一バルブから各ラジエータ側流出口に至る距離が互いに等しくなる位置に配されている請求項2に記載のエンジン冷却装置。
  4.  エンジンと、
     EGRクーラと、
     請求項1から請求項3のいずれか一項に記載のエンジン冷却装置と、を備えるエンジンシステム。
PCT/JP2019/031034 2019-08-07 2019-08-07 エンジン冷却装置及びエンジンシステム WO2019235651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/649,724 US11047291B2 (en) 2019-08-07 2019-08-07 Engine cooling device and engine system
CN201980003546.3A CN110959067B (zh) 2019-08-07 2019-08-07 发动机冷却装置及发动机***
PCT/JP2019/031034 WO2019235651A1 (ja) 2019-08-07 2019-08-07 エンジン冷却装置及びエンジンシステム
DE112019000061.6T DE112019000061T5 (de) 2019-08-07 2019-08-07 Motorkühleinrichtung und motorsystem
JP2019547331A JP7311421B2 (ja) 2019-08-07 2019-08-07 エンジン冷却装置及びエンジンシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031034 WO2019235651A1 (ja) 2019-08-07 2019-08-07 エンジン冷却装置及びエンジンシステム

Publications (1)

Publication Number Publication Date
WO2019235651A1 true WO2019235651A1 (ja) 2019-12-12

Family

ID=68769853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031034 WO2019235651A1 (ja) 2019-08-07 2019-08-07 エンジン冷却装置及びエンジンシステム

Country Status (5)

Country Link
US (1) US11047291B2 (ja)
JP (1) JP7311421B2 (ja)
CN (1) CN110959067B (ja)
DE (1) DE112019000061T5 (ja)
WO (1) WO2019235651A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775451B2 (ja) * 2017-03-21 2020-10-28 三菱重工エンジン&ターボチャージャ株式会社 ディーゼルエンジン
KR20210074714A (ko) * 2019-12-12 2021-06-22 현대자동차주식회사 차량용 냉각 시스템의 냉각수 유동 제어 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544072U (ja) * 1978-09-18 1980-03-22
JPS604715U (ja) * 1983-06-24 1985-01-14 株式会社クボタ エンジンの水冷装置
CN205349500U (zh) * 2016-01-14 2016-06-29 东风富士汤姆森调温器有限公司 一种采用多级开启式调温器
WO2018164285A1 (ja) * 2018-03-28 2018-09-13 株式会社小松製作所 エンジン冷却装置、及びエンジンシステム
JP2019035371A (ja) * 2017-08-15 2019-03-07 いすゞ自動車株式会社 エンジン冷却構造
JP2019086132A (ja) * 2017-11-09 2019-06-06 株式会社神戸製鋼所 弁システム及び圧縮機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639622A (ja) * 1986-06-30 1988-01-16 Fuji Heavy Ind Ltd エンジンの冷却装置
JPH11218024A (ja) 1998-02-03 1999-08-10 Kubota Corp エンジンの強制循環式水冷装置
US7299771B2 (en) * 2006-01-12 2007-11-27 International Engine Intellectual Property Company, Llc Coolant valve system for internal combustion engine and method
JP4736843B2 (ja) 2006-02-22 2011-07-27 トヨタ自動車株式会社 シリンダヘッド
DE102008042660A1 (de) 2008-10-08 2010-04-15 Ford Global Technologies, LLC, Dearborn Flüssigkeitsgekühlte Brennkraftmaschine mit Ölkühler und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP5218526B2 (ja) * 2010-11-11 2013-06-26 トヨタ自動車株式会社 水温センサ異常判定装置
JP5582022B2 (ja) * 2010-12-22 2014-09-03 株式会社デンソー 排気熱交換装置
KR102440603B1 (ko) * 2017-10-24 2022-09-05 현대자동차 주식회사 이지알 쿨러를 구비한 엔진 냉각시스템
KR20200014539A (ko) * 2018-08-01 2020-02-11 현대자동차주식회사 차량용 냉각 시스템의 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544072U (ja) * 1978-09-18 1980-03-22
JPS604715U (ja) * 1983-06-24 1985-01-14 株式会社クボタ エンジンの水冷装置
CN205349500U (zh) * 2016-01-14 2016-06-29 东风富士汤姆森调温器有限公司 一种采用多级开启式调温器
JP2019035371A (ja) * 2017-08-15 2019-03-07 いすゞ自動車株式会社 エンジン冷却構造
JP2019086132A (ja) * 2017-11-09 2019-06-06 株式会社神戸製鋼所 弁システム及び圧縮機
WO2018164285A1 (ja) * 2018-03-28 2018-09-13 株式会社小松製作所 エンジン冷却装置、及びエンジンシステム

Also Published As

Publication number Publication date
DE112019000061T5 (de) 2020-02-27
JPWO2019235651A1 (ja) 2019-12-12
CN110959067B (zh) 2021-10-15
US11047291B2 (en) 2021-06-29
CN110959067A (zh) 2020-04-03
US20210040878A1 (en) 2021-02-11
JP7311421B2 (ja) 2023-07-19

Similar Documents

Publication Publication Date Title
CN106014591B (zh) 用于控制分流式冷却***的冷却剂流的控制装置
WO2019235651A1 (ja) エンジン冷却装置及びエンジンシステム
KR102543593B1 (ko) 차량용 냉각수 통합 열관리 장치
JP2012057889A (ja) オイルクーラ
KR20180000150A (ko) 배기측 블럭인서트, 이를 포함하는 실린더블럭 조립체 및 이를 포함하는 엔진 열관리 시스템
JP6036858B2 (ja) エンジンの冷却装置
US20180320980A1 (en) Heat exchanger module
WO2017126117A1 (ja) 排気熱回収装置
KR930004768B1 (ko) V형 엔진의 냉각장치
US10697349B2 (en) Engine cooling device and engine system
JP5703805B2 (ja) エンジンならびにシリンダヘッド
JP2017115682A (ja) 排気熱回収装置
JP4522018B2 (ja) 内燃機関の冷却構造
WO2018096812A1 (ja) 冷却装置
JP5999162B2 (ja) エンジンの冷却装置
KR102335323B1 (ko) 엔진용 냉각 시스템
KR20140005216A (ko) 유체 흐름 제어장치를 갖는 유체 흐름 혼합박스
JP2017082675A (ja) 内燃機関の冷却装置
JP4517844B2 (ja) エンジンの冷却装置
JP7413976B2 (ja) エンジンシステム
JP5556592B2 (ja) 内燃機関の冷却装置
KR20240045585A (ko) 전후면 통용가능구조를 가지는 열교환기
CN116753083A (zh) 一种发动机及摩托车
JP3787053B2 (ja) エンジン冷却装置
CN117846763A (zh) 一种节温器总成、发动机冷却***及车辆

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547331

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814462

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19814462

Country of ref document: EP

Kind code of ref document: A1