WO2019227955A1 - 柔性器件的过渡装置、制备方法及柔性器件的制作方法 - Google Patents

柔性器件的过渡装置、制备方法及柔性器件的制作方法 Download PDF

Info

Publication number
WO2019227955A1
WO2019227955A1 PCT/CN2019/073281 CN2019073281W WO2019227955A1 WO 2019227955 A1 WO2019227955 A1 WO 2019227955A1 CN 2019073281 W CN2019073281 W CN 2019073281W WO 2019227955 A1 WO2019227955 A1 WO 2019227955A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
transition
flexible
layer
adhesive layer
Prior art date
Application number
PCT/CN2019/073281
Other languages
English (en)
French (fr)
Inventor
龚云平
Original Assignee
浙江清华柔性电子技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810549408.2A external-priority patent/CN110556399B/zh
Priority claimed from CN201810550646.5A external-priority patent/CN110556345B/zh
Priority claimed from CN201810550634.2A external-priority patent/CN110556400B/zh
Application filed by 浙江清华柔性电子技术研究院 filed Critical 浙江清华柔性电子技术研究院
Priority to EP19811822.6A priority Critical patent/EP3806157A4/en
Priority to KR1020207034623A priority patent/KR102503622B1/ko
Publication of WO2019227955A1 publication Critical patent/WO2019227955A1/zh
Priority to US17/038,701 priority patent/US11335572B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68313Auxiliary support including a cavity for storing a finished device, e.g. IC package, or a partly finished device, e.g. die, during manufacturing or mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/28105Layer connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. layer connectors on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Definitions

  • the invention relates to the field of chip packaging, in particular to a transition device for flexible devices, a preparation method and a method for manufacturing flexible devices.
  • Functional components are the key to forming flexible electronic products.
  • Functional components include IC chips based on traditional Si, SiC, GaAs and other semiconductor material substrates, as well as emerging resistors, capacitors, sensors, and biotechnology based on flexible polymers.
  • Polymer components based on flexible substrates are important functional components to realize the functions of flexible electronic products.
  • IC chips are generally mounted on flexible substrates or substrates through the placement process.
  • flexible components based on polymer substrates are made on flexible substrates or substrates by printing or printing techniques.
  • Traditional IC chips are not compatible with the manufacturing process and equipment of polymer-based flexible components, and the equipment required for printing or printing technology is complex and the cost is high, which is not conducive to the development of the flexible electronic product industry.
  • the printing or printing process is to form all the flexible components based on the polymer substrate on the flexible substrate. If a flexible component based on the polymer substrate has a problem, it will affect the function of the entire flexible electronic product. It is difficult to replace a single flexible component based on a polymer substrate in question, which is not conducive to the selection of the device and has a serious impact on the yield of the product.
  • the present invention provides a flexible device transition device, a preparation method and a flexible device manufacturing method.
  • the flexible device transition device can better protect functional components, facilitate transportation, and avoid during transportation. Damage to the functional components can facilitate the subsequent patch application of the functional components, and the transition device can be directly applied to the manufacture of flexible electronic products.
  • the present application provides a transition device for a flexible device, which includes a functional component and a transition substrate.
  • the functional component is formed with a first surface ready to be patched with a substrate, and a first surface opposite to the first surface. Two surfaces, the transition substrate is adhered to the second surface of the functional component through an adhesive layer.
  • the functional component is an IC chip or a flexible component based on a polymer substrate.
  • the functional component includes a functional component body and a packaging layer
  • the functional component body includes a substrate and a functional layer formed on one side of the substrate
  • the packaging layer is disposed at least on a surface of the functional layer.
  • the transition substrate is bonded to the functional component from the second surface on the side where the functional layer is located through the adhesive layer;
  • the transition substrate is adhered to the functional component through the adhesive layer from a second surface on a side remote from the functional layer.
  • the functional layer includes a PAD, and a flexible electrode is disposed on the PAD.
  • the flexible electrode is drawn from the PAD and penetrates and is exposed on the surface of the encapsulation layer.
  • the functional component body when the functional component is an IC chip, the functional component body includes an IC chip substrate and a circuit functional layer formed on the IC chip substrate, and the packaging layer is at least from the circuit function.
  • the surface of the layer and the side of the IC chip package the IC chip substrate and the circuit functional layer.
  • the IC chip is an IC chip suitable for a front-loading process, and the transition substrate is bonded to the IC chip from the side where the circuit functional layer is located through the adhesive layer; or, the IC The chip is an IC chip adapted to a flip-chip process, and the transition substrate is bonded to the IC chip through the adhesive layer from a side away from the circuit functional layer.
  • the functional component when the functional component is a flexible component based on a polymer substrate, the functional component includes a substrate layer and a device functional layer, the device functional layer is disposed on the substrate layer, and the package A layer encapsulates the device functional layer.
  • the flexible component based on the polymer substrate is a flexible component suitable for a polymer substrate in a front-loading process, and the transition substrate is connected to the device functional layer from the side where the device functional layer is located through the adhesive layer.
  • the polymer substrate-based flexible component is a polymer substrate-based flexible component suitable for a flip-chip process, and the transition substrate is connected to the substrate from the side where the substrate layer is located through the adhesive layer. Polymer-based flexible component bonding.
  • the substrate layer is an organic polymer layer, or an organic polymer layer and an inorganic material layer are alternately arranged.
  • the encapsulation layer is formed of an organic polymer or an inorganic substance or a mixture of an organic polymer and an inorganic substance, or an organic polymer layer and an inorganic substance layer are alternately arranged.
  • the thickness of the encapsulation layer formed by the organic polymer is 200-10000 nm.
  • a thickness of the encapsulation layer formed by an inorganic substance is 5-600 nm.
  • the thickness of the encapsulation layer formed by the organic polymer is 200-10000 nm.
  • first bonding surface to be bonded to the transition substrate and a second bonding surface for bonding to the functional component are formed on the bonding layer, and the first bonding surface is formed on the bonding layer.
  • An adhesive force with the transition substrate is greater than an adhesive force between the second adhesive surface and the functional component.
  • a plurality of uneven structures for increasing a bonding area are formed on the transition substrate, and the uneven structures are located on a surface of the transition substrate that is in contact with the adhesive layer.
  • the adhesive layer includes a first adhesive layer and a second adhesive layer, the first adhesive layer is in contact with the transition substrate, and the second adhesive layer is in contact with the functional component, The first adhesive surface is formed between the first adhesive layer and the transition substrate, and the second adhesive surface is formed between the second adhesive layer and the functional component.
  • the viscosity of the first adhesive layer is enhanced, and / or the viscosity of the second adhesive layer is decreased, so that the first adhesive The viscosity of the layer is greater than the viscosity of the second adhesive layer.
  • the adhesive layer further includes a buffer layer, the buffer layer is disposed between the first adhesive layer and the second adhesive layer, and passes through both surfaces of the buffer layer and the buffer layer. The first adhesive layer and the second adhesive layer are adhered.
  • the buffer layer is a buffer layer made of a low thermal conductivity material having a thermal conductivity less than 0.5.
  • the transition device of the flexible device further includes a chip bonding film, and the chip bonding film is formed on a surface of the functional component remote from the transition substrate.
  • the transition device of the flexible device further includes a chip bonding film, and the viscosity of the chip bonding film is greater than that of the bonding layer.
  • a micro-image structure is further formed on a surface of the transition substrate on a side remote from the functional component.
  • the present application also provides a method for preparing the transition device for the flexible device, and the method includes the following steps:
  • a transition substrate is provided, and the transition substrate is adhered to a side where the second surface of the functional component is located through an adhesive layer.
  • the functional component is an IC chip or a flexible component based on a polymer substrate.
  • a PAD is made at a corresponding position of the functional layer, and the PAD is thickened.
  • a flexible electrode is fabricated on the PAD, and the flexible electrode is drawn from the PAD and penetrates and is exposed on the packaging layer.
  • the method includes:
  • the IC chip is formed with a first surface ready to be subjected to a patch process with a substrate, and a second surface opposite to the first surface,
  • the method further includes thickening a PAD of an I / O port of the circuit functional layer, and when manufacturing the packaging layer, the packaging A flexible electrode is made on the layer relative to the PAD.
  • the method further includes performing a thinning process on the IC chip so that a thickness of the IC chip substrate is less than 80 ⁇ m.
  • the IC chip is an IC chip suitable for a front-loading process
  • the step of bonding the transition blank to the second surface of the IC chip through an adhesive layer directly move the IC chip away from the IC chip.
  • the silicon substrate on the side of the transition blank is thinned.
  • the method further includes packaging a side of the IC chip where the thinning process is performed.
  • the IC chip is an IC chip suitable for a flip-chip process.
  • the IC chip includes the following steps:
  • an adhesive force between the transfer adhesive layer and the IC chip is smaller than an adhesive force between the adhesive layer and the IC chip.
  • the method further includes eliminating residual stress on the surface of the IC chip substrate after the thinning process.
  • the method includes:
  • the polymer substrate-based flexible component embryo is formed with the first surface ready to be patched with a substrate, and the second surface corresponding to the first surface to provide a transition embryo. Plate, the transition blank is adhered to the second surface of the flexible component based on the polymer substrate through an adhesive layer;
  • the method further includes thickening a PAD of a flexible component based on a polymer substrate, and forming a flexible element on the polymer substrate.
  • a flexible electrode is fabricated on the PAD of the device, so that the PAD of the flexible component based on the polymer substrate is led out from the packaging layer.
  • the flexible component based on the polymer substrate is a flexible component based on a polymer substrate suitable for a front-loading process, and the transition blank is obtained from a device where the device functional layer is located through the adhesive layer.
  • the side is bonded to the polymer-based flexible component; or,
  • the polymer substrate-based flexible component is a polymer substrate-based flexible component suitable for a flip-chip process, and the transition blank is passed from the side where the substrate blank is located through the adhesive layer. Bonded to the polymer-based flexible component.
  • first bonding surface for bonding with the transition blank and a second bonding surface for bonding with the flexible component based on the polymer substrate are formed on the bonding layer.
  • the adhesive force between the first adhesive surface and the transition blank is greater than the adhesive force between the second adhesive surface and the functional component.
  • the method further includes forming a chip bonding film on the first surface of the functional component.
  • the present application also provides a method for mounting a Jinxin flexible device using the above-mentioned flexible device transition device.
  • the method includes the following steps: providing a flexible substrate;
  • the first surface of the functional component in the transition device of the flexible device is mounted on the flexible substrate.
  • the method further includes providing a chip adhesive film on the first surface of the functional component and / or the flexible substrate.
  • transition device for the flexible device is provided.
  • the transition substrate and the adhesive layer are peeled off.
  • first bonding surface to be bonded to the transition substrate and a second bonding surface for bonding to the functional component are formed on the bonding layer, and the first bonding surface is formed on the bonding layer.
  • An adhesive force with the transition substrate is greater than an adhesive force between the second adhesive surface and the functional component.
  • an adhesive force between the first adhesive surface and the transition substrate is greater than the second adhesive surface and the functional element. Adhesion between devices.
  • the adhesive layer includes a first adhesive layer and a second adhesive layer, the first adhesive layer is in contact with the transition substrate, and the second adhesive layer is in contact with the functional component, The first adhesive surface is formed between the first adhesive layer and the transition substrate, and the second adhesive surface is formed between the second adhesive layer and the functional component.
  • a modification influencing factor is applied to the adhesive layer, the viscosity of the first adhesive layer is increased, and / or the viscosity of the second adhesive layer is decreased. So that the viscosity of the first adhesive layer is greater than that of the second adhesive layer.
  • the first adhesive layer is a first adhesive layer formed by a heat-sensitive adhesive, and the viscosity of the first adhesive layer is enhanced and / or the second adhesive layer is applied by application of temperature.
  • the second adhesive layer is a heat-sensitive adhesive, and the viscosity of the second adhesive is reduced by application of temperature.
  • the first adhesive layer is a first adhesive layer formed by an ultraviolet-sensitive adhesive, and by the irradiation of ultraviolet rays, the viscosity of the first adhesive layer is enhanced and / or the second adhesive layer is
  • the second adhesive layer is an ultraviolet-sensitive adhesive, and the viscosity of the second adhesive is reduced by the irradiation of ultraviolet rays.
  • the viscosity of the second adhesive is reduced, and the first adhesive is a permanent adhesive.
  • the method further includes applying a modification influencing factor to the adhesive layer to reduce the adhesion between the adhesive layer and the functional component. And / or increase the adhesion between the adhesive layer and the transition substrate.
  • a transition device for the flexible device is manufactured.
  • the method further includes providing a chip bonding film on the first surface of the functional component and / or the flexible substrate, and using the chip bonding film to make the functional component from the first surface where the first component is located. One side is connected to the flexible substrate.
  • the transition device of the flexible device provided by the invention can make the transition device of the flexible device better function to the functional element by bonding the second surface of the functional component to the transition substrate and forming an encapsulation layer on the functional component.
  • the device is protected to facilitate transportation, to avoid damage to functional components during transportation, to facilitate the subsequent patch application of functional components, and the transition device can be directly applied to the manufacture of flexible electronic products.
  • FIG. 1 is a schematic structural diagram of a transition device of a flexible device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an enlarged structure at A in FIG. 1.
  • FIG. 3 is an example of an enlarged structure at A in a transition device of a flexible device according to a second embodiment of the present invention.
  • 4a to 4g are schematic structural diagrams of steps in a manufacturing process of a transition device for a flexible device according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a transition device for a flexible device according to a third embodiment of the present invention.
  • 6a to 6c are schematic structural diagrams of steps in a process of manufacturing a transition device for a flexible device according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a transition device for a flexible device according to a fifth embodiment of the present invention.
  • FIG. 8a to FIG. 8d are schematic structural diagrams of steps in a method for performing flexible device placement on a transition device for a flexible device according to a sixth aspect of the present invention.
  • FIG. 9 is a schematic structural diagram of a transition device of a flexible device according to a seventh embodiment of the present invention.
  • FIG. 10 is an enlarged structural schematic diagram at B in FIG. 9.
  • FIG. 11 is an embodiment of an enlarged structure of FIG. 9B in a transition device of a flexible device according to an eighth embodiment of the present invention.
  • 12a to 12d are schematic structural diagrams of steps in a manufacturing process of a transition device for a flexible device according to a ninth embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a transition device for a flexible device according to a tenth embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a transition device for a flexible device according to an eleventh embodiment of the present invention.
  • 15a to 15c are schematic structural diagrams of steps in a manufacturing process of a transition device for a flexible device according to a twelfth embodiment of the present invention.
  • 16a to 16d are schematic structural diagrams of steps in a method for performing flexible device placement based on a flexible device transition device provided by a thirteenth embodiment of the present invention.
  • 17a to 17f are schematic structural diagrams of steps in a method for manufacturing a flexible device according to a fourteenth embodiment of the present invention.
  • FIG. 18 is an enlarged structural diagram at C in FIG. 17c.
  • FIG. 19 is a schematic enlarged view of a position C in FIG. 17c in the fifteenth embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a transition device in a sixteenth embodiment of the present invention.
  • 21a to 21d are schematic structural diagrams of steps in a method for manufacturing a flexible device according to a seventeenth embodiment of the present invention.
  • 22a to 22b are schematic structural diagrams of steps in a method for manufacturing a flexible device according to an eighteenth embodiment of the present invention.
  • 23a to 23h are schematic structural diagrams of steps in a method for manufacturing a flexible device according to a nineteenth embodiment of the present invention.
  • FIG. 24a to FIG. 24c are schematic structural diagrams of steps in a method for manufacturing a flexible device according to a twentieth embodiment of the present invention.
  • FIG. 25 is a schematic structural diagram of a transition device in a twenty-first embodiment of the present invention.
  • the invention provides a flexible device transition device, a preparation method and a flexible device manufacturing method.
  • the flexible device transition device can better protect functional components, facilitate transportation, and avoid functional components during transportation. It causes damage and can facilitate the subsequent patch application of functional components, and the transition device can be directly applied to the manufacture of flexible electronic products.
  • the functional components described by the applicant include IC chips and flexible components based on flexible polymer substrates.
  • IC chips are integrated circuits based on semiconductor materials such as Si, SiC, and GaAs.
  • the flexible components at the bottom are capacitors, resistors, sensors, bio-MEMS and other functional components based on flexible polymers.
  • the transition device of the flexible device provided by the first embodiment of the present invention includes an IC chip 10 and a transition substrate 20, and the transition substrate 20 and the IC chip 10 are adhered through an adhesive layer 30.
  • the IC chip 10 includes an IC chip substrate 11, a circuit function layer 12 formed on the IC chip substrate 11, and a packaging layer 13 that packages the IC chip substrate 11 and the circuit function layer 12.
  • the IC chip substrate 11 may be a thinned IC chip substrate 11, and an insulator silicon wafer (SOI, Silicon On Insulator) is taken as an example.
  • SOI Silicon On Insulator
  • the thickness of the IC chip substrate 11 is less than 80 ⁇ m, or the silicon substrate 133 and the buried oxide layer 112 are directly removed, and only the top silicon 111 is left. 111).
  • the IC chip 10 may also be a bulk silicon (ie, a single silicon wafer) after being thinned.
  • the IC chip 10 is formed with a preliminary surface, such as a flexible substrate 40, a first surface 14 on which chip processing is performed, and a second surface 15 on the IC chip 10 opposite to the first surface 14. Understandably, when the IC chip 10 is fixed on the flexible substrate 40 in the formal mounting process, the circuit functional layer 12 of the IC chip 10 faces away from the flexible substrate 40, that is, the side where the circuit functional layer 12 is located is The second surface 15 of the IC chip 10, and the side where the IC chip substrate 11 is located is the first surface 14 of the IC chip 10. In the flip-chip process, when the IC chip 10 is fixed on the flexible substrate 40, the IC chip 10 The circuit function layer 12 is facing the flexible substrate 40 side. At this time, the side where the circuit function layer 12 of the IC chip 10 is located is the first surface 14 of the IC chip 10, and the side where the IC chip substrate 11 is located is The second surface 15 of the IC chip 10.
  • the packaging layer 13 packages the IC chip 10 from at least the surface of the circuit functional layer 12 and the sides around the IC chip 10. In other embodiments, the packaging layer 13 also packages the surface of the IC chip 10 away from the circuit functional layer 12, that is, all surfaces of the IC chip 10 are packaged.
  • the packaging layer 13 is located on one side of the circuit functional layer 12.
  • the circuit functional layer 12 includes a pad PAD, and the PAD of the circuit functional layer 12 is exposed from the packaging layer 13.
  • the encapsulating layer 13 is formed of an organic polymer or an inorganic substance or a mixture of an organic substance and an inorganic substance, or is formed by alternately disposing an organic polymer layer and an inorganic substance layer.
  • Organic polymers include acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other flexible polymer materials. Its thickness can be 200-10000 nm.
  • the inorganic substance may include oxides, nitrides, and / or carbides of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, and their thicknesses are respectively controlled to 5-600 nanometers.
  • the encapsulation layer 13 when the encapsulation layer 13 is composed of an inorganic material layer and an organic polymer layer alternately arranged, the inorganic material encapsulation layer 13 mainly performs air-tight encapsulation, and the organic polymer encapsulation layer 13 mainly functions as a flexible encapsulation, and The stress in the encapsulation layer 13 is buffered.
  • the two By alternately disposing the inorganic substance and the organic polymer, the two can complement each other and increase the reliability of the encapsulation layer 13.
  • the transition substrate 20 may be a rigid substrate, such as a single crystal silicon, glass, ceramic substrate, or a substrate made of a rigid polymer material, or a substrate made of a composite material.
  • the thickness of the substrate It is 100-500 ⁇ m.
  • the transition substrate 20 is adhered to the second surface 15 of the IC chip 10 through an adhesive layer 30. That is, when the IC chip 10 is an IC chip 10 suitable for a front-loading process, the transition substrate 20 is bonded to the side of the circuit functional layer 12 in the IC chip 10 (see FIG. 1); When assembling the IC chip 10, the transition substrate 20 is bonded to the side of the IC chip 10 away from the circuit functional layer 12 (see FIG. 5). As shown in FIG. 8a to FIG. 8d, the transition device provided by the present invention can be directly applied in the mounting process of the IC chip 10, and the transition device is directly mounted on the flexible substrate 40, and then the transition substrate 20 is removed to obtain Flexible devices.
  • a first bonding surface 31 for bonding to the transition substrate 20 and a second bonding surface 32 for bonding to the IC chip 10 are formed on the bonding layer 30.
  • the adhesive force between the first adhesive surface 31 and the transition substrate 20 is greater than that of the first substrate.
  • the adhesive force between the two adhesive faces 32 and the IC chip 10 is greater than that of the first adhesive face 31.
  • the aforementioned modification influencing factors refer to influencing factors that can change the viscosity of the first adhesive face 31 or the second adhesive face 32, such as a specific temperature and Light of specific intensity, wavelength, etc.
  • the above-mentioned effect can be achieved by increasing the roughness of the side where the transition substrate 20 is in contact with the adhesive layer 30 and / or reducing the roughness of the side where the packaging layer 13 is in contact with the adhesive layer 30. to realise.
  • a concave-convex structure 21 may be formed on a side of the transition substrate 20 that is in contact with the adhesive layer 30 to increase its surface roughness, thereby increasing the adhesion between the transition substrate 20 and the adhesive layer 30.
  • the depth of the depression may be 1 ⁇ m to 15 ⁇ m, and the aspect ratio of the depression may be 0.5-3.
  • the concave-convex structure 21 is a sawtooth-shaped concave-convex structure 21, the angle at the top of the sawtooth waveform is 30-150 °.
  • the adhesive layer 30 includes at least a first adhesive layer 33 and a second adhesive layer 34, the first adhesive layer 33 is in contact with the transition substrate 20, and the second adhesive layer 34 In contact with the IC chip 10, that is, the first adhesive surface 31 is formed between the first adhesive layer 33 and the transition substrate 20, and the second adhesive surface 32 is formed between the second adhesive layer 34 and the IC chip 10. .
  • the viscosity of the first adhesive layer 33 can be enhanced, and / or the viscosity of the second adhesive layer 34 can be reduced.
  • the first adhesive layer 33 is a first adhesive layer 33 formed of a heat-sensitive adhesive, and the viscosity of the first adhesive layer 33 is enhanced by the application of a modification temperature; the first adhesive layer 33 is also The first adhesive layer 33, which may be formed of an ultraviolet-sensitive adhesive, is enhanced in the viscosity of the first adhesive layer 33 by irradiation with modified ultraviolet rays.
  • the second adhesive layer 34 may be a second adhesive layer 34 formed of a heat-sensitive adhesive. The viscosity of the second adhesive layer 34 is reduced by application of a modification temperature; the second adhesive layer 34 may also be ultraviolet-sensitive The adhesive is reduced in the viscosity of the second adhesive layer 34 by irradiation with modified ultraviolet rays.
  • the first adhesive layer 33 may also be a permanent adhesive.
  • the permanent adhesive at this point may be understood as the effect on the second adhesive layer 34. Adhesives with constant viscosity when influencing factors are applied.
  • the adhesive layer 30 further includes a buffer layer 35.
  • the buffer layer 35 is disposed between the first adhesive layer 33 and the second adhesive layer 34 and passes through both surfaces of the buffer layer 35 and the first layer.
  • the adhesive layer 33 and the second adhesive layer 34 are adhered to ensure that the second adhesive layer 34 can be smoothly detached from the IC chip 10 during the detachment process of the transition substrate 20.
  • the buffer layer 35 is a low thermal conductivity material with a thermal conductivity of less than 0.5, such as glass fiber, PVC, and epoxy resin, so as to prevent the other adhesive layers from being affected when an influence factor is applied to one of the adhesive layers.
  • the surface of the IC chip 10 away from the transition substrate 20 is ready to be bonded to the flexible substrate 40.
  • the first surface 14 is further provided with a die bonding film 16, and the die bonding film 16 may be a DieAttachFilm (DAF) film.
  • DAF DieAttachFilm
  • the adhesiveness of the die bonding film 16 is greater than that of the adhesive layer 30, specifically the adhesiveness of the first adhesive layer 33, in order to prevent the adhesive layer 30 from being peeled from the IC chip 10 during the process of removing the transition substrate 20, while also The adhesion between the IC chip 10 and the flexible substrate 40 is more stable.
  • a micro-image structure can also be formed by a process such as laser photolithography printing (not shown) ),
  • the micro-image structure can be cross-shaped or circular, etc., to facilitate the operation of image recognition and alignment, position calibration, and angular offset when mounting flexible devices in subsequent processes, in order to improve the placement of devices when mounting. Precision.
  • the transition device of the flexible device provided by the present invention, by bonding the second surface 15 of the IC chip 10 and the transition substrate 20, after the transition substrate 20 is adhered, the transition substrate 20 can be used as a substrate to directly perform the IC chip substrate.
  • the thinning process of 11 facilitates the thinning process of the IC chip 10.
  • the transition device of the flexible device is compatible with the existing SMT technology. Or the wafer wafer feeding method of chip packaging, and the transition device can be directly applied to the IC chip 10 placement process, which reduces the IC chip 10 placement process and the placement of the IC chip 10 placement equipment. The difficulty of the process control is required to facilitate the placement of the IC chip 10.
  • the transition substrate 20 is bonded to the encapsulation layer 13 through the adhesive layer 30.
  • the placement of the encapsulation layer 13 prevents the adhesion and peeling of the adhesive layer 30. Damage to the IC chip substrate 11 and the circuit functional layer 12; on the other hand, during the movement of the transition device, the packaging layer 13 can protect the IC chip substrate 11 and the circuit functional layer 12 from stress buffering, And prevent external dust, static electricity, etc.
  • the circulation of the IC chip 10 mounting industry is conducive to the customized production of ultra-thin flexible devices by downstream manufacturers of IC chips 10, and is beneficial to the development of the flexible device industry.
  • the present invention also provides a method for preparing a transition device for a flexible device.
  • the method includes the following steps:
  • a wafer 16 is provided, and a circuit functional layer 12 is formed on the wafer 16 (as shown in Figs. 4a and 4b);
  • the wafer 16 and the circuit function layer 12 are diced to form a plurality of IC chip substrates 11 on the wafer 16, and each IC chip substrate 11 is formed with a corresponding circuit function layer 12 (as shown in FIG. 4c);
  • the IC chip substrate 11 and the circuit functional layer 12 are packaged to become the IC chip 10, and the packaging layer 13 is formed on the surface of the IC chip on the side where the circuit functional layer 12 is located, and on the side of the IC chip 10 (as shown in FIG. 4d);
  • the IC chip 10 is formed with a first surface 14 that is ready to be patched with a substrate, such as a flexible substrate 40, and a second surface 15 corresponding to the first surface 14 to provide a transition embryo plate 22 through which the transition embryo plate 22 passes.
  • the adhesive layer 30 is adhered to the second surface 15 of the IC chip 10 (as shown in FIGS. 4e and 4g);
  • the transition blank 22 is cut and diced to be divided into a plurality of independent flexible device transition devices.
  • the transition blank 22 is cut to form a single transition substrate 20.
  • the preparation method of the flexible device can be applied to a large-scale commercial manufacturing process. After the preparation of the above-mentioned transition device of the flexible device is completed, tape and reel packaging or tray packaging can be performed for storage and transportation. .
  • the PAD of the I / O port of the circuit functional layer 12 needs to be thickened, and a flexible electrode is fabricated on the PAD.
  • the electrode may be a nano material such as Au, Ag, or C, or a viscous mixture of a nano material such as Au, Ag, or C and a polymer, so that the PAD of the circuit functional layer is led out of the packaging layer 13 when the packaging layer 13 is manufactured.
  • an IC chip with an insulator silicon wafer as a substrate is used as an example.
  • the circuit functional layer 12 is sequentially formed.
  • the top silicon layer 111 and the buried oxide layer 112 are diced; understandably, if the IC chip substrate 11 is bulk silicon, when the wafer 16 and the circuit functional layer 12 are diced, the circuit functional layer is sequentially 12 and silicon layer for dicing.
  • the depth of the dicing dicing may be 20-150 ⁇ m.
  • the wafer 16 and the circuit functional layer 12 may be cut by etching, mechanical cutting, or laser cutting.
  • the encapsulation layer 13 may be formed of an organic polymer or an inorganic substance or a mixture of an organic polymer and an electrodeless substance, or may be formed by alternately disposing an organic polymer layer and an inorganic substance layer.
  • Organic polymers include acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other flexible polymer materials. Its thickness can be 200-10000nm.
  • the inorganic substance may include oxides, nitrides, and / or carbides of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, and the thickness thereof may be controlled to 5 to 600 nm.
  • the adhesive layer 30 is formed with a first adhesive surface 31 for adhering to the transition blank 22 and a second adhesive surface 32 for adhering to the IC chip 10.
  • the adhesion between the first adhesive surface 31 and the transition blank 22 The force is greater than the adhesion force between the second adhesion surface 32 and the IC chip 10, or the adhesion force between the first adhesion surface 31 and the transition blank 22 is greater than that of the second adhesion surface in the case of applying a modification influencing factor.
  • the above effects can be achieved by increasing the bonding area of the side of the transition blank 22 that is in contact with the adhesive layer 30 and / or reducing the bonding area of the side of the encapsulation layer 13 that is in contact with the adhesive layer 30 achieve.
  • a plurality of concave-convex structures 21 may be formed on the side of the transition blank plate 22 that is in contact with the adhesive layer 30 to increase the bonding area, thereby increasing the adhesion between the transition blank plate and the adhesive layer 30.
  • the depth at the depression may be 1 ⁇ m-15 ⁇ m, and the aspect ratio of the depression may be 0.5-3.
  • the concave-convex structure 21 is a sawtooth-shaped convex-concave portion 21, the angle at the top of the sawtooth waveform is 30-150 °.
  • the adhesive layer 30 includes at least a first adhesive layer 33 and a second adhesive layer 34, the first adhesive layer 33 is in contact with the transition blank 22, and the second adhesive layer 34 is in contact with the encapsulation layer 13, that is, the first adhesion surface 31 is formed between the first adhesion layer 33 and the transition blank 22, and the second adhesion surface 32 is formed between the second adhesion layer 34 and the encapsulation layer 13. between.
  • the viscosity of the first adhesive layer 33 can be enhanced, and / or the viscosity of the second adhesive layer 34 can be reduced.
  • the first adhesive layer 33 is a heat-sensitive adhesive.
  • the viscosity of the first adhesive layer 33 is enhanced by the application of the modification temperature.
  • the first adhesive layer 33 may also be an ultraviolet-sensitive adhesive.
  • the irradiation of the modified ultraviolet rays increases the viscosity of the first adhesive layer 33.
  • the second adhesive layer 34 may be a heat-sensitive adhesive.
  • the viscosity of the second adhesive layer 34 is reduced by the application of a modification temperature.
  • the second adhesive layer 34 may also be an ultraviolet-sensitive adhesive. Irradiation, the viscosity of the second adhesive layer 34 is reduced.
  • the first adhesive layer 33 may also be a permanent adhesive.
  • the permanent adhesive at this point may be understood as the effect on the second adhesive layer 34. Adhesives that do not change in viscosity when a modifier is applied.
  • the adhesive layer 30 further includes a buffer layer 35, which is disposed between the first adhesive layer 33 and the second adhesive layer 34 and is adhered to the first through two surfaces, respectively.
  • the layer 33 and the second adhesive layer 34 are bonded to ensure that the second adhesive layer 34 can be smoothly detached from the IC chip 10 during the detachment process of the transition blank 22.
  • the buffer layer 35 is a low thermally conductive material with a thermal conductivity less than 0.5, such as glass fiber, PVC, and epoxy resin, so as to prevent the influence of one adhesive layer 30 on another adhesive layer 30 from being caused. influences.
  • the step of forming the encapsulation layer 13 may further include performing a thinning process on the IC chip substrate 11.
  • the IC chip substrate 11 may be thinned by a method such as mechanical polishing or etching.
  • the second surface 15 of the IC chip 10 is the side where the circuit functional layer 12 is located, and the step of bonding to the transition blank 22
  • the transition blank 22 is directly bonded to the side where the circuit functional layer 12 of the IC chip 10 is located, and the side to be thinned of the IC chip substrate 11 is directly exposed, that is, the first surface.
  • the IC chip can be directly contacted.
  • the substrate 11 is thinned to reduce the thickness of the IC chip substrate to less than 80 ⁇ m.
  • the silicon substrate 113 and the buried oxide layer 112 can be directly removed, leaving only the top silicon 111. .
  • the transition blank 22 can be directly used as the substrate at this time. Therefore, when the silicon substrate 113 is thinned based on this method, the IC chip substrate 11 transfer can be reduced. This reduces the possibility of damage to the IC chip 10.
  • an encapsulation layer 13 is formed on the side where the circuit functional layer 12 of the IC chip 10 is located, and on the side of the IC chip 10, and the encapsulation layer 13 is formed on the IC chip substrate 11.
  • the method further includes packaging on the side where the IC chip 10 is thinned so that the packaging layer 13 can completely cover the IC chip substrate 11 and the circuit functional layer 12.
  • the first surface 14 of the IC chip 10 is the side where the circuit functional layer 12 is located, and the transition blank 22 and the IC chip substrate 11 are far away from the circuit function.
  • the surface of the side where the layer 12 is located is bonded (as shown in FIG. 5).
  • the method further includes providing an adapter plate 23.
  • the adapter plate 23 is bonded to the first surface 14 of the IC chip 10 suitable for the flip-chip process through the transfer adhesive layer 231, that is, the adapter plate 23 and the side of the circuit functional layer 12 of the IC chip 10 are located.
  • the surfaces are bonded, and then the IC chip substrate 11 is thinned to reduce the thickness of the IC chip substrate 11 to less than 80 ⁇ m.
  • the IC chip substrate 11 is an insulator silicon wafer, the silicon substrate 113 and the buried substrate can be directly buried.
  • the oxide layer 112 is removed, and only the top silicon 111 remains.
  • the side of the thinning process may be packaged, so that the packaging layer 13 packages the IC chip substrate 11 and the circuit functional layer 12 from each surface of the IC chip 10, and then the transition blank 22
  • the adhesive layer 30 is adhered to the surface of the IC chip 10 that has been thinned.
  • the adapter plate 23 and the adapter adhesive layer 231 are peeled off, and then a transition device for a flexible device is obtained by cutting.
  • the adhesive force between the transition adhesive layer 231 and the IC chip 10 is smaller than the adhesion layer 30 and the IC Adhesion between the chips 10.
  • the method may further include performing a dry etching or dry polishing process on the surface of the IC chip substrate 11 after the thinning process to eliminate residual stress on the surface.
  • the method further includes forming a chip bonding film 16 on the first surface 14 of the IC chip 10, and the chip bonding film 16 may be Die Attach Film (DAF) film.
  • DAF Die Attach Film
  • the adhesiveness of the chip bonding film 16 is greater than the viscosity of the adhesive layer 33, specifically the viscosity of the first adhesive layer 33, in order to prevent the IC chip 10 from being peeled from the transition substrate 20 during the removal of the transition substrate 20, and also to make the IC
  • the adhesion between the chip 10 and the flexible substrate 40 is more stable.
  • the method further includes forming a micro-image structure on the transition embryo plate 22, which is an image structure located on a surface of the transition embryo plate 22 away from the IC chip 10.
  • the present invention also provides a method for mounting a flexible device based on the transition device of the flexible device. As shown in FIG. 8a to FIG. 8d, the method includes the following steps:
  • the transition substrate 20 and the adhesive layer 30 are removed from the IC chip 10.
  • a packaging layer 13 is formed outside the IC chip substrate 11 and the circuit function layer 12, and the second surface 15 of the IC chip 10 is formed.
  • the encapsulation layer 13 can provide a certain degree of flexibility and can alleviate a certain stress, and when mounting, the IC chip substrate 11 can be moved by grasping the transition substrate 20, which can reduce the Equipment accuracy and requirements for workshop environment.
  • a side of the IC chip 10 to be mounted with the flexible substrate 40 is prepared and / or a chip bonding film 16 is provided on the flexible substrate 40, and the chip is adhered to the chip.
  • the conjunctiva 16 may be a Die Attach Film (DAF) film.
  • DAF Die Attach Film
  • the viscosity of the die bonding film 16 is greater than the viscosity of the first adhesive layer 33 to prevent the IC chip 10 from being peeled from the transition substrate 20 during the process of removing the transition substrate 20, and also makes the IC chip 10 and the flexible substrate 40 Bonding is more stable.
  • the method further includes applying an influence factor such as temperature or ultraviolet rays to the adhesive layer 30 of the transition substrate 20 to reduce the adhesive layer 30 and the IC.
  • an influence factor such as temperature or ultraviolet rays
  • the adhesion between the chips 10 and / or increasing the adhesion between the adhesive layer 30 and the transition substrate 20 is convenient for removing the transition substrate 20 and the adhesion layer 30 from the IC chip 10.
  • a transition device for a flexible device includes a flexible component 50 based on a polymer substrate and a transition substrate 20.
  • the transition substrate 20 and the flexible component 50 based on a polymer substrate The two are bonded by an adhesive layer 30.
  • the flexible component 50 based on a polymer substrate may be a function of a polymer-based substrate such as a capacitor, a resistor, a sensor, and a bio-MEMS (Micro-Electro-Mechanical System) in a flexible electronic device.
  • a polymer-based substrate such as a capacitor, a resistor, a sensor, and a bio-MEMS (Micro-Electro-Mechanical System) in a flexible electronic device.
  • the flexible component 50 based on the polymer substrate includes a substrate layer 51, a device functional layer 52 and a packaging layer 53 on the substrate layer 51.
  • the packaging layer 53 encapsulates at least the device functional layer 52.
  • the sealing layer 53 is formed of an organic polymer or an inorganic substance, or is formed by alternately disposing an organic polymer and an inorganic substance.
  • Organic polymers are acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other flexible polymer materials. Its thickness can be 200-10000 nm.
  • the inorganic substance may be an oxide, nitride, and / or carbide material of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, and the thickness thereof is controlled to be 5-600 nanometers, respectively.
  • the underlayer 51 is formed of an organic polymer, or is alternately disposed of an organic polymer and an inorganic substance.
  • Organic polymers include acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other materials.
  • the inorganic substance may be formed of an oxide, nitride, and / or carbide of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium.
  • the encapsulation layer 53 when the encapsulation layer 53 is composed of an inorganic material layer and an organic polymer layer alternately arranged, the inorganic material encapsulation layer 53 mainly performs air-tight encapsulation, and the organic polymer encapsulation layer 53 mainly functions as a flexible encapsulation, and The stress in the encapsulation layer 53 is buffered.
  • the two By alternately disposing the inorganic substance and the organic polymer, the two can complement each other and increase the reliability of the encapsulation layer 53.
  • the flexible component 50 based on the polymer substrate is formed with a first surface 54 that is prepared for mounting with a substrate such as the flexible substrate 40 and a second surface 55 corresponding to the first surface 54. It can be understood that In the process, that is, after the flexible component 50 based on the polymer substrate is mounted on the substrate, the PAD of the device functional layer 52 faces the side away from the substrate (as shown in Figs.
  • the device functional layer 52 of the flexible component 50 based on the polymer substrate faces away from the substrate relative to the substrate layer 51, At this time, the side of the device functional layer 52 on the flexible component 50 based on the polymer substrate is the second surface 55 of the flexible component 50 based on the polymer substrate, and the side of the substrate layer 51 is based on the polymer liner.
  • the device In the process of mounting the PAD of the functional layer 52 toward the substrate, when When the flexible component 50 based on the polymer substrate is mounted on the substrate, the device functional layer 52 of the polymer flexible substrate device is oriented closer to the substrate side than the substrate layer 51. At this time, based on the polymer substrate, The side of the device functional layer 52 on the bottom flexible component 50 is the first surface 54 of the flexible component 50 based on the polymer substrate, and the side of the substrate layer 51 is the flexible component based on the polymer substrate. 50 ⁇ ⁇ ⁇ 55 ⁇ The second surface 55.
  • the transition substrate 20 is bonded to the second surface 55 of the flexible component 50 based on the polymer substrate through the adhesive layer 30, that is, when the flexible component 50 based on the polymer substrate is a polymer-based substrate suitable for a front-loading process.
  • the transition substrate 20 is bonded to the side of the device functional layer 52 in the flexible component 50 based on the polymer substrate (see FIG. 9);
  • the transition substrate 20 is adhered to the side of the substrate layer 51 in the polymer-based flexible component 50 (see FIG. 13).
  • the transition substrate 20 may be a rigid substrate, such as a single crystal silicon, glass, ceramic substrate, or a substrate made of a rigid polymer material, or a substrate made of a composite material.
  • the thickness of the substrate It is 100-500 ⁇ m.
  • the transition device provided by the present invention can directly mount the flexible component 50 based on the polymer substrate on the flexible substrate 40, and then peel the transition substrate 20 to obtain a flexible device.
  • the adhesive layer 30 is formed with a first adhesive surface 31 for adhering to the transition substrate 20 and a second adhesive surface 32 for adhering to a flexible component 50 based on a polymer substrate.
  • the first bonding The adhesion between the surface 31 and the transition substrate 20 is greater than the adhesion between the second adhesion surface 32 and the flexible component 50 based on the polymer substrate, or the effect of modifying factors on the adhesion layer 30
  • the adhesion force between the first adhesion surface 31 and the transition substrate 20 is greater than the adhesion force between the second adhesion surface 32 and the flexible component 50 based on the polymer substrate.
  • the aforementioned modification influencing factors refer to influencing factors that can change the viscosity of the first adhesive surface 31 or the second adhesive surface 32, such as a specific temperature, a specific intensity, and a wavelength of light,
  • the above-mentioned effect can be achieved by increasing the bonding area of the side where the transition substrate 20 is in contact with the adhesive layer 30 and / or reducing the adhesion of the side where the packaging layer 53 is in contact with the adhesive layer 30. Combined area to achieve.
  • a plurality of uneven structures 21 may be formed on the side of the transition substrate 20 that is in contact with the adhesive layer 30 to increase the adhesion area on the surface thereof, thereby increasing the adhesion between the transition substrate 20 and the adhesive layer 30.
  • the depth of the depression may be 1 ⁇ m to 15 ⁇ m, and the aspect ratio of the depression may be 0.5-3.
  • the concave-convex structure 21 is a sawtooth-shaped concave-convex structure 21, the angle at the top of the sawtooth waveform is 30-150 °.
  • the adhesive layer 30 includes at least a first adhesive layer 33 and a second adhesive layer 34, the first adhesive layer 33 is in contact with the transition substrate 20, and the second adhesive layer 34 In contact with the flexible component 50 based on the polymer substrate, that is, the first adhesive surface 31 is formed between the first adhesive layer 33 and the transition substrate 20, and the second adhesive surface 32 is formed on the second adhesive layer 34 and a flexible component 50 based on a polymer substrate.
  • the viscosity of the first adhesive layer 33 can be enhanced, and / or the viscosity of the second adhesive layer 34 can be reduced.
  • the first adhesive layer 33 is a first adhesive layer 33 formed of a heat-sensitive adhesive, and the viscosity of the first adhesive layer 33 is enhanced by the application of a modification temperature; the first adhesive layer 33 is also The first adhesive layer 33, which may be formed of an ultraviolet-sensitive adhesive, is enhanced in the viscosity of the first adhesive layer 33 by irradiation with modified ultraviolet rays.
  • the second adhesive layer 34 may be a second adhesive layer 34 formed of a heat-sensitive adhesive. The viscosity of the second adhesive layer 34 is reduced by application of a modification temperature; the second adhesive layer 34 may also be ultraviolet-sensitive The adhesive is reduced in the viscosity of the second adhesive layer 34 by irradiation with modified ultraviolet rays.
  • the first adhesive layer 33 may also be a permanent adhesive, and the permanent adhesive at this point may be understood as the effect on the second adhesive layer 34. Adhesives with constant viscosity when influencing factors are applied.
  • the adhesive layer 30 further includes a buffer layer 35.
  • the buffer layer 35 is disposed between the first adhesive layer 33 and the second adhesive layer 34 and passes through the two surfaces and the first adhesive layer 33 respectively. It is bonded to the second adhesive layer 34 to ensure that the second adhesive layer 34 can be smoothly detached from the flexible component 50 based on the polymer substrate during the detachment process of the transition substrate 20.
  • the buffer layer 35 is a low thermal conductivity material with a thermal conductivity less than 0.5, such as glass fiber, PVC, and epoxy resin, so as to prevent the other adhesive layers 30 from being caused when an influence factor is applied to one of the adhesive layers 30. influences.
  • the flexible component 50 based on the polymer substrate is far from the transition substrate 20-
  • the side surface, that is, the first surface 54 to be adhered to the flexible substrate 40, is further provided with a device adhesive film 57.
  • the device adhesive film 57 may be a DieAttachFilm (DAF) film.
  • DAF DieAttachFilm
  • the adhesiveness of the device adhesive film 57 is greater than the adhesive layer 30, specifically the adhesiveness of the first adhesive layer 33, in order to prevent the adhesive layer 30 from being removed from the flexible component based on the polymer substrate during the process of peeling the transition substrate 20. Peeling on 50 also makes the adhesion between the flexible component 50 based on the polymer substrate and the flexible substrate 40 more stable.
  • a micro-image structure may also be formed on the surface of the transition substrate 20 away from the polymer-based flexible component 50 by a process such as laser lithography printing.
  • the micro-image structure may be a cross shape. Or round, etc., in order to facilitate the operation of image recognition and alignment, position calibration, and angular offset when mounting flexible devices in subsequent processes, in order to improve the placement accuracy when mounting devices.
  • the present invention provides a transition device for a flexible device.
  • the transition device By bonding the second surface 55 of the flexible component 50 based on the polymer substrate and the transition substrate 20, the flexible component 50 based on the polymer substrate is fixed to When the flexible substrate 40 is on, the transition device can be moved by grasping the transition substrate 20, and then the flexible component 50 based on the polymer substrate is fixed on the flexible substrate 40 through a patch process, which is compatible with the existing SMT technology. Or adopt wafer feeding method for chip packaging, so that the flexible component 50 based on the polymer substrate can be fixed on the flexible substrate 40 by a chip mounting process like an IC chip, and the chip chip can be mounted by the same equipment as the IC chip. .
  • the requirement for the accuracy of the gripping device can be reduced again.
  • the encapsulation layer 53 is added to the device functional layer 52 of the flexible component 50 based on the polymer substrate, on the one hand, the provision of the encapsulation layer 53 can prevent the adhesion and peeling of the adhesive layer 30 from affecting the device.
  • the functional layer 52 causes damage.
  • the encapsulation layer 53 can protect the flexible component 50 based on the polymer substrate, and cushion it to prevent external dust.
  • Static electricity, impact, etc. cause damage to the device functional layer 52, reducing the difficulty of storage, transportation and subsequent mounting process of the flexible component 50 based on the polymer substrate; further, the flexible element based on the polymer substrate is being carried out.
  • the device functional layer 52 is protected by the encapsulation layer 53. Therefore, the requirements on the workshop environment and equipment accuracy of the mounting process can be reduced; and the transition device of the flexible device can be an independent product.
  • the present invention also provides a method for preparing a transition device for a flexible device.
  • the method includes the following steps:
  • the flexible component base body 56 based on the polymer substrate is formed with a first surface 54 that is ready to be patched with the substrate, and a second surface 55 corresponding to the first surface 54.
  • a transition blank 22 is provided. The transition blank 22 is bonded to the second surface 55 of the flexible component 50 based on the polymer substrate through the adhesive layer 30 (see FIG. 12c);
  • the preparation method of the transition device of the flexible device can be applied to a large-scale commercialized manufacturing process. After the preparation of the transition device of the above-mentioned flexible device is completed, tape and reel packaging or tray packaging can be performed to facilitate Form an independent product for storage and transportation.
  • the method when manufacturing the device functional layer 52, the method further includes thickening the PAD of the device functional layer 52, and manufacturing a flexible electrode at the PAD of the device functional layer 52.
  • the flexible electrode may be Au Nano-materials such as Ag, Ag, or C, or a viscous mixture of nano-materials such as Au, Ag, or C and polymers, to encapsulate the device functional layer 52 from the packaging layer 53 when packaging the device functional layer 52 Lead out.
  • the encapsulation layer 53 may be formed of an organic polymer or an inorganic substance, or may be formed by alternately disposing an organic polymer and an inorganic substance.
  • Organic polymers include acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other flexible polymer materials. Its thickness can be 200-10000nm.
  • the inorganic substance may be formed of oxides, nitrides, and / or carbides of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, and their thicknesses are respectively controlled to 5-600 nm.
  • the transition blank 22 may be a rigid substrate, such as a single crystal silicon, glass, ceramic substrate, or a substrate made of a rigid polymer material, or a substrate made of a composite material.
  • the transition embryo The thickness of the plate 22 is 100-500 ⁇ m. After cutting and dicing, the transition blank 22 forms a plurality of independent transition substrates 20.
  • a first bonding surface 31 for bonding with a transition blank 22 is formed on the bonding layer 30, and a bonding layer 30 for bonding with a polymer-based substrate is formed.
  • the first bonding The adhesion between the surface 31 and the transition blank 22 is greater than the adhesion between the second adhesion surface 32 and the flexible component 50 based on the polymer substrate, or a modification influencing factor is applied to the adhesion layer 30
  • the adhesive force between the first adhesive surface 31 and the transition blank 22 is greater than the adhesive force between the second adhesive surface 32 and the flexible component 50 based on the polymer substrate.
  • the above effects can be achieved by increasing the bonding area of the side of the transition blank 22 that is in contact with the adhesive layer 30, and / or reducing the area of the side of the encapsulation layer 53 that is in contact with the adhesive layer 30. Bonding area to achieve.
  • a plurality of uneven structures 21 may be formed on a side of the transition blank 22 and the adhesive layer 30 to increase the adhesion area, thereby increasing the adhesion between the transition blank 22 and the adhesive layer 30.
  • the depth of the depression may be 1 ⁇ m to 15 ⁇ m, and the aspect ratio of the depression may be 0.5-3.
  • the concave-convex structure 21 is a sawtooth-shaped concave-convex structure 21, the angle at the top of the sawtooth waveform is 30-150 °.
  • the adhesive layer 30 includes at least a first adhesive layer 33 and a second adhesive layer 34, the first adhesive layer 33 is in contact with the transition blank 22, and the second adhesive layer 34 is in contact with the flexible component 50 based on the polymer substrate, that is, the first adhesive surface 31 is formed between the first adhesive layer 33 and the transition blank, and the second adhesive surface 32 is formed on the second adhesive Between the layer 34 and a flexible component 50 based on a polymer substrate.
  • the viscosity of the first adhesive layer 33 can be enhanced, and / or the viscosity of the second adhesive layer 34 can be reduced.
  • the first adhesive layer 33 is a first adhesive layer 33 formed of a heat-sensitive adhesive, and the viscosity of the first adhesive layer 33 is enhanced by the application of a modification temperature; the first adhesive layer 33 is also The first adhesive layer 33, which may be formed of an ultraviolet-sensitive adhesive, is enhanced in the viscosity of the first adhesive layer 33 by irradiation with modified ultraviolet rays.
  • the second adhesive layer 34 may be a second adhesive layer 34 formed of a heat-sensitive adhesive. The viscosity of the second adhesive layer 34 is reduced by application of a modification temperature; the second adhesive layer 34 may also be ultraviolet-sensitive The adhesive is reduced in the viscosity of the second adhesive layer 34 by irradiation with modified ultraviolet rays.
  • the first adhesive layer 33 may also be a permanent adhesive, and the permanent adhesive at this point may be understood as the effect on the second adhesive layer 34. Adhesives with constant viscosity when influencing factors are applied.
  • the adhesive layer 30 further includes a buffer layer 35.
  • the buffer layer 35 is disposed between the first adhesive layer 33 and the second adhesive layer 34 and passes through the two surfaces and the first adhesive layer 33 respectively. It is bonded to the second adhesive layer 34 to ensure that the second adhesive layer 34 can be smoothly detached from the flexible component 50 based on the polymer substrate during the detachment process of the transition substrate 20.
  • the buffer layer 35 is a low thermal conductivity material with a thermal conductivity less than 0.5, such as glass fiber, PVC, and epoxy resin, so as to prevent the other adhesive layers 30 from being caused when an influence factor is applied to one of the adhesive layers 30. influences.
  • the substrate blank 511 is formed of an organic polymer, or is alternately arranged by an organic polymer or an inorganic substance.
  • Organic polymers are acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other flexible polymer materials.
  • the inorganic substance may be an oxide, nitride, and / or carbide of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium.
  • the method further includes: A device far away from the transition blank 22, that is, on the first surface 54 to be bonded to the flexible substrate 40, forms a device adhesive film 57.
  • the device adhesive film 57 may be a Die Attach Film (DAF) film.
  • DAF Die Attach Film
  • the transition device of the flexible device can form a mountable device, which further reduces the difficulty of mounting 50 flexible components based on a polymer substrate and the difficulty of controlling the placement process, which is conducive to the realization of low cost and large quantities of flexible devices. Commercial manufacturing.
  • the adhesiveness of the device adhesive film 57 is greater than that of the adhesive layer 30, specifically the adhesiveness of the first adhesive layer 33, in order to prevent the adhesive layer 30 from being removed from the flexible component based on the polymer substrate during the process of removing the transition substrate 20. Peeling on 50 also makes the adhesion between the flexible component 50 based on the polymer substrate and the flexible substrate 40 more stable.
  • the method further includes forming a micro-image structure (not shown) on the surface of the transition blank 22 away from the polymer-based flexible component 50 by a process such as laser lithography printing.
  • the micro-image structure can be cruciform or circular, etc., to facilitate image recognition and alignment, position calibration, and angular offset when mounting flexible devices in subsequent processes, to improve placement accuracy when mounting devices.
  • the present invention also provides a method for mounting a flexible device based on the above-mentioned flexible device transition device. As shown in FIG. 16a to FIG. 16d, the method includes the following steps:
  • the transition substrate 20 and the adhesive layer 30 are removed from the flexible component 50 based on the polymer substrate.
  • the encapsulation layer 53 and the substrate layer 51 collectively encapsulate the flexible component 50 based on the polymer substrate, and On the second surface 55 of the flexible component 50, the transition substrate 20 is fixed by the adhesive layer 30.
  • the encapsulation layer 53 and the substrate layer 51 can provide a certain degree of flexibility, and alleviate the flexible components based on the polymer substrate. 50; and when mounting, the movement of the flexible component 50 based on the polymer substrate can be completed by grasping the transition substrate 20, which can reduce the accuracy of the equipment and the requirements on the workshop environment.
  • a side on which the flexible component 50 based on the polymer substrate is attached to the flexible substrate 40 and / or the flexible substrate are prepared.
  • a device adhesive film 57 is formed on 40, and the device adhesive film 57 may be a Die Attach Film (DAF) film.
  • DAF Die Attach Film
  • the viscosity of the device adhesive film 57 is greater than that of the adhesive layer 30, specifically the viscosity of the first adhesive layer 33, in order to prevent the flexible component 50 based on the polymer substrate from being removed from the transition substrate 20 during the process of peeling the transition substrate 20.
  • the bonding of the flexible component 50 and the flexible substrate 40 based on the polymer substrate is more stable.
  • the method further includes applying a modification influencing factor to the adhesive layer 30, such as temperature and / or ultraviolet rays, to reduce the adhesive layer 30 and Adhesive force between the flexible components 50 based on the polymer substrate, and / or increase the adhesive force between the adhesive layer 30 and the transition substrate 20 to facilitate the transition of the transition substrate 20 from the flexibility of the polymer substrate.
  • a modification influencing factor such as temperature and / or ultraviolet rays, to reduce the adhesive layer 30 and Adhesive force between the flexible components 50 based on the polymer substrate, and / or increase the adhesive force between the adhesive layer 30 and the transition substrate 20 to facilitate the transition of the transition substrate 20 from the flexibility of the polymer substrate.
  • the component 50 is peeled off.
  • the invention also provides a method for manufacturing a flexible device.
  • the method for manufacturing a flexible device can be used in the chip manufacturing process of IC chips and polymer-based flexible components at the same time, which reduces the equipment accuracy and workshop of the chip manufacturing process.
  • Environmental requirements facilitate the large-scale manufacture of devices with the same specifications and parameters, and are conducive to the development of the flexible electronic product industry.
  • the applicant uses ICs with semiconductor materials such as Si, SiC, GaAs as substrates as IC chips, and uses flexible polymers as substrates for functional components such as capacitors, resistors, sensors, and bio-MEMS as polymers. Flexible components on the substrate.
  • the method for manufacturing a flexible device includes the following steps:
  • a functional component body 61 such as silicon-based IC chip, polymer-based capacitors, resistors, sensors, bio-MEMS, etc.
  • the functional component 60 is formed with a first surface 64 that is ready to be processed with the flexible substrate 40 and a second surface 65 corresponding to the first surface 64;
  • a transition substrate 20 is provided, and the transition substrate 20 is adhered to the side of the second surface 65 of the functional component 60 through the adhesive layer 30 to form a transition device 70;
  • the placement of the functional components 60 can be completed.
  • the first surface 64 and the second surface 65 of the above-mentioned functional component 60 are determined according to a different process from that when the flexible substrate 40 is mounted.
  • the front mounting process that is, in the mounting process
  • the side where the PAD of the functional component 60 is located is the second surface 65 of the functional component 60 (as shown in FIG. 17).
  • the transition substrate 20 is disposed on The side where the PAD of the functional component 60 is located; and in the flip-chip process, that is, in the mounting process, when the PAD of the functional component 60 faces the flexible substrate 40, the side where the PAD of the functional component 60 is located is The first surface 64 of the functional component 60.
  • the transition substrate 20 is disposed on a side far from the PAD of the functional component 60.
  • the encapsulation layer 62 is formed outside the functional component 60 and the transition substrate 20 is connected to the side where the second surface 65 of the functional component 60 is located to form a function for moving and mounting.
  • the transition device 70 of the component 60 can move the functional device 60 during the placement process by moving the transition device 70, which reduces the requirements for process parameter control.
  • An encapsulation layer 62 is formed.
  • the encapsulation layer 62 will perform stress buffering and protection for the functional components 60, which can reduce the accuracy of the equipment during the placement process and the requirements of the workshop environment.
  • transition device 70 for subsequent placement operations, which enables the placement of IC chips and flexible components based on polymer substrates.
  • the production can be carried out with the same equipment and the same process, which can make the two compatible with the existing SMT technology, while reducing the requirements of equipment and workshop environment.
  • the encapsulation layer 62 is formed of an organic polymer or an inorganic substance, or is formed by alternately disposing an organic polymer and an inorganic substance.
  • Organic polymers are acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other flexible polymer materials. Its thickness can be 200-10000nm.
  • the inorganic substance may be an oxide, nitride, and / or carbide material of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium, and the thickness thereof is controlled to be 5-600 nm, respectively.
  • the transition substrate 20 may be a rigid substrate, such as a single crystal silicon, glass, ceramic substrate, or a substrate made of a rigid polymer material, or a substrate made of a composite material.
  • the transition substrate 20 The thickness is 100-500 ⁇ m.
  • a first adhesive is formed on the adhesive layer 30 to adhere to the transition substrate 20.
  • the adhesive force between the first adhesive surface 31 and the transition substrate 20 is greater than that between the second adhesive surface 32 and the functional component 60.
  • the adhesion between the first adhesive surface 31 and the transition substrate 20 is greater than the adhesion between the first adhesive surface 31 and the transition component 20 under the influence of the modification factors on the adhesive layer 30. Adhesion between.
  • the aforementioned modification influencing factors refer to influencing factors that can change the viscosity of the first adhesive surface 31 or the second adhesive surface 32, such as a specific temperature, a specific intensity, and a wavelength of light.
  • the aforementioned effects can be achieved by increasing the bonding area of the side where the transition substrate 20 is in contact with the adhesive layer 30 and / or reducing the area of the side where the functional component 60 is in contact with the adhesive layer 30. Bonding area to achieve.
  • a plurality of uneven structures 22 that increase the adhesion area may be formed on the side of the transition substrate 20 that is in contact with the adhesion layer 30 to increase the adhesion area, thereby increasing the transition substrate 20 and the adhesion layer 30.
  • the depth of the depression may be 1 ⁇ m to 15 ⁇ m, and the aspect ratio of the depression may be 0.5-3.
  • the concave-convex structure 22 that increases the adhesion area is a zigzag concave-convex structure 22 that increases the adhesion area
  • the angle of the top of the sawtooth waveform is 30-150 °.
  • the adhesive layer 30 includes at least a first adhesive layer 33 and a second adhesive layer 34, the first adhesive layer 33 is in contact with the transition substrate 20, and the second adhesive layer 34 In contact with the functional component 60, that is, the first adhesive surface 31 is formed between the first adhesive layer 33 and the transition substrate 20, and the second adhesive surface 32 is formed between the second adhesive layer 34 and the functional component 60. between.
  • the viscosity of the first adhesive layer 33 can be enhanced, and / or the viscosity of the second adhesive layer 34 can be reduced.
  • the first adhesive layer 33 is a first adhesive layer 33 formed of a heat-sensitive adhesive, and the viscosity of the first adhesive layer 33 is enhanced by the application of a modification temperature; the first adhesive layer 33 is also The first adhesive layer 33, which may be formed of an ultraviolet-sensitive adhesive, is enhanced in the viscosity of the first adhesive layer 33 by irradiation with modified ultraviolet rays.
  • the second adhesive layer 34 may be a second adhesive layer 34 formed of a heat-sensitive adhesive. The viscosity of the second adhesive layer 34 is reduced by application of a modification temperature; the second adhesive layer 34 may also be ultraviolet-sensitive The adhesive is reduced in the viscosity of the second adhesive layer 34 by irradiation with modified ultraviolet rays.
  • the first adhesive layer 33 may also be a permanent adhesive.
  • the permanent adhesive at this point may be understood as the effect on the second adhesive layer 34. Adhesives with constant viscosity when influencing factors are applied.
  • the method further includes providing a buffer layer 35 between the first adhesive layer 33 and the second adhesive layer 34.
  • the buffer layer 35 is bonded to the first adhesive layer 33 and the second adhesive layer through two surfaces, respectively.
  • the bonding layer 34 is bonded to ensure that the second bonding layer 34 can be smoothly detached from the functional component 60 during the detachment process of the transition substrate 20.
  • the buffer layer 35 is a low thermal conductivity material with a thermal conductivity of less than 0.5, such as glass fiber, PVC, and epoxy resin, so as to prevent the other adhesive layers from being affected when an influence factor is applied to one of the adhesive layers.
  • the method further includes applying a modification influencing factor to the adhesive layer 30 of the transition substrate 20, such as temperature or ultraviolet rays, etc.
  • a modification influencing factor such as temperature or ultraviolet rays, etc.
  • the step of connecting the functional component 60 to the flexible substrate 40 further includes forming a device adhesive film 63 on the surface of the functional component 60 away from the transition substrate 20 and / or on the surface of the flexible substrate 40.
  • FIG. 20 shows a case where a device adhesive film 63 is added to the functional component 60.
  • the adhesiveness of the device adhesive film 63 is greater than that of the adhesive layer 30, specifically the adhesiveness of the first adhesive layer 33, to prevent the adhesive layer 30 from being removed from the functional components during the process of peeling the transition substrate 20. Peeling from 60 also makes the adhesion of the functional component 60 to the flexible substrate 40 more stable.
  • the method further includes:
  • the substrate 68 and the transition blank 22 are diced to form a plurality of independent transition devices 70.
  • the prepared transition device 70 can be used for tape packaging or tray packaging, so as to be compatible with the SMT process in the subsequent placement process or compatible with the wafer feeding method during chip packaging.
  • a micro-image structure (not shown) is formed on the surface of the transition blank 22 away from the functional component 60 through a process such as laser lithography printing.
  • the micro-image structure may be a cross shape or a circle. Shape, etc., to facilitate image recognition and alignment, position calibration, and angular offset when mounting flexible devices in subsequent processes to improve placement accuracy when mounting devices.
  • the functional component 60 may include a flexible polymer-based flexible component based on a flexible polymer, such as a resistor, a capacitor, a sensor, a bio-MEMS, etc. based on the flexible polymer; Includes IC chips with Si, SiC, GaAs, etc. as substrates.
  • a method for manufacturing a flexible component based on a polymer substrate includes the following steps:
  • a functional component body 61 such as a capacitor, a resistor, a sensor, a bio-MEMS on the substrate 68;
  • the substrate 68 and the transition blank 22 are cut and diced to form a plurality of manufacturing methods 50 of polymer-based flexible components suitable for a front-loading process.
  • the method when manufacturing the functional component 60, the method further includes thickening the PAD portion of the functional component 60, and fabricating a flexible electrode at the PAD portion of the functional component 60, so that the functional component 60 is thickened.
  • the PAD is led out from the encapsulation layer 62.
  • the substrate 68 may also be made of an organic polymer, or an organic polymer and an inorganic substance are alternately arranged.
  • Organic polymers include acrylates, oligomers containing hydroxyl and amino groups, polyimide, polyethylene phthalate, polycarbonate, polyester (PET), and polydimethylsiloxane (PDMS) and other materials.
  • the inorganic substance may be formed of an oxide, nitride, and / or carbide of one or more materials of silicon, aluminum, magnesium, zinc, tin, nickel, and titanium.
  • the method for manufacturing a flexible component based on a polymer substrate includes the following steps:
  • a functional component body 61 such as a capacitor, a resistor, a sensor, a bio-MEMS on the substrate 68;
  • the substrate 68 and the transition blank 22 are cut and diced to form a plurality of manufacturing methods 50 of polymer-based flexible components suitable for a front-loading process.
  • the transition device 70 includes the following steps:
  • a wafer 69 such as a single silicon wafer or an insulator silicon wafer
  • the transition blank 22 is cut to form a plurality of transition devices 70 adapted to the IC chip of the front mounting process.
  • the PAD of the functional component body 61 needs to be thickened, and a flexible electrode is fabricated on the PAD of the functional component 60.
  • the flexible electrode may be Au Nano-materials such as Ag, Ag, or C, or a viscous mixture of nano-materials such as Au, Ag, or C and the polymer, to lead the PAD of the wafer 69 out of the encapsulation layer 62.
  • the wafer 69 and the circuit functional layer 66 can be cut by etching, mechanical cutting, or laser cutting to form a plurality of independent functional components 60.
  • the method may further include a side of the wafer facing away from the functional component 60.
  • a thinning process is performed to reduce the thickness of the functional component 60.
  • the wafer may be thinned by a method such as mechanical grinding or etching, so that the thickness of the functional component body 61 is less than 80 ⁇ m.
  • the method may further include performing a dry etching or dry polishing process on the surface of the IC chip body after the thinning process to eliminate residual stress on the surface.
  • the method further includes packaging on the side where the functional component 60 is thinned so that the encapsulation layer 62 can completely cover the functional component 60.
  • the transition device 70 includes the following steps:
  • a wafer 69 such as a single silicon wafer or an insulator silicon wafer
  • transition blank 22 and the wafer are cut to form a plurality of transition devices 70 adapted to the IC chip of the front mounting process.
  • the method further includes:
  • An adapter board 23 is provided, and the adapter board 23 is bonded to the side of the circuit functional layer 66 on the functional component 60 through the transfer adhesive layer 231;
  • the adapter plate 23 is peeled from the functional component 60.
  • the side of the wafer 69 facing away from the functional component 60 is thinned, and then the transition blank 22 and the functional component 60 are further away from the circuit functional side Adhere on the side.
  • the adhesion between the transfer adhesive layer 231 and the functional component 60 The force is smaller than the adhesive force between the adhesive layer 30 and the functional component 60.
  • the same equipment and the same process can be used to mount each functional component 60 on the flexible substrate 40.
  • the method further includes A connection line is provided between the functional components 60, and an outer packaging layer 62 is provided outside the functional component 60, the connection line, and the flexible substrate 40.
  • the layout of the connection lines and the outer packaging layer 62 can be based on the prior art, and is not repeated here.
  • the transition device of the flexible device provided by the present invention is compatible with the existing SMT technology by bonding the second surface of the functional component to the transition substrate. Or the wafer feeding method of chip packaging, and the transition device can be directly applied to the placement process of functional components, which reduces the placement process of functional component placement equipment in the placement process of functional components. Control the difficulty requirements to facilitate the placement of functional components.
  • the transition substrate is bonded to the encapsulation layer through an adhesive layer. On the one hand, the placement of the encapsulation layer allows the adhesion and peeling of the adhesive layer to not cause damage to the functional components.
  • the packaging layer can protect the functional components, buffer them from stress, and prevent external dust and static electricity from affecting the functional components, reducing the storage of functional components. , Transportation, and subsequent placement processes; finally, during the placement process of functional components, because the functional components are protected by the packaging layer, the requirements of the workshop environment and equipment accuracy for the placement process can be reduced;
  • the flexible device transition device can enter the functional component placement industry as an independent product and circulate, which is beneficial for downstream manufacturers of functional components to customize the production of ultra-thin flexible devices and to the development of the flexible device industry.

Abstract

本申请提供了一种柔性器件的过渡装置、制备方法及柔性器件的制作方法,该柔性器件的过渡装置包括功能元器件及过渡基板,所述功能元器件包括功能元器件本体以及封装层,所述封装层对所述功能元器件进行封装,所述功能元器件上形成有预备与基板进行贴片处理的第一表面,以及与所述第一表面相对应的第二表面,所述过渡基板通过粘合层粘合于所述功能元器件的第二表面上。该柔性器件的过渡装置能较好地对功能元器件进行保护,便于运输,避免在运输过程中对功能元器件造成损坏,能够方便功能元器件进行后续的贴片应用,使用该过渡装置能够直接应用于柔性电子产品的制造。

Description

柔性器件的过渡装置、制备方法及柔性器件的制作方法
本申请要求2018年5月31日提交的中国专利申请号为201810549408.2的专利申请;2018年5月31日提交的中国专利申请号为201810550634.2的专利申请;以及2018年5月31日提交的中国专利申请号为201810550646.5的专利申请的优先权,上述三个申请文件的全文以引用的方式并入本申请中。
技术领域
本发明涉及芯片封装领域,尤其是一种柔性器件的过渡装置、制备方法及柔性器件的制作方法。
背景技术
近年来,随着柔性电子技术不断发展进步,以及智能可穿戴产品越来越广泛的应用,柔性电子器件以其具有独特的柔性、延展性、重量轻、厚度薄等优点,在市场上具有非常广阔的应用前景。
技术问题
功能元器件是组成柔性电子产品的关键,功能元器件包括以传统的Si、SiC、GaAs等半导体材料衬底的IC芯片,以及新兴的以柔性聚合物为衬底的电阻、电容、传感器、生物MEMS等基于聚合物衬底的柔性元器件。基于聚合物衬底的柔性元器件是实现柔性电子产品功能的重要功能元器件,在柔性电子产品的制作过程中,一般会通过贴片工艺,将IC芯片贴装于柔性基板或衬底上,一般会通过打印或印刷等技术将基于聚合物衬底的柔性元器件制作于柔性基板或衬底上。传统的IC芯片与基于聚合物衬底的柔性元器件的制造工艺及设备不兼容,且印刷或打印技术所需设备复杂,成本较高,不利于柔性电子产品行业的发展。
另外,打印或印刷工艺是将所有的基于聚合物衬底的柔性元器件均形成于柔性基板上,一个基于聚合物衬底的柔性元器件有问题,就会影响整个柔性电子产品的功能,很难对有问题的单个基于聚合物衬底的柔性元器件进行更换,不利于器件的筛选,对产品的良率造成了严重的影响。
技术解决方案
有鉴于此,本发明提供了一种柔性器件的过渡装置、制备方法及柔性器件的制作方法,该柔性器件的过渡装置能较好地对功能元器件进行保护,便于运输,避免在运输过程中对功能元器件造成损坏,能够方便功能元器件进行后续的贴片应用,使用该过渡装置能够直接应用于柔性电子产品的制造。
本申请提供了一种柔性器件的过渡装置,包括功能元器件及过渡基板,所述功能元器件上形成有预备与基板进行贴片处理的第一表面,以及与所述第一表面相对的第二表面,所述过渡基板通过粘合层粘合于所述功能元器件的第二表面上。
进一步地,所述功能元器件为IC芯片或基于聚合物衬底的柔性元器件。
进一步地,所述功能元器件包括功能元器件本体以及封装层,所述功能元器件本体包括衬底以及衬底上其中一侧形成的功能层,所述封装层至少设置于所述功能层表面。
进一步地,所述功能元器件适用于正装工艺时,所述过渡基板从所述功能层所在的一侧的第二表面,通过所述粘合层与功能元器件粘合;
或,
所述功能元器件适用于倒装工艺时,所述过渡基板从远离所述功能层所在的一侧的第二表面,通过所述粘合层与所述功能元器件粘合。
进一步地,所述功能层包括PAD,所述PAD上设置有柔性电极,所述柔性电极从PAD上引出,且贯穿并表露于封装层表面。
进一步地,当所述功能元器件为IC芯片时,所述功能元器件本体包括IC芯片衬底、形成于所述IC芯片衬底上的电路功能层,所述封装层至少从所述电路功能层的表面,以及所述IC芯片的侧面对所述IC芯片衬底及所述电路功能层进行封装。
进一步地,所述IC芯片为适用于正装工艺的IC芯片,所述过渡基板从所述电路功能层所在的一侧,通过所述粘合层与所述IC芯片粘合;或,所述IC芯片为适应于倒装工艺的IC芯片,所述过渡基板从远离所述电路功能层所在的一侧,通过所述粘合层与所述IC芯片粘合。
进一步地,当所述功能元器件为基于聚合物衬底的柔性元器件时,所述功能元器件包括衬底层及器件功能层,所述器件功能层设置于所述衬底层上,所述封装层对所述器件功能层进行封装。
进一步地,所述基于聚合物衬底的柔性元器件为适用于正装工艺的聚合物衬底的柔性元器件,所述过渡基板通过所述粘合层从所述器件功能层所在的一侧与所述基于聚合物衬底的柔性元器件粘接,或,
所述基于聚合物衬底的柔性元器件为适用于倒装工艺的基于聚合物衬底的柔性元器件,所述过渡基板通过所述粘合层从所述衬底层所在的一侧与所述基于聚合物衬底的柔性元器件粘接。
进一步地,所述衬底层为有机聚合物层、或有机聚合物层及无机物层交替布设。
进一步地,所述封装层由有机聚合物或无机物或有机聚合物与无机物混合形成,或者由有机聚合物层及无机物层交替布设而成。
进一步地,有机聚合物形成的所述封装层的厚度为200-10000nm。
进一步地,无机物形成的所述封装层的厚度为5-600nm。
进一步地,有机聚合物形成的所述封装层的厚度为200-10000nm。
进一步地,所述粘合层上形成有与所述过渡基板粘合的第一粘合面,以及用于与所述功能元器件粘合的第二粘合面,所述第一粘合面与所述过渡基板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
进一步地,在所述过渡基板上形成有多个用于增大粘结面积的凹凸结构,所述凹凸结构位于所述过渡基板与所述粘合层接触一侧的表面上。
进一步地,所述粘合层包括第一粘合层及第二粘合层,所述第一粘合层与所述过渡基板接触,所述第二粘合层与所述功能元器件接触,所述第一粘合面形成于所述第一粘合层与所述过渡基板之间,所述第二粘合面形成于所述第二粘合层与所述功能元器件之间。
进一步地,在对所述粘合层施加改性影响因素的情况下,所述第一粘合层的粘性增强,和/或第二粘合层的粘性降低,以使所述第一粘合层的粘性大于所述第二粘合层的粘性。
进一步地,所述粘合层还包括缓冲层,所述缓冲层设置于所述第一粘合层与所述第二粘合层之间,并分别通过所述缓冲层的两个表面与所述第一粘合层及所述第二粘合层粘接。
进一步地,所述缓冲层为导热系数小于0.5的低导热材料制成的缓冲层。
进一步地,所述柔性器件的过渡装置还包括芯片粘结膜,所述芯片粘结膜形成于所述功能元器件远离所述过渡基板一侧的表面。
进一步地,所述柔性器件的过渡装置还包括芯片粘结膜,所述芯片粘结膜的粘性大于所述粘合层的粘性。
进一步地,在所述过渡基板远离所述功能元器件的一侧的表面上,还形成有微图像结构。
本申请还提供了一种上述柔性器件的过渡装置的制备方法,该方法包括如下步骤:
提供一功能元器件本体;
在所述功能元器件本体外形成封装层,以形成功能元器件;
在所述功能元器件上形成有预备与柔性基板进行贴片处理的第一表面,及与所述第一表面相对的第二表面;
提供一过渡基板,将所述过渡基板通过粘合层与所述功能元器件的第二表面所在的一侧粘合。
进一步地,所述功能元器件为IC芯片或基于聚合物衬底的柔性元器件。
进一步地,在形成所述封装层前,在所述功能层对应位置制作PAD,对PAD进行加厚处理。
进一步地,在PAD上制作柔性电极,所述柔性电极从所述PAD上引出,且贯穿并表露于所述封装层。
进一步地,当所述功能元器件为IC芯片时,该方法包括:
提供一个晶元,在所述晶元上形成电路功能层;
对所述晶元进行切割划片形成多个包括IC芯片衬底,以及IC芯片衬底上的电路功能层的功能元器件本体;
对所述功能元器件本体进行封装,使之成为IC芯片;所述IC芯片上形成有预备与基板进行贴片处理的第一表面,以及与所述第一表面相对的第二表面,
提供一个过渡胚板,将所述过渡胚板通过粘合层粘接于所述IC芯片的第二表面上;
对所述过渡胚板进行切割划片。
进一步地,在所述晶元上制作所述电路功能层时,还包括对所述电路功能层的I/O端口的PAD进行加厚处理,以及在制作所述封装层时,在所述封装层上相对于所述PAD位置制作柔性电极。
进一步地,该方法中,还包括对所述IC芯片进行减薄处理,使所述IC芯片衬底的厚度小于80μm。
进一步地,所述IC芯片为适用于正装工艺的IC芯片时,在将所述过渡胚板通过粘合层粘接于所述IC芯片的第二表面上的步骤后,直接对IC芯片远离所述过渡胚板一侧的硅衬底进行减薄处理。
进一步地,在进行减薄处理后,该方法还包括对IC芯片进行减薄处理的一侧进行封装。
进一步地,所述IC芯片为适用于倒装工艺的IC芯片,在进行减薄处理时,包括如下步骤:
提供一转接板,将所述转接板通过转接粘合层与适用于所述倒装工艺的IC芯片的第一表面粘接;
对所述IC芯片衬底进行减薄处理;
将过渡胚板通过粘合层与适用于所述倒装工艺的所述IC芯片已经进行减薄处理的一侧的表面粘接;
剥离所述转接板及所述转接粘合层。
进一步地,所述转接粘合层与所述IC芯片之间的粘合力小于所述粘合层与所述IC芯片之间的粘合力。
进一步地,在对所述IC芯片进行减薄处理后,该方法还包括消除所述IC芯片衬底经过减薄处理的表面的残余应力。
进一步地,当所述功能元器件为基于聚合物衬底的柔性元器件时,该方法包括:
提供一个衬底胚板,并在所述衬底胚板上形成多个器件功能层;
对所述器件功能层进行封装,以形成基于聚合物衬底的柔性元器件胚体;
所述基于聚合物衬底的柔性元器件胚体上形成有预备与基板进行贴片处理的所述第一表面,以及与所述第一表面相对应的所述第二表面,提供一个过渡胚板,将所述过渡胚板通过粘合层粘接于所述基于聚合物衬底的柔性元器件的第二表面上;
对所述基于聚合物衬底的柔性元器件胚体进行切割划片形成基于聚合物衬底的柔性元器件。
进一步地,在所述衬底胚板上形成多个器件功能层时,还包括对基于聚合物衬底的柔性元器件的PAD进行加厚处理,以及在所述基于聚合物衬底的柔性元器件的PAD上制作柔性电极,以使基于聚合物衬底的柔性元器件的PAD从所述封装层内引出。
进一步地,所述基于聚合物衬底的柔性元器件为适用于正装工艺的基于聚合物衬底的柔性元器件,所述过渡胚板通过所述粘合层从所述器件功能层所在的一侧与所述基于聚合物衬底的柔性元器件粘接;或,
所述基于聚合物衬底的柔性元器件为适用于倒装工艺的基于聚合物衬底的柔性元器件,所述过渡胚板通过所述粘合层从所述衬底胚板所在的一侧与所述基于聚合物衬底的柔性元器件粘接。
进一步地,在所述粘合层上形成有与所述过渡胚板粘合的第一粘合面,以及用于与所述基于聚合物衬底的柔性元器件粘合的第二粘合面,所述第一粘合面与所述过渡胚板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
进一步地,该方法还包括在所述功能元器件的第一表面上形成芯片粘结膜。
本申请还提供了一种采用上述柔性器件的过渡装置金信柔性器件的贴片方法,该方法包括如下步骤:提供一个柔性基板;
将所述柔性器件的过渡装置中的功能元器件的第一表面贴装于所述柔性基板上。
进一步地,该方法还包括在功能元器件的第一表面和/或所述柔性基板上设置芯片粘结膜。
进一步地,提供上述的所述柔性器件的过渡装置;
提供一柔性基板,移动所述过渡装置,并使所述功能元器件从所述第一表面所在的一侧与所述柔性基板相连;
将所述柔性器件的过渡装置中的功能元器件的第一表面贴装于所述柔性基板上后剥离所述过渡基板及所述粘合层。
进一步地,所述粘合层上形成有与所述过渡基板粘合的第一粘合面,以及用于与所述功能元器件粘合的第二粘合面,所述第一粘合面与所述过渡基板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
进一步地,在对所述粘合层施加改性影响因素的情况下,所述第一粘合面与所述过渡基板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
进一步地,所述粘合层包括第一粘合层及第二粘合层,所述第一粘合层与所述过渡基板接触,所述第二粘合层与所述功能元器件接触,所述第一粘合面形成于所述第一粘合层与所述过渡基板之间,所述第二粘合面形成于所述第二粘合层与所述功能元器件之间,在移除所述过渡基板及所述粘合层的制程中,对所述粘合层施加改性影响因素,所述第一粘合层的粘性增强,和/或第二粘合层的粘性降低,以使所述第一粘合层的粘性大于所述第二粘合层的粘性。
进一步地,所述第一粘合层为热敏感粘合剂形成的第一粘合层,通过温度的施加,所述第一粘合层的粘性增强和/或,所述第二粘合层为热敏感粘合剂形成的第二粘合层,通过温度的施加,所述第二粘合剂的粘性降低。
进一步地,所述第一粘合层为紫外线敏感粘合剂形成的第一粘合层,通过紫外线的照射,所述第一粘合层的粘性增强和/或,所述第二粘合层为紫外线敏感粘合剂形成的第二粘合层,通过紫外线的照射,所述第二粘合剂的粘性降低。
进一步地,通过施加改性影响因素,所述第二粘合剂的粘性降低,所述第一粘合剂为永久粘合剂。
进一步地,在移除所述过渡基板及所述粘合层的制程中,该方法还包括对粘合层施加改性影响因素,以减少粘合层与所述功能元器件之间的粘合力,和/或增加所述粘合层与所述过渡基板之间的粘合力。
进一步地,根据上述柔性器件的过渡装置的制作方法,制作所述柔性器件的过渡装置。
进一步地,该方法还包括在功能元器件的第一表面和/或所述柔性基板上设置芯片粘结膜,通过所述芯片粘结膜使所述功能元器件从所述第一表面所在的一侧与所述柔性基板相连。
有益效果
本发明提供的柔性器件的过渡装置,通过将功能元器件的第二表面与过渡基板粘接,以及在功能元器件上形成封装层,能够使该柔性器件的过渡装置能较好地对功能元器件进行保护,便于运输,避免在运输过程中对功能元器件造成损坏,能够方便功能元器件进行后续的贴片应用,使用该过渡装置能够直接应用于柔性电子产品的制造。
附图说明
图1为本发明第一实施例提供的柔性器件的过渡装置的结构意图。
图2为图1中A处的放大结构示意图。
图3为本发明第二实施例提供的柔性器件的过渡装置中A处的放大结构实施例。
图4a-图4g为本发明第三实施例提供的柔性器件的过渡装置的制作过程中各步骤的结构示意图。
图5为本发明第三实施例提供的柔性器件的过渡装置的结构示意图。
图6a-图6c为本发明第四实施例提供的柔性器件的过渡装置的制作过程中各步骤的结构示意图。
图7为本发明第五实施例提供的柔性器件的过渡装置的结构示意图。
图8a至图8d为发明第六提供的柔性器件的过渡装置进行柔性器件贴片的方法中各步骤的结构示意图。
图9为本发明第七实施例提供的柔性器件的过渡装置的结构意图。
图10为图9中B处的放大结构示意图。
图11为本发明第八实施例提供的柔性器件的过渡装置中图9的B处的放大结构实施例。
图12a-图12d为本发明第九实施例提供的柔性器件的过渡装置的制作过程中各步骤的结构示意图。
图13为本发明第十实施例提供的柔性器件的过渡装置的结构示意图。
图14为本发明第十一实施例提供的柔性器件的过渡装置的结构示意图。
图15a-图15c为本发明第十二实施例提供的柔性器件的过渡装置的制作过程中各步骤的结构示意图。
图16a至图16d为基于本发明第十三实施例提供的柔性器件的过渡装置进行柔性器件贴片的方法中各步骤的结构示意图。
图17a至图17f为本发明第十四实施例提供的柔性器件的制作方法中各步骤的结构示意图。
图18为图17c中C处的放大结构示意图。
图19为本发明第十五实施例中图17c中C处的放大结构示意图。
图20为本发明第十六实施例中过渡装置的结构示意图。
图21a至图21d为本发明第十七实施例提供的柔性器件的制作方法中各步骤的结构示意图。
图22a至图22b为本发明第十八实施例提供的柔性器件的制作方法中各步骤的结构示意图。
图23a-图23h为本发明第十九实施例提供的柔性器件的制作方法中各步骤的结构示意图。
图24a至图24c为本发明第二十实施例提供的柔性器件的制作方法中各步骤的结构示意图。
图25为本发明第二十一实施例中过渡装置的结构示意图。
本申请的实施方式
为更进一步阐述本申请为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,详细说明如下。
本发明提供了一种柔性器件的过渡装置、制备方法及柔性器件的制作方法,该柔性器件的过渡装置能较好地对功能元器件进行保护,便于运输,避免在运输过程中对功能元器件造成损坏,能够方便功能元器件进行后续的贴片应用,使用该过渡装置能够直接应用于柔性电子产品的制造。
在本专利中,申请人所述的功能元器件包括IC芯片及基于柔性聚合物衬底的柔性元器件,IC芯片为以Si、SiC、GaAs等半导体材料为衬底的集成电路,聚合物衬底的柔性元器件为以柔性聚合物为衬底的电容、电阻、传感器及生物MEMS等功能元器件。
如图1所示,本发明第一实施例提供的柔性器件的过渡装置包括IC芯片10及过渡基板20,过渡基板20与IC芯片10之间通过粘合层30粘合。
IC芯片10包括IC芯片衬底11、形成于IC芯片衬底11上的电路功能层12,以及对IC芯片衬底11及电路功能层12进行封装的封装层13。
在本实施例中IC芯片衬底11可以为经过减薄处理的IC芯片衬底11,以绝缘体硅片(SOI,Silicon On Insulator)为例,该减薄处理的结果使IC芯片衬底11的厚度小于80μm,或者直接去除硅衬底133及埋氧化层112,仅保留顶层硅111(图1示出了仅保留顶层硅111)。
在其它实施例中,IC芯片10也可以为经过减薄处理的体硅(即单硅片)。
IC芯片10上形成有预备与基板,如柔性基板40,进行贴片处理的第一表面14以及IC芯片10上与第一表面14相对的第二表面15。可以理解地,在正装工艺中,当IC芯片10固定于柔性基板40上时,IC芯片10的电路功能层12是朝向远离柔性基板40一侧的,也即,电路功能层12所在的一面为IC芯片10的第二表面15,而IC芯片衬底11所在的一面为IC芯片10的第一表面14;而在倒装工艺中,当IC芯片10固定于柔性基板40上时,IC芯片10的电路功能层12是朝向柔性基板40一侧的,此时,IC芯片10的电路功能层12所在的一侧为IC芯片10的第一表面14,而IC芯片衬底11所在的一侧为IC芯片10的第二表面15。
封装层13至少从电路功能层12的表面,以及IC芯片10四周的侧面对IC芯片10进行封装。在其它实施例中,封装层13还对IC芯片10远离电路功能层12的一侧的表面进行封装,也即对IC芯片10的所有表面进行封装。在封装层13位于电路功能层12的一侧上,所述电路功能层12包括焊盘PAD,电路功能层12的PAD从封装层13内露出。
封装层13由有机聚合物或无机物或有机物与无机物的混合物形成,或者由有机聚合物层及无机物层交替布设而成。
有机聚合物包括丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等材料中的一种或多种柔性聚合物材料。其厚度可以为200-10000纳米。
无机物可以包括硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物,其厚度分别控制为5-600纳米。
在上述结构中,当封装层13由无机物层及有机聚合物层交替布设组成时,无机物封装层13主要进行气密性封装,而有机聚合物封装层13主要起到柔性封装作用,并对封装层13内的应力进行缓冲,通过无机物与有机聚合物交替布设能够使二者形成互补,增加封装层13的可靠性。
在本实施例中,过渡基板20可以为刚性基板,如单晶硅、玻璃、陶瓷基板,或由刚性聚合物材料制成的基板,或由复合材料制成的基板,优选地,基板的厚度为100-500μm。
过渡基板20通过粘合层30与IC芯片10的第二表面15粘合。也即,当IC芯片10为适用于正装工艺的IC芯片10时,过渡基板20与IC芯片10中电路功能层12所在的一侧粘合(参见图1);当IC芯片10为适用于倒装工艺的IC芯片10时,过渡基板20与IC芯片10中远离电路功能层12所在的一侧粘合(参见图5)。如图8a至图8d所示,本发明提供的过渡装置可以直接应用于IC芯片10的贴装过程中,直接将过渡装置贴装于柔性基板40上,然后将过渡基板20去除,即可得到柔性器件。
粘合层30上形成有用于与过渡基板20粘合的第一粘合面31,以及用于与IC芯片10粘合的第二粘合面32。为了在IC芯片10贴装于柔性基板40后,使粘合层30及过渡基板20脱离IC芯片10,在本发明中,第一粘合面31与过渡基板20之间的粘合力大于第二粘合面32与IC芯片10之间的粘合力,或者在对粘合层30施加改性影响因素的情况下,第一粘合面31与过渡基板20之间的粘合力大于第二粘合面32与IC芯片10之间的粘合力,上述的改性影响因素是指能够改变第一粘合面31或第二粘合面32的粘性的影响因素,如特定的温度及特定强度、波长的光线等。
在本发明的第一实施例中,上述的效果可以通过增大过渡基板20与粘合层30接触的一面的粗糙度,和/或减少封装层13与粘合层30接触的一面的粗糙度来实现。如图2所示,在过渡基板20与粘合层30接触的一面可以形成有凹凸结构21,以增加其表面粗糙度,进而增加过渡基板20与粘合层30之间的粘合力。优选地,凹陷处的深度可以为1μm-15μm,凹陷处的深宽比可以为0.5-3,当凹凸结构21为锯齿形的凹凸结构21时,锯齿波形顶部的角度为30-150°。
在其它实施例中,如图3所示,粘合层30至少包括第一粘合层33及第二粘合层34,第一粘合层33与过渡基板20接触,第二粘合层34与IC芯片10接触,也即,第一粘合面31形成于第一粘合层33与过渡基板20之间,第二粘合面32形成于第二粘合层34与IC芯片10之间。通过改性影响因素的施加,可以使第一粘合层33的粘性增强,和/或使第二粘合层34的粘性降低。
基于上述的效果,第一粘合层33为热敏感粘合剂形成的第一粘合层33,通过改性温度的施加,第一粘合层33的粘性增强;第一粘合层33也可以为紫外线敏感粘合剂形成的第一粘合层33,通过改性紫外线的照射,第一粘合层33的粘性增强。第二粘合层34可以为热敏感粘合剂形成的第二粘合层34,通过改性温度的施加,第二粘合层34的粘性降低;第二粘合层34也可以为紫外线敏感粘合剂,通过改性紫外线的照射,第二粘合层34的粘性降低。
在施加改性影响因素,第二粘合层34的粘性降低时,第一粘合层33也可以为永久粘合剂,该处的永久粘合剂可以理解为在对第二粘合层34施加影响因素时,粘度不变的粘合剂。
如图3所示,粘合层30还包括缓冲层35,缓冲层35设置于第一粘合层33与第二粘合层34之间,并分别通过缓冲层35的两个表面与第一粘合层33及第二粘合层34粘接,以保证在过渡基板20脱离制程中,第二粘合层34能够顺利地与IC芯片10脱离。
进一步地,缓冲层35为导热系数小于0.5的低导热材料,如玻璃纤维、PVC、及环氧树脂等,以防止在对其中一个粘合层施加影响因素时,对其它粘合层造成影响。
为了便于后续通过本发明提供的柔性器件的过渡装置对IC芯片10进行贴装,如图7所示,在IC芯片10远离过渡基板20一侧的表面,也即在预备与柔性基板40粘接的第一表面14上,还设置有芯片粘结膜16,芯片粘结膜16可以为DieAttachFilm(DAF)膜。使该柔性器件的过渡装置能够形成可贴片器件,进一步地降低了IC芯片10贴片的难度和贴片工艺控制的难度,有利于实现柔性器件的低成本大批量商业化制造。
芯片粘结膜16的粘性大于粘合层30,具体为第一粘合层33的粘性,以防止在去除过渡基板20的过程中,粘合层30无法从IC芯片10上剥离,同时也使IC芯片10与柔性基板40的粘结更加稳定。
在过渡基板20远离IC芯片10的一侧的表面上,也即在预备与柔性基板40粘接的第一表面14上,还可以通过激光光刻印刷等工艺形成有微图像结构(图未示),该微图像结构可以为十字形或圆形等,以方便后续工序中对柔性器件贴装时的图像识别对位、位置校准及角度偏移等操作,以提高器件贴片时的贴装精度。
本发明提供的柔性器件的过渡装置,通过将IC芯片10的第二表面15与过渡基板20粘接,在于过渡基板20粘接后,可以以过渡基板20为衬底,直接进行IC芯片衬底11的减薄处理,便于IC芯片10的薄化处理;进一步地,该柔性器件的过渡装置,兼容现有SMT技术。或进行芯片封装的晶元wafer供料方式,又可以直接将该过渡装置应用于IC芯片10的贴装工艺中,降低了IC芯片10贴装工艺中,对IC芯片10贴片设备的贴片工艺过程控制难度的要求,以便于IC芯片10的贴装。同时,由于在IC芯片10上形成有封装层13,过渡基板20通过粘合层30与封装层13粘接,一方面,封装层13的设置使该粘合层30的粘合与剥离不会对IC芯片衬底11及电路功能层12造成损坏;另一方面,在过渡装置移动的过程中,封装层13可以对IC芯片衬底11及电路功能层12形成保护,对其进行应力缓冲,以及防止外界的灰尘、静电等对IC芯片衬底11及电路功能层12造成影响,降低了IC芯片10存储、运输及后续贴装工艺的难度;最后,在进行IC芯片10贴装工艺时,由于IC芯片衬底11及电路功能层12被封装层13所保护,因此,可以降低贴装工艺对车间环境及设备精度的要求;更使得该柔性器件的过渡装置可以以一个独立的产品,进入IC芯片10贴装行业流通,有利于IC芯片10下游厂家进行超薄柔性器件的定制化生产,有利于柔性器件行业的发展。
如图4a至4g所示,本发明还提供了一种柔性器件的过渡装置的制备方法,该方法包括如下步骤:
提供一个晶元16,在晶元16上形成电路功能层12(如图4a及图4b);
对该晶元16及电路功能层12进行切割划片,以在晶元16上形成多个IC芯片衬底11,每一IC芯片衬底11上均形成有对应的电路功能层12(如图4c);
对IC芯片衬底11及电路功能层12进行封装,使之成为IC芯片10,封装层13形成于电路功能层12所在一侧的IC芯片的表面上,以及IC芯片10的侧面上(如图4d);
IC芯片10上形成有预备与基板,如柔性基板40进行贴片处理的第一表面14以及与第一表面14相对应的第二表面15,提供一过渡胚板22,将过渡胚板22通过粘合层30粘接于IC芯片10的第二表面15上(如图4e及4g);
对过渡胚板22进行切割划片,使之分为多个独立的柔性器件的过渡装置。
需要说明的是,在本实施例中,过渡胚板22经过切割后形成单个的过渡基板20。
通过上述的方法,可以使柔性器件的制备方法应用于大批量的商业化制造过程中,在上述的柔性器件的过渡装置制备完成后,可以进行卷带包装或托盘式包装,以便于存储及运输。
进一步地,在该方法中,在晶元16上制作电路功能层12时,还需要对电路功能层12的I/O端口的PAD处进行加厚处理,以及在PAD上制作柔性电极,该柔性电极可以为Au、Ag或C等纳米材料,或者Au、Ag或C等纳米材料与聚合物形成的具有粘性的混合物,以便在制作封装层13时将电路功能层的PAD从封装层13内引出。
进一步地,在本实施例中,如图4c所示,以绝缘体硅片为衬底的IC芯片为例,在对晶元16及电路功能层12进行切割划片时,依次对电路功能层12、顶层硅层111及埋氧化层112进行划片切割;可以理解地,若IC芯片衬底11为体硅,在对晶元16及电路功能层12进行切割划片时,依次对电路功能层12及硅层进行切割划片。上述切割划片的深度可以为为20-150μm。
在本实施例中,可以通过蚀刻、机械切割或激光切割等方式对晶元16及电路功能层12进行切割。
封装层13可以由有机聚合物或无机物或有机聚合物与无极物的混合物形成,或者由有机聚合物层及无机物层交替布设而成。
有机聚合物包括丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等一种或多种柔性聚合物材料。其厚度可以为200-10000nm。
无机物可以包括硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物,其厚度可以控制为5-600nm。
粘合层30上形成有与用于与过渡胚板22粘合的第一粘合面31,以及用于与IC芯片10粘合的第二粘合面32。为了在IC芯片10贴装于过渡胚板22后,使粘合层30及过渡胚板22脱离IC芯片10,在本方法中,第一粘合面31与过渡胚板22之间的粘合力大于第二粘合面32与IC芯片10之间的粘合力,或者在施加改性影响因素的情况下,第一粘合面31与过渡胚板22之间的粘合力大于第二粘合面32与IC芯片10之间的粘合力。
在本实施例中,上述的效果可以通过增大过渡胚板22与粘合层30接触的一面的粘合面积,和/或减少封装层13与粘合层30接触的一面的粘合面积来实现。如图2所示,在过渡胚板22与粘合层30接触的一面可以形成有多个凹凸结构21,以增加其粘合面积,进而增加过过渡胚板与粘合层30之间的粘合力。优选地,凹陷处的深度可以为1μm-15μm,凹陷处的深宽比可以为0.5-3,当凹凸结构21为锯齿形的凸凹部21时,锯齿波形顶部的角度为30-150°。
在其它实施例中,如图3所示,粘合层30至少包括第一粘合层33及第二粘合层34,第一粘合层33与过渡胚板22接触,第二粘合层34与封装层13接触,也即,第一粘合面31形成于第一粘合层33与过渡胚板22之间,第二粘合面32形成于第二粘合层34与封装层13之间。通过改性影响因素的施加,可以使第一粘合层33的粘性增强,和/或使第二粘合层34的粘性降低。
基于上述的效果,第一粘合层33为热敏感粘合剂,通过改性温度的施加,第一粘合层33的粘性增强;第一粘合层33也可以为紫外线敏感粘合剂,通过改性紫外线的照射,第一粘合层33的粘性增强。第二粘合层34可以为热敏感粘合剂,通过改性温度的施加,第二粘合层34的粘性降低;第二粘合层34也可以为紫外线敏感粘合剂,通过改性紫外线的照射,第二粘合层34的粘性降低。
在施加改性影响因素,第二粘合层34的粘性降低时,第一粘合层33也可以为永久粘合剂,该处的永久粘合剂可以理解为在对第二粘合层34施加改性影响因素时,粘度不变的粘合剂。
进一步地,在该方法中,粘合层30还包括缓冲层35,缓冲层35设置于第一粘合层33与第二粘合层34之间,并分别通过两个表面与第一粘合层33及第二粘合层34粘接,以保证在过渡胚板22脱离制程中,第二粘合层34能够顺利地与IC芯片10脱离。
进一步地,缓冲层35为导热系数小于0.5的低导热材料,如玻璃纤维、PVC、及环氧树脂等,以防止在对一个粘合层30施加影响因素时,对另一个粘合层30造成影响。
在该方法中,在形成封装层13的步骤后,还可以包括对IC芯片衬底11进行减薄处理。在本实施例中,可以通过机械研磨、蚀刻等方法来对IC芯片衬底11进行减薄处理。
在本实施例中,若IC芯片10为适用于正装工艺的IC芯片10,此时,IC芯片10的第二表面15为电路功能层12所在的一侧,在过渡胚板22粘接的步骤中,过渡胚板22直接与IC芯片10的电路功能层12所在的一侧粘接,IC芯片衬底11欲进行减薄的一侧会直接露出即第一表面,此时能够直接对IC芯片衬底11进行减薄处理,使IC芯片衬底减薄至小于80μm,当IC芯片衬底11为绝缘体硅片时,可以直接将硅衬底113及埋氧化层112除去,仅保留顶层硅111。由于在进行IC芯片衬底11减薄处理时,过渡胚板22可以直接作为此时的衬底使用,因此,在基于该方法进行硅衬底113减薄时,可以减少IC芯片衬底11转移的次数,减少对IC芯片10造成损伤的可能。同时,由于在进行IC芯片11减薄处理时,会在IC芯片10的电路功能层12所在的一侧,以及IC芯片10的侧面形成封装层13,该封装层13会对IC芯片衬底11提供保护,以进一步降低在减薄处理时对IC芯片衬底11造成损伤的可能,同时也降低了减薄处理对设备及环境的要求,降低了成本。
进一步地,在进行减薄处理后,该方法还包括在IC芯片10进行减薄处理的一侧进行封装,以使封装层13能够完全包覆IC芯片衬底11及电路功能层12。
若IC芯片10为适用于倒装工艺的IC芯片10,此时,IC芯片10的第一表面14为电路功能层12所在的一侧,过渡胚板22会与IC芯片衬底11远离电路功能层12所在的一侧的表面粘接(如图5),为了进行减薄处理,如图6a至6c所示,该方法在形成封装层13后,还包括提供一转接板23,该转接板23通过转接粘合层231与适用于倒装工艺的IC芯片10的第一表面14相粘接,也即,将转接板23与IC芯片10电路功能层12所在的一侧的表面相粘接,然后对IC芯片衬底11进行减薄处理,使IC芯片衬底11减薄至小于80μm,当IC芯片衬底11为绝缘体硅片时,可以直接将硅衬底113及埋氧化层112除去,仅保留顶层硅111。待减薄处理后,还可以对减薄处理的一侧进行封装,使封装层13从IC芯片10的各个表面对IC芯片衬底11及电路功能层12进行封装,然后,将过渡胚板22通过粘合层30与IC芯片10上已经进行减薄处理的一侧的表面粘接,最后剥离转接板23及转接粘合层231,再经过切割即可得到柔性器件的过渡装置。
为了使转接板23及转接粘合层231顺利地与IC芯片10脱离,在本实施例中,转接粘合层231与IC芯片10之间的粘合力小于粘合层30与IC芯片10之间的粘合力。
进一步地,在进行减薄处理后,该方法还可以包括再对IC芯片衬底11经过减薄处理的表面进行干式蚀刻或干式抛光等工艺以消除该表面的残余应力。
为了进一步简化后续IC芯片10的贴装制程,在本实施例中,该方法还包括在IC芯片10的第一表面14上形成有芯片粘结膜16,该芯片粘结膜16可以为Die Attach Film(DAF)膜。芯片粘结膜16的粘性大于粘合层33,具体为第一粘合层33的粘度,以防止在去除过渡基板20的过程中,IC芯片10无法从过渡基板20上剥离,同时也使IC芯片10与柔性基板40的粘结更加稳定。
进一步地,该方法还包括在过渡胚板22上形成微图像结构,该为图像结构位于过渡胚板22远离IC芯片10一侧的表面上。
本发明还提供了一种基于上述柔性器件的过渡装置进行柔性器件贴片的贴片方法,如图8a至图8d该方法包括如下步骤:
提供一个柔性基板40,以及上述的柔性器件的过渡装置;
将该过渡装置中IC芯片10贴装于柔性基板40上;
将过渡基板20及粘合层30从IC芯片10上移除。
在上述的贴片方法中,由于采用了本发明提供的柔性器件的过渡装置,在IC芯片衬底11及电路功能层12外形成有封装层13,以及在IC芯片10的第二表面15上粘合有过渡基板20,封装层13可以提供一定的柔性,且可以缓解一定的应力,且在贴片时,可以通过抓取过渡基板20来完成IC芯片衬底11的移动,这能够减少对设备的精度以及对于车间环境的要求。
进一步地,在本实施例中,为了便于IC芯片10的贴片,在IC芯片10预备与柔性基板40贴装的一面和/或者在柔性基板40上设置有芯片粘结膜16,该芯片粘结膜16可以为Die Attach Film(DAF)膜。芯片粘结膜16的粘性大于第一粘合层33的粘度,以防止在去除过渡基板20的过程中,IC芯片10无法从过渡基板20上剥离,同时也使IC芯片10与柔性基板40的粘结更加稳定。
进一步地,在过渡基板20及粘合层30移除的制程中,该方法还包括对过渡基板20的粘合层30施加,如温度或紫外线等的影响因素,以减少粘合层30与IC芯片10之间的粘合力,和/或增加粘合层30与过渡基板20之间的粘合力,便于将过渡基板20及粘合层30从IC芯片10上去除。
如图9所示,本发明第七实施例提供的柔性器件的过渡装置包括基于聚合物衬底的柔性元器件50及过渡基板20,该过渡基板20与基于聚合物衬底的柔性元器件50之间通过粘合层30粘接。
在本发明中,基于聚合物衬底的柔性元器件50可以为柔性电子器件中的电容、电阻、传感器及生物MEMS(Micro-Electro-Mechanical System 微机电***)等以聚合物为衬底的功能元器件。基于聚合物衬底的柔性元器件50包括衬底层51、位于衬底层51上的器件功能层52及封装层53,封装层53至少对器件功能层52进行封装。
封装层53由有机聚合物或无机物形成,或者由有机聚合物及无机物交替布设而成。
有机聚合物为丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等材料中的一种或多种柔性聚合物材料。其厚度可以为200-10000纳米。
无机物可以为硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物材料,其厚度分别控制为5-600纳米。
衬底层51是由有机聚合物形成,或由有机聚合物及无机物交替布设而成。
有机聚合物由丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等材料中的一种或多种柔性聚合物材料形成。无机物可以由硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物形成。
在上述结构中,当封装层53由无机物层及有机聚合物层交替布设组成时,无机物封装层53主要进行气密性封装,而有机聚合物封装层53主要起到柔性封装作用,并对封装层53内的应力进行缓冲,通过无机物与有机聚合物交替布设能够使二者形成互补,增加封装层53的可靠性。
基于聚合物衬底的柔性元器件50上形成有预备与基板,如柔性基板40进行贴片处理的第一表面54以及与第一表面54相对应的第二表面55,可以理解地,在正装工艺中,也即基于聚合物衬底的柔性元器件50贴装于基板后,器件功能层52的PAD朝向远离基板的一侧的贴装工艺中(如图9、图12a至图12d所示),当基于聚合物衬底的柔性元器件50贴装于基板上时,基于聚合物衬底的柔性元器件50的器件功能层52相对于衬底层51来说是朝向远离基板一侧的,此时,基于聚合物衬底的柔性元器件50上器件功能层52所在的一侧为基于聚合物衬底的柔性元器件50的第二表面55,衬底层51所在一侧为基于聚合物衬底的柔性元器件50的第一表面54;在倒装工艺中(如图13、图15a至图15c所示),也即基于聚合物衬底的柔性元器件50贴装于基板后,器件功能层52的PAD朝向基板贴装的工艺中,当基于聚合物衬底的柔性元器件50贴装于基板上时,聚合物柔性衬底器件的器件功能层52相对于衬底层51来说是朝向靠近基板一侧的,此时,基于聚合物衬底的柔性元器件50上器件功能层52所在的一侧为基于聚合物衬底的柔性元器件50的第一表面54,而衬底层51所在的一侧为基于聚合物衬底的柔性元器件50的第二表面55。
过渡基板20通过粘合层30与基于聚合物衬底的柔性元器件50的第二表面55粘合,也即当基于聚合物衬底的柔性元器件50为适用于正装工艺的基于聚合物衬底的柔性元器件50时,过渡基板20与基于聚合物衬底的柔性元器件50中器件功能层52所在的一侧粘合(参见图9);当基于聚合物衬底的柔性元器件50为适用于倒装工艺的基于聚合物衬底的柔性元器件50时,过渡基板20与基于聚合物衬底的柔性元器件50中衬底层51所在的一侧粘合(参见图13)。
在本实施例中,过渡基板20可以为刚性基板,如单晶硅、玻璃、陶瓷基板,或由刚性聚合物材料制成的基板,或由复合材料制成的基板,优选地,基板的厚度为100-500μm。
如图16a至图16d所示,本发明提供的过渡装置可以直接将基于聚合物衬底的柔性元器件50贴装于柔性基板40上,然后将过渡基板20剥离,即可得到柔性器件。
粘合层30上形成有与用于与过渡基板20粘合的第一粘合面31,以及用于与基于聚合物衬底的柔性元器件50粘合的第二粘合面32。为了在基于聚合物衬底的柔性元器件50贴装于柔性基板40后,使粘合层30及过渡基板20脱离基于聚合物衬底的柔性元器件50,在本发明中,第一粘合面31与过渡基板20之间的粘合力大于第二粘合面32与基于聚合物衬底的柔性元器件50之间的粘合力,或者在对粘合层30施加改性影响因素的情况下,第一粘合面31与过渡基板20之间的粘合力大于第二粘合面32与基于聚合物衬底的柔性元器件50之间的粘合力。上述的改性影响因素是指能够改变第一粘合面31或第二粘合面32的粘性的影响因素,如特定的温度及特定强度、波长的光线等
在本发明的第一实施例中,上述的效果可以通过增大过渡基板20与粘合层30接触的一面的粘合面积,和/或减少封装层53与粘合层30接触的一面的粘合面积来实现。如图10所示,在过渡基板20与粘合层30接触的一面可以形成有多个凹凸结构21,以增加其表面的粘合面积,进而增加过渡基板20与粘合层30之间的粘合力。优选地,凹陷处的深度可以为1μm-15μm,凹陷处的深宽比可以为0.5-3,当凹凸结构21为锯齿形的凹凸结构21时,锯齿波形顶部的角度为30-150°。
在其它实施例中,如图11所示,粘合层30至少包括第一粘合层33及第二粘合层34,第一粘合层33与过渡基板20接触,第二粘合层34与基于聚合物衬底的柔性元器件50接触,也即,第一粘合面31形成于第一粘合层33与过渡基板20之间,第二粘合面32形成于第二粘合层34与基于聚合物衬底的柔性元器件50之间。通过改性影响因素的施加,可以使第一粘合层33的粘性增强,和/或使第二粘合层34的粘性降低。
基于上述的效果,第一粘合层33为热敏感粘合剂形成的第一粘合层33,通过改性温度的施加,第一粘合层33的粘性增强;第一粘合层33也可以为紫外线敏感粘合剂形成的第一粘合层33,通过改性紫外线的照射,第一粘合层33的粘性增强。第二粘合层34可以为热敏感粘合剂形成的第二粘合层34,通过改性温度的施加,第二粘合层34的粘性降低;第二粘合层34也可以为紫外线敏感粘合剂,通过改性紫外线的照射,第二粘合层34的粘性降低。
在施加特定的影响因素,第二粘合层34的粘性降低时,第一粘合层33也可以为永久粘合剂,该处的永久粘合剂可以理解为在对第二粘合层34施加影响因素时,粘度不变的粘合剂。
如图11所示,粘合层30还包括缓冲层35,缓冲层35设置于第一粘合层33与第二粘合层34之间,并分别通过两个表面与第一粘合层33及第二粘合层34粘接,以保证在过渡基板20脱离制程中,第二粘合层34能够顺利地与基于聚合物衬底的柔性元器件50脱离。
进一步地,缓冲层35为导热系数小于0.5的低导热材料,如玻璃纤维、PVC、及环氧树脂等,以防止在对其中一个粘合层30施加影响因素时,对其它粘合层30造成影响。
为了便于后续通过本发明提供的柔性器件的过渡装置对基于聚合物衬底的柔性元器件50进行贴装,如图14所示,在基于聚合物衬底的柔性元器件50远离过渡基板20一侧的表面,也即在预备与柔性基板40粘接的第一表面54上,还设置有器件粘接膜57,器件粘接膜57可以为DieAttachFilm(DAF)膜。使该柔性器件的过渡装置能够形成可贴片器件,进一步地降低了基于聚合物衬底的柔性元器件50贴片的难度和贴片工艺控制的难度,有利于实现柔性器件的低成本大批量商业化制造。
器件粘接膜57的粘性大于粘合层30,具体为第一粘合层33的粘性,以防止在剥离过渡基板20的过程中,粘合层30无法从基于聚合物衬底的柔性元器件50上剥离,同时也使基于聚合物衬底的柔性元器件50与柔性基板40的粘结更加稳定。
在过渡基板20远离基于聚合物衬底的柔性元器件50的一侧的表面上,还可以通过激光光刻印刷等工艺形成有微图像结构(图未示),该微图像结构可以为十字形或圆形等,以方便后续工序中对柔性器件贴装时的图像识别对位、位置校准及角度偏移等操作,以提高器件贴片时的贴装精度。
本发明提供了一种柔性器件的过渡装置,通过将基于聚合物衬底的柔性元器件50的第二表面55与过渡基板20粘结,在将基于聚合物衬底的柔性元器件50固定于柔性基板40上时,可以通过抓取过渡基板20以移动过渡装置,然后将基于聚合物衬底的柔性元器件50通过贴片工艺固定于柔性基板40上,这能够兼容现有的SMT技术,或采用进行芯片封装时的wafer供料方式,使基于聚合物衬底的柔性元器件50能够像IC芯片一样通过贴片工艺固定于柔性基板40上,可以与IC芯片采用同一设备进行贴片工艺。进一步地,由于过渡基板20的设置,又能够降低对于抓取装置精度的要求。进一步地,由于在基于聚合物衬底的柔性元器件50的器件功能层52上增加封装层53,一方面,该封装层53的设置能够使粘合层30的粘合及剥离不会对器件功能层52造成损坏,另一方面,在过渡装置的移动及贴装过程中,封装层53可以对基于聚合物衬底的柔性元器件50形成保护,对其进行应力缓冲,以防止外界的灰尘、静电、冲击等对器件功能层52造成损害,降低了基于聚合物衬底的柔性元器件50的存储、运输及后续贴装工艺的难度;进一步地,在进行基于聚合物衬底的柔性元器件50的贴装工艺时,由器件功能层52被封装层53所保护,因此,可以降低贴装工艺对车间环境及设备精度的要求;更使得该柔性器件的过渡装置可以以一个独立的产品,进入柔性电子器件行业流通,同时也有利于大规模生产同种规格参数的产品,有利于电子器件行业下游厂家进行超薄柔性器件的定制化生产,有利于柔性器件行业的发展。
如图12a至4d,以及图15a至图15c所示,本发明还提供了一种柔性器件的过渡装置的制备方法,该方法包括如下步骤:
提供一个衬底胚板511,并在衬底胚板511上形成多个器件功能层52(如图12a);
对器件功能层52进行封装,以形成基于聚合物衬底的柔性器件胚体56(如图12b);
基于聚合物衬底的柔性元器件胚体56上形成有预备与基板进行贴片处理的第一表面54,以及与第一表面54相对应的第二表面55,提供一个过渡胚板22,将过渡胚板22通过粘合层30粘接于基于聚合物衬底的柔性元器件50的第二表面55上(如图12c);
对基于聚合物衬底的柔性元器件胚体56进行切割划片,使之分成多个独立的柔性器件的过渡装置(如图12d)。
通过上述的方法,可以使柔性器件的过渡装置的制备方法应用于大批量的商业化制造过程中,在上述的柔性器件的过渡装置制备完成后,可以进行卷带包装或托盘式包装,以便于形成一个独立的产品进行存储及运输。
进一步地,在该方法中,在制作器件功能层52时,还包括对器件功能层52的PAD处进行加厚处理,以及在器件功能层52的PAD处制作柔性电极,该柔性电极可以为Au、Ag或C等纳米材料,或者Au、Ag或C等纳米材料与聚合物形成的具有粘性的混合物,以在对器件功能层52进行封装时,将器件功能层52的PAD从封装层53内引出。
进一步地,在本实施例中,封装层53可以由有机聚合物或无机物形成,或者由有机聚合物及无机物交替布设而成。
有机聚合物由丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等一种或多种柔性聚合物材料形成。其厚度可以为200-10000nm。
无机物可以由硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物形成,其厚度分别控制为5-600nm。
在本实施例中,过渡胚板22可以为刚性基板,如单晶硅、玻璃、陶瓷基板,或由刚性聚合物材料制成的基板,或由复合材料制成的基板,优选地,过渡胚板22的厚度为100-500μm。经过切割划片,过渡胚板22形成多个独立的过渡基板20。
在本发明提供的柔性器件的过渡装置的制作方法中,粘合层30上形成有与用于与过渡胚板22粘合的第一粘合面31,以及用于与基于聚合物衬底的柔性元器件50粘合的第二粘合面32。为了在基于聚合物衬底的柔性元器件50贴装于柔性基板40后,使粘合层30及过渡基板20脱离基于聚合物衬底的柔性元器件50,在本发明中,第一粘合面31与过渡胚板22之间的粘合力大于第二粘合面32与基于聚合物衬底的柔性元器件50之间的粘合力,或者在对粘合层30施加改性影响因素的情况下,第一粘合面31与过渡胚板22之间的粘合力大于第二粘合面32与基于聚合物衬底的柔性元器件50之间的粘合力。
在本发明的第一实施例中,上述的效果可以通过增大过渡胚板22与粘合层30接触的一面的粘合面积,和/或减少封装层53与粘合层30接触的一面的粘合面积来实现。如图10所示,在过渡胚板22与粘合层30接触的一面可以形成有多个凹凸结构21,以增加其粘合面积,进而增加过渡胚板22与粘合层30之间的粘合力。优选地,凹陷处的深度可以为1μm-15μm,凹陷处的深宽比可以为0.5-3,当凹凸结构21为锯齿形的凹凸结构21时,锯齿波形顶部的角度为30-150°。
在其它实施例中,如图11所示,粘合层30至少包括第一粘合层33及第二粘合层34,第一粘合层33与过渡胚板22接触,第二粘合层34与基于聚合物衬底的柔性元器件50接触,也即,第一粘合面31形成于第一粘合层33与过渡胚板之间,第二粘合面32形成于第二粘合层34与基于聚合物衬底的柔性元器件50之间。通过改性影响因素的施加,可以使第一粘合层33的粘性增强,和/或使第二粘合层34的粘性降低。
基于上述的效果,第一粘合层33为热敏感粘合剂形成的第一粘合层33,通过改性温度的施加,第一粘合层33的粘性增强;第一粘合层33也可以为紫外线敏感粘合剂形成的第一粘合层33,通过改性紫外线的照射,第一粘合层33的粘性增强。第二粘合层34可以为热敏感粘合剂形成的第二粘合层34,通过改性温度的施加,第二粘合层34的粘性降低;第二粘合层34也可以为紫外线敏感粘合剂,通过改性紫外线的照射,第二粘合层34的粘性降低。
在施加特定的影响因素,第二粘合层34的粘性降低时,第一粘合层33也可以为永久粘合剂,该处的永久粘合剂可以理解为在对第二粘合层34施加影响因素时,粘度不变的粘合剂。
如图11所示,粘合层30还包括缓冲层35,缓冲层35设置于第一粘合层33与第二粘合层34之间,并分别通过两个表面与第一粘合层33及第二粘合层34粘接,以保证在过渡基板20脱离制程中,第二粘合层34能够顺利地与基于聚合物衬底的柔性元器件50脱离。
进一步地,缓冲层35为导热系数小于0.5的低导热材料,如玻璃纤维、PVC、及环氧树脂等,以防止在对其中一个粘合层30施加影响因素时,对其它粘合层30造成影响。
在本发明的实施例中,衬底胚板511是由有机聚合物形成,或由有机聚合物或无机物交替布设而成。
有机聚合物为丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等材料中的一种或多种柔性聚合物材料。无机物可以为硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物。
为了便于后续通过本发明提供的柔性器件的过渡装置对基于聚合物衬底的柔性元器件50进行贴装,如图14所示,该方法还包括,在基于聚合物衬底的柔性元器件50远离过渡胚板22一侧的表面,也即在预备与柔性基板40粘接的第一表面54上,形成器件粘接膜57,器件粘接膜57可以为Die Attach Film(DAF)膜。使该柔性器件的过渡装置能够形成可贴片器件,进一步地降低了基于聚合物衬底的柔性元器件50贴片的难度和贴片工艺控制的难度,有利于实现柔性器件的低成本大批量商业化制造。
器件粘接膜57的粘性大于粘合层30,具体为第一粘合层33的粘性,以防止在去除过渡基板20的过程中,粘合层30无法从基于聚合物衬底的柔性元器件50上剥离,同时也使基于聚合物衬底的柔性元器件50与柔性基板40的粘结更加稳定。
进一步地,该方法还包括,在过渡胚板22远离基于聚合物衬底的柔性元器件50的一侧的表面上,通过激光光刻印刷等工艺形成有微图像结构(图未示),该微图像结构可以为十字形或圆形等,以方便后续工序中对柔性器件贴装时的图像识别对位、位置校准及角度偏移等操作,以提高器件贴片时的贴装精度。
本发明还提供了一种基于上述柔性器件的过渡装置进行柔性器件贴片的贴片方法,如图16a至图16d该方法包括如下步骤:
提供一个柔性基板40,以及上述的柔性器件的过渡装置;
将该过渡装置中的基于聚合物衬底的柔性元器件50贴装于柔性基板40上;
将过渡基板20及粘合层30从基于聚合物衬底的柔性元器件50上移除。
在上述的贴片方法中,由于采用了本发明提供的柔性器件的过渡装置,封装层53及衬底层51共同对基于聚合物衬底的柔性元器件50进行封装,以及在基于聚合物衬底的柔性元器件50的第二表面55上通过粘合层30固定有过渡基板20,在该结构中,封装层53及衬底层51可以提供一定的柔性,缓解基于聚合物衬底的柔性元器件50的应力;且在贴片时,可以通过抓取过渡基板20来完成基于聚合物衬底的柔性元器件50的移动,这能够减少设备的精度以及对车间环境的要求。
进一步地,在本实施例中,为了便于基于聚合物衬底的柔性元器件50的贴片,在基于聚合物衬底的柔性元器件50预备与柔性基板40贴装的一面和/或柔性基板40上形成有器件粘接膜57,该器件粘接膜57可以为Die Attach Film(DAF)膜。器件粘接膜57的粘性大于粘合层30,具体为第一粘合层33的粘度,以防止在剥离过渡基板20的过程中,基于聚合物衬底的柔性元器件50无法从过渡基板20上剥离,同时也使基于聚合物衬底的柔性元器件50与柔性基板40的结合更加稳定。
进一步地,在过渡基板20及粘合层30移除的制程中,该方法还包括对粘合层30施加改性影响因素,如温度和/或紫外线等的因素,以减少粘合层30与基于聚合物衬底的柔性元器件50之间的粘合力,和/或增大粘合层30与过渡基板20之间的粘合力,便于将过渡基板20从基于聚合物衬底的柔性元器件50上剥离。
本发明还提供了一种柔性器件的制作方法,该柔性器件的制作方法能够同时用于IC芯片及基于聚合物衬底的柔性元器件的贴片制程中,降低贴片制程对设备精度及车间环境的要求,便于大量制造同规格参数的器件,有利于柔性电子产品行业的发展。
在本专利中,申请人以Si、SiC、GaAs等半导体材料为衬底的集成电路为IC芯片,并以柔性聚合物为衬底的电容、电阻、传感器及生物MEMS等功能元器件为基于聚合物衬底的柔性元器件。
如图17所示,本发明提供的柔性器件制作方法包括如下步骤:
提供一功能元器件本体61(如硅基IC芯片,以聚合物为衬底的电容、电阻、传感器、生物MEMS等);
在功能元器件本体61外形成封装层62,以形成功能元器件60;
功能元器件60上形成有预备与柔性基板40进行贴片处理的第一表面64,及与第一表面64相对应的第二表面65;
提供一过渡基板20,将过渡基板20通过粘合层30与功能元器件60的第二表面65所在一侧粘合,以形成一过渡装置70;
提供一柔性基板40,移动过渡装置70,并使功能元器件60从第一表面64所在的一侧与柔性基板40相连;
剥离过渡基板20及粘合层30,即可完成功能元器件60的贴装。
需要解释的是,上述的功能元器件60的第一表面64及第二表面65是根据与柔性基板40贴片时不同的工艺而确定的,在正装工艺中,也即在贴装工艺中,功能元器件60的PAD与柔性基板40相背离时,功能元器件60的PAD所在的一侧为功能元器件60的第二表面65(如图17所示),此时,过渡基板20设置于功能元器件60的PAD所在的一侧;而在倒装工艺中,也即在贴装工艺中,功能元器件60的PAD是朝向柔性基板40时,功能元器件60的PAD所在的一侧为功能元器件60的第一表面64,此时,过渡基板20设置于远离功能元器件60的PAD所在的一侧。
在本实施例中,由于在将功能元器件60外形成封装层62,并使过渡基板20与功能元器件60的第二表面65所在的一侧相连,以形成一用于移动及贴装功能元器件60的过渡装置70,在进行贴片制程中,通过移动该过渡装置70,即可达到移动功能元器件60的目的,这降低了工艺参数控制的要求,同时,由于功能元器件60外形成有封装层62,封装层62会对功能元器件60进行应力缓冲以及保护,这能够降低贴装过程中设备的精度,以及对车间环境的要求;进一步地,不论是传统的以Si、SiC、GaAs为衬底的IC芯片,或者基于聚合物衬底的柔性元器件都可以采用该过渡装置70进行后续的贴片作业,这使得IC芯片的贴片以及基于聚合物衬底的柔性元器件的制作都能够用同一设备,以及采用同一工艺去进行,能够使二者共同兼容现有的SMT技术,同时降低设备及车间环境的要求,有利于柔性电子产品行业的发展。
封装层62由有机聚合物或无机物形成,或者由有机聚合物及无机物交替布设而成。
有机聚合物为丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等材料中的一种或多种柔性聚合物材料。其厚度可以为200-10000nm。
无机物可以为硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物材料,其厚度分别控制为5-600nm。
在本实施例中,过渡基板20可以为刚性基板,如单晶硅、玻璃、陶瓷基板,或由刚性聚合物材料制成的基板,或由复合材料制成的基板,优选地,过渡基板20的厚度为100-500μm。
进一步地,在本实施例中,为了使过渡基板20及粘合层30顺利地从功能元器件60上剥离,粘合层30上形成有与用于与过渡基板20粘合的第一粘合面31,以及用于与功能元器件60粘合的第二粘合面32,第一粘合面31与过渡基板20之间的粘合力大于第二粘合面32与功能元器件60之间的粘合力,或者在对粘合层30施加改性影响因素的情况下,第一粘合面31与过渡基板20之间的粘合力大于第二粘合面32与功能元器件60之间的粘合力。上述的改性影响因素是指能够改变第一粘合面31或第二粘合面32的粘性的影响因素,如特定的温度及特定强度、波长的光线等。
在本发明的第一实施例中,上述的效果可以通过增大过渡基板20与粘合层30接触的一面的粘合面积,和/或减少功能元器件60与粘合层30接触的一面的粘合面积来实现。如图18所示,在过渡基板20与粘合层30接触的一面可以形成有多个增大粘合面积的凹凸结构22,以增加其粘合面积,进而增加过渡基板20与粘合层30之间的粘合力。优选地,凹陷处的深度可以为1μm-15μm,凹陷处的深宽比可以为0.5-3,当增大粘合面积的凹凸结构22为锯齿形的增大粘合面积的凹凸结构22时,锯齿波形顶部的角度为30-150°。
在其它实施例中,如图19所示,粘合层30至少包括第一粘合层33及第二粘合层34,第一粘合层33与过渡基板20接触,第二粘合层34与功能元器件60接触,也即,第一粘合面31形成于第一粘合层33与过渡基板20之间,第二粘合面32形成于第二粘合层34与功能元器件60之间。通过改性影响因素的施加,可以使第一粘合层33的粘性增强,和/或使第二粘合层34的粘性降低。
基于上述的效果,第一粘合层33为热敏感粘合剂形成的第一粘合层33,通过改性温度的施加,第一粘合层33的粘性增强;第一粘合层33也可以为紫外线敏感粘合剂形成的第一粘合层33,通过改性紫外线的照射,第一粘合层33的粘性增强。第二粘合层34可以为热敏感粘合剂形成的第二粘合层34,通过改性温度的施加,第二粘合层34的粘性降低;第二粘合层34也可以为紫外线敏感粘合剂,通过改性紫外线的照射,第二粘合层34的粘性降低。
在施加改性影响因素,第二粘合层34的粘性降低时,第一粘合层33也可以为永久粘合剂,该处的永久粘合剂可以理解为在对第二粘合层34施加影响因素时,粘度不变的粘合剂。
如图19所示,该方法还包括在第一粘合层33与第二粘合层34之间设置缓冲层35,缓冲层35分别通过两个表面与第一粘合层33及第二粘合层34粘接,以保证在过渡基板20脱离制程中,第二粘合层34能够顺利地与功能元器件60脱离。
进一步地,缓冲层35为导热系数小于0.5的低导热材料,如玻璃纤维、PVC、及环氧树脂等,以防止在对其中一个粘合层施加影响因素时,对其它粘合层造成影响。
进一步地,基于上述的粘合层30,在过渡基板20及粘合层30移除的制程中,该方法还包括对过渡基板20的粘合层30施加改性影响因素,如温度或紫外线等的影响因素,以减少粘合层30与功能元器件60之间的粘合力,和/或增加粘合层30与过渡基板20之间的粘合力,便于将过渡基板20及粘合层30从功能元器件60上去除。
进一步地,在将功能元器件60与柔性基板40相连的步骤中,还包括在功能元器件60远离过渡基板20一侧的表面上,和/或柔性基板40的表面上形成器件粘接膜63(图20示出了在功能元器件60上增加器件粘接膜63的情形)。在本实施例中,器件粘接膜63的粘性大于粘合层30,具体为第一粘合层33的粘性,以防止在剥离过渡基板20的过程中,粘合层30无法从功能元器件60上剥离,同时也使功能元器件60与柔性基板40的粘结更加稳定。
进一步地,为了使过渡装置70的制造适应于大规模生产中,在制造过渡装置70时,如图21a至图21d所示,该方法还包括:
提供一衬底68,在衬底68上形成多个独立的功能元器件本体61;
对衬底68上的多个功能元器件本体61进行封装,以形成多个功能元器件60;
提供一过渡胚板22,将过渡胚板22通过粘合层30与功能元器件60的第二表面65粘合;
对衬底68及过渡胚板22进行切割划片,以形成多个独立的过渡装置70。
通过上述的方法可以使制得的过渡装置70进行卷带包装或者托盘包装,以便于在后续的贴片制程中兼容SMT工艺,或者兼容芯片封装时的wafer供料方式。
进一步地,还包括在过渡胚板22远离功能元器件60的一侧的表面上,通过激光光刻印刷等工艺形成有微图像结构(图未示),该微图像结构可以为十字形或圆形等,以方便后续工序中对柔性器件贴装时的图像识别对位、位置校准及角度偏移等操作,以提高器件贴片时的贴装精度。
在本发明中,功能元器件60可以包括以柔性聚合物为衬底的基于聚合物衬底的柔性元器件,如以柔性聚合物为衬底的电阻、电容、传感器、生物MEMS等;还可以包括以Si、SiC、GaAs等为衬底的IC芯片。
当功能元器件60为基于聚合物衬底的柔性元器件,且该基于聚合物衬底的柔性元器件为适用于正装工艺的基于聚合物衬底的柔性元器件时,请继续参照图21a至图21d,制作基于聚合物衬底的柔性元器件的方法包括如下步骤:
提供一衬底68;
在衬底68上形成电容、电阻、传感器、生物MEMS等功能元器件本体61;
在功能元器件本体61上形成封装层62,;
将过渡胚板22通过粘合层30粘合于功能元器件60远离衬底68的一侧;
对衬底68及过渡胚板22进行切割划片,以形成多个适用于正装工艺的基于聚合物衬底的柔性元器件的制作方法50。
进一步地,在该方法中,在制作功能元器件60时,还包括对功能元器件60的PAD处进行加厚处理,以及在功能元器件60的PAD处制作柔性电极,以将功能元器件60的PAD从封装层62内引出。
进一步地,在本实施例中,为了使功能元器件60具有柔性,该衬底68也可以由有机聚合物,或由有机聚合物及无机物交替布设而成。
有机聚合物由丙烯酸酯类化合物、含羟基和氨基的低聚物、聚酰亚胺、聚苯二甲酸乙二醇酯、聚碳酸酯、聚酯(PET)及聚二甲基硅氧烷(PDMS)等材料中的一种或多种柔性聚合物材料形成。无机物可以由硅、铝、镁、锌、锡、镍及钛中的一种或多种材料的氧化物、氮化物和/或碳化物形成。
当功能元器件60为基于聚合物衬底的柔性元器件,且该基于聚合物衬底的柔性元器件为适用于倒装工艺的基于聚合物衬底的柔性元器件时,如6a及6b所示,制作基于聚合物衬底的柔性元器件的方法包括如下步骤:
提供一衬底68;
在衬底68上形成电容、电阻、传感器、生物MEMS等功能元器件本体61;
在功能元器件本体61上形成封装层62;
将过渡胚板22通过粘合层30粘合于功能元器件60上衬底68所在的一侧;
对衬底68及过渡胚板22进行切割划片,以形成多个适用于正装工艺的基于聚合物衬底的柔性元器件的制作方法50。
也即,与上一实施例相比,在本实施例中,除了过渡胚板22与功能元器件60粘接的位置不同,其它的结构可以采用同样的步骤制得。
当功能元器件60为以Si、SiC、GaAs等为衬底68的IC芯片,且该IC芯片适用于正装工艺时,如图23a至图23h所示,在制作过渡装置70时包括如下步骤:
提供一晶元69,如单体硅片或绝缘体硅片;
在晶元69上形成形成电路功能层66;
对该晶元69及电路功能层66进行切割划片,以在晶元上形成多个独立的功能元器件本体61;
制作封装层62对功能元器件本体61进行封装,以形成多个功能元器件60;
将过渡胚板22通过粘合层30粘结于功能元器件60中电路功能层66所在的一侧;
对过渡胚板22进行切割,以形成多个适应于正装工艺的IC芯片的过渡装置70。
进一步地,在晶元69上制作电路功能层66时,还需要对功能元器件本体61的PAD处进行加厚处理,以及在功能元器件60的PAD上制作柔性电极,该柔性电极可以为Au、Ag或C等纳米材料,或者Au、Ag或C等纳米材料与聚合物形成的具有粘性的混合物,以将晶元69的PAD从封装层62内引出。
在本实施例中,可以通过蚀刻、机械切割或激光切割等方式对晶元69及电路功能层66进行切割,以形成多个独立的功能元器件60。
在该方法中,在将过渡胚板22通过粘合层30粘结于功能元器件60中电路功能层66所在的一侧的步骤后,还可以包括对晶元背离功能元器件60的一侧进行减薄处理,以减少功能元器件60的厚度。在本实施例中,可以通过机械研磨、蚀刻等方法来对晶元进行减薄处理,以使功能元器件本体61的厚度小于80μm。
进一步地,如图23e及7f所示,以绝缘体硅为衬底的IC芯片为例,在晶元69进行切割划片时,可以仅切割顶层硅及埋氧化层,在减薄处理时,可以将硅衬底及埋氧化层完全去除,以最大可能减少功能元器件60的厚度。
进一步地,在进行减薄处理后,该方法还可以包括再对IC芯片本体经过减薄处理的表面进行干式蚀刻或干式抛光等工艺以消除该表面的残余应力。
进一步地,在进行减薄处理后,该方法还包括在功能元器件60进行减薄处理的一侧进行封装,以使封装层62能够完全包覆功能元器件60。
当功能元器件60为以Si、SiC、GaAs等为衬底的IC芯片,且该IC芯片适用于倒装工艺时,在制作过渡装置70时包括如下步骤:
提供一晶元69,如单体硅片或绝缘体硅片;
在晶元69上形成形成电路功能层66;
对该晶元69及电路功能层66进行切割划片,以在晶元69上形成多个独立的功能元器件本体61;
制作封装层62对功能元器件本体61进行封装,以在晶元69上形成多个功能元器件60;
将过渡胚板22通过粘合层30粘结于功能元器件60远离电路功能层66所在一侧的表面上;
对过渡胚板22及晶元进行切割,以形成多个适应于正装工艺的IC芯片的过渡装置70。
也即,相比于上一实施例,在本实施例中,除了过渡胚板22粘接位置的不同外,其它的结构可以采用同样的步骤制得。
在另一个实施例中,若要对适用于倒装工艺的IC芯片进行减薄处理,该方法在制作封装层62对功能元器件60进行封装的步骤后,还包括:
提供一转接板23,将转接板23通过转接粘合层231与功能元器件60上电路功能层66所在的一侧粘接;
对晶元15背离功能元器件60的一侧进行减薄处理;
将过渡胚板22通过粘合层30粘接于功能元器件60远离电路功能层66一侧的表面上;
将转接板23从功能元器件60上剥离。
也即通过转接板23的设置,以转接板23为基板对晶元69背离功能元器件60的一侧进行减薄处理,然后再将过渡胚板22与功能元器件60远离电路功能侧所在的一侧粘接。
在本实施例中,为了使转接板23及转接粘合层231顺利地与功能元器件60脱离,在本实施例中,转接粘合层231与功能元器件60之间的粘合力小于粘合层30与功能元器件60之间的粘合力。
在本实施例中,可以采用相同的设备以及相同的工艺将各个功能元器件60贴装于柔性基板40上,在将各种功能元件贴装于柔性基板40上后,该方法还包括在各功能元器件60之间设置连接线路,以及在功能元器件60、连接线路及柔性基板40外设置外封装层62。关于连接线路及外封装层62的布设,可以依据现有技术,在此不再赘述。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内
工业实用性
本发明提供的柔性器件的过渡装置,通过将功能元器件的第二表面与过渡基板粘接,该柔性器件的过渡装置,兼容现有SMT技术。或进行芯片封装的wafer供料方式,又可以直接将该过渡装置应用于功能元器件的贴装工艺中,降低了功能元器件贴装工艺中,对功能元器件贴片设备的贴片工艺过程控制难度的要求,以便于功能元器件的贴装。同时,由于在功能元器件上形成有封装层,过渡基板通过粘合层与封装层粘接,一方面,封装层的设置使该粘合层的粘合与剥离不会对功能元器件造成损坏;另一方面,在过渡装置移动的过程中,封装层可以对功能元器件形成保护,对其进行应力缓冲,以及防止外界的灰尘、静电等对功能元器件造成影响,降低了功能元器件存储、运输及后续贴装工艺的难度;最后,在进行功能元器件贴装工艺时,由于功能元器件被封装层所保护,因此,可以降低贴装工艺对车间环境及设备精度的要求;更使得该柔性器件的过渡装置可以以一个独立的产品,进入功能元器件贴装行业流通,有利于功能元器件下游厂家进行超薄柔性器件的定制化生产,有利于柔性器件行业的发展。

Claims (51)

  1. 一种柔性器件的过渡装置,其特征在于:包括功能元器件及过渡基板,所述功能元器件上形成有预备与基板进行贴片处理的第一表面,以及与所述第一表面相对的第二表面,所述过渡基板通过粘合层粘合于所述功能元器件的第二表面上。
  2. 如权利要求1所述的柔性器件的过渡装置,其特征在于:所述功能元器件为IC芯片或基于聚合物衬底的柔性元器件。
  3. 如权利要求1所述的柔性器件的过渡装置,其特征在于:所述功能元器件包括功能元器件本体以及封装层,所述功能元器件本体包括衬底以及衬底上其中一侧形成的功能层,所述封装层至少设置于所述功能层表面。
  4. 如权利要求3所述的柔性器件的过渡过渡装置,其特征在于:
    所述功能元器件适用于正装工艺时,所述过渡基板从所述功能层所在的一侧的第二表面,通过所述粘合层与功能元器件粘合;
    或,
    所述功能元器件适用于倒装工艺时,所述过渡基板从远离所述功能层所在的一侧的第二表面,通过所述粘合层与所述功能元器件粘合。
  5. 如权利要求3所述的柔性器件的过渡装置,其特征在于:所述功能层包括PAD,所述PAD上设置有柔性电极,所述柔性电极从PAD上引出,且贯穿并表露于封装层表面。
  6. 如权利要求3所述的柔性器件的过渡装置,其特征在于:当所述功能元器件为IC芯片时,所述功能元器件本体包括IC芯片衬底.形成于所述IC芯片衬底上的电路功能层,所述封装层至少从所述电路功能层的表面,以及所述IC芯片的侧面对所述IC芯片衬底及所述电路功能层进行封装。
  7. 如权利要求6所述的柔性器件的过渡装置,其特征在于:所述IC芯片为适用于正装工艺的IC芯片,所述过渡基板从所述电路功能层所在的一侧,通过所述粘合层与所述IC芯片粘合;或,所述IC芯片为适应于倒装工艺的IC芯片,所述过渡基板从远离所述电路功能层所在的一侧,通过所述粘合层与所述IC芯片粘合。
  8. 如权利要求3所述的柔性器件的过渡装置,其特征在于:当所述功能元器件为基于聚合物衬底的柔性元器件时,所述功能元器件包括衬底层及器件功能层,所述器件功能层设置于所述衬底层上,所述封装层对所述器件功能层进行封装。
  9. 如权利要求8所述的柔性器件的过渡装置,其特征在于:所述基于聚合物衬底的柔性元器件为适用于正装工艺的聚合物衬底的柔性元器件,所述过渡基板通过所述粘合层从所述器件功能层所在的一侧与所述基于聚合物衬底的柔性元器件粘接,或,
    所述基于聚合物衬底的柔性元器件为适用于倒装工艺的基于聚合物衬底的柔性元器件,所述过渡基板通过所述粘合层从所述衬底层所在的一侧与所述基于聚合物衬底的柔性元器件粘接。
  10. 如权利要求8所述的柔性器件的过渡装置,其特征在于:所述衬底层为有机聚合物层.或有机聚合物层及无机物层交替布设。
  11. 如权利要求8所述的柔性器件的过渡装置,其特征在于:所述封装层由有机聚合物或无机物或有机聚合物与无机物混合形成,或者由有机聚合物层及无机物层交替布设而成。
  12. 如权利要求11所述的柔性器件的过渡装置,其特征在于:有机聚合物形成的所述封装层的厚度为200-10000nm。
  13. 如权利要求11所述的柔性器件的过渡装置,其特征在于:无机物形成的所述封装层的厚度为5-600nm。
  14. 如权利要求1所述的柔性器件的过渡装置,其特征在于:所述粘合层上形成有与所述过渡基板粘合的第一粘合面,以及用于与所述功能元器件粘合的第二粘合面,所述第一粘合面与所述过渡基板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
  15. 如权利要求14所述的柔性器件的过渡装置,其特征在于:在所述过渡基板上形成有多个用于增大粘结面积的凹凸结构,所述凹凸结构位于所述过渡基板与所述粘合层接触一侧的表面上。
  16. 如权利要求14所述的柔性器件的过渡装置,其特征在于:所述粘合层包括第一粘合层及第二粘合层,所述第一粘合层与所述过渡基板接触,所述第二粘合层与所述功能元器件接触,所述第一粘合面形成于所述第一粘合层与所述过渡基板之间,所述第二粘合面形成于所述第二粘合层与所述功能元器件之间。
  17. 如权利要求16所述的柔性器件的过渡装置,其特征在于:在对所述粘合层施加改性影响因素的情况下,所述第一粘合层的粘性增强,和/或第二粘合层的粘性降低,以使所述第一粘合层的粘性大于所述第二粘合层的粘性。
  18. 如权利要求16所述的柔性器件的过渡装置,其特征在于:所述粘合层还包括缓冲层,所述缓冲层设置于所述第一粘合层与所述第二粘合层之间,并分别通过所述缓冲层的两个表面与所述第一粘合层及所述第二粘合层粘接。
  19. 如权利要求18所述的柔性器件的过渡装置,其特征在于:所述缓冲层为导热系数小于0.5的低导热材料制成的缓冲层。
  20. 如权利要求1所述的柔性器件的过渡装置,其特征在于:所述柔性器件的过渡装置还包括芯片粘结膜,所述芯片粘结膜形成于所述功能元器件远离所述过渡基板一侧的表面。
  21. 如权利要求20所述的柔性器件的过渡装置,其特征在于:所述芯片粘结膜的粘性大于所述粘合层的粘性。
  22. 如权利要求1所述的柔性器件的过渡装置,其特征在于:在所述过渡基板远离所述功能元器件的一侧的表面上,还形成有微图像结构。
  23. 一种如权利要求1至22中任意一项所述的柔性器件的过渡装置的制备方法,其特征在于:包括如下步骤:
    提供一功能元器件本体;
    在所述功能元器件本体外形成封装层,以形成功能元器件;
    在所述功能元器件上形成有预备与柔性基板进行贴片处理的第一表面,及与所述第一表面相对的第二表面;
    提供一过渡基板,将所述过渡基板通过粘合层与所述功能元器件的第二表面所在的一侧粘合。
  24. 如权利要求23所述的柔性器件的过渡装置的制备方法,其特征在于:所述功能元器件为IC芯片或基于聚合物衬底的柔性元器件。
  25. 如权利要求23所述的柔性器件的过渡装置的制备方法,其特征在于:在形成所述封装层前,在所述功能层对应位置制作PAD,对PAD进行加厚处理。
  26. 如权利要求25所述的柔性器件的过渡装置的制备方法,其特征在于:在PAD上制作柔性电极,所述柔性电极从所述PAD上引出,且贯穿并表露于所述封装层。
  27. 如权利要求24所述的柔性器件的过渡装置的制备方法,其特征在于:当所述功能元器件为IC芯片时,该方法包括:
    提供一个晶元,在所述晶元上形成电路功能层;
    对所述晶元进行切割划片形成多个包括IC芯片衬底,以及IC芯片衬底上的电路功能层的功能元器件本体;
    对所述功能元器件本体进行封装,使之成为IC芯片;所述IC芯片上形成有预备与基板进行贴片处理的第一表面,以及与所述第一表面相对的第二表面,
    提供一个过渡胚板,将所述过渡胚板通过粘合层粘接于所述IC芯片的第二表面上;
    对所述过渡胚板进行切割划片。
  28. 如权利要求27所述的柔性器件的过渡装置的制备方法,其特征在于:在所述晶元上制作所述电路功能层时,还包括对所述电路功能层的I/O端口的PAD进行加厚处理,以及在制作所述封装层时,在所述封装层上相对于所述PAD位置制作柔性电极。
  29. 如权利要求28所述的柔性器件的过渡装置的制备方法,其特征在于:该方法中,还包括对所述IC芯片进行减薄处理,使所述IC芯片衬底的厚度小于80μm。
  30. 如权利要求29所述的柔性器件的过渡装置的制备方法,其特征在于:所述IC芯片为适用于正装工艺的IC芯片时,在将所述过渡胚板通过粘合层粘接于所述IC芯片的第二表面上的步骤后,直接对IC芯片远离所述过渡胚板一侧的硅衬底进行减薄处理。
  31. 如权利要求30所述的柔性器件的过渡装置的制备方法,其特征在于:在进行减薄处理后,该方法还包括对IC芯片进行减薄处理的一侧进行封装。
  32. 如权利要求29所述的柔性器件的过渡装置的制备方法,其特征在于:所述IC芯片为适用于倒装工艺的IC芯片,在进行减薄处理时,包括如下步骤:
    提供一转接板,将所述转接板通过转接粘合层与适用于所述倒装工艺的IC芯片的第一表面粘接;
    对所述IC芯片衬底进行减薄处理;
    将过渡胚板通过粘合层与适用于所述倒装工艺的所述IC芯片已经进行减薄处理的一侧的表面粘接;
    剥离所述转接板及所述转接粘合层。
  33. 如权利要求32所述的柔性器件的过渡装置的制备方法,其特征在于:所述转接粘合层与所述IC芯片之间的粘合力小于所述粘合层与所述IC芯片之间的粘合力。
  34. 如权利要求30所述的柔性器件的过渡装置的制备方法,其特征在于:在对所述IC芯片进行减薄处理后,该方法还包括消除所述IC芯片衬底经过减薄处理的表面的残余应力。
  35. 如权利要求24所述的柔性器件的过渡装置的制备方法,其特征在于:当所述功能元器件为基于聚合物衬底的柔性元器件时,该方法包括:
    提供一个衬底胚板,并在所述衬底胚板上形成多个器件功能层;
    对所述器件功能层进行封装,以形成基于聚合物衬底的柔性元器件胚体;
    所述基于聚合物衬底的柔性元器件胚体上形成有预备与基板进行贴片处理的所述第一表面,以及与所述第一表面相对应的所述第二表面,提供一个过渡胚板,将所述过渡胚板通过粘合层粘接于所述基于聚合物衬底的柔性元器件的第二表面上;
    对所述基于聚合物衬底的柔性元器件胚体进行切割划片形成基于聚合物衬底的柔性元器件。
  36. 如权利要求35所述的柔性器件的过渡装置的制备方法,其特征在于:在所述衬底胚板上形成多个器件功能层时,还包括对基于聚合物衬底的柔性元器件的PAD进行加厚处理,以及在所述基于聚合物衬底的柔性元器件的PAD上制作柔性电极,以使基于聚合物衬底的柔性元器件的PAD从所述封装层内引出。
  37. 如权利要求24所述的柔性器件的过渡装置的制备方法,其特征在于:所述基于聚合物衬底的柔性元器件为适用于正装工艺的基于聚合物衬底的柔性元器件,所述过渡胚板通过所述粘合层从所述器件功能层所在的一侧与所述基于聚合物衬底的柔性元器件粘接;或,
    所述基于聚合物衬底的柔性元器件为适用于倒装工艺的基于聚合物衬底的柔性元器件,所述过渡胚板通过所述粘合层从所述衬底胚板所在的一侧与所述基于聚合物衬底的柔性元器件粘接。
  38. 如权利要求27或35所述的柔性器件的过渡装置的制备方法,其特征在于:在所述粘合层上形成有与所述过渡胚板粘合的第一粘合面,以及用于与所述基于聚合物衬底的柔性元器件粘合的第二粘合面,所述第一粘合面与所述过渡胚板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
  39. 如权利要求23所述的柔性器件的过渡装置的制备方法,其特征在于:该方法还包括在所述功能元器件的第一表面上形成芯片粘结膜。
  40. 一种采用权利要求1至22中任意一项所述的柔性器件的过渡装置进行柔性器件贴片的贴片方法,其特征在于:包括如下步骤:
    提供一个柔性基板;
    将所述柔性器件的过渡装置中的功能元器件的第一表面贴装于所述柔性基板上。
  41. 如权利要求40所示的柔性器件贴片的贴片方法,其特征在于:该方法还包括在功能元器件的第一表面和/或所述柔性基板上设置芯片粘结膜。
  42. 一种柔性器件的制作方法,其特征在于:该方法包括如下步骤:
    提供一如权利要求1-22任一项所述柔性器件的过渡装置;
    提供一柔性基板,移动所述过渡装置,并使所述功能元器件从所述第一表面所在的一侧与所述柔性基板相连;
    将所述柔性器件的过渡装置中的功能元器件的第一表面贴装于所述柔性基板上后剥离所述过渡基板及所述粘合层。
  43. 如权利要求42所述的柔性器件的制作方法,其特征在于:所述粘合层上形成有与所述过渡基板粘合的第一粘合面,以及用于与所述功能元器件粘合的第二粘合面,所述第一粘合面与所述过渡基板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
  44. 如权利要求43所述的柔性器件的制作方法,其特征在于:在对所述粘合层施加改性影响因素的情况下,所述第一粘合面与所述过渡基板之间的粘合力大于所述第二粘合面与所述功能元器件之间的粘合力。
  45. 如权利要求44所述的柔性器件的制作方法,其特征在于:所述粘合层包括第一粘合层及第二粘合层,所述第一粘合层与所述过渡基板接触,所述第二粘合层与所述功能元器件接触,所述第一粘合面形成于所述第一粘合层与所述过渡基板之间,所述第二粘合面形成于所述第二粘合层与所述功能元器件之间,在移除所述过渡基板及所述粘合层的制程中,对所述粘合层施加改性影响因素,所述第一粘合层的粘性增强,和/或第二粘合层的粘性降低,以使所述第一粘合层的粘性大于所述第二粘合层的粘性。
  46. 如权利要求45所述的柔性器件的制作方法,其特征在于:所述第一粘合层为热敏感粘合剂形成的第一粘合层,通过温度的施加,所述第一粘合层的粘性增强和/或,所述第二粘合层为热敏感粘合剂形成的第二粘合层,通过温度的施加,所述第二粘合剂的粘性降低。
  47. 如权利要求45所述的柔性器件的制作方法,其特征在于:所述第一粘合层为紫外线敏感粘合剂形成的第一粘合层,通过紫外线的照射,所述第一粘合层的粘性增强和/或,所述第二粘合层为紫外线敏感粘合剂形成的第二粘合层,通过紫外线的照射,所述第二粘合剂的粘性降低。
  48. 如权利要求45所述的柔性器件的制作方法,其特征在于:通过施加改性影响因素,所述第二粘合剂的粘性降低,所述第一粘合剂为永久粘合剂。
  49. 如权利要求44至48中任意一项所述的柔性器件的制作方法,其特征在于:在移除所述过渡基板及所述粘合层的制程中,该方法还包括对粘合层施加改性影响因素,以减少粘合层与所述功能元器件之间的粘合力,和/或增加所述粘合层与所述过渡基板之间的粘合力。
  50. 如权利要求42所述的柔性器件的制作方法,其特征在于:根据权利要求23-39所述的柔性器件的过渡装置的制作所述过渡装置。
  51. 如权利要求42所述的柔性器件的制作方法,其特征在于:该方法还包括在功能元器件的第一表面和/或所述柔性基板上设置芯片粘结膜,通过所述芯片粘结膜使所述功能元器件从所述第一表面所在的一侧与所述柔性基板相连。
PCT/CN2019/073281 2018-05-31 2019-01-26 柔性器件的过渡装置、制备方法及柔性器件的制作方法 WO2019227955A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19811822.6A EP3806157A4 (en) 2018-05-31 2019-01-26 TRANSITION DEVICE FOR FLEXIBLE DEVICE AND METHOD FOR PREPARING IT, AND METHOD FOR MANUFACTURING FOR FLEXIBLE DEVICE
KR1020207034623A KR102503622B1 (ko) 2018-05-31 2019-01-26 유연성 소자의 과도 장치, 제조 방법 및 유연성 소자의 제작 방법
US17/038,701 US11335572B2 (en) 2018-05-31 2020-09-30 Transition device for flexible device and production method therefor, and method for fabricating flexible device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810550646.5 2018-05-31
CN201810549408.2A CN110556399B (zh) 2018-05-31 2018-05-31 柔性器件的过渡装置、制备方法及柔性器件贴片的方法
CN201810550646.5A CN110556345B (zh) 2018-05-31 2018-05-31 柔性器件的制作方法
CN201810550634.2 2018-05-31
CN201810550634.2A CN110556400B (zh) 2018-05-31 2018-05-31 柔性器件的过渡装置、制备方法及柔性器件贴片的方法
CN201810549408.2 2018-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/038,701 Continuation US11335572B2 (en) 2018-05-31 2020-09-30 Transition device for flexible device and production method therefor, and method for fabricating flexible device

Publications (1)

Publication Number Publication Date
WO2019227955A1 true WO2019227955A1 (zh) 2019-12-05

Family

ID=68697809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073281 WO2019227955A1 (zh) 2018-05-31 2019-01-26 柔性器件的过渡装置、制备方法及柔性器件的制作方法

Country Status (4)

Country Link
US (1) US11335572B2 (zh)
EP (1) EP3806157A4 (zh)
KR (1) KR102503622B1 (zh)
WO (1) WO2019227955A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270644A1 (en) * 2009-04-28 2010-10-28 E. I. Du Pont De Nemours And Company Methods of embedding thin-film capacitors into semiconductor packages using temporary carrier layers
CN104103608A (zh) * 2013-04-05 2014-10-15 英飞凌科技股份有限公司 高功率单裸片半导体封装
CN105118844A (zh) * 2015-07-01 2015-12-02 深圳市华星光电技术有限公司 一种柔性显示面板的制备方法及柔性显示面板
CN106129084A (zh) * 2016-07-08 2016-11-16 信利半导体有限公司 一种柔性基板、柔性电子器件及其制造方法
US20180096877A1 (en) * 2016-09-30 2018-04-05 International Business Machines Corporation Multi-chip package assembly
CN107889540A (zh) * 2015-05-21 2018-04-06 歌尔股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312933A (ja) * 1991-03-29 1992-11-04 Mitsubishi Electric Corp 半導体装置
JP3447619B2 (ja) * 1999-06-25 2003-09-16 株式会社東芝 アクティブマトリクス基板の製造方法、中間転写基板
JP5022552B2 (ja) * 2002-09-26 2012-09-12 セイコーエプソン株式会社 電気光学装置の製造方法及び電気光学装置
US20080014532A1 (en) * 2006-07-14 2008-01-17 3M Innovative Properties Company Laminate body, and method for manufacturing thin substrate using the laminate body
CA2711266A1 (en) * 2008-01-24 2009-07-30 Brewer Science Inc. Method for reversibly mounting a device wafer to a carrier substrate
US8092628B2 (en) * 2008-10-31 2012-01-10 Brewer Science Inc. Cyclic olefin compositions for temporary wafer bonding
KR101030990B1 (ko) * 2008-12-31 2011-04-22 삼성에스디아이 주식회사 반도체 패키지 및 이를 구비하는 플라즈마 디스플레이 장치
DE112009004598B4 (de) * 2009-03-26 2023-02-23 Vacuumschmelze Gmbh & Co. Kg Verfahren zum stoffschlüssigen fügen von paketlamellen zu einem weichmagnetischen blechpaket
GB2481187B (en) * 2010-06-04 2014-10-29 Plastic Logic Ltd Processing substrates
CA2934493C (en) * 2013-12-19 2022-06-14 The Regents Of The University Of California Highly scalable fabrication techniques and packaging devices for electronic circuits
TWI783910B (zh) * 2016-01-15 2022-11-21 荷蘭商庫力克及索發荷蘭公司 放置超小或超薄之離散組件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270644A1 (en) * 2009-04-28 2010-10-28 E. I. Du Pont De Nemours And Company Methods of embedding thin-film capacitors into semiconductor packages using temporary carrier layers
CN104103608A (zh) * 2013-04-05 2014-10-15 英飞凌科技股份有限公司 高功率单裸片半导体封装
CN107889540A (zh) * 2015-05-21 2018-04-06 歌尔股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
CN105118844A (zh) * 2015-07-01 2015-12-02 深圳市华星光电技术有限公司 一种柔性显示面板的制备方法及柔性显示面板
CN106129084A (zh) * 2016-07-08 2016-11-16 信利半导体有限公司 一种柔性基板、柔性电子器件及其制造方法
US20180096877A1 (en) * 2016-09-30 2018-04-05 International Business Machines Corporation Multi-chip package assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806157A4 *

Also Published As

Publication number Publication date
KR20210006410A (ko) 2021-01-18
US11335572B2 (en) 2022-05-17
EP3806157A4 (en) 2022-07-06
US20210013054A1 (en) 2021-01-14
EP3806157A1 (en) 2021-04-14
KR102503622B1 (ko) 2023-02-24

Similar Documents

Publication Publication Date Title
TWI457875B (zh) 顯示裝置及其製造方法
TWI305036B (en) Sensor-type package structure and fabrication method thereof
TW465054B (en) Chip scale packaging technique for optical image sensing integrated circuits
US8124471B2 (en) Method of post-mold grinding a semiconductor package
TWI414027B (zh) 晶片尺寸封裝件及其製法
CN107107600B (zh) 设置便于组装的超小或超薄分立元件
US9153528B2 (en) Chip package and method for forming the same
US20230138119A1 (en) Method for fabricating strain sensing film, strain sensing film, and pressure sensor
CN105895540A (zh) 晶圆背面印胶的封装方法
WO2020087815A1 (zh) 一种微型元件的批量转移方法
CN110556345B (zh) 柔性器件的制作方法
JP7280381B2 (ja) マイクロメカニカルウェハにダンパ構造を製造するための方法
JP6059074B2 (ja) 半導体装置の製造方法
TWI357104B (en) Wafer grinding method
WO2019227955A1 (zh) 柔性器件的过渡装置、制备方法及柔性器件的制作方法
CN104992908A (zh) 一种晶圆级封装中超薄封盖的制作方法
TWI324829B (en) Optical semiconductor package and method for manufacturing the same
CN110556399B (zh) 柔性器件的过渡装置、制备方法及柔性器件贴片的方法
CN110556400B (zh) 柔性器件的过渡装置、制备方法及柔性器件贴片的方法
CN101295655A (zh) 平板/晶圆结构封装设备与其方法
JP2005322869A (ja) ウエハレベルパッケージの製造ツール及びチップ配置方法
KR20080114036A (ko) 반도체 칩의 개별화 방법
CN114242639A (zh) 一种增加塑封料表面临时键合强度的键合结构和制作方法
CN116469902A (zh) 影像传感器模块的制造方法
CN114156262A (zh) 微led模块的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207034623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019811822

Country of ref document: EP

Effective date: 20210111