WO2019230134A1 - Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article - Google Patents

Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article Download PDF

Info

Publication number
WO2019230134A1
WO2019230134A1 PCT/JP2019/010946 JP2019010946W WO2019230134A1 WO 2019230134 A1 WO2019230134 A1 WO 2019230134A1 JP 2019010946 W JP2019010946 W JP 2019010946W WO 2019230134 A1 WO2019230134 A1 WO 2019230134A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
support material
mass
parts
optical modeling
Prior art date
Application number
PCT/JP2019/010946
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 太田
圭介 奥城
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2019230134A1 publication Critical patent/WO2019230134A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide

Definitions

  • the present invention relates to an optical modeling composition set used for an inkjet optical modeling method, an optical modeling product modeled using the optical modeling composition set, and an optical modeling product using the optical modeling composition set. It relates to a manufacturing method.
  • An optical modeling method using an ink jet method for forming a cured layer having a predetermined shape by discharging a photo-curable resin composition from a nozzle and curing it by irradiating ultraviolet rays or the like immediately thereafter (hereinafter referred to as an ink jet optical modeling method). It has been known. Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
  • CAD Computer Aided Design
  • Inkjet stereolithography is easy to model a complex shape as compared with the conventional method of obtaining a stereolithography by irradiating a liquid photocurable composition with light, curing the irradiated part, and laminating.
  • the amount of the photocurable composition required is small and there are merits such as easy adjustment of mechanical properties by simultaneously emitting photocurable compositions with different properties from multiple nozzles, various prototypes are available. Used for applications.
  • the composition for model material is usually used for inkjet stereolithography together with the composition for support material.
  • a water-soluble composition for a support material has been developed, and the above-mentioned patent document also describes a composition for a model material described in the document as a water-soluble composition for a support material. It is described that it can be used in combination with a product.
  • the conventionally widely known composition for a support material as exemplified in the above-mentioned patent document contains a water-soluble polymer such as polypropylene glycol having high hydrophilicity.
  • the support material obtained may be less self-supporting, so that there is a problem in that the dimensional accuracy of an optically shaped product formed using such a support material composition decreases. It was.
  • a model material formed from a composition for a model material having elongation and strength such as rubber tends to have a low dimensional accuracy, and the composition for support material to be combined greatly affects the modeling accuracy.
  • the present invention proposes a combination of a composition for a model material having elongation and strength such as rubber and a composition for a support material having both high support power and excellent water removability for the model material composition. And it aims at providing the composition set for optical modeling which can model the optical modeling thing which has elongation and intensity
  • the present inventors have intensively studied to solve the above problems, and as a result, have completed the present invention. That is, the present invention provides the following preferred embodiments.
  • composition for a model material is a composition for a model material containing a plurality of types of monomers having an ethylene polymerizable group and a photopolymerization initiator, and the plurality of types of monomers having an ethylene polymerizable group is one A first monofunctional monomer having an ethylene polymerizable group and a second monofunctional monomer having one ethylene polymerizable group, wherein the first monofunctional monomer further comprises an amide group,
  • Tg glass transition temperature
  • the support material composition is based on 100 parts by mass of the entire support material composition. 19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer; A polyalkylene glycol containing 15 to 75 parts by mass of an oxybutylene group; Contains a photoinitiator, The composition set for inkjet optical shaping
  • the plurality of monomers having an ethylene polymerizable group further include a third monomer having two or more ethylene polymerizable groups, and the ratio of the third monomer contained in the composition is as follows:
  • composition set for ink jet stereolithography according to any one of [1] to [3], wherein the first monofunctional monomer has an amide group in which a hydrogen atom is bonded to a nitrogen atom.
  • the content of the photopolymerization initiator is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the entire composition for support material.
  • the composition for a support material further contains a surface conditioner, and the content of the surface conditioner is 0.005 parts by mass or more and 3 parts by mass with respect to 100 parts by mass of the entire composition for a support material.
  • composition for support material further contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the whole composition for support material.
  • composition set for inkjet stereolithography according to any one of [1] or [5] to [7], wherein the composition for support material further contains a storage stabilizer.
  • a method for producing an optical modeling object using the optical modeling ink set according to any one of [1] to [8] by an ink jet optical modeling method, wherein the model material composition is optically A method for producing an optically shaped article, comprising: a step of obtaining a model material by curing, a step (I) of obtaining a support material by photocuring the composition for the support material, and a step (II) of removing the support material.
  • an optical modeling composition set capable of modeling an optical modeling object having elongation and strength like rubber with high accuracy.
  • composition for a model material of the present invention contains a plurality of types of monomers having an ethylene polymerizable group and a photopolymerization initiator, and the plurality of types of monomers having the ethylene polymerizable group is one ethylene.
  • the glass transition temperature (Tg) of the functional monomer is 10 ° C. or less, and the glass transition temperature (Tg) of the polymer obtained by polymerizing a plurality of types of monomers having the ethylene polymerizable group, determined by the FOX equation, 0 ° C or higher.
  • the types and contents of the plurality of types of monomers having an ethylene polymerizable group are selected so that the glass transition temperature (Tg) of the polymer obtained by polymerizing these monomers is 0 ° C. or more, which is determined by the FOX equation. .
  • the glass transition temperature (Tg) of the polymer can be obtained by the following formula 1.
  • Tg1 to Tgn are the glass transition temperatures of homopolymers obtained by polymerizing each monomer alone (unit is absolute temperature “K”).
  • Tg1 to Tgn for example, numerical values described in “POLYMERHANDBOOK (J. BRANDRUP, EH. IMMERGUT, Editors), etc. may be used.)” By making this glass transition temperature (Tg) 0 degreeC or more, the intensity
  • the plurality of types of monomers having an ethylene polymerizable group may include a third monomer having two or more ethylene polymerizable groups.
  • a 3rd monomer can raise the intensity
  • the third monomer is more than 0 mol% and 10 mol in terms of a mole fraction with respect to the total number of moles of the first monofunctional monomer and the second monofunctional monomer. It is preferable to contain it in the ratio of% or less.
  • composition for a model material of the present invention by reducing the number of chemical crosslinks by setting the ratio of the third monomer to the total number of moles of the first monofunctional monomer and the second monofunctional monomer to 10 mol% or less.
  • a three-dimensional molded item can increase elongation, maintaining sufficient intensity
  • the ratio of the third monomer to the total number of moles of the first monofunctional monomer and the second monofunctional monomer is preferably 4 mol% or less, and the composition for a model material of the present invention is the third monomer. Is preferably substantially not contained. “Substantially free” means that the ratio of the third monomer to the total number of moles of the first monofunctional monomer and the second monofunctional monomer is 0.5 mol% or less.
  • the ratio of the first monofunctional monomer contained in the model material composition of the present invention is increased, and in the three-dimensional structure manufactured from the model material composition of the present invention, the strength due to the pseudo-crosslinking point described later is increased. be able to.
  • the molar ratio of the first monofunctional monomer (A1) and the second monofunctional monomer (A2) contained in the composition for model material is A1.
  • / A2 60/40 or more and 95/5 or less is more preferable, and 70/30 or more and 95/5 or less is more preferable.
  • the plurality of types of monomers having an ethylene polymerizable group include a first monofunctional monomer having an ethylene polymerizable group.
  • the first monofunctional monomer having an ethylene polymerizable group is a monomer having one ethylene polymerizable group in the molecule and further having an amide group in the molecule.
  • having an amide group means having a structure of —CO—N ⁇ in the molecule.
  • Such structures include amide bonds, urea bonds, urethane bonds and the like in addition to ordinary amino groups.
  • the segments having the amide group in the hydrocarbon chain with low polarity aggregate to form a pseudo-crosslinking point.
  • strength of a three-dimensional molded item can be raised with this pseudo-crosslinking point.
  • the linear polymer chains are assembled with a relatively weak force, and form a looser crosslinked structure than chemical crosslinking. However, the linear polymer chain can expand and contract more freely according to the stress.
  • the strength is increased by the pseudo-crosslinking points where the amide groups are gathered, while the linear polymer chain can be expanded and contracted. Therefore, it is considered that growth can be secured.
  • a highly polar amide group tends to be rejected on the surface of each layer during photocuring.
  • the amide group excreted on the surface forms a pseudo-crosslinking point with the amide group of the next layer. Conceivable.
  • the pseudo-crosslinking point means that the linear polymer chains are partially bonded by a noncovalent bond having a bond energy of 1 kcal / mole to 10 kcal / mole, preferably 3 kcal / mole to 5 kcal / mole. It means a structure that aggregates.
  • Ethylene polymerizable groups include ethylene, propenyl, butenyl, vinylphenyl, (meth) acryl, allyl ether, vinyl ether, maleyl, maleimide, (meth) acrylamide, acetylvinyl and vinylamide Group etc. are included.
  • (meth) acryl means “acryl” and / or “methacryl”
  • “(meth) acrylate” means both “acrylate” and “methacrylate”. To do.
  • a (meth) acryl group, an allyl ether group and a vinyl ether group are preferable because of good photopolymerization sensitivity, and a (meth) acryl group is more preferable.
  • the number average molecular weight of the first monofunctional monomer By setting the number average molecular weight of the first monofunctional monomer to 160 to 500, it is possible to improve the ink jetting property when manufacturing a three-dimensional model. Further, by setting the number average molecular weight of the first monofunctional monomer to 160 to 400, the ink jetting property and curability can be further improved.
  • first monofunctional monomer examples include, but are not limited to, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropylacrylamide, N-butyl (meth) acrylamide, N-hexyl (meth) acrylamide, aminomethyl (meth) acrylamide, aminoethyl (meth) acrylamide, mercaptomethyl (meth) acrylamide, mercaptoethyl (meth) acrylamide, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine, N-vinylformamide, N-vinylacetamide, N-vinyl-2-caprolactam, diacetone acrylamide, dimethyl Meta (acryl) amides such as minopropylacrylamide, hydroxyethylacrylamide, Nnbuty
  • the first monofunctional monomer preferably has an amide group in which a hydrogen atom is bonded to a nitrogen atom.
  • a hydrogen atom By bonding a hydrogen atom to a nitrogen atom having a high electronegativity, the hydrogen atom becomes electrically positive, and a pseudo-crosslinking point due to a hydrogen bond is likely to be generated.
  • Examples of the first monofunctional monomer having an amide group in which a hydrogen atom is bonded to a nitrogen atom include, but are not limited to, N-isopropylacrylamide, diacetoneacrylamide, dimethylamidopropylacrylamide, and hydroxyethylacrylamide , Nn butoxymethylacrylamide, N- [3- (dimethylamino) propyl] acrylamide and the like.
  • the ratio of the first monofunctional monomer contained in the composition for model material is not particularly limited, but is preferably 30% by mass or more and 95% by mass or less, and 45% by mass or more with respect to the total mass of the composition. More preferably, it is 75 mass% or less.
  • the model material composition of the present invention may include a plurality of types of first monofunctional monomers having different structures.
  • the plurality of types of monomers having an ethylene polymerizable group include a second monofunctional monomer having an ethylene polymerizable group.
  • the second monofunctional monomer having an ethylene polymerizable group is a monomer having one ethylene polymerizable group in the molecule and having a glass transition temperature (Tg) of 10 ° C. or lower.
  • Ethylene polymerizable groups include ethylene, propenyl, butenyl, vinylphenyl, (meth) acryl, allyl ether, vinyl ether, maleyl, maleimide, (meth) acrylamide, acetylvinyl and vinylamide Group etc. are included.
  • a (meth) acryl group, an allyl ether group and a vinyl ether group are preferable because of good photopolymerization sensitivity, and a (meth) acryl group is more preferable.
  • the number average molecular weight of the second monofunctional monomer By setting the number average molecular weight of the second monofunctional monomer to 160 to 500, it is possible to improve the ink jetting property when manufacturing a three-dimensional model. Further, by setting the number average molecular weight of the second monofunctional monomer to 160 to 400, it is possible to further improve the ink jetting property and curability.
  • the glass transition temperature (Tg) of the second monofunctional monomer is 10 ° C. or less, the mobility of molecules derived from the second monofunctional monomer at a temperature close to normal temperature can be increased. It becomes possible to raise the elongation of the three-dimensional molded item manufactured from the composition for model materials of this invention more.
  • the second monofunctional monomer may contain an amide group, but preferably does not contain an amide group.
  • the second monofunctional monomer may include a structure that forms pseudo-crosslinks, but preferably does not include a structure that forms pseudo-crosslinks.
  • Examples of the second monofunctional monomer that can be used in the present invention include lauryl (meth) acrylate, stearyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, tridecyl (meth) acrylate, lauryl ( Examples include meth) acrylate, stearyl (meth) acrylate, methoxypolyethylene glycol (550) mono (meth) acrylate, tridecyl (meth) acrylate, decyltetradecanyl (meth) acrylate, and the like.
  • the model material composition of the present invention may contain a plurality of types of second monofunctional monomers having different structures.
  • Third monomer having two or more ethylene polymerizable groups The plurality of types of monomers having an ethylene polymerizable group include a third monomer having two or more ethylene polymerizable groups. It may be.
  • the third monomer having two or more ethylene polymerizable groups is a monomer having two or more ethylene polymerizable groups.
  • the plurality of ethylene polymerizable groups in the molecule may be the same as or different from each other.
  • the ethylene polymerizable group includes an ethylene group, a propenyl group, a butenyl group, a vinylphenyl group, a (meth) acryl group, an allyl ether group, a vinyl ether group, as in the first monofunctional monomer or the second monofunctional monomer.
  • a (meth) acryl group, an allyl ether group and a vinyl ether group are preferable because of good photopolymerization sensitivity, and a (meth) acryl group is more preferable.
  • the number average molecular weight of the third monomer By setting the number average molecular weight of the third monomer to 160 to 500, it is possible to improve the ink jetting property when manufacturing a three-dimensional model. Further, by setting the number average molecular weight of the third monomer to 160 to 400, it is possible to further improve the ink jetting property and curability.
  • the third monomer having a (meth) acryl group may be a compound having a bifunctional, trifunctional, tetrafunctional or higher functional group.
  • bifunctional (meth) acrylates include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di ( (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol -Tricyclodecane di (meth) acrylate, PO adduct di (meth) acrylate of bisphenol A, neopentyl glycol di (meth) acrylate hydroxypivalate, polytetramethylene glycol di (meth) acrylate It includes the rate, and the like.
  • trifunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra ( Meta) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate and the like are included.
  • the (meth) acrylate compound may be a modified product.
  • modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
  • the third monomer having a vinyl ether group may be a compound having a bifunctional, trifunctional, tetrafunctional or higher functional group.
  • bifunctional vinyl ethers include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, neopentyl glycol divinyl ether, cyclohexane
  • Examples include diol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
  • trifunctional vinyl ethers examples include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 3), etc. included.
  • tetrafunctional or higher functional vinyl ethers include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
  • the third monomer having an allyl ether group may be a compound having a bifunctional, trifunctional or higher functional group.
  • bifunctional allyl ether examples include 1,4-cyclohexanedimethanol diallyl ether, alkylene (carbon number 2 to 5) glycol diallyl ether, polyethylene glycol (weight average molecular weight: 100 to 4000) diallyl ether, and the like. Also included are glyceryl diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, polyglycerol (degree of polymerization 2 to 5) diallyl ether, and the like.
  • trifunctional or higher functional allyl ethers examples include trimethylolpropane triallyl ether, glyceryl triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Also included are pentaerythritol triallyl ether, diglyceryl triallyl ether, sorbitol triallyl ether, polyglycerol (degree of polymerization 3 to 13) polyallyl ether, and the like.
  • polyfunctional monomers include diallyl phthalate, diallyl isophthalate, divinylbenzene, N, N-ethylenebisacrylamide and the like.
  • composition for model material of the present invention may contain a plurality of types of third monomers having different structures.
  • the composition for model materials of this invention contains a photoinitiator.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
  • the photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, but is not limited to acylphosphine oxide compounds, ⁇ -aminoalkylphenone compounds, ⁇ -hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide.
  • ⁇ -aminoalkylphenone compound examples include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination.
  • Examples of ⁇ -aminoalkylphenone compounds available on the market include “IRGACURE 369” and “IRGACURE 907” manufactured by BASF.
  • ⁇ -hydroxyquinone compound examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of ⁇ -hydroxyquinone compounds available on the market include “IRGACURE 184”, “DAROCURE 1173”, “IRGACURE 2959”, “IRGACURE 127”, and the like.
  • thioxanthone compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
  • anthraquinone compound examples include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
  • ketal compound examples include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
  • the content of the photopolymerization initiator is 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the content of the above components is preferably 2 parts by mass or more, and preferably 13 parts by mass or less.
  • the said content is defined as the sum total of content of each photoinitiator.
  • the surface conditioner is contained in order to adjust the surface tension of the model material composition to an appropriate range.
  • the model material composition and the support material composition can be prevented from being mixed at the interface.
  • the content of the surface conditioner is 0.005 to 3.0 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • Examples of the surface conditioner include silicone compounds.
  • Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane.
  • silicone compounds for example, fluorine-based surface conditioners and nonionic surface conditioners
  • fluorine-based surface conditioners and nonionic surface conditioners can also be used. These may be used alone or in combination of two or more.
  • the said content is defined as the sum total of content of each surface modifier.
  • the model material composition according to this embodiment preferably further contains a storage stabilizer.
  • the storage stabilizer can enhance the storage stability of the model material composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented.
  • the content of the components is preferably 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the storage stabilizer examples include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more. In addition, when the said component is contained 2 or more types, the said content is defined as the sum total of content of each component.
  • HALS
  • additives can be contained as necessary within a range not impairing the effects of the present invention.
  • examples of other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler.
  • the model material composition of the present invention may further contain a photoinitiating aid as required.
  • the photoinitiation assistant may be, for example, a tertiary amine compound, and is preferably an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like are included.
  • N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. Only one of these compounds may be included in the model material composition, or two or more of these compounds may be included.
  • the model material composition according to the present embodiment is not particularly limited, but can be produced by uniformly mixing using a mixing and stirring device, a disperser, or the like.
  • the model material composition may also contain a polymerizable compound other than the first monofunctional monomer, the second monofunctional monomer, or the third monomer.
  • a polymerizable compound other than the first monofunctional monomer, the second monofunctional monomer, or the third monomer.
  • examples of the polymerizable compound that may be included include monomers other than those described above, oligomers having a polymerization degree of 2 to 20, and a polymerizable polymer and a polymerizable polymer.
  • the water-soluble composition for a support material comprises at least one water-soluble monofunctional ethylenically unsaturated monomer (a) and at least one polyalkylene glycol containing an oxybutylene group. It is preferable that (b) and a photoinitiator are included.
  • Examples of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition of the present invention include a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acrylate ], (Meth) acrylamide derivatives [eg (meth)
  • Content of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the composition for support material is 19 parts by mass or more and 80 parts by mass with respect to 100 parts by mass of the composition for support material. More preferably, it is 22 parts by mass or more, more preferably 25 parts by mass or more, more preferably 76 parts by mass or less, and further preferably 73 parts by mass or less.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
  • the polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition may be either a linear type or a multi-chain type.
  • the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
  • the polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition is a water-soluble resin for imparting appropriate hydrophilicity to the support material. Support material that combines strength can be obtained.
  • the polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group.
  • a polybutylene glycol alone having only an oxybutylene group oxytetramethylene group
  • it may be a polybutylene polyoxyalkylene glycol having both an oxybutylene group and another oxyalkylene group (for example, polybutylene polyethylene glycol).
  • the polybutylene glycol is represented by the following chemical formula (2)
  • the polybutylene polyethylene glycol is represented by the following chemical formula (3).
  • n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100.
  • the oxybutylene group in the chemical formula (2) and the chemical formula (3) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
  • the support material composition can further improve the removability by water without reducing the support force of the support material. It supports a model material having elasticity and becomes a support material suitable for modeling a model material with high accuracy.
  • the support material can sufficiently support the model material during stereolithography, so modeling at the stage of stereolithography Accuracy can be improved.
  • the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed.
  • This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
  • the weight average molecular weight of the polyalkylene glycol (b) component containing an oxybutylene group is 300 or more, preferably less than 3000, more preferably 800 or more, and more preferably less than 2000.
  • the weight average molecular weight of the component (b) is smaller than 300, bleeding of the support material tends to occur when the support material composition is cured. Bleeding is a phenomenon in which liquid components ooze out from the inside of a cured support material.
  • the weight average molecular weight of the polyalkylene glycol containing an oxybutylene group is smaller than 3000, the discharge stability of the support material composition is excellent.
  • the weight average molecular weight is in the above range, the water-soluble monofunctional ethylenically unsaturated monomer (a) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
  • Two or more types of polyalkylene glycol (b) components containing an oxybutylene group may be used.
  • the content of polyalkylene glycol having a weight average molecular weight of less than 300 or greater than 3000 is preferably small.
  • the content of the polyalkylene glycol (b) containing an oxybutylene group in the support material composition is preferably 15 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the support material composition. Is 17 parts by mass or more, more preferably 20 parts by mass or more, more preferably 72 parts by mass or less, and still more preferably 70 parts by mass or less.
  • the content of the polyalkylene glycol (b) containing an oxybutylene group is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material. .
  • the support material composition may contain a water-soluble organic solvent (c).
  • the water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
  • the water-soluble organic solvent (c) it is preferable to use a glycol solvent.
  • a glycol solvent Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate.
  • Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether,
  • triethylene glycol monomethyl ether diethylene glycol can be used as the water-soluble organic solvent (c) because it is easy to prepare a composition for a low viscosity support material and the support material obtained by curing is excellent in water solubility.
  • Diethyl ether and dipropylene glycol monomethyl ether acetate are preferred.
  • the content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less.
  • the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material.
  • the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
  • the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner.
  • the content of the photopolymerization initiator in the composition for support material is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the composition for support material. Moreover, More preferably, it is 18 mass parts or less, More preferably, it is 15 mass parts or less.
  • a composition for a support material that has both excellent water solubility and support ability can be obtained.
  • the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
  • the support material composition may contain other additives as necessary.
  • additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. .
  • the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained.
  • the surface conditioner that can be contained in the support material composition the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
  • the storage stability can be improved by blending a storage stabilizer into the support material composition.
  • a storage stabilizer that can be contained in the support material composition
  • those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
  • the viscosity of the support material composition is preferably 30 to 200 mPa ⁇ s at 25 ° C., more preferably 35 mPa ⁇ s or more, and still more preferably 40 mPa ⁇ s or more. Yes, more preferably 170 mPa ⁇ s or less, still more preferably 150 mPa ⁇ s or less.
  • the measurement of the said viscosity can be performed using R100 type
  • the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m.
  • the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
  • the method for producing the composition for a support material of the present invention is not particularly limited.
  • the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser, or the like. it can.
  • Stereolithography product and manufacturing method thereof is a fabrication method of the stereolithography object using the composition set for inkjet stereolithography described in the above embodiment, and uses an inkjet printer. After the model material composition and the support material composition are discharged, the model material composition is photocured to obtain a model material, and the water soluble support material composition is photocured to obtain a water soluble support material. And a step of removing the water-soluble support material by bringing it into contact with water.
  • the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for inkjet optical modeling, it can form the optical modeling thing excellent in modeling precision.
  • FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays.
  • the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12.
  • the ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c.
  • the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
  • the model material composition 13 is ejected from the model material inkjet head 11aM
  • the support material composition 14 is ejected from the support material inkjet head 11aS
  • the energy beam 15 is irradiated and ejected from the light source 11c.
  • the model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS.
  • FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
  • the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used.
  • the model material composition 13 is discharged from the head 11aM
  • the support material composition 14 is discharged from the support material inkjet head 11aS.
  • the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange
  • the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 ⁇ / b> M and the support material precursor 14 ⁇ / b> S are scanned by the roller 11 b.
  • the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS.
  • a layer consisting of is formed.
  • the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
  • optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
  • a high-pressure mercury lamp, a metal halide lamp, or a UV-LED can be used as a light source in the method of manufacturing an optically shaped object according to this embodiment.
  • UV-LED is preferable.
  • the amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product.
  • a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved.
  • ultraviolet rays As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, ⁇ rays, ⁇ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
  • composition for a model material of the present invention does not substantially contain the content of a cationic polymerizable compound, it can be sufficiently cured even with ultraviolet rays having the least energy load and apparatus load. Therefore, a three-dimensional molded item can be manufactured at a lower cost by using ultraviolet rays.
  • the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data.
  • the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
  • each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
  • the obtained stereolithography is a combination of a model material and a support material.
  • the support material is removed from the stereolithography product to obtain a stereolithography product as a model material.
  • the support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
  • the above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
  • the number of inkjet heads for the model material composition is not limited to one.
  • two ink jet heads may be provided for the model material composition, model material compositions having different physical properties may be simultaneously ejected from the nozzles of each ink jet head, and the model material composition may be mixed to form a composite material.
  • composition for model material ⁇ Manufacture of composition for model material>
  • each component was uniformly mixed using a mixing and stirring device, and the compositions for model materials of Examples M1 to M8 and Comparative Examples m1 and m3 were produced.
  • Elongation at break is 20% or more.
  • Elongation at break is 15% or more and less than 20%.
  • Elongation at break is 10% or more and less than 15%.
  • X Elongation at break is less than 10%.
  • Table 4 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
  • Example S1 to S13 the support material compositions of Examples S1 to S13 were prepared as follows. That is, the components (a) to (f) shown in Table 7 are weighed in plastic bottles with the blending amounts (unit: parts by mass) shown in Table 5, and these are mixed to prepare each support material composition. did.
  • the support material composition was stable at low temperatures and the support material cured product obtained by curing the support material composition was stabilized under high temperature and high humidity conditions by the following methods.
  • the property (supporting power) and water removal property were evaluated.
  • ⁇ Low temperature stability of support material composition The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the support material composition was evaluated according to the following criteria.
  • composition for the support material When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent) When the support material composition is partially solidified (solidified): Low temperature stability B (good) When the composition for the support material is solidified (solidified): low temperature stability C (poor) ⁇ Supporting power of cured support material> A frame is formed on a glass plate with silicon rubber having a frame shape of 30 mm in length, 30 mm in width, and 5 mm in thickness, and the composition for each support material is poured into the frame. Was irradiated to produce a cured support material.
  • the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
  • Support strength A excellent
  • Support strength B good
  • Support force C defect
  • a cured support material was produced in the same manner as in the evaluation of the support force of the cured support material.
  • the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured.
  • the water removal property of the support material cured product was evaluated based on the standard.
  • compositions for support materials of Examples S1 to S13 obtained satisfactory results for all evaluation items.
  • a spacer having a thickness of 1 mm was arranged on four upper sides of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into a 10 cm ⁇ 10 cm square.
  • an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
  • the ultraviolet ray is irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. Cured to obtain a support material.
  • spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm ⁇ 10 cm.
  • an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
  • UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2.
  • cured to obtain a model material.
  • composition set for optical modeling of the present invention can be suitably used when an optical modeling product with good dimensional accuracy is manufactured using an inkjet optical modeling method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a photo-fabrication composition set that includes a model material composition and a support material composition. The model material composition includes a polymer that: is formed by polymerizing a plurality of types of monomers that have an ethylenically polymerizable group; and has a glass transition temperature (Tg), as found from the Fox equation, of at least 0°C. The plurality of types of monomers that have an ethylenically polymerizable group include: a first monofunctional monomer that has one ethylenically polymerizable group and an amide group; and a second monofunctional monomer that has one ethylenically polymerizable group and a glass transition temperature (Tg) of 10°C or lower. The support material composition contains 19–80 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer and 15–75 parts by mass of a polyalkylene glycol that has a weight average molecular weight of at least 300 and includes an oxybutylene group.

Description

光造形用組成物セット、光造形品、及び光造形品の製造方法Stereolithography composition set, stereolithography product, and production method of stereolithography product
 本発明は、インクジェット光造形法に用いられる光造形用組成物セット、該光造形用組成物セットを用いて造形された光造形品、及び前記光造形用組成物セットを用いた光造形品の製造方法に関する。 The present invention relates to an optical modeling composition set used for an inkjet optical modeling method, an optical modeling product modeled using the optical modeling composition set, and an optical modeling product using the optical modeling composition set. It relates to a manufacturing method.
 ノズルから光硬化性樹脂組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するインクジェット方式による光造形法(以下、インクジェット光造形法)が知られている。インクジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンタによって実現される造形法として、注目されている。 An optical modeling method using an ink jet method for forming a cured layer having a predetermined shape by discharging a photo-curable resin composition from a nozzle and curing it by irradiating ultraviolet rays or the like immediately thereafter (hereinafter referred to as an ink jet optical modeling method). It has been known. Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
 インクジェット光造形法は、液体状の光硬化性組成物に光を照射し、その照射部分を硬化させ、積層させることにより光造形物を得る従来の方法に比べて複雑な形状を造形しやすい。また、必要となる光硬化性組成物の量が少なく、複数のノズルから性質の異なる光硬化性組成物を同時に出射することで機械的特性を調整しやすい等のメリットもあるため、様々な試作用途に使用されている。 Inkjet stereolithography is easy to model a complex shape as compared with the conventional method of obtaining a stereolithography by irradiating a liquid photocurable composition with light, curing the irradiated part, and laminating. In addition, since the amount of the photocurable composition required is small and there are merits such as easy adjustment of mechanical properties by simultaneously emitting photocurable compositions with different properties from multiple nozzles, various prototypes are available. Used for applications.
 近年、ゴム状材料を用いた試作用途に対する要望が高まっており、ゴムのような伸びと強度を有し、かつインクジェット光造形法に用いることができるモデル材用組成物が提案されている(特許文献1)。 In recent years, there has been an increasing demand for trial applications using rubber-like materials, and a composition for a model material that has an elongation and strength like rubber and can be used in an inkjet stereolithography method (patent) Reference 1).
特開2015-232056号公報Japanese Patent Laid-Open No. 2015-2332056
 モデル材用組成物は、通常、サポート材用組成物とともにインクジェット光造形法に用いられる。近年、取扱性や環境的な観点から、水溶性のサポート材用組成物が開発されており、上記特許文献にも、該文献に記載されるモデル材用組成物を水溶性のサポート材用組成物と組み合わせて用い得ることが記載されている。しかしながら、上記特許文献において例示されるような従来広く知られているサポート材用組成物は、親水性の高いポリプロピレングリコール等の水溶性高分子を含んでおり、このようなサポート材用組成物に含まれる成分の種類や含有量によっては、得られるサポート材の自立性が劣ることから、そのようなサポート材用組成物を用いて造形された光造形品の寸法精度が低下するという問題があった。特に、ゴムのような伸びや強度を有するモデル材用組成物から形成されるモデル材は、寸法精度が低下しやすい傾向にあり、組み合わせるサポート材用組成物によって、その造形精度に大きな影響が及びやすい。 The composition for model material is usually used for inkjet stereolithography together with the composition for support material. In recent years, from the viewpoint of handling and environment, a water-soluble composition for a support material has been developed, and the above-mentioned patent document also describes a composition for a model material described in the document as a water-soluble composition for a support material. It is described that it can be used in combination with a product. However, the conventionally widely known composition for a support material as exemplified in the above-mentioned patent document contains a water-soluble polymer such as polypropylene glycol having high hydrophilicity. Depending on the type and content of the contained components, the support material obtained may be less self-supporting, so that there is a problem in that the dimensional accuracy of an optically shaped product formed using such a support material composition decreases. It was. In particular, a model material formed from a composition for a model material having elongation and strength such as rubber tends to have a low dimensional accuracy, and the composition for support material to be combined greatly affects the modeling accuracy. Cheap.
 そこで、本発明は、ゴムのような伸びと強度を有するモデル材用組成物と、該モデル材用組成物に対する高いサポート力と優れた水除去性を併せ持つサポート材用組成物との組み合わせを提案し、ゴムのような伸びと強度を有する光造形物を高い精度で造形し得る光造形用組成物セットを提供することを目的とする。 Therefore, the present invention proposes a combination of a composition for a model material having elongation and strength such as rubber and a composition for a support material having both high support power and excellent water removability for the model material composition. And it aims at providing the composition set for optical modeling which can model the optical modeling thing which has elongation and intensity | strength like rubber | gum with high precision.
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の好適な態様を提供するものである。 The present inventors have intensively studied to solve the above problems, and as a result, have completed the present invention. That is, the present invention provides the following preferred embodiments.
 [1]インクジェット光造形法により光造形物を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなるインクジェット光造形用組成物セットであって、
 前記モデル材用組成物は、エチレン重合性基を有する複数種のモノマーおよび光重合開始剤を含有するモデル材用組成物であって、該エチレン重合性基を有する複数種のモノマーは、1つのエチレン重合性基を有する第1の単官能モノマーおよび1つのエチレン重合性基を有する第2の単官能モノマーを含み、該第1の単官能モノマーは、アミド基をさらに有し、該第2の単官能モノマーのガラス転移温度(Tg)は、10℃以下であり、FOXの式によって求められる、該エチレン重合性基を有する複数種のモノマーを重合させた重合体のガラス転移温度(Tg)は、0℃以上であり、
 前記サポート材用組成物は、前記サポート材用組成物全体100質量部に対して、
19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体と、
15質量部以上75質量部以下のオキシブチレン基を含むポリアルキレングリコールと、
 光重合開始剤を含有し、
 前記オキシブチレン基を含むポリアルキレングリコールの重量平均分子量が300以上である、インクジェット光造形用組成物セット。
[1] For inkjet optical modeling formed by combining a composition for a model material used for modeling an optical modeling object by an inkjet optical modeling method and a composition for a support material used for modeling a support material A composition set comprising:
The composition for a model material is a composition for a model material containing a plurality of types of monomers having an ethylene polymerizable group and a photopolymerization initiator, and the plurality of types of monomers having an ethylene polymerizable group is one A first monofunctional monomer having an ethylene polymerizable group and a second monofunctional monomer having one ethylene polymerizable group, wherein the first monofunctional monomer further comprises an amide group, The glass transition temperature (Tg) of a monofunctional monomer is 10 ° C. or less, and the glass transition temperature (Tg) of a polymer obtained by polymerizing a plurality of types of monomers having an ethylene polymerizable group, determined by the FOX equation, is , 0 ° C or higher,
The support material composition is based on 100 parts by mass of the entire support material composition.
19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer;
A polyalkylene glycol containing 15 to 75 parts by mass of an oxybutylene group;
Contains a photoinitiator,
The composition set for inkjet optical shaping | molding whose weight average molecular weights of the polyalkylene glycol containing the said oxybutylene group are 300 or more.
 [2]前記エチレン重合性基を有する複数種のモノマーは、2つ以上のエチレン重合性基を有する第3のモノマーをさらに含み、前記組成物に含まれる、前記第3のモノマーの割合は、前記第1の単官能モノマーおよび前記第2の単官能モノマーの合計モル数に対するモル分率で0モル%より多く10モル%以下である、[1]に記載のインクジェット光造形用組成物セット。 [2] The plurality of monomers having an ethylene polymerizable group further include a third monomer having two or more ethylene polymerizable groups, and the ratio of the third monomer contained in the composition is as follows: The composition set for inkjet stereolithography according to [1], wherein the molar fraction with respect to the total number of moles of the first monofunctional monomer and the second monofunctional monomer is greater than 0 mol% and 10 mol% or less.
 [3]前記モデル材組成物は、前記第1の単官能モノマー(A1)および前記第2の単官能モノマー(A2)を、A1/A2=50/50以上95/5以下となるモル比で含有する、[1]または[2]に記載のインクジェット光造形用組成物セット。 [3] In the model material composition, the first monofunctional monomer (A1) and the second monofunctional monomer (A2) are mixed at a molar ratio of A1 / A2 = 50/50 to 95/5. The composition set for inkjet optical modeling according to [1] or [2].
 [4]前記第1の単官能モノマーは、窒素原子に水素原子が結合しているアミド基を有する、[1]~[3]のいずれかに記載のインクジェット光造形用組成物セット。 [4] The composition set for ink jet stereolithography according to any one of [1] to [3], wherein the first monofunctional monomer has an amide group in which a hydrogen atom is bonded to a nitrogen atom.
 [5]前記サポート材用組成物において、前記光重合開始剤の含有量は、前記サポート材用組成物全体100質量部に対して、1質量部以上15質量部以下である、[1]に記載のインクジェット光造形用組成物セット。 [5] In the composition for support material, the content of the photopolymerization initiator is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the entire composition for support material. The composition set for inkjet optical modeling described.
 [6]前記サポート材用組成物が、表面調整剤を更に含有し、前記表面調整剤の含有量は、前記サポート材用組成物全体100質量部に対して、0.005質量部以上3質量部以下である、[1]又は[5]に記載のインクジェット光造形用組成物セット。 [6] The composition for a support material further contains a surface conditioner, and the content of the surface conditioner is 0.005 parts by mass or more and 3 parts by mass with respect to 100 parts by mass of the entire composition for a support material. The composition set for inkjet optical modeling according to [1] or [5], which is equal to or less than a part.
 [7]前記サポート材用組成物が、水溶性有機溶剤を更に含有し、前記水溶性有機溶剤の含有量は、前記サポート材用組成物全体100質量部に対して、30質量部以下である、[1]又は[5]又は[6]に記載のインクジェット光造形用組成物セット。 [7] The composition for support material further contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the whole composition for support material. , [1] or [5] or [6] The composition set for inkjet photofabrication according to [6].
 [8]前記サポート材用組成物が、保存安定化剤を更に含有する、[1]又は[5]~[7]のいずれかに記載のインクジェット光造形用組成物セット。 [8] The composition set for inkjet stereolithography according to any one of [1] or [5] to [7], wherein the composition for support material further contains a storage stabilizer.
 [9]インクジェット光造形法により、[1]~[8]のいずれかに記載のインクジェット光造形用組成物セットを用いて造形された、光造形物。 [9] An optically shaped article formed by using the inkjet optical modeling composition set according to any one of [1] to [8] by an inkjet optical modeling method.
 [10]インクジェット光造形法により[1]~[8]のいずれか一項に記載の光造形用インクセットを用いて光造形物を製造する方法であって、前記モデル材用組成物を光硬化させてモデル材を得るとともに、サポート材用組成物を光硬化させてサポート材を得る工程(I)と、前記サポート材を除去する工程(II)と、を有する、光造形物の製造方法。 [10] A method for producing an optical modeling object using the optical modeling ink set according to any one of [1] to [8] by an ink jet optical modeling method, wherein the model material composition is optically A method for producing an optically shaped article, comprising: a step of obtaining a model material by curing, a step (I) of obtaining a support material by photocuring the composition for the support material, and a step (II) of removing the support material. .
 本発明によれば、ゴムのような伸びと強度を有する光造形物を高い精度で造形し得る光造形用組成物セットを提供することができる。 According to the present invention, it is possible to provide an optical modeling composition set capable of modeling an optical modeling object having elongation and strength like rubber with high accuracy.
本実施形態に係る光造形物の製造方法におけるモデル材用組成物及びサポート材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。It is a schematic side view which shows the state which ejects the composition for model materials and the composition for support materials in the manufacturing method of the optical modeling thing which concerns on this embodiment, and has irradiated the energy beam. 本実施形態に係る光造形物の製造方法におけるモデル材用組成物及びサポート材用組成物を吐出している状態を示す模式側面図である。It is a schematic side view which shows the state which is discharging the composition for model materials and the composition for support materials in the manufacturing method of the optical modeling thing which concerns on this embodiment. 本実施形態に係る光造形物の製造方法におけるモデル材用組成物及びサポート材用組成物にエネルギー線を照射している状態を示す模式側面図である。It is a schematic side view which shows the state which has irradiated the energy beam to the composition for model materials and the composition for support materials in the manufacturing method of the optical modeling thing which concerns on this embodiment. サポート材とモデル材からなる光造形品前駆体(光造形物)の模式側面図である。It is a model side view of the optical modeling product precursor (optical modeling thing) which consists of a support material and a model material. 光造形品の模式側面図である。It is a model side view of a stereolithography product.
 以下に、実施形態を挙げて本発明を説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments.
 1.モデル材用組成物
 本発明のモデル材用組成物は、エチレン重合性基を有する複数種のモノマーおよび光重合開始剤を含有し、前記エチレン重合性基を有する複数種のモノマーは、1つのエチレン重合性基を有する第1の単官能モノマーおよび1つのエチレン重合性基を有する第2の単官能モノマーを含み、前記第1の単官能モノマーは、アミド基をさらに有し、前記第2の単官能モノマーのガラス転移温度(Tg)は、10℃以下であり、FOXの式によって求められる、前記エチレン重合性基を有する複数種のモノマーを重合させた重合体のガラス転移温度(Tg)は、0℃以上である。
1. Composition for Model Material The composition for a model material of the present invention contains a plurality of types of monomers having an ethylene polymerizable group and a photopolymerization initiator, and the plurality of types of monomers having the ethylene polymerizable group is one ethylene. A first monofunctional monomer having a polymerizable group and a second monofunctional monomer having one ethylene polymerizable group, the first monofunctional monomer further having an amide group, and the second monofunctional monomer. The glass transition temperature (Tg) of the functional monomer is 10 ° C. or less, and the glass transition temperature (Tg) of the polymer obtained by polymerizing a plurality of types of monomers having the ethylene polymerizable group, determined by the FOX equation, 0 ° C or higher.
 エチレン重合性基を有する複数種のモノマーの種類および含有量は、FOXの式によって求められる、これらを重合された重合体のガラス転移温度(Tg)が0℃以上となるように、選択される。 The types and contents of the plurality of types of monomers having an ethylene polymerizable group are selected so that the glass transition temperature (Tg) of the polymer obtained by polymerizing these monomers is 0 ° C. or more, which is determined by the FOX equation. .
 FOXの式によれば、下記の式1によって重合体のガラス転移温度(Tg)を求めることができる。 According to the formula of FOX, the glass transition temperature (Tg) of the polymer can be obtained by the following formula 1.
 1/Tg=W1/Tg1+W2/Tg2+・・・+Wn/Tgn・・・(式1)
(式1中、W1からWnは、それぞれのモノマーの重量分率を表し、Tg1からTgnは、それぞれのモノマーを単独で重合して得られるホモポリマーのガラス転移温度(単位は絶対温度「K」)を表す。Tg1からTgnとしては、たとえば「POLYMERHANDBOOK(J.BRANDRUP・E.H.IMMERGUT,Editors)等に記載の数値を用いてもよい。)
 このガラス転移温度(Tg)を0℃以上とすることで、本発明のモデル材用組成物を用いて製造した立体造形物の強度を高めることができる。
1 / Tg = W1 / Tg1 + W2 / Tg2 +... + Wn / Tgn (Expression 1)
(In Formula 1, W1 to Wn represent the weight fraction of each monomer, and Tg1 to Tgn are the glass transition temperatures of homopolymers obtained by polymerizing each monomer alone (unit is absolute temperature “K”). As Tg1 to Tgn, for example, numerical values described in “POLYMERHANDBOOK (J. BRANDRUP, EH. IMMERGUT, Editors), etc. may be used.)”
By making this glass transition temperature (Tg) 0 degreeC or more, the intensity | strength of the three-dimensional molded item manufactured using the composition for model materials of this invention can be raised.
 エチレン重合性基を有する複数種のモノマーには、2つ以上のエチレン重合性基を有する第3のモノマーが含まれていてもよい。第3のモノマーは、化学架橋構造を重合時に形成することで、立体造形物の強度を高めることができる。このとき、本発明のモデル材用組成物は、前記第3のモノマーを、第1の単官能モノマーおよび第2の単官能モノマーの合計モル数に対するモル分率で、0モル%より多く10モル%以下の割合で含有することが好ましい。第1の単官能モノマーおよび第2の単官能モノマーの合計モル数に対する第3のモノマーの割合を10モル%以下として化学架橋の数を減らすことで、本発明のモデル材用組成物から製造した立体造形物は、十分な強度を保ちながら、伸びを高めることができる。第1の単官能モノマーおよび第2の単官能モノマーの合計モル数に対する第3のモノマーの割合を4モル%以下とすることが好ましく、本発明のモデル材用組成物は、前記第3のモノマーを実質的に含まないことが好ましい。実質的に含まないとは、第1の単官能モノマーおよび第2の単官能モノマーの合計モル数に対する第3のモノマーの割合が0.5モル%以下であることをいう。 The plurality of types of monomers having an ethylene polymerizable group may include a third monomer having two or more ethylene polymerizable groups. A 3rd monomer can raise the intensity | strength of a three-dimensional molded item by forming a chemical crosslinked structure at the time of superposition | polymerization. At this time, in the composition for a model material of the present invention, the third monomer is more than 0 mol% and 10 mol in terms of a mole fraction with respect to the total number of moles of the first monofunctional monomer and the second monofunctional monomer. It is preferable to contain it in the ratio of% or less. It was produced from the composition for a model material of the present invention by reducing the number of chemical crosslinks by setting the ratio of the third monomer to the total number of moles of the first monofunctional monomer and the second monofunctional monomer to 10 mol% or less. A three-dimensional molded item can increase elongation, maintaining sufficient intensity | strength. The ratio of the third monomer to the total number of moles of the first monofunctional monomer and the second monofunctional monomer is preferably 4 mol% or less, and the composition for a model material of the present invention is the third monomer. Is preferably substantially not contained. “Substantially free” means that the ratio of the third monomer to the total number of moles of the first monofunctional monomer and the second monofunctional monomer is 0.5 mol% or less.
 また、モデル材用組成物中に含まれる第1の単官能モノマー(A1)および前記第2の単官能モノマー(A2)のモル比を、A1/A2=50/50以上95/5以下とすることで、本発明のモデル材用組成物が含有する第1の単官能モノマーの比率を高め、本発明のモデル材用組成物から製造する立体造形物において、後述する疑似架橋点による強度を高めることができる。立体造形物の強度と伸びとをともに高める観点からは、モデル材用組成物中に含まれる第1の単官能モノマー(A1)および前記第2の単官能モノマー(A2)のモル比は、A1/A2=60/40以上95/5以下であることがより好ましく、70/30以上95/5以下であることがさらに好ましい。 The molar ratio of the first monofunctional monomer (A1) and the second monofunctional monomer (A2) contained in the model material composition is A1 / A2 = 50/50 or more and 95/5 or less. Thus, the ratio of the first monofunctional monomer contained in the model material composition of the present invention is increased, and in the three-dimensional structure manufactured from the model material composition of the present invention, the strength due to the pseudo-crosslinking point described later is increased. be able to. From the viewpoint of increasing both the strength and elongation of the three-dimensional structure, the molar ratio of the first monofunctional monomer (A1) and the second monofunctional monomer (A2) contained in the composition for model material is A1. / A2 = 60/40 or more and 95/5 or less is more preferable, and 70/30 or more and 95/5 or less is more preferable.
 1-1.エチレン重合性基を有する複数種のモノマー
 1-1-1.エチレン重合性基を有する第1の単官能モノマー
 エチレン重合性基を有する複数種のモノマーには、エチレン重合性基を有する第1の単官能モノマーが含まれる。エチレン重合性基を有する第1の単官能モノマーとは、エチレン重合性基を分子内に1つ有するモノマーであって、アミド基を分子内にさらに有するモノマーである。
1-1. Plural types of monomers having an ethylene polymerizable group 1-1-1. First Monofunctional Monomer Having Ethylene Polymerizable Group The plurality of types of monomers having an ethylene polymerizable group include a first monofunctional monomer having an ethylene polymerizable group. The first monofunctional monomer having an ethylene polymerizable group is a monomer having one ethylene polymerizable group in the molecule and further having an amide group in the molecule.
 なお、本発明において、アミド基を有するとは、分子内に-CO-N<という構造を有することを意味する。このような構造には、通常のアミノ基のほか、アミド結合、ウレア結合、ウレタン結合なども含まれる。 In the present invention, having an amide group means having a structure of —CO—N <in the molecule. Such structures include amide bonds, urea bonds, urethane bonds and the like in addition to ordinary amino groups.
 上記アミド基は極性の高い構造であるため、極性の低い炭化水素鎖の中でアミド基を有するセグメントが凝集して疑似架橋点を形成する。本発明では、この疑似架橋点により、立体造形物の強度を高めることができる。一方で、この疑似架橋点において、線状高分子鎖は比較的弱い力で集合しており、化学架橋よりもゆるやかな架橋構造を形成するため、化学架橋に比べて線状高分子鎖の移動が制限されにくく、線状高分子鎖は、応力に応じてより自由に伸縮することが可能となる。そのため、本発明のモデル材用組成物に活性光線を照射して製造した立体造形物では、このアミド基が集まった疑似架橋点によって強度が高まる一方で、線状高分子鎖の伸縮が可能であるため伸びも確保されるものと考えられる。 Since the amide group has a highly polar structure, the segments having the amide group in the hydrocarbon chain with low polarity aggregate to form a pseudo-crosslinking point. In this invention, the intensity | strength of a three-dimensional molded item can be raised with this pseudo-crosslinking point. On the other hand, at this pseudo-crosslinking point, the linear polymer chains are assembled with a relatively weak force, and form a looser crosslinked structure than chemical crosslinking. However, the linear polymer chain can expand and contract more freely according to the stress. Therefore, in the three-dimensional structure produced by irradiating the composition for model material of the present invention with actinic rays, the strength is increased by the pseudo-crosslinking points where the amide groups are gathered, while the linear polymer chain can be expanded and contracted. Therefore, it is considered that growth can be secured.
 また、立体造形物を製造する際に、極性の高いアミド基は光硬化中に各層の表面に排斥されやすい。次の層を形成する際に、この表面に排斥されたアミド基が次の層のアミド基と疑似架橋点を形成することにより、本発明では立体造形物の積層間の強度および伸びも向上すると考えられる。 Also, when manufacturing a three-dimensional modeled object, a highly polar amide group tends to be rejected on the surface of each layer during photocuring. When forming the next layer, the amide group excreted on the surface forms a pseudo-crosslinking point with the amide group of the next layer. Conceivable.
 なお、本発明において疑似架橋点とは、結合エネルギーが1kcal/モル以上10kcal/モル以下、好ましくは3kcal/モル以上5kcal/モル以下であるような非共有結合により、線状高分子鎖同士が部分的に凝集するような構造を意味する。 In the present invention, the pseudo-crosslinking point means that the linear polymer chains are partially bonded by a noncovalent bond having a bond energy of 1 kcal / mole to 10 kcal / mole, preferably 3 kcal / mole to 5 kcal / mole. It means a structure that aggregates.
 エチレン重合性基には、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、(メタ)アクリル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基およびビニルアミド基などが含まれる。なお、本発明において、「(メタ)アクリル」は「アクリル」、「メタクリル」の双方又はいずれかを意味し、「(メタ)アクリレート」は「アクリレート」、「メタクリレート」の双方又はいずれかを意味する。 Ethylene polymerizable groups include ethylene, propenyl, butenyl, vinylphenyl, (meth) acryl, allyl ether, vinyl ether, maleyl, maleimide, (meth) acrylamide, acetylvinyl and vinylamide Group etc. are included. In the present invention, “(meth) acryl” means “acryl” and / or “methacryl”, and “(meth) acrylate” means both “acrylate” and “methacrylate”. To do.
 これらのうち、(メタ)アクリル基、アリルエーテル基およびビニルエーテル基が、光重合感度が良好であるため好ましく、(メタ)アクリル基がさらに好ましい。 Among these, a (meth) acryl group, an allyl ether group and a vinyl ether group are preferable because of good photopolymerization sensitivity, and a (meth) acryl group is more preferable.
 第1の単官能モノマーの数平均分子量を、160~500とすることで、立体造形物の製造時にインクジェット出射性を高めることができる。また、第1の単官能モノマーの数平均分子量を160~400とすることで、インクジェット出射性および硬化性をさらに高めることができる。 By setting the number average molecular weight of the first monofunctional monomer to 160 to 500, it is possible to improve the ink jetting property when manufacturing a three-dimensional model. Further, by setting the number average molecular weight of the first monofunctional monomer to 160 to 400, the ink jetting property and curability can be further improved.
 このような第1の単官能モノマーの例には、限定されることはないが、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピルアクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミド、メルカアプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミド、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-2-カプロラクタム、ダイアセトンアクリルアミド、ジメチルアミノプロピルアクリルアミド、ヒドロキシエチルアクリルアミド、N-nブトキシメチルアクリルアミド、N-〔3-(ジメチルアミノ)プロピル〕アクリルアミド等のメタ(アクリル)アミド、アクリル酸2-(ブチルカルバモイルオキシ)エチルや、下記化学式(1)で表される化合物などのウレタン化合物;N-ビニルホルムアミド、N-ビニルカプロラクタム、N-ビニルピロリドン、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ならびに各種アミン変性アクリレートなどが含まれる。 Examples of such first monofunctional monomer include, but are not limited to, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropylacrylamide, N-butyl (meth) acrylamide, N-hexyl (meth) acrylamide, aminomethyl (meth) acrylamide, aminoethyl (meth) acrylamide, mercaptomethyl (meth) acrylamide, mercaptoethyl (meth) acrylamide, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine, N-vinylformamide, N-vinylacetamide, N-vinyl-2-caprolactam, diacetone acrylamide, dimethyl Meta (acryl) amides such as minopropylacrylamide, hydroxyethylacrylamide, Nnbutoxymethylacrylamide, N- [3- (dimethylamino) propyl] acrylamide, 2- (butylcarbamoyloxy) ethyl acrylate, and the following chemical formula ( Urethane compounds such as the compound represented by 1); N-vinylformamide, N-vinylcaprolactam, N-vinylpyrrolidone, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and various amine-modified acrylates are included.
  [化1]
Figure JPOXMLDOC01-appb-I000001
[Chemical 1]
Figure JPOXMLDOC01-appb-I000001
 また、第1の単官能モノマーは、窒素原子に水素原子が結合しているアミド基を有することが好ましい。電気陰性度の高い窒素原子に水素原子が結合していることで、水素原子が電気的に陽性となり、水素結合による疑似架橋点を生じやすくなる。 The first monofunctional monomer preferably has an amide group in which a hydrogen atom is bonded to a nitrogen atom. By bonding a hydrogen atom to a nitrogen atom having a high electronegativity, the hydrogen atom becomes electrically positive, and a pseudo-crosslinking point due to a hydrogen bond is likely to be generated.
 窒素原子に水素原子が結合しているアミド基を有する第1の単官能モノマーの例には、限定されることはないが、N-イソプロピルアクリルアミド、ダイアセトンアクリルアミド、ジメチルアミドプロピルアクリルアミド、ヒドロキシエチルアクリルアミド、N-nブトキシメチルアクリルアミド、N-〔3-(ジメチルアミノ)プロピル〕アクリルアミド等が含まれる。 Examples of the first monofunctional monomer having an amide group in which a hydrogen atom is bonded to a nitrogen atom include, but are not limited to, N-isopropylacrylamide, diacetoneacrylamide, dimethylamidopropylacrylamide, and hydroxyethylacrylamide , Nn butoxymethylacrylamide, N- [3- (dimethylamino) propyl] acrylamide and the like.
 モデル材用組成物中に含まれる第1の単官能モノマーの比率は、特に限定されないが、組成物の全質量に対して30質量%以上95質量%以下であることが好ましく、45質量%以上75質量%以下であることがさらに好ましい。第1の単官能モノマーの量を30質量%以上とすることで、本発明のモデル材用組成物を用いて製造した立体造形物の強度が高くなり、第1の単官能モノマーの量を95質量%以下とすることで、本発明のモデル材用組成物を用いて製造した立体造形物に十分な伸びを付与することができる。また、第1の単官能モノマーの量を45質量%以上75質量%以下とすることで、本発明のモデル材用組成物を用いて製造した立体造形物の伸びと強度とをともに高めることができる。 The ratio of the first monofunctional monomer contained in the composition for model material is not particularly limited, but is preferably 30% by mass or more and 95% by mass or less, and 45% by mass or more with respect to the total mass of the composition. More preferably, it is 75 mass% or less. By setting the amount of the first monofunctional monomer to 30% by mass or more, the strength of the three-dimensional structure manufactured using the composition for model material of the present invention is increased, and the amount of the first monofunctional monomer is set to 95. By setting it as the mass% or less, sufficient elongation can be imparted to the three-dimensional structure manufactured using the model material composition of the present invention. Moreover, by making the amount of the first monofunctional monomer 45% by mass or more and 75% by mass or less, it is possible to increase both the elongation and strength of the three-dimensional modeled object manufactured using the model material composition of the present invention. it can.
 本発明のモデル材用組成物には、互いに異なる構造を有する複数種の第1の単官能モノマーが含まれていてもよい。 The model material composition of the present invention may include a plurality of types of first monofunctional monomers having different structures.
 1-1-2.エチレン重合性基を有する第2の単官能モノマー
 エチレン重合性基を有する複数種のモノマーには、エチレン重合性基を有する第2の単官能モノマーが含まれる。エチレン重合性基を有する第2の単官能モノマーとは、エチレン重合性基を分子内に1つ有するモノマーであって、ガラス転移温度(Tg)が10℃以下であるようなモノマーである。
1-1-2. Second Monofunctional Monomer Having Ethylene Polymerizable Group The plurality of types of monomers having an ethylene polymerizable group include a second monofunctional monomer having an ethylene polymerizable group. The second monofunctional monomer having an ethylene polymerizable group is a monomer having one ethylene polymerizable group in the molecule and having a glass transition temperature (Tg) of 10 ° C. or lower.
 エチレン重合性基には、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、(メタ)アクリル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基およびビニルアミド基などが含まれる。 Ethylene polymerizable groups include ethylene, propenyl, butenyl, vinylphenyl, (meth) acryl, allyl ether, vinyl ether, maleyl, maleimide, (meth) acrylamide, acetylvinyl and vinylamide Group etc. are included.
 これらのうち、(メタ)アクリル基、アリルエーテル基およびビニルエーテル基が、光重合感度が良好であるため好ましく、(メタ)アクリル基がさらに好ましい。 Among these, a (meth) acryl group, an allyl ether group and a vinyl ether group are preferable because of good photopolymerization sensitivity, and a (meth) acryl group is more preferable.
 第2の単官能モノマーの数平均分子量を、160~500とすることで、立体造形物の製造時にインクジェット出射性を高めることができる。また、第2の単官能モノマーの数平均分子量を160~400とすることで、インクジェット出射性および硬化性をさらに高めることができる。 By setting the number average molecular weight of the second monofunctional monomer to 160 to 500, it is possible to improve the ink jetting property when manufacturing a three-dimensional model. Further, by setting the number average molecular weight of the second monofunctional monomer to 160 to 400, it is possible to further improve the ink jetting property and curability.
 また、第2の単官能モノマーのガラス転移温度(Tg)を10℃以下とすることで、常温に近い温度での第2の単官能モノマーに由来する分子の運動性を上げることができるため、本発明のモデル材用組成物から製造した立体造形物の伸びをより高めることが可能となる。 In addition, since the glass transition temperature (Tg) of the second monofunctional monomer is 10 ° C. or less, the mobility of molecules derived from the second monofunctional monomer at a temperature close to normal temperature can be increased. It becomes possible to raise the elongation of the three-dimensional molded item manufactured from the composition for model materials of this invention more.
 第2の単官能モノマーは、アミド基を含んでいてもよいが、アミド基を含まないことが好ましい。また、第2の単官能モノマーは、疑似架橋を形成する構造を含んでいてもよいが、疑似架橋を形成する構造を含まないことが好ましい。 The second monofunctional monomer may contain an amide group, but preferably does not contain an amide group. The second monofunctional monomer may include a structure that forms pseudo-crosslinks, but preferably does not include a structure that forms pseudo-crosslinks.
 本発明に用いることのできる第2の単官能モノマーの例には、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、メトキシポリエチレングリコール(550)モノ(メタ)アクリレート、トリデシル(メタ)アクリレート、デシルテトラデカニル(メタ)アクリレート等が含まれる。 Examples of the second monofunctional monomer that can be used in the present invention include lauryl (meth) acrylate, stearyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, tridecyl (meth) acrylate, lauryl ( Examples include meth) acrylate, stearyl (meth) acrylate, methoxypolyethylene glycol (550) mono (meth) acrylate, tridecyl (meth) acrylate, decyltetradecanyl (meth) acrylate, and the like.
 本発明のモデル材用組成物には、互いに異なる構造を有する複数種の第2の単官能モノマーが含まれていてもよい。 The model material composition of the present invention may contain a plurality of types of second monofunctional monomers having different structures.
 1-1-3.2つ以上のエチレン重合性基を有する第3のモノマー
 エチレン重合性基を有する複数種のモノマーには、2つ以上のエチレン重合性基を有する第3のモノマーが含まれていてもよい。2つ以上のエチレン重合性基を有する第3のモノマーとは、エチレン重合性基を2つ以上有するモノマーである。分子内にある複数のエチレン重合性基は、互いに同一であっても、異なっていてもよい。
1-1-3. Third monomer having two or more ethylene polymerizable groups The plurality of types of monomers having an ethylene polymerizable group include a third monomer having two or more ethylene polymerizable groups. It may be. The third monomer having two or more ethylene polymerizable groups is a monomer having two or more ethylene polymerizable groups. The plurality of ethylene polymerizable groups in the molecule may be the same as or different from each other.
 エチレン重合性基には、前記第1の単官能モノマーまたは第2の単官能モノマーと同様に、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、(メタ)アクリル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基およびビニルアミド基などが含まれる。 The ethylene polymerizable group includes an ethylene group, a propenyl group, a butenyl group, a vinylphenyl group, a (meth) acryl group, an allyl ether group, a vinyl ether group, as in the first monofunctional monomer or the second monofunctional monomer. , Maleyl group, maleimide group, (meth) acrylamide group, acetylvinyl group, vinylamide group and the like.
 これらのうち、(メタ)アクリル基、アリルエーテル基およびビニルエーテル基が、光重合感度が良好であるため好ましく、(メタ)アクリル基がさらに好ましい。 Among these, a (meth) acryl group, an allyl ether group and a vinyl ether group are preferable because of good photopolymerization sensitivity, and a (meth) acryl group is more preferable.
 第3のモノマーの数平均分子量を、160~500とすることで、立体造形物の製造時にインクジェット出射性を高めることができる。また、第3のモノマーの数平均分子量を160~400とすることで、インクジェット出射性および硬化性をさらに高めることができる。 By setting the number average molecular weight of the third monomer to 160 to 500, it is possible to improve the ink jetting property when manufacturing a three-dimensional model. Further, by setting the number average molecular weight of the third monomer to 160 to 400, it is possible to further improve the ink jetting property and curability.
 (メタ)アクリル基を有する第3のモノマーは、二官能、三官能、四官能またはそれ以上の官能基を有する化合物であってもよい。 The third monomer having a (meth) acryl group may be a compound having a bifunctional, trifunctional, tetrafunctional or higher functional group.
 二官能(メタ)アクリレートの例には、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等が含まれる。 Examples of bifunctional (meth) acrylates include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di ( (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimethylol -Tricyclodecane di (meth) acrylate, PO adduct di (meth) acrylate of bisphenol A, neopentyl glycol di (meth) acrylate hydroxypivalate, polytetramethylene glycol di (meth) acrylate It includes the rate, and the like.
 三官能(メタ)アクリレートの例には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート等が含まれる。 Examples of trifunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra ( Meta) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate and the like are included.
 (メタ)アクリレート化合物は、変性物であってもよい。変性物の例には、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート等のエチレンオキサイド変性(メタ)アクリレート化合物;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレート化合物;およびカプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレート化合物等が含まれる。 The (meth) acrylate compound may be a modified product. Examples of modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
 ビニルエーテルの基を有する第3のモノマーは、二官能、三官能、四官能またはそれ以上の官能基を有する化合物であってもよい。 The third monomer having a vinyl ether group may be a compound having a bifunctional, trifunctional, tetrafunctional or higher functional group.
 二官能ビニルエーテルの例には、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ノルボルニルジメタノールジビニルエーテル、イソバイニルジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノンなどが含まれる。 Examples of bifunctional vinyl ethers include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, neopentyl glycol divinyl ether, cyclohexane Examples include diol divinyl ether, cyclohexane dimethanol divinyl ether, norbornyl dimethanol divinyl ether, isovinyl divinyl ether, divinyl resorcin, and divinyl hydroquinone.
 三官能ビニルエーテルの例には、グリセリントリビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)などが含まれる。四官能以上のビニルエーテルの例には、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテル、それらのオキシエチレン付加物などが含まれる。 Examples of trifunctional vinyl ethers include glycerin trivinyl ether, glycerin ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 3), etc. included. Examples of tetrafunctional or higher functional vinyl ethers include pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether, and their oxyethylene adducts.
 アリルエーテル基を有する第3のモノマーは、二官能、三官能またはそれ以上の官能基を有する化合物であってもよい。 The third monomer having an allyl ether group may be a compound having a bifunctional, trifunctional or higher functional group.
 二官能アリルエーテルの例には、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、及びポリエチレングリコール(重量平均分子量:100~4000)ジアリルエーテルなどが挙げられる。また、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル及びポリグリセリン(重合度2~5)ジアリルエーテルなどが含まれる。 Examples of the bifunctional allyl ether include 1,4-cyclohexanedimethanol diallyl ether, alkylene (carbon number 2 to 5) glycol diallyl ether, polyethylene glycol (weight average molecular weight: 100 to 4000) diallyl ether, and the like. Also included are glyceryl diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, polyglycerol (degree of polymerization 2 to 5) diallyl ether, and the like.
 三官能以上のアリルエーテルの例には、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタンなどが含まれる。また、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテルおよびポリグリセリン(重合度3~13)ポリアリルエーテルなどが含まれる。 Examples of trifunctional or higher functional allyl ethers include trimethylolpropane triallyl ether, glyceryl triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Also included are pentaerythritol triallyl ether, diglyceryl triallyl ether, sorbitol triallyl ether, polyglycerol (degree of polymerization 3 to 13) polyallyl ether, and the like.
 他の多官能モノマーには、フタル酸ジアリル、イソフタル酸ジアリル、ジビニルベンゼン、N,N-エチレンビスアクリルアミドなどが含まれる。 Other polyfunctional monomers include diallyl phthalate, diallyl isophthalate, divinylbenzene, N, N-ethylenebisacrylamide and the like.
 本発明のモデル材用組成物には、互いに異なる構造を有する複数種の第3のモノマーが含まれていてもよい。 The composition for model material of the present invention may contain a plurality of types of third monomers having different structures.
 <光重合開始剤>
 本発明のモデル材用組成物は、光重合開始剤を含むことが好ましい。光重合開始剤は、紫外線、近紫外線または可視光領域の波長の光を照射するとラジカル反応を促進する化合物であれば、特に限定されない。上記光重合開始剤としては、低エネルギーで重合を開始させることができれば特に限定されないが、アシルフォスフィンオキサイド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシキノン化合物、チオキサントン化合物、ベンゾイン化合物、アントラキノン化合物およびケタール化合物からなる群から選択される少なくとも1種の化合物を含む光重合開始剤を用いることが好ましい。
<Photopolymerization initiator>
It is preferable that the composition for model materials of this invention contains a photoinitiator. The photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region. The photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, but is not limited to acylphosphine oxide compounds, α-aminoalkylphenone compounds, α-hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
 上記アシルフォスフィンオキサイド化合物としては、具体的には、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルジフェニルフォスフィンオキサイド、4-メチルベンゾイルジフェニルフォスフィンオキサイド、4-エチルベンゾイルジフェニルフォスフィンオキサイド、4-イソプロピルベンゾイルジフェニルフォスフィンオキサイド、1-メチルシクロヘキサノイルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸イソプロピルエステル、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なアシルフォスフィンオキサイド化合物としては、例えば、BASF社製の“DAROCURE TPO”等が挙げられる。 Specific examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide. 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 4-methylbenzoyldiphenylphosphine oxide, 4-ethylbenzoyldiphenylphosphine oxide, 4-isopropylbenzoyl Diphenylphosphine oxide, 1-methylcyclohexanoylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoy ) -Phenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2,4,6-trimethylbenzoylphenylphosphinic acid isopropyl ester, bis (2,6-dimethoxybenzoyl) -2,4 , 4-trimethylpentylphosphine oxide and the like. These may be used alone or in combination. Examples of the acylphosphine oxide compound available on the market include “DAROCURE TPO” manufactured by BASF.
 上記α-アミノアルキルフェノン化合物としては、具体的には、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1、2-メチル-1-[4-(メトキシチオ)-フェニル]-2-モルホリノプロパン-2-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-アミノアルキルフェノン化合物としては、例えば、BASF社製の“IRGACURE 369”、“IRGACURE 907”等が挙げられる。 Specific examples of the α-aminoalkylphenone compound include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination. Examples of α-aminoalkylphenone compounds available on the market include “IRGACURE 369” and “IRGACURE 907” manufactured by BASF.
 上記α-ヒドロキシキノン化合物としては、具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ2-メチル-1-プロパン1-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-ヒドロキシキノン化合物としては“IRGACURE 184”、“DAROCURE 1173”、“IRGACURE 2959”、“IRGACURE 127”等が挙げられる。 Specific examples of the α-hydroxyquinone compound include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- {4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of α-hydroxyquinone compounds available on the market include “IRGACURE 184”, “DAROCURE 1173”, “IRGACURE 2959”, “IRGACURE 127”, and the like.
 上記チオキサントン化合物としては、具体的には、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なチオキサントン化合物としては、例えば、日本化薬社製の“MKAYACURE DETX-S”、ダブルボンドケミカル社製の“Chivacure ITX”等が挙げられる。 Specific examples of the thioxanthone compound include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
 上記ベンゾイン化合物としては、具体的には、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。 Specific examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
 上記アントラキノン化合物としては、具体的には、例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等が挙げられる。 Specific examples of the anthraquinone compound include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
 上記ケタール化合物としては、具体的には、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。 Specific examples of the ketal compound include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
 上記光重合開始剤の含有量は、モデル材用組成物全体100質量部に対して、1~15質量部である。上記成分の含有量が上記範囲であると、モデル材用組成物の硬化性が良好となり、光造形物の寸法精度が向上する。上記成分の含有量は、2質量部以上であることが好ましく、13質量部以下であることが好ましい。なお、上記成分が2種以上含まれる場合、上記含有量は、各光重合開始剤の含有量の合計として定める。 The content of the photopolymerization initiator is 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the component is within the above range, the curability of the model material composition is improved, and the dimensional accuracy of the optically shaped object is improved. The content of the above components is preferably 2 parts by mass or more, and preferably 13 parts by mass or less. In addition, when the said component is contained 2 or more types, the said content is defined as the sum total of content of each photoinitiator.
 <表面調整剤>
 表面調整剤は、モデル材用組成物の表面張力を適切な範囲に調整するために含有させる。モデル材用組成物の表面張力を適切な範囲に調整することにより、モデル材用組成物とサポート材用組成物とが界面で混ざり合うことを抑制することができる。その結果、これらのモデル材用組成物を用いて、寸法精度が良好な光造形物を得ることができる。この効果を得るため、上記表面調整剤の含有量は、モデル材用組成物全体100質量部に対して、0.005~3.0質量部とする。
<Surface conditioner>
The surface conditioner is contained in order to adjust the surface tension of the model material composition to an appropriate range. By adjusting the surface tension of the model material composition to an appropriate range, the model material composition and the support material composition can be prevented from being mixed at the interface. As a result, it is possible to obtain an optically shaped object with good dimensional accuracy using these model material compositions. In order to obtain this effect, the content of the surface conditioner is 0.005 to 3.0 parts by mass with respect to 100 parts by mass of the entire model material composition.
 上記表面調整剤としては、例えば、シリコーン系化合物等が挙げられる。シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。これらとして、商品名でBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570(以上、ビックケミー社製)、TEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700(以上、デグサ社製)、グラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93(共栄社化学社製)等を用いてもよい。また、シリコーン系化合物以外の(たとえばフッ素系表面調整剤、ノニオン系表面調整剤)を用いることもできる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記成分が2種以上含まれる場合、上記含有量は、各表面調整剤の含有量の合計として定める。 Examples of the surface conditioner include silicone compounds. Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. These include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570 (above, manufactured by BYK Chemie), TEGO-Rad2100 , TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700 (above, manufactured by Degussa), Granol 100, Granol 115, Granol 400, Grano Le 410, Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like may be used. Moreover, other than silicone compounds (for example, fluorine-based surface conditioners and nonionic surface conditioners) can also be used. These may be used alone or in combination of two or more. In addition, when the said component is contained 2 or more types, the said content is defined as the sum total of content of each surface modifier.
 <保存安定化剤>
 本実施形態に係るモデル材用組成物は、さらに、保存安定化剤を含有することが好ましい。保存安定化剤は、モデル材用組成物の保存安定性を高めることができる。また、熱エネルギーにより重合性化合物が重合することで生じるヘッド詰まりを防止することができる。これらの効果を得るため、上記成分の含有量は、モデル材用組成物全体100質量部に対して、0.05~3.0質量部であることが好ましい。
<Storage stabilizer>
The model material composition according to this embodiment preferably further contains a storage stabilizer. The storage stabilizer can enhance the storage stability of the model material composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented. In order to obtain these effects, the content of the components is preferably 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the entire model material composition.
 上記保存安定化剤としては、例えば、ヒンダードアミン系化合物(HALS)、フェノール系酸化防止剤、リン系酸化防止剤、ニトロソアミン系化合物等が挙げられる。具体的には、ハイドロキノン、メトキノン、ベンゾキノン、p-メトキシフェノール、ハイドロキノンモノメチルエーテル、ハイドロキノンモノブチルエーテル、TEMPO、4-ヒドロキシ-TEMPO、TEMPOL、クペロンAl、IRGASTAB UV-10、IRGASTAB UV-22、FIRSTCURE ST-1(ALBEMARLE社製)、t-ブチルカテコール、ピロガロール、BASF社製のTINUVIN 111 FDL、TINUVIN 144、TINUVIN 292、TINUVIN XP40、TINUVIN XP60、TINUVIN 400等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記成分が2種以上含まれる場合、上記含有量は、各成分の含有量の合計として定める。 Examples of the storage stabilizer include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, nitrosamine compounds, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more. In addition, when the said component is contained 2 or more types, the said content is defined as the sum total of content of each component.
 モデル材用組成物には、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。 In the composition for model material, other additives can be contained as necessary within a range not impairing the effects of the present invention. Examples of other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler.
 本発明のモデル材用組成物には、必要に応じて光開始助剤がさらに含まれていてもよい。光開始助剤は、たとえば第3級アミン化合物であってよく、芳香族第3級アミン化合物が好ましい。芳香族第3級アミン化合物の例には、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステル、N,N-ジヒドロキシエチルアニリン、トリエチルアミンおよびN,N-ジメチルヘキシルアミン等が含まれる。なかでも、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステルが好ましい。モデル材用組成物に、これらの化合物が、一種のみ含まれていてもよく、二種類以上が含まれていてもよい。 The model material composition of the present invention may further contain a photoinitiating aid as required. The photoinitiation assistant may be, for example, a tertiary amine compound, and is preferably an aromatic tertiary amine compound. Examples of aromatic tertiary amine compounds include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like are included. Of these, N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. Only one of these compounds may be included in the model material composition, or two or more of these compounds may be included.
 本実施形態に係るモデル材用組成物は、特に限定されるものではないが、混合攪拌装置、分散機等を用いて均一に混合することにより、製造することができる。 The model material composition according to the present embodiment is not particularly limited, but can be produced by uniformly mixing using a mixing and stirring device, a disperser, or the like.
 また、モデル材用組成物には、前記第1の単官能モノマー、第2の単官能モノマーまたは第3のモノマー以外の重合性化合物が含まれていてもよい。含まれていてもよい重合性化合物には、上記した以外のモノマー、重合度が2以上20以下であり重合性を有するオリゴマーおよび重合性を有するポリマー等が含まれる。 The model material composition may also contain a polymerizable compound other than the first monofunctional monomer, the second monofunctional monomer, or the third monomer. Examples of the polymerizable compound that may be included include monomers other than those described above, oligomers having a polymerization degree of 2 to 20, and a polymerizable polymer and a polymerizable polymer.
 2.サポート材用組成物
 本発明において、水溶性のサポート材用組成物は、少なくとも1種の水溶性単官能エチレン性不飽和単量体(a)、オキシブチレン基を含む少なくとも1種のポリアルキレングリコール(b)および光重合開始剤を含むことが好ましい。
2. Composition for Support Material In the present invention, the water-soluble composition for a support material comprises at least one water-soluble monofunctional ethylenically unsaturated monomer (a) and at least one polyalkylene glycol containing an oxybutylene group. It is preferable that (b) and a photoinitiator are included.
 本発明のサポート材用組成物に含まれる水溶性の単官能エチレン性不飽和単量体(a)としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルホリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition of the present invention include a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acrylate ], (Meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) Examples include acryloylmorpholine. These may be used alone or in combination of two or more.
 サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(a)の含有量は、上記サポート材用組成物100質量部に対して、19質量部以上80質量部であることが好ましく、より好ましくは22質量部以上であり、さらに好ましくは25質量部以上であり、より好ましくは76質量部以下であり、さらに好ましくは73質量部以下である。水溶性単官能エチレン性不飽和単量体(a)の含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。 Content of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the composition for support material is 19 parts by mass or more and 80 parts by mass with respect to 100 parts by mass of the composition for support material. More preferably, it is 22 parts by mass or more, more preferably 25 parts by mass or more, more preferably 76 parts by mass or less, and further preferably 73 parts by mass or less. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
 サポート材用組成物に含まれるオキシブチレン基を含むポリアルキレングリコール(b)としては、直鎖型、多鎖型のいずれであってもよい。また、水に溶解するものであれば、末端にアルキル基を含んでいてもよく、例えば、好ましくは炭素数6以下のアルキル鎖を含んでいてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt | dissolves in water, the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
 サポート材用組成物に含まれるオキシブチレン基を含むポリアルキレングリコール(b)は、サポート材に適度な親水性を付与するための水溶性樹脂であり、これを添加することにより水除去性とサポート力とを兼ね備えたサポート材を得ることができる。上記オキシブチレン基を含むポリアルキレングリコールは、オキシブチレン基を含んでいれば特にそのアルキレン部分の構造は限定されず、例えば、オキシブチレン基(オキシテトラメチレン基)のみ有するポリブチレングリコール単体であってもよく、また、オキシブチレン基と他のオキシアルキレン基とを共に有するポリブチレンポリオキシアルキレングリコール(例えば、ポリブチレンポリエチレングリコール)であってもよい。例えば、上記ポリブチレングリコールは、下記化学式(2)で示され、上記ポリブチレンポリエチレングリコールは、下記化学式(3)で示される。 The polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition is a water-soluble resin for imparting appropriate hydrophilicity to the support material. Support material that combines strength can be obtained. The polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group. For example, a polybutylene glycol alone having only an oxybutylene group (oxytetramethylene group) Alternatively, it may be a polybutylene polyoxyalkylene glycol having both an oxybutylene group and another oxyalkylene group (for example, polybutylene polyethylene glycol). For example, the polybutylene glycol is represented by the following chemical formula (2), and the polybutylene polyethylene glycol is represented by the following chemical formula (3).
  [化2]
HO(CHCHCHCHO)H   (2)
[Chemical formula 2]
HO (CH 2 CH 2 CH 2 CH 2 O) n H (2)
  [化3]
HO(CHCHCHCHO)(CO)H   (3)
[Chemical formula 3]
HO (CH 2 CH 2 CH 2 CH 2 O) m (C 2 H 4 O) n H (3)
 上記化学式(3)において、mは5~300の整数であることが好ましく、nは2~150の整数であることが好ましい。より好ましくは、mは6~200、nは3~100である。また、化学式(2)および化学式(3)中のオキシブチレン基は、直鎖であってもよいが、分岐していてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the above chemical formula (3), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (2) and the chemical formula (3) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
 サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(b)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができ、ゴム状の伸びや弾性を有するモデル材を支持し、精度の高いモデル材を造形するのに適したサポート材となる。特に、ゴムのような伸びや弾性を有し、成形時に寸法精度が低下しやすいモデル材に対して、光造形中にサポート材がモデル材を十分に支えることができるため光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な寸法精度を有する光造形物を得ることができる。 By including the polyalkylene glycol (b) containing an oxybutylene group, the support material composition can further improve the removability by water without reducing the support force of the support material. It supports a model material having elasticity and becomes a support material suitable for modeling a model material with high accuracy. In particular, for model materials that have elasticity and elasticity like rubber and whose dimensional accuracy tends to decrease during molding, the support material can sufficiently support the model material during stereolithography, so modeling at the stage of stereolithography Accuracy can be improved. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
 オキシブチレン基を含むポリアルキレングリコール(b)成分の重量平均分子量は、300以上であり、3000より小さいことが好ましく、更に、800以上であり、2000より小さいことがより好ましい。(b)成分の重量平均分子量が300より小さいと、サポート材用組成物を硬化した際にサポート材のブリーディングが生じやすくなる。ブリーディングとは硬化したサポート材内部から液体成分がサポート材表面に浸みだす現象である。また、オキシブチレン基を含むポリアルキレングリコールの重量平均分子量が3000より小さいことにより、サポート材用組成物の吐出安定性に優れる。重量平均分子量が上記範囲であると、硬化前の組成物中で水溶性単官能エチレン性不飽和単量体(a)と相溶しやすくなる一方、光照射後の水溶性単官能エチレン性不飽和単量体の硬化物とは相溶し難くなり、サポート材の水または水溶性溶剤による除去が容易になる。 The weight average molecular weight of the polyalkylene glycol (b) component containing an oxybutylene group is 300 or more, preferably less than 3000, more preferably 800 or more, and more preferably less than 2000. When the weight average molecular weight of the component (b) is smaller than 300, bleeding of the support material tends to occur when the support material composition is cured. Bleeding is a phenomenon in which liquid components ooze out from the inside of a cured support material. Moreover, when the weight average molecular weight of the polyalkylene glycol containing an oxybutylene group is smaller than 3000, the discharge stability of the support material composition is excellent. When the weight average molecular weight is in the above range, the water-soluble monofunctional ethylenically unsaturated monomer (a) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
 オキシブチレン基を含むポリアルキレングリコール(b)成分は、2種類以上使用されてもよい。2種類以上のポリアルキレングリコールが使用される場合、重量平均分子量が300より小さい又は3000より大きいポリアルキレングリコールの含有量は、少量が好ましい。 Two or more types of polyalkylene glycol (b) components containing an oxybutylene group may be used. When two or more types of polyalkylene glycol are used, the content of polyalkylene glycol having a weight average molecular weight of less than 300 or greater than 3000 is preferably small.
 サポート材用組成物におけるオキシブチレン基を含むポリアルキレングリコール(b)の含有量は、サポート材用組成物100質量部に対して、15質量部以上75質量部以下であることが好ましく、より好ましくは17質量部以上であり、さらに好ましくは20質量部以上であり、より好ましくは72質量部以下であり、さらに好ましくは70質量部以下である。オキシブチレン基を含むポリアルキレングリコール(b)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。 The content of the polyalkylene glycol (b) containing an oxybutylene group in the support material composition is preferably 15 parts by mass or more and 75 parts by mass or less with respect to 100 parts by mass of the support material composition. Is 17 parts by mass or more, more preferably 20 parts by mass or more, more preferably 72 parts by mass or less, and still more preferably 70 parts by mass or less. When the content of the polyalkylene glycol (b) containing an oxybutylene group is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material. .
 サポート材用組成物は、水溶性有機溶剤(c)を含んでいてもよい。水溶性有機溶剤(c)は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する機能も有する。 The support material composition may contain a water-soluble organic solvent (c). The water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
 水溶性有機溶剤(c)としては、グリコール系溶剤を用いることが好ましく、具体的には、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールジアセテート、プロピレングリコールジアセテートなどのグリコールエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどのグリコールモノエーテルアセテート系溶剤等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the water-soluble organic solvent (c), it is preferable to use a glycol solvent. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate. Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol Nomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether Examples thereof include glycol monoether acetate solvents such as acetate. These may be used alone or in combination of two or more.
 中でも、低粘度のサポート材用組成物を調製しやすく、また、硬化して得られるサポート材が水溶解性に優れる点から、水溶性有機溶剤(c)としては、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルおよびジプロピレングリコールモノメチルエーテルアセテートが好ましい。 Among them, triethylene glycol monomethyl ether, diethylene glycol can be used as the water-soluble organic solvent (c) because it is easy to prepare a composition for a low viscosity support material and the support material obtained by curing is excellent in water solubility. Diethyl ether and dipropylene glycol monomethyl ether acetate are preferred.
 サポート材用組成物における水溶性有機溶剤(c)の含有量は、サポート材用組成物100質量部に対して、30質量部以下であることが好ましく、より好ましくは28質量部以下であり、さらに好ましくは25質量部以下である。水溶性有機溶剤(c)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。サポート材用組成物が水溶性有機溶剤を含む場合、その含有量は、サポート材用組成物を低粘度に調整し得る観点から、サポート材用組成物100質量部に対して、好ましくは3質量部以上である。 The content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less. When the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material. When the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
 光重合開始剤としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用することができる。サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは2質量部以上であり、また、より好ましくは18質量部以下、さらに好ましくは15質量部以下である。光重合開始剤の含有量が上記範囲内であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。 As the photopolymerization initiator, the compounds described above as photopolymerization initiators that can be contained in the model material composition can be used in the same manner. The content of the photopolymerization initiator in the composition for support material is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the composition for support material. Moreover, More preferably, it is 18 mass parts or less, More preferably, it is 15 mass parts or less. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
 上記各成分を上記範囲の含有量で含むことにより、優れた水溶解性とサポート力とを兼ね備えたサポート材用組成物を得ることができる。特に、サポート力に優れるため造形中に空気中の水分を取り込みサポート力が低下するという懸念がなく、寸法精度が良好な光造形品が得られる。 By including each of the above components in a content within the above range, a composition for a support material that has both excellent water solubility and support ability can be obtained. In particular, since the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
 上記サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、表面調整剤、酸化防止剤、着色剤、顔料分散剤、保存安定剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。 The support material composition may contain other additives as necessary. Examples of other additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. .
 サポート材用組成物に、表面調整剤を配合することによりサポート材用組成物の表面張力を適当な範囲に制御することができ、モデル材用組成物とサポート材用組成物がその界面で混合することを抑制することができる。これにより、寸法精度の良好な光造形物を得ることができる。サポート材用組成物が含み得る表面調整剤としては、本発明のモデル材用組成物に用い得る表面調整剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.005質量部以上3質量部以下であることが好ましい。 By adding a surface conditioner to the support material composition, the surface tension of the support material composition can be controlled within an appropriate range, and the model material composition and the support material composition are mixed at the interface. Can be suppressed. Thereby, a stereolithography thing with favorable dimensional accuracy can be obtained. As the surface conditioner that can be contained in the support material composition, the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
 また、サポート材用組成物に保存安定剤を配合することにより保存安定性を向上させることができる。サポート材用組成物が含み得る保存安定剤としては、本発明のモデル材用組成物に用い得る保存安定剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.05質量部以上3質量部以下であることが好ましい。 Moreover, the storage stability can be improved by blending a storage stabilizer into the support material composition. As the storage stabilizer that can be contained in the support material composition, those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
 サポート材組成物をインクジェットヘッドより出射する場合は、サポート材組成物の粘度は25℃において30~200mPa・sであることが好ましく、より好ましくは35mPa・s以上、さらに好ましくは40mPa・s以上であり、より好ましくは170mPa・s以下、さらに好ましくは150mPa・s以下である。なお、上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。 When the support material composition is emitted from the inkjet head, the viscosity of the support material composition is preferably 30 to 200 mPa · s at 25 ° C., more preferably 35 mPa · s or more, and still more preferably 40 mPa · s or more. Yes, more preferably 170 mPa · s or less, still more preferably 150 mPa · s or less. In addition, the measurement of the said viscosity can be performed using R100 type | mold viscosity meter based on JISZ8803.
 本発明において、サポート材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5~29.5mN/mであり、さらに好ましくは25~29mN/mである。表面張力が上記範囲内であると、ノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、高い造形精度を確保しやすくなる。なお、サポート材用組成物の表面張力は、モデル材用組成物における表面張力の測定方法と同様の方法に従い測定することができる。 In the present invention, the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m. When the surface tension is within the above range, it is possible to normally form droplets ejected from the nozzle, to ensure an appropriate droplet amount and landing accuracy, and to suppress the occurrence of satellites, It becomes easy to ensure high modeling accuracy. In addition, the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
 本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置、分散機等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。 The method for producing the composition for a support material of the present invention is not particularly limited. For example, the composition for a support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer, a disperser, or the like. it can.
 3.光造形品およびその製造方法
 本実施形態の光造形物の製造方法は、前述の実施形態で説明したインクジェット光造形用組成物セットを用いた光造形物の製造方法であり、インクジェット方式プリンタを用いてモデル材用組成物及びサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に接触させることにより除去する工程とを備えている。
3. Stereolithography product and manufacturing method thereof The fabrication method of the stereolithography object of the present embodiment is a fabrication method of the stereolithography object using the composition set for inkjet stereolithography described in the above embodiment, and uses an inkjet printer. After the model material composition and the support material composition are discharged, the model material composition is photocured to obtain a model material, and the water soluble support material composition is photocured to obtain a water soluble support material. And a step of removing the water-soluble support material by bringing it into contact with water.
 本実施形態の光造形物の製造方法は、上記インクジェット光造形用組成物セットを用いているため、造形精度に優れた光造形物を形成することができる。 Since the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for inkjet optical modeling, it can form the optical modeling thing excellent in modeling precision.
 以下、本実施形態の光造形物の製造方法について図面に基づき説明する。図1は、マテリアルジェット造形法によりサポート材用組成物及びモデル材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。図1において、三次元造形装置10は、インクジェットヘッドモジュール11と、造形テーブル12とを備えている。また、インクジェットヘッドモジュール11は、光造形用インクユニット11aと、ローラー11bと、光源11cとを備えている。更に、光造形用インクユニット11aは、モデル材用インク13が充填されたモデル材用インクジェットヘッド11aMと、サポート材用インク14が充填されたサポート材用インクジェットヘッド11aSとを備えている。 Hereinafter, a method for manufacturing an optically shaped object according to the present embodiment will be described with reference to the drawings. FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays. In FIG. 1, the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12. The ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c. Further, the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
 モデル材用インクジェットヘッド11aMからは、モデル材用組成物13が吐出され、サポート材用インクジェットヘッド11aSからは、サポート材用組成物14が吐出され、光源11cからエネルギー線15が照射され、吐出されたモデル材用組成物13及びサポート材用組成物14を硬化させて、モデル材13PMとサポート材14PSを形成している。図1では、一層目のモデル材13PM及びサポート材14PSを形成する状態を示している。 The model material composition 13 is ejected from the model material inkjet head 11aM, the support material composition 14 is ejected from the support material inkjet head 11aS, and the energy beam 15 is irradiated and ejected from the light source 11c. The model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS. FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
 次に、本実施形態の光造形物の製造方法について図面に基づき更に詳細に説明する。本実施形態の光造形物の製造方法では、先ず、図2に示すように、インクジェットヘッドモジュール11を造形テーブル12に対してX方向(図2では右方向)に走査させる共に、モデル材用インクジェットヘッド11aMからモデル材用組成物13を吐出し、サポート材用インクジェットヘッド11aSからサポート材用組成物14を吐出する。これにより、造形テーブル12の上に、モデル材前駆体13Mからなる層とサポート材前駆体14Sからなる層とを、それぞれの界面同士が接触するように隣接して配置する。 Next, the method for manufacturing an optically shaped object according to this embodiment will be described in more detail based on the drawings. In the method for manufacturing an optically shaped object according to the present embodiment, first, as shown in FIG. 2, the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used. The model material composition 13 is discharged from the head 11aM, and the support material composition 14 is discharged from the support material inkjet head 11aS. Thereby, on the modeling table 12, the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange | positioned adjacently so that each interface may contact.
 次に、図3に示すように、インクジェットヘッドモジュール11を造形テーブル12に対して逆X方向(図3では左方向)に走査させると共に、ローラー11bでモデル材前駆体13M及びサポート材前駆体14Sからなる層の表面を平滑にした後、光源11cからエネルギー線15を照射し、モデル材前駆体13M及びサポート材前駆体14Sからなる層を硬化させて、一層目のモデル材13PM及びサポート材14PSからなる層を形成する。 Next, as shown in FIG. 3, the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 </ b> M and the support material precursor 14 </ b> S are scanned by the roller 11 b. After smoothing the surface of the layer made of the material, the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS. A layer consisting of is formed.
 続いて、造形テーブル12をZ方向に一層分だけ下降させて、上記と同様の工程を行い、二層目のモデル材及びサポート材からなる層を形成する。その後、上記の工程を繰り返すことにより、図4に示すように、モデル材13PMとサポート材14PSからなる光造形品前駆体16が形成される。 Subsequently, the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
 最後に、図4に示した光造形品前駆体16を水に接触させる、例えば、水に浸漬することによりサポート材14PSを溶解して除去し、図5に示すような光造形品17が形成される。 Finally, the optical modeling product precursor 16 shown in FIG. 4 is brought into contact with water, for example, by immersing in water, the support material 14PS is dissolved and removed to form the optical modeling product 17 as shown in FIG. Is done.
 本実施形態の光造形物の製造方法において、光源として、例えば、高圧水銀灯、メタルハライドランプ、UV-LED等を使用できる。三次元造形装置10の小型化が可能であり、消費電力が小さいという観点から、UV-LEDが好ましい。光量は、造形品の硬度および寸法精度の観点から、200~500mJ/cm2が好ましい。光源としてUV-LEDを用いる場合、光が深層まで届きやすくなり、光造形品の硬度および寸法精度を向上させることができることから、中心波長が385~415nmのものを用いることが好ましい。また、光源11cから照射するエネルギー線15についは、紫外線、近紫外線、可視光線、赤外線、遠赤外線、電子線、α線、γ線およびエックス線等を使用することができるが、硬化作業の容易性及び効率性の観点から、紫外線又は近紫外線が好ましい。 For example, a high-pressure mercury lamp, a metal halide lamp, or a UV-LED can be used as a light source in the method of manufacturing an optically shaped object according to this embodiment. From the viewpoint that the three-dimensional modeling apparatus 10 can be miniaturized and the power consumption is small, UV-LED is preferable. The amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product. When a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved. As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, α rays, γ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
 本発明のモデル材用組成物は、カチオン重合性の化合物の含有量を実質的に含まないため、最もエネルギー負荷、装置負荷が少ない紫外線でも十分に硬化させることができる。したがって、紫外線を用いることで、より安価で立体造形物を製造することができる。 Since the composition for a model material of the present invention does not substantially contain the content of a cationic polymerizable compound, it can be sufficiently cured even with ultraviolet rays having the least energy load and apparatus load. Therefore, a three-dimensional molded item can be manufactured at a lower cost by using ultraviolet rays.
 本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンタで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。 In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the material jet type 3D printer is prepared, and each of the material for the model material and the support material is based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
 立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。 The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
 得られた光造形物は、モデル材とサポート材とが組み合わされたものである。かかる光造形物からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた光造形物を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。 The obtained stereolithography is a combination of a model material and a support material. The support material is removed from the stereolithography product to obtain a stereolithography product as a model material. The support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. preferable. Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
 上記光造形品は、水に接触した場合の吸水及び膨潤が抑制されており、微細構造部分の破損及び変形を起こしにくいものである。また、上記光造形品は撥水撥油性に優れ、汚染されにくいものである。 The above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
 以上に記載した実施形態においては、モデル材組成物用のインクジェットヘッド数は1つに制限されない。例えばモデル材組成物用に2つのインクジェットヘッドを設け、各インクジェットヘッドのノズルから物性が異なるモデル材組成物を同時に吐出し、モデル材組成物を混合させて複合材料として造形することもできる。 In the embodiment described above, the number of inkjet heads for the model material composition is not limited to one. For example, two ink jet heads may be provided for the model material composition, model material compositions having different physical properties may be simultaneously ejected from the nozzles of each ink jet head, and the model material composition may be mixed to form a composite material.
 以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部である。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” in the examples are% by mass and parts by mass.
 <モデル材用組成物>
 実施例において用いたモデル材用組成物を構成する成分の詳細を表1に示す。
<Model material composition>
The details of the components constituting the composition for model material used in the examples are shown in Table 1.
  [表1]
Figure JPOXMLDOC01-appb-I000002
[Table 1]
Figure JPOXMLDOC01-appb-I000002
 <モデル材用組成物の製造>
 表2に示す配合で、各成分を、混合攪拌装置を用いて均一に混合し、実施例M1~M8並びに比較例m1及びm3のモデル材用組成物を製造した。
<Manufacture of composition for model material>
In the formulation shown in Table 2, each component was uniformly mixed using a mixing and stirring device, and the compositions for model materials of Examples M1 to M8 and Comparative Examples m1 and m3 were produced.
  [表2]
Figure JPOXMLDOC01-appb-I000003
[Table 2]
Figure JPOXMLDOC01-appb-I000003
 <立体造形物の製造>
 ガラス板上に、縦100mm、横20mm、厚さ8mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各モデル材組成物を流し込み、メタルハライドランプにより積算光量400mJ/cm2の紫外線を照射し、モデル材を得た。下記特性を、測定、評価した。結果を表3に示す。
<Manufacture of 3D objects>
On a glass plate, a vertical 100 mm, horizontal 20 mm, to form a frame-by frame-shaped silicone rubber having a thickness of 8 mm, pouring the model material composition into the frame, UV accumulated light amount 400 mJ / cm 2 by a metal halide lamp Was irradiated to obtain a model material. The following characteristics were measured and evaluated. The results are shown in Table 3.
 <破断伸びおよび破断強度の評価>
室温で、走査方向に引張速度20mm/minで一定荷重をかけて破断伸びおよび破断強度を測定した。
<Evaluation of elongation at break and strength at break>
At room temperature, the elongation at break and the strength at break were measured by applying a constant load at a tensile speed of 20 mm / min in the scanning direction.
 <評価基準-破断伸び>
◎:破断伸びが20%以上。
○:破断伸びが15%以上20%未満。
△:破断伸びが10%以上15%未満。
×:破断伸びが10%未満。
<Evaluation criteria-Elongation at break>
A: Elongation at break is 20% or more.
○: Elongation at break is 15% or more and less than 20%.
Δ: Elongation at break is 10% or more and less than 15%.
X: Elongation at break is less than 10%.
 <評価基準-破断強度>
◎:破断強度が10MPa以上。
〇:破断強度が5MPa以上10MPa未満。
△:破断伸びが1MPa以上5MPa未満。
×:破断強度が1MPa未満。
<Evaluation criteria-Breaking strength>
A: Breaking strength is 10 MPa or more.
A: The breaking strength is 5 MPa or more and less than 10 MPa.
Δ: Elongation at break is 1 MPa or more and less than 5 MPa.
X: Breaking strength is less than 1 MPa.
  [表3]
Figure JPOXMLDOC01-appb-I000004
[Table 3]
Figure JPOXMLDOC01-appb-I000004
 表3から明らかなように、本発明の配合に基づくモデル材用組成物を用いた場合、伸びと強度を兼ね備えた立体造形物を製造することができた。 As is clear from Table 3, when the model material composition based on the composition of the present invention was used, a three-dimensional modeled object having both elongation and strength could be produced.
 <サポート材用組成物>
 表4に、下記の実施例及び比較例において、サポート材用組成物に使用した成分をまとめた。
<Composition for support material>
Table 4 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
  [表4]
Figure JPOXMLDOC01-appb-I000005
[Table 4]
Figure JPOXMLDOC01-appb-I000005
 (実施例S1~S13及び比較例s1)
 先ず、実施例S1~S13のサポート材用組成物を次のようにして調製した。即ち、プラスチック製ビンに、表7に示す成分(a)~(f)を表5に示す配合量(単位:質量部)で計り取り、これらを混合することにより各サポート材用組成物を調製した。
(Examples S1 to S13 and Comparative Example s1)
First, the support material compositions of Examples S1 to S13 were prepared as follows. That is, the components (a) to (f) shown in Table 7 are weighed in plastic bottles with the blending amounts (unit: parts by mass) shown in Table 5, and these are mixed to prepare each support material composition. did.
  [表5]
Figure JPOXMLDOC01-appb-I000006
[Table 5]
Figure JPOXMLDOC01-appb-I000006
 次に、上記実施例S1~S13のサポート材用組成物について、下記に示す方法によって、サポート材組成物の低温安定性、サポート材用組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)及び水除去性を評価した。 Next, with respect to the support material compositions of Examples S1 to S13, the support material composition was stable at low temperatures and the support material cured product obtained by curing the support material composition was stabilized under high temperature and high humidity conditions by the following methods. The property (supporting power) and water removal property were evaluated.
 <サポート材組成物の低温安定性>
 低温でのサポート材用組成物の安定性について評価した。各サポート材用組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材組成物の低温安定性を評価した。
<Low temperature stability of support material composition>
The stability of the composition for the support material at low temperature was evaluated. Each composition for support material was put into a glass bottle, and the glass bottle with the composition for support material was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the support material composition was evaluated according to the following criteria.
 サポート材用組成物が液体状を維持している場合:低温安定性A(優良)
 サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
 サポート材用組成物が凝固(固化)している場合:低温安定性C(不良)
 <サポート材硬化物のサポート力>
 ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材用組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。
When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
<Supporting power of cured support material>
A frame is formed on a glass plate with silicon rubber having a frame shape of 30 mm in length, 30 mm in width, and 5 mm in thickness, and the composition for each support material is poured into the frame. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
 硬化物の表面に液体状物質の発生がなく、硬化物の軟化も確認されない場合:サポート力A(優良)
 硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
 硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良)
 <サポート材硬化物の水除去性>
 上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。
When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
<Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
 硬化物が完全に溶解するまでの時間が1時間未満であった:水除去性A(優良)
 硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
 硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良)
 以上の結果を表6に示す。
The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
The results are shown in Table 6.
  [表6]
Figure JPOXMLDOC01-appb-I000007
[Table 6]
Figure JPOXMLDOC01-appb-I000007
 実施例S1~S13のサポート材用組成物は、全ての評価項目で満足できる結果を得たことが分かる。 It can be seen that the compositions for support materials of Examples S1 to S13 obtained satisfactory results for all evaluation items.
 <インクジェット光造形用組成物セット>
 表7に示す通りに上記モデル材用組成物及びサポート材用組成物を組み合わせることにより、実施例1~4,比較例1,2を調製した。
<Composition set for inkjet optical modeling>
Examples 1 to 4 and Comparative Examples 1 and 2 were prepared by combining the composition for model material and the composition for support material as shown in Table 7.
 ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にサポート材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cm2となるように紫外線を照射して硬化させ、サポート材を得た。 A spacer having a thickness of 1 mm was arranged on four upper sides of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into a 10 cm × 10 cm square. After casting the composition for the support material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and the ultraviolet ray is irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. Cured to obtain a support material.
 次に、上記サポート材の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にモデル材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、モデル材を得た。 Next, spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm × 10 cm. After casting the composition for the model material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a model material.
 <密着性の評価>
 この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表7に示す。
○:モデル材とサポート材とは密着していた。
△:モデル材とサポート材とは密着していたが、モデル材とサポート材との界面を爪でひっかくと剥がれが生じた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。
<Evaluation of adhesion>
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 7.
○: The model material and the support material were in close contact.
Δ: The model material and the support material were in close contact with each other, but peeling occurred when the interface between the model material and the support material was scratched with a nail.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
  [表7]
Figure JPOXMLDOC01-appb-I000008
[Table 7]
Figure JPOXMLDOC01-appb-I000008
 表7の結果から分かるように、モデル材用組成物およびサポート材用組成物の両方が本発明の要件を満たす実施例1~4は、モデル材とサポート材との界面に剥がれが生じず、モデル材とサポート材とがより密着していた。このように、モデル材とサポート材とが密着していれば、寸法精度が良好な光造形品が得られる。 As can be seen from the results in Table 7, in Examples 1 to 4 in which both the composition for the model material and the composition for the support material satisfy the requirements of the present invention, the interface between the model material and the support material does not peel off, Model material and support material were more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
 一方、モデル材用組成物およびサポート材用組成物の一方又は両方が本発明の要件を満たしていない比較例1及び2は、モデル材とサポート材との界面で剥がれが生じた。このように、モデル材とサポート材との密着性が悪いと、光造形品の寸法精度が悪化する。 On the other hand, in Comparative Examples 1 and 2 in which one or both of the model material composition and the support material composition did not satisfy the requirements of the present invention, peeling occurred at the interface between the model material and the support material. As described above, when the adhesion between the model material and the support material is poor, the dimensional accuracy of the stereolithography product deteriorates.
 本発明の光造形用組成物セットは、インクジェット光造形法を用いて、寸法精度が良好な光造形品を製造する際に好適に用いることができる。 The composition set for optical modeling of the present invention can be suitably used when an optical modeling product with good dimensional accuracy is manufactured using an inkjet optical modeling method.
 10 三次元造形装置
 11 インクジェットヘッドモジュール
 11a 光造形用インクユニット
 11aM モデル材用インクジェットヘッド
 11aS サポート材用インクジェットヘッド
 11b ローラー
 11c 光源
 12 造形テーブル
 13 モデル材用組成物
 13M モデル材前駆体
 13PM モデル材
 14 サポート材用組成物
 14S サポート材前駆体
 14PS サポート材
 15 エネルギー線
 16 光造形品前駆体(光造形物)
 17 光造形品
DESCRIPTION OF SYMBOLS 10 3D modeling apparatus 11 Inkjet head module 11a Optical modeling ink unit 11aM Model material inkjet head 11aS Support material inkjet head 11b Roller 11c Light source 12 Modeling table 13 Model material composition 13M Model material precursor 13PM Model material 14 Support Material composition 14S Support material precursor 14PS Support material 15 Energy beam 16 Stereolithography product precursor (Optical fabrication product)
17 Stereolithography

Claims (10)

  1. インクジェット光造形法により光造形物を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなるインクジェット光造形用組成物セットであって、
     前記モデル材用組成物は、エチレン重合性基を有する複数種のモノマーおよび光重合開始剤を含有するモデル材用組成物であって、該エチレン重合性基を有する複数種のモノマーは、1つのエチレン重合性基を有する第1の単官能モノマーおよび1つのエチレン重合性基を有する第2の単官能モノマーを含み、該第1の単官能モノマーは、アミド基をさらに有し、該第2の単官能モノマーのガラス転移温度(Tg)は、10℃以下であり、FOXの式によって求められる、該エチレン重合性基を有する複数種のモノマーを重合させた重合体のガラス転移温度(Tg)は、0℃以上であり、
     前記サポート材用組成物は、前記サポート材用組成物全体100質量部に対して、
    19質量部以上80質量部以下の水溶性単官能エチレン性不飽和単量体と、
    15質量部以上75質量部以下のオキシブチレン基を含むポリアルキレングリコールと、
     光重合開始剤を含有し、
     前記オキシブチレン基を含むポリアルキレングリコールの重量平均分子量が300以上である、インクジェット光造形用組成物セット。
    Inkjet optical modeling composition set comprising a combination of a model material composition used for modeling an optical modeling object by an inkjet optical modeling method and a support material composition used for modeling a support material Because
    The composition for a model material is a composition for a model material containing a plurality of types of monomers having an ethylene polymerizable group and a photopolymerization initiator, and the plurality of types of monomers having an ethylene polymerizable group is one A first monofunctional monomer having an ethylene polymerizable group and a second monofunctional monomer having one ethylene polymerizable group, wherein the first monofunctional monomer further comprises an amide group, The glass transition temperature (Tg) of a monofunctional monomer is 10 ° C. or less, and the glass transition temperature (Tg) of a polymer obtained by polymerizing a plurality of types of monomers having an ethylene polymerizable group, determined by the FOX equation, is , 0 ° C or higher,
    The support material composition is based on 100 parts by mass of the entire support material composition.
    19 parts by weight or more and 80 parts by weight or less of a water-soluble monofunctional ethylenically unsaturated monomer;
    A polyalkylene glycol containing 15 to 75 parts by mass of an oxybutylene group;
    Contains a photoinitiator,
    The composition set for inkjet optical shaping | molding whose weight average molecular weights of the polyalkylene glycol containing the said oxybutylene group are 300 or more.
  2. 前記エチレン重合性基を有する複数種のモノマーは、2つ以上のエチレン重合性基を有する第3のモノマーをさらに含み、前記組成物に含まれる、前記第3のモノマーの割合は、 前記第1の単官能モノマーおよび前記第2の単官能モノマーの合計モル数に対するモル分率で0モル%より多く10モル%以下である、請求項1に記載のインクジェット光造形用組成物セット。 The plurality of types of monomers having an ethylene polymerizable group further include a third monomer having two or more ethylene polymerizable groups, and the ratio of the third monomer contained in the composition is as follows. The composition set for inkjet optical modeling according to claim 1, wherein the molar fraction with respect to the total number of moles of the monofunctional monomer and the second monofunctional monomer is more than 0 mol% and 10 mol% or less.
  3. 前記モデル材組成物は、前記第1の単官能モノマー(A1)および前記第2の単官能モノマー(A2)を、A1/A2=50/50以上95/5以下となるモル比で含有する、請求項1または2に記載のインクジェット光造形用組成物セット。 The model material composition contains the first monofunctional monomer (A1) and the second monofunctional monomer (A2) in a molar ratio of A1 / A2 = 50/50 to 95/5. The composition set for inkjet optical modeling according to claim 1 or 2.
  4. 前記第1の単官能モノマーは、窒素原子に水素原子が結合しているアミド基を有する、請求項1~3のいずれか1項に記載のインクジェット光造形用組成物セット。 The inkjet stereolithographic composition set according to any one of claims 1 to 3, wherein the first monofunctional monomer has an amide group in which a hydrogen atom is bonded to a nitrogen atom.
  5. 前記サポート材用組成物において、前記光重合開始剤の含有量は、前記サポート材用組成物全体100質量部に対して、1質量部以上15質量部以下である、請求項1に記載のインクジェット光造形用組成物セット。 2. The inkjet according to claim 1, wherein the content of the photopolymerization initiator is 1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the whole composition for support material in the composition for support material. Stereolithography composition set.
  6. 前記サポート材用組成物が、表面調整剤を更に含有し、前記表面調整剤の含有量は、前記サポート材用組成物全体100質量部に対して、0.005質量部以上3質量部以下である、請求項1又は5に記載のインクジェット光造形用組成物セット。 The composition for a support material further contains a surface conditioner, and the content of the surface conditioner is 0.005 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the whole composition for a support material. The composition set for inkjet optical modeling according to claim 1 or 5.
  7. 前記サポート材用組成物が、水溶性有機溶剤を更に含有し、前記水溶性有機溶剤の含有量は、前記サポート材用組成物全体100質量部に対して、30質量部以下である、請求項1又は5又は6に記載のインクジェット光造形用組成物セット。 The composition for a support material further contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the whole composition for a support material. The composition set for inkjet optical modeling according to 1 or 5 or 6.
  8. 前記サポート材用組成物が、保存安定化剤を更に含有する、請求項1又は5~7のいずれか1項に記載のインクジェット光造形用組成物セット。 The composition set for inkjet optical modeling according to any one of claims 1 or 5 to 7, wherein the composition for support material further contains a storage stabilizer.
  9. インクジェット光造形法により、請求項1~8のいずれか一項に記載のインクジェット光造形用組成物セットを用いて造形された、光造形物。 An optically modeled object formed by using the ink jet optical modeling composition set according to any one of claims 1 to 8 by an inkjet optical modeling method.
  10. インクジェット光造形法により請求項1~8のいずれか一項に記載の光造形用インクセットを用いて光造形物を製造する方法であって、前記モデル材用組成物を光硬化させてモデル材を得るとともに、サポート材用組成物を光硬化させてサポート材を得る工程(I)と、前記サポート材を除去する工程(II)と、を有する、光造形物の製造方法。 9. A method for producing an optical modeling object using the optical modeling ink set according to any one of claims 1 to 8 by an inkjet optical modeling method, wherein the model material composition is photocured to model the model material And the step (I) of obtaining the support material by photocuring the composition for the support material and the step (II) of removing the support material.
PCT/JP2019/010946 2018-05-28 2019-03-15 Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article WO2019230134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101892 2018-05-28
JP2018101892A JP2021130200A (en) 2018-05-28 2018-05-28 Composition set for photo-molding, photo-molded article, and method of manufacturing photo-molded article

Publications (1)

Publication Number Publication Date
WO2019230134A1 true WO2019230134A1 (en) 2019-12-05

Family

ID=68698011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010946 WO2019230134A1 (en) 2018-05-28 2019-03-15 Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article

Country Status (2)

Country Link
JP (1) JP2021130200A (en)
WO (1) WO2019230134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112192A1 (en) * 2019-12-06 2021-06-10 Agc株式会社 Resin composition and resin cured product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183103A (en) * 2014-03-25 2015-10-22 ジェイエムエス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Photocurable resin composition for forming support part
WO2016059986A1 (en) * 2014-10-14 2016-04-21 花王株式会社 Soluble material for three-dimensional molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183103A (en) * 2014-03-25 2015-10-22 ジェイエムエス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Photocurable resin composition for forming support part
WO2016059986A1 (en) * 2014-10-14 2016-04-21 花王株式会社 Soluble material for three-dimensional molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112192A1 (en) * 2019-12-06 2021-06-10 Agc株式会社 Resin composition and resin cured product
CN115038729A (en) * 2019-12-06 2022-09-09 Agc株式会社 Resin composition and resin cured product

Also Published As

Publication number Publication date
JP2021130200A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
CN108025486B (en) Resin composition for mold material, ink set for stereolithography, and method for producing stereolithography product
WO2017018453A1 (en) Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped article
CN108025492B (en) Ink set for photo-molding and method for producing photo-molded article
JP6571297B2 (en) Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product
US10557032B2 (en) Composition for support material and ink set for stereolithography
CN111093949B (en) Composition for mold material
WO2018142485A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
JP6937300B2 (en) Manufacturing method of resin composition for model material and stereolithography
CN108713033B (en) Composition for mold material, optical molded article, and method for producing optical molded article
WO2019176139A1 (en) Model material composition and photo fabrication composition set
WO2019230134A1 (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
JP7186508B2 (en) Composition for model material
WO2019230132A1 (en) Photo-fabrication composition set
JP7217160B2 (en) model material clear composition
JP2019155801A (en) Composition for model material, and composition set for material jetting optical shaping
WO2019230136A1 (en) Photo-fabrication ink set
JP7086654B2 (en) Composition for model material and composition set for stereolithography containing it
JP2019206112A (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
WO2018143299A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
JP2020040407A (en) Composition for model material
JP7133619B2 (en) Support material composition
WO2019230135A1 (en) Photo-fabrication ink set, and production method for photo-fabricated article
JP2019206111A (en) Photo-fabrication ink set, photo-fabricated article, and production method for photo-fabricated article
JP2019131640A (en) Composition for support material, and ink set for optical molding containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP