WO2019230136A1 - Photo-fabrication ink set - Google Patents

Photo-fabrication ink set Download PDF

Info

Publication number
WO2019230136A1
WO2019230136A1 PCT/JP2019/010948 JP2019010948W WO2019230136A1 WO 2019230136 A1 WO2019230136 A1 WO 2019230136A1 JP 2019010948 W JP2019010948 W JP 2019010948W WO 2019230136 A1 WO2019230136 A1 WO 2019230136A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
support material
composition
meth
Prior art date
Application number
PCT/JP2019/010948
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 太田
圭介 奥城
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2019230136A1 publication Critical patent/WO2019230136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to an optical modeling ink set combining a composition for a model material and a composition for a support material used in a material jet optical modeling method, and a method for manufacturing an optical modeling product using the optical modeling ink set About.
  • a modeling method using a photocurable composition that is cured by irradiating ultraviolet rays or the like is widely known as a method of creating a three-dimensional modeled object.
  • the cured layer having a predetermined shape is formed by irradiating the photocurable composition with ultraviolet rays or the like to cure.
  • a photocurable composition is further supplied onto the cured layer and cured to form a new cured layer.
  • a three-dimensional model is produced by repeating the above steps.
  • Inkjet stereolithography does not require the installation of a large resin bath and a dark room for storing the photocurable composition. Therefore, the modeling apparatus can be reduced in size compared with the conventional method.
  • Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
  • the model material and the support material are formed in combination (Patent Document 1).
  • the support material is created by irradiating the photocurable composition with ultraviolet rays or the like and curing the same as the model material. After the model material is created, the support material can be removed by physically peeling the support material or dissolving the support material in an organic solvent or water.
  • Patent Document 1 discloses a composition for a model material that has very little swelling deformation due to water or moisture absorption at the time of photocuring and after curing, and a cured product after curing has excellent solubility in water by the ink jet stereolithography method.
  • a composition for a support material that is easy to remove, and an optically shaped article that is shaped using these compositions are disclosed.
  • the support material disclosed in Patent Document 1 contains many non-polymerized components that are not photocured. Therefore, it is assumed that a gel-like support material can be obtained by photocuring the support material.
  • a wall for supporting the support material In order to form a stereolithography product with good dimensional accuracy using the model material composition disclosed in Patent Document 1, for example, as disclosed in Patent Document 2, a wall for supporting the support material And the like.
  • the present invention has been made in view of the above-described situation, and is excellent in workability without creating a wall or the like, excellent in water removal property of the support material, and further using a support material that is excellent in self-supporting properties.
  • An object of the present invention is to provide an optical modeling ink set for obtaining a good optical modeling product and a method for manufacturing an optical modeling product having excellent workability using the optical modeling ink set.
  • the present inventors define the non-polymerized component in the support material composition, and by defining the content of the water-soluble monofunctional ethylenically unsaturated monomer within a predetermined range, the water removability of the support material It has been found that a support material that is superior in terms of self-supporting property and has excellent support power can be obtained.
  • the present inventors form a stereolithography product with good dimensional accuracy by using the support material composition and the model material composition capable of obtaining a model material with very little swelling deformation. I found out that I can.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. *
  • An ink set for stereolithography The model material composition is based on 100 parts by mass of the model material composition as a whole. 50 to 90 parts by mass of the monofunctional monomer (A), 3 to 25 parts by mass of a polyfunctional monomer (B); 5 to 40 parts by mass of oligomer (C); 1 to 15 parts by mass of a photopolymerization initiator (D), Containing
  • the support material composition is based on 100 parts by mass of the support material composition as a whole.
  • the oligomer (C) of the composition for model material is an optical modeling ink set containing a urethane group.
  • the model material composition is an optical modeling ink set in which the content of the water-soluble component is 10 parts by mass or less with respect to 100 parts by mass of the model material composition as a whole.
  • the model material composition is an optical modeling ink set in which the model material obtained by photocuring the model material composition has a water swelling ratio of 1% by mass or less.
  • the photolithographic ink set wherein the support material composition contains 1 to 20 parts by mass of a photopolymerization initiator (d).
  • the composition for a support material further contains a water-soluble organic solvent, The ink set for optical modeling, wherein the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the total mass of the composition for support material.
  • the composition for a support material further contains a surface conditioner, The ink set for optical modeling, wherein the content of the surface conditioning agent is 0.005 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the total mass of the support material composition.
  • an optical modeling ink set for obtaining a stereolithography product with good dimensional accuracy using a support material having excellent water removability and self-supporting property, and the stereolithography ink By using the set, it is possible to provide a method for manufacturing an optically shaped product having excellent workability.
  • FIG. 1 is a schematic side view showing a state where an ink for a support material and an ink for a model material are ejected by an ink jet modeling method and are irradiated with energy rays.
  • FIG. 2 is a schematic side view showing a state where the support material ink and the model material ink are discharged by the ink jet modeling method.
  • FIG. 3 is a schematic side view showing a state in which energy rays are applied to the support material ink and the model material ink ejected by the ink jet modeling method.
  • FIG. 4 is a schematic side view of a modeled article precursor composed of a support material and a model material formed by an ink jet modeling method.
  • FIG. 5 is a schematic side view of a model formed by the ink jet modeling method.
  • (meth) acrylate is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of acrylate and methacrylate.
  • (meth) acryloyl means one or both of
  • composition for a model material that is used in an inkjet optical modeling method and used for modeling a model material, and a support material that supports the model material.
  • It is an ink set for optical modeling (composition set for optical modeling) which combines with the composition for support materials.
  • the composition for model material and the composition for support material are cured by energy rays, and it is particularly preferable to obtain a shaped product by radical reaction.
  • the component (A) is a polymerizable monomer having one ethylenic double bond in the molecule having the property of being cured by energy rays.
  • Examples of the component (A) include linear or branched alkyl (meth) acrylates having 1 to 30 carbon atoms [for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, etc.] C6-C20 alicyclic ring-containing (meth) acrylates [for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate,
  • the component (A) may contain 5 to 40 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer (A-2) with respect to 100 parts by mass of the entire model material composition.
  • A-2 a water-soluble monofunctional ethylenically unsaturated monomer
  • Examples of the component (A-2) include hydroxyl group-containing (meth) acrylates having 5 to 15 carbon atoms (C) [hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.
  • isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate are preferable from the viewpoint of improving the curability of the model material composition.
  • the model material composition is isobornyl (meth) acrylate from the viewpoint of improving the dimensional accuracy of the optically shaped article by having heat resistance that can withstand the temperature (50 to 90 ° C.) during photocuring. More preferred.
  • the content of the monofunctional monomer (A) is 100 parts by mass of the entire model material composition. On the other hand, it is 50 to 90 parts by mass.
  • the content of the monofunctional monomer (A) is preferably 55 parts by mass or more, and preferably 85 parts by mass or less.
  • the said content is the sum total of content of each (A) component.
  • the polyfunctional monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and is a polymerizable monomer having two or more ethylenic double bonds in the molecule. Only one type may be used as the polyfunctional monomer (B), or two or more types may be used in combination.
  • the content of the component (B) is 3 to 25 parts by mass with respect to 100 parts by mass of the entire model material composition from the viewpoint of improving mechanical strength and brittleness resistance of the model material and the optically shaped article. To do.
  • the content of the component (B) is preferably 4 parts by mass or more, and preferably 20 parts by mass or less.
  • the said content is the sum total of content of each (B) component.
  • the component (B) is, for example, a linear or branched alkylene glycol di (meth) acrylate or alkylene glycol tri (meth) acrylate having 10 to 25 carbon atoms, alkylene glycol tetra (meth) acrylate, alkylene glycol penta (meth).
  • 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate are preferable.
  • vinyl ether group-containing (meth) acrylic acid esters include 2- (vinyloxyethoxy) ethyl (meth) acrylate.
  • the composition for a model material it is preferably a (meth) acrylate monomer, such as dipropylene glycol di (meth) acrylate or tripropylene glycol di (meth) acrylate.
  • Glycerin propoxy tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate and bifunctional or higher amino acrylate are more preferable, and dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, glycerin propoxy tri (meth) acrylate and bifunctional or higher functional amino acrylates are more preferable, dipropylene glycol diacrylate, tripropylene glycol dia It relates and bifunctional or more amino acrylates are particularly preferred.
  • the oligomer (C) is a component that has one or more ethylenically unsaturated groups, is polymerized by light irradiation to cure the model material composition, and increases the breaking strength of the model material obtained by the curing. is there.
  • the content of the component (C) is 5 to 40 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the curing shrinkage is slightly increased in the model material obtained by photocuring the model material composition.
  • the breaking strength of the model material obtained by photocuring the composition for model material is inferior.
  • the content of the component (C) is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and preferably 30 parts by mass or less.
  • component (C) examples include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and polyether (meth) acrylate oligomers.
  • urethane (meth) acrylate oligomers epoxy (meth) acrylate oligomers
  • polyester (meth) acrylate oligomers polyester (meth) acrylate oligomers
  • polyether (meth) acrylate oligomers from the viewpoint of improving the curability of the composition for model material, it should be one or more selected from urethane (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, and polyester (meth) acrylate oligomer. Is preferred.
  • the component (C) contains a urethane group because the composition for the model material has heat resistance that can withstand the temperature (50 to 90 ° C.) during photocuring.
  • a urethane (meth) acrylate oligomer is more preferable. These may be used alone or in combination of two or more.
  • the said content is defined as the sum total of content of each (C) component.
  • oligomer has a weight average molecular weight of 800 to 10,000.
  • the weight average molecular weight means a weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography).
  • the composition for model materials of this invention contains a photoinitiator.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
  • the photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, but is not limited to acylphosphine oxide compounds, ⁇ -aminoalkylphenone compounds, ⁇ -hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide.
  • ⁇ -aminoalkylphenone compound examples include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination.
  • Examples of commercially available ⁇ -aminoalkylphenone compounds include “IRG quinone compound 369” and “IRGACURE 907” manufactured by BASF.
  • ⁇ -hydroxyquinone compound examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of commercially available ⁇ -hydroxyquinone compounds include “IRGACURE 184”, “DAROCURE 1173”, “IRGACURE 2959”, “IRGACURE 127”, and the like.
  • thioxanthone compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
  • anthraquinone compound examples include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
  • ketal compound examples include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
  • the content of the component (D) is 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the component (D) is within the above range, the curability of the model material composition becomes good, and the dimensional accuracy of the optically shaped article is improved.
  • the content of the component (D) is preferably 2 parts by mass or more, and preferably 13 parts by mass or less. In addition, when the said (D) component is contained 2 or more types, the said content is defined as the sum total of content of each (D) component.
  • the composition for a model material included in the optical modeling ink set according to the present embodiment can contain other additives as necessary within a range that does not impair the effects of the present invention.
  • other additives include a polymerization inhibitor, a surface conditioner, a colorant, an antioxidant, a chain transfer agent, and a filler. These may be used alone or in combination of two or more.
  • the model material composition preferably contains a polymerization inhibitor.
  • a polymerization inhibitor When the composition for a model material contains a polymerization inhibitor, it is possible to suppress excessive polymerization at a temperature (about 50 to 90 ° C.) at which the shaped article is molded. As a result, since the monomer can be stabilized, the model material composition is easily cured.
  • polymerization inhibitor examples include phenol compounds [hydroquinone, hydroquinone monomethyl ether and the like], sulfur compounds [dilauryl thiodipropionate and the like], phosphorus compounds [triphenyl phosphite and the like], amine compounds [phenothiazine and the like], and the like. Can be mentioned. These may be used alone or in combination of two or more.
  • the content of the polymerization inhibitor is preferably 5 parts by mass or less with respect to 100 parts by mass of the entire model material composition from the viewpoint of improving the stability of the monomer and the polymerization rate.
  • the amount is more preferably at most 0.1 parts by mass, and more preferably at least 0.1 parts by mass.
  • the said content is the sum total of content of each polymerization inhibitor.
  • Examples of the surface conditioner (E) include a PEG-type nonionic surfactant [nonylphenol ethylene oxide (hereinafter abbreviated as EO) 1 to 40 mol adduct, stearin having a molecular weight of 264 or more and Mn of 5,000 or less.
  • EO nonylphenol ethylene oxide
  • Acid EO 1-40 mol adducts, etc.] polyhydric alcohol type nonionic surfactants (sorbitan palmitic acid monoester, sorbitan stearic acid monoester, sorbitan stearic acid triester, etc.), fluorine-containing surfactants (perfluoroalkyl EO1) ⁇ 50 mol adduct, perfluoroalkyl carboxylate, perfluoroalkyl betaine, etc.), modified silicone oils [polyether-modified silicone oil, (meth) acrylate-modified silicone oil, etc.] and the like. These may be used alone or in combination of two or more.
  • silicone-based surface conditioners are preferable, and surface conditioners having a polydimethylsiloxane structure are particularly preferable.
  • the content of the surface conditioner is 3 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of adding effects and improving the physical properties of the model material and the optically shaped article. It is preferably 2 parts by mass or less, more preferably 0.1 parts by mass or more. In addition, when 2 or more types of the said surface conditioning agents are contained, the said content is the sum total of content of each surface conditioning agent.
  • colorant examples include pigments and dyes. These may be used alone or in combination of two or more.
  • the pigment includes an organic pigment and / or an inorganic pigment.
  • organic pigment examples include pigments exemplified below.
  • Insoluble monoazo pigments toluidine red, permanent carmine FB, fast yellow G, etc.
  • Polycyclic pigment Phthalocyanine blue, etc .
  • Dy rake Basic dyes (Victoria Pure Blue BO Lake etc.) etc .
  • Azine pigments (aniline black, etc.), daylight fluorescent pigments, nitroso pigments, nitro pigments, natural pigments, etc.
  • the inorganic pigment examples include metal oxides (iron oxide, chromium oxide, titanium oxide, etc.), carbon black, and the like.
  • the content of the colorant is 2 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of improving the coloring effect and the physical properties of the model material and the optically shaped article. Is preferably 1 part by mass or less, more preferably 0.1 part by mass or more. In addition, when the said coloring agent is contained 2 or more types, the said content is the sum total of content of each coloring agent.
  • antioxidants examples include phenol compounds [monocyclic phenols (2,6-di-t-butyl-p-cresol, etc.) and the like.
  • the content of the antioxidant is 3 parts by mass or less with respect to 100 parts by mass of the whole model material composition from the viewpoint of improving the antioxidant effect and the physical properties of the model material and the optically shaped article. Preferably, it is 2 parts by mass or less, more preferably 0.1 part by mass or more. In addition, when 2 or more types of the said antioxidant is contained, the said content is the sum total of content of each antioxidant.
  • chain transfer agent examples include hydrocarbons [C6-24 compounds such as aromatic hydrocarbons (toluene, xylene, etc.), unsaturated aliphatic hydrocarbons (1-butene, 1-nonene, etc.), etc.]; Halogenated hydrocarbons (C1-24 compounds such as dichloromethane, carbon tetrachloride) and the like. These may be used alone or in combination of two or more.
  • hydrocarbons C6-24 compounds such as aromatic hydrocarbons (toluene, xylene, etc.), unsaturated aliphatic hydrocarbons (1-butene, 1-nonene, etc.), etc.
  • Halogenated hydrocarbons C1-24 compounds such as dichloromethane, carbon tetrachloride
  • the content of the chain transfer agent is 10 parts by mass with respect to 100 parts by mass of the entire model material composition from the viewpoint of improving the polymerizability of the monomer and the compatibility between the monomer and the chain transfer agent.
  • the content is preferably 5 parts by mass or less, more preferably 0.05 parts by mass or more.
  • the said content is the sum total of content of each chain transfer agent.
  • the filler examples include metal powder (aluminum powder, copper powder, etc.), metal oxide (alumina, silica, talc, mica, clay, etc.), metal hydroxide (aluminum hydroxide, etc.), metal salt (carbonic acid). Calcium, calcium silicate, etc.), fiber [inorganic fiber (carbon fiber, glass fiber, asbestos, etc.), organic fiber (cotton, nylon, acrylic, rayon fiber, etc.)], microballoon (glass, shirasu, phenol resin, etc.) , Carbons (carbon black, graphite, coal powder, etc.), metal sulfides (molybdenum disulfide, etc.), organic powders (wood powder, etc.) and the like. These may be used alone or in combination of two or more.
  • the content of the filler is 30 masses with respect to 100 mass parts of the entire model material composition from the viewpoint of improving the filling effect, inkjet dischargeable viscosity, and physical properties of the model material and the stereolithographic product. Is preferably 20 parts by mass or less, more preferably 3 parts by mass or more. In addition, when the said filler is contained 2 or more types, the said content is the sum total of content of each filler.
  • the content of the other additive is 30 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of adding effects and improving the physical properties of the model material and the optically shaped article. Preferably, it is 20 parts by mass or less, more preferably 0.05 part by mass or more. In addition, when the said other additive is contained 2 or more types, the said content is the sum total of content of each other additive.
  • the model material composition contained in the optical modeling ink set according to the present embodiment is 100 mass of the entire model material composition.
  • the content of the water-soluble component is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to parts.
  • the water-soluble component refers to a component having a solubility in water at 25 ° C. of 1 (g / 100 g of water) or more. That is, among the components (A) to (D) and the other additives contained in the model material composition, the components exhibiting the solubility.
  • the method for producing the model material composition included in the optical modeling ink set according to the present embodiment is not particularly limited.
  • it can be produced by uniformly mixing the components (A) to (D) and, if necessary, the other additives using a mixing stirrer, a disperser or the like.
  • the composition for a model material thus produced preferably has a viscosity at 25 ° C. of 70 mPa ⁇ s or less from the viewpoint of improving the dischargeability from the inkjet head.
  • the measurement of the viscosity of the composition for model materials is performed using R100 type
  • a model material can be obtained by photocuring the model material composition contained in the optical modeling ink set according to the present embodiment.
  • the model material preferably has a Tg of 50 to 120 ° C.
  • the model material is usually shaped at 50 to 90 ° C. Therefore, when the Tg of the model material is 50 to 120 ° C., the heat resistance of the model material and the stereolithographic product can be improved, and the warp of the model material and the stereolithography product can be reduced.
  • the Tg of the model material is more preferably 55 ° C. or higher, and further preferably 60 ° C. or higher.
  • the Tg of the model material is more preferably 110 ° C. or less, and further preferably 100 ° C.
  • the Tg of the model material can be adjusted by changing the types and contents of the components (A) to (D) and the other additives contained in the model material composition.
  • the Tg of the model material can be measured by a DMA (Dynamic Mechanical Analysis) method.
  • the model material preferably has a water swelling ratio of 1% by mass or less, more preferably 0.7% by mass or less, and 0.5% by mass or less. Further preferred.
  • the water swelling ratio of the model material can be adjusted by changing the types and contents of the components (A) to (D) and the other additives contained in the model material composition. it can.
  • the water swelling rate of the model material can be obtained by the following formula (ii) according to the water absorption rate measuring method of ASTM D570. However, ion-exchanged water is used as the water, and the water temperature is 25 ° C.
  • a support material composition is a photocurable composition for a support material that provides a support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water.
  • the composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. Since the support material can be removed easily and cleanly in detail and easily, the composition for support material constituting the composition set for stereolithography of the present invention can be removed by immersing the support material in water. A support material is preferred.
  • the water-soluble support material is dissolved in a uniform state when the support material is mixed with water, or dispersed as oil droplets having a diameter of about 00.1 to 100 micrometers to form an emulsified state. Indicates that there is.
  • the water-soluble support material composition comprises at least one water-soluble monofunctional ethylenically unsaturated monomer (a), a polyalkylene glycol (b) containing at least one oxybutylene group, and photopolymerization. It is preferable to contain an initiator (c).
  • the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the composition for a support material of the present invention is polymerizable having one ethylenic double bond in the molecule having the property of being cured by energy rays.
  • a monomer meaning that the monomer is water-soluble.
  • the water solubility means that when a water-soluble monofunctional ethylenically unsaturated monomer is mixed with water, it is dissolved in a uniform state, or oil droplets having a diameter of about 00.1 to 100 micrometers. It shows that it is dispersed and emulsified.
  • a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.
  • number average molecular weight (Mn) 200 to 1,000 hydroxyl group-containing (meth) acrylate for example, polyethylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (carbon number 1-4) Polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, etc.]
  • (meth) acrylamide derivatives eg (meth) acrylamide, N-methyl (meth) acrylate Amide, N-ethyl (meth) acrylamide, N-propyl (M
  • the content of the component (a) is preferably 19 to 80 parts by mass, more preferably 22 parts by mass or more, and further preferably 25 parts by mass with respect to 100 parts by mass of the support material composition. It is above, More preferably, it is 76 mass parts or less, More preferably, it is 73 mass parts or less.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
  • the polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition may be either a linear type or a multi-chain type.
  • the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
  • the polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition is a water-soluble resin for imparting appropriate hydrophilicity to the support material. Support material that combines strength can be obtained.
  • the polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group.
  • the polyalkylene glycol having only an oxybutylene group is a single polybutylene glycol.
  • it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group.
  • the polybutylene glycol is represented by the following chemical formula (1)
  • the polybutylene polyethylene glycol is represented by the following chemical formula (2).
  • n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100.
  • the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
  • the support material By including the polyalkylene glycol (b) containing the oxybutylene group in the composition for the support material, it is possible to obtain a specific effect that the removability by water is further improved without reducing the support power of the support material. .
  • the support material can sufficiently support the model material during the optical modeling, the modeling accuracy in the optical modeling stage can be improved.
  • the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed.
  • This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
  • the weight average molecular weight of the polyalkylene glycol (b) component containing an oxybutylene group is 300 or more, preferably less than 3000, more preferably 800 or more, and more preferably less than 2000.
  • the weight average molecular weight of the component (b) is smaller than 300, bleeding of the support material tends to occur when the support material composition is cured. Bleeding is a phenomenon in which a liquid component oozes from the inside of a cured support material to the support material surface.
  • the weight average molecular weight of the polyalkylene glycol containing an oxybutylene group is smaller than 3000, the discharge stability of the support material composition is excellent.
  • the weight average molecular weight is in the above range, the water-soluble monofunctional ethylenically unsaturated monomer (a) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
  • Two or more types of components may be used.
  • the content of polyalkylene glycol having a weight average molecular weight of less than 300 or greater than 3000 is preferably small.
  • the content of the polyalkylene glycol (b) component containing an oxybutylene group in the support material composition is preferably 15 to 75 parts by mass, more preferably 17 parts per 100 parts by mass of the support material composition. It is more than mass part, More preferably, it is 20 mass parts or more, More preferably, it is 72 mass parts or less, More preferably, it is 70 mass parts or less.
  • the content of the polyalkylene glycol (b) is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material.
  • the composition for a support material may contain a water-soluble organic solvent (c).
  • the water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
  • the water-soluble organic solvent (c) it is preferable to use a glycol solvent.
  • a glycol solvent Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate.
  • Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether,
  • the low-viscosity support material composition is easy to prepare, and the support material obtained by curing is excellent in water solubility. Therefore, as the water-soluble organic solvent (c), triethylene glycol monomethyl ether, diethylene glycol diethyl Ether and dipropylene glycol monomethyl ether acetate are preferred.
  • the content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less.
  • the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material.
  • the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
  • photopolymerization initiator (d) As the photopolymerization initiator (d), the compounds described above as photopolymerization initiators that can be contained in the model material composition can be similarly used.
  • the content of the photopolymerization initiator in the support material composition is preferably 1 to 20 parts by mass and more preferably 2 to 18 parts by mass with respect to 100 parts by mass of the support material composition. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
  • a composition for a support material that has both excellent water solubility and support ability can be obtained.
  • the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained.
  • the support material composition may contain other additives as necessary.
  • additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. . *
  • the surface tension of the support material composition can be controlled within an appropriate range by adding the surface conditioner (e) to the support material composition, and the model material composition and the support material composition Mixing at the interface can be suppressed. Thereby, a stereolithography product with favorable dimensional accuracy can be obtained.
  • the surface conditioner that can be contained in the support material composition the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
  • silicone-based surface conditioners are preferable, and surface conditioners having a polydimethylsiloxane structure are particularly preferable.
  • the storage stability can be improved by blending the storage stabilizer (f) into the support material composition.
  • the storage stabilizer that can be contained in the support material composition those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
  • the viscosity of the support material composition is preferably 30 to 200 mPa ⁇ s at 25 ° C., more preferably 35 mPa ⁇ s or more, and still more preferably, from the viewpoint of improving dischargeability from the inkjet nozzle. Is 40 mPa ⁇ s or more, more preferably 170 mPa ⁇ s or less, and still more preferably 150 mPa ⁇ s or less.
  • the measurement of the said viscosity can be performed using R100 type
  • the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m.
  • the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
  • the method for producing the composition for a support material of the present invention is not particularly limited.
  • the composition for the support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer or the like.
  • the fabrication method of the stereolithography of the present embodiment is a fabrication method of stereolithography using the material jet stereolithography composition set described in the above embodiment, and is a material jet (inkjet). ) After discharging the model material composition or the support material composition using a method printer, the model material composition is photocured to obtain a model material, and the water-soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by immersing the water-soluble support material in water.
  • the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for material jet optical modeling, it can form the optical modeling thing excellent in modeling precision.
  • FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays.
  • the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12.
  • the ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c.
  • the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
  • the model material composition 13 is ejected from the model material inkjet head 11aM
  • the support material composition 14 is ejected from the support material inkjet head 11aS
  • the energy beam 15 is irradiated and ejected from the light source 11c.
  • the model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS.
  • FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
  • the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used.
  • the model material composition 13 is discharged from the head 11aM
  • the support material composition 14 is discharged from the support material inkjet head 11aS.
  • the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange
  • the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 ⁇ / b> M and the support material precursor 14 ⁇ / b> S are scanned by the roller 11 b.
  • the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS.
  • a layer consisting of is formed.
  • the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
  • optical modeling product precursor 16 shown in FIG. 4 is immersed in water to dissolve and remove the support material 14PS, thereby forming the optical modeling product 17 as shown in FIG.
  • a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source.
  • UV-LED is preferable.
  • the amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product.
  • a UV-LED it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved.
  • ultraviolet rays As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, ⁇ rays, ⁇ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
  • the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the 3D printer of the material jet method is prepared, and each of the model material and the support material is used based on the prepared slice data.
  • the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
  • each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
  • the obtained stereolithography is a combination of a model material and a support material.
  • the support material is removed from the stereolithography product to obtain a stereolithography product as a model material.
  • the support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
  • the above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
  • the content of the water-soluble component in the compositions for model materials of Examples M1 to M7 and M7 and Comparative Example m1 is 0% by mass, respectively, and the content of the water-soluble component in the composition for model materials of Example M6 Is 10.0% by mass, and the contents of water-soluble components in the compositions for model materials of Comparative Examples m2, m3, and m4 are 40.0% by mass, 55.0% by mass, and 50.0% by mass, respectively. Met.
  • the water swelling rate in each of the model material compositions of Examples M1 to M7 and M7 is 0.1% by mass, and the water swelling rate in the model material composition of Example M6 is 0.5% by mass.
  • the water swelling ratios in the compositions for model materials of Comparative Examples m1, m2, m3, and m4 were 3.8% by mass, 1.9% by mass, 3.3% by mass, and 2.3% by mass, respectively. .
  • Table 3 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
  • the support material compositions of Examples S1 to S13 and Comparative Example s1 were prepared as follows. That is, the components (a) to (f) shown in Table 4 are weighed in plastic bottles with the blending amounts (unit: parts by mass) shown in Table 4, and these are mixed to prepare each support material composition. did.
  • the low temperature stability of the support material composition and the high temperature of the cured support material obtained by curing the support material composition were as follows. High humidity condition stability (support power) and water removability were evaluated.
  • ⁇ Low temperature stability of support material composition The stability of the support material composition at low temperature was evaluated. Each support material composition was put in a glass bottle, and the glass bottle containing the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
  • composition for the support material When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent) When the support material composition is partially solidified (solidified): Low temperature stability B (good) When the composition for the support material is solidified (solidified): low temperature stability C (poor)
  • a frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp.
  • a metal halide lamp was irradiated to produce a cured support material.
  • the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
  • Support strength A excellent
  • Support strength B good
  • Support force C defect
  • a cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
  • Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by combining the composition for model material and the composition for support material as shown in Table 6.
  • a spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into 10 cm ⁇ 10 cm squares.
  • an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
  • UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
  • spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm ⁇ 10 cm.
  • an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
  • UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2.
  • cured to obtain a model material.
  • evaluation of adhesion In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 6.
  • The model material and the support material were in close contact.
  • X Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.

Abstract

The present invention relates to a photo-fabrication ink set that comprises: a model material composition that contains 50–90 parts by mass of a monofunctional monomer (A), 3–25 parts by mass of a polyfunctional monomer (B), 5–40 parts by mass of an oligomer (C), and 1–15 parts by mass of a photopolymerization initiator (D): and a support material composition that contains 19–80 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer (a) and 15–75 parts by mass of a polyalkylene glycol (b) that has a molecular weight of at least 300 and includes an oxybutylene group.

Description

光造形用インクセットStereolithography ink set
 本発明は、マテリアルジェット光造形法に用いられるモデル材用組成物とサポート材用組成物を組み合わせた光造形用組インクセット、及び、前記光造形用インクセットを用いた光造形品の製造方法に関する。 The present invention relates to an optical modeling ink set combining a composition for a model material and a composition for a support material used in a material jet optical modeling method, and a method for manufacturing an optical modeling product using the optical modeling ink set About.
 従来、立体造形物を作成する方法として、紫外線等を照射することにより硬化する光硬化性組成物を用いた造形法が広く知られている。具体的に、このような造形法では、光硬化性組成物に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成する。その後、該硬化層の上にさらに光硬化性組成物を供給して硬化させることにより、新たな硬化層を形成する。前記工程を繰り返し行うことにより、立体造形物を作製する。 Conventionally, a modeling method using a photocurable composition that is cured by irradiating ultraviolet rays or the like is widely known as a method of creating a three-dimensional modeled object. Specifically, in such a modeling method, the cured layer having a predetermined shape is formed by irradiating the photocurable composition with ultraviolet rays or the like to cure. Thereafter, a photocurable composition is further supplied onto the cured layer and cured to form a new cured layer. A three-dimensional model is produced by repeating the above steps.
 前記造形法の中でも、近年、ノズルから光硬化性組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するマテリアルジェット方式(インクジェット方式)による光造形法(以下、マテリアルジェット光造形方又はインクジェット光造形法という)が報告されている(特許文献1)。インクジェット光造形法は、光硬化性組成物を貯留する大型の樹脂液槽及び暗室の設置が不要である。そのため、従来法に比べて、造形装置を小型化することができる。インクジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンターによって実現される造形法として、注目されている。 Among the modeling methods, in recent years, a material jet method (inkjet method) that forms a cured layer having a predetermined shape by discharging a photocurable composition from a nozzle and immediately irradiating it with ultraviolet rays and curing. Has been reported (hereinafter referred to as “material jet stereolithography” or “inkjet stereolithography”) (Patent Document 1). Inkjet stereolithography does not require the installation of a large resin bath and a dark room for storing the photocurable composition. Therefore, the modeling apparatus can be reduced in size compared with the conventional method. Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
 インクジェット光造形法において、中空形状等の複雑な形状を有する光造形品を造形する場合には、モデル材を支えるために、該モデル材とサポート材とを組み合わせて形成する(特許文献1)。サポート材は、モデル材と同様に、光硬化性組成物に紫外線等を照射して硬化させることにより作成される。モデル材を作成した後は、サポート材を、物理的に剥離する、又は、有機溶媒もしくは水に溶解させることにより、前記サポート材を除去することができる。 In the ink jet stereolithography method, when modeling a stereolithography product having a complicated shape such as a hollow shape, in order to support the model material, the model material and the support material are formed in combination (Patent Document 1). The support material is created by irradiating the photocurable composition with ultraviolet rays or the like and curing the same as the model material. After the model material is created, the support material can be removed by physically peeling the support material or dissolving the support material in an organic solvent or water.
 さらに、特許文献1には、インクジェット光造形法により、光硬化時および硬化後の水または吸湿による膨潤変形が極めて少ないモデル材用組成物、硬化後の硬化物が水への溶解性に優れ、除去が容易であるサポート材用組成物、ならびに、これらの組成物を用いて造形される光造形品が開示されている。 Furthermore, Patent Document 1 discloses a composition for a model material that has very little swelling deformation due to water or moisture absorption at the time of photocuring and after curing, and a cured product after curing has excellent solubility in water by the ink jet stereolithography method. A composition for a support material that is easy to remove, and an optically shaped article that is shaped using these compositions are disclosed.
特開2012-111226号公報JP 2012-111226 A 特開2015-107653号公報JP2015-107653A
 特許文献1に開示されたモデル材では、該モデル材を光硬化させることにより、膨潤変形が極めて少ないモデル材が得られる。このようなモデル材を用いれば、寸法精度が良好な光造形品を造形することができる。 In the model material disclosed in Patent Document 1, a model material with very little swelling deformation can be obtained by photocuring the model material. If such a model material is used, it is possible to form an optically shaped product with good dimensional accuracy.
 一方、特許文献1に開示されたサポート材は、光硬化しない非重合成分を多く含有する。そのため、前記サポート材を光硬化させることにより、ゲル状のサポート材が得られると想定される。特許文献1に開示されたモデル材用組成物を用いて寸法精度が良好な光造形品を造形するためには、例えば、特許文献2に開示されるように、前記サポート材を支えるための壁等を用いる方法が挙げられる。 On the other hand, the support material disclosed in Patent Document 1 contains many non-polymerized components that are not photocured. Therefore, it is assumed that a gel-like support material can be obtained by photocuring the support material. In order to form a stereolithography product with good dimensional accuracy using the model material composition disclosed in Patent Document 1, for example, as disclosed in Patent Document 2, a wall for supporting the support material And the like.
 本発明は、前記現状に鑑みてなされたものであり、壁等を作成することなく作業性に優れ、サポート材の水除去性に優れ、更に自立性に優れたサポート材を用いて、寸法精度が良好な光造形品を得るための光造形用インクセット及び、前記光造形用インクセットを用いて、作業性に優れた光造形品の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described situation, and is excellent in workability without creating a wall or the like, excellent in water removal property of the support material, and further using a support material that is excellent in self-supporting properties. An object of the present invention is to provide an optical modeling ink set for obtaining a good optical modeling product and a method for manufacturing an optical modeling product having excellent workability using the optical modeling ink set.
 本発明者らは、サポート材用組成物中の非重合成分を規定し、水溶性単官能エチレン性不飽和単量体の含有量を所定の範囲に規定することにより、サポート材の水除去性に優れ、さらに自立性を有しサポート力に優れたサポート材が得られることを見出した。本発明者らは、前記サポート材用組成物と、膨潤変形が極めて少ないモデル材を得ることが可能なモデル材用組成物とを用いることにより、寸法精度が良好な光造形品を造形することができることを見出した。 The present inventors define the non-polymerized component in the support material composition, and by defining the content of the water-soluble monofunctional ethylenically unsaturated monomer within a predetermined range, the water removability of the support material It has been found that a support material that is superior in terms of self-supporting property and has excellent support power can be obtained. The present inventors form a stereolithography product with good dimensional accuracy by using the support material composition and the model material composition capable of obtaining a model material with very little swelling deformation. I found out that I can.
 本発明は、前記知見に基づいてなされたものであり、その要旨は、以下の通りである。  The present invention has been made based on the above findings, and the gist thereof is as follows. *
 (1)インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセットであって、
 前記モデル材用組成物は、該モデル材用組成物全体100質量部に対して、
 50~90質量部の単官能モノマー(A)と、
 3~25質量部の多官能モノマー(B)と、
 5~40質量部のオリゴマー(C)と、
 1~15質量部の光重合開始剤(D)と、
を含有し、
 前記サポート材用組成物は、該サポート材用組成物全体100質量部に対して、
 19~80質量部の水溶性単官能エチレン性不飽和単量体(a)と
 15~75質量部のオキシブチレン基を含むポリアルキレングリコール(b)とを含有し、前記オキシブチレン基を含むポリアルキレングリコール(b)の重量分子量が300以上である、光造形用インクセット。
(2)前記モデル材用組成物の前記オリゴマー(C)は、ウレタン基を含む光造形用インクセット。
(3)前記モデル材用組成物は、該モデル材用組成物全体100質量部に対して、水溶性成分の含有量が10質量部以下である光造形用インクセット。
(4)前記モデル材用組成物は、該モデル材用組成物を光硬化させることにより得られるモデル材の水膨潤率が1質量%以下である光造形用インクセット。
(5)前記サポート材用組成物は、1~20質量部の光重合開始剤(d)を含有する光造形用インクセット。
(6)前記サポート材用組成物は、更に水溶性有機溶剤を含有し、
 前記水溶性有機溶剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、30質量部以下である光造形用インクセット。
(7)前記サポート材用組成物は、更に表面調整剤を含有し、
 前記表面調整剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、0.005質量部以上3.0質量部以下である光造形用インクセット。
(8)マテリアルジェット光造形法により、上記いずれか一つに記載の光造形用インクセットを用いて光造形品を製造する方法であって、
 前記モデル材用組成物を光硬化させることによりモデル材を得るとともに、前記サポート材用組成物を光硬化させることによりサポート材を得る工程(I)と、
 前記サポート材を除去する工程(II)と、
を有する、光造形品の製造方法。
(1) A combination of a composition for a model material that is used in an ink jet optical modeling method and is used for modeling a model material, and a composition for a support material used for modeling a support material. An ink set for stereolithography,
The model material composition is based on 100 parts by mass of the model material composition as a whole.
50 to 90 parts by mass of the monofunctional monomer (A),
3 to 25 parts by mass of a polyfunctional monomer (B);
5 to 40 parts by mass of oligomer (C);
1 to 15 parts by mass of a photopolymerization initiator (D),
Containing
The support material composition is based on 100 parts by mass of the support material composition as a whole.
19 to 80 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a) and 15 to 75 parts by weight of a polyalkylene glycol (b) containing an oxybutylene group, An ink set for stereolithography, wherein the alkylene glycol (b) has a weight molecular weight of 300 or more.
(2) The oligomer (C) of the composition for model material is an optical modeling ink set containing a urethane group.
(3) The model material composition is an optical modeling ink set in which the content of the water-soluble component is 10 parts by mass or less with respect to 100 parts by mass of the model material composition as a whole.
(4) The model material composition is an optical modeling ink set in which the model material obtained by photocuring the model material composition has a water swelling ratio of 1% by mass or less.
(5) The photolithographic ink set, wherein the support material composition contains 1 to 20 parts by mass of a photopolymerization initiator (d).
(6) The composition for a support material further contains a water-soluble organic solvent,
The ink set for optical modeling, wherein the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the total mass of the composition for support material.
(7) The composition for a support material further contains a surface conditioner,
The ink set for optical modeling, wherein the content of the surface conditioning agent is 0.005 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the total mass of the support material composition.
(8) A method for producing a stereolithography product using the ink jet for stereolithography according to any one of the above by a material jet stereolithography method,
Step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material;
Removing the support material (II);
A method for manufacturing an optically shaped article.
 本発明によれば、サポート材の水除去性、且つ、自立性に優れたサポート材を用いて寸法精度が良好な光造形品を得るための光造形用インクセット、及び、前記光造形用インクセットを用いて、作業性に優れた光造形品の製造方法を提供することができる。 According to the present invention, an optical modeling ink set for obtaining a stereolithography product with good dimensional accuracy using a support material having excellent water removability and self-supporting property, and the stereolithography ink By using the set, it is possible to provide a method for manufacturing an optically shaped product having excellent workability.
図1は、インクジェット造形法によりサポート材用インク及びモデル材用インクを吐出してエネルギー線を照射している状態を示す模式側面図である。FIG. 1 is a schematic side view showing a state where an ink for a support material and an ink for a model material are ejected by an ink jet modeling method and are irradiated with energy rays. 図2は、インクジェット造形法によりサポート材用インク及びモデル材用インクを吐出している状態を示す模式側面図である。FIG. 2 is a schematic side view showing a state where the support material ink and the model material ink are discharged by the ink jet modeling method. 図3は、インクジェット造形法により吐出したサポート材用インク及びモデル材用インクにエネルギー線を照射している状態を示す模式側面図である。FIG. 3 is a schematic side view showing a state in which energy rays are applied to the support material ink and the model material ink ejected by the ink jet modeling method. 図4は、インクジェット造形法により形成したサポート材とモデル材からなる造形物前駆体の模式側面図である。FIG. 4 is a schematic side view of a modeled article precursor composed of a support material and a model material formed by an ink jet modeling method. 図5は、インクジェット造形法により形成した造形物の模式側面図である。FIG. 5 is a schematic side view of a model formed by the ink jet modeling method.
 以下、本発明の一実施形態(以下、本実施形態ともいう)について詳しく説明する。本発明は、以下の内容に限定されるものではない。なお、以下の説明において「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称であり、アクリレート及びメタクリレートの一方又は両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」、「(メタ)アリル」についても同様である。 Hereinafter, an embodiment of the present invention (hereinafter also referred to as the present embodiment) will be described in detail. The present invention is not limited to the following contents. In the following description, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl”, “(meth) acryl”, and “(meth) allyl”.
 本発明の一実施形態では、インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、モデル材を支持するサポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセット(光造形用組成物セット)である。モデル材用組成物、及び、サポート材用組成物は、エネルギー線により硬化し、特に、ラジカル反応により造形物を得ることが好ましい。 In one embodiment of the present invention, it is used for modeling a composition for a model material that is used in an inkjet optical modeling method and used for modeling a model material, and a support material that supports the model material. It is an ink set for optical modeling (composition set for optical modeling) which combines with the composition for support materials. The composition for model material and the composition for support material are cured by energy rays, and it is particularly preferable to obtain a shaped product by radical reaction.
 1.モデル材用組成物
 <単官能モノマー(A)>
 上記(A)成分は、エネルギー線により硬化する特性を有する分子内にエチレン性二重結合を1個有する重合性モノマーである。上記(A)成分としては、例えば、炭素数1~30の直鎖または分岐のアルキル(メタ)アクリレート〔例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、t-ブチル(メタ)アクリレート等〕、
 炭素数6~20の脂環含有(メタ)アクリレート〔例えば、シクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニルオキシエチル(メタ)アクリレ-ト、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、アダマンチル(メタ)アクリレート等〕、
 炭素数5~20の複素環含有(メタ)アクリレート〔例えば、テトラヒドロフルフリル(メタ)アクリレート、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン、環状トリメチロールプロパンフォルマル(メタ)アクリレート等〕
 芳香環含有(メタ)アクリレート〔例えば、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシエチル-3-フノキシプロピル(メタ)アクリレート、エトキシ化フェニルフェノール(メタ)アクリレート、ベンジル(メタ)アクリレート等〕
が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(A)成分が2種以上含まれる場合、上記含有量は、各(A)成分の含有量の合計として定める。
1. Model Material Composition <Monofunctional Monomer (A)>
The component (A) is a polymerizable monomer having one ethylenic double bond in the molecule having the property of being cured by energy rays. Examples of the component (A) include linear or branched alkyl (meth) acrylates having 1 to 30 carbon atoms [for example, methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, etc.]
C6-C20 alicyclic ring-containing (meth) acrylates [for example, cyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclo Pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, 3,5,5-trimethylcyclohexyl (meth) acrylate, adamantyl (meth) Acrylate, etc.]
Heterocycle-containing (meth) acrylates having 5 to 20 carbon atoms [for example, tetrahydrofurfuryl (meth) acrylate, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4- ( (Meth) acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane, cyclic trimethylolpropane formal (meth) acrylate, etc.]
Aromatic ring-containing (meth) acrylates [for example, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxyethyl-3-funoxypropyl (meth) acrylate, ethoxylated phenylphenol (meth) acrylate, benzyl (meth Acrylate etc.)
Is mentioned. These may be used alone or in combination of two or more. In addition, when the said (A) component is contained 2 or more types, the said content is defined as the sum total of content of each (A) component.
 上記(A)成分は、モデル材用組成物全体100質量部に対して、5~40質量部の水溶性単官能エチレン性不飽和単量体(A-2)を含有してもよい。(A-2)成分の含有量が上記上限値以下であると、光硬化時や硬化後の水または吸湿によるモデル材(光造形品)の膨潤変形を抑制することができる。 The component (A) may contain 5 to 40 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer (A-2) with respect to 100 parts by mass of the entire model material composition. When the content of the component (A-2) is not more than the above upper limit value, swelling deformation of the model material (photofabricated product) due to water or moisture absorption during or after photocuring can be suppressed.
 (A-2)成分としては、例えば、炭素数(C)5~15の水酸基含有(メタ)アクリレート[ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート及び4-ヒドロキシブチル(メタ)アクリレート等];
 数平均分子量(Mn)200~1000のアルキレンオキサイド付加物含有(メタ)アクリレート[ポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(C1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(C1~4)ポリプロピレングリコールモノ(メタ)アクリレート及びPEG-PPGブロックポリマーのモノ(メタ)アクリレート等];
 C3~15の(メタ)アクリルアミド誘導体[(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-(エチルメタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド及びN-ヒドロキシブチル(メタ)アクリルアミド等];
 N-ビニル化合物[N-ビニルピロリドン、N-ビニルカプロラクタム等];及び
 (メタ)アクリロイルモルホリン等
が使用できる。(A-2)成分は、1種単独で使用してもよく、2種以上を併用してもよい。
Examples of the component (A-2) include hydroxyl group-containing (meth) acrylates having 5 to 15 carbon atoms (C) [hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc. ];
Number average molecular weight (Mn) 200-1000 alkylene oxide adduct-containing (meth) acrylate [polyethylene glycol mono (meth) acrylate, monoalkoxy (C1-4) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate Monoalkoxy (C1-4) polypropylene glycol mono (meth) acrylate and mono (meth) acrylate of PEG-PPG block polymer];
C3-15 (meth) acrylamide derivatives [(meth) acrylamide, N-methyl (meth) acrylamide, N- (ethylmeth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide and N-hydroxybutyl (meth) acrylamide etc.];
N-vinyl compounds [N-vinylpyrrolidone, N-vinylcaprolactam and the like]; and (meth) acryloylmorpholine and the like can be used. As the component (A-2), one type may be used alone, or two or more types may be used in combination.
 これらの中でも、モデル材用組成物の硬化性を向上させる観点から、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、および、テトラヒドロフルフリル(メタ)アクリレートであることが好ましい。さらに、モデル材用組成物が光硬化時の温度(50~90℃)に耐え得る耐熱性を有することにより、光造形物の寸法精度を向上させる観点から、イソボルニル(メタ)アクリレートであることがより好ましい。 Among these, isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate are preferable from the viewpoint of improving the curability of the model material composition. Furthermore, the model material composition is isobornyl (meth) acrylate from the viewpoint of improving the dimensional accuracy of the optically shaped article by having heat resistance that can withstand the temperature (50 to 90 ° C.) during photocuring. More preferred.
 前記単官能モノマー(A)の含有量は、前記モデル材及び該モデル材を用いて製造される光造形品のTg及び耐脆性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、50~90質量部とする。前記単官能モノマー(A)の含有量は、55質量部以上であることが好ましく、85質量部以下であることが好ましい。なお、前記(A)成分が2種以上含まれる場合、前記含有量は、各(A)成分の含有量の合計である。 From the viewpoint of improving Tg and brittleness resistance of the model material and an optical modeling product manufactured using the model material, the content of the monofunctional monomer (A) is 100 parts by mass of the entire model material composition. On the other hand, it is 50 to 90 parts by mass. The content of the monofunctional monomer (A) is preferably 55 parts by mass or more, and preferably 85 parts by mass or less. In addition, when the said (A) component is contained 2 or more types, the said content is the sum total of content of each (A) component.
 <二官能以上の多官能モノマー(B)>
 多官能モノマー(B)は、活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子内にエチレン性二重結合を2つ以上有する重合性モノマーである。多官能モノマー(B)として1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。
<Bifunctional or higher polyfunctional monomer (B)>
The polyfunctional monomer (B) is a component having a property of being polymerized and cured by irradiation with active energy rays, and is a polymerizable monomer having two or more ethylenic double bonds in the molecule. Only one type may be used as the polyfunctional monomer (B), or two or more types may be used in combination.
 上記(B)成分の含有量は、前記モデル材及び前記光造形品の機械強度及び耐脆性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、3~25質量部とする。上記(B)成分の含有量は、4質量部以上であることが好ましく、20質量部以下であることが好ましい。なお、上記(B)成分が2種以上含まれる場合、前記含有量は、各(B)成分の含有量の合計である。 The content of the component (B) is 3 to 25 parts by mass with respect to 100 parts by mass of the entire model material composition from the viewpoint of improving mechanical strength and brittleness resistance of the model material and the optically shaped article. To do. The content of the component (B) is preferably 4 parts by mass or more, and preferably 20 parts by mass or less. In addition, when the said (B) component is contained 2 or more types, the said content is the sum total of content of each (B) component.
 上記(B)成分は、例えば、炭素数10~25の直鎖または分岐のアルキレングリコールジ(メタ)アクリレートまたはアルキレングリコールトリ(メタ)アクリレート、アルキレングリコールテトラ(メタ)アクリレート、アルキレングリコールペンタ(メタ)アクリレート、アルキレングリコールヘキサ(メタ)アクリレートとして、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-nブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(200)ジ(メタ)アクリレート、ポリエチレングリコール(400)ジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレート、ポリエチレングリコール(1000)ジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(400)ジ(メタ)アクリレート、ポリプロピレングリコール(700)ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等、炭素数10~30の環状構造含有ジ(メタ)アクリレートまたはトリ(メタ)アクリレートとして、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート等、ビニルエーテル基含有(メタ)アクリル酸エステル類、2官能以上のアミノアクリレート類等が挙げられる。中でも、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートが好ましい。
 ビニルエーテル基含有(メタ)アクリル酸エステル類としては、例えば、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル等が挙げられる。
The component (B) is, for example, a linear or branched alkylene glycol di (meth) acrylate or alkylene glycol tri (meth) acrylate having 10 to 25 carbon atoms, alkylene glycol tetra (meth) acrylate, alkylene glycol penta (meth). As acrylate and alkylene glycol hexa (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-nbutyl-2-ethyl-1,3-propanediol di (meth) acrylate, 3-methyl-1,5- Pentanediol di (meth) acrylate , Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (200) di (meth) acrylate, polyethylene glycol (400) di (meth) acrylate, polyethylene Glycol (600) di (meth) acrylate, polyethylene glycol (1000) di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (400) di (meth) acrylate, Polypropylene glycol (700) di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol hydroxypivalate (Meth) acrylate, polytetramethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, glycerin propoxytri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, penta Cyclohexanedi as a cyclic structure-containing di (meth) acrylate or tri (meth) acrylate having 10 to 30 carbon atoms such as erythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Methanol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) acrylate Over DOO, bisphenol A propylene oxide adduct di (meth) acrylate, vinyl ether group-containing (meth) acrylic acid esters, bifunctional or more amino acrylates. Among these, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate are preferable.
Examples of vinyl ether group-containing (meth) acrylic acid esters include 2- (vinyloxyethoxy) ethyl (meth) acrylate.
 これらの中でも、モデル材用組成物の硬化性を向上させる観点から、(メタ)アクリレート系の単量体であることが好ましく、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートおよび2官能以上のアミノアクリレートがより好ましく、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレートおよび2官能以上のアミノアクリレート類がさらに好ましく、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレートおよび2官能以上のアミノアクリレート類が特に好ましい。 Among these, from the viewpoint of improving the curability of the composition for a model material, it is preferably a (meth) acrylate monomer, such as dipropylene glycol di (meth) acrylate or tripropylene glycol di (meth) acrylate. , Glycerin propoxy tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate and bifunctional or higher amino acrylate are more preferable, and dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, glycerin propoxy tri (meth) acrylate and bifunctional or higher functional amino acrylates are more preferable, dipropylene glycol diacrylate, tripropylene glycol dia It relates and bifunctional or more amino acrylates are particularly preferred.
 <オリゴマー(C)>
 オリゴマー(C)は、1個以上のエチレン性不飽和基を有し、光照射により重合してモデル材用組成物を硬化させ、かつ、該硬化により得られるモデル材の破断強度を高める成分である。上記(C)成分の含有量は、モデル材用組成物全体100質量部に対して、5~40質量部とする。上記(C)成分の含有量が5質量部未満であると、モデル材用組成物を光硬化させて得られるモデル材には、硬化収縮がやや大きくなる。その結果、モデル材の寸法精度が悪化する可能性がある。また、モデル材用組成物を光硬化させて得られるモデル材の破断強度が劣る。一方、上記(C)成分の含有量が40質量部を超えると、モデル材用組成物の粘度が高くなる。そのため、モデル材用組成物をインクジェットヘッドから吐出させる際、ジェッティング特性が悪化して、飛行曲がりを起こす可能性がある。その結果、モデル材用組成物を光硬化させて得られるモデル材の寸法精度が悪化する可能性がある。上記(C)成分の含有量は、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、30質量部以下であることが好ましい。
<Oligomer (C)>
The oligomer (C) is a component that has one or more ethylenically unsaturated groups, is polymerized by light irradiation to cure the model material composition, and increases the breaking strength of the model material obtained by the curing. is there. The content of the component (C) is 5 to 40 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the component (C) is less than 5 parts by mass, the curing shrinkage is slightly increased in the model material obtained by photocuring the model material composition. As a result, the dimensional accuracy of the model material may deteriorate. Moreover, the breaking strength of the model material obtained by photocuring the composition for model material is inferior. On the other hand, when content of the said (C) component exceeds 40 mass parts, the viscosity of the composition for model materials will become high. Therefore, when the composition for model material is ejected from the inkjet head, the jetting characteristics may be deteriorated and the flight may be bent. As a result, the dimensional accuracy of the model material obtained by photocuring the model material composition may deteriorate. The content of the component (C) is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and preferably 30 parts by mass or less.
 上記(C)成分としては、例えば、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー等が挙げられる。これらの中でも、モデル材用組成物の硬化性を向上させる観点から、ウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、および、ポリエステル(メタ)アクリレートオリゴマーから選択される1種以上であることが好ましい。さらに、モデル材用組成物が光硬化時の温度(50~90℃)に耐え得る耐熱性を有することにより、モデル材の寸法精度を向上させる観点から、上記(C)成分がウレタン基を含むウレタン(メタ)アクリレートオリゴマーであることがより好ましい。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、上記(C)成分が2種以上含まれる場合、上記含有量は、各(C)成分の含有量の合計として定める。 Examples of the component (C) include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and polyether (meth) acrylate oligomers. Among these, from the viewpoint of improving the curability of the composition for model material, it should be one or more selected from urethane (meth) acrylate oligomer, epoxy (meth) acrylate oligomer, and polyester (meth) acrylate oligomer. Is preferred. Furthermore, from the viewpoint of improving the dimensional accuracy of the model material, the component (C) contains a urethane group because the composition for the model material has heat resistance that can withstand the temperature (50 to 90 ° C.) during photocuring. A urethane (meth) acrylate oligomer is more preferable. These may be used alone or in combination of two or more. In addition, when the said (C) component is contained 2 or more types, the said content is defined as the sum total of content of each (C) component.
 なお、本明細書中において「オリゴマー」は、重量平均分子量が800~10000である。重量平均分子量は、GPC(Gel Permeation Chromatography)で測定したポリスチレン換算の重量平均分子量を意味する。 In the present specification, “oligomer” has a weight average molecular weight of 800 to 10,000. The weight average molecular weight means a weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography).
 <光重合開始剤(D)>
 本発明のモデル材用組成物は、光重合開始剤を含むことが好ましい。光重合開始剤は、紫外線、近紫外線または可視光領域の波長の光を照射するとラジカル反応を促進する化合物であれば、特に限定されない。上記光重合開始剤としては、低エネルギーで重合を開始させることができれば特に限定されないが、アシルフォスフィンオキサイド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシキノン化合物、チオキサントン化合物、ベンゾイン化合物、アントラキノン化合物およびケタール化合物からなる群から選択される少なくとも1種の化合物を含む光重合開始剤を用いることが好ましい。
<Photopolymerization initiator (D)>
It is preferable that the composition for model materials of this invention contains a photoinitiator. The photopolymerization initiator is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region. The photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, but is not limited to acylphosphine oxide compounds, α-aminoalkylphenone compounds, α-hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds.
 上記アシルフォスフィンオキサイド化合物としては、具体的には、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルジフェニルフォスフィンオキサイド、4-メチルベンゾイルジフェニルフォスフィンオキサイド、4-エチルベンゾイルジフェニルフォスフィンオキサイド、4-イソプロピルベンゾイルジフェニルフォスフィンオキサイド、1-メチルシクロヘキサノイルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸イソプロピルエステル、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なアシルフォスフィンオキサイド化合物としては、例えば、BASF社製の“DAROCURE TPO”等が挙げられる。 Specific examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide. 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 4-methylbenzoyldiphenylphosphine oxide, 4-ethylbenzoyldiphenylphosphine oxide, 4-isopropylbenzoyl Diphenylphosphine oxide, 1-methylcyclohexanoylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoy ) -Phenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2,4,6-trimethylbenzoylphenylphosphinic acid isopropyl ester, bis (2,6-dimethoxybenzoyl) -2,4 , 4-trimethylpentylphosphine oxide and the like. These may be used alone or in combination. Examples of the acylphosphine oxide compound available on the market include “DAROCURE TPO” manufactured by BASF.
 上記α-アミノアルキルフェノン化合物としては、具体的には、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1、2-メチル-1-[4-(メトキシチオ)-フェニル]-2-モルホリノプロパン-2-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-アミノアルキルフェノン化合物としては、例えば、BASF社製の“IRGキノン化合物とし 369”、“IRGACURE 907”等が挙げられる。
 上記α-ヒドロキシキノン化合物としては、具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル] -2-ヒドロキシ2-メチル-1-プロパン1-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-ヒドロキシキノン化合物としては“IRGACURE 184”、“DAROCURE 1173”、“IRGACURE 2959”、“IRGACURE 127”等が挙げられる。
Specific examples of the α-aminoalkylphenone compound include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination. Examples of commercially available α-aminoalkylphenone compounds include “IRG quinone compound 369” and “IRGACURE 907” manufactured by BASF.
Specific examples of the α-hydroxyquinone compound include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- {4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of commercially available α-hydroxyquinone compounds include “IRGACURE 184”, “DAROCURE 1173”, “IRGACURE 2959”, “IRGACURE 127”, and the like.
 上記チオキサントン化合物としては、具体的には、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なチオキサントン化合物としては、例えば、日本化薬社製の“MKAYACURE DETX-S”、ダブルボンドケミカル社製の“Chivacure ITX”等が挙げられる。 Specific examples of the thioxanthone compound include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
 上記ベンゾイン化合物としては、具体的には、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。 Specific examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
 上記アントラキノン化合物としては、具体的には、例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等が挙げられる。 Specific examples of the anthraquinone compound include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
 上記ケタール化合物としては、具体的には、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。 Specific examples of the ketal compound include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
 上記(D)成分の含有量は、モデル材用組成物全体100質量部に対して、1~15質量部である。上記(D)成分の含有量が上記範囲であると、モデル材用組成物の硬化性が良好となり、光造形物の寸法精度が向上する。上記(D)成分の含有量は、2質量部以上であることが好ましく、13質量部以下であることが好ましい。なお、上記(D)成分が2種以上含まれる場合、上記含有量は、各(D)成分の含有量の合計として定める。 The content of the component (D) is 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the component (D) is within the above range, the curability of the model material composition becomes good, and the dimensional accuracy of the optically shaped article is improved. The content of the component (D) is preferably 2 parts by mass or more, and preferably 13 parts by mass or less. In addition, when the said (D) component is contained 2 or more types, the said content is defined as the sum total of content of each (D) component.
 <その他の添加剤>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、重合禁止剤、表面調整剤、着色剤、酸化防止剤、連鎖移動剤、充填剤等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
<Other additives>
The composition for a model material included in the optical modeling ink set according to the present embodiment can contain other additives as necessary within a range that does not impair the effects of the present invention. Examples of other additives include a polymerization inhibitor, a surface conditioner, a colorant, an antioxidant, a chain transfer agent, and a filler. These may be used alone or in combination of two or more.
 前記モデル材用組成物は、重合禁止剤を含有することが好ましい。前記モデル材用組成物が重合禁止剤を含有することにより、前記造形品を成形する温度(50~90℃程度)において、重合が過剰に起きることを抑制することができる。その結果、単量体を安定させることができるため、前記モデル材用組成物が硬化しやすくなる。 The model material composition preferably contains a polymerization inhibitor. When the composition for a model material contains a polymerization inhibitor, it is possible to suppress excessive polymerization at a temperature (about 50 to 90 ° C.) at which the shaped article is molded. As a result, since the monomer can be stabilized, the model material composition is easily cured.
 前記重合禁止剤としては、例えば、フェノール化合物[ヒドロキノン、ヒドロキノンモノメチルエーテル等]、硫黄化合物[ジラウリルチオジプロピオネート等]、リン化合物[トリフェニルフォスファイト等]、アミン化合物[フェノチアジン等]等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the polymerization inhibitor include phenol compounds [hydroquinone, hydroquinone monomethyl ether and the like], sulfur compounds [dilauryl thiodipropionate and the like], phosphorus compounds [triphenyl phosphite and the like], amine compounds [phenothiazine and the like], and the like. Can be mentioned. These may be used alone or in combination of two or more.
 前記重合禁止剤の含有量は、単量体の安定性および重合速度を向上させる観点から、前記モデル材用組成物全体100質量部に対して、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、0.1質量部以上であることが好ましい。なお、前記重合禁止剤が2種以上含まれる場合、前記含有量は、各重合禁止剤の含有量の合計である。 The content of the polymerization inhibitor is preferably 5 parts by mass or less with respect to 100 parts by mass of the entire model material composition from the viewpoint of improving the stability of the monomer and the polymerization rate. The amount is more preferably at most 0.1 parts by mass, and more preferably at least 0.1 parts by mass. In addition, when the said polymerization inhibitor is contained 2 or more types, the said content is the sum total of content of each polymerization inhibitor.
 前記表面調整剤(E)としては、例えば、分子量264以上かつMn5,000以下である、PEG型非イオン界面活性剤[ノニルフェノールのエチレンオキサイド(以下、EOと略記)1~40モル付加物、ステアリン酸EO1~40モル付加物等]、多価アルコール型非イオン界面活性剤(ソルビタンパルミチン酸モノエステル、ソルビタンステアリン酸モノエステル、ソルビタンステアリン酸トリエステル等)、フッ素含有界面活性剤(パーフルオロアルキルEO1~50モル付加物、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルベタイン等)、変性シリコーンオイル[ポリエーテル変性シリコーンオイル、(メタ)アクリレート変性シリコーンオイル等]等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。前記表面調整剤のうち、シリコーン系表面調整剤が好ましく、ポリジメチルシロキサン構造を有する表面調整剤が特に好ましい。 Examples of the surface conditioner (E) include a PEG-type nonionic surfactant [nonylphenol ethylene oxide (hereinafter abbreviated as EO) 1 to 40 mol adduct, stearin having a molecular weight of 264 or more and Mn of 5,000 or less. Acid EO 1-40 mol adducts, etc.], polyhydric alcohol type nonionic surfactants (sorbitan palmitic acid monoester, sorbitan stearic acid monoester, sorbitan stearic acid triester, etc.), fluorine-containing surfactants (perfluoroalkyl EO1) ˜50 mol adduct, perfluoroalkyl carboxylate, perfluoroalkyl betaine, etc.), modified silicone oils [polyether-modified silicone oil, (meth) acrylate-modified silicone oil, etc.] and the like. These may be used alone or in combination of two or more. Of the surface conditioners, silicone-based surface conditioners are preferable, and surface conditioners having a polydimethylsiloxane structure are particularly preferable.
 前記表面調整剤の含有量は、添加効果、並びに、前記モデル材及び前記光造形品の物性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、0.1質量部以上であることが好ましい。なお、前記表面調整剤が2種以上含まれる場合、前記含有量は、各表面調整剤の含有量の合計である。 The content of the surface conditioner is 3 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of adding effects and improving the physical properties of the model material and the optically shaped article. It is preferably 2 parts by mass or less, more preferably 0.1 parts by mass or more. In addition, when 2 or more types of the said surface conditioning agents are contained, the said content is the sum total of content of each surface conditioning agent.
 前記着色剤としては、例えば、顔料、染料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the colorant include pigments and dyes. These may be used alone or in combination of two or more.
 前記顔料には、有機顔料及び/又は無機顔料が含まれる。前記有機顔料としては、以下に例示する顔料が挙げられる。 The pigment includes an organic pigment and / or an inorganic pigment. Examples of the organic pigment include pigments exemplified below.
 (アゾ顔料)
 不溶性モノアゾ顔料(トルイジンレッド、パーマネントカーミンFB、ファストイエローG等)等;
 (多環式顔料)
 フタロシアニンブルー等;
 (染つけレーキ)
 塩基性染料(ビクトリアピュアブルーBOレーキ等)等;
 (その他の顔料)
 アジン顔料(アニリンブラック等)、昼光蛍光顔料、ニトロソ顔料、ニトロ顔料、天然顔料等。
(Azo pigment)
Insoluble monoazo pigments (toluidine red, permanent carmine FB, fast yellow G, etc.), etc .;
(Polycyclic pigment)
Phthalocyanine blue, etc .;
(Dyed rake)
Basic dyes (Victoria Pure Blue BO Lake etc.) etc .;
(Other pigments)
Azine pigments (aniline black, etc.), daylight fluorescent pigments, nitroso pigments, nitro pigments, natural pigments, etc.
 前記無機顔料としては、例えば、金属酸化物(酸化鉄、酸化クロム、酸化チタン等)、カーボンブラック等が挙げられる。 Examples of the inorganic pigment include metal oxides (iron oxide, chromium oxide, titanium oxide, etc.), carbon black, and the like.
 前記着色剤の含有量は、着色効果、並びに、前記モデル材及び前記光造形品の物性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、2質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.1質量部以上であることが好ましい。なお、前記着色剤が2種以上含まれる場合、前記含有量は、各着色剤の含有量の合計である。 The content of the colorant is 2 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of improving the coloring effect and the physical properties of the model material and the optically shaped article. Is preferably 1 part by mass or less, more preferably 0.1 part by mass or more. In addition, when the said coloring agent is contained 2 or more types, the said content is the sum total of content of each coloring agent.
 前記酸化防止剤としては、例えば、フェノール化合物〔単環フェノール(2,6-ジ-t-ブチル-p-クレゾール等)等が挙げられる。 Examples of the antioxidant include phenol compounds [monocyclic phenols (2,6-di-t-butyl-p-cresol, etc.) and the like.
 前記酸化防止剤の含有量は、酸化防止効果、並びに、前記モデル材及び前記光造形品の物性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、0.1質量部以上であることが好ましい。なお、前記酸化防止剤が2種以上含まれる場合、前記含有量は、各酸化防止剤の含有量の合計である。 The content of the antioxidant is 3 parts by mass or less with respect to 100 parts by mass of the whole model material composition from the viewpoint of improving the antioxidant effect and the physical properties of the model material and the optically shaped article. Preferably, it is 2 parts by mass or less, more preferably 0.1 part by mass or more. In addition, when 2 or more types of the said antioxidant is contained, the said content is the sum total of content of each antioxidant.
 前記連鎖移動剤としては、例えば、炭化水素[C6~24の化合物、例えば、芳香族炭化水素(トルエン、キシレン等)、不飽和脂肪族炭化水素(1-ブテン、1-ノネン等)等];ハロゲン化炭化水素(C1~24の化合物、例えば、ジクロロメタン、四塩化炭素)等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the chain transfer agent include hydrocarbons [C6-24 compounds such as aromatic hydrocarbons (toluene, xylene, etc.), unsaturated aliphatic hydrocarbons (1-butene, 1-nonene, etc.), etc.]; Halogenated hydrocarbons (C1-24 compounds such as dichloromethane, carbon tetrachloride) and the like. These may be used alone or in combination of two or more.
 前記連鎖移動剤の含有量は、単量体の重合性及び単量体と連鎖移動剤との相溶性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、0.05質量部以上であることが好ましい。なお、前記連鎖移動剤が2種以上含まれる場合、前記含有量は、各連鎖移動剤の含有量の合計である。 The content of the chain transfer agent is 10 parts by mass with respect to 100 parts by mass of the entire model material composition from the viewpoint of improving the polymerizability of the monomer and the compatibility between the monomer and the chain transfer agent. The content is preferably 5 parts by mass or less, more preferably 0.05 parts by mass or more. In addition, when the said chain transfer agent is contained 2 or more types, the said content is the sum total of content of each chain transfer agent.
 前記充填剤としては、例えば、金属粉(アルミニウム粉、銅粉等)、金属酸化物(アルミナ、シリカ、タルク、マイカ、クレー等)、金属水酸化物(水酸化アルミニウム等)、金属塩(炭酸カルシウム、ケイ酸カルシウム等)、繊維[無機繊維(炭素繊維、ガラス繊維、アスベスト等)、有機繊維(コットン、ナイロン、アクリル、レーヨン繊維等)等]、マイクロバルーン(ガラス、シラス、フェノール樹脂等)、炭素類(カーボンブラック、石墨、石炭粉等)、金属硫化物(二硫化モリブデン等)、有機粉(木粉等)等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the filler include metal powder (aluminum powder, copper powder, etc.), metal oxide (alumina, silica, talc, mica, clay, etc.), metal hydroxide (aluminum hydroxide, etc.), metal salt (carbonic acid). Calcium, calcium silicate, etc.), fiber [inorganic fiber (carbon fiber, glass fiber, asbestos, etc.), organic fiber (cotton, nylon, acrylic, rayon fiber, etc.)], microballoon (glass, shirasu, phenol resin, etc.) , Carbons (carbon black, graphite, coal powder, etc.), metal sulfides (molybdenum disulfide, etc.), organic powders (wood powder, etc.) and the like. These may be used alone or in combination of two or more.
 前記充填剤の含有量は、充填効果、インクジェット吐出可能粘度、並びに、前記モデル材及び前記光造形品の物性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、30質量部以下であることが好ましく、20質量部以下であることがより好ましく、3質量部以上であることが好ましい。なお、前記充填剤が2種以上含まれる場合、前記含有量は、各充填剤の含有量の合計である。 The content of the filler is 30 masses with respect to 100 mass parts of the entire model material composition from the viewpoint of improving the filling effect, inkjet dischargeable viscosity, and physical properties of the model material and the stereolithographic product. Is preferably 20 parts by mass or less, more preferably 3 parts by mass or more. In addition, when the said filler is contained 2 or more types, the said content is the sum total of content of each filler.
 前記その他の添加剤の含有量は、添加効果、並びに、前記モデル材及び前記光造形品の物性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、30質量部以下であることが好ましく、20質量部以下であることがより好ましく、0.05質量部以上であることが好ましい。なお、前記その他の添加剤が2種以上含まれる場合、前記含有量は、各その他の添加剤の含有量の合計である。 The content of the other additive is 30 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of adding effects and improving the physical properties of the model material and the optically shaped article. Preferably, it is 20 parts by mass or less, more preferably 0.05 part by mass or more. In addition, when the said other additive is contained 2 or more types, the said content is the sum total of content of each other additive.
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、前記モデル材及び前記光造形品の水膨潤変形及び吸湿変形を防止する観点から、前記モデル材用組成物全体100質量部に対して、水溶性成分の含有量が10質量部以下であることが好ましく、5質量部以下であることがより好ましい。 From the viewpoint of preventing water swelling deformation and moisture absorption deformation of the model material and the optical modeling product, the model material composition contained in the optical modeling ink set according to the present embodiment is 100 mass of the entire model material composition. The content of the water-soluble component is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to parts.
 ここで、水溶性成分とは、25℃における水への溶解度が1(g/水100g)以上である成分のことをいう。すなわち、前記モデル材用組成物に含まれる前記(A)~(D)成分、及び、前記その他の添加物のうち、前記溶解度を示す成分のことをいう。 Here, the water-soluble component refers to a component having a solubility in water at 25 ° C. of 1 (g / 100 g of water) or more. That is, among the components (A) to (D) and the other additives contained in the model material composition, the components exhibiting the solubility.
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物の製造方法は、特に限定されるものではない。例えば、前記(A)~(D)成分、及び、必要により、前記その他の添加剤を、混合攪拌装置、分散機等を用いて均一に混合することにより、製造することができる。 The method for producing the model material composition included in the optical modeling ink set according to the present embodiment is not particularly limited. For example, it can be produced by uniformly mixing the components (A) to (D) and, if necessary, the other additives using a mixing stirrer, a disperser or the like.
 このようにして製造されたモデル材用組成物は、インクジェットヘッドからの吐出性を良好にする観点から、25℃における粘度が、70mPa・s以下であることが好ましい。なお、モデル材用組成物の粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行われる。 The composition for a model material thus produced preferably has a viscosity at 25 ° C. of 70 mPa · s or less from the viewpoint of improving the dischargeability from the inkjet head. In addition, the measurement of the viscosity of the composition for model materials is performed using R100 type | mold viscosity meter based on JISZ8803.
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物を光硬化させることにより、モデル材が得られる。詳しくは、後述する光造形品の製造方法において説明する。前記モデル材は、Tgが50~120℃であることが好ましい。前記モデル材は、通常50~90℃で造形される。そのため、前記モデル材のTgが50~120℃であると、前記モデル材及び前記光造形品の耐熱性を向上させ、かつ、前記モデル材及び前記光造形品の反りを低減することができる。前記モデル材のTgは、55℃以上であることがより好ましく、60℃以上であることがさらに好ましい。また、前記モデル材のTgは、110℃以下であることがより好ましく、100℃であることがさらに好ましい。前記モデル材のTgは、前記モデル材用組成物に含有される前記(A)~(D)成分、及び、前記その他の添加物の種類及び含有量を変えることにより、調整することができる。なお、前記モデル材のTgは、DMA(Dynamic Mechanical Analysis)方法により測定することができる。 A model material can be obtained by photocuring the model material composition contained in the optical modeling ink set according to the present embodiment. In detail, it demonstrates in the manufacturing method of the optical modeling goods mentioned later. The model material preferably has a Tg of 50 to 120 ° C. The model material is usually shaped at 50 to 90 ° C. Therefore, when the Tg of the model material is 50 to 120 ° C., the heat resistance of the model material and the stereolithographic product can be improved, and the warp of the model material and the stereolithography product can be reduced. The Tg of the model material is more preferably 55 ° C. or higher, and further preferably 60 ° C. or higher. The Tg of the model material is more preferably 110 ° C. or less, and further preferably 100 ° C. The Tg of the model material can be adjusted by changing the types and contents of the components (A) to (D) and the other additives contained in the model material composition. The Tg of the model material can be measured by a DMA (Dynamic Mechanical Analysis) method.
 前記モデル材は、寸法精度を向上させる観点から、水膨潤率が1質量%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。前記モデル材の水膨潤率は、前記モデル材用組成物に含有される前記(A)~(D)成分、及び、前記その他の添加物の種類及び含有量を変えることにより、調整することができる。なお、前記モデル材の水膨潤率は、ASTM D570の吸水率測定法に準じて、下記(ii)式によって求めることができる。ただし、水はイオン交換水を用い、水温は25℃とする。 From the viewpoint of improving the dimensional accuracy, the model material preferably has a water swelling ratio of 1% by mass or less, more preferably 0.7% by mass or less, and 0.5% by mass or less. Further preferred. The water swelling ratio of the model material can be adjusted by changing the types and contents of the components (A) to (D) and the other additives contained in the model material composition. it can. In addition, the water swelling rate of the model material can be obtained by the following formula (ii) according to the water absorption rate measuring method of ASTM D570. However, ion-exchanged water is used as the water, and the water temperature is 25 ° C.
 水膨潤率(%)=100×(水浸漬後の重量-水浸漬前の重量)/(水浸漬前の重量) ・・・(ii) Water swelling ratio (%) = 100 × (weight after water immersion−weight before water immersion) / (weight before water immersion) (ii)
 2.サポート材用組成物
 サポート材用組成物は、光硬化によりサポート材を与える、サポート材用の光硬化性組成物である。モデル材を作成後、サポート材をモデル材から物理的に剥離することにより、または、サポート材を有機溶媒もしくは水に溶解させることにより、モデル材から除去することができる。本発明のモデル材用組成物は、サポート材用組成物として従来公知の種々の組成物との組み合わせにおいて用いることができるが、サポート材を除去する際にモデル材を破損することがなく、環境に優しく、細部まできれいにかつ容易にサポート材を除去することができるため、本発明の光造形用組成物セットを構成するサポート材用組成物は、サポート材を水に浸水して除去できる水溶性サポート材であることが好ましい。ここで、水溶性サポート材とは、サポート材を水に混合した際、均一な状態に溶解しているか、若しくは、直径約00.1~100マイクロメートルの油滴となって分散し乳化状態にあることを示す。
2. Support Material Composition A support material composition is a photocurable composition for a support material that provides a support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water. The composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. Since the support material can be removed easily and cleanly in detail and easily, the composition for support material constituting the composition set for stereolithography of the present invention can be removed by immersing the support material in water. A support material is preferred. Here, the water-soluble support material is dissolved in a uniform state when the support material is mixed with water, or dispersed as oil droplets having a diameter of about 00.1 to 100 micrometers to form an emulsified state. Indicates that there is.
 本発明において、水溶性サポート材用組成物は、少なくとも1種の水溶性単官能エチレン性不飽和単量体(a)、少なくとも1種のオキシブチレン基を含むポリアルキレングリコール(b)および光重合開始剤(c)を含むことが好ましい。
 <水溶性単官能エチレン性不飽和単量体(a)>
 本発明のサポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(a)とは、エネルギー線により硬化する特性を有する分子内にエチレン性二重結合を1個有する重合性モノマーであり、前記モノマーが水溶性であることを意味する。ここで、水溶性とは、水溶性単官能エチレン性不飽和単量体を水に混合した際、均一な状態に溶解しているか、若しくは、直径約00.1~100マイクロメートルの油滴となって分散し乳化状態にあることを示す。例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルフォリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
In the present invention, the water-soluble support material composition comprises at least one water-soluble monofunctional ethylenically unsaturated monomer (a), a polyalkylene glycol (b) containing at least one oxybutylene group, and photopolymerization. It is preferable to contain an initiator (c).
<Water-soluble monofunctional ethylenically unsaturated monomer (a)>
The water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the composition for a support material of the present invention is polymerizable having one ethylenic double bond in the molecule having the property of being cured by energy rays. A monomer, meaning that the monomer is water-soluble. Here, the water solubility means that when a water-soluble monofunctional ethylenically unsaturated monomer is mixed with water, it is dissolved in a uniform state, or oil droplets having a diameter of about 00.1 to 100 micrometers. It shows that it is dispersed and emulsified. For example, a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms (for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.), number average molecular weight (Mn) 200 to 1,000 hydroxyl group-containing (meth) acrylate [for example, polyethylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (carbon number 1-4) Polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, etc.], (meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylate Amide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N'-dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N- Hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) acryloylmorpholine and the like. These may be used alone or in combination of two or more.
 上記(a)成分の含有量は、上記サポート材用組成物100質量部に対して、19~80質量部であることが好ましく、より好ましくは22質量部以上であり、さらに好ましくは25質量部以上であり、より好ましくは76質量部以下であり、さらに好ましくは73質量部以下である。水溶性単官能エチレン性不飽和単量体(a)の含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。 The content of the component (a) is preferably 19 to 80 parts by mass, more preferably 22 parts by mass or more, and further preferably 25 parts by mass with respect to 100 parts by mass of the support material composition. It is above, More preferably, it is 76 mass parts or less, More preferably, it is 73 mass parts or less. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
 <ポリアルキレングリコール(b)>
 サポート材用組成物に含まれるオキシブチレン基を含むポリアルキレングリコール(b)としては、直鎖型、多鎖型のいずれであってもよい。また、水に溶解するものであれば、末端にアルキル基を含んでいてもよく、例えば、好ましくは炭素数6以下のアルキル鎖を含んでいてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Polyalkylene glycol (b)>
The polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt | dissolves in water, the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
 サポート材用組成物に含まれるオキシブチレン基を含むポリアルキレングリコール(b)は、サポート材に適度な親水性を付与するための水溶性樹脂であり、これを添加することにより水除去性とサポート力とを兼ね備えたサポート材を得ることができる。上記オキシブチレン基を含むポリアルキレングリコールは、オキシブチレン基を含んでいれば、特にそのアルキレン部分の構造は限定されず、例えば、オキシブチレン基(オキシテトラメチレン基)のみ有するポリブチレングリコール単体であってもよく、また、オキシブチレン基と他のオキシアルキレン基とを共に有するポリブチレンポリオキシアルキレングリコール(例えば、ポリブチレンポリエチレングリコール)であってもよい。例えば、上記ポリブチレングリコールは、下記化学式(1)で示され、上記ポリブチレンポリエチレングリコールは、下記化学式(2)で示される。 The polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition is a water-soluble resin for imparting appropriate hydrophilicity to the support material. Support material that combines strength can be obtained. The polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group. For example, the polyalkylene glycol having only an oxybutylene group (oxytetramethylene group) is a single polybutylene glycol. Alternatively, it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group. For example, the polybutylene glycol is represented by the following chemical formula (1), and the polybutylene polyethylene glycol is represented by the following chemical formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記化学式(2)において、mは5~300の整数であることが好ましく、nは2~150の整数であることが好ましい。より好ましくは、mは6~200、nは3~100である。また、化学式(1)および化学式(2)中のオキシブチレン基は、直鎖であってもよいが、分岐していてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
 サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(b)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させるという特有の効果を得ることができる。特に、光造形中にサポート材がモデル材を十分に支えることができるため光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な寸法精度を有する光造形物を得ることができる。 By including the polyalkylene glycol (b) containing the oxybutylene group in the composition for the support material, it is possible to obtain a specific effect that the removability by water is further improved without reducing the support power of the support material. . In particular, since the support material can sufficiently support the model material during the optical modeling, the modeling accuracy in the optical modeling stage can be improved. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
 オキシブチレン基を含むポリアルキレングリコール(b)成分の重量平均分子量は、300以上であり、3000より小さいことが好ましく、更に、800以上であり、2000より小さいことがより好ましい。(b)成分の重量平均分子量が300より小さいと、サポート材用組成物を硬化した際にサポート材のブリーディングが生じやすくなる。ブリーディングとは、硬化したサポート材内部から液体成分がサポート材表面に浸みだす現象である。また、オキシブチレン基を含むポリアルキレングリコールの重量平均分子量が3000より小さいことにより、サポート材用組成物の吐出安定性に優れる。重量平均分子量が上記範囲であると、硬化前の組成物中で水溶性単官能エチレン性不飽和単量体(a)と相溶しやすくなる一方、光照射後の水溶性単官能エチレン性不飽和単量体の硬化物とは相溶し難くなり、サポート材の水または水溶性溶剤による除去が容易になる。 The weight average molecular weight of the polyalkylene glycol (b) component containing an oxybutylene group is 300 or more, preferably less than 3000, more preferably 800 or more, and more preferably less than 2000. When the weight average molecular weight of the component (b) is smaller than 300, bleeding of the support material tends to occur when the support material composition is cured. Bleeding is a phenomenon in which a liquid component oozes from the inside of a cured support material to the support material surface. Moreover, when the weight average molecular weight of the polyalkylene glycol containing an oxybutylene group is smaller than 3000, the discharge stability of the support material composition is excellent. When the weight average molecular weight is in the above range, the water-soluble monofunctional ethylenically unsaturated monomer (a) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
 (b)成分は、2種類以上使用されてもよい。2種類以上のポリアルキレングリコールが使用される場合、重量平均分子量が300より小さい又は3000より大きいポリアルキレングリコールの含有量は、少量が好ましい。 (B) Two or more types of components may be used. When two or more types of polyalkylene glycol are used, the content of polyalkylene glycol having a weight average molecular weight of less than 300 or greater than 3000 is preferably small.
 サポート材用組成物におけるオキシブチレン基を含むポリアルキレングリコール(b)成分の含有量は、サポート材用組成物100質量部に対して、15~75質量部であることが好ましく、より好ましくは17質量部以上であり、さらに好ましくは20質量部以上であり、より好ましくは72質量部以下であり、さらに好ましくは70質量部以下である。ポリアルキレングリコール(b)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。 The content of the polyalkylene glycol (b) component containing an oxybutylene group in the support material composition is preferably 15 to 75 parts by mass, more preferably 17 parts per 100 parts by mass of the support material composition. It is more than mass part, More preferably, it is 20 mass parts or more, More preferably, it is 72 mass parts or less, More preferably, it is 70 mass parts or less. When the content of the polyalkylene glycol (b) is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material.
 <水溶性有機溶剤(c)>
 サポート材用組成物は、水溶性有機溶剤(c)を含んでいてもよい。水溶性有機溶剤(c)は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する機能も有する。
<Water-soluble organic solvent (c)>
The composition for a support material may contain a water-soluble organic solvent (c). The water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
 水溶性有機溶剤(c)としては、グリコール系溶剤を用いることが好ましく、具体的には、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールジアセテート、プロピレングリコールジアセテートなどのグリコールエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどのグリコールモノエーテルアセテート系溶剤等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the water-soluble organic solvent (c), it is preferable to use a glycol solvent. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate. Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol Nomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether Examples thereof include glycol monoether acetate solvents such as acetate. These may be used alone or in combination of two or more.
 中でも、低粘度のサポート材組成物を調製しやすく、また、硬化して得られるサポート材が水溶解性に優れる点から、水溶性有機溶剤(c)としては、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルおよびジプロピレングリコールモノメチルエーテルアセテートが好ましい。 Among them, the low-viscosity support material composition is easy to prepare, and the support material obtained by curing is excellent in water solubility. Therefore, as the water-soluble organic solvent (c), triethylene glycol monomethyl ether, diethylene glycol diethyl Ether and dipropylene glycol monomethyl ether acetate are preferred.
 サポート材用組成物における水溶性有機溶剤(c)の含有量は、サポート材用組成物100質量部に対して、30質量部以下であることが好ましく、より好ましくは28質量部以下であり、さらに好ましくは25質量部以下である。水溶性有機溶剤(c)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。サポート材用組成物が水溶性有機溶剤を含む場合、その含有量は、サポート材用組成物を低粘度に調整し得る観点から、サポート材用組成物100質量部に対して、好ましくは3質量部以上である。 The content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less. When the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material. When the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
 <光重合開始剤(d)>
 光重合開始剤(d)としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用することができる。サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、好ましくは1~20質量部であり、より好ましくは2~18質量部である。光重合開始剤の含有量が上記範囲内であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。
<Photopolymerization initiator (d)>
As the photopolymerization initiator (d), the compounds described above as photopolymerization initiators that can be contained in the model material composition can be similarly used. The content of the photopolymerization initiator in the support material composition is preferably 1 to 20 parts by mass and more preferably 2 to 18 parts by mass with respect to 100 parts by mass of the support material composition. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
 上記各成分を上記範囲の含有量で含むことにより、優れた水溶解性とサポート力とを兼ね備えたサポート材用組成物を得ることができる。特に、サポート力に優れるため造形中に空気中の水分を取り込みサポート力が低下するという懸念がなく、寸法精度が良好な光造形品が得られる。更に、上記各成分を上記範囲の含有量で含むことにより、高温・高湿条件下であっても、サポート材用組成物が硬化することにより得られる硬化物(造形物)の軟化を防ぐことができる。 By including each of the above components in a content within the above range, a composition for a support material that has both excellent water solubility and support ability can be obtained. In particular, since the support power is excellent, there is no concern that the moisture in the air is taken in during modeling and the support power is reduced, and an optical modeling product with good dimensional accuracy can be obtained. Furthermore, by containing each of the above components in the above-mentioned range, it is possible to prevent softening of a cured product (modeled product) obtained by curing the support material composition even under high temperature and high humidity conditions. Can do.
 上記サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、表面調整剤、酸化防止剤、着色剤、顔料分散剤、保存安定剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。  The support material composition may contain other additives as necessary. Examples of other additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. . *
 サポート材用組成物に、表面調整剤(e)を配合することによりサポート材用組成物の表面張力を適当な範囲に制御することができ、モデル材用組成物とサポート材用組成物がその界面で混合することを抑制することができる。これにより、寸法精度の良好な光造形品を得ることができる。サポート材用組成物が含み得る表面調整剤としては、本発明のモデル材用組成物に用い得る表面調整剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.005質量部以上3質量部以下であることが好ましい。前記表面調整剤のうち、シリコーン系表面調整剤が好ましく、ポリジメチルシロキサン構造を有する表面調整剤が特に好ましい。 The surface tension of the support material composition can be controlled within an appropriate range by adding the surface conditioner (e) to the support material composition, and the model material composition and the support material composition Mixing at the interface can be suppressed. Thereby, a stereolithography product with favorable dimensional accuracy can be obtained. As the surface conditioner that can be contained in the support material composition, the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things. Of the surface conditioners, silicone-based surface conditioners are preferable, and surface conditioners having a polydimethylsiloxane structure are particularly preferable.
 また、サポート材用組成物に保存安定化剤(f)を配合することにより保存安定性を向上させることができる。サポート材用組成物が含み得る保存安定剤としては、本発明のモデル材用組成物に用い得る保存安定剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.05質量部以上3質量部以下であることが好ましい。 Further, the storage stability can be improved by blending the storage stabilizer (f) into the support material composition. As the storage stabilizer that can be contained in the support material composition, those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
 本発明において、サポート材用組成物の粘度は、インクジェットノズルからの吐出性を良好にする観点から、25℃において30~200mPa・sであることが好ましく、より好ましくは35mPa・s以上、さらに好ましくは40mPa・s以上であり、より好ましくは170mPa・s以下、さらに好ましくは150mPa・s以下である。なお、上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。 In the present invention, the viscosity of the support material composition is preferably 30 to 200 mPa · s at 25 ° C., more preferably 35 mPa · s or more, and still more preferably, from the viewpoint of improving dischargeability from the inkjet nozzle. Is 40 mPa · s or more, more preferably 170 mPa · s or less, and still more preferably 150 mPa · s or less. In addition, the measurement of the said viscosity can be performed using R100 type | mold viscosity meter based on JISZ8803.
 本発明において、サポート材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5~29.5mN/mであり、さらに好ましくは25~29mN/mである。表面張力が上記範囲内であると、ノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、高い造形精度を確保しやすくなる。なお、サポート材用組成物の表面張力は、モデル材用組成物における表面張力の測定方法と同様の方法に従い測定することができる。 In the present invention, the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m. When the surface tension is within the above range, it is possible to normally form droplets ejected from the nozzle, to ensure an appropriate droplet amount and landing accuracy, and to suppress the occurrence of satellites, It becomes easy to ensure high modeling accuracy. In addition, the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
 本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。 The method for producing the composition for a support material of the present invention is not particularly limited. For example, the composition for the support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer or the like.
 3.光造形品およびその製造方法
 本実施形態の光造形物の製造方法は、前述の実施形態で説明したマテリアルジェット光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンターを用いてモデル材用組成物又はサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に浸水することにより除去する工程を備えている。
3. Stereolithography and production method thereof The fabrication method of the stereolithography of the present embodiment is a fabrication method of stereolithography using the material jet stereolithography composition set described in the above embodiment, and is a material jet (inkjet). ) After discharging the model material composition or the support material composition using a method printer, the model material composition is photocured to obtain a model material, and the water-soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by immersing the water-soluble support material in water.
 本実施形態の光造形物の製造方法は、上記マテリアルジェット光造形用組成物セットを用いているため、造形精度に優れた光造形物を形成することができる。 Since the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for material jet optical modeling, it can form the optical modeling thing excellent in modeling precision.
 以下、本実施形態の光造形物の製造方法について図面に基づき説明する。図1は、マテリアルジェット造形法によりサポート材用組成物及びモデル材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。図1において、三次元造形装置10は、インクジェットヘッドモジュール11と、造形テーブル12とを備えている。また、インクジェットヘッドモジュール11は、光造形用インクユニット11aと、ローラー11bと、光源11cとを備えている。更に、光造形用インクユニット11aは、モデル材用インク13が充填されたモデル材用インクジェットヘッド11aMと、サポート材用インク14が充填されたサポート材用インクジェットヘッド11aSとを備えている。 Hereinafter, a method for manufacturing an optically shaped object according to the present embodiment will be described with reference to the drawings. FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays. In FIG. 1, the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12. The ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c. Further, the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
 モデル材用インクジェットヘッド11aMからは、モデル材用組成物13が吐出され、サポート材用インクジェットヘッド11aSからは、サポート材用組成物14が吐出され、光源11cからエネルギー線15が照射され、吐出されたモデル材用組成物13及びサポート材用組成物14を硬化させて、モデル材13PMとサポート材14PSを形成している。図1では、一層目のモデル材13PM及びサポート材14PSを形成する状態を示している。 The model material composition 13 is ejected from the model material inkjet head 11aM, the support material composition 14 is ejected from the support material inkjet head 11aS, and the energy beam 15 is irradiated and ejected from the light source 11c. The model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS. FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
 次に、本実施形態の光造形物の製造方法について図面に基づき更に詳細に説明する。本実施形態の光造形物の製造方法では、先ず、図2に示すように、インクジェットヘッドモジュール11を造形テーブル12に対してX方向(図2では右方向)に走査させる共に、モデル材用インクジェットヘッド11aMからモデル材用組成物13を吐出し、サポート材用インクジェットヘッド11aSからサポート材用組成物14を吐出する。これにより、造形テーブル12の上に、モデル材前駆体13Mからなる層とサポート材前駆体14Sからなる層とを、それぞれの界面同士が接触するように隣接して配置する。 Next, the method for manufacturing an optically shaped object according to this embodiment will be described in more detail based on the drawings. In the method for manufacturing an optically shaped object according to the present embodiment, first, as shown in FIG. 2, the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used. The model material composition 13 is discharged from the head 11aM, and the support material composition 14 is discharged from the support material inkjet head 11aS. Thereby, on the modeling table 12, the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange | positioned adjacently so that each interface may contact.
 次に、図3に示すように、インクジェットヘッドモジュール11を造形テーブル12に対して逆X方向(図3では左方向)に走査させると共に、ローラー11bでモデル材前駆体13M及びサポート材前駆体14Sからなる層の表面を平滑にした後、光源11cからエネルギー線15を照射し、モデル材前駆体13M及びサポート材前駆体14Sからなる層を硬化させて、一層目のモデル材13PM及びサポート材14PSからなる層を形成する。 Next, as shown in FIG. 3, the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 </ b> M and the support material precursor 14 </ b> S are scanned by the roller 11 b. After smoothing the surface of the layer made of the material, the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS. A layer consisting of is formed.
 続いて、造形テーブル12をZ方向に一層分だけ下降させて、上記と同様の工程を行い、二層目のモデル材及びサポート材からなる層を形成する。その後、上記の工程を繰り返すことにより、図4に示すように、モデル材13PMとサポート材14PSからなる光造形品前駆体16が形成される。 Subsequently, the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
 最後に、図4に示した光造形品前駆体16を水に浸漬することによりサポート材14PSを溶解して除去し、図5に示すような光造形品17が形成される。 Finally, the optical modeling product precursor 16 shown in FIG. 4 is immersed in water to dissolve and remove the support material 14PS, thereby forming the optical modeling product 17 as shown in FIG.
 本実施形態の光造形物の製造方法において、光源として、例えば、高圧水銀灯、メタルハライドランプ、UV-LED等を使用できる。三次元造形装置10の小型化が可能であり、消費電力が小さいという観点から、UV-LEDが好ましい。光量は、造形品の硬度および寸法精度の観点から、200~500mJ/cmが好ましい。光源としてUV-LEDを用いる場合、光が深層まで届きやすくなり、光造形品の硬度および寸法精度を向上させることができることから、中心波長が385~415nmのものを用いることが好ましい。また、光源11cから照射するエネルギー線15についは、紫外線、近紫外線、可視光線、赤外線、遠赤外線、電子線、α線、γ線およびエックス線等を使用することができるが、硬化作業の容易性及び効率性の観点から、紫外線又は近紫外線が好ましい。 In the method for producing an optically shaped object of the present embodiment, for example, a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source. From the viewpoint that the three-dimensional modeling apparatus 10 can be miniaturized and the power consumption is small, UV-LED is preferable. The amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product. When a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved. As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, α rays, γ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
 本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンターで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。 In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the 3D printer of the material jet method is prepared, and each of the model material and the support material is used based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
 立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。 The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
 得られた光造形物は、モデル材とサポート材とが組み合わされたものである。かかる光造形物からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた光造形物を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。 The obtained stereolithography is a combination of a model material and a support material. The support material is removed from the stereolithography product to obtain a stereolithography product as a model material. The support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. preferable. Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
 上記光造形品は、水に接触した場合の吸水及び膨潤が抑制されており、微細構造部分の破損及び変形を起こしにくいものである。また、上記光造形品は撥水撥油性に優れ、汚染されにくいものである。 The above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
 以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
 <モデル材用組成物>
 (モデル材用組成物の製造)
 表1に下記の実施例及び比較例において、サポート材組成物に使用した成分をまとめた。
<Model material composition>
(Manufacture of compositions for model materials)
Table 1 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す配合で、(A)~(E)成分を、混合攪拌装置を用いて均一に混合し、実施例M1~M7並びに比較例m1~m4のモデル材用組成物を製造した。 In the formulation shown in Table 2, the components (A) to (E) were uniformly mixed using a mixing and stirring device to produce compositions for model materials of Examples M1 to M7 and Comparative Examples m1 to m4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例M1~5、M7および比較例m1のモデル材用組成物における水溶性成分の含有率は、それぞれ、0質量%であり、実施例M6のモデル材用組成物における水溶性成分の含有率は10.0質量%であり、比較例m2、m3、m4のモデル材用組成物における水溶性成分の含有率は、それぞれ、40.0質量%、55.0質量%、50.0質量%であった。 The content of the water-soluble component in the compositions for model materials of Examples M1 to M7 and M7 and Comparative Example m1 is 0% by mass, respectively, and the content of the water-soluble component in the composition for model materials of Example M6 Is 10.0% by mass, and the contents of water-soluble components in the compositions for model materials of Comparative Examples m2, m3, and m4 are 40.0% by mass, 55.0% by mass, and 50.0% by mass, respectively. Met.
 実施例M1~5、M7のモデル材用組成物における水膨潤率は、それぞれ、0.1質量%であり、実施例M6のモデル材用組成物における水膨潤率は0.5質量%であり、比較例m1、m2、m3、m4のモデル材用組成物における水膨潤率は、それぞれ、3.8質量%、1.9質量%、3.3質量%、2.3質量%であった。 The water swelling rate in each of the model material compositions of Examples M1 to M7 and M7 is 0.1% by mass, and the water swelling rate in the model material composition of Example M6 is 0.5% by mass. The water swelling ratios in the compositions for model materials of Comparative Examples m1, m2, m3, and m4 were 3.8% by mass, 1.9% by mass, 3.3% by mass, and 2.3% by mass, respectively. .
 <サポート材用組成物>
 表3に、下記の実施例及び比較例において、サポート材用組成物に使用した成分をまとめた。
<Composition for support material>
Table 3 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 先ず、実施例S1~S13、比較例s1のサポート材用組成物を次のようにして調製した。即ち、プラスチック製ビンに、表4に示す成分(a)~(f)を表4に示す配合量(単位:質量部)で計り取り、これらを混合することにより各サポート材用組成物を調製した。 First, the support material compositions of Examples S1 to S13 and Comparative Example s1 were prepared as follows. That is, the components (a) to (f) shown in Table 4 are weighed in plastic bottles with the blending amounts (unit: parts by mass) shown in Table 4, and these are mixed to prepare each support material composition. did.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、上記実施例S1~13、比較例s1のサポート材用組成物について、下記に示す方法によって、サポート材組成物の低温安定性、サポート材用組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)及び水除去性を評価した。 Next, for the support material compositions of Examples S1 to S13 and Comparative Example s1, the low temperature stability of the support material composition and the high temperature of the cured support material obtained by curing the support material composition were as follows. High humidity condition stability (support power) and water removability were evaluated.
 <サポート材用組成物の低温安定性>
 低温でのサポート材組成物の安定性について評価した。各サポート材組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材用組成物の低温安定性を評価した。
<Low temperature stability of support material composition>
The stability of the support material composition at low temperature was evaluated. Each support material composition was put in a glass bottle, and the glass bottle containing the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
 サポート材用組成物が液体状を維持している場合:低温安定性A(優良)
 サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
 サポート材用組成物が凝固(固化)している場合:低温安定性C(不良)
When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
 <サポート材硬化物のサポート力>
 ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。
<Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
 硬化物の表面に液体状物質の発生がなく、硬化物の軟化も確認されない場合:サポート力A(優良)
 硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
 硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良)
When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
 <サポート材硬化物の水除去性>
 上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。
<Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
 硬化物が完全に溶解するまでの時間が1時間未満であった:水除去性A(優良)
 硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
 硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良)
 以上の結果を表5に示す。
The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例S1~S13のサポート材組成物は、全ての評価項目で満足できる結果を得たことが分かる。 It can be seen that the support material compositions of Examples S1 to S13 obtained satisfactory results for all evaluation items.
 <マテリアルジェット光造形用組成物セット(インクセット)>
 表6に示す通りに上記モデル材用組成物及びサポート材用組成物を組み合わせることにより、実施例1~4及び比較例1~3を調製した。
<Composition set for material jet stereolithography (ink set)>
Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by combining the composition for model material and the composition for support material as shown in Table 6.
 ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にサポート材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、サポート材を得た。 A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for the support material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
 次に、上記サポート材の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にモデル材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、モデル材を得た。
(密着性の評価)
 この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表6に示す。
○:モデル材とサポート材とは密着していた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。
Next, spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm × 10 cm. After casting the composition for the model material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a model material.
(Evaluation of adhesion)
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 6.
○: The model material and the support material were in close contact.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6の結果から分かるように、モデル材用組成物およびサポート材用組成物の両方が本発明の要件を満たす実施例1~4は、モデル材とサポート材との界面に剥がれが生じず、モデル材とサポート材とがより密着していた。このように、モデル材とサポート材とが密着していれば、寸法精度が良好な光造形品が得られる。 As can be seen from the results in Table 6, in Examples 1 to 4 in which both the composition for the model material and the composition for the support material satisfy the requirements of the present invention, the interface between the model material and the support material does not peel, Model material and support material were more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
 一方、モデル材用組成物およびサポート材用組成物の一方又は両方が本発明の要件を満たしていない比較例1~3は、モデル材とサポート材との界面で剥がれが生じた。このように、モデル材とサポート材との密着性が悪いと、光造形品の寸法精度が悪化する。 On the other hand, in Comparative Examples 1 to 3 in which one or both of the model material composition and the support material composition did not satisfy the requirements of the present invention, peeling occurred at the interface between the model material and the support material. As described above, when the adhesion between the model material and the support material is poor, the dimensional accuracy of the stereolithography product deteriorates.
 10 三次元造形装置
 11 インクジェットヘッドモジュール
 11a 光造形用インクユニット
 11aM モデル材用インクジェットヘッド
 11aS サポート材用インクジェットヘッド
 11b ローラー
 11c 光源
 12 造形テーブル
 13 モデル材用組成物
 13M モデル材前駆体
 13PM モデル材
 14 サポート材用組成物
 14S サポート材前駆体
 14PS サポート材
 15 エネルギー線
 16 光造形品前駆体(光造形物)
 17 光造形品
DESCRIPTION OF SYMBOLS 10 3D modeling apparatus 11 Inkjet head module 11a Optical modeling ink unit 11aM Model material inkjet head 11aS Support material inkjet head 11b Roller 11c Light source 12 Modeling table 13 Model material composition 13M Model material precursor 13PM Model material 14 Support Material composition 14S Support material precursor 14PS Support material 15 Energy beam 16 Stereolithography product precursor (Optical fabrication product)
17 Stereolithography

Claims (8)

  1.  インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセットであって、
     前記モデル材用組成物は、該モデル材用組成物全体100質量部に対して、
     50~90質量部の単官能モノマー(A)と、
     3~25質量部の多官能モノマー(B)と、
     5~40質量部のオリゴマー(C)と、
     1~15質量部の光重合開始剤(D)と、
    を含有し、
     前記サポート材用組成物は、該サポート材用組成物全体100質量部に対して、
     19~80質量部の水溶性単官能エチレン性不飽和単量体(a)と
     15~75質量部のオキシブチレン基を含むポリアルキレングリコール(b)とを含有し、前記オキシブチレン基を含むポリアルキレングリコール(b)の重量分子量が300以上である、光造形用インクセット。
    For optical modeling, which is a combination of a composition for a model material that is used in an inkjet optical modeling method and is used for modeling a model material, and a composition for a support material that is used to model a support material An ink set,
    The model material composition is based on 100 parts by mass of the model material composition as a whole.
    50 to 90 parts by mass of the monofunctional monomer (A),
    3 to 25 parts by mass of a polyfunctional monomer (B);
    5 to 40 parts by mass of oligomer (C);
    1 to 15 parts by mass of a photopolymerization initiator (D),
    Containing
    The support material composition is based on 100 parts by mass of the support material composition as a whole.
    19 to 80 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a) and 15 to 75 parts by weight of a polyalkylene glycol (b) containing an oxybutylene group, An ink set for stereolithography, wherein the alkylene glycol (b) has a weight molecular weight of 300 or more.
  2.  前記モデル材用組成物の前記オリゴマー(C)は、ウレタン基を含む、請求項1に記載の光造形用インクセット。 The optical modeling ink set according to claim 1, wherein the oligomer (C) of the model material composition includes a urethane group.
  3.  前記モデル材用組成物は、該モデル材用組成物全体100質量部に対して、水溶性成分の含有量が10質量部以下である、請求項1または2に記載の光造形用インクセット。 3. The optical modeling ink set according to claim 1, wherein the model material composition has a water-soluble component content of 10 parts by mass or less based on 100 parts by mass of the model material composition as a whole.
  4.  前記モデル材用組成物は、該モデル材用組成物を光硬化させることにより得られるモデル材の水膨潤率が1質量%以下である、請求項1~3のいずれかに記載の光造形用インクセット。 The stereolithography composition according to any one of claims 1 to 3, wherein the model material composition has a water swelling ratio of 1% by mass or less of the model material obtained by photocuring the model material composition. Ink set.
  5.  前記サポート材用組成物は、1~20質量部の光重合開始剤(d)を含有する、請求項1~4のいずれかに記載の光造形用インクセット。 The optical modeling ink set according to any one of claims 1 to 4, wherein the support material composition contains 1 to 20 parts by mass of a photopolymerization initiator (d).
  6.  前記サポート材用組成物は、更に水溶性有機溶剤を含有し、
     前記水溶性有機溶剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、30質量部以下である、請求項1~5のいずれかに記載の光造形用インクセット。
    The support material composition further contains a water-soluble organic solvent,
    6. The optical modeling ink set according to claim 1, wherein the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the total mass of the composition for support material.
  7.  前記サポート材用組成物は、更に表面調整剤を含有し、
     前記表面調整剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、0.005質量部以上3.0質量部以下である、請求項1~6のいずれかに記載の光造形用インクセット。
    The support material composition further contains a surface conditioner,
    The content of the surface conditioner is 0.005 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the total mass of the support material composition. Ink set for optical modeling.
  8.  マテリアルジェット光造形法により、請求項1~7のいずれかに記載の光造形用インクセットを用いて光造形品を製造する方法であって、
     前記モデル材用組成物を光硬化させることによりモデル材を得るとともに、前記サポート材用組成物を光硬化させることによりサポート材を得る工程(I)と、
     前記サポート材を除去する工程(II)と、
     を有する、光造形品の製造方法。
    A method for producing a stereolithography product using the ink jet for stereolithography according to any one of claims 1 to 7, by a material jet stereolithography method,
    Step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material;
    Removing the support material (II);
    A method for manufacturing an optically shaped article.
PCT/JP2019/010948 2018-05-28 2019-03-15 Photo-fabrication ink set WO2019230136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018101889A JP2021130199A (en) 2018-05-28 2018-05-28 Ink set for photo-molding
JP2018-101889 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230136A1 true WO2019230136A1 (en) 2019-12-05

Family

ID=68696917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010948 WO2019230136A1 (en) 2018-05-28 2019-03-15 Photo-fabrication ink set

Country Status (2)

Country Link
JP (1) JP2021130199A (en)
WO (1) WO2019230136A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121587A1 (en) * 2015-01-26 2016-08-04 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional model supporting material
WO2017222025A1 (en) * 2016-06-22 2017-12-28 マクセルホールディングス株式会社 Resin composition for model member and method for manufacturing optically shaped article
JP2018058974A (en) * 2016-10-04 2018-04-12 共栄社化学株式会社 Active ray-curable resin composition
WO2018101343A1 (en) * 2016-11-29 2018-06-07 マクセルホールディングス株式会社 Support material composition and photo fabrication ink set

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121587A1 (en) * 2015-01-26 2016-08-04 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional model supporting material
WO2017222025A1 (en) * 2016-06-22 2017-12-28 マクセルホールディングス株式会社 Resin composition for model member and method for manufacturing optically shaped article
JP2018058974A (en) * 2016-10-04 2018-04-12 共栄社化学株式会社 Active ray-curable resin composition
WO2018101343A1 (en) * 2016-11-29 2018-06-07 マクセルホールディングス株式会社 Support material composition and photo fabrication ink set

Also Published As

Publication number Publication date
JP2021130199A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP6138987B2 (en) Support material applied to 3D modeling method using inkjet stereolithography device and combination of model material and support material
WO2017018453A1 (en) Resin composition for model materials, resin composition for support materials, optically shaped article and method for producing optically shaped article
JP5890990B2 (en) Model material for optical modeling product formation, support material for shape support during optical modeling of optical modeling product, and manufacturing method of optical modeling product in inkjet optical modeling method
JP2010155889A (en) Photocurable liquid resin composition and method for producing support by inkjet stereolithography
WO2018143305A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
CN105820552B (en) Support material for three-dimensional molding, composition set for three-dimensional molding, three-dimensional molding apparatus, and method for producing three-dimensional molded body
JP6517456B2 (en) Optical forming ink set, optical forming product, and method for producing optical forming product
JP6937300B2 (en) Manufacturing method of resin composition for model material and stereolithography
CN108713033B (en) Composition for mold material, optical molded article, and method for producing optical molded article
WO2019176139A1 (en) Model material composition and photo fabrication composition set
CN112752772B (en) Curable resin composition, cured product, and three-dimensional shaped article
WO2019230136A1 (en) Photo-fabrication ink set
JP7086654B2 (en) Composition for model material and composition set for stereolithography containing it
JP2018178115A (en) Multi-branched urethane compound-containing polymerizable composition
JPWO2018116900A1 (en) Ink set for stereolithography and method for producing stereolithography using the same
WO2019230134A1 (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
WO2019230132A1 (en) Photo-fabrication composition set
JP2019206111A (en) Photo-fabrication ink set, photo-fabricated article, and production method for photo-fabricated article
JP2019155801A (en) Composition for model material, and composition set for material jetting optical shaping
WO2019230135A1 (en) Photo-fabrication ink set, and production method for photo-fabricated article
JP7133619B2 (en) Support material composition
JP7484143B2 (en) Active energy ray curable composition for inkjet printing, molding method, and molding device
JP2019206112A (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
JP7017471B2 (en) Support material composition
JP2018034383A (en) Production method of three-dimensional molding, three-dimensional molding apparatus, and member subject for molding stand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP